WO2024070858A1 - Substrate processing method - Google Patents

Substrate processing method Download PDF

Info

Publication number
WO2024070858A1
WO2024070858A1 PCT/JP2023/034146 JP2023034146W WO2024070858A1 WO 2024070858 A1 WO2024070858 A1 WO 2024070858A1 JP 2023034146 W JP2023034146 W JP 2023034146W WO 2024070858 A1 WO2024070858 A1 WO 2024070858A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron
substrate
film
silicon oxide
gas
Prior art date
Application number
PCT/JP2023/034146
Other languages
French (fr)
Japanese (ja)
Inventor
暁志 布瀬
一也 戸田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024070858A1 publication Critical patent/WO2024070858A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This disclosure relates to a substrate processing method.
  • Patent Document 1 discloses a substrate processing method, comprising the steps of: disposing substrates on a plurality of substrate supports in a processing chamber, the processing chamber including a processing space defined around a rotation axis in the processing chamber, each substrate including a first surface and a second surface; rotating the plurality of substrate supports around the rotation axis; exposing the substrate to a reaction gas including a metal-containing catalyst; exposing the substrate to a cleaning gas that removes an oxide layer from the second surface together with the metal-containing catalyst on the oxide layer; exposing the substrate to a deposition gas including a silanol gas that selectively deposits an initial SiO 2 film on the metal-containing catalyst layer on the first surface for a certain period of time, the initial SiO 2 film forming a raised feature adjacent to the second surface; exposing the substrate to the reaction gas using the metal-containing catalyst layer to selectively cover the raised feature of the initial SiO 2 film but not the second surface; and depositing additional SiO 2 on the metal-containing catalyst on the raised feature of the initial SiO 2
  • the present disclosure provides a substrate processing method for forming a silicon oxide film selectively on a substrate having a first surface including a metal material and a second surface including a dielectric material relative to the first surface.
  • a substrate processing method includes the steps of preparing a substrate having a first surface including a metallic material and a second surface including an oxygen-containing dielectric material, exposing the substrate to a boron-containing substance to selectively form a boron-containing film on the second surface relative to the first surface, and exposing the substrate to a silanol gas to form a silicon oxide film on the second surface on which the boron-containing film has been formed.
  • a substrate processing method can be provided for a substrate having a first surface including a metal material and a second surface including a dielectric material, in which a silicon oxide film is selectively formed on the second surface relative to the first surface.
  • 1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to an embodiment.
  • 1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to an embodiment.
  • 1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to an embodiment.
  • 1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to an embodiment.
  • 1 is an example of a flowchart illustrating a method for forming a silicon oxide film according to an embodiment.
  • 1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to a reference example.
  • 1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to a reference example.
  • 1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to a reference example.
  • 1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to a reference example.
  • 1 is an example of a flowchart showing a method for forming a silicon oxide film according to a reference example.
  • 1 is an example of a graph showing the results of an XPS analysis in the case where a boron-containing film is formed on a silicon oxide.
  • 1 is an example of a graph showing the results of an XPS analysis in the case where a boron-containing film is formed on ruthenium.
  • 1 is an example of a graph showing the results of an XPS analysis in the case where a silicon oxide film is formed on a boron-containing film.
  • 11 is an example of a flowchart illustrating another method for forming a silicon oxide film according to an embodiment.
  • FIG. 1A to 1D are exemplary cross-sectional schematic views illustrating the configuration of a substrate W in the method for forming a silicon oxide film according to an embodiment.
  • Figure 2 is an exemplary flowchart illustrating the method for forming a silicon oxide film according to an embodiment.
  • step S11 a process for preparing the substrate W is performed.
  • the substrate W is transported into a processing vessel of the substrate processing apparatus, and the substrate W is placed on a mounting table in the processing vessel.
  • FIG. 1A is an example of a schematic cross-sectional view illustrating the configuration of a substrate W to be prepared.
  • the substrate W has a metal layer (first metal film) 110 formed of a metal material, and a dielectric layer (first dielectric film, first insulator film) 120 formed of a dielectric material.
  • the surface (top surface) of the substrate W has a first surface S1 containing a metal material, and a second surface S2 containing a dielectric material.
  • a metal oxide layer (natural oxide film) 111 may also be formed on the surface of the metal layer 110.
  • the metal material of the metal layer 110 may be, for example, any one of Ru, Cu, Co, W, etc.
  • the dielectric material of the dielectric layer 120 may be, for example, silicon oxide.
  • the silicon oxide contains at least silicon (Si) and oxygen (O).
  • the silicon oxide is, for example, SiO 2.
  • the silicon oxide may contain other atoms (for example, carbon (C), nitrogen (N), etc.) in addition to silicon (Si) and oxygen (O).
  • the silicon oxide may be, for example, any one of SiOC, SiON, SiOCN, etc.
  • step S12 the substrate W is exposed to a cleaning gas to clean the surface of the substrate W.
  • the cleaning gas is supplied into a processing vessel that contains the substrate W to clean the surface of the substrate W in the processing vessel.
  • a reducing gas that reduces the metal oxide layer 111 may be used as the cleaning gas. This reduces the metal oxide layer 111 formed on the surface (first surface S1) of the metal layer 110, and removes the metal oxide layer 111. Also, an etching gas that etches the metal oxide layer 111 may be used as the cleaning gas. This removes the metal oxide layer 111 formed on the surface (first surface S1) of the metal layer 110.
  • the cleaning gas may be, for example, any one of hydrogen gas, water gas, carboxylic acid gas, fluorine-containing organic gas, etc., or a combination thereof.
  • the process of cleaning the surface of the substrate W may be a process of exposing the substrate W to a plasma of a cleaning gas. In this case, the cleaning gas may be any one of hydrogen gas, water gas, carboxylic acid gas, fluorine-containing organic gas, etc., or a combination of these gases.
  • FIG. 1B is an example of a schematic cross-sectional view illustrating the configuration of the substrate W after the process of cleaning the surface of the substrate W.
  • the first surface S1 is formed of the metal material of the metal layer 110.
  • the second surface S2 is formed of the dielectric material (silicon oxide) of the dielectric layer 120.
  • step S13 the substrate W is exposed to a boron-containing substance to form a boron-containing film 130 on the surface of the substrate W.
  • FIG. 1C is an example of a schematic cross-sectional view illustrating the configuration of the substrate W after the process of forming the boron-containing film 130.
  • the boron-containing film 130 is likely to be selectively formed on the surface of a material containing oxygen (O). That is, the boron-containing film 130 is more likely to be formed on the surface (second surface S2) of the dielectric layer 120 containing oxygen (O) than on the surface (first surface S1) of the metal layer 110.
  • the boron-containing film 130 is selectively formed on the second surface S2 of the surfaces (first surface S1, second surface S2) of the substrate W relative to the first surface S1.
  • the thickness of the boron-containing film 130 formed on the second surface S2 is defined as the first thickness T1.
  • the thickness (first thickness T1) of the boron-containing film 130 formed on the second surface S2 is formed to be thicker than the thickness of the boron-containing film 130 formed on the first surface S1.
  • the boron-containing film 130 may be a boron film, a boron oxide film (a film containing at least boron (B) and oxygen (O)), a boron nitride film (a film containing at least boron (B) and nitrogen (N)), or a film containing boron (B) and other atoms.
  • the boron-containing film 130 may be formed by a PVD (Physical Vapor Deposition) method. That is, a target made of a boron-containing material may be sputtered in a processing vessel, and the substrate W may be exposed to the sputtered particles (boron-containing material) emitted from the target, thereby depositing the sputtered particles on the surface of the substrate W, thereby forming the boron-containing film 130 on the surface of the substrate W.
  • a boron (B) target may be sputtered in a processing vessel to form a boron film (boron-containing film 130) on the surface of the substrate W.
  • the boron-containing film 130 may be formed by simultaneously supplying a boron precursor gas (a boron-containing substance) and a reactive gas into a processing chamber and using a chemical vapor deposition (CVD) method.
  • the boron precursor gas may be, for example, any one of TDMAB (Tris-(dimethylamino)borane), TEMAB (Tris-(diethylamino)borane), BCl 3 , BH 4 , B 2 H 6 , etc.
  • the reactive gas may be, for example, any one of N 2 , H 2 , H 2 O, O 2 , etc.
  • the boron-containing film 130 may be formed by alternately supplying a boron precursor gas (boron-containing material) and a reactive gas into a processing chamber by an atomic layer deposition (ALD) method.
  • the boron precursor gas may be, for example, any one of TDMAB (Tris-(dimethylamino)borane), TEMAB (Tris-(diethylamino)borane), BCl 3 , BH 4 , B 2 H 6 , etc.
  • the reactive gas may be, for example, any one of N 2 , H 2 , H 2 O, O 2 , etc.
  • step S14 the substrate W is exposed to silanol gas to form a silicon oxide film 140 on the surface of the substrate W.
  • silanol gas is supplied into a processing vessel that contains the substrate W, and a silicon oxide film (second dielectric film, second insulator film) 140 is formed on the surface of the substrate W in the processing vessel.
  • silanol gas for example, TPSOL (Tris(tert-pentoxy)silanol), TBSOL (Tris(tert-buthoxy)silanol), etc. can be used.
  • TPSOL Tris(tert-pentoxy)silanol
  • TBSOL Tris(tert-buthoxy)silanol
  • FIG. 1D is an example of a schematic cross-sectional view illustrating the configuration of the substrate W after the process of forming the silicon oxide film 140.
  • the boron-containing film 130 formed on the substrate W is used as a catalyst for forming the silicon oxide film 140.
  • the boron-containing film 130 formed on the substrate W is used as a reaction accelerator for promoting the formation of the silicon oxide film 140.
  • the boron-containing film 130 is selectively formed on the second surface S2 with respect to the first surface S1. Therefore, the silicon oxide film 140 is more likely to be formed on the surface of the boron-containing film 130 (on the second surface S2) than on the surface of the metal layer 110 (the first surface S1).
  • the silicon oxide film 140 is selectively formed on the second surface S2 on which the boron-containing film 130 is formed with respect to the first surface S1. Furthermore, the thickness of the silicon oxide film 140 formed on the second surface S2 is made thicker than the thickness of the silicon oxide film 140 formed on the first surface S1.
  • the silicon oxide film 140 to be selectively formed on the second surface S2 relative to the first surface S1. Also, a recess is formed on the substrate W, the sidewall of which is formed of the silicon oxide film 140, and the bottom wall of which is formed of the metal layer 110.
  • step S14 a process of embedding a metal film (second metal film) in the recess may be included. This results in the metal layer (first metal film) 110 and the metal film (second metal film) embedded in the recess being formed so as to be electrically conductive.
  • a step of removing the boron-containing film 130 and silicon oxide film 140 formed slightly on the first surface S1 by etching or the like may be performed.
  • the film thickness of the boron-containing film 130 and silicon oxide film 140 formed on the first surface S1 is sufficiently thin compared with the film thickness of the boron-containing film 130 and silicon oxide film 140 formed on the second surface S2. Therefore, even if the substrate W is subjected to an etching process to remove the boron-containing film 130 and silicon oxide film 140 formed on the first surface S1, the boron-containing film 130 and silicon oxide film 140 can be left on the second surface S2.
  • the step of removing the boron-containing film 130 and silicon oxide film 140 formed on the first surface S1 can use, as an etching gas, any of oxygen gas, water gas, fluorine-containing organic gas, etc. Furthermore, the step of removing the boron-containing film 130 and the silicon oxide film 140 formed on the first surface S1 may be a step of exposing the substrate W to plasma.
  • the process of cleaning the surface of the substrate W (step S12), the process of forming the boron-containing film 130 (step S13), and the process of forming the silicon oxide film 140 (step S14) may be performed in the same processing vessel, in different processing vessels, or in multiple processing vessels connected via a vacuum transfer chamber.
  • FIG. 3A to 3D are examples of schematic cross-sectional views illustrating the configuration of a substrate W in the method for forming a silicon oxide film according to a reference example.
  • Figure 4 is an example of a flowchart showing the method for forming a silicon oxide film according to a reference example.
  • step S21 a process for preparing the substrate W is performed.
  • the substrate W is transported into a processing vessel of the substrate processing apparatus, and the substrate W is placed on a mounting table in the processing vessel.
  • FIG. 2(a) is an example of a schematic cross-sectional view illustrating the configuration of the substrate W to be prepared.
  • the substrate W has a metal layer 110 formed of a metal material, and a dielectric layer 120 formed of a dielectric material.
  • the surface (top surface) of the substrate W has a first surface S1 containing a metal material, and a second surface S2 containing a dielectric material.
  • a metal oxide layer (natural oxide film) may be formed on the surface of the metal layer 110.
  • the metal material of the metal layer 110 and the dielectric material of the dielectric layer 120 are the same as the metal material and dielectric material described using FIGS. 1A to 1D and 2.
  • step S22 a process is performed to form a self-assembled monolayer (SAM) 150 on the surface of the substrate W.
  • SAM self-assembled monolayer
  • an organic compound is supplied into a processing vessel that contains the substrate W, and a self-assembled monolayer 150 is formed on the surface of the substrate W in the processing vessel.
  • FIG. 4(b) is an example of a schematic cross-sectional view illustrating the structure of the substrate W after the process of forming the self-assembled monolayer 150.
  • the organic compound has a main chain (chain portion) and a functional group formed at one end of the main chain.
  • the main chain is formed by a series of carbons (C).
  • the main chain is formed, for example, of an alkyl chain.
  • the functional group is a functional group that selectively adsorbs (bonds) to the metal layer 110.
  • the functional group includes, for example, at least one of thiol, carboxylic acid, sulfonic acid, phosphoric acid, olefin, etc.
  • the functional group of the organic compound is adsorbed to the surface of the metal layer 110, and the organic compound is oriented due to the interaction between the organic compounds, thereby forming the self-assembled monolayer 150.
  • the self-assembled monolayer 150 is formed on the surface (first surface S1) of the metal layer 110.
  • the functional group of the organic compound is suppressed from adsorbing to the dielectric layer 120.
  • the self-assembled monolayer 150 is selectively formed on the first surface S1 relative to the second surface S2.
  • step S23 a process of forming a silicon oxide film 140 on the surface of the substrate W is performed.
  • silanol gas and a reactive gas are supplied into a processing vessel that contains the substrate W, and a silicon oxide film 140 is formed on the surface of the substrate W in the processing vessel.
  • the silanol gas for example, TPSOL (Tris(tert-pentoxy)silanol) can be used.
  • TMA trimethylaluminum
  • FIG. 4(c) is an example of a schematic cross-sectional view illustrating the structure of the substrate W after the process of forming the silicon oxide film 140.
  • TMA used as a catalyst is selectively adsorbed to the dielectric layer 120 relative to the surface of the self-assembled monolayer 150.
  • TPSOL is bonded to the TMA adsorbed to the surface (second surface S2) of the dielectric layer 120 to form the silicon oxide film 140. Therefore, as shown in FIG. 4(c), in the process of forming the silicon oxide film 140, the silicon oxide film 140 is selectively formed on the second surface S2 relative to the surface of the self-assembled monolayer 150.
  • the thickness of the silicon oxide film 140 formed on the second surface S2 is formed to be thicker than the thickness of the silicon oxide film 140 formed on the surface of the self-assembled monolayer 150.
  • step S24 a process of removing the self-assembled monolayer 150 is performed.
  • the self-assembled monolayer 150 formed on the first surface S1 and the silicon oxide film 140 formed on the self-assembled monolayer 150 are removed.
  • FIG. 4(d) is an example of a schematic cross-sectional view illustrating the structure of the substrate W after the process of removing the self-assembled monolayer 150. This allows the silicon oxide film 140 to be selectively formed on the second surface S2 relative to the first surface S1.
  • the substrate W has a recess whose sidewalls are formed of the silicon oxide film 140 and whose bottom wall is formed of the metal layer 110.
  • step S22 self-assembled monolayer 150 that inhibits the formation of silicon oxide film 140 is formed on first surface S1, and then in step S23, silicon oxide film 140 is selectively formed on second surface S2 relative to first surface S1.
  • a boron-containing film 130 that promotes the formation of a silicon oxide film 140 on the second surface S2 is formed in step S13, and then a silicon oxide film 140 is selectively formed on the second surface S2 relative to the first surface S1 in step S14.
  • the formation method according to one embodiment can selectively form a silicon oxide film 140 on the second surface S2 relative to the first surface S1 by a process different from that of the formation method according to the reference example.
  • the metal oxide layer (native oxide film) 111 is removed by cleaning the surface of the substrate W in step S12. This can further suppress the formation of the boron-containing film 130 on the first surface S1. In addition, by suppressing the formation of the boron-containing film 130 on the first surface S1, it can further suppress the formation of the silicon oxide film 140 on the first surface S1.
  • Fig. 5 is an example of a graph showing the results of XPS analysis when a boron-containing film is formed on a silicon oxide as a dielectric layer.
  • Fig. 6 is an example of a graph showing the results of XPS analysis when a boron-containing film is formed on a ruthenium as a metal layer.
  • Fig. 5 silicon (SiO 2 ) having a natural oxide film formed on its surface is used as an underlayer, and a boron film is formed on the underlayer by PVD. That is, Fig. 5 corresponds to the case where a boron-containing film 130 is formed on the second surface S2. Also, in Fig. 6, ruthenium (Ru) is used as the underlayer, and a boron film is formed on the underlayer by PVD. That is, Fig. 6 corresponds to the case where a boron-containing film 130 is formed on the first surface S1.
  • ruthenium Ru
  • each of the substrates W thus formed was analyzed by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the horizontal axis indicates the sputtering time. In other words, the horizontal axis corresponds to the depth from the substrate surface.
  • the vertical axis indicates the composition ratio (%). Note that in Fig. 5, only silicon (Si) in the dielectric layer 120 and boron (B) in the boron-containing film 130 are shown in the graph, and other atoms are not shown in the graph. Also, in Fig. 6, only ruthenium (Ru) in the metal layer 110 and boron (B) in the boron-containing film 130 are shown in the graph, and other atoms are not shown in the graph.
  • a boron-containing film 130 is defined as one having a composition ratio (%) of boron (B) of 30% or more, and the thickness of the boron-containing film 130 (B-containing film thickness) is indicated by an arrow in the graphs of Figures 5 and 6.
  • a comparison of Figures 5 and 6 shows that the boron-containing film 130 is formed thicker on the silicon oxide film (see Figure 5) than on the ruthenium film (see Figure 6). In other words, the boron-containing film 130 is selectively formed on the second surface S2 relative to the first surface S1.
  • Fig. 7 is an example of a graph showing the results of an XPS analysis in the case where a silicon oxide film 140 is formed on a boron-containing film.
  • Copper (Cu) was used as an underlayer, and boron films (boron-containing films 130) with thicknesses of 5 nm, 10 nm, and 20 nm were formed on the underlayer by the PVD method. Silicon oxide films 140 were then formed on the boron films with different thicknesses.
  • FIG. 7 shows the results near the peak corresponding to silicon (Si).
  • the area of the peak corresponds to the film thickness of the silicon oxide film 140, and a wider area of the peak (higher peak) indicates a thicker film thickness of the silicon oxide film 140.
  • a silicon oxide film 140 was formed on the boron-containing film 130 when the film thickness (first film thickness T1) of the boron film (boron-containing film 130) was in the range of 5 nm to 20 nm.
  • the thickness of the silicon oxide film 140 is significantly improved by setting the thickness of the boron film to 20 nm, compared to when the thickness is 5 nm and 10 nm.
  • the catalytic effect of the boron-containing film 130 is significantly improved by setting the thickness of the boron film to 20 nm or more.
  • Fig. 8 is an example of a flow chart showing another method for forming a silicon oxide film according to an embodiment.
  • step S31 a process of preparing a substrate W is performed in the same manner as in step S11.
  • the substrate W is transported into a processing vessel of the substrate processing apparatus, and the substrate W is placed on a mounting table in the processing vessel.
  • the substrate W to be prepared has a metal layer (first metal film) 110 formed of a metal material and a dielectric layer (first dielectric film, first insulator film) 120 formed of a dielectric material, similar to the substrate W shown in FIG. 1A.
  • the surface (upper surface) of the substrate W has a first surface S1 containing a metal material and a second surface S2 containing a dielectric material.
  • a metal oxide layer (natural oxide film) 111 may be formed on the surface of the metal layer 110.
  • the metal material of the metal layer 110 and the dielectric material of the dielectric layer 120 are the same as the metal material and the dielectric material described using FIGS. 1A to 1D and 2.
  • step S32 similar to step S12, the substrate W is exposed to a cleaning gas to clean the surface of the substrate W.
  • cleaning gas is supplied into a processing vessel that contains the substrate W to clean the surface of the substrate W in the processing vessel.
  • the metal oxide layer 111 is removed from the substrate W, similar to the substrate W shown in FIG. 1B.
  • the first surface S1 is formed of the metal material of the metal layer 110.
  • the second surface S2 is formed of the dielectric material (silicon oxide film) of the dielectric layer 120.
  • step S33 similar to step S13, the substrate W is exposed to a boron-containing substance to form a boron-containing film 130 on the surface of the substrate W.
  • the substrate W has the boron-containing film 130 selectively formed on the second surface S2 relative to the first surface S1, similar to the substrate W shown in FIG. 1C.
  • step S34 a process of removing the boron-containing film 130 on the first surface S1 is performed.
  • the thickness of the boron-containing film 130 formed on the first surface S1 is sufficiently thin compared to the thickness of the boron-containing film 130 formed on the second surface S2. Therefore, even if the substrate W is subjected to an etching process and the boron-containing film 130 formed on the first surface S1 is removed, the boron-containing film 130 can be left on the second surface S2.
  • the process of removing the boron-containing film 130 formed on the first surface S1 can use, as an etching gas, any of oxygen gas, water gas, fluorine-containing organic gas, etc.
  • the process of removing the boron-containing film 130 formed on the first surface S1 may be a process of exposing the substrate W to plasma.
  • step S35 similar to step S14, the substrate W is exposed to silanol gas to form a silicon oxide film 140 on the surface of the substrate W.
  • silanol gas is supplied into a processing vessel that contains the substrate W, and a silicon oxide film (second dielectric film, second insulator film) 140 is formed on the surface of the substrate W in the processing vessel.
  • the substrate W is similar to the substrate W shown in FIG. 1D, in that the silicon oxide film 140 is selectively formed on the second surface S2 on which the boron-containing film 130 is formed, relative to the first surface S1.
  • step S36 the process from step S33 to step S35 constitutes one cycle, and it is determined whether the number of cycles has reached a predetermined number of repetitions. If the number of cycles has not reached the predetermined number of repetitions (S36: NO), the process returns to step S33, and the process from step S33 to step S35 is repeated. That is, the cycle including the process from step S33 to step S35 is repeated. If the number of cycles has reached the predetermined number of repetitions (S36: YES), the process of forming the silicon oxide film 140 is terminated.
  • the silicon oxide film 140 to be selectively formed on the second surface S2 relative to the first surface S1. Also, a recess is formed on the substrate W, the sidewall of which is formed of the silicon oxide film 140, and the bottom wall of which is formed of the metal layer 110.
  • the thickness of the silicon oxide film 140 formed on the second surface S2 can be increased. This allows the aspect ratio of the recess to be increased.
  • a process of embedding a metal film (second metal film) in the recess may be included. This results in the metal layer (first metal film) 110 and the metal film (second metal film) embedded in the recess being formed so as to be electrically conductive.
  • the process of cleaning the surface of the substrate W (step S32), the process of forming the boron-containing film 130 (step S33), the process of removing the boron-containing film 130 on the first surface S1 (step S34), and the process of forming the silicon oxide film 140 (step S35) may be performed in the same processing vessel, in different processing vessels, or in multiple processing vessels connected via a vacuum transfer chamber.
  • Metal layer 110 Metal layer 111 Metal oxide layer 120 Dielectric layer 130 Boron-containing film 140 Silicon oxide film 150 Self-assembled monolayer S1 First surface S2 Second surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a substrate processing method in which, for a substrate comprising a first surface including a metallic material and a second surface including a dielectric material, a silicon dioxide film is selectively formed on the second surface relative to the first surface. The substrate processing method comprises: a step for preparing a first surface including a metallic material and a second surface including a dielectric material containing oxygen; a step for exposing the substrate to a boron-containing substance to selectively form a boron-containing film on the second surface relative to the first surface; and a step for exposing the substrate to a silanol gas to form a silicon dioxide film on the second surface on which the boron-containing film was formed.

Description

基板処理方法Substrate processing method
 本開示は、基板処理方法に関する。 This disclosure relates to a substrate processing method.
 特許文献1には、基板処理方法であって、処理チャンバ内の複数の基板支持体上に基板を配置するステップであって、該処理チャンバは、該処理チャンバ内で回転軸の周りに画定された処理空間を含み、各基板は第1の表面と第2の表面とを含む、ステップと、前記回転軸の周りに前記複数の基板支持体を回転させるステップと、金属含有触媒を含む反応ガスに前記基板を暴露するステップと、酸化層を該酸化層上の前記金属含有触媒と共に前記第2の表面から除去する洗浄ガスに前記基板を暴露するステップと、ある期間にわたって、前記第1の表面上の前記金属含有触媒層上に初期SiO膜を選択的に付着させるシラノールガスを含有する付着ガスに前記基板を暴露するステップであって、該初期SiO膜は前記第2の表面に隣接する隆起フィーチャを形成する、ステップと、前記金属含有触媒層を用いて、前記反応ガスに前記基板を暴露して、前記第2の表面ではなく前記初期SiO膜の隆起フィーチャを選択的に被覆するステップと、ある期間にわたって、前記初期SiO膜の隆起フィーチャ上の前記金属含有触媒上に追加SiO膜を選択的に付着させる前記シラノールガスを含有する付着ガスに前記基板を暴露するステップと、を含む方法が開示されている。 Patent Document 1 discloses a substrate processing method, comprising the steps of: disposing substrates on a plurality of substrate supports in a processing chamber, the processing chamber including a processing space defined around a rotation axis in the processing chamber, each substrate including a first surface and a second surface; rotating the plurality of substrate supports around the rotation axis; exposing the substrate to a reaction gas including a metal-containing catalyst; exposing the substrate to a cleaning gas that removes an oxide layer from the second surface together with the metal-containing catalyst on the oxide layer; exposing the substrate to a deposition gas including a silanol gas that selectively deposits an initial SiO 2 film on the metal-containing catalyst layer on the first surface for a certain period of time, the initial SiO 2 film forming a raised feature adjacent to the second surface; exposing the substrate to the reaction gas using the metal-containing catalyst layer to selectively cover the raised feature of the initial SiO 2 film but not the second surface; and depositing additional SiO 2 on the metal-containing catalyst on the raised feature of the initial SiO 2 film for a certain period of time. and exposing the substrate to a deposition gas containing the silanol gas that selectively deposits the silanol-containing SiO 2 film.
特開2019-96881号公報JP 2019-96881 A
 本開示は、金属材料を含む第1の表面と、誘電体材料を含む第2の表面と、を有する基板において、第1の表面に対して第2の表面上に選択的にシリコン酸化膜を形成する、基板処理方法を提供する。 The present disclosure provides a substrate processing method for forming a silicon oxide film selectively on a substrate having a first surface including a metal material and a second surface including a dielectric material relative to the first surface.
 本開示の一態様による基板処理方法は、金属材料を含む第1の表面と、酸素を含有する誘電体材料を含む第2の表面とを有する基板を準備する工程と、前記基板をホウ素含有物質にさらして、前記第1の表面に対して前記第2の表面上にホウ素含有膜を選択的に形成する工程と、前記基板をシラノールガスにさらして、前記ホウ素含有膜が形成された前記第2の表面上にシリコン酸化膜を形成する工程と、を含む。 A substrate processing method according to one aspect of the present disclosure includes the steps of preparing a substrate having a first surface including a metallic material and a second surface including an oxygen-containing dielectric material, exposing the substrate to a boron-containing substance to selectively form a boron-containing film on the second surface relative to the first surface, and exposing the substrate to a silanol gas to form a silicon oxide film on the second surface on which the boron-containing film has been formed.
 本開示によれば、金属材料を含む第1の表面と、誘電体材料を含む第2の表面と、を有する基板において、第1の表面に対して第2の表面上に選択的にシリコン酸化膜を形成する、基板処理方法を提供することができる。 According to the present disclosure, a substrate processing method can be provided for a substrate having a first surface including a metal material and a second surface including a dielectric material, in which a silicon oxide film is selectively formed on the second surface relative to the first surface.
一実施形態に係るシリコン酸化膜の形成方法における基板の構成を説明する断面模式図の一例。1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to an embodiment. 一実施形態に係るシリコン酸化膜の形成方法における基板の構成を説明する断面模式図の一例。1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to an embodiment. 一実施形態に係るシリコン酸化膜の形成方法における基板の構成を説明する断面模式図の一例。1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to an embodiment. 一実施形態に係るシリコン酸化膜の形成方法における基板の構成を説明する断面模式図の一例。1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to an embodiment. 一実施形態に係るシリコン酸化膜の形成方法を示すフローチャートの一例。1 is an example of a flowchart illustrating a method for forming a silicon oxide film according to an embodiment. 参考例に係るシリコン酸化膜の形成方法における基板の構成を説明する断面模式図の一例。1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to a reference example. 参考例に係るシリコン酸化膜の形成方法における基板の構成を説明する断面模式図の一例。1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to a reference example. 参考例に係るシリコン酸化膜の形成方法における基板の構成を説明する断面模式図の一例。1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to a reference example. 参考例に係るシリコン酸化膜の形成方法における基板の構成を説明する断面模式図の一例。1A to 1C are schematic cross-sectional views illustrating a configuration of a substrate in a method for forming a silicon oxide film according to a reference example. 参考例に係るシリコン酸化膜の形成方法を示すフローチャートの一例。1 is an example of a flowchart showing a method for forming a silicon oxide film according to a reference example. シリコン酸化物上にホウ素含有膜を形成した場合におけるXPS解析の結果を示すグラフの一例。1 is an example of a graph showing the results of an XPS analysis in the case where a boron-containing film is formed on a silicon oxide. ルテニウム上にホウ素含有膜を形成した場合におけるXPS解析の結果を示すグラフの一例。1 is an example of a graph showing the results of an XPS analysis in the case where a boron-containing film is formed on ruthenium. ホウ素含有膜の上にシリコン酸化膜を形成した場合におけるXPS解析の結果を示すグラフの一例。1 is an example of a graph showing the results of an XPS analysis in the case where a silicon oxide film is formed on a boron-containing film. 一実施形態に係るシリコン酸化膜の他の形成方法を示すフローチャートの一例。11 is an example of a flowchart illustrating another method for forming a silicon oxide film according to an embodiment.
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。 Below, non-limiting exemplary embodiments of the present disclosure will be described with reference to the attached drawings. In all of the attached drawings, the same or corresponding members or parts are designated by the same or corresponding reference symbols, and duplicate descriptions will be omitted.
[一実施形態に係るシリコン酸化膜の形成方法]
 一実施形態に係るシリコン酸化膜の形成方法について、図1Aから図1D及び図2を用いて説明する。図1Aから図1Dは、一実施形態に係るシリコン酸化膜の形成方法における基板Wの構成を説明する断面模式図の一例である。図2は、一実施形態に係るシリコン酸化膜の形成方法を示すフローチャートの一例である。
[Method of forming silicon oxide film according to one embodiment]
A method for forming a silicon oxide film according to an embodiment will be described with reference to Figures 1A to 1D and 2. Figures 1A to 1D are exemplary cross-sectional schematic views illustrating the configuration of a substrate W in the method for forming a silicon oxide film according to an embodiment. Figure 2 is an exemplary flowchart illustrating the method for forming a silicon oxide film according to an embodiment.
 ステップS11において、基板Wを準備する工程を行う。ここでは、基板処理装置の処理容器内に基板Wを搬送し、処理容器内の載置台に基板Wを載置する。 In step S11, a process for preparing the substrate W is performed. Here, the substrate W is transported into a processing vessel of the substrate processing apparatus, and the substrate W is placed on a mounting table in the processing vessel.
 図1Aは、準備される基板Wの構成を説明する断面模式図の一例である。基板Wは、金属材料で形成される金属層(第1の金属膜)110と、誘電体材料で形成される誘電体層(第1の誘電体膜、第1の絶縁体膜)120と、を有する。また、基板Wの表面(上面)は、金属材料を含む第1の表面S1と、誘電体材料を含む第2の表面S2と、を有する。また、金属層110の表面には、金属酸化層(自然酸化膜)111が形成されていてもよい。 FIG. 1A is an example of a schematic cross-sectional view illustrating the configuration of a substrate W to be prepared. The substrate W has a metal layer (first metal film) 110 formed of a metal material, and a dielectric layer (first dielectric film, first insulator film) 120 formed of a dielectric material. The surface (top surface) of the substrate W has a first surface S1 containing a metal material, and a second surface S2 containing a dielectric material. A metal oxide layer (natural oxide film) 111 may also be formed on the surface of the metal layer 110.
 ここで、金属層110の金属材料は、例えばRu、Cu、Co、W等のうちいずれかを用いることができる。また、誘電体層120の誘電体材料は、例えばシリコン酸化物を用いることができる。なお、シリコン酸化物は、少なくともケイ素(Si)及び酸素(O)を含む。シリコン酸化物は、例えばSiOである。また、シリコン酸化物は、ケイ素(Si)及び酸素(O)に加え、他の原子(例えば、炭素(C)、窒素(N)等)を含んでいてもよい。シリコン酸化物は、例えばSiOC、SiON、SiOCN等のうちいずれかであってもよい。 Here, the metal material of the metal layer 110 may be, for example, any one of Ru, Cu, Co, W, etc. The dielectric material of the dielectric layer 120 may be, for example, silicon oxide. The silicon oxide contains at least silicon (Si) and oxygen (O). The silicon oxide is, for example, SiO 2. The silicon oxide may contain other atoms (for example, carbon (C), nitrogen (N), etc.) in addition to silicon (Si) and oxygen (O). The silicon oxide may be, for example, any one of SiOC, SiON, SiOCN, etc.
 ステップS12において、基板Wを洗浄ガスにさらして、基板Wの表面を洗浄する工程を行う。ここでは、基板Wを収容する処理容器内に洗浄ガスを供給して、処理容器内の基板Wの表面を洗浄する。 In step S12, the substrate W is exposed to a cleaning gas to clean the surface of the substrate W. Here, the cleaning gas is supplied into a processing vessel that contains the substrate W to clean the surface of the substrate W in the processing vessel.
 洗浄ガスとして、金属酸化層111を還元する還元ガスを用いてもよい。これにより、金属層110の表面(第1の表面S1)に形成された金属酸化層111を還元して、金属酸化層111を除去する。また、洗浄ガスとして、金属酸化層111をエッチングするエッチングガスを用いてもよい。これにより、金属層110の表面(第1の表面S1)に形成された金属酸化層111を除去する。具体的には、洗浄ガスとして、例えば水素ガス、水ガス、カルボン酸系ガス、フッ素含有有機系ガス等のうちいずれか、またはその組合せを用いることができる。また、基板Wの表面を洗浄する工程は、基板Wを洗浄ガスのプラズマにさらす工程であってもよい。この場合、洗浄ガスとして、水素ガス、水ガス、カルボン酸系ガス、フッ素含有有機系ガス等のうちいずれか、またはこれらのガスの組合せを用いることができる。 A reducing gas that reduces the metal oxide layer 111 may be used as the cleaning gas. This reduces the metal oxide layer 111 formed on the surface (first surface S1) of the metal layer 110, and removes the metal oxide layer 111. Also, an etching gas that etches the metal oxide layer 111 may be used as the cleaning gas. This removes the metal oxide layer 111 formed on the surface (first surface S1) of the metal layer 110. Specifically, the cleaning gas may be, for example, any one of hydrogen gas, water gas, carboxylic acid gas, fluorine-containing organic gas, etc., or a combination thereof. Also, the process of cleaning the surface of the substrate W may be a process of exposing the substrate W to a plasma of a cleaning gas. In this case, the cleaning gas may be any one of hydrogen gas, water gas, carboxylic acid gas, fluorine-containing organic gas, etc., or a combination of these gases.
 図1Bは、基板Wの表面を洗浄する工程後における基板Wの構成を説明する断面模式図の一例である。金属酸化層111が除去されることにより、第1の表面S1は、金属層110の金属材料で形成される。また、第2の表面S2は、誘電体層120の誘電体材料(シリコン酸化物)で形成される。 FIG. 1B is an example of a schematic cross-sectional view illustrating the configuration of the substrate W after the process of cleaning the surface of the substrate W. By removing the metal oxide layer 111, the first surface S1 is formed of the metal material of the metal layer 110. Furthermore, the second surface S2 is formed of the dielectric material (silicon oxide) of the dielectric layer 120.
 ステップS13において、基板Wをホウ素含有物質にさらして、基板Wの表面にホウ素含有膜130を形成する工程を行う。 In step S13, the substrate W is exposed to a boron-containing substance to form a boron-containing film 130 on the surface of the substrate W.
 図1Cは、ホウ素含有膜130を形成する工程後における基板Wの構成を説明する断面模式図の一例である。ここで、ホウ素(B)が酸素(O)と結合する性質が高いため、ホウ素含有膜130は、酸素(O)を含む材料の表面に選択的に形成されやすい。即ち、ホウ素含有膜130は、金属層110の表面(第1の表面S1)と比較して、酸素(O)を含む誘電体層120の表面(第2の表面S2)に形成されやすい。換言すれば、ホウ素含有膜130を形成する工程において、基板Wの表面(第1の表面S1、第2の表面S2)のうち、第1の表面S1に対して第2の表面S2上にホウ素含有膜130を選択的に形成する。また、第2の表面S2上に形成されるホウ素含有膜130の膜厚を第1の膜厚T1とする。第2の表面S2上に形成されるホウ素含有膜130の膜厚(第1の膜厚T1)は、第1の表面S1上に形成されるホウ素含有膜130の膜厚よりも厚く形成される。 FIG. 1C is an example of a schematic cross-sectional view illustrating the configuration of the substrate W after the process of forming the boron-containing film 130. Here, since boron (B) has a high tendency to bond with oxygen (O), the boron-containing film 130 is likely to be selectively formed on the surface of a material containing oxygen (O). That is, the boron-containing film 130 is more likely to be formed on the surface (second surface S2) of the dielectric layer 120 containing oxygen (O) than on the surface (first surface S1) of the metal layer 110. In other words, in the process of forming the boron-containing film 130, the boron-containing film 130 is selectively formed on the second surface S2 of the surfaces (first surface S1, second surface S2) of the substrate W relative to the first surface S1. The thickness of the boron-containing film 130 formed on the second surface S2 is defined as the first thickness T1. The thickness (first thickness T1) of the boron-containing film 130 formed on the second surface S2 is formed to be thicker than the thickness of the boron-containing film 130 formed on the first surface S1.
 また、ホウ素含有膜130は、ボロン膜であってもよく、ボロン酸化膜(少なくともホウ素(B)及び酸素(O)を含む膜)であってもよく、ボロン窒化膜(少なくともホウ素(B)及び窒素(N)を含む膜)であってもよく、ホウ素(B)と他の原子を含む膜であってもよい。 The boron-containing film 130 may be a boron film, a boron oxide film (a film containing at least boron (B) and oxygen (O)), a boron nitride film (a film containing at least boron (B) and nitrogen (N)), or a film containing boron (B) and other atoms.
 なお、ホウ素含有膜130は、PVD(Physical Vapor Deposition)法により形成される構成であってもよい。即ち、処理容器内でホウ素含有物質で形成されたターゲットをスパッタし、ターゲットから放出されたスパッタ粒子(ホウ素含有物質)に基板Wをさらすことで、スパッタ粒子を基板Wの表面に堆積させ、基板Wの表面にホウ素含有膜130を形成してもよい。例えば、処理容器内でボロン(B)ターゲットをスパッタすることにより、基板Wの表面にボロン膜(ホウ素含有膜130)を形成してもよい。 The boron-containing film 130 may be formed by a PVD (Physical Vapor Deposition) method. That is, a target made of a boron-containing material may be sputtered in a processing vessel, and the substrate W may be exposed to the sputtered particles (boron-containing material) emitted from the target, thereby depositing the sputtered particles on the surface of the substrate W, thereby forming the boron-containing film 130 on the surface of the substrate W. For example, a boron (B) target may be sputtered in a processing vessel to form a boron film (boron-containing film 130) on the surface of the substrate W.
 また、ホウ素含有膜130は、処理容器内にホウ素前駆体ガス(ホウ素含有物質)と反応ガスとを(同時に)供給して、CVD(Chemical Vapor Deposition)法により形成される構成であってもよい。この場合、ホウ素前駆体ガスとして、例えばTDMAB(Tris-(dimethylamino)borane)、TEMAB(Tris-(diethylamino)borane)、BCl、BH、B等のうちいずれかを用いることができる。また、反応ガスとして、例えばN、H、HO、O等のうちいずれかを用いることができる。 The boron-containing film 130 may be formed by simultaneously supplying a boron precursor gas (a boron-containing substance) and a reactive gas into a processing chamber and using a chemical vapor deposition (CVD) method. In this case, the boron precursor gas may be, for example, any one of TDMAB (Tris-(dimethylamino)borane), TEMAB (Tris-(diethylamino)borane), BCl 3 , BH 4 , B 2 H 6 , etc. The reactive gas may be, for example, any one of N 2 , H 2 , H 2 O, O 2 , etc.
 また、ホウ素含有膜130は、処理容器内にホウ素前駆体ガス(ホウ素含有物質)と反応ガスとを交互に供給して、ALD(Atomic Layer Deposition)法により形成される構成であってもよい。この場合、ホウ素前駆体ガスとして、例えばTDMAB(Tris-(dimethylamino)borane)、TEMAB(Tris-(diethylamino)borane)、BCl、BH、B等のうちいずれかを用いることができる。また、反応ガスとして、例えばN、H、HO、O等のうちいずれかを用いることができる。 The boron-containing film 130 may be formed by alternately supplying a boron precursor gas (boron-containing material) and a reactive gas into a processing chamber by an atomic layer deposition (ALD) method. In this case, the boron precursor gas may be, for example, any one of TDMAB (Tris-(dimethylamino)borane), TEMAB (Tris-(diethylamino)borane), BCl 3 , BH 4 , B 2 H 6 , etc. The reactive gas may be, for example, any one of N 2 , H 2 , H 2 O, O 2 , etc.
 ステップS14において、基板Wをシラノールガスにさらして、基板Wの表面にシリコン酸化膜140を形成する工程を行う。ここでは、基板Wを収容する処理容器内にシラノールガスを供給して、処理容器内の基板Wの表面にシリコン酸化膜(第2の誘電体膜、第2の絶縁体膜)140を形成する。 In step S14, the substrate W is exposed to silanol gas to form a silicon oxide film 140 on the surface of the substrate W. Here, silanol gas is supplied into a processing vessel that contains the substrate W, and a silicon oxide film (second dielectric film, second insulator film) 140 is formed on the surface of the substrate W in the processing vessel.
 シラノールガスとして、例えばTPSOL(Tris(tert-pentoxy)silanol)、TBSOL(Tris(tert-buthoxy)silanol)等のうちいずれかを用いることができる。 As the silanol gas, for example, TPSOL (Tris(tert-pentoxy)silanol), TBSOL (Tris(tert-buthoxy)silanol), etc. can be used.
 図1Dは、シリコン酸化膜140を形成する工程後における基板Wの構成を説明する断面模式図の一例である。ここで、基板Wに形成されたホウ素含有膜130は、シリコン酸化膜140を形成する触媒として用いられる。または、基板Wに形成されたホウ素含有膜130は、シリコン酸化膜140の形成を促進させる反応促進剤として用いられる。ステップS13及び図1Cに示すように、第1の表面S1に対して第2の表面S2上にホウ素含有膜130が選択的に形成される。このため、シリコン酸化膜140は、金属層110の表面(第1の表面S1)と比較して、ホウ素含有膜130の表面(第2の表面S2の上)に形成されやすい。したがって、図1Dに示すように、シリコン酸化膜140を形成する工程において、第1の表面S1に対してホウ素含有膜130が形成された第2の表面S2上にシリコン酸化膜140を選択的に形成する。また、第2の表面S2上に形成されるシリコン酸化膜140の膜厚は、第1の表面S1上に形成されるシリコン酸化膜140の膜厚よりも厚く形成される。 FIG. 1D is an example of a schematic cross-sectional view illustrating the configuration of the substrate W after the process of forming the silicon oxide film 140. Here, the boron-containing film 130 formed on the substrate W is used as a catalyst for forming the silicon oxide film 140. Alternatively, the boron-containing film 130 formed on the substrate W is used as a reaction accelerator for promoting the formation of the silicon oxide film 140. As shown in step S13 and FIG. 1C, the boron-containing film 130 is selectively formed on the second surface S2 with respect to the first surface S1. Therefore, the silicon oxide film 140 is more likely to be formed on the surface of the boron-containing film 130 (on the second surface S2) than on the surface of the metal layer 110 (the first surface S1). Therefore, as shown in FIG. 1D, in the process of forming the silicon oxide film 140, the silicon oxide film 140 is selectively formed on the second surface S2 on which the boron-containing film 130 is formed with respect to the first surface S1. Furthermore, the thickness of the silicon oxide film 140 formed on the second surface S2 is made thicker than the thickness of the silicon oxide film 140 formed on the first surface S1.
 これにより、第1の表面S1に対して第2の表面S2上に選択的にシリコン酸化膜140を形成することができる。また、基板Wには、側壁がシリコン酸化膜140で形成され、底壁が金属層110で形成される凹部が形成される。 This allows the silicon oxide film 140 to be selectively formed on the second surface S2 relative to the first surface S1. Also, a recess is formed on the substrate W, the sidewall of which is formed of the silicon oxide film 140, and the bottom wall of which is formed of the metal layer 110.
 また、ステップS14の後、凹部に金属膜(第2の金属膜)を埋め込む工程を有していてもよい。これにより、金属層(第1の金属膜)110と凹部に埋め込まれた金属膜(第2の金属膜)とが導通するように形成される。 Furthermore, after step S14, a process of embedding a metal film (second metal film) in the recess may be included. This results in the metal layer (first metal film) 110 and the metal film (second metal film) embedded in the recess being formed so as to be electrically conductive.
 また、ステップS14の後、金属膜を埋め込む工程の前に、第1の表面S1の上に僅かに形成されたホウ素含有膜130及びシリコン酸化膜140をエッチング等により除去する工程を行ってもよい。ここで、第1の表面S1上に形成されるホウ素含有膜130及びシリコン酸化膜140の膜厚は、第2の表面S2上に形成されるホウ素含有膜130及びシリコン酸化膜140の膜厚と比較して十分に薄い。このため、基板Wにエッチング処理を施し、第1の表面S1上に形成されるホウ素含有膜130及びシリコン酸化膜140を除去しても、第2の表面S2上にホウ素含有膜130及びシリコン酸化膜140を残すことができる。なお、第1の表面S1の上に形成されたホウ素含有膜130及びシリコン酸化膜140を除去する工程は、エッチングガスとして、例えば酸素ガス、水ガス、フッ素含有有機系ガス等のうちいずれかを用いることができる。また、第1の表面S1の上に形成されたホウ素含有膜130及びシリコン酸化膜140を除去する工程は、基板Wをプラズマにさらす工程であってもよい。 Furthermore, after step S14, before the step of embedding the metal film, a step of removing the boron-containing film 130 and silicon oxide film 140 formed slightly on the first surface S1 by etching or the like may be performed. Here, the film thickness of the boron-containing film 130 and silicon oxide film 140 formed on the first surface S1 is sufficiently thin compared with the film thickness of the boron-containing film 130 and silicon oxide film 140 formed on the second surface S2. Therefore, even if the substrate W is subjected to an etching process to remove the boron-containing film 130 and silicon oxide film 140 formed on the first surface S1, the boron-containing film 130 and silicon oxide film 140 can be left on the second surface S2. In addition, the step of removing the boron-containing film 130 and silicon oxide film 140 formed on the first surface S1 can use, as an etching gas, any of oxygen gas, water gas, fluorine-containing organic gas, etc. Furthermore, the step of removing the boron-containing film 130 and the silicon oxide film 140 formed on the first surface S1 may be a step of exposing the substrate W to plasma.
 なお、基板Wの表面を洗浄する工程(ステップS12)、ホウ素含有膜130を形成する工程(ステップS13)及びシリコン酸化膜140を形成する工程(ステップS14)は、同一の処理容器内で行われる構成であってもよく、異なる処理容器で行われる構成であってもよく、真空搬送室を介して接続された複数の処理容器でそれぞれ行われる構成であってもよい。 The process of cleaning the surface of the substrate W (step S12), the process of forming the boron-containing film 130 (step S13), and the process of forming the silicon oxide film 140 (step S14) may be performed in the same processing vessel, in different processing vessels, or in multiple processing vessels connected via a vacuum transfer chamber.
[参考例に係るシリコン酸化膜の形成方法]
 ここで、参考例に係るシリコン酸化膜の形成方法について、図3Aから図3D及び図4を用いて説明する。図3Aから図3Dは、参考例に係るシリコン酸化膜の形成方法における基板Wの構成を説明する断面模式図の一例である。図4は、参考例に係るシリコン酸化膜の形成方法を示すフローチャートの一例である。
[Method of forming silicon oxide film according to a reference example]
Here, a method for forming a silicon oxide film according to a reference example will be described with reference to Figures 3A to 3D and 4. Figures 3A to 3D are examples of schematic cross-sectional views illustrating the configuration of a substrate W in the method for forming a silicon oxide film according to a reference example. Figure 4 is an example of a flowchart showing the method for forming a silicon oxide film according to a reference example.
 ステップS21において、基板Wを準備する工程を行う。ここでは、基板処理装置の処理容器内に基板Wを搬送し、処理容器内の載置台に基板Wを載置する。 In step S21, a process for preparing the substrate W is performed. Here, the substrate W is transported into a processing vessel of the substrate processing apparatus, and the substrate W is placed on a mounting table in the processing vessel.
 図2(a)は、準備される基板Wの構成を説明する断面模式図の一例である。基板Wは、金属材料で形成される金属層110と、誘電体材料で形成される誘電体層120と、を有する。また、基板Wの表面(上面)は、金属材料を含む第1の表面S1と、誘電体材料を含む第2の表面S2と、を有する。また、金属層110の表面には、金属酸化層(自然酸化膜)が形成されていてもよい。また、金属層110の金属材料及び誘電体層120の誘電体材料は、図1Aから図1D及び図2を用いて説明した金属材料及び誘電体材料と同様である。 FIG. 2(a) is an example of a schematic cross-sectional view illustrating the configuration of the substrate W to be prepared. The substrate W has a metal layer 110 formed of a metal material, and a dielectric layer 120 formed of a dielectric material. The surface (top surface) of the substrate W has a first surface S1 containing a metal material, and a second surface S2 containing a dielectric material. A metal oxide layer (natural oxide film) may be formed on the surface of the metal layer 110. The metal material of the metal layer 110 and the dielectric material of the dielectric layer 120 are the same as the metal material and dielectric material described using FIGS. 1A to 1D and 2.
 ステップS22において、基板Wの表面に自己組織化単分子膜(SAM:Self-Assembled Monolayer)150を形成する工程を行う。ここでは、基板Wを収容する処理容器内に有機化合物を供給して、処理容器内の基板Wの表面に自己組織化単分子膜150を形成する。 In step S22, a process is performed to form a self-assembled monolayer (SAM) 150 on the surface of the substrate W. Here, an organic compound is supplied into a processing vessel that contains the substrate W, and a self-assembled monolayer 150 is formed on the surface of the substrate W in the processing vessel.
 図4(b)は、自己組織化単分子膜150を形成する工程後における基板Wの構成を説明する断面模式図の一例である。ここで、有機化合物は、主鎖(鎖部)と、主鎖の一端に形成される機能基と、を有する。主鎖は、炭素(C)が連なって形成される。主鎖は、例えば、アルキル鎖で形成される。機能基は、金属層110に対して選択的に吸着(結合)する官能基である。機能基は、例えば、チオール、カルボン酸、スルホン酸、リン酸、オレフィン等のうち少なくとも一つを含む。有機化合物の機能基が金属層110の表面に吸着し、有機化合物間の相互作用によって有機化合物が配向することで、自己組織化単分子膜150を形成する。これにより、図4(b)に示すように、金属層110の表面(第1の表面S1)に自己組織化単分子膜150を形成する。一方、誘電体層120に対しては、有機化合物の機能基が吸着することが抑制される。これにより、自己組織化単分子膜150を形成する工程において、第2の表面S2に対して第1の表面S1上に自己組織化単分子膜150を選択的に形成する。 FIG. 4(b) is an example of a schematic cross-sectional view illustrating the structure of the substrate W after the process of forming the self-assembled monolayer 150. Here, the organic compound has a main chain (chain portion) and a functional group formed at one end of the main chain. The main chain is formed by a series of carbons (C). The main chain is formed, for example, of an alkyl chain. The functional group is a functional group that selectively adsorbs (bonds) to the metal layer 110. The functional group includes, for example, at least one of thiol, carboxylic acid, sulfonic acid, phosphoric acid, olefin, etc. The functional group of the organic compound is adsorbed to the surface of the metal layer 110, and the organic compound is oriented due to the interaction between the organic compounds, thereby forming the self-assembled monolayer 150. As a result, as shown in FIG. 4(b), the self-assembled monolayer 150 is formed on the surface (first surface S1) of the metal layer 110. On the other hand, the functional group of the organic compound is suppressed from adsorbing to the dielectric layer 120. As a result, in the process of forming the self-assembled monolayer 150, the self-assembled monolayer 150 is selectively formed on the first surface S1 relative to the second surface S2.
 ステップS23において、基板Wの表面にシリコン酸化膜140を形成する工程を行う。ここでは、基板Wを収容する処理容器内にシラノールガス及び反応ガスを供給して、処理容器内の基板Wの表面にシリコン酸化膜140を形成する。シラノールガスとして、例えばTPSOL(Tris(tert-pentoxy)silanol)を用いることができる。反応ガスとしては、TMA(トリメチルアルミニウム)を用いることができる。 In step S23, a process of forming a silicon oxide film 140 on the surface of the substrate W is performed. Here, silanol gas and a reactive gas are supplied into a processing vessel that contains the substrate W, and a silicon oxide film 140 is formed on the surface of the substrate W in the processing vessel. As the silanol gas, for example, TPSOL (Tris(tert-pentoxy)silanol) can be used. As the reactive gas, TMA (trimethylaluminum) can be used.
 図4(c)は、シリコン酸化膜140を形成する工程後における基板Wの構成を説明する断面模式図の一例である。ここで、触媒として用いられるTMAは、自己組織化単分子膜150の表面に対し誘電体層120に選択的に吸着する。そして、誘電体層120の表面(第2の表面S2)に吸着したTMAにTPSOLが結合することで、シリコン酸化膜140が形成される。したがって、図4(c)に示すように、シリコン酸化膜140を形成する工程において、自己組織化単分子膜150の表面に対して第2の表面S2上にシリコン酸化膜140を選択的に形成する。また、第2の表面S2上に形成されるシリコン酸化膜140の膜厚は、自己組織化単分子膜150の表面上に形成されるシリコン酸化膜140の膜厚よりも厚く形成される。 FIG. 4(c) is an example of a schematic cross-sectional view illustrating the structure of the substrate W after the process of forming the silicon oxide film 140. Here, TMA used as a catalyst is selectively adsorbed to the dielectric layer 120 relative to the surface of the self-assembled monolayer 150. Then, TPSOL is bonded to the TMA adsorbed to the surface (second surface S2) of the dielectric layer 120 to form the silicon oxide film 140. Therefore, as shown in FIG. 4(c), in the process of forming the silicon oxide film 140, the silicon oxide film 140 is selectively formed on the second surface S2 relative to the surface of the self-assembled monolayer 150. In addition, the thickness of the silicon oxide film 140 formed on the second surface S2 is formed to be thicker than the thickness of the silicon oxide film 140 formed on the surface of the self-assembled monolayer 150.
 ステップS24において、自己組織化単分子膜150を除去する工程を行う。ここでは、第1の表面S1上に形成された自己組織化単分子膜150及び自己組織化単分子膜150上に形成されたシリコン酸化膜140を除去する。 In step S24, a process of removing the self-assembled monolayer 150 is performed. Here, the self-assembled monolayer 150 formed on the first surface S1 and the silicon oxide film 140 formed on the self-assembled monolayer 150 are removed.
 図4(d)は、自己組織化単分子膜150を除去する工程後における基板Wの構成を説明する断面模式図の一例である。これにより、第1の表面S1に対して第2の表面S2上に選択的にシリコン酸化膜140を形成することができる。また、基板Wには、側壁がシリコン酸化膜140で形成され、底壁が金属層110で形成される凹部が形成される。 FIG. 4(d) is an example of a schematic cross-sectional view illustrating the structure of the substrate W after the process of removing the self-assembled monolayer 150. This allows the silicon oxide film 140 to be selectively formed on the second surface S2 relative to the first surface S1. In addition, the substrate W has a recess whose sidewalls are formed of the silicon oxide film 140 and whose bottom wall is formed of the metal layer 110.
[一実施形態と参考例との対比]
 このように、図3Aから図3D及び図4に示す参考例に係る形成方法では、ステップS22において第1の表面S1上にシリコン酸化膜140の形成を阻害する自己組織化単分子膜150を形成した後、ステップS23において第1の表面S1に対して第2の表面S2上に選択的にシリコン酸化膜140を形成する。
[Comparison between one embodiment and reference example]
Thus, in the formation method according to the reference example shown in Figures 3A to 3D and Figure 4, in step S22, self-assembled monolayer 150 that inhibits the formation of silicon oxide film 140 is formed on first surface S1, and then in step S23, silicon oxide film 140 is selectively formed on second surface S2 relative to first surface S1.
 これに対し、図1Aから図1D及び図2に示す一実施形態に係る形成方法では、ステップS13において第2の表面S2上にシリコン酸化膜140の形成を促進するホウ素含有膜130を形成した後、ステップS14において第1の表面S1に対して第2の表面S2上に選択的にシリコン酸化膜140を形成する。このように、一実施形態に係る形成方法は、参考例に係る形成方法とは異なるプロセスで、第1の表面S1に対して第2の表面S2上に選択的にシリコン酸化膜140を形成することができる。 In contrast, in the formation method according to one embodiment shown in Figures 1A to 1D and 2, a boron-containing film 130 that promotes the formation of a silicon oxide film 140 on the second surface S2 is formed in step S13, and then a silicon oxide film 140 is selectively formed on the second surface S2 relative to the first surface S1 in step S14. In this way, the formation method according to one embodiment can selectively form a silicon oxide film 140 on the second surface S2 relative to the first surface S1 by a process different from that of the formation method according to the reference example.
 また、図1Aから図1D及び図2に示す一実施形態に係る形成方法では、ステップS13に示すホウ素含有膜130を形成する前に、ステップS12において基板Wの表面を洗浄する工程によって金属酸化層(自然酸化膜)111を除去する。これにより、第1の表面S1上にホウ素含有膜130が形成されることを更に抑制することができる。また、第1の表面S1上に形成されるホウ素含有膜130を抑制することで、第1の表面S1上にシリコン酸化膜140が形成されることを更に抑制することができる。 In addition, in the formation method according to one embodiment shown in Figures 1A to 1D and 2, before forming the boron-containing film 130 shown in step S13, the metal oxide layer (native oxide film) 111 is removed by cleaning the surface of the substrate W in step S12. This can further suppress the formation of the boron-containing film 130 on the first surface S1. In addition, by suppressing the formation of the boron-containing film 130 on the first surface S1, it can further suppress the formation of the silicon oxide film 140 on the first surface S1.
[ホウ素含有膜130の選択性]
 次に、ホウ素含有膜130の選択性について、図5及び図6を用いて説明する。図5は、誘電体層としてシリコン酸化物上にホウ素含有膜を形成した場合におけるXPS解析の結果を示すグラフの一例である。図6は、金属層としてルテニウム上にホウ素含有膜を形成した場合におけるXPS解析の結果を示すグラフの一例である。
[Selectivity of boron-containing film 130]
Next, the selectivity of the boron-containing film 130 will be described with reference to Fig. 5 and Fig. 6. Fig. 5 is an example of a graph showing the results of XPS analysis when a boron-containing film is formed on a silicon oxide as a dielectric layer. Fig. 6 is an example of a graph showing the results of XPS analysis when a boron-containing film is formed on a ruthenium as a metal layer.
 図5において、表面に自然酸化膜が形成されたシリコン(SiO)を下地層として、PVD法によって下地層の上にボロン膜を形成した。即ち、図5は、第2の表面S2上にホウ素含有膜130を形成した場合に相当する。また、図6において、ルテニウム(Ru)を下地層として、PVD法によって下地層の上にボロン膜を形成した。即ち、図6は、第1の表面S1上にホウ素含有膜130を形成した場合に相当する。 In Fig. 5, silicon (SiO 2 ) having a natural oxide film formed on its surface is used as an underlayer, and a boron film is formed on the underlayer by PVD. That is, Fig. 5 corresponds to the case where a boron-containing film 130 is formed on the second surface S2. Also, in Fig. 6, ruthenium (Ru) is used as the underlayer, and a boron film is formed on the underlayer by PVD. That is, Fig. 6 corresponds to the case where a boron-containing film 130 is formed on the first surface S1.
 このように形成された基板Wのそれぞれについて、X線光電子分光法(XPS)で解析を行った。図5及び図6において、横軸は、スパッタ時間を示す。換言すれば、横軸は、基板表面からの深さに対応する。縦軸は、組成比(%)を示す。なお、図5においては、誘電体層120のケイ素(Si)とホウ素含有膜130のホウ素(B)のみをグラフで図示し、他の原子についてはグラフの図示を省略している。また、図6においては、金属層110のルテニウム(Ru)とホウ素含有膜130のホウ素(B)のみをグラフで図示し、他の原子についてはグラフの図示を省略している。 Each of the substrates W thus formed was analyzed by X-ray photoelectron spectroscopy (XPS). In Figs. 5 and 6, the horizontal axis indicates the sputtering time. In other words, the horizontal axis corresponds to the depth from the substrate surface. The vertical axis indicates the composition ratio (%). Note that in Fig. 5, only silicon (Si) in the dielectric layer 120 and boron (B) in the boron-containing film 130 are shown in the graph, and other atoms are not shown in the graph. Also, in Fig. 6, only ruthenium (Ru) in the metal layer 110 and boron (B) in the boron-containing film 130 are shown in the graph, and other atoms are not shown in the graph.
 ここでは、ホウ素(B)の組成比(%)が30%以上をホウ素含有膜130として、図5及び図6のグラフにホウ素含有膜130の膜厚(B含有膜膜厚)を矢印で示す。図5と図6を対比して示すように、シリコン酸化物(図5参照)には、ルテニウム膜(図6参照)と比較して、ホウ素含有膜130が厚く形成されていることを示す。即ち、ホウ素含有膜130は、第1の表面S1に対して第2の表面S2上に選択的に形成されることを示す。 Here, a boron-containing film 130 is defined as one having a composition ratio (%) of boron (B) of 30% or more, and the thickness of the boron-containing film 130 (B-containing film thickness) is indicated by an arrow in the graphs of Figures 5 and 6. A comparison of Figures 5 and 6 shows that the boron-containing film 130 is formed thicker on the silicon oxide film (see Figure 5) than on the ruthenium film (see Figure 6). In other words, the boron-containing film 130 is selectively formed on the second surface S2 relative to the first surface S1.
[ホウ素含有膜130の触媒性]
 次に、ホウ素含有膜130の触媒性について、図7を用いて説明する。図7は、ホウ素含有膜の上にシリコン酸化膜140を形成した場合におけるXPS解析の結果を示すグラフの一例である。
[Catalytic properties of boron-containing film 130]
Next, the catalytic properties of the boron-containing film 130 will be described with reference to Fig. 7. Fig. 7 is an example of a graph showing the results of an XPS analysis in the case where a silicon oxide film 140 is formed on a boron-containing film.
 銅(Cu)を下地層として、PVD法によって下地層の上に膜厚が5nm、10nm、20nmのボロン膜(ホウ素含有膜130)をそれぞれ形成した。そして、膜厚の異なるボロン膜の上にシリコン酸化膜140をそれぞれ形成した。 Copper (Cu) was used as an underlayer, and boron films (boron-containing films 130) with thicknesses of 5 nm, 10 nm, and 20 nm were formed on the underlayer by the PVD method. Silicon oxide films 140 were then formed on the boron films with different thicknesses.
 このように形成された基板Wのそれぞれについて、X線光電子分光法(XPS)で解析を行った。図7において、横軸は、結合エネルギーを示す。縦軸は、検出信号の強度を示す。また、図7では、ケイ素(Si)に対応するピーク付近の結果を示す。また、ピークの面積はシリコン酸化膜140の膜厚に対応し、ピークの面積が広いほど(ピークが高いほど)シリコン酸化膜140の膜厚が厚いことを示す。 Each of the substrates W thus formed was analyzed by X-ray photoelectron spectroscopy (XPS). In FIG. 7, the horizontal axis indicates the binding energy, and the vertical axis indicates the intensity of the detection signal. FIG. 7 also shows the results near the peak corresponding to silicon (Si). The area of the peak corresponds to the film thickness of the silicon oxide film 140, and a wider area of the peak (higher peak) indicates a thicker film thickness of the silicon oxide film 140.
 図7に示すように、ボロン膜(ホウ素含有膜130)の膜厚(第1の膜厚T1)が5nmから20nmの範囲内において、ホウ素含有膜130の上にシリコン酸化膜140が形成されることが確認できた。 As shown in FIG. 7, it was confirmed that a silicon oxide film 140 was formed on the boron-containing film 130 when the film thickness (first film thickness T1) of the boron film (boron-containing film 130) was in the range of 5 nm to 20 nm.
 また、図7に示すように、ボロン膜の膜厚が5nm及び10nmの場合と比較して、20nmとすることにより、シリコン酸化膜140の膜厚が大きく向上することが確認できた。換言すれば、ボロン膜の膜厚を20nm以上とすることにより、ホウ素含有膜130の触媒としての効果が大きく向上することが確認できた。 Furthermore, as shown in FIG. 7, it was confirmed that the thickness of the silicon oxide film 140 is significantly improved by setting the thickness of the boron film to 20 nm, compared to when the thickness is 5 nm and 10 nm. In other words, it was confirmed that the catalytic effect of the boron-containing film 130 is significantly improved by setting the thickness of the boron film to 20 nm or more.
[一実施形態に係るシリコン酸化膜の他の形成方法]
 次に、一実施形態に係るシリコン酸化膜の他の形成方法について、図8を用いて説明する。図8は、一実施形態に係るシリコン酸化膜の他の形成方法を示すフローチャートの一例である。
[Another method for forming a silicon oxide film according to an embodiment]
Next, another method for forming a silicon oxide film according to an embodiment will be described with reference to Fig. 8. Fig. 8 is an example of a flow chart showing another method for forming a silicon oxide film according to an embodiment.
 ステップS31において、ステップS11と同様に、基板Wを準備する工程を行う。ここでは、基板処理装置の処理容器内に基板Wを搬送し、処理容器内の載置台に基板Wを載置する。準備される基板Wは、図1Aに示す基板Wと同様に、金属材料で形成される金属層(第1の金属膜)110と、誘電体材料で形成される誘電体層(第1の誘電体膜、第1の絶縁体膜)120と、を有する。また、基板Wの表面(上面)は、金属材料を含む第1の表面S1と、誘電体材料を含む第2の表面S2と、を有する。また、金属層110の表面には、金属酸化層(自然酸化膜)111が形成されていてもよい。また、金属層110の金属材料及び誘電体層120の誘電体材料は、図1Aから図1D及び図2を用いて説明した金属材料及び誘電体材料と同様である。 In step S31, a process of preparing a substrate W is performed in the same manner as in step S11. Here, the substrate W is transported into a processing vessel of the substrate processing apparatus, and the substrate W is placed on a mounting table in the processing vessel. The substrate W to be prepared has a metal layer (first metal film) 110 formed of a metal material and a dielectric layer (first dielectric film, first insulator film) 120 formed of a dielectric material, similar to the substrate W shown in FIG. 1A. The surface (upper surface) of the substrate W has a first surface S1 containing a metal material and a second surface S2 containing a dielectric material. A metal oxide layer (natural oxide film) 111 may be formed on the surface of the metal layer 110. The metal material of the metal layer 110 and the dielectric material of the dielectric layer 120 are the same as the metal material and the dielectric material described using FIGS. 1A to 1D and 2.
 ステップS32において、ステップS12と同様に、基板Wを洗浄ガスにさらして、基板Wの表面を洗浄する工程を行う。ここでは、基板Wを収容する処理容器内に洗浄ガスを供給して、処理容器内の基板Wの表面を洗浄する。基板Wの表面を洗浄する工程後における基板Wは、図1Bに示す基板Wと同様に、金属酸化層111が除去される。これにより、第1の表面S1は、金属層110の金属材料で形成される。また、第2の表面S2は、誘電体層120の誘電体材料(シリコン酸化膜)で形成される。 In step S32, similar to step S12, the substrate W is exposed to a cleaning gas to clean the surface of the substrate W. Here, cleaning gas is supplied into a processing vessel that contains the substrate W to clean the surface of the substrate W in the processing vessel. After the process of cleaning the surface of the substrate W, the metal oxide layer 111 is removed from the substrate W, similar to the substrate W shown in FIG. 1B. As a result, the first surface S1 is formed of the metal material of the metal layer 110. The second surface S2 is formed of the dielectric material (silicon oxide film) of the dielectric layer 120.
 ステップS33において、ステップS13と同様に、基板Wをホウ素含有物質にさらして、基板Wの表面にホウ素含有膜130を形成する工程を行う。ホウ素含有膜130を形成する工程後における基板Wは、図1Cに示す基板Wと同様に、第1の表面S1に対して第2の表面S2上にホウ素含有膜130が選択的に形成される。 In step S33, similar to step S13, the substrate W is exposed to a boron-containing substance to form a boron-containing film 130 on the surface of the substrate W. After the step of forming the boron-containing film 130, the substrate W has the boron-containing film 130 selectively formed on the second surface S2 relative to the first surface S1, similar to the substrate W shown in FIG. 1C.
 ステップS34において、第1の表面S1上のホウ素含有膜130を除去する工程を行う。ここで、第1の表面S1上に形成されるホウ素含有膜130の膜厚は、第2の表面S2上に形成されるホウ素含有膜130の膜厚と比較して十分に薄い。このため、基板Wにエッチング処理を施し、第1の表面S1上に形成されるホウ素含有膜130を除去しても、第2の表面S2上にホウ素含有膜130を残すことができる。なお、第1の表面S1の上に形成されたホウ素含有膜130を除去する工程は、エッチングガスとして、例えば、酸素ガス、水ガス、フッ素含有有機系ガス等のうちいずれかを用いることができる。また、第1の表面S1の上に形成されたホウ素含有膜130を除去する工程は、基板Wをプラズマにさらす工程であってもよい。 In step S34, a process of removing the boron-containing film 130 on the first surface S1 is performed. Here, the thickness of the boron-containing film 130 formed on the first surface S1 is sufficiently thin compared to the thickness of the boron-containing film 130 formed on the second surface S2. Therefore, even if the substrate W is subjected to an etching process and the boron-containing film 130 formed on the first surface S1 is removed, the boron-containing film 130 can be left on the second surface S2. Note that the process of removing the boron-containing film 130 formed on the first surface S1 can use, as an etching gas, any of oxygen gas, water gas, fluorine-containing organic gas, etc. Also, the process of removing the boron-containing film 130 formed on the first surface S1 may be a process of exposing the substrate W to plasma.
 ステップS35において、ステップS14と同様に、基板Wをシラノールガスにさらして、基板Wの表面にシリコン酸化膜140を形成する工程を行う。ここでは、基板Wを収容する処理容器内にシラノールガスを供給して、処理容器内の基板Wの表面にシリコン酸化膜(第2の誘電体膜、第2の絶縁体膜)140を形成する。シリコン酸化膜140を形成する工程後における基板Wは、図1Dに示す基板Wと同様に、第1の表面S1に対してホウ素含有膜130が形成された第2の表面S2上にシリコン酸化膜140が選択的に形成される。 In step S35, similar to step S14, the substrate W is exposed to silanol gas to form a silicon oxide film 140 on the surface of the substrate W. Here, silanol gas is supplied into a processing vessel that contains the substrate W, and a silicon oxide film (second dielectric film, second insulator film) 140 is formed on the surface of the substrate W in the processing vessel. After the process of forming the silicon oxide film 140, the substrate W is similar to the substrate W shown in FIG. 1D, in that the silicon oxide film 140 is selectively formed on the second surface S2 on which the boron-containing film 130 is formed, relative to the first surface S1.
 ステップS36において、ステップS33からステップS35の工程を1サイクルとして、サイクル数が所定の繰り返し回数に到達したかを判定する。サイクル数が所定の繰り返し回数に到達していない場合(S36・NO)、ステップS33に戻り、ステップS33からステップS35の工程を繰り返す。即ち、ステップS33からステップS35の工程を含むサイクルを繰り返す。サイクル数が所定の繰り返し回数に到達した場合(S36・YES)、シリコン酸化膜140の形成処理を終了する。 In step S36, the process from step S33 to step S35 constitutes one cycle, and it is determined whether the number of cycles has reached a predetermined number of repetitions. If the number of cycles has not reached the predetermined number of repetitions (S36: NO), the process returns to step S33, and the process from step S33 to step S35 is repeated. That is, the cycle including the process from step S33 to step S35 is repeated. If the number of cycles has reached the predetermined number of repetitions (S36: YES), the process of forming the silicon oxide film 140 is terminated.
 これにより、第1の表面S1に対して第2の表面S2上に選択的にシリコン酸化膜140を形成することができる。また、基板Wには、側壁がシリコン酸化膜140で形成され、底壁が金属層110で形成される凹部が形成される。 This allows the silicon oxide film 140 to be selectively formed on the second surface S2 relative to the first surface S1. Also, a recess is formed on the substrate W, the sidewall of which is formed of the silicon oxide film 140, and the bottom wall of which is formed of the metal layer 110.
 また、第2の表面S2上に形成されるシリコン酸化膜140の膜厚を厚くすることができる。これにより、凹部のアスペクト比を大きくすることができる。 In addition, the thickness of the silicon oxide film 140 formed on the second surface S2 can be increased. This allows the aspect ratio of the recess to be increased.
 また、シリコン酸化膜140の形成処理が終了(S36・YES)した後、凹部に金属膜(第2の金属膜)を埋め込む工程を有していてもよい。これにより、金属層(第1の金属膜)110と凹部に埋め込まれた金属膜(第2の金属膜)とが導通するように形成される。 Furthermore, after the formation process of the silicon oxide film 140 is completed (S36, YES), a process of embedding a metal film (second metal film) in the recess may be included. This results in the metal layer (first metal film) 110 and the metal film (second metal film) embedded in the recess being formed so as to be electrically conductive.
 なお、基板Wの表面を洗浄する工程(ステップS32)、ホウ素含有膜130を形成する工程(ステップS33)、第1の表面S1上のホウ素含有膜130を除去する工程(ステップS34)及びシリコン酸化膜140を形成する工程(ステップS35)は、同一の処理容器内で行われる構成であってもよく、異なる処理容器で行われる構成であってもよく、真空搬送室を介して接続された複数の処理容器でそれぞれ行われる構成であってもよい。 The process of cleaning the surface of the substrate W (step S32), the process of forming the boron-containing film 130 (step S33), the process of removing the boron-containing film 130 on the first surface S1 (step S34), and the process of forming the silicon oxide film 140 (step S35) may be performed in the same processing vessel, in different processing vessels, or in multiple processing vessels connected via a vacuum transfer chamber.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 尚、本願は、2022年9月27日に出願した日本国特許出願2022-153879号に基づく優先権を主張するものであり、これらの日本国特許出願の全内容を本願に参照により援用する。 This application claims priority based on Japanese Patent Application No. 2022-153879, filed on September 27, 2022, and the entire contents of these Japanese patent applications are incorporated by reference into this application.
110   金属層
111   金属酸化層
120   誘電体層
130   ホウ素含有膜
140   シリコン酸化膜
150   自己組織化単分子膜
S1    第1の表面
S2    第2の表面
110 Metal layer 111 Metal oxide layer 120 Dielectric layer 130 Boron-containing film 140 Silicon oxide film 150 Self-assembled monolayer S1 First surface S2 Second surface

Claims (16)

  1.  金属材料を含む第1の表面と、酸素を含有する誘電体材料を含む第2の表面とを有する基板を準備する工程と、
     前記基板をホウ素含有物質にさらして、前記第1の表面に対して前記第2の表面上にホウ素含有膜を選択的に形成する工程と、
     前記基板をシラノールガスにさらして、前記ホウ素含有膜が形成された前記第2の表面上にシリコン酸化膜を形成する工程と、を含む、
    基板処理方法。
    Providing a substrate having a first surface comprising a metallic material and a second surface comprising an oxygen-containing dielectric material;
    exposing the substrate to a boron-containing material to selectively form a boron-containing film on the second surface relative to the first surface;
    and exposing the substrate to a silanol gas to form a silicon oxide film on the second surface on which the boron-containing film is formed.
    A method for processing a substrate.
  2.  前記第2の表面上にホウ素含有膜を選択的に形成する工程において、前記第2の表面上に形成される前記ホウ素含有膜の膜厚は、5mm~20mmの範囲内である、
    請求項1に記載の基板処理方法。
    In the step of selectively forming a boron-containing film on the second surface, the thickness of the boron-containing film formed on the second surface is within a range of 5 mm to 20 mm.
    The method for processing a substrate according to claim 1 .
  3.  前記誘電体材料は、シリコン酸化物である、
    請求項2に記載の基板処理方法。
    The dielectric material is silicon oxide.
    The substrate processing method according to claim 2 .
  4.  前記金属材料は、Ru、Cu、Co、Wのいずれかである
    請求項3に記載の基板処理方法。
    4. The substrate processing method according to claim 3, wherein the metallic material is any one of Ru, Cu, Co, and W.
  5.  前記ホウ素含有膜は、前記基板を収容する処理容器で、前記ホウ素含有物質で形成されたターゲットをスパッタして形成される、
    請求項1乃至請求項4のいずれか1項に記載の基板処理方法。
    the boron-containing film is formed by sputtering a target formed of the boron-containing material in a processing vessel that accommodates the substrate;
    The substrate processing method according to claim 1 .
  6.  前記ホウ素含有膜は、前記基板を収容する処理容器に、前記ホウ素含有物質であるホウ素前駆体と、反応ガスと、を供給して形成される、
    請求項1乃至請求項4のいずれか1項に記載の基板処理方法。
    The boron-containing film is formed by supplying a boron precursor, which is the boron-containing substance, and a reaction gas to a processing vessel that accommodates the substrate.
    The substrate processing method according to claim 1 .
  7.  前記ホウ素含有膜は、前記基板を収容する処理容器に、前記ホウ素含有物質であるホウ素前駆体と、反応ガスと、を交互に供給して形成される、
    請求項1乃至請求項4のいずれか1項に記載の基板処理方法。
    The boron-containing film is formed by alternately supplying a boron precursor, which is the boron-containing substance, and a reaction gas into a processing vessel that accommodates the substrate.
    The substrate processing method according to claim 1 .
  8.  前記ホウ素前駆体は、TDMAB、TEMAB、BCl、BH、Bのいずれかである、
    請求項6に記載の基板処理方法。
    The boron precursor is TDMAB, TEMAB, BCl3 , BH4 , or B2H6 ;
    The substrate processing method according to claim 6 .
  9.  前記反応ガスは、N、H、HO、Oのいずれか、またはその組み合わせである、
    請求項8に記載の基板処理方法。
    The reactive gas is N2 , H2 , H2O , O2 , or a combination thereof;
    The substrate processing method according to claim 8 .
  10.  前記シラノールガスは、TPSOL、TBSOLのいずれかである、
    請求項1乃至請求項4のいずれか1項に記載の基板処理方法。
    The silanol gas is either TPSOL or TBSOL.
    The substrate processing method according to claim 1 .
  11.  前記ホウ素含有膜を形成する前に、前記基板を洗浄ガスにさらして、前記基板の表面を洗浄する工程をさらに含む、
    請求項1乃至請求項4のいずれか1項に記載の基板処理方法。
    and exposing the substrate to a cleaning gas to clean a surface of the substrate prior to forming the boron-containing film.
    The substrate processing method according to claim 1 .
  12.  前記洗浄ガスは、水素ガス、水ガス、フッ素含有有機系ガスのいずれか、またはその組合せである、
    請求項11に記載の基板処理方法。
    The cleaning gas is any one of hydrogen gas, water gas, and fluorine-containing organic gas, or a combination thereof.
    The method of claim 11.
  13.  前記洗浄する工程は、水素ガス、水ガス、フッ素含有有機系ガスのいずれか、またはその組合せのガスのプラズマにさらす、
    請求項11に記載の基板処理方法。
    The cleaning step includes exposing the substrate to a plasma of any one of hydrogen gas, water gas, and fluorine-containing organic gas, or a combination thereof;
    The method of claim 11.
  14.  前記ホウ素含有膜を形成する工程の後であって、前記シリコン酸化膜を形成する工程の前に、前記第1の表面上に形成された前記ホウ素含有膜を除去する工程をさらに含む、
    請求項1乃至請求項4のいずれか1項に記載の基板処理方法。
    The method further includes removing the boron-containing film formed on the first surface after the step of forming the boron-containing film and before the step of forming the silicon oxide film.
    The substrate processing method according to claim 1 .
  15.  前記ホウ素含有膜を形成する工程と、前記第1の表面上に形成された前記ホウ素含有膜を除去する工程と、前記シリコン酸化膜を形成する工程と、を含むサイクルを繰り返す、
    請求項14に記載の基板処理方法。
    repeating a cycle including the steps of forming the boron-containing film, removing the boron-containing film formed on the first surface, and forming the silicon oxide film;
    The method of claim 14.
  16.  前記シリコン酸化膜を形成する工程の後に、前記第1の表面上に形成された前記ホウ素含有膜及び前記シリコン酸化膜を除去する工程をさらに含む、
    請求項1乃至請求項4のいずれか1項に記載の基板処理方法。
    The method further includes removing the boron-containing film and the silicon oxide film formed on the first surface after the step of forming the silicon oxide film.
    The substrate processing method according to claim 1 .
PCT/JP2023/034146 2022-09-27 2023-09-20 Substrate processing method WO2024070858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022153879A JP2024048047A (en) 2022-09-27 2022-09-27 Substrate processing method
JP2022-153879 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024070858A1 true WO2024070858A1 (en) 2024-04-04

Family

ID=90477592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034146 WO2024070858A1 (en) 2022-09-27 2023-09-20 Substrate processing method

Country Status (2)

Country Link
JP (1) JP2024048047A (en)
WO (1) WO2024070858A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183459A (en) * 1985-02-07 1986-08-16 Hitachi Ltd Formation of protective film
JPH08153784A (en) * 1994-11-28 1996-06-11 Nec Corp Manufacture of semiconductor device
US20120263876A1 (en) * 2011-02-14 2012-10-18 Asm Ip Holding B.V. Deposition of silicon dioxide on hydrophobic surfaces
JP2013021301A (en) * 2011-06-16 2013-01-31 Tokyo Electron Ltd Deposition method and deposition apparatus
WO2014109639A1 (en) * 2013-01-11 2014-07-17 Stichting Energieonderzoek Centrum Nederland Method of providing a boron doped region in a substrate and a solar cell using such a substrate
JP2018524808A (en) * 2015-06-16 2018-08-30 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Halide silane compounds and compositions and processes for using them to deposit silicon-containing films
JP2019186474A (en) * 2018-04-16 2019-10-24 東京エレクトロン株式会社 Boron-based film deposition method and film deposition apparatus
US20210301392A1 (en) * 2020-03-30 2021-09-30 Asm Ip Holding B.V. Selective deposition of silicon oxide on dielectric surfaces relative to metal surfaces
US20210301394A1 (en) * 2020-03-30 2021-09-30 Asm Ip Holding B.V. Selective deposition of silicon oxide on metal surfaces

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183459A (en) * 1985-02-07 1986-08-16 Hitachi Ltd Formation of protective film
JPH08153784A (en) * 1994-11-28 1996-06-11 Nec Corp Manufacture of semiconductor device
US20120263876A1 (en) * 2011-02-14 2012-10-18 Asm Ip Holding B.V. Deposition of silicon dioxide on hydrophobic surfaces
JP2013021301A (en) * 2011-06-16 2013-01-31 Tokyo Electron Ltd Deposition method and deposition apparatus
WO2014109639A1 (en) * 2013-01-11 2014-07-17 Stichting Energieonderzoek Centrum Nederland Method of providing a boron doped region in a substrate and a solar cell using such a substrate
JP2018524808A (en) * 2015-06-16 2018-08-30 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー Halide silane compounds and compositions and processes for using them to deposit silicon-containing films
JP2019186474A (en) * 2018-04-16 2019-10-24 東京エレクトロン株式会社 Boron-based film deposition method and film deposition apparatus
US20210301392A1 (en) * 2020-03-30 2021-09-30 Asm Ip Holding B.V. Selective deposition of silicon oxide on dielectric surfaces relative to metal surfaces
US20210301394A1 (en) * 2020-03-30 2021-09-30 Asm Ip Holding B.V. Selective deposition of silicon oxide on metal surfaces

Also Published As

Publication number Publication date
JP2024048047A (en) 2024-04-08

Similar Documents

Publication Publication Date Title
KR102549289B1 (en) Method of selective deposition for forming fully self-aligned vias
US20210217615A1 (en) Methods For Enhancing Selectivity In Sam-Based Selective Deposition
US9640387B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN107210196A (en) The selective lateral growth of silicon oxide film
JP2018098304A (en) FORMING METHOD OF SiC FILM
TWI835883B (en) Method for filling recessed features in semiconductor devices with a low-resistivity metal
JP2002541332A5 (en)
JPWO2005101473A1 (en) Barrier film formation method and electrode film formation method
JP2007531304A5 (en)
CN109087885A (en) The selective deposition of metal film
US8507030B2 (en) Method of fabricating metal oxide film on carbon nanotube and method of fabricating carbon nanotube transistor using the same
WO2024070858A1 (en) Substrate processing method
US20220064784A1 (en) Methods of selective deposition
KR102515855B1 (en) Method of forming a passivation on a substrate
US20070082130A1 (en) Method for foming metal wiring structure
US20110201198A1 (en) Method forming metal film and semiconductor fabrication device having metal film
TW202003896A (en) Atomic layer deposition and cobalt metal film
WO2024070696A1 (en) Film formation method and film formation device
US20230002890A1 (en) Multiple surface and fluorinated blocking compounds
US20220139776A1 (en) Method for filling recessed features in semiconductor devices with a low-resistivity metal
WO2023153284A1 (en) Film formation method and film formation device
KR100503965B1 (en) Method of forming a diffusion barrier layer in a semiconductor device
KR20030001584A (en) An improving method of gap-fill characteristic using surface catalysts
JP2006169575A (en) Semiconductor device manufacturing method
TW202325887A (en) Selective deposition of material comprising silicon and oxygen using plasma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872085

Country of ref document: EP

Kind code of ref document: A1