WO2024070773A1 - Multifunctional vinyl compound, composition thereof, and cured product - Google Patents

Multifunctional vinyl compound, composition thereof, and cured product Download PDF

Info

Publication number
WO2024070773A1
WO2024070773A1 PCT/JP2023/033749 JP2023033749W WO2024070773A1 WO 2024070773 A1 WO2024070773 A1 WO 2024070773A1 JP 2023033749 W JP2023033749 W JP 2023033749W WO 2024070773 A1 WO2024070773 A1 WO 2024070773A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl compound
vinyl
compound
thermal conductivity
cured product
Prior art date
Application number
PCT/JP2023/033749
Other languages
French (fr)
Japanese (ja)
Inventor
昌己 大村
浩一郎 大神
ニランジャン クマール スレスタ
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024070773A1 publication Critical patent/WO2024070773A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/215Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals

Definitions

  • the present invention relates to vinyl compounds, and more specifically to polyfunctional vinyl compounds with excellent solvent solubility that are useful as insulating materials for electrical and electronic components such as semiconductor encapsulation, laminates, and heat dissipation substrates, compositions thereof, and cured resins obtained by curing them that have excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy.
  • the thermal conductivity of the inorganic filler is overwhelmingly higher than that of the matrix resin, and even if the thermal conductivity of the matrix resin itself is increased, it does not contribute significantly to improving the thermal conductivity of the composite material, and a sufficient effect of improving thermal conductivity has not been obtained.
  • Patent Document 7 proposes a tetrafunctional or higher vinyl resin with a biphenyl skeleton as a multifunctional vinyl resin that combines high thermal conductivity and low dielectric tangent, but does not describe the solvent solubility of the multifunctional vinyl resin or the polyhydric hydroxyl resin that is its raw material, nor does it mention the effect of impurities such as remaining polar groups on thermal conductivity.
  • JP 2009-170493 A International Publication No. 2013/100172 Japanese Patent Application Laid-Open No. 11-147936 JP 2002-309067 A Japanese Patent Application Laid-Open No. 11-323162 Japanese Patent Application Laid-Open No. 9-118673 International Publication No. 2021-200414
  • the object of the present invention is to provide a vinyl composition that is useful for sealing electric and electronic components, as a circuit board material, etc., and that gives a cured product that has excellent solvent solubility as well as excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy, and to provide the cured product.
  • Another object is to provide a vinyl compound that can be used in this vinyl composition.
  • R1 to R4 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • At least one of R1 to R4 in the above multifunctional vinyl compound is a methyl group or a phenyl group.
  • the present invention also relates to a multifunctional vinyl composition containing the above-mentioned multifunctional vinyl compound and a radical polymerization initiator as essential components, and a multifunctional vinyl cured product obtained by curing this multifunctional vinyl composition.
  • the polyfunctional vinyl compounds of the present invention have excellent solvent solubility and are suitable for use in vinyl resin compositions and their cured products for applications such as lamination, molding, casting, and adhesion. Furthermore, these cured products also have excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy, making them suitable for sealing electrical and electronic components, as circuit board materials, etc.
  • Example 1 is a GPC chart of the polyfunctional vinyl compound obtained in Example 1.
  • R1 to R4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • an alkyl group is preferable, and from the viewpoint of heat resistance and high thermal conductivity, an aromatic group is preferable.
  • an alkyl group having more than 6 carbon atoms it becomes difficult to suppress molecular motion, and there is a concern of a decrease in compatibility.
  • a bulky structure with large steric hindrance increases crystallinity, which raises concerns about solvent solubility.
  • a more preferable structure is a methyl group or a phenyl group.
  • R1 to R4 may be a mixture of different structures.
  • the substitution position of the vinyl benzyl ether is not particularly limited, but from the viewpoint of thermal conductivity and heat resistance, it is preferably in the para position relative to the methine group connecting the three aromatic rings. In particular, it is more preferable that all three vinyl benzyl ethers are in the para position.
  • the number average molecular weight (Mn) of the polyfunctional vinyl compound of the present invention is preferably 2000 or less, more preferably 1500 or less.
  • the compound may further contain a multi-branched structure represented by the following general formula (2), where n is the repeating number and is a number from 0 to 20.
  • the average value (number average) of n is preferably in the range of 0.01 to 5.0, more preferably in the range of 0.01 to 2.0, and even more preferably in the range of 0.01 to 1.0. Therefore, the polyfunctional vinyl compound of the present invention is also called a polyfunctional vinyl resin.
  • the preferred vinyl equivalent range for the polyfunctional vinyl compound of the present invention is 150 to 450 g/eq, and more preferably 200 to 300 g/eq. If it is less than this range, the reaction will occur too quickly, making it difficult to control, and if it is more than this range, there is a concern that the reactivity will decrease and it will be difficult to obtain a uniform cured product.
  • the polyfunctional vinyl compound of the present invention can be obtained by reacting a trifunctional hydroxy compound with chloromethylstyrene, but if the amount of unreacted hydroxyl groups remaining is less than 5000 g/eq, the curing is insufficient, and the thermal conductivity and heat resistance are reduced.
  • the hydroxyl groups are polar groups, there is a concern that the remaining hydroxyl groups may hinder the reduction of the dielectric constant and dielectric loss tangent.
  • the hydroxyl group equivalent is preferably 5,000 g/eq or more, more preferably 10,000 g/eq or more.
  • the chlorine component is derived from the raw material chloromethylstyrene, and if the chlorine component remains, as with the hydroxyl group, there is a concern that it will inhibit the reduction of the dielectric constant and the dielectric loss tangent, and there is a concern that the curing reaction will be inhibited by the polar group, resulting in a decrease in the thermal conductivity and heat resistance.
  • the total chlorine content is preferably 2000 ppm or less, more preferably 1000 ppm or less.
  • the polyfunctional vinyl compound of the present invention can be obtained by reacting a trifunctional hydroxy compound represented by formula (3) with an aromatic vinylating agent.
  • R1 to R4 are the same as those of the vinyl compound of formula (1).
  • the trifunctional hydroxy compound of formula (3) preferably has a hydroxyl group equivalent of 90 to 350 g/eq, more preferably 100 to 200 g/eq.
  • the trifunctional hydroxy compound of formula (3) can be produced by a general method, for example, by polycondensation of a monohydric phenol compound and an aromatic aldehyde.
  • monovalent phenol compounds include monoalkylphenols such as phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, p-octylphenol, p-t-butylphenol, o-cyclohexylphenol, m-cyclohexylphenol, and p-cyclohexylphenol; dialkylphenols such as 2,5-xylenol, 3,5-xylenol, 3,4-xylenol, 2,4-xylenol, and 2,6-xylenol; trialkylphenols such as 2,3,5-trimethylphenol and 2,3,6-trimethylphenol, and further hydroxybiphenyls such as 2-phenylphenol, 4-phenylphenol, 3-benzyl-1,1'-biphenyl-2-ol, 3-benzyl-1,1'-biphenyls
  • 2,5-xylenol, 2,6-xylenol, and 2-phenylphenol are particularly preferred. These phenolic compounds can be used alone or in combination of two or more types.
  • Aromatic aldehydes include, for example, hydroxybenzaldehydes such as 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, and 4-hydroxybenzaldehyde. From the standpoint of heat resistance and thermal conductivity, 4-hydroxybenzaldehyde is preferred.
  • the polycondensation of the phenol compound and the aromatic aldehyde may be carried out using an acid catalyst, such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate, etc.
  • an acid catalyst such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate, etc.
  • These acid catalysts may be used alone or in combination of two or more. Among these acid catalysts, sulfuric acid and paratoluenesulfonic acid are preferred because of their excellent activity.
  • the acid catalyst may be added before or during the reaction.
  • the polycondensation of the phenol compound and the aromatic aldehyde may be carried out in the presence of a solvent, if necessary, to obtain a polycondensate.
  • a solvent include monoalcohols such as methanol, ethanol, and propanol; polyols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, and glycerin; glycol ethers such as 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene
  • the reaction temperature during polycondensation of the phenol compound and aromatic aldehyde is in the range of 20 to 140°C, preferably in the range of 80 to 110°C.
  • the charging ratio of the phenol compound/aromatic aldehyde is in the range of 1/0.1 to 1/0.5 in molar ratio, and more preferably in the range of 1/0.3 to 1/0.5, since the phenol compound after the reaction can be easily removed by reprecipitation or the like.
  • the polyfunctional vinyl compound of the present invention can be obtained by reacting a trifunctional hydroxy compound with an aromatic vinylating agent.
  • the vinyl compound of the present invention represented by the above formula (1) can be obtained by reacting a trifunctional hydroxy compound represented by the above formula (3) with chloromethylstyrene.
  • This reaction can be carried out in the same manner as the well-known vinylation reaction.
  • the blending ratio is preferably 0.8 to 1.2 equivalents of aromatic vinylating agent (e.g., chloromethylstyrene) per 1.0 equivalent of hydroxyl group, which is the functional group of the trifunctional hydroxy compound.
  • aromatic vinylating agent e.g., chloromethylstyrene
  • Aromatic vinylating agents are preferably halomethylstyrenes, particularly chloromethylstyrene.
  • Other examples include bromomethylstyrene and its isomers, and those with substituents.
  • the substitution position of the halomethyl compound for example, in the case of halomethylstyrene, the 4-position is preferred, and it is preferable that the 4-position compound accounts for 60% or more by weight of the total.
  • the reaction between a trifunctional hydroxy compound and an aromatic vinylating agent can be carried out in the absence or presence of a solvent.
  • the reaction can be carried out by adding the aromatic vinylating agent to the hydroxy compound, adding a metal hydroxide, and removing the generated metal salt by a method such as filtration or washing with water.
  • the solvent include, but are not limited to, methyl ethyl ketone, benzene, toluene, xylene, methyl isobutyl ketone, diethylene glycol dimethyl ether, cyclopentanone, cyclohexanone, etc. From the viewpoint of reactivity, methyl ethyl ketone is preferable.
  • Specific examples of the metal hydroxide include, but are not limited to, sodium hydroxide, potassium hydroxide, etc.
  • the vinylization reaction is preferably carried out at a temperature of 90°C or less, more preferably 70°C or less. If the temperature is higher than this, the vinyl benzyl ether group will self-polymerize due to heat, making it difficult to control the reaction.
  • polymerization inhibitors such as quinones, nitro compounds, nitrophenols, nitroso and nitrone compounds, and oxygen may be used.
  • the end point of the reaction can be determined by tracking the remaining amount of halomethylstyrene as an aromatic vinylating agent using various chromatograms such as GPC, and the reaction rate can be adjusted by the type and amount of metal hydroxide, the addition rate, solids concentration, etc.
  • the polyfunctional vinyl compound of the present invention can be cured by itself, but it is also suitable to use it as a polyfunctional vinyl composition containing various additives.
  • a radical polymerization initiator such as an azo compound or an organic peroxide may be blended to effect curing.
  • the polyfunctional vinyl composition of the present invention contains a polyfunctional vinyl compound and a radical polymerization initiator as essential components, but can also contain other vinyl compounds and other thermosetting resins, such as epoxy resins, oxetane resins, maleimide resins, acrylate resins, polyester resins, polyurethane resins, polyphenylene ether resins, and benzoxazine resins.
  • inorganic fillers such as glass cloth, carbon fiber, alumina, and boron nitride may be added.
  • thermal conductivity is preferably 20 W/m.K or more, more preferably 30 W/m.K or more, and even more preferably 50 W/m.K or more. At least a portion of the inorganic filler, preferably 50 wt% or more, has a thermal conductivity of 20 W/m.K or more.
  • the average thermal conductivity of the inorganic filler as a whole increases in the order of desirability: 20 W/m.K or more, 30 W/m.K or more, and 50 W/m.K or more.
  • inorganic fillers with such thermal conductivity include inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, and magnesium oxide.
  • additives may be added to improve adhesive strength and ease of handling of the composition, such as silane coupling agents, defoamers, internal release agents, and flow control agents.
  • the polyfunctional vinyl compound or polyfunctional vinyl composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, or methyl isobutyl ketone, impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper, and heated and dried to obtain a prepreg, which can then be hot-press molded to obtain a cured product.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, or methyl isobutyl ketone
  • the resin can be applied onto a sheet-like material such as copper foil, stainless steel foil, polyimide film, or polyester film to form a laminate, and the resin sheet obtained by heating and drying can be subjected to heat press molding to obtain a cured product.
  • a sheet-like material such as copper foil, stainless steel foil, polyimide film, or polyester film
  • GPC Measurement A main body (HLC-8220GPC, manufactured by Tosoh Corporation) equipped with four columns (TSKgel Super Multipore HZ-N, manufactured by Tosoh Corporation) in series was used, and the column temperature was set to 40°C. Tetrahydrofuran (THF) was used as the eluent, the flow rate was set to 0.35 mL/min, and a differential refractive index detector was used as the detector. 50 ⁇ L of the measurement sample was prepared by dissolving 0.1 g of sample in 10 mL of THF and filtering through a microfilter. Data processing was performed using GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation.
  • THF Tetrahydrofuran
  • Solvent solubility 2 g of resin and 1 g of methyl ethyl ketone were weighed and placed in a sample bottle, and after heating and dissolving, the temperature was gradually lowered in a thermostatic bath, and the temperature in the bath at which the resin precipitated was measured. The higher the precipitation temperature (°C), the poorer the solvent solubility.
  • Tg Glass transition temperature
  • Td5 5% weight loss temperature
  • carbon residue ratio Using a thermogravimetric/differential thermal analyzer (EXSTAR TG/DTA7300 manufactured by SII NanoTechnology), the 5% weight loss temperature (Td5) was measured under conditions of a nitrogen atmosphere and a heating rate of 10°C/min. The weight loss at 700°C was also measured and calculated as the carbon residue ratio.
  • Thermal Conductivity was measured by a non-steady hot wire method using a NETZSCH LFA447 type thermal conductivity meter.
  • Synthesis Example 2 The same procedure as in Synthesis Example 1 was carried out except that 36.8 g (0.30 mol) of 2,5-xylenol and 28.2 g (0.30 mol) of phenol were used instead of 73.6 g of 2,5-xylenol, to obtain 60.8 g of trifunctional hydroxy compound b.
  • Trifunctional hydroxy compound b was a mixture of compounds represented by formula (3) in which R1 to R4 were all hydrogen atoms or methyl groups, and had a hydroxyl group equivalent of 105 g/eg.
  • Example 1 Into a 1000 ml four-neck flask, 59.0 g (0.17 mol) of the trifunctional hydroxy compound a obtained in Synthesis Example 1, 400 g of methyl ethyl ketone, and 91.6 g (0.60 mol) of chloromethylstyrene (structural formula shown below) were added. The mixture was heated to 60°C, and 33.7 g of potassium hydroxide dissolved in 101 g of methanol was added dropwise over 3 hours, followed by reaction for another 6 hours.
  • Example 2 The same procedure as in Example 1 was carried out except that 52.5 g (0.17 mol) of the trifunctional hydroxy compound b obtained in Synthesis Example 2 was used instead of the trifunctional hydroxy compound a, to obtain 100.3 g of a multifunctional vinyl compound (vinyl compound B).
  • the vinyl equivalent of vinyl compound B was 212 g/eg., the hydroxyl equivalent was 14,000 g/eg., and the total chlorine was 500 ppm.
  • Example 3 The same procedure as in Example 1 was carried out except that 74.5 g (0.17 mol) of the trifunctional hydroxy compound c obtained in Synthesis Example 3 was used instead of the trifunctional hydroxy compound a, to obtain 121.2 g of a multifunctional vinyl compound (vinyl compound C).
  • the vinyl equivalent of vinyl compound C was 260 g/eg., the hydroxyl equivalent was 11,000 g/eg., and the total chlorine was 800 ppm.
  • vinyl resin F a multifunctional vinyl resin
  • the vinyl equivalent of vinyl resin F was 217g/eg., the hydroxyl equivalent was 17000g/eg., and the total chlorine was 400ppm.
  • Examples 4 to 6, Comparative Examples 4 to 7 As the polyfunctional vinyl compound, vinyl compounds A to F obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and vinyl resin G (OPE-2ST: manufactured by Mitsubishi Gas Chemical Company, Inc., vinyl group equivalent: 590.0 g / eq, number average molecular weight 1187) were used, and Perbutyl P (manufactured by NOF Corporation), an organic peroxide, was used as a curing accelerator (radical polymerization initiator), and Adeka STAB AO-60 (manufactured by ADEKA Corporation) was used as an antioxidant in the blending ratio shown in Table 1.
  • the composition was applied to a PET film and dried at 130 ° C. for 5 minutes to obtain a resin composition.
  • the composition removed from the PET film was sandwiched between mirror plates and cured under reduced pressure at 130 ° C. for 15 minutes and at 210 ° C. for 80 minutes while applying a pressure of 2 MPa.
  • the properties of the obtained cured product are shown in Table 1.
  • the polyfunctional vinyl compounds of the examples showed superior physical properties, including higher thermal conductivity, lower dielectric constant, and lower dielectric tangent, compared to the comparative examples.
  • the polyfunctional vinyl compound of the present invention is useful as an electronic material for high-speed communication devices, as it easily dissipates heat generated from electronic components and wiring and causes little signal loss.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention provides a vinyl compound that has excellent solvent solubility, that yields a cured product having excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardance, and that is useful for sealing electrical and electronic components and as a circuit board material. Provided is a multifunctional vinyl compound represented by general formula (1). In formula (1), R1-R4 each independently represent a hydrogen atom or a monovalent C1-6 hydrocarbon group.

Description

多官能ビニル化合物、その組成物、及び硬化物Polyfunctional vinyl compound, composition thereof, and cured product
 本発明は、ビニル化合物に関し、詳しくは、半導体封止、積層板、放熱基板等の電気・電子部品用絶縁材料に有用な溶剤溶解性に優れた多官能ビニル化合物、その組成物、及びそれらを硬化させて得られる耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性に優れる樹脂硬化物に関する。 The present invention relates to vinyl compounds, and more specifically to polyfunctional vinyl compounds with excellent solvent solubility that are useful as insulating materials for electrical and electronic components such as semiconductor encapsulation, laminates, and heat dissipation substrates, compositions thereof, and cured resins obtained by curing them that have excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy.
 通信機器に用いられるプリント基板、封止材、注型材などは通信速度、通信量の増大にともない信号伝送速度の向上のため高速通信技術が盛んに研究されている。このような用途における電子材料には誘電損失を低減できる材料が求められており、プリント基板用途では加えて多層化が可能な硬化性樹脂が求められている。 In order to improve signal transmission speeds in response to increases in communication speeds and data volumes, there has been active research into high-speed communication technology for printed circuit boards, sealing materials, and casting materials used in communication devices. Electronic materials for such applications require materials that can reduce dielectric loss, and for printed circuit board applications, there is also a demand for curable resins that can be multi-layered.
 一方で、このような情報量の多いデータを処理する電子演算部品からの発熱は多く、熱蓄積によって電子演算部品の処理速度低下など不具合が発生する為、プリント基板ではヒートシンク等により適宜冷却する技術として銅コイン、銅インレイ等の伝熱部材を組み込む方法や(特許文献1)、配合するフィラーの形状を特殊なものにする(特許文献2)など様々な工夫が知られている。しかし、このような方法は重量の増加や機器の大型化につながり好ましくなかった。 On the other hand, electronic computing components that process such large amounts of data generate a lot of heat, and heat accumulation can cause problems such as a slowdown in the processing speed of electronic computing components, so various techniques are known for appropriately cooling printed circuit boards using heat sinks, etc., such as incorporating heat transfer components such as copper coins and copper inlays (Patent Document 1) and using special shapes for the fillers used (Patent Document 2). However, such methods are undesirable as they lead to increased weight and larger equipment.
 また、封止材組成物では熱伝導率を高める方法として各種フィラーの種類と量を検討することで電子演算部品からの熱を除熱する方法がとられており、例えば、熱伝導率の大きい結晶シリカ、窒化珪素、窒化アルミニウム、球状アルミナ粉末等の無機充填材を含有させるなどの試みがなされている(特許文献3、4)。ところが、無機充填材の含有率を上げていくと成形時の粘度上昇とともに流動性が低下し、成形性が損なわれるという問題が生じる。従って、単に無機充填材の含有率を高める方法には限界があった。 Furthermore, in order to increase the thermal conductivity of sealing material compositions, methods have been adopted in which the types and amounts of various fillers are examined to remove heat from electronic computing components. For example, attempts have been made to include inorganic fillers with high thermal conductivity such as crystalline silica, silicon nitride, aluminum nitride, and spherical alumina powder (Patent Documents 3 and 4). However, as the content of inorganic fillers is increased, the viscosity during molding increases and the fluidity decreases, causing problems such as impaired moldability. Therefore, there are limitations to the method of simply increasing the content of inorganic fillers.
 上記背景から、マトリックス樹脂自体の高熱伝導率化によって組成物の熱伝導率を向上する方法も検討されている。例えば、剛直なメソゲン基を有する液晶性のエポキシ樹脂およびそれを用いたエポキシ樹脂組成物が提案されている(特許文献5、6)。しかし、これらのエポキシ樹脂組成物に用いる硬化剤としては、芳香族ジアミン化合物を用いており、無機充填材の高充填率化に限界があるとともに、電気絶縁性の点でも問題があった。また、芳香族ジアミン化合物を用いた場合、硬化物の液晶性は確認できるものの、硬化物の結晶化度は低く、高熱伝導性、低熱膨張性、低吸湿性等の点で十分ではなかった。さらには液晶性発現のために、強力な磁場をかけて分子を配向させる必要があり、工業的に広く利用するためには設備的にも大きな制約があった。また、無機充填材との配合系では、マトリックス樹脂の熱伝導率に比べて無機充填材の熱伝導率が圧倒的に大きく、マトリックス樹脂自体の熱伝導率を高くしても、複合材料としての熱伝導率向上には大きく寄与しないという現実があり、十分な熱伝導率向上効果は得られていなかった。 In light of the above background, methods for improving the thermal conductivity of a composition by increasing the thermal conductivity of the matrix resin itself have also been studied. For example, liquid crystalline epoxy resins having rigid mesogen groups and epoxy resin compositions using them have been proposed (Patent Documents 5 and 6). However, aromatic diamine compounds are used as curing agents for these epoxy resin compositions, which limits the high filling rate of inorganic fillers and also poses problems in terms of electrical insulation. In addition, when aromatic diamine compounds are used, although the liquid crystallinity of the cured product can be confirmed, the crystallinity of the cured product is low, and it is not sufficient in terms of high thermal conductivity, low thermal expansion, low moisture absorption, etc. Furthermore, in order to express liquid crystallinity, it is necessary to apply a strong magnetic field to orient the molecules, and there are significant restrictions in terms of equipment for widespread industrial use. In addition, in a compounding system with an inorganic filler, the thermal conductivity of the inorganic filler is overwhelmingly higher than that of the matrix resin, and even if the thermal conductivity of the matrix resin itself is increased, it does not contribute significantly to improving the thermal conductivity of the composite material, and a sufficient effect of improving thermal conductivity has not been obtained.
 特許文献7には、高熱伝導性と低誘電正接を両立する多官能ビニル樹脂として、ビフェニル骨格を有する4官能以上のビニル樹脂が提案されているが、その多官能ビニル樹脂およびその原料となる多価ヒドロキシ樹脂の溶剤溶解性について記載されておらず、残存する極性基等の不純物が熱伝導率に及ぼす影響については一切触れられていない。 Patent Document 7 proposes a tetrafunctional or higher vinyl resin with a biphenyl skeleton as a multifunctional vinyl resin that combines high thermal conductivity and low dielectric tangent, but does not describe the solvent solubility of the multifunctional vinyl resin or the polyhydric hydroxyl resin that is its raw material, nor does it mention the effect of impurities such as remaining polar groups on thermal conductivity.
特開2009-170493号公報JP 2009-170493 A 国際公開2013/100172号International Publication No. 2013/100172 特開平11-147936号公報Japanese Patent Application Laid-Open No. 11-147936 特開2002-309067号公報JP 2002-309067 A 特開平11-323162号公報Japanese Patent Application Laid-Open No. 11-323162 特開平9-118673号公報Japanese Patent Application Laid-Open No. 9-118673 国際公開2021-200414号International Publication No. 2021-200414
 本発明の目的は、溶剤溶解性に優れるとともに、耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性に優れた硬化物を与える電気・電子部品類の封止、回路基板材料等に有用なビニル組成物を提供すること、及びその硬化物を提供することにある。また、他の目的はこのビニル組成物に使用されるビニル化合物を提供することにある。 The object of the present invention is to provide a vinyl composition that is useful for sealing electric and electronic components, as a circuit board material, etc., and that gives a cured product that has excellent solvent solubility as well as excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy, and to provide the cured product. Another object is to provide a vinyl compound that can be used in this vinyl composition.
 本発明者等は、鋭意検討し、特定の構造を有する多官能ビニル化合物が、上記の課題を解決することが期待されること、そしてその硬化物が耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性に効果を発現することを見出した。 The inventors conducted extensive research and discovered that a polyfunctional vinyl compound with a specific structure is expected to solve the above problems, and that the cured product exhibits excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy.
 すなわち、本発明は、下記一般式(1)で表される多官能ビニル化合物である。
Figure JPOXMLDOC01-appb-C000002
 式(1)中、R1~R4は、それぞれ独立して、水素原子または一価の炭素数1~6の炭化水素基を示す。
That is, the present invention relates to a polyfunctional vinyl compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
In formula (1), R1 to R4 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
 上記多官能ビニル化合物のR1~R4のうち少なくとも一つは、メチル基またはフェニル基であることが好ましい。 It is preferable that at least one of R1 to R4 in the above multifunctional vinyl compound is a methyl group or a phenyl group.
 また、本発明は、上記多官能ビニル化合物とラジカル重合開始剤とを必須成分として含有する多官能ビニル組成物であり、この多官能ビニル組成物を硬化してなる多官能ビニル硬化物である。 The present invention also relates to a multifunctional vinyl composition containing the above-mentioned multifunctional vinyl compound and a radical polymerization initiator as essential components, and a multifunctional vinyl cured product obtained by curing this multifunctional vinyl composition.
 本発明の多官能ビニル化合物は溶剤溶解性に優れ、積層、成形、注型、接着等の用途に使用されるビニル樹脂組成物及びその硬化物に適する。そして、この硬化物は耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性にも優れたものとなるので、電気・電子部品類の封止、回路基板材料等に好適である。 The polyfunctional vinyl compounds of the present invention have excellent solvent solubility and are suitable for use in vinyl resin compositions and their cured products for applications such as lamination, molding, casting, and adhesion. Furthermore, these cured products also have excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric tangent, and flame retardancy, making them suitable for sealing electrical and electronic components, as circuit board materials, etc.
実施例1で得られた多官能ビニル化合物のGPCチャートである。1 is a GPC chart of the polyfunctional vinyl compound obtained in Example 1.
 以下、本発明を詳細に説明する。 The present invention is explained in detail below.
 本発明は、下記一般式(1)で表される多官能ビニル化合物である。
Figure JPOXMLDOC01-appb-C000003
 R1~R4は、それぞれ独立して、水素原子または一価の炭素数1~6の炭化水素基である。溶剤溶解性の観点からアルキル基が好ましく、耐熱性および高熱伝導率の観点から芳香族基が好ましい。炭素数が6より大きいアルキル基は分子運動の抑制が困難となり、相溶性の低下も懸念される。また、立体障害が大きい嵩高い構造は、結晶性が増大することにより溶剤溶解性の懸念がある。より好ましい構造としては、メチル基またはフェニル基であることがより好ましい。R1~R4は異なる構造の混合物でもよい。
The present invention relates to a polyfunctional vinyl compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
R1 to R4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. From the viewpoint of solvent solubility, an alkyl group is preferable, and from the viewpoint of heat resistance and high thermal conductivity, an aromatic group is preferable. With an alkyl group having more than 6 carbon atoms, it becomes difficult to suppress molecular motion, and there is a concern of a decrease in compatibility. Furthermore, a bulky structure with large steric hindrance increases crystallinity, which raises concerns about solvent solubility. A more preferable structure is a methyl group or a phenyl group. R1 to R4 may be a mixture of different structures.
 本発明の多官能ビニル化合物において、ビニルベンジルエーテルの置換位置は、特に限定されないが、熱伝導率、耐熱性の観点から、3つの芳香環を結節するメチン基に対しパラ位であることが好ましい。特に3つのビニルベンジルエーテルが全てパラ位であることがより好ましい。 In the polyfunctional vinyl compound of the present invention, the substitution position of the vinyl benzyl ether is not particularly limited, but from the viewpoint of thermal conductivity and heat resistance, it is preferably in the para position relative to the methine group connecting the three aromatic rings. In particular, it is more preferable that all three vinyl benzyl ethers are in the para position.
 本発明の多官能ビニル化合物の数平均分子量(Mn)は、2000以下が好ましく、1500以下がより好ましい。また、下記一般式(2)で表される多分岐体を含んでもよい。nは繰り返し数であり、0~20の数を示す。好ましくは、nの値が異なる成分の混合物である。
 熱伝導率の観点から、n=0体の含有率は50wt%以上が好ましく、80wt%以上がより好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(2)において、n=0体が、式(1)で表される多官能ビニル化合物である。本発明の多官能ビニル化合物は、式(2)で表した場合、nの平均値(数平均)が、好ましくは0.01~5.0の範囲、より好ましくは0.01~2.0の範囲、さらに好ましくは0.01~1.0の範囲である。
 よって、本発明の多官能ビニル化合物は、多官能ビニル樹脂ともいう。
The number average molecular weight (Mn) of the polyfunctional vinyl compound of the present invention is preferably 2000 or less, more preferably 1500 or less. The compound may further contain a multi-branched structure represented by the following general formula (2), where n is the repeating number and is a number from 0 to 20. The compound is preferably a mixture of components having different values of n.
From the viewpoint of thermal conductivity, the content of n=0 bodies is preferably 50 wt % or more, and more preferably 80 wt % or more.
Figure JPOXMLDOC01-appb-C000004
In formula (2), the compound where n=0 is a polyfunctional vinyl compound represented by formula (1). When the polyfunctional vinyl compound of the present invention is represented by formula (2), the average value (number average) of n is preferably in the range of 0.01 to 5.0, more preferably in the range of 0.01 to 2.0, and even more preferably in the range of 0.01 to 1.0.
Therefore, the polyfunctional vinyl compound of the present invention is also called a polyfunctional vinyl resin.
 本発明の多官能ビニル化合物は、ビニル当量の好ましい範囲が150~450g/eqであり、より好ましい範囲が200~300g/eqである。この範囲より小さい場合、急激に反応するために反応制御が困難となり、この範囲より大きい場合、反応性が低下し、均一な硬化物を得ることが困難となる懸念がある。 The preferred vinyl equivalent range for the polyfunctional vinyl compound of the present invention is 150 to 450 g/eq, and more preferably 200 to 300 g/eq. If it is less than this range, the reaction will occur too quickly, making it difficult to control, and if it is more than this range, there is a concern that the reactivity will decrease and it will be difficult to obtain a uniform cured product.
 本発明の多官能ビニル化合物は、三官能ヒドロキシ化合物とクロロメチルスチレンと反応させることで得ることができるが、その際に未反応で残存する水酸基が5000g/eqより小さい場合、硬化が不十分となり、熱伝導率および耐熱性が低下する。また、水酸基は極性基であることから、その残存は誘電率、誘電正接の低減を阻害する懸念がある。水酸基当量が、好ましくは5,000g/eq以上、より好ましくは10,000g/eq以上である。
 一方、塩素成分としては原料であるクロロメチルスチレン由来によるものであり、水酸基と同様に塩素成分が残存する場合、誘電率、誘電正接の低減を阻害する懸念があり、極性基による硬化反応の阻害が生じることで熱伝導率、耐熱性を低下する懸念がある。全塩素量が、好ましくは2000ppm以下、より好ましくは1000ppm以下である。
The polyfunctional vinyl compound of the present invention can be obtained by reacting a trifunctional hydroxy compound with chloromethylstyrene, but if the amount of unreacted hydroxyl groups remaining is less than 5000 g/eq, the curing is insufficient, and the thermal conductivity and heat resistance are reduced. In addition, since the hydroxyl groups are polar groups, there is a concern that the remaining hydroxyl groups may hinder the reduction of the dielectric constant and dielectric loss tangent. The hydroxyl group equivalent is preferably 5,000 g/eq or more, more preferably 10,000 g/eq or more.
On the other hand, the chlorine component is derived from the raw material chloromethylstyrene, and if the chlorine component remains, as with the hydroxyl group, there is a concern that it will inhibit the reduction of the dielectric constant and the dielectric loss tangent, and there is a concern that the curing reaction will be inhibited by the polar group, resulting in a decrease in the thermal conductivity and heat resistance. The total chlorine content is preferably 2000 ppm or less, more preferably 1000 ppm or less.
 本発明の多官能ビニル化合物は、式(3)で表される三官能ヒドロキシ化合物と芳香族ビニル化剤を反応することにより得ることができる。R1~R4は式(1)のビニル化合物と同様である。
Figure JPOXMLDOC01-appb-C000005
The polyfunctional vinyl compound of the present invention can be obtained by reacting a trifunctional hydroxy compound represented by formula (3) with an aromatic vinylating agent. R1 to R4 are the same as those of the vinyl compound of formula (1).
Figure JPOXMLDOC01-appb-C000005
 式(3)の三官能ヒドロキシ化合物は、水酸基当量が好ましくは90~350g/eq、より好ましくは100~200g/eqである。
 式(3)の三官能ヒドロキシ化合物は、一般的な方法で製造可能であり、例えば、一価のフェノール化合物と芳香族アルデヒドとを重縮合することにより得ることができる。
The trifunctional hydroxy compound of formula (3) preferably has a hydroxyl group equivalent of 90 to 350 g/eq, more preferably 100 to 200 g/eq.
The trifunctional hydroxy compound of formula (3) can be produced by a general method, for example, by polycondensation of a monohydric phenol compound and an aromatic aldehyde.
 一価のフェノール化合物としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、p-オクチルフェノール、p-t-ブチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール等のモノアルキルフェノール;2,5-キシレノール、3,5-キシレノール、3,4-キシレノール、2,4-キシレノール、2,6-キシレノールのジアルキルフェノール;2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール等のトリアルキルフェノール、さらに、2-フェニルフェノール、4-フェニルフェノール、3-ベンジル‐1,1’‐ビフェニル‐2‐オール、3-ベンジル‐1,1’‐ビフェニル‐4‐オール、3-フェニルフェノール、2,6-ジフェニルフェノール等のヒドロキシビフェニル類等が挙げられる。溶剤溶解性、反応性、供給性の面で、2,5-キシレノール、2,6-キシレノール、2-フェニルフェノールが特に好ましい。これらのフェノール化合物は、1種類のみで用いることも2種以上併用することもできる。 Examples of monovalent phenol compounds include monoalkylphenols such as phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, p-octylphenol, p-t-butylphenol, o-cyclohexylphenol, m-cyclohexylphenol, and p-cyclohexylphenol; dialkylphenols such as 2,5-xylenol, 3,5-xylenol, 3,4-xylenol, 2,4-xylenol, and 2,6-xylenol; trialkylphenols such as 2,3,5-trimethylphenol and 2,3,6-trimethylphenol, and further hydroxybiphenyls such as 2-phenylphenol, 4-phenylphenol, 3-benzyl-1,1'-biphenyl-2-ol, 3-benzyl-1,1'-biphenyl-4-ol, 3-phenylphenol, and 2,6-diphenylphenol. In terms of solvent solubility, reactivity, and supplyability, 2,5-xylenol, 2,6-xylenol, and 2-phenylphenol are particularly preferred. These phenolic compounds can be used alone or in combination of two or more types.
 芳香族アルデヒドとしては、例えば、2-ヒドロキシベンズアルデヒド、3-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒドが挙げられる。耐熱性、熱伝導率の観点から4-ヒドロキシベンズアルデヒドが好ましい。 Aromatic aldehydes include, for example, hydroxybenzaldehydes such as 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, and 4-hydroxybenzaldehyde. From the standpoint of heat resistance and thermal conductivity, 4-hydroxybenzaldehyde is preferred.
 フェノール化合物と芳香族アルデヒドの重縮合は酸触媒を用いてもよく、例えば例えば、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらの酸触媒は、1種類のみで用いることも2種以上併用することもできる。また、これらの酸触媒の中でも、活性に優れる点から、硫酸、パラトルエンスルホン酸が好ましい。なお、酸触媒は、反応前に加えても、反応途中で加えても構わない。 The polycondensation of the phenol compound and the aromatic aldehyde may be carried out using an acid catalyst, such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, paratoluenesulfonic acid, zinc acetate, manganese acetate, etc. These acid catalysts may be used alone or in combination of two or more. Among these acid catalysts, sulfuric acid and paratoluenesulfonic acid are preferred because of their excellent activity. The acid catalyst may be added before or during the reaction.
 フェノール化合物と芳香族アルデヒドの重縮合は、必要に応じて溶媒の存在下で重縮合物を得ても良い。溶媒としては、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらの溶媒は、1種類のみで用いることも2種以上併用することもできる。また、これらの溶媒の中でも、得られる化合物の溶解性に優れる点から、2-エトキシエタノールが好ましい。  The polycondensation of the phenol compound and the aromatic aldehyde may be carried out in the presence of a solvent, if necessary, to obtain a polycondensate. Examples of the solvent include monoalcohols such as methanol, ethanol, and propanol; polyols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, and glycerin; glycol ethers such as 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, and ethylene glycol monophenyl ether; cyclic ethers such as 1,3-dioxane, 1,4-dioxane, and tetrahydrofuran; glycol esters such as ethylene glycol acetate; and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. These solvents can be used alone or in combination of two or more. Among these solvents, 2-ethoxyethanol is preferred because it has excellent solubility for the resulting compound.
 フェノール化合物と芳香族アルデヒドの重縮合する際の反応温度は、20~140℃の範囲であり、好ましくは80~110℃の範囲である。 The reaction temperature during polycondensation of the phenol compound and aromatic aldehyde is in the range of 20 to 140°C, preferably in the range of 80 to 110°C.
 フェノール化合物/芳香族アルデヒドの仕込み比率は、反応後のフェノール化合物を再沈殿等により容易に除去可能であることから、モル比で1/0.1~1/0.5の範囲であり、より好ましくは、1/0.3~1/0.5の範囲である。 The charging ratio of the phenol compound/aromatic aldehyde is in the range of 1/0.1 to 1/0.5 in molar ratio, and more preferably in the range of 1/0.3 to 1/0.5, since the phenol compound after the reaction can be easily removed by reprecipitation or the like.
 本発明の多官能ビニル化合物は、三官能ヒドロキシ化合物を芳香族ビニル化剤と反応させることにより、好適に得ることができる。例えば、上記式(3)で表される三官能ヒドロキシ化合物とクロロメチルスチレンとの反応により、上記式(1)で表される本発明のビニル化合物を得ることができる。この反応は周知のビニル化反応と同様に行うことができる。
 配合割合は、三官能ヒドロキシ化合物の官能基である水酸基1.0当量に対して、好ましくは芳香族ビニル化剤(例えばクロロメチルスチレン)を0.8~1.2当量である。ただし、三官能ヒドロキシ化合物の反応性が低い場合、芳香族ビニル化剤を過剰量仕込み、反応後に除去するとよい。
The polyfunctional vinyl compound of the present invention can be obtained by reacting a trifunctional hydroxy compound with an aromatic vinylating agent.For example, the vinyl compound of the present invention represented by the above formula (1) can be obtained by reacting a trifunctional hydroxy compound represented by the above formula (3) with chloromethylstyrene.This reaction can be carried out in the same manner as the well-known vinylation reaction.
The blending ratio is preferably 0.8 to 1.2 equivalents of aromatic vinylating agent (e.g., chloromethylstyrene) per 1.0 equivalent of hydroxyl group, which is the functional group of the trifunctional hydroxy compound. However, when the reactivity of the trifunctional hydroxy compound is low, it is advisable to charge an excess amount of aromatic vinylating agent and remove it after the reaction.
 芳香族ビニル化剤としては、ハロメチルスチレン、特にクロロメチルスチレンが好ましい。その他、ブロモメチルスチレン及びその異性体、置換基を持ったものなどが挙げられる。ハロメチル体の置換位置について、例えば、ハロメチルスチレンの場合、4-位が好ましく、4-位体が全体の60重量%以上であることが好ましい。 Aromatic vinylating agents are preferably halomethylstyrenes, particularly chloromethylstyrene. Other examples include bromomethylstyrene and its isomers, and those with substituents. Regarding the substitution position of the halomethyl compound, for example, in the case of halomethylstyrene, the 4-position is preferred, and it is preferable that the 4-position compound accounts for 60% or more by weight of the total.
 三官能ヒドロキシ化合物と芳香族ビニル化剤との反応は、無溶剤下または溶媒の存在下行うことができる。ヒドロキシ化合物に芳香族ビニル化剤を加え、水酸化金属を加えて反応を行い、生成した金属塩をろ過や水洗などの方法により除去して反応が可能である。
 溶媒はメチルエチルケトン、ベンゼン、トルエン、キシレン、メチルイソブチルケトン、ジエチレングリコールジメチルエーテル、シクロペンタノン、シクロヘキサノンなどが挙げられるがこれらに限定されるものではない。反応性の観点で、メチルエチルケトンが好ましい。水酸化金属の具体例としては水酸化ナトリウム、水酸化カリウムなどが挙げられるがこれらに限定されるものではない。
The reaction between a trifunctional hydroxy compound and an aromatic vinylating agent can be carried out in the absence or presence of a solvent. The reaction can be carried out by adding the aromatic vinylating agent to the hydroxy compound, adding a metal hydroxide, and removing the generated metal salt by a method such as filtration or washing with water.
Examples of the solvent include, but are not limited to, methyl ethyl ketone, benzene, toluene, xylene, methyl isobutyl ketone, diethylene glycol dimethyl ether, cyclopentanone, cyclohexanone, etc. From the viewpoint of reactivity, methyl ethyl ketone is preferable. Specific examples of the metal hydroxide include, but are not limited to, sodium hydroxide, potassium hydroxide, etc.
 ビニル化の反応は、好ましくは90℃以下、より好ましくは70℃以下の温度である。この温度より高い場合、ビニルベンジルエーテル基の熱による自己重合が進行して反応制御が困難となる。自己重合を抑えるためにキノン類、ニトロ化合物、ニトロフェノール類、ニトロソ,ニトロン化合物、酸素などの重合禁止剤を使用してもよい。 The vinylization reaction is preferably carried out at a temperature of 90°C or less, more preferably 70°C or less. If the temperature is higher than this, the vinyl benzyl ether group will self-polymerize due to heat, making it difficult to control the reaction. To suppress self-polymerization, polymerization inhibitors such as quinones, nitro compounds, nitrophenols, nitroso and nitrone compounds, and oxygen may be used.
 反応終点は、芳香族ビニル化剤としてのハロメチルスチレンの残存量をGPC等の各種クロマトグラムにて追跡を行うことで決定でき、反応速度は、水酸化金属の種類や量、添加速度、固形分濃度等で調整可能である。 The end point of the reaction can be determined by tracking the remaining amount of halomethylstyrene as an aromatic vinylating agent using various chromatograms such as GPC, and the reaction rate can be adjusted by the type and amount of metal hydroxide, the addition rate, solids concentration, etc.
 本発明の多官能ビニル化合物は、単独でも硬化させることができるが、各種添加剤を配合した多官能ビニル組成物として使用することも好適である。
 特に、硬化促進のためにアゾ化合物、有機過酸化物などのラジカル重合開始剤を配合して硬化させることができる。
The polyfunctional vinyl compound of the present invention can be cured by itself, but it is also suitable to use it as a polyfunctional vinyl composition containing various additives.
In particular, in order to accelerate curing, a radical polymerization initiator such as an azo compound or an organic peroxide may be blended to effect curing.
 本発明の多官能ビニル組成物は、多官能ビニル化合物およびラジカル重合開始剤を必須成分とするが、それ以外のビニル化合物や他の熱硬化性樹脂を配合でき、例えばエポキシ樹脂、オキセタン樹脂、マレイミド樹脂、アクリレート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリフェニレンエーテル樹脂、ベンゾオキサジン樹脂などが挙げられる。 The polyfunctional vinyl composition of the present invention contains a polyfunctional vinyl compound and a radical polymerization initiator as essential components, but can also contain other vinyl compounds and other thermosetting resins, such as epoxy resins, oxetane resins, maleimide resins, acrylate resins, polyester resins, polyurethane resins, polyphenylene ether resins, and benzoxazine resins.
 熱伝導率を高める為、例えば、ガラスクロス、カーボンファイバー、アルミナ、窒化ホウ素などの無機充填材を配合してもよい。 In order to increase thermal conductivity, inorganic fillers such as glass cloth, carbon fiber, alumina, and boron nitride may be added.
 無機充填材は、より高い熱伝導率を付与する目的で、熱伝導率が高いものほど好ましい。好ましくは20W/m・K以上、より好ましくは30W/m・K以上、さらに好ましくは50W/m・K以上である。そして、無機充填材の少なくとも一部、好ましくは50wt%以上が20W/m・K以上の熱伝導率を有する。そして、無機充填材全体としての平均の熱伝導率が、20W/m・K以上、30W/m・K以上、及び50W/m・K以上の順に好ましさが向上する。 In order to provide a higher thermal conductivity, inorganic fillers with higher thermal conductivity are preferred. Thermal conductivity is preferably 20 W/m.K or more, more preferably 30 W/m.K or more, and even more preferably 50 W/m.K or more. At least a portion of the inorganic filler, preferably 50 wt% or more, has a thermal conductivity of 20 W/m.K or more. The average thermal conductivity of the inorganic filler as a whole increases in the order of desirability: 20 W/m.K or more, 30 W/m.K or more, and 50 W/m.K or more.
 このような熱伝導率を有する無機充填材の例としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材等が挙げられる。 Examples of inorganic fillers with such thermal conductivity include inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, and magnesium oxide.
 接着力の向上や組成物の取り扱い作業の向上の為、各種添加剤を添加してもよく、例えばシランカップリング剤や消泡剤、内部離型剤や流れ調整剤などが挙げられる。 Various additives may be added to improve adhesive strength and ease of handling of the composition, such as silane coupling agents, defoamers, internal release agents, and flow control agents.
 本発明の多官能ビニル化合物または多官能ビニル組成物は、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン等の溶剤に溶解させ、ガラス繊維,カ-ボン繊維,ポリエステル繊維,ポリアミド繊維,アルミナ繊維,紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して硬化物を得ることなどもできる。 The polyfunctional vinyl compound or polyfunctional vinyl composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, or methyl isobutyl ketone, impregnated into a substrate such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper, and heated and dried to obtain a prepreg, which can then be hot-press molded to obtain a cured product.
 また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に塗布することにより積層物とすることができ、加熱乾燥して得た樹脂シートを熱プレス成形して硬化物を得ることもできる。 In some cases, the resin can be applied onto a sheet-like material such as copper foil, stainless steel foil, polyimide film, or polyester film to form a laminate, and the resin sheet obtained by heating and drying can be subjected to heat press molding to obtain a cured product.
 以下、実施例及び比較例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。特に断りがない限り、「部」は重量部を表し、「%」は重量%を表す。また、測定方法はそれぞれ以下の方法により測定した。 The present invention will be specifically explained below with reference to examples and comparative examples. However, the present invention is not limited to these. Unless otherwise specified, "parts" refers to parts by weight, and "%" refers to % by weight. In addition, the following methods were used for the measurement.
1)OH当量(水酸基当量)
 電位差滴定装置を用い、1,4-ジオキサンを溶媒に用い、1.5mol/L塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で分解して0.5mol/L-水酸化カリウムを使用して滴定した。
1) OH equivalent (hydroxyl group equivalent)
Using a potentiometric titrator, acetylation was carried out with 1.5 mol/L acetyl chloride using 1,4-dioxane as a solvent, and excess acetyl chloride was decomposed with water, followed by titration with 0.5 mol/L potassium hydroxide.
2)ビニル当量
  試料にウィイス液(一塩化ヨウ素溶液)を反応させ、暗所に放置し、その後、過剰の塩化ヨウ素をヨウ素に還元し、ヨウ素分をチオ硫酸ナトリウムで滴定してヨウ素価を算出した。ヨウ素価をビニル当量に換算した。
2) Vinyl equivalent The sample was reacted with Wies's solution (iodine monochloride solution) and left in the dark, after which the excess iodine chloride was reduced to iodine, and the iodine content was titrated with sodium thiosulfate to calculate the iodine value. The iodine value was converted to vinyl equivalent.
3)全塩素
 試料1.0gをブチルカルビトール25mlに溶解後、1N-KOHプロピレングリコール溶液25mlを加え10分間加熱還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N-AgNO3水溶液で電位差滴定を行うことにより測定した。
3) Total chlorine: 1.0 g of a sample was dissolved in 25 ml of butyl carbitol, 25 ml of 1N KOH propylene glycol solution was added, and the mixture was heated under reflux for 10 minutes. The mixture was then cooled to room temperature, and 100 ml of 80% acetone water was added. The total chlorine was measured by potentiometric titration with a 0.002N AgNO3 aqueous solution.
4)GPC測定
 本体(東ソー株式会社製、HLC-8220GPC)にカラム(東ソー株式会社製、TSKgelSuperMultiporeHZ―N4本)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液にはテトラヒドロフラン(THF)を使用し、0.35mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料はサンプル0.1gを10mLのTHFに溶解し、マイクロフィルターで濾過したものを50μL使用した。データ処理は、東ソー株式会社製GPC-8020モデルIIバージョン6.00を使用した。
4) GPC Measurement A main body (HLC-8220GPC, manufactured by Tosoh Corporation) equipped with four columns (TSKgel Super Multipore HZ-N, manufactured by Tosoh Corporation) in series was used, and the column temperature was set to 40°C. Tetrahydrofuran (THF) was used as the eluent, the flow rate was set to 0.35 mL/min, and a differential refractive index detector was used as the detector. 50 μL of the measurement sample was prepared by dissolving 0.1 g of sample in 10 mL of THF and filtering through a microfilter. Data processing was performed using GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation.
5)溶剤溶解性(析出温度)
 サンプル瓶に樹脂2g、メチルエチルケトン1gを秤量し、加熱溶解させた後、恒温槽内にて徐々に温度を低下させ、樹脂が析出した槽内の温度を測定した。析出温度(℃)が高いほど、溶剤溶解性が劣る。
5) Solvent solubility (precipitation temperature)
2 g of resin and 1 g of methyl ethyl ketone were weighed and placed in a sample bottle, and after heating and dissolving, the temperature was gradually lowered in a thermostatic bath, and the temperature in the bath at which the resin precipitated was measured. The higher the precipitation temperature (°C), the poorer the solvent solubility.
6)ガラス転移点(Tg)
 熱機械測定装置(エスアイアイ・ナノテクノロジー株式会社製 EXSTAR TMA/7100)により、昇温速度10℃/分の条件でTgを求めた。
6) Glass transition temperature (Tg)
The Tg was determined using a thermomechanical measurement device (EXSTAR TMA/7100 manufactured by SII NanoTechnology Inc.) at a temperature rise rate of 10° C./min.
7)5%重量減少温度(Td5)、残炭率
 熱重量/示差熱分析装置(エスアイアイ・ナノテクノロジー製 EXSTAR TG/DTA7300)を用いて、窒素雰囲気下、昇温速度10℃/分の条件において、5%重量減少温度(Td5)を測定した。また、700℃における重量減少を測定し、残炭率として算出した。
7) 5% weight loss temperature (Td5), carbon residue ratio Using a thermogravimetric/differential thermal analyzer (EXSTAR TG/DTA7300 manufactured by SII NanoTechnology), the 5% weight loss temperature (Td5) was measured under conditions of a nitrogen atmosphere and a heating rate of 10°C/min. The weight loss at 700°C was also measured and calculated as the carbon residue ratio.
8)熱伝導率
 熱伝導率は、NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
8) Thermal Conductivity The thermal conductivity was measured by a non-steady hot wire method using a NETZSCH LFA447 type thermal conductivity meter.
9)誘電率及び誘電正接
 JIS C 2138規格に従って測定した。測定周波数は1GHzの値で示した。
9) Dielectric constant and dielectric loss tangent Measured in accordance with JIS C 2138. The measurement frequency was 1 GHz.
(合成例1)
 1000mLの4口フラスコに、2,5-キシレノール(下記構造式)73.6g(0.60モル)、
Figure JPOXMLDOC01-appb-C000006
p-ヒドロキシベンズアルデヒド(下記構造式)24.4g(0.20モル)
Figure JPOXMLDOC01-appb-C000007
を仕込み、2-エトキシエタノール200.0gに溶解させた。氷浴中で冷却しながら硫酸20.0gを加えた後、100℃で3時間加熱、攪拌し反応させた。反応後、得られた溶液を水で再沈殿操作を行い、水洗、ろ過、真空乾燥を行うことによって、三官能ヒドロキシ化合物aを65.0g得た。三官能ヒドロキシ化合物aは、式(3)においてR1~R4がいずれもメチル基であり、水酸基当量は118g/eg.であった。
(Synthesis Example 1)
Into a 1000 mL four-neck flask, 73.6 g (0.60 mol) of 2,5-xylenol (structural formula below),
Figure JPOXMLDOC01-appb-C000006
p-Hydroxybenzaldehyde (structural formula below) 24.4 g (0.20 mol)
Figure JPOXMLDOC01-appb-C000007
and dissolved in 200.0 g of 2-ethoxyethanol. While cooling in an ice bath, 20.0 g of sulfuric acid was added, and then the mixture was heated at 100°C for 3 hours with stirring to cause a reaction. After the reaction, the resulting solution was reprecipitated with water, washed with water, filtered, and dried in vacuum to obtain 65.0 g of trifunctional hydroxy compound a. In trifunctional hydroxy compound a, R1 to R4 in formula (3) are all methyl groups, and the hydroxyl group equivalent was 118 g/eg.
(合成例2)
 2,5-キシレノール73.6gの代わりに2,5-キシレノール36.8g(0.30モル)、フェノール28.2g(0.30モル)を用いた以外は合成例1と同様の操作を行い、三官能ヒドロキシ化合物bを60.8g得た。三官能ヒドロキシ化合物bは、式(3)においてR1~R4がいずれも水素原子またはメチル基である化合物の混合物であり、水酸基当量は105g/eg.であった。
(Synthesis Example 2)
The same procedure as in Synthesis Example 1 was carried out except that 36.8 g (0.30 mol) of 2,5-xylenol and 28.2 g (0.30 mol) of phenol were used instead of 73.6 g of 2,5-xylenol, to obtain 60.8 g of trifunctional hydroxy compound b. Trifunctional hydroxy compound b was a mixture of compounds represented by formula (3) in which R1 to R4 were all hydrogen atoms or methyl groups, and had a hydroxyl group equivalent of 105 g/eg.
(合成例3)
 2,5-キシレノール73.6gの代わりに2-フェニルフェノール(下記構造式)102.0g(0.60モル)
Figure JPOXMLDOC01-appb-C000008
を用いた以外は合成例1と同様の操作を行い、三官能ヒドロキシ化合物cを81.0g得た。三官能ヒドロキシ化合物cは、式(3)においてR1~R4がいずれもフェニル基であり、水酸基当量は149g/eg.であった。
(Synthesis Example 3)
102.0 g (0.60 mol) of 2-phenylphenol (structural formula below) instead of 73.6 g of 2,5-xylenol
Figure JPOXMLDOC01-appb-C000008
The same procedure as in Synthesis Example 1 was carried out except that the above was used, to obtain 81.0 g of trifunctional hydroxy compound c. In trifunctional hydroxy compound c, R1 to R4 in formula (3) were all phenyl groups, and the hydroxyl group equivalent was 149 g/eg.
(実施例1)
 1000mlの4口フラスコに合成例1で得られた三官能ヒドロキシ化合物aを59.0g(0.17モル)、メチルエチルケトン400g、クロロメチルスチレン(下記構造式)91.6g(0.60モル)
Figure JPOXMLDOC01-appb-C000009
を加え、60℃に昇温し、メタノール101gに溶解した水酸化カリウム33.7gを3時間かけて滴下し、さらに6時間反応した。反応終了後、濾過し、溶剤を留去し、メタノールにて再沈殿し、大量の水で水洗し、減圧乾燥により多官能ビニル化合物102.4gを得た(ビニル化合物A)。ビニル化合物Aのビニル当量は225g/eg.、水酸基当量は12000g/eg.、全塩素は600ppmであった。
Example 1
Into a 1000 ml four-neck flask, 59.0 g (0.17 mol) of the trifunctional hydroxy compound a obtained in Synthesis Example 1, 400 g of methyl ethyl ketone, and 91.6 g (0.60 mol) of chloromethylstyrene (structural formula shown below) were added.
Figure JPOXMLDOC01-appb-C000009
The mixture was heated to 60°C, and 33.7 g of potassium hydroxide dissolved in 101 g of methanol was added dropwise over 3 hours, followed by reaction for another 6 hours. After the reaction was completed, the mixture was filtered, the solvent was removed by distillation, and the mixture was reprecipitated in methanol, washed with a large amount of water, and dried under reduced pressure to obtain 102.4 g of a multifunctional vinyl compound (vinyl compound A). The vinyl equivalent of vinyl compound A was 225 g/eg., the hydroxyl equivalent was 12,000 g/eg., and the total chlorine was 600 ppm.
(実施例2)
 三官能ヒドロキシ化合物aの代わりに合成例2で得られた三官能ヒドロキシ化合物bを52.5g(0.17モル)用いた以外は実施例1と同様の操作を行い、多官能ビニル化合物100.3gを得た(ビニル化合物B)。ビニル化合物Bのビニル当量は212g/eg.、水酸基当量は14000g/eg.、全塩素は500ppmであった。
Example 2
The same procedure as in Example 1 was carried out except that 52.5 g (0.17 mol) of the trifunctional hydroxy compound b obtained in Synthesis Example 2 was used instead of the trifunctional hydroxy compound a, to obtain 100.3 g of a multifunctional vinyl compound (vinyl compound B). The vinyl equivalent of vinyl compound B was 212 g/eg., the hydroxyl equivalent was 14,000 g/eg., and the total chlorine was 500 ppm.
(実施例3)
 三官能ヒドロキシ化合物aの代わりに合成例3で得られた三官能ヒドロキシ化合物cを74.5g(0.17モル)用いた以外は実施例1と同様の操作を行い、多官能ビニル化合物121.2gを得た(ビニル化合物C)。ビニル化合物Cのビニル当量は260g/eg.、水酸基当量は11000g/eg.、全塩素は800ppmであった。
Example 3
The same procedure as in Example 1 was carried out except that 74.5 g (0.17 mol) of the trifunctional hydroxy compound c obtained in Synthesis Example 3 was used instead of the trifunctional hydroxy compound a, to obtain 121.2 g of a multifunctional vinyl compound (vinyl compound C). The vinyl equivalent of vinyl compound C was 260 g/eg., the hydroxyl equivalent was 11,000 g/eg., and the total chlorine was 800 ppm.
(比較例1)
 三官能ヒドロキシ化合物aの代わりに1,1,1-トリス(p-ヒドロキシフェニル)エタン(下記構造式)51.0g
Figure JPOXMLDOC01-appb-C000010
用いた以外は実施例1と同様の操作を行い、多官能ビニル化合物93.3gを得た(ビニル化合物D)。ビニル化合物Dのビニル当量は214g/eg.、水酸基当量は7000g/eg.、全塩素は1500ppmであった。
(Comparative Example 1)
Instead of the trifunctional hydroxy compound a, 51.0 g of 1,1,1-tris(p-hydroxyphenyl)ethane (structural formula below)
Figure JPOXMLDOC01-appb-C000010
The same procedure as in Example 1 was carried out except that 93.3 g of a polyfunctional vinyl compound was obtained (vinyl compound D). The vinyl equivalent of vinyl compound D was 214 g/eg., the hydroxyl equivalent was 7000 g/eg., and the total chlorine was 1500 ppm.
(比較例2)
 1000mlの4口フラスコに、4,4’-ビス(クロロメチル)ビフェニル(下記構造式)40.8g、
Figure JPOXMLDOC01-appb-C000011
4,4’-ビフェノール(下記構造式)75.5g、
Figure JPOXMLDOC01-appb-C000012
ジエチレングリコールジメチルエーテル120gを仕込み、窒素気流下、攪拌しながら160℃まで昇温して10時間反応させた。続いて、70℃にし、ジエチレングリコールジメチルエーテルを280g、クロロメチルスチレンを129.5g加え、48%水酸化カリウム100.0gを滴下しながら反応を行い、ガスクロマトグラフィーにて残存クロロメチルスチレンが無いことを確認し溶剤を減圧回収した。得られた樹脂をトルエンに溶解し中和、水洗を行い、多官能ビニル樹脂gを得た(ビニル樹脂E)。得られたビニル樹脂Eのビニル当量は256g/eq.、水酸基当量は1500g/eq.、全塩素は1270ppmであった。
(Comparative Example 2)
Into a 1000 ml four-neck flask, 40.8 g of 4,4'-bis(chloromethyl)biphenyl (structural formula below),
Figure JPOXMLDOC01-appb-C000011
4,4'-biphenol (structural formula below) 75.5 g,
Figure JPOXMLDOC01-appb-C000012
120g of diethylene glycol dimethyl ether was charged, and the mixture was heated to 160°C under nitrogen flow while stirring, and reacted for 10 hours. Then, the temperature was raised to 70°C, 280g of diethylene glycol dimethyl ether and 129.5g of chloromethylstyrene were added, and the reaction was carried out while dropping 100.0g of 48% potassium hydroxide. It was confirmed by gas chromatography that there was no remaining chloromethylstyrene, and the solvent was recovered under reduced pressure. The obtained resin was dissolved in toluene, neutralized, and washed with water to obtain a multifunctional vinyl resin g (vinyl resin E). The vinyl equivalent of the obtained vinyl resin E was 256g/eq., the hydroxyl equivalent was 1500g/eq., and the total chlorine was 1270ppm.
(比較例3)
 1000mlの4口フラスコに、ジヒドロキシジフェニルメタン(4,4’-ジヒドロキシジフェニルメタン(下記構造式):36.2%、2,4’-ジヒドロキシジフェニルメタン:46.6%、2,2’―ジヒドロキシジフェニルメタン:17.2%からなる異性体混合物)50.0g、
Figure JPOXMLDOC01-appb-C000013
メチルエチルケトン400g、クロロメチルスチレン80.1gを加え、60℃に昇温し、メタノール88gに溶解した水酸化カリウム29.5gを3時間かけて滴下し、さらに6時間反応した。反応終了後、濾過し、溶剤を留去し、メタノールにて再沈殿し、大量の水で水洗し、減圧乾燥により多官能ビニル樹脂95.4gを得た(ビニル樹脂F)。ビニル樹脂Fのビニル当量は217g/eg.、水酸基当量は17000g/eg.、全塩素は400ppmであった。
(Comparative Example 3)
Into a 1000 ml four-neck flask, 50.0 g of dihydroxydiphenylmethane (an isomer mixture consisting of 36.2% 4,4'-dihydroxydiphenylmethane (structural formula below), 46.6% 2,4'-dihydroxydiphenylmethane, and 17.2% 2,2'-dihydroxydiphenylmethane) was added.
Figure JPOXMLDOC01-appb-C000013
400g of methyl ethyl ketone and 80.1g of chloromethylstyrene were added, and the temperature was raised to 60°C. 29.5g of potassium hydroxide dissolved in 88g of methanol was added dropwise over 3 hours, and the reaction was continued for another 6 hours. After the reaction was completed, the mixture was filtered, the solvent was removed by distillation, and the mixture was reprecipitated with methanol, washed with a large amount of water, and dried under reduced pressure to obtain 95.4g of a multifunctional vinyl resin (vinyl resin F). The vinyl equivalent of vinyl resin F was 217g/eg., the hydroxyl equivalent was 17000g/eg., and the total chlorine was 400ppm.
実施例4~6、比較例4~7
 多官能ビニル化合物として、実施例1~3、比較例1~3で得たビニル化合物A~F及びビニル樹脂G(OPE-2ST:三菱ガス化学株式会社製、ビニル基当量:590.0g/eq、数平均分子量1187)を使用し、硬化促進剤(ラジカル重合開始剤)として有機過酸化物であるパーブチルP(日油株式会社製)、酸化防止剤としてアデカスタブAO-60(株式会社ADEKA製)を表1に示す配合割合で混合し、溶剤に溶解して均一な組成物とした。本組成物をPETフィルムに塗布し、130℃で5分乾燥を行い、樹脂組成物を得た。PETフィルムから取り出した組成物を鏡面板に挟み、減圧下130℃で15分及び210℃で80分2MPaの圧力をかけながら硬化した。得られた硬化物の特性を表1に示す。
Examples 4 to 6, Comparative Examples 4 to 7
As the polyfunctional vinyl compound, vinyl compounds A to F obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and vinyl resin G (OPE-2ST: manufactured by Mitsubishi Gas Chemical Company, Inc., vinyl group equivalent: 590.0 g / eq, number average molecular weight 1187) were used, and Perbutyl P (manufactured by NOF Corporation), an organic peroxide, was used as a curing accelerator (radical polymerization initiator), and Adeka STAB AO-60 (manufactured by ADEKA Corporation) was used as an antioxidant in the blending ratio shown in Table 1. The composition was applied to a PET film and dried at 130 ° C. for 5 minutes to obtain a resin composition. The composition removed from the PET film was sandwiched between mirror plates and cured under reduced pressure at 130 ° C. for 15 minutes and at 210 ° C. for 80 minutes while applying a pressure of 2 MPa. The properties of the obtained cured product are shown in Table 1.
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 実施例の多官能ビニル化合物は、比較例に比べて、熱伝導率が高く、尚且つ低誘電率、低誘電正接という優れた物性を示した。 The polyfunctional vinyl compounds of the examples showed superior physical properties, including higher thermal conductivity, lower dielectric constant, and lower dielectric tangent, compared to the comparative examples.
 本発明の多官能ビニル化合物は、高速通信機器の電子材料として電子部品や配線からの発熱を逃がしやすく信号損失か少ない材料として有用である。
 
The polyfunctional vinyl compound of the present invention is useful as an electronic material for high-speed communication devices, as it easily dissipates heat generated from electronic components and wiring and causes little signal loss.

Claims (4)

  1.  下記一般式(1)で表される多官能ビニル化合物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、R1~R4は、それぞれ独立して、水素原子または一価の炭素数1~6の炭化水素基を示す。
    A polyfunctional vinyl compound represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), R1 to R4 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  2.  R1~R4のうち少なくとも一つが、メチル基またはフェニル基である請求項1に記載の多官能ビニル化合物。 The polyfunctional vinyl compound according to claim 1, in which at least one of R1 to R4 is a methyl group or a phenyl group.
  3.  請求項1または2に記載の多官能ビニル化合物とラジカル重合開始剤とを必須成分として含有する多官能ビニル組成物。 A polyfunctional vinyl composition comprising the polyfunctional vinyl compound according to claim 1 or 2 and a radical polymerization initiator as essential components.
  4.  請求項3に記載の多官能ビニル組成物を硬化してなる多官能ビニル硬化物。
     
    A multifunctional vinyl cured product obtained by curing the multifunctional vinyl composition according to claim 3.
PCT/JP2023/033749 2022-09-29 2023-09-15 Multifunctional vinyl compound, composition thereof, and cured product WO2024070773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-155787 2022-09-29
JP2022155787 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024070773A1 true WO2024070773A1 (en) 2024-04-04

Family

ID=90477495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033749 WO2024070773A1 (en) 2022-09-29 2023-09-15 Multifunctional vinyl compound, composition thereof, and cured product

Country Status (2)

Country Link
TW (1) TW202413454A (en)
WO (1) WO2024070773A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171332A (en) * 1997-06-17 1999-03-16 Sumitomo Chem Co Ltd Triphenylmethane derivative and its use
JP2014062243A (en) * 2012-08-30 2014-04-10 Nippon Steel & Sumikin Chemical Co Ltd Aromatic vinyl benzyl ether compound, and curable composition containing the same
WO2020059625A1 (en) * 2018-09-18 2020-03-26 Dic株式会社 Phenol compound, active ester resin, production method for active ester resin, thermosetting resin composition, and cured product of thermosetting resin composition
JP2023068626A (en) * 2021-11-02 2023-05-17 信越化学工業株式会社 Molecular resist composition and patterning process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171332A (en) * 1997-06-17 1999-03-16 Sumitomo Chem Co Ltd Triphenylmethane derivative and its use
JP2014062243A (en) * 2012-08-30 2014-04-10 Nippon Steel & Sumikin Chemical Co Ltd Aromatic vinyl benzyl ether compound, and curable composition containing the same
WO2020059625A1 (en) * 2018-09-18 2020-03-26 Dic株式会社 Phenol compound, active ester resin, production method for active ester resin, thermosetting resin composition, and cured product of thermosetting resin composition
JP2023068626A (en) * 2021-11-02 2023-05-17 信越化学工業株式会社 Molecular resist composition and patterning process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITSUNO, SHINICHI ET AL.: "Design and synthesis of chiral hyperbranched polymers containing cinchona squaramide moieties and their catalytic activity in the asymmetric Michael addition reaction", JOURNAL OF CATALYSIS., vol. 377, 2019, pages 543 - 549, XP085834023, Retrieved from the Internet <URL:https://doi.org/10.1016/j.jcat.2019.07.060> DOI: 10.1016/j.jcat.2019.07.060 *

Also Published As

Publication number Publication date
TW202413454A (en) 2024-04-01

Similar Documents

Publication Publication Date Title
JP4551387B2 (en) Novel phenol-aldehyde resin, method for producing the same, and use thereof
WO2015146606A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
WO2014065152A1 (en) Epoxy resin composition, method for producing epoxy resin cured product, and semiconductor device
WO2017170703A1 (en) Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
JP7277136B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP6139997B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
WO2013125620A1 (en) Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
JP5570380B2 (en) Epoxy resin composition and cured product
KR20180092934A (en) Epoxy resin composition, prepreg, epoxy resin composition molded article and cured product thereof
WO2024070773A1 (en) Multifunctional vinyl compound, composition thereof, and cured product
TWI798311B (en) Epoxy resin composition and cured product thereof
JP4188022B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
WO2013157061A1 (en) Epoxy resin composition and cured product
JP5139914B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product using them
WO2022137915A1 (en) Curable resin, curable resin composition, and cured product
JP6863679B2 (en) Solution, its manufacturing method, epoxy resin composition and laminate
KR20190137106A (en) Maleimide resin composition, prepreg and cured product thereof
TW202225251A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product thereof useful for making a cured product with excellent thermal decomposition stability, low dielectric properties, and reliability
WO2024071047A1 (en) Polyfunctional vinyl resin, and production method, composition, and cured product of same
TW202204156A (en) Polyfunctional vinyl resin and production method therefor
TW202200651A (en) Polyhydroxy resin, manufacturing method thereof, epoxy resin composition containing the same, and epoxy resin cured product to provide a polyhydroxy resin with excellent reliability, excellent handleability as a solid at room temperature, low viscosity during molding, and solvent solubility
WO2024029602A1 (en) Resin composition, and cured product
JP2024093265A (en) Vinyl resin, its manufacturing method, composition and cured product
JP2006056969A (en) Epoxy resin composition and cured product thereof
JP5165816B2 (en) Epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872001

Country of ref document: EP

Kind code of ref document: A1