WO2024029602A1 - Resin composition, and cured product - Google Patents

Resin composition, and cured product Download PDF

Info

Publication number
WO2024029602A1
WO2024029602A1 PCT/JP2023/028470 JP2023028470W WO2024029602A1 WO 2024029602 A1 WO2024029602 A1 WO 2024029602A1 JP 2023028470 W JP2023028470 W JP 2023028470W WO 2024029602 A1 WO2024029602 A1 WO 2024029602A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
formula
composition according
vinyl
Prior art date
Application number
PCT/JP2023/028470
Other languages
French (fr)
Japanese (ja)
Inventor
昌己 大村
浩一郎 大神
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022125747A external-priority patent/JP2024022282A/en
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2024029602A1 publication Critical patent/WO2024029602A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a resin composition useful as an insulating material for electrical and electronic materials such as semiconductor encapsulation, laminates, and heat dissipating substrates with excellent reliability, and a cured product using the same.
  • a sealing material consisting of an epoxy resin and a resin composition whose main components are a phenol resin as a curing agent is generally used.
  • Epoxy resin compositions used to protect elements such as power devices are densely packed with inorganic fillers such as crystalline silica to cope with the large amount of heat emitted by the elements.
  • Power devices include those that are composed of a single chip incorporating IC technology and those that are modularized, and further improvements in heat dissipation, heat resistance, and thermal expansion properties of sealing materials are desired. There is.
  • the thermal conductivity of the inorganic filler is overwhelmingly higher than that of the matrix resin, and even if the thermal conductivity of the matrix resin itself is high, the thermal conductivity of the inorganic filler is overwhelmingly higher than that of the matrix resin.
  • the reality is that they do not significantly contribute to improving thermal conductivity, and existing resins have not been able to sufficiently improve thermal conductivity.
  • Layered clay minerals such as talc are generally used to improve fluidity and reduce the coefficient of linear expansion.
  • a formulation in which layered clay minerals are combined with an inorganic filler having high thermal conductivity has been proposed, but the high thermal conductivity is achieved by contact between the inorganic substances and does not act on the matrix resin itself (Patent Document 7).
  • Patent Document 8 discloses a tetrafunctional or higher functional vinyl resin having a biphenyl skeleton as a polyfunctional vinyl resin that has both high thermal conductivity and low dielectric loss tangent. There is no mention of the solvent solubility of the hydroxyl resin, and no mention is made of the influence of impurities such as remaining polar groups on thermal conductivity.
  • an object of the present invention is to provide a resin composition and a cured product thereof that can solve the above problems.
  • the epoxy resin composition according to the first embodiment described below can produce molded products that have excellent moldability, reliability, high thermal conductivity, low thermal expansion, heat resistance, moisture resistance, and flame retardancy. Furthermore, a molded article whose crystallinity can be observed by XRD is provided.
  • the vinyl resin composition according to the second embodiment described below has excellent solvent solubility and moldability, heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric loss tangent, and low dielectric loss tangent.
  • vinyl resin compositions and cured products thereof that provide cured products with excellent flammability and are useful for sealing electrical and electronic components, circuit board materials, and the like.
  • a resin composition containing layered clay minerals is expected to solve the above problems, and that a cured product thereof exhibits an effect on at least thermal conductivity, and It has been found that, in some cases, it exhibits effects such as low dielectric constant and low dielectric loss tangent.
  • the gist of the present invention is as follows.
  • the resin composition according to [1], wherein the crystalline resin is an epoxy resin and/or a vinyl resin.
  • the resin composition according to [4], wherein the crystalline resin is an epoxy resin with a melting point of more than 80°C and 180°C or less and/or a vinyl resin with a melting point of 90 to 200°C.
  • the crystalline resin is an epoxy resin, contains a curing agent, and when measured by X-ray diffraction (XRD) of a cured product of the resin composition, diffraction occurs in a region with a diffraction angle 2 ⁇ of 15° or more and less than 25°.
  • XRD X-ray diffraction
  • the resin composition according to [6], wherein the epoxy resin is represented by the following general formula (1-1) or (1-2).
  • G represents a glycidyl group
  • A is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent carbon number of 1 to 6 represents a hydrocarbon group, and n represents a number from 0 to 20.
  • Y is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C( CH 3 ) 2 -.
  • the crystalline resin is a vinyl resin, and the vinyl resin is characterized by having a vinyl equivalent of 150 to 1000 g/eq, a hydroxyl equivalent of 5000 g/eq or more, and a total chlorine amount of 2000 ppm or less [1]
  • R 1 to R 6 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • A independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms, and are independently a benzene ring, a naphthalene ring or a biphenyl ring, and n represents a number from 0 to 20.
  • Y is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C( CH 3 ) 2 -.
  • the resin composition of the present invention provides, for example, a cured molded product with excellent moldability and reliability, as well as high thermal conductivity, low water absorption, low thermal expansion, high heat resistance, and flame retardance.
  • it has excellent solvent solubility and is suitable for resin compositions and their cured products used for applications such as lamination, molding, casting, and adhesives, and this cured product has heat resistance, thermal decomposition stability, and thermal conductivity. , low dielectric constant, low dielectric loss tangent, and excellent flame retardancy.
  • 1 is an XRD profile of a cured molded product of the epoxy resin composition obtained in Example 1-1 in the first embodiment.
  • 1 is an XRD profile of a cured molded product of an epoxy resin composition obtained in Comparative Example 1-1 in the first embodiment.
  • 2 is a GPC chart of vinyl resin A obtained in Synthesis Example 2-1 in the second embodiment.
  • 2 is a GPC chart of vinyl resin B obtained in Synthesis Example 2-2 in the second embodiment.
  • 2 is a GPC chart of vinyl resin C obtained in Synthesis Example 2-3 in the second embodiment. It is an FD-MS spectrum of vinyl resin C obtained in Synthesis Example 2-3 in the second embodiment.
  • the resin composition of the present invention is a resin composition containing at least a crystalline resin and an additive, wherein the additive is a layered clay mineral, and the layered clay mineral is added in an amount of 1 to 100 parts by weight based on 100 parts by weight of the resin component. 20 parts by weight of the crystalline resin, and the melting point of the crystalline resin is above 80°C and below 200°C.
  • the resin used in the resin composition of the present invention is a crystalline resin that has crystallinity at room temperature.
  • crystalline resin has the same meaning as commonly used in the art, and is a resin having a crystalline structure.
  • crystalline resin refers to a resin that exhibits a clear endothermic peak in differential scanning calorimetry.
  • the crystalline resin is not limited and can be appropriately selected depending on the purpose, and examples thereof include acrylic resin, styrene-acrylic resin, polyester resin, epoxy resin, and vinyl resin. These resins may be used alone or in combination of two or more. Among these crystalline resins, considering the above-mentioned properties aimed at by the present invention, moldability, reliability, high thermal conductivity, low water absorption, heat resistance, low thermal expansion, heat resistance, moisture resistance, difficulty From the viewpoint of flammability, epoxy resin is preferred. Furthermore, vinyl resin is preferred because it has excellent solvent solubility, moldability, heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric loss tangent, and flame retardancy.
  • the crystalline resin of the present invention has a melting point. Its melting point range is more than 80°C and less than 200°C. Although it depends on the resin used, the temperature is preferably 90° C. or higher in order to improve thermal conductivity, reliability, and heat resistance.
  • the melting point is the endothermic peak temperature associated with melting of the crystal in scanning differential thermal analysis. Resins with melting points higher than 200°C have strong crystallinity and tend to reduce solvent solubility and melt-kneading properties, while cured products using resins with melting points of 80°C or lower tend not to improve thermal conductivity. .
  • the layered clay minerals used as additives in the resin composition of the present invention are also called tabular particles, and specifically include talc, kaolin, mica, montmorillonite, beidellite, hectorite, saponite, nontronite, and stevensite.
  • smectite minerals such as vermiculite, bentonite, kanemite, kenyanite, makanite, etc.
  • layered sodium silicate such as vermiculite, bentonite, kanemite, kenyanite, makanite, Na type tetrasilicic fluorinated mica, Li type tetrasilicic fluorinated mica, Na type fluorinated teniolite, Li type fluorinated teniolite, etc.
  • the surface of the layered clay mineral may be modified (surface treated) with an ammonium salt or the like.
  • a silicate compound containing magnesium is preferred, talc or mica is more preferred, and talc is even more preferred.
  • the layered clay mineral is contained in an amount of 1 to 20 parts by weight based on 100 parts by weight of the total resin component. It is preferably contained in an amount of 5 to 15 parts by weight. If the amount of layered clay mineral in the resin composition is too small, it may be difficult to sufficiently exhibit the above-mentioned thermal conductivity. On the other hand, if the content of the layered clay mineral is higher than this, fluidity and heat resistance may decrease. In addition, when containing a highly thermally conductive inorganic filler such as alumina, if the amount of layered clay minerals is large, the content of the highly thermally conductive inorganic filler may not be sufficient and the overall thermal conductivity may decrease. be.
  • a highly thermally conductive inorganic filler such as alumina
  • the resin component refers to a resin and a component related to curing or modification thereof.
  • the resin component refers to an epoxy resin, a curing agent, and a curing accelerator included if necessary.
  • the resin component refers to a vinyl resin and a radical polymerization initiator and a modifier included as necessary.
  • the resin component can be used with appropriate changes depending on the purpose.
  • the resin composition of the present invention achieves the object of the present invention, except for using the crystalline resin having a melting point within the predetermined range and the layered clay mineral as an additive having a content within the predetermined range. , and there is no restriction as long as it does not impair the purpose of the present invention.
  • a first embodiment using an epoxy resin as the crystalline resin and a second embodiment using a vinyl resin will be illustrated below.
  • epoxy resins and vinyl resins satisfy some of the characteristics aimed at by the present invention and are preferred embodiments, but the scope of the present invention is not limited to these embodiments. Not done.
  • the first embodiment of the present invention relates to an epoxy resin composition using an epoxy resin as a crystalline resin.
  • the epoxy resin composition preferably contains a curing agent in addition to the above-mentioned additive (layered clay mineral) and epoxy resin.
  • the curing agent will be described later.
  • a diffraction peak is observed in a predetermined region in measurement (XRD) of the cured product by X-ray diffraction method, More specifically, it is preferable that the diffraction peak is detected in a region where the diffraction angle 2 ⁇ is 15° or more and less than 25°.
  • the profile when XRD measurement of a cured epoxy resin consisting only of organic substances is broad, and no clear peak is detected.
  • the detection range is a range in which 2 ⁇ is 15° or more and less than 25°.
  • the epoxy resin composition contains an inorganic substance, a peak of the inorganic substance is detected, but the peak position differs depending on the crystal structure and can be distinguished from the peak of the organic substance.
  • the additive layered clay mineral
  • talc a diffraction peak is observed in the 2 ⁇ range of 28° to 29°.
  • a broad peak is also called an amorphous peak, and is a peak with a peak width of 8° or more
  • a sharp peak is also called a crystalline peak, and is a peak with a width of 5° or less, preferably 3°.
  • the peak is within °. That is, "a diffraction peak is detected” in the first embodiment preferably means that the sharp peak (crystalline peak) is detected in a range of 2 ⁇ of 15° or more and less than 25°. means.
  • the peak width can be determined by a normal peak analysis method performed by a person skilled in the art, and is usually parallel to the baseline and refers to the width between the starting point of the peak rise and the end point of the peak falling.
  • the epoxy resin component of the epoxy resin composition according to the first embodiment of the present invention has a melting point of more than 80°C and less than 200°C.
  • a preferable lower limit is 83°C or higher, and a more preferable lower limit is 90°C or higher.
  • a preferable upper limit is 180°C or less, and a more preferable upper limit is 150°C or less.
  • the epoxy resin component of the epoxy resin composition according to the first embodiment of the present invention may be any epoxy resin having two or more epoxy groups in the molecule.
  • examples include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenyl ether, hydroquinone, 4,4'-dihydroxybiphenyl, 3,3',5,5'-tetramethyl-4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, fluorene bisphenol, 2,2'-biphenol, resorcinol, catechol, t-butylcatechol, t-butylhydroquinone, allylated bisphenol A, allylated bisphenol F, divalent phenols such as allylated phenol novolak, or phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-
  • epoxy resin highly thermally conductive epoxy resins having rigid structures such as 4,4'-dihydroxydiphenyl ether, hydroquinone, glycidyl ether derivatives derived from 4,4'-dihydroxybiphenyl, and mesogenic skeletons are preferred, and in particular, the above-mentioned epoxy resins are preferred.
  • Epoxy resins represented by general formula (1-1) or (1-2) are more preferred.
  • These highly thermally conductive epoxy resins preferably contain 50 wt% or more of the entire epoxy resin component. More preferably, it is 70 wt% or more. If the usage ratio is less than this, the effect of improving heat resistance, thermal conductivity, etc. when the epoxy resin is cured may be small.
  • n is the number of repetitions (number average) and represents a number from 0 to 20. Preferably, it is a mixture of components having different values of n.
  • G represents a glycidyl group
  • A independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms. A is preferably a single bond from the viewpoint of thermal conductivity.
  • p is the number of repetitions (number average) and represents a number from 0 to 15. Preferably, it is a mixture of components having different values of p.
  • Y independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 - . From the viewpoint of high thermal conductivity, Y preferably has a single bond biphenyl structure, -SO 2 -, -CO-, -COO-, or -CONH-, and a biphenyl structure at the 4,4' position is particularly preferred.
  • Y is preferably an oxygen atom, a sulfur atom, -CH 2 -, or -C(CH 3 ) 2 -.
  • B in formula (1-2) independently represents a benzonitrile structure or -(CH 2 ) q -, and q represents a number from 3 to 10.
  • Preferred B has both structures in at least one molecule.
  • the method for producing the epoxy resin used in the epoxy resin composition according to the first embodiment of the present invention is not particularly limited, and it can be produced by reacting a raw material phenolic compound with epichlorohydrin. This reaction can be carried out in the same manner as a normal epoxidation reaction.
  • the raw material phenolic compound can be selected according to the epoxy resin to be obtained, as described above.
  • the epoxy resin represented by the above formula (1-1) or (1-2) can be produced as follows.
  • the epoxy resin represented by the formula (1-1) can be produced by reacting a polyhydric hydroxy resin (raw material phenolic compound) represented by the following formula (1-3) with epichlorohydrin.
  • a and n in formula (1-3) are the same as in formula (1-1) above.
  • This polyhydric hydroxy resin (1-3) is reacted with an aromatic crosslinking agent having a biphenyl structure represented by formula (1-4) and a bifunctional phenol compound represented by formula (1-5). It can be manufactured by
  • Z in formula (1-4) represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms.
  • a in formula (1-5) is the same as in formula (1-1) above.
  • Z represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms.
  • Specific examples of the aromatic crosslinking agent include 4,4'-bishydroxymethylbiphenyl, 4,4'-bischloromethylbiphenyl, 4,4'-bisbromomethylbiphenyl, and 4,4'-bismethoxymethylbiphenyl. , 4,4'-bisethoxymethylbiphenyl.
  • 4,4'-bishydroxymethylbiphenyl or 4,4'-bischloromethylbiphenyl is preferable, and from the viewpoint of reducing ionic impurities, 4,4'-bishydroxymethylbiphenyl or 4,4'-bishydroxymethylbiphenyl is preferable.
  • 4'-bismethoxymethylbiphenyl is preferred.
  • difunctional phenol compound of formula (1-5) specifically, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ketone, 4,4' -dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, dihydroxydiphenylmethanes, 2,2-bis(4-hydroxyphenyl)propane, especially 2,2'-dihydroxybiphenyl, 4, from the viewpoint of solvent solubility. , 4'-dihydroxydiphenyl ether, and dihydroxydiphenylmethane are preferred.
  • the dihydroxydiphenylmethane may be a mixture of ortho, meta, and para, but preferably has an isomer ratio of 4,4'-dihydroxydiphenylmethane of 40% or less. If there is a large amount of 4,4'-dihydroxydiphenylmethane, the crystallinity will be strong and there is a concern that the solvent solubility will decrease.
  • the molar ratio when the aromatic crosslinking agent of formula (1-4) and the phenol compound of formula (1-5) are reacted is generally 1 mole of the phenol compound to 0.00% of the aromatic crosslinking agent.
  • the amount is in the range of 2 to 0.7 mol, more preferably 0.4 to 0.7 mol.
  • This reaction can be carried out without a catalyst or in the presence of an acid catalyst such as an inorganic acid or an organic acid.
  • an acid catalyst such as an inorganic acid or an organic acid.
  • 4,4'-bischloromethylbiphenyl the reaction can be carried out without a catalyst, but in general, it is necessary to suppress side reactions such as the formation of ether bonds due to the reaction of chloromethyl groups and hydroxyl groups. It is preferable to carry out the reaction in the presence of an acidic catalyst.
  • This acidic catalyst can be appropriately selected from well-known inorganic acids and organic acids, such as mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, and metasulfonic acid.
  • mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid
  • formic acid oxalic acid
  • trifluoroacetic acid trifluoroacetic acid
  • p-toluenesulfonic acid p-toluenesulfonic acid
  • metasulfonic acid metasulfonic acid.
  • organic acids such as acids, trifluorometasulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
  • This reaction is usually carried out at 100 to 250°C for 1 to 20 hours.
  • the temperature is preferably 100 to 180°C, more preferably 140 to 180°C. If the reaction temperature is low, the reactivity is poor and it takes time, and if the reaction temperature is high, there is a risk of decomposition of the resin.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, aromatic compounds such as benzene, toluene, chlorobenzene, dichlorobenzene, etc.
  • ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, etc. are particularly preferred.
  • the solvent may be removed from the obtained polyhydric hydroxy resin by distillation under reduced pressure, washing with water, reprecipitation in a poor solvent, etc., but the solvent may be left as a raw material for the epoxidation reaction. May be used.
  • the polyhydric hydroxy resin of formula (1-3) thus obtained can be used not only as a raw material for epoxy resin but also as an epoxy resin curing agent. Moreover, by further combining it with a curing agent such as hexamine, it can be applied as a phenolic resin molding material.
  • Y, B, and p in formula (1-6) are the same as in formula (1-2) above.
  • the manufacturing method for the raw material phenolic compound represented by formula (1-6) is not limited as long as it has a predetermined structure, but it can be prepared by combining either or both of a benzonitrile compound and a dihalogen alkyl compound with formula (1-6). -6) is suitably obtained by reacting with a dihydroxy compound having a Y group in the presence of a basic catalyst.
  • examples of the benzonitrile compound include 2,4-dichlorobenzonitrile, 2,5-dichlorobenzonitrile, 2,6-dichlorobenzonitrile, 3,5-dichlorobenzonitrile, 2,4-dibromobenzonitrile, Examples include 2,5-dibromobenzonitrile, 2,6-dibromobenzonitrile, 3,5-dibromobenzonitrile, and examples of the dihalogen alkyl compound include 1,3-dibromopropane, 1,4-dibromobutane, Examples of the dihydroxy compound having a Y group in formula (1-6) include 1,5-dibromopentane and 1,6-dibromohexane, such as 4,4'-dihydroxybiphenyl, 4,4'- Dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4
  • the reaction between the above-mentioned raw material phenolic compound and epichlorohydrin can be carried out, for example, by dissolving the phenolic compound in excess epichlorohydrin, and then heating the mixture at 50 to 150°C in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide.
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide.
  • a method in which the reaction is carried out at a temperature in the range of 60 to 100°C for 1 to 10 hours is mentioned.
  • the amount of alkali metal hydroxide used is in the range of 0.8 to 2.0 mol, preferably 0.9 to 1.5 mol, per 1 mol of hydroxyl group in the phenolic compound. .
  • Epichlorohydrin is used in an excess amount relative to the hydroxyl groups in the phenolic compound, and is usually 1.5 to 15 moles per mole of hydroxyl groups in the phenolic compound. After the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to obtain the desired epoxy. Resin can be obtained.
  • a solvent such as toluene or methyl isobutyl ketone
  • the purity of the epoxy resin, especially the amount of hydrolyzable chlorine, is preferably as low as possible from the viewpoint of improving the reliability of electronic components to which it is applied. Although not particularly limited, it is preferably 1000 ppm or less, more preferably 500 ppm or less.
  • the term "hydrolyzable chlorine" used in the first embodiment of the present invention refers to a value measured by the following method. That is, after dissolving 0.5 g of the sample in 30 ml of dioxane, adding 10 ml of 1N-KOH and boiling and refluxing for 30 minutes, cooling to room temperature, further adding 100 ml of 80% acetone water, and increasing the potential with a 0.002N-AgNO 3 aqueous solution. This is the value obtained by titration.
  • curing agent used in the epoxy resin composition according to the first embodiment of the present invention all those generally known as curing agents for epoxy resins can be used, including dicyandiamide, acid anhydrides, polyhydric phenols, These include aromatic and aliphatic amines. Among these, it is preferable to use polyhydric phenols as a curing agent in fields where high electrical insulation is required, such as semiconductor sealing materials. Specific examples of the curing agent are shown below.
  • polyhydric phenols examples include bihydric phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, and naphthalene diol; , tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinylphenol, etc. There are phenols.
  • divalent phenols such as phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, naphthalenediol
  • polyhydric phenolic compounds synthesized using condensing agents such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, and p-xylylene glycol.
  • acid anhydride curing agents examples include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhimic anhydride, dodecynylsuccinic anhydride, nadic anhydride, Examples include trimellitic anhydride.
  • amine curing agent examples include aromatic amines such as 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine; Aliphatic amines include ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
  • aromatic amines such as 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine
  • Aliphatic amines include ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
  • one type or a mixture of two or more of these curing agents can be used.
  • the compounding ratio of the epoxy resin and the curing agent is preferably such that the equivalent ratio of the epoxy group to the functional group in the curing agent is in the range of 0.8 to 1.5. Outside this range, unreacted epoxy groups or functional groups in the curing agent may remain even after curing, resulting in a decrease in the reliability of the sealing function.
  • the epoxy resin composition according to the first embodiment of the present invention contains an oligomer or polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, or phenoxy resin. Other modifiers and the like may be added as appropriate. The amount added is usually in the range of 1 to 30 parts by weight based on 100 parts by weight of the total resin components.
  • the epoxy resin composition according to the first embodiment of the present invention includes an inorganic filler other than the above-mentioned layered clay minerals such as mica and talc, a pigment, a retardant agent, a thixotropy imparting agent, a coupling agent, and a fluidity agent.
  • Additives such as improvers can be added.
  • inorganic fillers include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, calcium carbonate, alumina, hydrated alumina, etc., and are used in semiconductor sealing materials.
  • the preferred amount is 70% by weight or more, more preferably 80% by weight or more.
  • the preferred blending amount is 20 to 90% by weight, more preferably 40 to 60% by weight, since fluidity is required.
  • Pigments include organic or inorganic extender pigments, scaly pigments, and the like.
  • examples of the thixotropy imparting agent include silicone-based, castor oil-based, aliphatic amide wax, oxidized polyethylene wax, organic bentonite-based, and the like.
  • a curing accelerator can be used in the epoxy resin composition according to the first embodiment of the present invention, if necessary.
  • Examples include amines, imidazoles, organic phosphines, Lewis acids, etc. Specifically, 1,8-diazabicyclo(5,4,0)undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2- Imidazoles such as heptadecylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium/t
  • the epoxy resin composition according to the first embodiment of the present invention may contain a mold release agent such as carnauba wax or OP wax, a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane, and carbon.
  • a mold release agent such as carnauba wax or OP wax
  • a coupling agent such as ⁇ -glycidoxypropyltrimethoxysilane
  • Coloring agents such as black, flame retardants such as antimony trioxide, stress reducing agents such as silicone oil, lubricants such as calcium stearate, etc. can be used.
  • the epoxy resin composition according to the first embodiment of the present invention is made into a varnish state in which an organic solvent is dissolved, and then impregnated into a fibrous material such as a glass cloth, an aramid nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, etc. By removing the solvent, it can be made into a prepreg. Further, in some cases, it can be applied to a sheet-like material such as copper foil, stainless steel foil, polyimide film, polyester film, etc. to form a laminate.
  • a cured resin product according to the first embodiment of the present invention can be obtained.
  • This cured product can be obtained by molding an epoxy resin composition by methods such as casting, compression molding, and transfer molding.
  • the temperature at this time is usually in the range of 120 to 220°C.
  • a molded article having a crystallinity of 10% or more has high thermal conductivity and is suitable for high thermal conductive applications such as heat dissipation substrates.
  • the degree of crystallinity is affected by the temperature control during molding, and if molded at a high temperature exceeding 200°C, it will become amorphous, making it difficult to obtain a molded product with an observable crystallinity, so it is necessary to heat it in stages. It is preferable. More preferably, the molding is performed by heating stepwise at a temperature in the range of 120 to 200° C. for a period of 30 seconds to 1 hour (preferably 1 minute to 30 minutes). Further, after molding, post-curing may be performed to adjust the degree of crystallinity as described above.
  • the temperature of post-cure is 130°C to 250°C, and the time is in the range of 1 hour to 24 hours, but the endothermic peak temperature measured with the differential scanning calorimeter and conditions as shown in the example is It is desirable to perform post-curing at a temperature 5°C to 40°C lower for 1 to 24 hours.
  • the degree of crystallinity of the molded product (cured product) can be determined based on the ratio of the crystallinity peak by the method described in Examples.
  • the second embodiment of the present invention relates to a vinyl resin composition using vinyl resin as the crystalline resin.
  • the vinyl resin used in the vinyl resin composition is one that is crystalline at room temperature, and has a melting point of more than 80°C and less than 200°C, as described above.
  • the melting point range is 90-200°C, more preferably 110-180°C.
  • the melting point is the endothermic peak temperature accompanying the melting of the crystal in scanning differential thermal analysis.
  • Vinyl resins with melting points higher than 200°C have strong crystallinity and tend to reduce solvent solubility and melt-kneading properties, while cured products using vinyl resins with melting points lower than 90°C do not improve thermal conductivity. Tend.
  • the vinyl resin used in the second embodiment of the present invention preferably has a vinyl equivalent weight in the range of 150 to 1000 g/eq. More preferably, it is in the range of 200 to 500 g/eq. If it is larger than this range, the reactivity tends to be low, and some components become unreacted during curing, which tends to lower heat resistance and reliability. When it is smaller than this range, solvent solubility and melt-kneading properties tend to decrease, the cured product becomes hard and brittle, and film properties tend to decrease.
  • the vinyl resin used in the second embodiment of the present invention preferably has a hydroxyl equivalent of 5000 g/eq or more, and preferably has a total chlorine amount of 2000 ppm or less.
  • the vinyl resin used in the second embodiment of the present invention can be obtained by reacting the hydroxyl group of a hydroxy resin with an aromatic vinylating agent such as chloromethylstyrene;
  • an aromatic vinylating agent such as chloromethylstyrene
  • the hydroxyl resin has many hydroxyl groups and the hydroxyl equivalent is less than 5000 g/eq, curing tends to be insufficient and thermal conductivity and heat resistance tend to decrease.
  • the hydroxyl group is a polar group, its remaining tends to inhibit the reduction of the dielectric constant and dielectric loss tangent.
  • the hydroxyl equivalent is more preferably 8,000 g/eq or more, still more preferably 10,000 g/eq or more.
  • the chlorine component comes from chloromethylstyrene and from the crosslinking agent in the raw material for producing hydroxy resin. These are difficult to remove if the vinyl resin has low solvent solubility.
  • the total amount of chlorine is more preferably 1000 ppm or less, still more preferably 800 ppm or less.
  • the vinyl resin used in the second embodiment of the present invention can be suitably obtained by reacting a hydroxy resin (hydroxy compound) with an aromatic vinylating agent.
  • a hydroxy resin hydroxy compound
  • an aromatic vinylating agent e.g., vinyl resins having structures represented by the following formulas (2-1) to (2-3) can be preferably mentioned.
  • the structures of formulas (2-1) to (2-3) below are structural skeletons that can be expected to have thermal conductivity that can suppress intramolecular and intermolecular molecular mobility, and have good solvent solubility and melt-kneading properties. It is a preferred embodiment as a resin that achieves the object of the present invention because it has good properties and can be molded into a uniform cured product and exhibits thermal conductivity.
  • ⁇ Vinyl resin of formula (2-1)> A vinyl resin represented by the above formula (2-1) can be obtained by reacting a hydroxy resin (hydroxy compound) represented by the general formula (2-4) with chloromethylstyrene. This reaction can be carried out in the same manner as the well-known vinylation reaction. R 1 to R 6 in formula (2-4) are the same as in formula (2-1).
  • R 1 to R 6 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • Alkyl groups are preferred from the viewpoint of solvent solubility, and aromatic groups are preferred from the viewpoints of heat resistance and high thermal conductivity.
  • aromatic groups are preferred from the viewpoints of heat resistance and high thermal conductivity.
  • a more preferred structure is a methyl group or a phenyl group.
  • R 1 to R 6 may be a mixture of different structures.
  • the substitution position of the vinyl benzyl ether in the vinyl resin of formula (2-1) is not particularly limited, but from the viewpoint of thermal conductivity and heat resistance, it is preferably the para position with respect to the methine group connecting the three aromatic rings. preferable. In particular, it is more preferable that all three vinyl benzyl ethers are at the para position.
  • the number average molecular weight (Mn) of the vinyl resin of formula (2-1) is preferably 2000 or less, more preferably 1500 or less. It may also contain a multibranched product represented by the following general formula (2-5).
  • the trifunctional hydroxy compound of formula (2-4) preferably has a hydroxyl equivalent of 90 to 350 g/eq, more preferably 100 to 200 g/eq.
  • the trifunctional hydroxy compound of formula (2-4) can be produced by a general method, for example, by polycondensing a monovalent phenol compound and an aromatic aldehyde.
  • Examples of monovalent phenol compounds include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, p-octylphenol, p-t-butylphenol, - Monoalkylphenols such as cyclohexylphenol, m-cyclohexylphenol, and p-cyclohexylphenol; dialkylphenols such as 2,5-xylenol, 3,5-xylenol, 3,4-xylenol, 2,4-xylenol, and 2,6-xylenol ; Trialkylphenols such as 2,3,5-trimethylphenol and 2,3,6-trimethylphenol, furthermore, 2-phenylphenol, 4-phenylphenol, 3-benzyl-1,1'-biphenyl-2-ol, Examples include hydroxybiphenyls such as 3-benzyl-1,1'-
  • aromatic aldehydes examples include 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 4-hydroxy-3-methylbenzaldehyde, 4-hydroxy-3,5-dimethylbenzaldehyde, 4-hydroxy-2,5 -dimethylbenzaldehyde, 3,5-diethyl-4-hydroxybenzaldehyde, and other hydroxybenzaldehydes. From the viewpoint of heat resistance and thermal conductivity, 4-hydroxybenzaldehyde is preferred.
  • the polycondensation of a phenol compound and an aromatic aldehyde may be carried out using an acid catalyst, such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, p-toluenesulfonic acid, zinc acetate, manganese acetate, and the like.
  • an acid catalyst such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, p-toluenesulfonic acid, zinc acetate, manganese acetate, and the like.
  • These acid catalysts can be used alone or in combination of two or more.
  • sulfuric acid and para-toluenesulfonic acid are preferable because of their excellent activity. Note that the acid catalyst may be added before or during the reaction.
  • the polycondensation of a phenol compound and an aromatic aldehyde may be performed in the presence of a solvent to obtain a polycondensate, if necessary.
  • a solvent include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6 - Polyols such as hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin; 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene Glycol ethers such as glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether,
  • the reaction temperature during polycondensation of the phenol compound and aromatic aldehyde is preferably in the range of 20 to 140°C, more preferably in the range of 80 to 110°C.
  • the charging ratio of phenol compound/aromatic aldehyde is preferably in the range of 1/0.1 to 1/0.5 in terms of molar ratio, since the phenol compound after the reaction can be easily removed by reprecipitation, etc. It is preferably in the range of 1/0.3 to 1/0.5.
  • the vinyl resin of formula (2-1) can be suitably obtained by reacting a trifunctional hydroxy compound with an aromatic vinylating agent.
  • a vinyl resin suitable for the present invention represented by the above formula (2-1) can be obtained by reacting a trifunctional hydroxy compound represented by the above formula (2-4) with chloromethylstyrene. be able to. This reaction can be carried out in the same manner as the well-known vinylation reaction.
  • the blending ratio is preferably 0.8 to 1.2 equivalents of the aromatic vinylating agent (for example, chloromethylstyrene) to 1.0 equivalents of hydroxyl groups, which are the functional groups of the trifunctional hydroxy compound.
  • the aromatic vinylating agent for example, chloromethylstyrene
  • hydroxyl groups which are the functional groups of the trifunctional hydroxy compound.
  • an excess amount of the aromatic vinylating agent may be added and removed after the reaction.
  • halomethylstyrene especially chloromethylstyrene is preferred.
  • Other examples include bromomethylstyrene, its isomers, and those with substituents.
  • substitution position of the halomethyl compound for example, in the case of halomethylstyrene, the 4-position is preferable, and the 4-position preferably accounts for 60% by weight or more of the total.
  • the reaction between the trifunctional hydroxy compound and the aromatic vinylating agent can be carried out without a solvent or in the presence of a solvent.
  • the reaction can be carried out by adding an aromatic vinylating agent to the hydroxy compound, adding a metal hydroxide to carry out the reaction, and removing the generated metal salt by a method such as filtration or washing with water.
  • the solvent include, but are not limited to, methyl ethyl ketone, benzene, toluene, xylene, methyl isobutyl ketone, diethylene glycol dimethyl ether, cyclopentanone, and cyclohexanone. From the viewpoint of reactivity, methyl ethyl ketone is preferred.
  • Specific examples of metal hydroxide include sodium hydroxide, potassium hydroxide, etc., but are not limited thereto.
  • the temperature of the vinylation reaction is preferably 90°C or lower, more preferably 70°C or lower. If the temperature is higher than this, heat-induced self-polymerization of the vinylbenzyl ether group may proceed, making it difficult to control the reaction.
  • polymerization inhibitors such as quinones, nitro compounds, nitrophenols, nitroso, nitrone compounds, and oxygen may be used.
  • the end point of the reaction can be determined by tracking the remaining amount of halomethylstyrene as an aromatic vinylating agent using various chromatograms such as GPC, and the reaction rate can be determined depending on the type and amount of metal hydroxide, addition rate, solid It can be adjusted by adjusting the concentration etc.
  • vinyl resin of formula (2-2), vinyl resin of formula (2-3) As the vinyl resin used in the second embodiment of the present invention, in addition to the vinyl resin represented by formula (2-1), those represented by formulas (2-2) and (2-3) are also suitable. These vinyl resins may be used in combination, and it is preferable that the vinyl resins represented by formulas (2-1) to (2-3) contain 50 wt% or more of the entire resin component. More preferably, it is 70 wt% or more. If the proportion used is less than this, the effect of improving heat resistance, thermal conductivity, etc. in a cured product may be small.
  • n is the number of repetitions (number average) and represents a number from 0 to 20. Usually, it is a mixture of components having different repeating number (n) values, and the average value (number average) of n is preferably in the range of 0.1 to 15, more preferably in the range of 0.5 to 10.
  • A independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms
  • X independently represents a benzene ring.
  • A is preferably a single bond
  • X is preferably a biphenyl ring. It is desirable that the substitution positions of the two vinylbenzyl ether groups bonded to the biphenyl structure having A include at least a 2,2' form.
  • the substitution positions of the two bonded vinylbenzyl ether groups are the 4,4' position and the 2,2' position. is preferable, and the ratio of biphenyl at both terminals is preferably 40 to 90 mol% of the total at the 2,2' position.
  • A is other than a single bond, that is, when both ends of the vinyl resin are other than biphenyl rings, for example, a diphenylmethane structure
  • the substitution positions of the two bonded vinyl benzyl ether groups are such that the 4,4' position is 30 to 100 mol%. preferable.
  • the vinyl resin of formula (2-2) is preferably a polyfunctional vinyl resin represented by formula (2-6) below.
  • e and f in formula (2-6) are the number of repetitions (number average) and represent a number from 0 to 20. Preferably, it is a mixture of components having different values of e and f.
  • the ratio (molar ratio) of e/(e+f) is preferably 0.50 to 0.95, more preferably 0.70 to 0.95. When it is less than 0.50, the effect of heat resistance and high thermal conductivity tends to be small, and when it is more than 0.95, crystallinity tends to become strong and solvent solubility tends to decrease.
  • the average value of e is preferably 0.1 to 10, more preferably 0.5 to 5.
  • the average value of f is preferably 0.1 to 5, more preferably 0.1 to 2.
  • A it is the same as the above-mentioned formula (2-2).
  • the polyfunctional vinyl resin represented by the above formula (2-6) can be produced by reacting the polyhydric hydroxy resin represented by the formula (2-7) with chloromethylstyrene.
  • the ratios of A, e, f, and e/(e+f) are the same as in the polyfunctional vinyl resin of formula (2-6) above.
  • the polyhydric hydroxy resin represented by formula (2-6) preferably has a hydroxyl equivalent of 100 to 350 g/eq. When these hydroxyl groups are partially or completely vinylated, a polyfunctional vinyl resin represented by formula (2-6) is obtained.
  • This polyhydric hydroxy resin of formula (2-7) is not limited, but for example, as shown in formula (2-11) below, 4,4'-dihydroxybiphenyl represented by formula (2-8) and formula ( It can be produced by reacting with an aromatic crosslinking agent having a biphenyl structure represented by formula (2-9) and then reacting with a bifunctional phenol compound represented by formula (2-10).
  • Z in formula (2-9) represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms.
  • A represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms.
  • the molar ratio of the synthesis raw materials 4,4'-dihydroxybiphenyl represented by formula (2-8) and the bifunctional phenol compound represented by formula (2-10) is 4,4'-dihydroxy Biphenyl is preferably 0.50 to 0.95, more preferably 0.70 to 0.95. If the ratio of 4,4'-dihydroxybiphenyl is less than this range, heat resistance and high thermal conductivity tend to be insufficient, and if it is higher, the solvent solubility tends to decrease due to strong crystallinity.
  • the difunctional phenol compound of formula (2-10) includes 2,2'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxy diphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, dihydroxydiphenylmethanes, 2,2-bis(4-hydroxyphenyl)propane, and especially 2,2'-dihydroxybiphenyl, 4,4 from the viewpoint of solvent solubility.
  • '-dihydroxydiphenyl ether and dihydroxydiphenylmethane are preferred.
  • the dihydroxydiphenylmethane may be a mixture of ortho, meta, and para, but preferably has an isomer ratio of 4,4'-dihydroxydiphenylmethane of 40% or less. If there is a large amount of 4,4'-dihydroxydiphenylmethane, the crystallinity will be strong and there is a concern that the solvent solubility will decrease.
  • Z represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms.
  • Specific examples of the aromatic crosslinking agent include 4,4'-bishydroxymethylbiphenyl, 4,4'-bischloromethylbiphenyl, 4,4'-bisbromomethylbiphenyl, and 4,4'-bismethoxymethylbiphenyl. , 4,4'-bisethoxymethylbiphenyl.
  • 4,4'-bishydroxymethylbiphenyl or 4,4'-bischloromethylbiphenyl is preferable, and from the viewpoint of reducing ionic impurities, 4,4'-bishydroxymethylbiphenyl, Or 4,4'-bismethoxymethylbiphenyl is preferred.
  • the molar ratio when reacting a phenol and an aromatic crosslinking agent as shown in formula (2-11) is generally 0.2 to 0.00% of the aromatic crosslinking agent per mole of the phenol.
  • the amount is in the range of 7 mol, more preferably in the range of 0.4 to 0.7 mol.
  • the amount is more than 0.7 mol, the amount of high molecular weight components increases, and stable production may become difficult.
  • the reaction between the phenols and the aromatic crosslinking agent can be carried out without a catalyst or in the presence of an acid catalyst such as an inorganic acid or an organic acid.
  • an acid catalyst such as an inorganic acid or an organic acid.
  • the reaction can be carried out without a catalyst, but in general, it is necessary to suppress side reactions such as the formation of ether bonds due to the reaction of chloromethyl groups and hydroxyl groups. It is preferable to carry out the reaction in the presence of an acidic catalyst.
  • This acidic catalyst can be appropriately selected from well-known inorganic acids and organic acids, such as mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, and metasulfonic acid.
  • mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid
  • formic acid oxalic acid
  • trifluoroacetic acid trifluoroacetic acid
  • p-toluenesulfonic acid p-toluenesulfonic acid
  • metasulfonic acid metasulfonic acid.
  • organic acids such as acids, trifluorometasulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
  • This reaction is usually carried out at 100 to 250°C for 1 to 20 hours.
  • the temperature is preferably 100 to 180°C, more preferably 140 to 180°C. If the reaction temperature is low, the reactivity is poor and it takes time, and if the reaction temperature is high, there is a risk of decomposition of the resin.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, aromatic compounds such as benzene, toluene, chlorobenzene, dichlorobenzene, etc.
  • ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, etc. are particularly preferred.
  • the solvent may be removed from the obtained polyhydric hydroxy resin by distillation under reduced pressure, washing with water, reprecipitation in a poor solvent, etc., but the resin may be used as a raw material for the vinylation reaction with the solvent remaining. May be used.
  • the vinyl resin of formula (2-2), preferably the polyfunctional vinyl resin represented by formula (2-6), can be suitably obtained by reacting a polyhydric hydroxy resin with an aromatic vinylizing agent.
  • a polyfunctional vinyl resin represented by the above formula (2-6) can be obtained by reacting a polyhydric hydroxy resin represented by the above formula (2-7) with chloromethylstyrene. This reaction can be carried out in the same manner as the well-known vinylation reaction. Note that the blending ratio, type of aromatic vinylating agent, reaction conditions, confirmation of the reaction end point, etc. can be the same as in the case of obtaining the vinyl resin of formula (2-1) above.
  • Y independently represents a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C (CH 3 ) 2 - is shown.
  • B independently represents a benzonitrile structure or -(CH 2 ) q -, and preferably contains a benzonitrile structure in at least one molecule. More preferably, at least one molecule has both a benzonitrile structure and a -(CH 2 ) q - structure.
  • q represents a number from 3 to 10.
  • Y is preferably a biphenyl structure that is a direct bond, -SO 2 -, -CO-, -COO-, or -CONH-, and more preferably a biphenyl structure that is a direct bond, among which 4, A biphenyl structure at the 4' position is particularly preferred.
  • oxygen atoms, sulfur atoms, -CH 2 -, and -C(CH 3 ) 2 - are preferred.
  • the vinyl resin of formula (2-3) can be made into a mixture with each Y having a different structure, as shown in "independently", and the high thermal conductivity, moldability, and solvent solubility can be adjusted. is possible.
  • p is the number of repetitions and represents a number from 0 to 15. Preferably, the number is 1 to 15. Preferably, it is a mixture of components having different values of p.
  • the p value (average value) is preferably 1.0 to 3.0, more preferably 1.5 to 2.5.
  • those with p greater than 15 have low reactivity, and if unreacted components are produced during curing, heat resistance tends to decrease.
  • B represents a benzonitrile structure or an alkyl structure represented by -(CH 2 ) q -.
  • at least one molecule contains a benzonitrile structure, and more preferably at least one molecule contains both a benzonitrile structure and an alkyl structure represented by -(CH 2 ) q -.
  • the vinyl resin of formula (2-3) can be a mixture of B with different structures, and has high thermal conductivity, moldability, and solvent solubility. It is possible to adjust.
  • B preferably contains a benzonitrile structure in an amount of 50 mol% or more, more preferably 70 mol% or more.
  • the ratio of the benzonitrile structure to the alkyl structure is preferably less than 50 mol%, more preferably 10 mol% to 40 mol%, based on the mass of the raw material compound.
  • the alkyl structure is more than 50 mol %, the thermal conductivity and heat resistance of the cured product tend to decrease, and when it does not contain an alkyl structure, the crystallinity tends to become strong and the solvent solubility tends to decrease.
  • q is the repeating number and represents a number from 3 to 10. More preferably, the number is 4 to 8. If it is smaller than 3, flexibility tends to be low and the effect of relaxing crystallinity tends to be low. When it is larger than 10, the thermal conductivity and heat resistance of the cured product tend to decrease significantly.
  • a vinyl resin represented by the following formula (2-12) can be preferably exemplified. (However, g and h each independently represent a number from 1 to 15, and q represents a number from 3 to 10.)
  • the vinyl resin of formula (2-3) can be suitably obtained by reacting a hydroxy resin with an aromatic vinylating agent.
  • the vinyl resin of the present invention represented by the above formula (2-3) can be obtained by reacting a hydroxy resin represented by the general formula (2-13) with chloromethylstyrene. This reaction can be carried out in the same manner as the well-known vinylation reaction. Note that the blending ratio, type of aromatic vinylating agent, reaction conditions, confirmation of the reaction end point, etc. can be the same as in the case of obtaining the vinyl resin of formula (2-1) above.
  • Y independently represents a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 -
  • B independently represents a benzonitrile structure or -(CH 2 ) q -, and preferably at least one contains a benzonitrile structure. More preferably, at least one molecule contains a benzonitrile structure and -( (CH 2 ) q includes both structures of the alkyl structure represented by -. p and q each independently represent a number from 0 to 15, and q represents a number from 3 to 10.
  • the number average molecular weight (Mn) is preferably 350 to 800, more preferably 450 to 600.
  • p has the same meaning as p in the vinyl resin of formula (2-3), is the repeating number, and represents a number from 0 to 15.
  • the number is 1 to 15.
  • it is a mixture of components having different values of p.
  • the p value (average value) is preferably 1.0 to 3.0, more preferably 1.5 to 2.5.
  • the hydroxy resin (phenolic compound) represented by formula (2-13) is not limited in its production method as long as it has a predetermined structure, but it can be produced by combining either or both of a benzonitrile compound and a dihalogen alkyl compound with a Y group. It can be suitably obtained by reacting a dihydroxy compound having the following in the presence of a basic catalyst.
  • examples of the benzonitrile compound include 2,4-dichlorobenzonitrile, 2,5-dichlorobenzonitrile, 2,6-dichlorobenzonitrile, 3,5-dichlorobenzonitrile, and 2,4-dibromobenzonitrile.
  • dihalogen alkyl compound examples include 1,3-dibromopropane, 1,4-dibromobutane.
  • dihydroxy compounds having a Y group examples include 4,4'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4' -dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, bisphenol A, bisphenol F, and the like.
  • a hydroxy resin for more detailed specific conditions, refer to, for example, WO2021/201046.
  • the vinyl resin used in the second embodiment of the present invention can be cured alone, a vinyl resin composition containing various other additives in addition to the above-mentioned layered clay minerals such as talc and mica may be used. It is also suitable to use it as As one of the other additives, in particular, a radical polymerization initiator such as an azo compound or an organic peroxide can be added to accelerate curing.
  • the radical polymerization initiator may be blended in an amount of, for example, 0.01 to 10 parts by weight per 100 parts by weight of the vinyl resin.
  • the vinyl resin composition according to the second embodiment of the present invention has a vinyl resin and a layered clay mineral as an additive as essential components, but other vinyl compounds and other thermosetting resins can be blended, Examples include epoxy resin, oxetane resin, maleimide resin, acrylate resin, polyester resin, polyurethane resin, polyphenylene ether resin, and benzoxazine resin.
  • inorganic fillers other than the above-mentioned layered clay minerals, such as glass cloth, carbon fiber, alumina, and boron nitride, may be blended.
  • the higher the thermal conductivity of the inorganic filler the more preferable it is.
  • it is 20 W/m ⁇ K or more, more preferably 30 W/m ⁇ K or more, and still more preferably 50 W/m ⁇ K or more.
  • the average thermal conductivity of the inorganic filler as a whole increases in the order of 20 W/m ⁇ K or more, 30 W/m ⁇ K or more, and 50 W/m ⁇ K or more.
  • inorganic fillers having such thermal conductivity include inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, and magnesium oxide. It will be done.
  • the content of the inorganic filler in the vinyl resin composition according to the second embodiment of the present invention is preferably 70% by weight or more, more preferably 80% by weight or more when used in a semiconductor encapsulant. be.
  • the preferred blending amount is 20 to 90% by weight, more preferably 40 to 60% by weight, since fluidity is required.
  • additives include, for example, silane coupling agents, antifoaming agents, internal mold release agents, and flow control agents. Additionally, various known additives such as colorants, flame retardants, thixotropy imparting agents, etc. can be used within the scope of the present invention.
  • the vinyl resin composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexanone, and used as a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper. It is also possible to obtain a cured product by hot press molding a prepreg obtained by impregnating a material and drying it by heating.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexanone
  • a laminate can be obtained by applying the vinyl resin composition according to the second embodiment of the present invention on a sheet-like material such as copper foil, stainless steel foil, polyimide film, polyester film, etc.
  • a cured product can also be obtained by hot press molding a resin sheet obtained by heating and drying.
  • the vinyl resin composition according to the second embodiment of the present invention is suitable for providing a cured product with high thermal conductivity, that is, providing a cured product for high thermal conductivity.
  • the thermal conductivity is preferably 8 W/m ⁇ K or more, and 10 W/m ⁇ K or more. is more preferable.
  • the inorganic filler is not contained, it is preferably 0.25 W/m ⁇ K or more, more preferably 0.30 W/m ⁇ K or more.
  • Synthesis Example 1-1 (Production of epoxy resin A) 100.0 g of 4,4'-dihydroxydiphenyl ether was dissolved in 460 g of epichlorohydrin and 70 g of diethylene glycol dimethyl ether, and 90.8 g of a 48% aqueous sodium hydroxide solution was added dropwise at 60° C. and under reduced pressure (approximately 130 Torr) over 3 hours. During this time, the produced water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system.
  • Synthesis Example 1-2 (Production of epoxy resin B) 50.0 g of hydroquinone and 100.0 g of 4,4'-dihydroxybiphenyl were dissolved in 1000 g of epichlorohydrin and 150 g of diethylene glycol dimethyl ether, and 16.5 g of 48% sodium hydroxide was added at 60° C. and stirred for 1 hour. Thereafter, 148.8 g of a 48% aqueous sodium hydroxide solution was added dropwise under reduced pressure (approximately 130 Torr) over 3 hours. During this time, the produced water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system.
  • the epoxy equivalent was 139, the hydrolyzable chlorine was 320 ppm, the melting point was 125°C, and the viscosity at 150°C was 3.4 mPa ⁇ s.
  • Synthesis Example 1-3 (Production of epoxy resin C) After dissolving 115.7 g of 4,4'-dihydroxybiphenyl in 700 g of NMP in a 2 L 4-neck separable flask, 56.7 g of potassium carbonate was added, and the temperature was raised to 120° C. with stirring under a nitrogen stream. Thereafter, 35.6 g of 2,6-dichlorobenzonitrile was added, the temperature was raised to 145°C, and the mixture was reacted for 6 hours. After neutralizing the reaction solution by adding 49.2 g of acetic acid, NMP was distilled off under reduced pressure. After adding 500 mL of MIBK to the reaction solution and dissolving the product, the formed salt was removed by washing with water.
  • Synthesis Example 1-4 (Production of epoxy resin D) 77.5 g of 4,4'-dihydroxybiphenyl, 119.3 g of diethylene glycol dimethyl ether, and 41.8 g of 4,4'-bischloromethylbiphenyl were placed in a 1,000 ml four-necked flask, and the mixture was heated at 160°C under a nitrogen stream with stirring. The temperature was raised to 100 mL, and the reaction was carried out for 20 hours to produce a polyhydric hydroxy resin with an OH equivalent of 135 g/eq.
  • epoxy resin D epoxy resin
  • This epoxy resin D had an epoxy equivalent of 200 g/eq, a softening point of 125°C, a melting point of 120°C, a melt viscosity of 0.21 Pa ⁇ s, and a hydrolyzable chlorine content of 230 ppm.
  • Examples 1-1 to 1-9, Comparative Examples 1-1 to 1-5 The epoxy resins used include the epoxy resin obtained in Synthesis Example 1-1 (Epoxy Resin A), the epoxy resin obtained in Synthesis Example 1-2 (Epoxy Resin B), and the epoxy resin obtained in Synthesis Example 1-3 (Epoxy Resin C). ), the epoxy resin obtained in Synthesis Example 1-4 (epoxy resin D) was used.
  • a curing agent 4,4'-dihydroxydiphenyl ether (curing agent A, OH equivalent 101 g/eq.), phenol novolac (curing agent B: manufactured by Aica Kogyo, BRG-557, OH equivalent 105 g/eq., softening triphenylphosphine as a curing accelerator, spherical alumina (manufactured by Denka, DAW-10, average particle size 12.2 ⁇ m) as an inorganic filler, and talc (additive A) as an additive.
  • Crystallinity [Crystalline peak area / (Crystalline peak area + Amorphous peak area)] * 100
  • the epoxy resin compositions obtained in Examples have excellent thermal conductivity and are therefore suitable for power devices and automotive applications.
  • the epoxy resin composition according to the comparative example that does not contain the predetermined layered clay mineral no crystalline peak was obtained but an amorphous peak, so the crystallinity was 0% in both cases. Ta.
  • the epoxy resin composition exemplified in the first embodiment can produce cured molded products with excellent moldability, reliability, high thermal conductivity, low water absorption, low thermal expansion, high heat resistance, and flame retardancy. It is suitably applied as an insulating material for electrical and electronic materials such as semiconductor encapsulation, laminates, and heat dissipation substrates, and exhibits excellent heat dissipation, high heat resistance, flame retardancy, and high dimensional stability. The reason why such a specific effect occurs is presumed to be that the layered clay mineral enhances the orientation of a specific cured epoxy resin having a rigid structure such as a biphenyl structure.
  • GPC measurement A main unit (HLC-8220GPC, manufactured by Tosoh Corporation) equipped with columns (4 TSKgel SuperMultipore HZ-N, manufactured by Tosoh Corporation) in series was used, and the column temperature was set at 40°C. Further, tetrahydrofuran (THF) was used as the eluent at a flow rate of 0.35 mL/min, and a differential refractive index detector was used as the detector. As a measurement sample, 0.1 g of the sample was dissolved in 10 mL of THF, and 50 ⁇ L of the solution was filtered with a microfilter. For data processing, GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation was used.
  • THF tetrahydrofuran
  • Tg Glass transition point (Tg) Tg was determined using a thermomechanical measuring device (EXSTAR TMA/7100, manufactured by Hitachi High-Tech Science Co., Ltd.) at a temperature increase rate of 10° C./min.
  • Td5 5% weight loss temperature (Td5), residual carbon percentage
  • EXSTAR TG/DTA7300 manufactured by Hitachi High-Tech Science
  • the 5% weight loss temperature (Td5) was measured.
  • the weight loss at 700°C was measured and calculated as the residual carbon percentage.
  • Thermal conductivity was measured by an unsteady hot wire method using a NETZSCH model LFA447 thermal conductivity meter.
  • Dielectric constant and dielectric loss tangent Measured according to JIS C 2138 standard. The measurement frequency is shown as a value of 1 GHz.
  • Electrodesorption ionization mass spectrometry (FD-MS) Measurement was performed using a mass spectrometer JMS-T100GCV (manufactured by JEOL Ltd.). The sample was dissolved in acetone and subjected to measurement.
  • the trifunctional hydroxy compound is a compound in formula (2-4) in which R 1 to R 4 are all methyl groups and R 5 and R 6 are hydrogen atoms.
  • 59.0 g (0.17 mol) of the obtained trifunctional hydroxy compound, 400 g of methyl ethyl ketone, and 91.6 g (0.60 mol) of chloromethylstyrene (Structural Formula 2-16 below) were placed in a 1000 ml four-necked flask.
  • vinyl resin A vinyl resin A
  • the basic structure of vinyl resin A is that in formula (2-1), R 1 to R 4 are all methyl groups, R 5 and R 6 are hydrogen, the vinyl equivalent is 225 g/eq, and the hydroxyl equivalent is 12000 g/eq. eq, total chlorine was 600 ppm, melting point was 130° C., and Mn was 780.
  • a GPC chart of the obtained vinyl resin A is shown in FIG.
  • Vinyl resin B had a vinyl equivalent of 275 g/eq, a hydroxyl equivalent of 15000 g/eq, a total chlorine content of 300 ppm, an Mn of 1330, and a melting point of 145°C.
  • the basic structure of the polyvalent hydroxy resin and vinyl resin B is that in formulas (2-6) and (2-7), A is a -CH 2 - group, and the ratio (molar ratio) of e/(e+f) is 0. .93, e is 4.2, and f is 0.3.
  • a GPC chart of the obtained vinyl resin B is shown in FIG.
  • 74.3 g (0.33 mol) of the obtained hydroxy resin, 400 g of methyl ethyl ketone, and 61.0 g (0.40 mol) of chloromethylstyrene were added to a 1000 ml four-necked flask, and the temperature was raised to 60°C. 22.4 g (0.40 mol) of potassium hydroxide dissolved in 70 g was added dropwise over 3 hours, and the reaction was further continued for 6 hours.
  • vinyl resin C had a vinyl equivalent of 341 g/eq, a hydroxyl equivalent of 10,000 g/eq, a total chlorine content of 900 ppm, an Mn of 710, and a melting point of 174°C.
  • the basic structure of vinyl resin C is formula (2-12) and formula (2-3), where q is 5, g is 1 to 3, h is 1 to 3, and the p value (average value) is 1.8. Met.
  • the GPC chart of the obtained vinyl resin C is shown in FIG. 5, and the FD-MS spectrum is shown in FIG.
  • vinyl resin D was dissolved in toluene, neutralized, and washed with water to obtain a vinyl resin (vinyl resin D).
  • the vinyl equivalent of the obtained vinyl resin D was 256 g/eq
  • the hydroxyl equivalent was 1500 g/eq
  • the total chlorine was 1270 ppm
  • the Mn was 1100
  • the melting point was 210°C.
  • the reason why vinyl resin D has a relatively high melting point is inferred as follows. That is, since dihydroxydiphenylmethane is not used as a raw material, the melting point of the resulting hydroxy resin is lower than that in Synthesis Example 2-2 due to the higher biphenyl component content and the suppression of molecular movement by the biphenyl structure.
  • Vinyl resin E had a vinyl equivalent of 217 g/eq, a hydroxyl equivalent of 17,000 g/eq, a total chlorine content of 400 ppm, an Mn of 440, and a melting point of 80°C. The reason why the melting point of vinyl resin E is relatively low is inferred as follows.
  • Examples 2-1 to 2-5, Comparative Examples 2-1 to 2-4 Vinyl resins A to E obtained in Synthesis Examples 2-1 to 2-5 were used as vinyl resins, and talc (Additive A, average particle size 10 to 15 ⁇ m, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used as an additive to accelerate curing.
  • Perbutyl P manufactured by NOF Corporation
  • ADEKA STAB AO-60 manufactured by ADEKA CORPORATION
  • spherical alumina manufactured by DENKA, DAW-10, average particle
  • spherical silica (FB-8S, manufactured by Denka) was mixed in the proportions shown in Table 1 and dissolved in a solvent to form a uniform composition.
  • This composition was applied to a PET film and dried at 130°C for 5 minutes to obtain a resin composition (resin sheet).
  • the composition taken out from the PET film was sandwiched between mirror plates and cured under reduced pressure at 130° C. for 15 minutes and at 210° C. for 80 minutes while applying a pressure of 2 MPa.
  • Table 2 shows the properties of the obtained cured product.
  • the cured product made of the vinyl resin composition of the example exhibited excellent physical properties such as higher thermal conductivity, lower dielectric constant, and lower dielectric loss tangent compared to the comparative example.
  • the vinyl resin composition exemplified in the second embodiment has excellent solvent solubility and is suitable for vinyl resin compositions and cured products thereof used in applications such as lamination, molding, casting, and adhesion.
  • This cured product has excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric loss tangent, and flame retardancy, so it can be used as a material for encapsulating electrical and electronic components, and for circuit boards. It is suitable for The vinyl resin composition and cured product according to the second embodiment of the present invention are useful as electronic materials for high-speed communication equipment as materials that easily dissipate heat from electronic components and wiring and cause little signal loss.

Abstract

The present invention provides: a cured molded product having excellent moldability and reliability, and having high thermal conductivity, low water absorption, low thermal expansion, high heat resistance, and flame retardancy; in addition, a resin composition having excellent solvent solubility, and being used for laminating, molding, casting, adhesion, etc.; and a cured product thereof. The cured product has excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric loss tangent, and flame retardancy. This resin composition comprises at least a crystalline resin and an additive, the resin composition being characterized in that the additive is a layered clay mineral and contains 1-20 parts by weight of the layered clay mineral with respect to 100 parts by weight of the resin component, wherein the melting point of the crystalline resin has 80 °C-200 °C (exclusive of 80 °C). Also provided is a cured product of the resin composition.

Description

樹脂組成物及び硬化物Resin composition and cured product
 本発明は、信頼性に優れた半導体封止、積層板、放熱基板等の電気・電子材料用絶縁材料として有用な樹脂組成物及びそれを用いた硬化物に関する。 The present invention relates to a resin composition useful as an insulating material for electrical and electronic materials such as semiconductor encapsulation, laminates, and heat dissipating substrates with excellent reliability, and a cured product using the same.
 従来、ダイオード、トランジスタ、集積回路等の電気、電子部品や、半導体装置等の封止方法として、例えばエポキシ樹脂やシリコン樹脂等による封止方法やガラス、金属、セラミック等を用いたハーメチックシール法が採用されていたが、近年では信頼性の向上と共に大量生産が可能で、コストメリットのあるトランスファー成形による樹脂封止が主流を占めている。 Conventionally, as methods for sealing electrical and electronic components such as diodes, transistors, and integrated circuits, as well as semiconductor devices, there have been methods for sealing with epoxy resins, silicone resins, etc., and hermetic sealing methods using glass, metals, ceramics, etc. However, in recent years, resin encapsulation using transfer molding has become mainstream, as it has improved reliability, can be mass-produced, and has cost advantages.
 トランスファー成形による樹脂封止に用いられる樹脂組成物においては、エポキシ樹脂と、硬化剤としてフェノール樹脂を主成分とする樹脂組成物からなる封止材料が一般的に使用されている。 In the resin composition used for resin sealing by transfer molding, a sealing material consisting of an epoxy resin and a resin composition whose main components are a phenol resin as a curing agent is generally used.
 パワーデバイスなどの素子を保護する目的で使用されるエポキシ樹脂組成物は、素子が放出する多量の熱に対応するため、結晶シリカなどの無機充填材を高密度に充填している。 Epoxy resin compositions used to protect elements such as power devices are densely packed with inorganic fillers such as crystalline silica to cope with the large amount of heat emitted by the elements.
 パワーデバイスには、ICの技術を組み込んだワンチップで構成されるものやモジュール化されたものなどがあり、封止材料に対する熱放散性、耐熱性、熱膨張性の更なる向上が望まれている。 Power devices include those that are composed of a single chip incorporating IC technology and those that are modularized, and further improvements in heat dissipation, heat resistance, and thermal expansion properties of sealing materials are desired. There is.
 また、通信機器に用いられるプリント基板、封止材、注型材などは通信速度、通信量の増大にともない信号伝送速度の向上のため高速通信技術が盛んに研究されている。このような用途における電子材料には誘電損失を低減できる材料が求められており、プリント基板用途では加えて多層化が可能な硬化性樹脂が求められている。 In addition, high-speed communication technology is being actively researched to improve the signal transmission speed of printed circuit boards, encapsulants, casting materials, etc. used in communication equipment as the communication speed and amount of communication increases. For electronic materials used in such applications, materials that can reduce dielectric loss are required, and for printed circuit board applications, curable resins that can be multilayered are also required.
 一方で、このような情報量の多いデータを処理する電子演算部品からの発熱は多く、熱蓄積によって電子演算部品の処理速度低下など不具合が発生する為、プリント基板ではヒートシンク等により適宜冷却する技術として銅コイン、銅インレイ等の伝熱部材を組み込む方法や(特許文献1)、配合するフィラーの形状を特殊なものにする(特許文献2)など様々な工夫が知られている。しかし、このような方法は重量の増加や機器の大型化につながり好ましくなかった。 On the other hand, electronic processing components that process such large amounts of data generate a lot of heat, and heat accumulation can cause problems such as a slowdown in the processing speed of electronic processing components, so technology has been developed to appropriately cool printed circuit boards using heat sinks, etc. Various methods are known, such as a method of incorporating a heat transfer member such as a copper coin or a copper inlay (Patent Document 1), and a method of using a special shape of the filler to be mixed (Patent Document 2). However, such a method was undesirable because it led to an increase in weight and an increase in the size of the equipment.
 また、封止材組成物では熱伝導率を高める方法として各種フィラーの種類と量を検討することで電子演算部品からの熱を除熱する方法がとられており、例えば、熱伝導率の大きい結晶シリカ、窒化珪素、窒化アルミニウム、球状アルミナ粉末等の無機充填材を含有させるなどの試みがなされている(特許文献3、4)。ところが、無機充填材の含有率を上げていくと成形時の粘度上昇とともに流動性が低下し、成形性が損なわれるという問題が生じる。従って、単に無機充填材の含有率を高める方法には限界があった。 In addition, in order to increase the thermal conductivity of encapsulant compositions, a method is used to remove heat from electronic processing components by considering the type and amount of various fillers. Attempts have been made to include inorganic fillers such as crystalline silica, silicon nitride, aluminum nitride, and spherical alumina powder (Patent Documents 3 and 4). However, when the content of the inorganic filler is increased, the viscosity during molding increases and the fluidity decreases, causing a problem that moldability is impaired. Therefore, there are limits to the method of simply increasing the content of inorganic fillers.
 上記背景から、マトリックス樹脂自体の高熱伝導率化によって組成物の熱伝導率を向上する方法も検討されている。例えば、剛直なメソゲン基を有する液晶性のエポキシ樹脂およびそれを用いたエポキシ樹脂組成物が提案されている(特許文献5、6)。しかし、これらのエポキシ樹脂組成物に用いる硬化剤としては、芳香族ジアミン化合物を用いており、無機充填材の高充填率化に限界があるとともに、電気絶縁性の点でも問題があった。また、芳香族ジアミン化合物を用いた場合、硬化物の液晶性は確認できるものの、硬化物の結晶化度は低く、高熱伝導性、低熱膨張性、低吸湿性等の点で十分ではなかった。さらには液晶性発現のために、強力な磁場をかけて分子を配向させる必要があり、工業的に広く利用するためには設備的にも大きな制約があった。また、無機充填材との配合系では、マトリックス樹脂の熱伝導率に比べて無機充填材の熱伝導率が圧倒的に大きく、マトリックス樹脂自体の熱伝導率を高くしても、複合材料としての熱伝導率向上には大きく寄与しないという現実があり、既存の樹脂では十分な熱伝導率向上効果は得られていなかった。 Based on the above background, methods of improving the thermal conductivity of the composition by increasing the thermal conductivity of the matrix resin itself are also being considered. For example, liquid crystalline epoxy resins having rigid mesogenic groups and epoxy resin compositions using the same have been proposed (Patent Documents 5 and 6). However, as the curing agent used in these epoxy resin compositions, aromatic diamine compounds are used, and there is a limit to increasing the filling rate of the inorganic filler, and there are also problems in terms of electrical insulation. Furthermore, when an aromatic diamine compound was used, although the liquid crystallinity of the cured product could be confirmed, the degree of crystallinity of the cured product was low, and it was not sufficient in terms of high thermal conductivity, low thermal expansion, low hygroscopicity, etc. Furthermore, in order to exhibit liquid crystallinity, it was necessary to apply a strong magnetic field to orient the molecules, and there were major restrictions in terms of equipment for widespread industrial use. In addition, in a compound system with an inorganic filler, the thermal conductivity of the inorganic filler is overwhelmingly higher than that of the matrix resin, and even if the thermal conductivity of the matrix resin itself is high, the thermal conductivity of the inorganic filler is overwhelmingly higher than that of the matrix resin. The reality is that they do not significantly contribute to improving thermal conductivity, and existing resins have not been able to sufficiently improve thermal conductivity.
 タルク等の層状粘土鉱物は、一般的に流動性向上や線膨張係数の低減を目的に使用される。層状粘土鉱物を熱伝導率の大きい無機充填材と組み合わせた配合は提案されているが、無機物どうしの接触による高熱伝導化であり、マトリックス樹脂自体に作用するものではない(特許文献7)。 Layered clay minerals such as talc are generally used to improve fluidity and reduce the coefficient of linear expansion. A formulation in which layered clay minerals are combined with an inorganic filler having high thermal conductivity has been proposed, but the high thermal conductivity is achieved by contact between the inorganic substances and does not act on the matrix resin itself (Patent Document 7).
 特許文献8には、高熱伝導性と低誘電正接を両立する多官能ビニル樹脂として、ビフェニル骨格を有する4官能以上のビニル樹脂が開示されているが、その多官能ビニル樹脂およびその原料となる多価ヒドロキシ樹脂の溶剤溶解性について記載されておらず、残存する極性基等の不純物が熱伝導率に及ぼす影響については触れられていない。 Patent Document 8 discloses a tetrafunctional or higher functional vinyl resin having a biphenyl skeleton as a polyfunctional vinyl resin that has both high thermal conductivity and low dielectric loss tangent. There is no mention of the solvent solubility of the hydroxyl resin, and no mention is made of the influence of impurities such as remaining polar groups on thermal conductivity.
特開2009-170493号公報Japanese Patent Application Publication No. 2009-170493 国際公開WO2013/100172号International publication WO2013/100172 特開平11-147936号公報Japanese Patent Application Publication No. 11-147936 特開2002-309067号公報Japanese Patent Application Publication No. 2002-309067 特開平11-323162号公報Japanese Patent Application Publication No. 11-323162 特開平9-118673号公報Japanese Patent Application Publication No. 9-118673 国際公開WO2013/100174号International publication WO2013/100174 国際公開WO2021/200414号International Publication WO2021/200414
 従って、本発明の目的は、上記問題を解消し得る樹脂組成物及びその硬化物を提供することである。
 例えば、後述の第1の実施形態に係るエポキシ樹脂組成物は、成型性、信頼性に優れ、高熱伝導性、低熱膨張性、耐熱性、耐湿性、さらには難燃性に優れた成形物を与え、更にXRDにて結晶性が観察可能な成形物が提供される。
 また、例えば、後述の第2の実施形態に係るビニル樹脂組成物に関しては、溶剤溶解性、成型性に優れ、耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性に優れた硬化物を与える電気・電子部品類の封止、回路基板材料等に有用なビニル樹脂組成物及びその硬化物が提供される。
Therefore, an object of the present invention is to provide a resin composition and a cured product thereof that can solve the above problems.
For example, the epoxy resin composition according to the first embodiment described below can produce molded products that have excellent moldability, reliability, high thermal conductivity, low thermal expansion, heat resistance, moisture resistance, and flame retardancy. Furthermore, a molded article whose crystallinity can be observed by XRD is provided.
In addition, for example, the vinyl resin composition according to the second embodiment described below has excellent solvent solubility and moldability, heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric loss tangent, and low dielectric loss tangent. Provided are vinyl resin compositions and cured products thereof that provide cured products with excellent flammability and are useful for sealing electrical and electronic components, circuit board materials, and the like.
 本発明者らは、鋭意検討により、層状粘土鉱物を含有する樹脂組成物が上記の課題を解決することが期待されること、そしてその硬化物が、少なくとも熱伝導性に効果を発現し、また、場合によっては低誘電率、低誘電正接などの効果を発現することを見出した。 Through intensive studies, the present inventors have found that a resin composition containing layered clay minerals is expected to solve the above problems, and that a cured product thereof exhibits an effect on at least thermal conductivity, and It has been found that, in some cases, it exhibits effects such as low dielectric constant and low dielectric loss tangent.
 すなわち、本発明の要旨は以下のとおりである。
[1]少なくとも結晶性樹脂と添加剤とを含む樹脂組成物であって、添加剤が層状粘土鉱物であり、樹脂成分の100重量部に対して当該層状粘土鉱物を1~20重量部含有し、
 前記結晶性樹脂の融点が80℃超過200℃以下であることを特徴とする樹脂組成物。
[2]添加剤がタルク又はマイカであることを特徴とする[1]に記載の樹脂組成物。
[3]添加剤がタルクであることを特徴とする[2]に記載の樹脂組成物。
[4]結晶性樹脂がエポキシ樹脂及び/又はビニル樹脂であることを特徴とする[1]に記載の樹脂組成物。
[5]結晶性樹脂は、融点が80℃超過180℃以下のエポキシ樹脂及び/又は融点が90~200℃のビニル樹脂であることを特徴とする[4]に記載の樹脂組成物。
[6]結晶性樹脂がエポキシ樹脂であり、硬化剤を含み、当該樹脂組成物の硬化物のX線回折法(XRD)による測定において、回折角度2θが15°以上25°未満の領域に回折ピークが検出されることを特徴とする[1]~[5]のいずれかに記載の樹脂組成物。
[7]エポキシ樹脂が、下記一般式(1-1)又は(1-2)で表されることを特徴とする[6]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
(式(1-1)中、Gはグリシジル基を示し、Aは、独立して、単結合、酸素原子、硫黄原子、-SO-、-CO-又は二価の炭素数1~6の炭化水素基を示し、nは0~20の数を示す。)
Figure JPOXMLDOC01-appb-C000007
(式(1-2)中、Yは、独立して、単結合、酸素原子、硫黄原子、-SO2-、-CO-、-COO-、-CONH-、-CH-又は-C(CH-を示す。Bは、独立して、ベンゾニトリル構造又は-(CH-を示し、pは0~15、qは3~10の数を示す。)
[8]結晶性樹脂がビニル樹脂であり、当該ビニル樹脂は、ビニル当量が150~1000g/eq、水酸基当量が5000g/eq以上、全塩素量が2000ppm以下であることを特徴とする[1]~[5]のいずれかに記載の樹脂組成物。
[9]ビニル樹脂が、下記一般式(2-1)~(2-3)のいずれか1種以上で表されることを特徴とする[8]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000008
(式(2-1)中、R~Rは、それぞれ独立して、水素原子または一価の炭素数1~6の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000009
(式(2-2)中、Aは、独立して、単結合、酸素原子、硫黄原子、-SO-、-CO-又は二価の炭素数1~6の炭化水素基を示し、Xは、独立して、ベンゼン環、ナフタレン環又はビフェニル環であり、nは0~20の数を示す。)
Figure JPOXMLDOC01-appb-C000010
(式(2-3)中、Yは、独立して、単結合、酸素原子、硫黄原子、-SO2-、-CO-、-COO-、-CONH-、-CH-又は-C(CH-を示す。Bは、独立して、ベンゾニトリル構造又は-(CH-を示し、pは0~15、qは3~10の数を示す。)
[10]層状粘土鉱物を除く無機充填剤を20~90wt%含有することを特徴とする[1]~[5]のいずれかに記載の樹脂組成物。
[11]高熱伝導用の硬化物を与える樹脂組成物であることを特徴とする[1]~[5]のいずれかに記載の樹脂組成物。
[12]結晶化度が10%以上である高熱伝導用の硬化物を与える樹脂組成物であることを特徴とする[6]に記載の樹脂組成物。
[13][1]~[5]のいずれかに記載の樹脂組成物を硬化させて得られる硬化物。
That is, the gist of the present invention is as follows.
[1] A resin composition containing at least a crystalline resin and an additive, where the additive is a layered clay mineral and contains 1 to 20 parts by weight of the layered clay mineral based on 100 parts by weight of the resin component. ,
A resin composition characterized in that the crystalline resin has a melting point of more than 80°C and less than 200°C.
[2] The resin composition according to [1], wherein the additive is talc or mica.
[3] The resin composition according to [2], wherein the additive is talc.
[4] The resin composition according to [1], wherein the crystalline resin is an epoxy resin and/or a vinyl resin.
[5] The resin composition according to [4], wherein the crystalline resin is an epoxy resin with a melting point of more than 80°C and 180°C or less and/or a vinyl resin with a melting point of 90 to 200°C.
[6] The crystalline resin is an epoxy resin, contains a curing agent, and when measured by X-ray diffraction (XRD) of a cured product of the resin composition, diffraction occurs in a region with a diffraction angle 2θ of 15° or more and less than 25°. The resin composition according to any one of [1] to [5], wherein a peak is detected.
[7] The resin composition according to [6], wherein the epoxy resin is represented by the following general formula (1-1) or (1-2).
Figure JPOXMLDOC01-appb-C000006
(In formula (1-1), G represents a glycidyl group, and A is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent carbon number of 1 to 6 represents a hydrocarbon group, and n represents a number from 0 to 20.)
Figure JPOXMLDOC01-appb-C000007
(In formula (1-2), Y is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C( CH 3 ) 2 -. B independently represents a benzonitrile structure or -(CH 2 ) q -, p represents a number from 0 to 15, and q represents a number from 3 to 10.)
[8] The crystalline resin is a vinyl resin, and the vinyl resin is characterized by having a vinyl equivalent of 150 to 1000 g/eq, a hydroxyl equivalent of 5000 g/eq or more, and a total chlorine amount of 2000 ppm or less [1] The resin composition according to any one of ~[5].
[9] The resin composition according to [8], wherein the vinyl resin is represented by one or more of the following general formulas (2-1) to (2-3).
Figure JPOXMLDOC01-appb-C000008
(In formula (2-1), R 1 to R 6 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
Figure JPOXMLDOC01-appb-C000009
(In formula (2-2), A independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms, and are independently a benzene ring, a naphthalene ring or a biphenyl ring, and n represents a number from 0 to 20.)
Figure JPOXMLDOC01-appb-C000010
(In formula (2-3), Y is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C( CH 3 ) 2 -. B independently represents a benzonitrile structure or -(CH 2 ) q -, p represents a number from 0 to 15, and q represents a number from 3 to 10.)
[10] The resin composition according to any one of [1] to [5], which contains 20 to 90 wt% of an inorganic filler excluding layered clay minerals.
[11] The resin composition according to any one of [1] to [5], which is a resin composition that provides a cured product with high thermal conductivity.
[12] The resin composition according to [6], which is a resin composition that provides a cured product for high thermal conductivity having a degree of crystallinity of 10% or more.
[13] A cured product obtained by curing the resin composition according to any one of [1] to [5].
 本発明の樹脂組成物は、例えば、成形性、信頼性に優れ、かつ高熱伝導性、低吸水性、低熱膨張性、高耐熱性、難燃性に優れた硬化成形物を与える。また、例えば、溶剤溶解性に優れ、積層、成形、注型、接着等の用途に使用される樹脂組成物及びその硬化物に適し、この硬化物は耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性にも優れたものとなる。 The resin composition of the present invention provides, for example, a cured molded product with excellent moldability and reliability, as well as high thermal conductivity, low water absorption, low thermal expansion, high heat resistance, and flame retardance. In addition, for example, it has excellent solvent solubility and is suitable for resin compositions and their cured products used for applications such as lamination, molding, casting, and adhesives, and this cured product has heat resistance, thermal decomposition stability, and thermal conductivity. , low dielectric constant, low dielectric loss tangent, and excellent flame retardancy.
第1の実施形態における、実施例1-1で得られたエポキシ樹脂組成物の硬化成形物のXRDプロファイルである。1 is an XRD profile of a cured molded product of the epoxy resin composition obtained in Example 1-1 in the first embodiment. 第1の実施形態における、比較例1-1で得られたエポキシ樹脂組成物の硬化成形物のXRDプロファイルである。1 is an XRD profile of a cured molded product of an epoxy resin composition obtained in Comparative Example 1-1 in the first embodiment. 第2の実施形態における、合成例2-1で得られたビニル樹脂AのGPCチャートである。2 is a GPC chart of vinyl resin A obtained in Synthesis Example 2-1 in the second embodiment. 第2の実施形態における、合成例2-2で得られたビニル樹脂BのGPCチャートである。2 is a GPC chart of vinyl resin B obtained in Synthesis Example 2-2 in the second embodiment. 第2の実施形態における、合成例2-3で得られたビニル樹脂CのGPCチャートである。2 is a GPC chart of vinyl resin C obtained in Synthesis Example 2-3 in the second embodiment. 第2の実施形態における、合成例2-3で得られたビニル樹脂CのFD-MSスペクトルである。It is an FD-MS spectrum of vinyl resin C obtained in Synthesis Example 2-3 in the second embodiment.
 以下、本発明を詳細に説明する。詳しくは、後述のとおり、第1の実施形態と、第2の実施形態とを例示して説明する。 Hereinafter, the present invention will be explained in detail. In detail, as will be described later, the first embodiment and the second embodiment will be described as examples.
 本発明の樹脂組成物は、少なくとも結晶性樹脂と添加剤とを含む樹脂組成物であって、添加剤が層状粘土鉱物であり、樹脂成分の100重量部に対して当該層状粘土鉱物を1~20重量部含有し、前記結晶性樹脂の融点が80℃超過200℃以下であることを特徴とする樹脂組成物である。 The resin composition of the present invention is a resin composition containing at least a crystalline resin and an additive, wherein the additive is a layered clay mineral, and the layered clay mineral is added in an amount of 1 to 100 parts by weight based on 100 parts by weight of the resin component. 20 parts by weight of the crystalline resin, and the melting point of the crystalline resin is above 80°C and below 200°C.
 本発明の樹脂組成物における樹脂は、常温で結晶性を有する結晶性樹脂が用いられる。ここで、結晶性樹脂とは、当業界で通常使用される意義と同様であり、結晶構造を有した樹脂である。また、結晶性樹脂は、示差走査熱分析において明確な吸熱ピークを示す樹脂を指すとされる。 The resin used in the resin composition of the present invention is a crystalline resin that has crystallinity at room temperature. Here, the term "crystalline resin" has the same meaning as commonly used in the art, and is a resin having a crystalline structure. Furthermore, the term "crystalline resin" refers to a resin that exhibits a clear endothermic peak in differential scanning calorimetry.
 結晶性樹脂としては制限されず、目的に応じて適宜選択することができ、例えば、アクリル樹脂、スチレン-アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ビニル樹脂などが挙げられる。これらの樹脂は1種でもよく、2種以上用いることができる。これらの結晶性樹脂の中でも、本発明が目的とする前記の諸特性を勘案すると、成型性、信頼性、高熱伝導性、低吸水性、耐熱性、低熱膨張性、耐熱性、耐湿性、難燃性の観点から、エポキシ樹脂が好ましい。また、溶剤溶解性、成型性に優れ、耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性に優れることからビニル樹脂が好ましい。 The crystalline resin is not limited and can be appropriately selected depending on the purpose, and examples thereof include acrylic resin, styrene-acrylic resin, polyester resin, epoxy resin, and vinyl resin. These resins may be used alone or in combination of two or more. Among these crystalline resins, considering the above-mentioned properties aimed at by the present invention, moldability, reliability, high thermal conductivity, low water absorption, heat resistance, low thermal expansion, heat resistance, moisture resistance, difficulty From the viewpoint of flammability, epoxy resin is preferred. Furthermore, vinyl resin is preferred because it has excellent solvent solubility, moldability, heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric loss tangent, and flame retardancy.
 本発明の結晶性樹脂は、融点を有する。その融点の範囲は、80℃超過200℃以下である。使用される樹脂によるものの、熱伝導率の向上のためや、信頼性、耐熱性のために、好ましくは、90℃以上である。ここで、融点とは、走査示差熱分析における結晶の融解に伴う吸熱ピーク温度である。融点が200℃より高い樹脂は結晶性が強く、溶剤溶解性、溶融混練性が低下する傾向があり、融点が80℃以下の樹脂を用いた硬化物は、熱伝導率が向上しない傾向がある。 The crystalline resin of the present invention has a melting point. Its melting point range is more than 80°C and less than 200°C. Although it depends on the resin used, the temperature is preferably 90° C. or higher in order to improve thermal conductivity, reliability, and heat resistance. Here, the melting point is the endothermic peak temperature associated with melting of the crystal in scanning differential thermal analysis. Resins with melting points higher than 200°C have strong crystallinity and tend to reduce solvent solubility and melt-kneading properties, while cured products using resins with melting points of 80°C or lower tend not to improve thermal conductivity. .
 本発明の樹脂組成物に用いる添加剤としての層状粘土鉱物は、平板状粒子とも称され、具体的には、タルク、カオリン、マイカ、モンモリロナイト、バイデライト、ヘクトライト、サポナイト、ノントロナイト、スチーブンサイト等のスメクタイト系鉱物、バーミキュライト、ベントナイト、カネマイト、ケニアナイト、マカナイト等の層状ケイ酸ナトリウム、Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の雲母族粘土鉱物;等が含まれる。これらは、天然の鉱物から得られたものであってもよく、化学的に合成されたものであってもよい。さらに、層状粘土鉱物は、表面がアンモニウム塩等で修飾(表面処理)されたものであってもよい。特に、熱伝導性が良好であるとの観点から、マグネシウムを含むケイ酸塩化合物であることが好ましく、タルク、マイカであることがより好ましく、タルクであることがさらに好ましい。 The layered clay minerals used as additives in the resin composition of the present invention are also called tabular particles, and specifically include talc, kaolin, mica, montmorillonite, beidellite, hectorite, saponite, nontronite, and stevensite. smectite minerals such as vermiculite, bentonite, kanemite, kenyanite, makanite, etc., layered sodium silicate such as vermiculite, bentonite, kanemite, kenyanite, makanite, Na type tetrasilicic fluorinated mica, Li type tetrasilicic fluorinated mica, Na type fluorinated teniolite, Li type fluorinated teniolite, etc. Contains mica group clay minerals; etc. These may be obtained from natural minerals or may be chemically synthesized. Furthermore, the surface of the layered clay mineral may be modified (surface treated) with an ammonium salt or the like. In particular, from the viewpoint of good thermal conductivity, a silicate compound containing magnesium is preferred, talc or mica is more preferred, and talc is even more preferred.
 層状粘土鉱物は、樹脂成分の全量100重量部に対して、1~20重量部含まれる。5~15重量部含まれることが好ましい。樹脂組成物中の層状粘土鉱物の量が少なすぎると、前述の熱伝導性が十分に発揮され難くなることがある。一方、層状粘土鉱物の含有量がこれより多く含有される場合、流動性、耐熱性が低下することがある。また、アルミナ等の高熱伝導性の無機充填材を含有する場合、層状粘土鉱物の量が多いと高熱伝導性の無機充填材の含有量が十分でなく、全体の熱伝導率が低下することがある。ここで、樹脂成分とは、樹脂及びその硬化や改質に係る成分などをいう。例えば、後述の第1の実施形態において樹脂成分とは、エポキシ樹脂、硬化剤及び必要により含まれる硬化促進剤をいう。また、後述の第2の実施形態において樹脂成分とは、ビニル樹脂及び必要により含まれるラジカル重合開始剤及び改質剤をいう。樹脂成分は、目的に応じて適宜変更して使用することができる。 The layered clay mineral is contained in an amount of 1 to 20 parts by weight based on 100 parts by weight of the total resin component. It is preferably contained in an amount of 5 to 15 parts by weight. If the amount of layered clay mineral in the resin composition is too small, it may be difficult to sufficiently exhibit the above-mentioned thermal conductivity. On the other hand, if the content of the layered clay mineral is higher than this, fluidity and heat resistance may decrease. In addition, when containing a highly thermally conductive inorganic filler such as alumina, if the amount of layered clay minerals is large, the content of the highly thermally conductive inorganic filler may not be sufficient and the overall thermal conductivity may decrease. be. Here, the resin component refers to a resin and a component related to curing or modification thereof. For example, in the first embodiment described below, the resin component refers to an epoxy resin, a curing agent, and a curing accelerator included if necessary. Furthermore, in the second embodiment described below, the resin component refers to a vinyl resin and a radical polymerization initiator and a modifier included as necessary. The resin component can be used with appropriate changes depending on the purpose.
 本発明の樹脂組成物については、前記所定の範囲の融点を有する結晶性樹脂と、前記所定の範囲の含有量の添加剤としての層状粘土鉱物を用いた以外は、本発明の目的を達成し、また、本発明の目的を損なわなければ、制限されない。
 本発明の具体的な実施の形態を説明するために、以下において、結晶性樹脂としてエポキシ樹脂を用いた第1の実施形態と、ビニル樹脂を用いた第2の実施形態とを例示する。前述のとおり、エポキシ樹脂及びビニル樹脂は、本発明が目的とする諸特性のうちのいくつかを満足するものであって好ましい実施形態であるが、本発明の範囲はこれらの実施形態には制限されない。
The resin composition of the present invention achieves the object of the present invention, except for using the crystalline resin having a melting point within the predetermined range and the layered clay mineral as an additive having a content within the predetermined range. , and there is no restriction as long as it does not impair the purpose of the present invention.
In order to describe specific embodiments of the present invention, a first embodiment using an epoxy resin as the crystalline resin and a second embodiment using a vinyl resin will be illustrated below. As mentioned above, epoxy resins and vinyl resins satisfy some of the characteristics aimed at by the present invention and are preferred embodiments, but the scope of the present invention is not limited to these embodiments. Not done.
<第1の実施形態>
 以下、本発明の第1の実施形態を詳細に説明する。
<First embodiment>
The first embodiment of the present invention will be described in detail below.
 まず、本発明の第1の実施形態は、結晶性樹脂としてエポキシ樹脂を用いたエポキシ樹脂組成物に関するものである。この第1の実施形態においては、前記の添加剤(層状粘土鉱物)、エポキシ樹脂とともに、硬化剤を含むエポキシ樹脂組成物であることが好ましい。硬化剤については後述する。この第1の実施形態のエポキシ樹脂組成物については、その硬化物のX線回折法による測定(XRD)において、所定の領域に回折ピークが観測されるものであることが好ましい実施形態であり、より具体的には、回折角度2θが15°以上25°未満の領域に回折ピークが検出されることが好ましい。通常、有機物のみからなるエポキシ樹脂硬化物をXRD測定した際のプロファイルは、ブロードであり、明確なピークは検出されない。結晶性を示す場合、シャープなピークが検出され、その検出の範囲は2θが15°以上25°未満の領域である。また、エポキシ樹脂組成物に無機物を含有する場合、無機物のピークが検出されるが、ピーク位置は結晶構造によって異なり、有機物のピークとは区別可能である。添加剤(層状粘土鉱物)がタルクの場合、2θが28°から29°の領域に回析ピークが観察される。ここでブロードなピークとは、非晶質ピークとも言い、ピークの幅が8°以上あるピークであり、シャープなピークとは、結晶性ピークとも言い、ピークの幅が5°以内、好ましくは3°以内のピークである。すなわち、この第1の実施形態における「回折ピークが検出される」については、好適には、2θが15°以上25°未満の範囲に、当該シャープなピーク(結晶性ピーク)が検出されることを意味する。なお、ピークの幅とは、当業者が行う通常のピークの解析方法から求めることができ、通常、ベースラインに平行であって、ピークの立ち上がりの始点と、引き下がる終点との幅をいう。 First, the first embodiment of the present invention relates to an epoxy resin composition using an epoxy resin as a crystalline resin. In this first embodiment, the epoxy resin composition preferably contains a curing agent in addition to the above-mentioned additive (layered clay mineral) and epoxy resin. The curing agent will be described later. Regarding the epoxy resin composition of this first embodiment, it is a preferred embodiment that a diffraction peak is observed in a predetermined region in measurement (XRD) of the cured product by X-ray diffraction method, More specifically, it is preferable that the diffraction peak is detected in a region where the diffraction angle 2θ is 15° or more and less than 25°. Usually, the profile when XRD measurement of a cured epoxy resin consisting only of organic substances is broad, and no clear peak is detected. When crystallinity is exhibited, a sharp peak is detected, and the detection range is a range in which 2θ is 15° or more and less than 25°. Further, when the epoxy resin composition contains an inorganic substance, a peak of the inorganic substance is detected, but the peak position differs depending on the crystal structure and can be distinguished from the peak of the organic substance. When the additive (layered clay mineral) is talc, a diffraction peak is observed in the 2θ range of 28° to 29°. Here, a broad peak is also called an amorphous peak, and is a peak with a peak width of 8° or more, and a sharp peak is also called a crystalline peak, and is a peak with a width of 5° or less, preferably 3°. The peak is within °. That is, "a diffraction peak is detected" in the first embodiment preferably means that the sharp peak (crystalline peak) is detected in a range of 2θ of 15° or more and less than 25°. means. Note that the peak width can be determined by a normal peak analysis method performed by a person skilled in the art, and is usually parallel to the baseline and refers to the width between the starting point of the peak rise and the end point of the peak falling.
 本発明の第1の実施形態に係るエポキシ樹脂組成物のエポキシ樹脂成分は、前記のとおりその融点が80℃超過200℃以下である。好ましい下限値は、83℃以上であり、より好ましい下限値は90℃以上である。他方、好ましい上限値は180℃以下であり、より好ましい上限値は150℃以下である。 As described above, the epoxy resin component of the epoxy resin composition according to the first embodiment of the present invention has a melting point of more than 80°C and less than 200°C. A preferable lower limit is 83°C or higher, and a more preferable lower limit is 90°C or higher. On the other hand, a preferable upper limit is 180°C or less, and a more preferable upper limit is 150°C or less.
 本発明の第1の実施形態に係るエポキシ樹脂組成物のエポキシ樹脂成分は、分子中にエポキシ基を2個以上有するエポキシ樹脂であればよい。例を挙げれば、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシジフェニルエーテル、ヒドロキノン、4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルフィド、フルオレンビスフェノール、2,2’-ビフェノール、レゾルシン、カテコール、t‐ブチルカテコール、t‐ブチルハイドロキノン、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック等の2価のフェノール類、あるいは、フェノールノボラック、ビスフェノールAノボラック、o‐クレゾールノボラック、m‐クレゾールノボラック、p‐クレゾールノボラック、キシレノールノボラック、ポリ‐p‐ヒドロキシスチレン、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フルオログリシノール、ピロガロール、t‐ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4‐ベンゼントリオール、2,3,4‐トリヒドロキシベンゾフェノン、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエン系樹脂等の3価以上のフェノール類、または、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類等の原料フェノール性化合物から誘導されるグリシジルエーテル化物等がある。これらのエポキシ樹脂は、1種または2種以上を用いることができる。また、メソゲン基を持つエポキシ樹脂についても、1種または2種以上を用いることができる。 The epoxy resin component of the epoxy resin composition according to the first embodiment of the present invention may be any epoxy resin having two or more epoxy groups in the molecule. Examples include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenyl ether, hydroquinone, 4,4'-dihydroxybiphenyl, 3,3',5,5'-tetramethyl-4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, fluorene bisphenol, 2,2'-biphenol, resorcinol, catechol, t-butylcatechol, t-butylhydroquinone, allylated bisphenol A, allylated bisphenol F, divalent phenols such as allylated phenol novolak, or phenol novolak, bisphenol A novolak, o-cresol novolak, m-cresol novolak, p-cresol novolak, xylenol novolak, poly-p-hydroxystyrene, tris- (4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, fluoroglycinol, pyrogallol, t-butylpyrogallol, allylated pyrogallol, polyallylated pyrogallol, 1,2,4- Raw materials such as trivalent or higher phenols such as benzenetriol, 2,3,4-trihydroxybenzophenone, phenol aralkyl resin, naphthol aralkyl resin, dicyclopentadiene resin, or halogenated bisphenols such as tetrabromobisphenol A There are glycidyl ether compounds derived from phenolic compounds. These epoxy resins can be used alone or in combination of two or more. Furthermore, one type or two or more types of epoxy resins having mesogenic groups can be used.
 エポキシ樹脂としては、4,4’-ジヒドロキシジフェニルエーテル、ヒドロキノン、4,4’-ジヒドロキシビフェニルから誘導されるグリシジルエーテル化物、メソゲン骨格等の剛直構造を有する高熱伝導性のエポキシ樹脂が好ましく、特に、上記一般式(1-1)または(1-2)で表されるエポキシ樹脂がより好ましい。これらの高熱伝導性のエポキシ樹脂は、エポキシ樹脂成分全体の50wt%以上含むことが好ましい。さらに好ましくは、70wt%以上である。使用割合がこれより少ないとエポキシ樹脂硬化物とした際の耐熱性、熱伝導性等の向上効果が小さい場合がある。 As the epoxy resin, highly thermally conductive epoxy resins having rigid structures such as 4,4'-dihydroxydiphenyl ether, hydroquinone, glycidyl ether derivatives derived from 4,4'-dihydroxybiphenyl, and mesogenic skeletons are preferred, and in particular, the above-mentioned epoxy resins are preferred. Epoxy resins represented by general formula (1-1) or (1-2) are more preferred. These highly thermally conductive epoxy resins preferably contain 50 wt% or more of the entire epoxy resin component. More preferably, it is 70 wt% or more. If the usage ratio is less than this, the effect of improving heat resistance, thermal conductivity, etc. when the epoxy resin is cured may be small.
 上記一般式(1-1)において、nは繰り返し数(数平均)であり、0~20の数を示す。好ましくは、nの値が異なる成分の混合物である。また、Gはグリシジル基を示し、Aは独立して単結合、酸素原子、硫黄原子、-SO-、-CO-、または二価の炭素数1~6の炭化水素基を示す。Aは、熱伝導性の観点から単結合が好ましい。 In the above general formula (1-1), n is the number of repetitions (number average) and represents a number from 0 to 20. Preferably, it is a mixture of components having different values of n. Further, G represents a glycidyl group, and A independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms. A is preferably a single bond from the viewpoint of thermal conductivity.
 上記一般式(1-2)において、pは繰り返し数(数平均)であり、0~15の数を示す。好ましくは、pの値が異なる成分の混合物である。また、Yは、独立して、単結合、酸素原子、硫黄原子、-SO-、-CO-、-COO-、-CONH-、-CH-又は-C(CH-を示す。高熱伝導性の点で、Yは単結合であるビフェニル構造、-SO-、-CO-、-COO-、-CONH-が好ましく、4,4’位のビフェニル構造が特に好ましい。一方、成型性、溶剤溶解性の点では、Yが酸素原子、硫黄原子、-CH-、-C(CH-が好ましい。また、式(1-2)のBは、独立して、ベンゾニトリル構造又は-(CH-を示し、qは3~10の数を示す。好ましいBは、少なくとも1分子中に両方の構造を持つ。 In the above general formula (1-2), p is the number of repetitions (number average) and represents a number from 0 to 15. Preferably, it is a mixture of components having different values of p. Moreover, Y independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 - . From the viewpoint of high thermal conductivity, Y preferably has a single bond biphenyl structure, -SO 2 -, -CO-, -COO-, or -CONH-, and a biphenyl structure at the 4,4' position is particularly preferred. On the other hand, in terms of moldability and solvent solubility, Y is preferably an oxygen atom, a sulfur atom, -CH 2 -, or -C(CH 3 ) 2 -. Further, B in formula (1-2) independently represents a benzonitrile structure or -(CH 2 ) q -, and q represents a number from 3 to 10. Preferred B has both structures in at least one molecule.
 本発明の第1の実施形態に係るエポキシ樹脂組成物に用いるエポキシ樹脂の製法は特に限定されるものではなく、原料のフェノール性化合物とエピクロルヒドリンを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。原料のフェノール性化合物は、前記したような、得られるエポキシ樹脂に合わせたものを使用することができる。また、とくに、上記式(1-1)又は(1-2)で表されるエポキシ樹脂は以下のようにして製造することができる。 The method for producing the epoxy resin used in the epoxy resin composition according to the first embodiment of the present invention is not particularly limited, and it can be produced by reacting a raw material phenolic compound with epichlorohydrin. This reaction can be carried out in the same manner as a normal epoxidation reaction. The raw material phenolic compound can be selected according to the epoxy resin to be obtained, as described above. In particular, the epoxy resin represented by the above formula (1-1) or (1-2) can be produced as follows.
 式(1-1)で表されるエポキシ樹脂は、下記式(1-3)で表される多価ヒドロキシ樹脂(原料フェノール性化合物)とエピクロルヒドリンとを反応することにより製造することができる。
Figure JPOXMLDOC01-appb-C000011
 ここで、式(1-3)のA及びnは、上記式(1-1)と同様である。
The epoxy resin represented by the formula (1-1) can be produced by reacting a polyhydric hydroxy resin (raw material phenolic compound) represented by the following formula (1-3) with epichlorohydrin.
Figure JPOXMLDOC01-appb-C000011
Here, A and n in formula (1-3) are the same as in formula (1-1) above.
 この多価ヒドロキシ樹脂(1-3)は、式(1-4)で表されるビフェニル構造を有する芳香族架橋剤と、式(1-5)で表される二官能のフェノール化合物と反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000012
 ここで、式(1-4)のZは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。
Figure JPOXMLDOC01-appb-C000013
 ここで、式(1-5)のAは、上記式(1-1)と同様である。
This polyhydric hydroxy resin (1-3) is reacted with an aromatic crosslinking agent having a biphenyl structure represented by formula (1-4) and a bifunctional phenol compound represented by formula (1-5). It can be manufactured by
Figure JPOXMLDOC01-appb-C000012
Here, Z in formula (1-4) represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000013
Here, A in formula (1-5) is the same as in formula (1-1) above.
 上記式(1-4)で表される芳香族架橋剤において、Zは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。芳香族架橋剤として、具体的には、4,4’-ビスヒドロキシメチルビフェニル、4,4’-ビスクロロメチルビフェニル、4,4’-ビスブロモメチルビフェニル、4,4’-ビスメトキシメチルビフェニル、4,4’-ビスエトキシメチルビフェニルが挙げられる。反応性の観点からは、4,4’-ビスヒドロキシメチルビフェニル又は4,4’-ビスクロロメチルビフェニルが好ましく、イオン性不純分低減の観点からは、4,4’-ビスヒドロキシメチルビフェニル又は4,4’-ビスメトキシメチルビフェニルが好ましい。 In the aromatic crosslinking agent represented by the above formula (1-4), Z represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms. Specific examples of the aromatic crosslinking agent include 4,4'-bishydroxymethylbiphenyl, 4,4'-bischloromethylbiphenyl, 4,4'-bisbromomethylbiphenyl, and 4,4'-bismethoxymethylbiphenyl. , 4,4'-bisethoxymethylbiphenyl. From the viewpoint of reactivity, 4,4'-bishydroxymethylbiphenyl or 4,4'-bischloromethylbiphenyl is preferable, and from the viewpoint of reducing ionic impurities, 4,4'-bishydroxymethylbiphenyl or 4,4'-bishydroxymethylbiphenyl is preferable. , 4'-bismethoxymethylbiphenyl is preferred.
 また、式(1-5)の二官能フェノール化合物としては、具体的には、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルフィド、ジヒドロキシジフェニルメタン類、2,2-ビス(4-ヒドロキシフェニル)プロパンであり、特に、溶剤溶解性の点から2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルメタン類が好ましい。ジヒドロキシジフェニルメタン類はオルト、メタ、パラの混合物でもよいが、異性体比が4,4’-ジヒドロキシジフェニルメタンが40%以下であるものが好ましい。4,4’-ジヒドロキシジフェニルメタンが多いと結晶性が強く、溶剤溶解性が低下する懸念がある。 Further, as the difunctional phenol compound of formula (1-5), specifically, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ketone, 4,4' -dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, dihydroxydiphenylmethanes, 2,2-bis(4-hydroxyphenyl)propane, especially 2,2'-dihydroxybiphenyl, 4, from the viewpoint of solvent solubility. , 4'-dihydroxydiphenyl ether, and dihydroxydiphenylmethane are preferred. The dihydroxydiphenylmethane may be a mixture of ortho, meta, and para, but preferably has an isomer ratio of 4,4'-dihydroxydiphenylmethane of 40% or less. If there is a large amount of 4,4'-dihydroxydiphenylmethane, the crystallinity will be strong and there is a concern that the solvent solubility will decrease.
 式(1-4)の芳香族架橋剤と、式(1-5)のフェノール化合物とを反応させる際のモル比は、一般的にはフェノール化合物1モルに対して、芳香族架橋剤0.2~0.7モルの範囲であり、より好ましくは0.4~0.7モルの範囲である。この反応は、無触媒、又は無機酸、有機酸等の酸触媒の存在下に行うことができる。4,4’-ビスクロロメチルビフェニルを用いる際には、無触媒下で反応させることもできるが、一般的に、クロロメチル基と水酸基が反応してエーテル結合が生じるなどの副反応を抑えるために、酸性触媒の存在下に行うことがよい。この酸性触媒としては、周知の無機酸、有機酸より適宜選択することができ、例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタスルホン酸、トリフルオロメタスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、あるいは固体酸等が挙げられる。 The molar ratio when the aromatic crosslinking agent of formula (1-4) and the phenol compound of formula (1-5) are reacted is generally 1 mole of the phenol compound to 0.00% of the aromatic crosslinking agent. The amount is in the range of 2 to 0.7 mol, more preferably 0.4 to 0.7 mol. This reaction can be carried out without a catalyst or in the presence of an acid catalyst such as an inorganic acid or an organic acid. When using 4,4'-bischloromethylbiphenyl, the reaction can be carried out without a catalyst, but in general, it is necessary to suppress side reactions such as the formation of ether bonds due to the reaction of chloromethyl groups and hydroxyl groups. It is preferable to carry out the reaction in the presence of an acidic catalyst. This acidic catalyst can be appropriately selected from well-known inorganic acids and organic acids, such as mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, and metasulfonic acid. Examples include organic acids such as acids, trifluorometasulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
 通常、この反応は100~250℃で1~20時間行う。好ましくは100~180℃で、より好ましくは140~180℃で行うとよい。反応温度が低いと反応性が乏しく時間を要してしまい、反応温度が高いと樹脂の分解の恐れがある。 This reaction is usually carried out at 100 to 250°C for 1 to 20 hours. The temperature is preferably 100 to 180°C, more preferably 140 to 180°C. If the reaction temperature is low, the reactivity is poor and it takes time, and if the reaction temperature is high, there is a risk of decomposition of the resin.
 反応の際に溶剤として、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ、ジエチレングリコールジメチルエーテル、トリグライム等のアルコール類や、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物などを使用することがよく、これらの中でエチルセロソルブ、ジエチレングリコールジメチルエーテル、トリグライムなどが特に好ましい。反応終了後、得られた多価ヒドロキシ樹脂は、減圧留去、水洗又は貧溶剤中での再沈殿等の方法により溶剤を除去してもよいが、溶剤を残したままエポキシ化反応の原料として用いてもよい。 As a solvent during the reaction, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, aromatic compounds such as benzene, toluene, chlorobenzene, dichlorobenzene, etc. Among these, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, etc. are particularly preferred. After completion of the reaction, the solvent may be removed from the obtained polyhydric hydroxy resin by distillation under reduced pressure, washing with water, reprecipitation in a poor solvent, etc., but the solvent may be left as a raw material for the epoxidation reaction. May be used.
 このようにして得られた式(1-3)の多価ヒドロキシ樹脂は、エポキシ樹脂の原料として用いられる以外に、エポキシ樹脂硬化剤としても使用することができる。また、さらにヘキサミン等の硬化剤と組み合わせることにより、フェノール樹脂成形材料としても応用できる。 The polyhydric hydroxy resin of formula (1-3) thus obtained can be used not only as a raw material for epoxy resin but also as an epoxy resin curing agent. Moreover, by further combining it with a curing agent such as hexamine, it can be applied as a phenolic resin molding material.
 次に、式(1-2)で表されるエポキシ樹脂の製法は、特に限定されるものではないが、下記式(1-6)で表される原料フェノール性化合物とエピクロルヒドリンを反応させることにより製造することができる。この反応は、通常のエポキシ化反応と同様に行うことができる。また、本製法により得られるエポキシ樹脂は、原料が式(1-6)で表されるp=0または1の化合物との混合物である場合、前記同様に、本発明の第1の実施形態のエポキシ樹脂だけでなく、本発明の第1の実施形態のエポキシ樹脂と、上記一般式(1-2)で表されるp=0または1の化合物のエポキシ化物の混合物となる場合を含む。
Figure JPOXMLDOC01-appb-C000014
 ここで、式(1-6)のY、B及びpは、上記式(1-2)と同様である。
 式(1-6)で表されるフェノール性化合物(p=0または1の化合物との混合物である場合を含む)は、水酸基当量(g/eq)が、好ましくは150~230、より好ましくは170~220である。また、融点が、好ましくは140℃~300℃、より好ましくは150℃~250℃である。
Next, the method for producing the epoxy resin represented by the formula (1-2) is not particularly limited, but by reacting the raw material phenolic compound represented by the following formula (1-6) with epichlorohydrin. can be manufactured. This reaction can be carried out in the same manner as a normal epoxidation reaction. Furthermore, when the raw material is a mixture with a compound of p=0 or 1 represented by the formula (1-6), the epoxy resin obtained by this production method can be used as described in the first embodiment of the present invention. This includes not only an epoxy resin but also a mixture of the epoxy resin of the first embodiment of the present invention and an epoxidized compound of p=0 or 1 represented by the above general formula (1-2).
Figure JPOXMLDOC01-appb-C000014
Here, Y, B, and p in formula (1-6) are the same as in formula (1-2) above.
The phenolic compound represented by formula (1-6) (including the case where it is a mixture with a compound where p = 0 or 1) has a hydroxyl equivalent (g/eq) of preferably 150 to 230, more preferably It is 170-220. Further, the melting point is preferably 140°C to 300°C, more preferably 150°C to 250°C.
 ここで、式(1-6)で表される原料フェノール性化合物については、所定の構造を有する限り製法は限定されないが、ベンゾニトリル化合物とジハロゲンアルキル化合物とのいずれか又は両方と、式(1-6)中のY基を持つジヒドロキシ化合物とを、塩基性触媒の存在下に反応させることにより、好適に得られる。
 例えば、ベンゾニトリル化合物としては、例えば、2,4-ジクロロベンゾニトリル、2,5-ジクロロベンゾニトリル、2,6-ジクロロベンゾニトリル、3,5-ジクロロベンゾニトリル、2,4-ジブロモベンゾニトリル、2,5-ジブロモベンゾニトリル、2,6-ジブロモベンゾニトリル、3,5-ジブロモベンゾニトリルなどが挙げられ、ジハロゲンアルキル化合物としては、例えば、1,3-ジブロモプロパン、1,4-ジブロモブタン、1,5-ジブロモペンタン、1,6-ジブロモヘキサンなどが挙げられ、式(1-6)中のY基を持つジヒドロキシ化合物としては、例えば、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、ビスフェノールA、ビスフェノールFなどが挙げられる。
 前記原料フェノール性化合物の製法に関しては、特に限定されるものではないが、より詳細な具体的条件は、例えば、WO2021/201046号に記載の製法を用いることができる。
Here, the manufacturing method for the raw material phenolic compound represented by formula (1-6) is not limited as long as it has a predetermined structure, but it can be prepared by combining either or both of a benzonitrile compound and a dihalogen alkyl compound with formula (1-6). -6) is suitably obtained by reacting with a dihydroxy compound having a Y group in the presence of a basic catalyst.
For example, examples of the benzonitrile compound include 2,4-dichlorobenzonitrile, 2,5-dichlorobenzonitrile, 2,6-dichlorobenzonitrile, 3,5-dichlorobenzonitrile, 2,4-dibromobenzonitrile, Examples include 2,5-dibromobenzonitrile, 2,6-dibromobenzonitrile, 3,5-dibromobenzonitrile, and examples of the dihalogen alkyl compound include 1,3-dibromopropane, 1,4-dibromobutane, Examples of the dihydroxy compound having a Y group in formula (1-6) include 1,5-dibromopentane and 1,6-dibromohexane, such as 4,4'-dihydroxybiphenyl, 4,4'- Dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, bisphenol A, bisphenol F and the like.
The method for producing the raw material phenolic compound is not particularly limited, but for more detailed specific conditions, for example, the production method described in WO2021/201046 can be used.
 前述の原料フェノール性化合物とエピクロルヒドリンとの反応は、例えば、フェノール性化合物を過剰のエピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物の存在下に、50~150℃、好ましくは、60~100℃の範囲で1~10時間反応させる方法が挙げられる。この際の、アルカリ金属水酸化物の使用量は、フェノール性化合物中の水酸基1モルに対して、0.8~2.0モル、好ましくは、0.9~1.5モルの範囲である。エピクロルヒドリンは、フェノール性化合物中の水酸基に対して過剰量が用いられ、通常は、フェノール性化合物中の水酸基1モルに対して、1.5から15モルである。反応終了後、過剰のエピクロルヒドリンを留去し、残留物をトルエン、メチルイソブチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより目的のエポキシ樹脂を得ることができる。 The reaction between the above-mentioned raw material phenolic compound and epichlorohydrin can be carried out, for example, by dissolving the phenolic compound in excess epichlorohydrin, and then heating the mixture at 50 to 150°C in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide. Preferably, a method in which the reaction is carried out at a temperature in the range of 60 to 100°C for 1 to 10 hours is mentioned. In this case, the amount of alkali metal hydroxide used is in the range of 0.8 to 2.0 mol, preferably 0.9 to 1.5 mol, per 1 mol of hydroxyl group in the phenolic compound. . Epichlorohydrin is used in an excess amount relative to the hydroxyl groups in the phenolic compound, and is usually 1.5 to 15 moles per mole of hydroxyl groups in the phenolic compound. After the reaction, excess epichlorohydrin is distilled off, the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to obtain the desired epoxy. Resin can be obtained.
 エポキシ樹脂の純度、特に加水分解性塩素量は、適用する電子部品の信頼性向上の観点より少ない方がよい。特に限定するものではないが、好ましくは1000ppm以下、さらに好ましくは500ppm以下である。なお、本発明の第1の実施形態でいう加水分解性塩素とは、以下の方法により測定された値をいう。すなわち、試料0.5gをジオキサン30mlに溶解後、1N-KOH、10mlを加え30分間煮沸還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N-AgNO水溶液で電位差滴定を行い得られる値である。 The purity of the epoxy resin, especially the amount of hydrolyzable chlorine, is preferably as low as possible from the viewpoint of improving the reliability of electronic components to which it is applied. Although not particularly limited, it is preferably 1000 ppm or less, more preferably 500 ppm or less. Note that the term "hydrolyzable chlorine" used in the first embodiment of the present invention refers to a value measured by the following method. That is, after dissolving 0.5 g of the sample in 30 ml of dioxane, adding 10 ml of 1N-KOH and boiling and refluxing for 30 minutes, cooling to room temperature, further adding 100 ml of 80% acetone water, and increasing the potential with a 0.002N-AgNO 3 aqueous solution. This is the value obtained by titration.
 本発明の第1の実施形態に係るエポキシ樹脂組成物に用いる硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用でき、ジシアンジアミド、酸無水物類、多価フェノール類、芳香族及び脂肪族アミン類等がある。これらの中でも、半導体封止材等の高い電気絶縁性が要求される分野においては、多価フェノール類を硬化剤として用いることが好ましい。以下に、硬化剤の具体例を示す。 As the curing agent used in the epoxy resin composition according to the first embodiment of the present invention, all those generally known as curing agents for epoxy resins can be used, including dicyandiamide, acid anhydrides, polyhydric phenols, These include aromatic and aliphatic amines. Among these, it is preferable to use polyhydric phenols as a curing agent in fields where high electrical insulation is required, such as semiconductor sealing materials. Specific examples of the curing agent are shown below.
 多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’-ビフェノール、2,2’-ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類、あるいは、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノールノボラック、o-クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類がある。更には、フェノール類、ナフトール類、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’-ビフェノール、2,2’-ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、p-キシリレングリコール等の縮合剤により合成される多価フェノール性化合物等がある。 Examples of polyhydric phenols include bihydric phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, and naphthalene diol; , tris-(4-hydroxyphenyl)methane, 1,1,2,2-tetrakis(4-hydroxyphenyl)ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinylphenol, etc. There are phenols. Furthermore, divalent phenols such as phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, naphthalenediol, There are polyhydric phenolic compounds synthesized using condensing agents such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, and p-xylylene glycol.
 酸無水物硬化剤としては、例えば、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ドデシニルコハク酸、無水ナジック酸、無水トリメリット酸等がある。 Examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhimic anhydride, dodecynylsuccinic anhydride, nadic anhydride, Examples include trimellitic anhydride.
 アミン系硬化剤としては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルスルホン、m-フェニレンジアミン、p-キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類がある。 Examples of the amine curing agent include aromatic amines such as 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine; Aliphatic amines include ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
 上記エポキシ樹脂組成物には、これら硬化剤の1種又は2種以上を混合して用いることができる。 In the above epoxy resin composition, one type or a mixture of two or more of these curing agents can be used.
 エポキシ樹脂と硬化剤の配合比率は、エポキシ基と硬化剤中の官能基が当量比で0.8~1.5の範囲であることが好ましい。この範囲外では硬化後も未反応のエポキシ基、又は硬化剤中の官能基が残留し、封止機能に関しての信頼性が低下する場合がある。 The compounding ratio of the epoxy resin and the curing agent is preferably such that the equivalent ratio of the epoxy group to the functional group in the curing agent is in the range of 0.8 to 1.5. Outside this range, unreacted epoxy groups or functional groups in the curing agent may remain even after curing, resulting in a decrease in the reliability of the sealing function.
 本発明の第1の実施形態に係るエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデン樹脂、インデン・クマロン樹脂、フェノキシ樹脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合してもよい。添加量は、通常、樹脂成分の合計100重量部に対して、1~30重量部の範囲である。 The epoxy resin composition according to the first embodiment of the present invention contains an oligomer or polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, or phenoxy resin. Other modifiers and the like may be added as appropriate. The amount added is usually in the range of 1 to 30 parts by weight based on 100 parts by weight of the total resin components.
 本発明の第1の実施形態に係るエポキシ樹脂組成物には、マイカ、タルク等の前記の層状粘土鉱物を除く無機充填剤、顔料、難然剤、揺変性付与剤、カップリング剤、流動性向上剤等の添加剤を配合できる。無機充填剤としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、又は炭酸カルシウム、アルミナ、水和アルミナ等が挙げられ、半導体封止材に用いる場合の好ましい配合量は70重量%以上であり、更に好ましくは80重量%以上である。放熱基板に用いる場合の好ましい配合量は、流動性が必要であることから20~90重量%であり、より好ましくは、40~60重量%である。 The epoxy resin composition according to the first embodiment of the present invention includes an inorganic filler other than the above-mentioned layered clay minerals such as mica and talc, a pigment, a retardant agent, a thixotropy imparting agent, a coupling agent, and a fluidity agent. Additives such as improvers can be added. Examples of inorganic fillers include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, calcium carbonate, alumina, hydrated alumina, etc., and are used in semiconductor sealing materials. In this case, the preferred amount is 70% by weight or more, more preferably 80% by weight or more. When used in a heat dissipation substrate, the preferred blending amount is 20 to 90% by weight, more preferably 40 to 60% by weight, since fluidity is required.
 顔料としては、有機系又は無機系の体質顔料、鱗片状顔料等がある。揺変性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。 Pigments include organic or inorganic extender pigments, scaly pigments, and the like. Examples of the thixotropy imparting agent include silicone-based, castor oil-based, aliphatic amide wax, oxidized polyethylene wax, organic bentonite-based, and the like.
 本発明の第1の実施形態に係るエポキシ樹脂組成物には必要に応じて硬化促進剤を用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などがある。添加量としては、通常、樹脂成分の合計100重量部に対して、0.01から5重量部の範囲である。 A curing accelerator can be used in the epoxy resin composition according to the first embodiment of the present invention, if necessary. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc. Specifically, 1,8-diazabicyclo(5,4,0)undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris(dimethylaminomethyl)phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, 2-phenyl-4-methylimidazole, 2- Imidazoles such as heptadecylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium/tetraphenylborate, tetraphenylphosphonium/ethyltriphenylborate, tetra Examples include tetra-substituted phosphonium and tetra-substituted borates such as butylphosphonium and tetrabutylborate, tetraphenylboron salts such as 2-ethyl-4-methylimidazole and tetraphenylborate, and N-methylmorpholine and tetraphenylborate. The amount added is usually in the range of 0.01 to 5 parts by weight per 100 parts by weight of the total resin components.
 更に必要に応じて、本発明の第1の実施形態に係るエポキシ樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ-グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を使用できる。 Furthermore, if necessary, the epoxy resin composition according to the first embodiment of the present invention may contain a mold release agent such as carnauba wax or OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, and carbon. Coloring agents such as black, flame retardants such as antimony trioxide, stress reducing agents such as silicone oil, lubricants such as calcium stearate, etc. can be used.
 本発明の第1の実施形態に係るエポキシ樹脂組成物は、有機溶剤を溶解させたワニス状態とした後に、ガラスクロス、アラミド不織布、液晶ポリマー等のポリエステル不織布等の繊維状物に含浸させた後に溶剤除去を行い、プリプレグとすることができる。また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に塗布することにより積層物とすることができる。 The epoxy resin composition according to the first embodiment of the present invention is made into a varnish state in which an organic solvent is dissolved, and then impregnated into a fibrous material such as a glass cloth, an aramid nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, etc. By removing the solvent, it can be made into a prepreg. Further, in some cases, it can be applied to a sheet-like material such as copper foil, stainless steel foil, polyimide film, polyester film, etc. to form a laminate.
 本発明の第1の実施形態に係るエポキシ樹脂組成物を加熱硬化させれば、本発明の第1の実施形態に係る樹脂硬化物とすることができる。この硬化物は、エポキシ樹脂組成物を注型、圧縮成形、トランスファー成形等の方法により、成形加工して得ることができる。この際の温度は通常、120~220℃の範囲である。さらに、結晶化度が10%以上である成形物は、熱伝導率が高く、放熱基板等の高熱伝導用途に適する。また、結晶化度は成型時の温度制御が影響し、200℃超過の高温で成型するとアモルファス状となり、結晶化度が観察可能な成型物を得ることは困難であり、段階的に加温することが好ましい。より好ましくは、温度120~200℃の範囲で、30秒から1時間(好適には1分から30分)の範囲で段階的に加温して成形することがよい。また、成型後、ポストキュアを行うことで上記の結晶化度となるように調整してもよい。ポストキュアの温度は130℃から250℃であり、時間は1時間から24時間の範囲であるが、実施例で示したような示差走査熱量分析装置及び条件で測定して得られる吸熱ピーク温度よりも5℃から40℃低い温度で、1時間から24時間かけてポストキュアを行うことが望ましい。なお、当該成形物(硬化物)の結晶化度については、実施例に記載の方法により、結晶性のピークの割合に基づいて求めることができる。 By heating and curing the epoxy resin composition according to the first embodiment of the present invention, a cured resin product according to the first embodiment of the present invention can be obtained. This cured product can be obtained by molding an epoxy resin composition by methods such as casting, compression molding, and transfer molding. The temperature at this time is usually in the range of 120 to 220°C. Furthermore, a molded article having a crystallinity of 10% or more has high thermal conductivity and is suitable for high thermal conductive applications such as heat dissipation substrates. In addition, the degree of crystallinity is affected by the temperature control during molding, and if molded at a high temperature exceeding 200°C, it will become amorphous, making it difficult to obtain a molded product with an observable crystallinity, so it is necessary to heat it in stages. It is preferable. More preferably, the molding is performed by heating stepwise at a temperature in the range of 120 to 200° C. for a period of 30 seconds to 1 hour (preferably 1 minute to 30 minutes). Further, after molding, post-curing may be performed to adjust the degree of crystallinity as described above. The temperature of post-cure is 130°C to 250°C, and the time is in the range of 1 hour to 24 hours, but the endothermic peak temperature measured with the differential scanning calorimeter and conditions as shown in the example is It is desirable to perform post-curing at a temperature 5°C to 40°C lower for 1 to 24 hours. The degree of crystallinity of the molded product (cured product) can be determined based on the ratio of the crystallinity peak by the method described in Examples.
<第2の実施形態>
 以下、本発明の第2の実施形態を詳細に説明する。
<Second embodiment>
The second embodiment of the present invention will be described in detail below.
 本発明の第2の実施形態は、結晶性樹脂としてビニル樹脂を用いたビニル樹脂組成物に関するものである。この第2の実施形態において、ビニル樹脂組成物に用いるビニル樹脂は、常温で結晶性を有するものが使用され、前記のとおりその融点が80℃超過200℃以下である。好ましくは、その融点の範囲は90~200℃であり、より好ましくは、110~180℃である。前記のとおり、融点とは、走査示差熱分析における結晶の融解に伴う吸熱ピーク温度である。融点が200℃より高いビニル樹脂は結晶性が強く、溶剤溶解性、溶融混練性、が低下する傾向があり、融点が90℃より低いビニル樹脂を用いた硬化物は、熱伝導率が向上しない傾向がある。 The second embodiment of the present invention relates to a vinyl resin composition using vinyl resin as the crystalline resin. In this second embodiment, the vinyl resin used in the vinyl resin composition is one that is crystalline at room temperature, and has a melting point of more than 80°C and less than 200°C, as described above. Preferably, the melting point range is 90-200°C, more preferably 110-180°C. As mentioned above, the melting point is the endothermic peak temperature accompanying the melting of the crystal in scanning differential thermal analysis. Vinyl resins with melting points higher than 200°C have strong crystallinity and tend to reduce solvent solubility and melt-kneading properties, while cured products using vinyl resins with melting points lower than 90°C do not improve thermal conductivity. Tend.
 本発明の第2の実施形態に用いるビニル樹脂は、ビニル当量が150~1000g/eqの範囲が好ましい。より好ましくは200~500g/eqの範囲である。この範囲より大きいと反応性が低くなる傾向があり、硬化時に未反応となる成分が生じ、耐熱性、信頼性が低下する傾向がある。この範囲より小さいと、溶剤溶解性、溶融混練性が低下し、その硬化物はかたく脆くなり、フィルム性が低下する傾向がある。 The vinyl resin used in the second embodiment of the present invention preferably has a vinyl equivalent weight in the range of 150 to 1000 g/eq. More preferably, it is in the range of 200 to 500 g/eq. If it is larger than this range, the reactivity tends to be low, and some components become unreacted during curing, which tends to lower heat resistance and reliability. When it is smaller than this range, solvent solubility and melt-kneading properties tend to decrease, the cured product becomes hard and brittle, and film properties tend to decrease.
 本発明の第2の実施形態に用いるビニル樹脂は、極性基に関して、水酸基当量が5000g/eq以上であることが好ましく、全塩素量は2000ppm以下であることが好ましい。 Regarding polar groups, the vinyl resin used in the second embodiment of the present invention preferably has a hydroxyl equivalent of 5000 g/eq or more, and preferably has a total chlorine amount of 2000 ppm or less.
 本発明の第2の実施形態に用いるビニル樹脂は、ヒドロキシ樹脂の水酸基とクロロメチルスチレンに代表される芳香族ビニル化剤とを反応させることで得ることができるが、その際に未反応で残存するヒドロキシ樹脂の水酸基が多く、水酸基当量が5000g/eqより小さい場合、硬化が不十分となり、熱伝導率および耐熱性が低下する傾向がある。また、水酸基は極性基であることから、その残存は誘電率、誘電正接の低減を阻害する傾向がある。水酸基当量は、より好ましくは8,000g/eq以上、さらに好ましくは10,000g/eq以上である。 The vinyl resin used in the second embodiment of the present invention can be obtained by reacting the hydroxyl group of a hydroxy resin with an aromatic vinylating agent such as chloromethylstyrene; When the hydroxyl resin has many hydroxyl groups and the hydroxyl equivalent is less than 5000 g/eq, curing tends to be insufficient and thermal conductivity and heat resistance tend to decrease. Moreover, since the hydroxyl group is a polar group, its remaining tends to inhibit the reduction of the dielectric constant and dielectric loss tangent. The hydroxyl equivalent is more preferably 8,000 g/eq or more, still more preferably 10,000 g/eq or more.
 一方、塩素成分としてはクロロメチルスチレン由来によるもの、ヒドロキシ樹脂の製造原料中の架橋剤由来によるものがある。これらは、ビニル樹脂の溶剤溶解性が低い場合、除去することが困難である。2000ppmより多く塩素成分が残存する場合、誘電率、誘電正接の低減を阻害し、硬化反応を阻害することで熱伝導率、耐熱性を低下する傾向がある。全塩素量は、より好ましくは1000ppm以下、さらに好ましくは800ppm以下である。 On the other hand, the chlorine component comes from chloromethylstyrene and from the crosslinking agent in the raw material for producing hydroxy resin. These are difficult to remove if the vinyl resin has low solvent solubility. When more than 2000 ppm of chlorine components remain, there is a tendency for the reduction of dielectric constant and dielectric loss tangent to be inhibited, and the curing reaction to be inhibited, thereby decreasing thermal conductivity and heat resistance. The total amount of chlorine is more preferably 1000 ppm or less, still more preferably 800 ppm or less.
 本発明の第2の実施形態に用いるビニル樹脂は、ヒドロキシ樹脂(ヒドロキシ化合物)を芳香族ビニル化剤と反応させることにより、好適に得ることができる。限定されるものではないが、例えば、下記式(2-1)~(2-3)で表される構造を有するビニル樹脂を好適に挙げることができる。下記式(2-1)~(2-3)の構造は、分子内および分子間の分子運動性を抑制可能な熱伝導性が期待できる構造骨格であり、かつ溶剤溶解性、溶融混練性が良好であることから均一な硬化物を成型でき、熱伝導率を発現可能であることから、本発明の目的を達成する樹脂として、好ましい実施形態である。 The vinyl resin used in the second embodiment of the present invention can be suitably obtained by reacting a hydroxy resin (hydroxy compound) with an aromatic vinylating agent. Although not limited to, for example, vinyl resins having structures represented by the following formulas (2-1) to (2-3) can be preferably mentioned. The structures of formulas (2-1) to (2-3) below are structural skeletons that can be expected to have thermal conductivity that can suppress intramolecular and intermolecular molecular mobility, and have good solvent solubility and melt-kneading properties. It is a preferred embodiment as a resin that achieves the object of the present invention because it has good properties and can be molded into a uniform cured product and exhibits thermal conductivity.
<式(2-1)のビニル樹脂>
 一般式(2-4)で表されるヒドロキシ樹脂(ヒドロキシ化合物)とクロロメチルスチレンとの反応により、上記式(2-1)で表されるビニル樹脂を得ることができる。この反応は周知のビニル化反応と同様に行うことができる。
Figure JPOXMLDOC01-appb-C000015
 式(2-4)中のR~Rは、式(2-1)と同様である。
<Vinyl resin of formula (2-1)>
A vinyl resin represented by the above formula (2-1) can be obtained by reacting a hydroxy resin (hydroxy compound) represented by the general formula (2-4) with chloromethylstyrene. This reaction can be carried out in the same manner as the well-known vinylation reaction.
Figure JPOXMLDOC01-appb-C000015
R 1 to R 6 in formula (2-4) are the same as in formula (2-1).
 式(2-1)および式(2-4)において、R~Rは、それぞれ独立して、水素原子または一価の炭素数1~6の炭化水素基である。溶剤溶解性の観点からアルキル基が好ましく、耐熱性および高熱伝導率の観点から芳香族基が好ましい。炭素数が6より大きいアルキル基は分子運動の抑制が困難となり、相溶性の低下も懸念される。また、立体障害が大きいかさ高い構造は、結晶性が増大することにより溶剤溶解性低下の懸念がある。より好ましい構造としては、メチル基またはフェニル基である。式(2-1)および式(2-4)においては、R~Rは異なる構造の混合物でもよい。 In formulas (2-1) and (2-4), R 1 to R 6 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. Alkyl groups are preferred from the viewpoint of solvent solubility, and aromatic groups are preferred from the viewpoints of heat resistance and high thermal conductivity. In the case of an alkyl group having a carbon number larger than 6, it becomes difficult to suppress molecular movement, and there is also a concern that compatibility may decrease. In addition, a bulky structure with large steric hindrance may cause a decrease in solvent solubility due to increased crystallinity. A more preferred structure is a methyl group or a phenyl group. In formulas (2-1) and (2-4), R 1 to R 6 may be a mixture of different structures.
 式(2-1)のビニル樹脂のビニルベンジルエーテルの置換位置は、特に限定されないが、熱伝導率、耐熱性の観点から、3つの芳香環を結節するメチン基に対しパラ位であることが好ましい。特に3つのビニルベンジルエーテルが全てパラ位であることがより好ましい。 The substitution position of the vinyl benzyl ether in the vinyl resin of formula (2-1) is not particularly limited, but from the viewpoint of thermal conductivity and heat resistance, it is preferably the para position with respect to the methine group connecting the three aromatic rings. preferable. In particular, it is more preferable that all three vinyl benzyl ethers are at the para position.
 式(2-1)のビニル樹脂の数平均分子量(Mn)は、2000以下が好ましく、1500以下がより好ましい。また、下記一般式(2-5)で表される多分岐体を含んでもよい。式(2-5)中のtは繰り返し数(数平均)であり、0~20の数を示す。好ましくは、tの値が異なる成分の混合物である。熱伝導率の観点から、t=0体の含有率は50重量%(wt%)以上が好ましく、80wt%以上がより好ましい。
Figure JPOXMLDOC01-appb-C000016
The number average molecular weight (Mn) of the vinyl resin of formula (2-1) is preferably 2000 or less, more preferably 1500 or less. It may also contain a multibranched product represented by the following general formula (2-5). t in formula (2-5) is the number of repetitions (number average) and represents a number from 0 to 20. Preferably, it is a mixture of components having different values of t. From the viewpoint of thermal conductivity, the content of t=0 bodies is preferably 50% by weight (wt%) or more, and more preferably 80wt% or more.
Figure JPOXMLDOC01-appb-C000016
 式(2-4)の三官能のヒドロキシ化合物は、水酸基当量が好ましくは90~350g/eq、より好ましくは100~200g/eqである。式(2-4)の三官能のヒドロキシ化合物は、一般的な方法で製造可能であり、例えば、一価のフェノール化合物と芳香族アルデヒドとを重縮合することにより得ることができる。 The trifunctional hydroxy compound of formula (2-4) preferably has a hydroxyl equivalent of 90 to 350 g/eq, more preferably 100 to 200 g/eq. The trifunctional hydroxy compound of formula (2-4) can be produced by a general method, for example, by polycondensing a monovalent phenol compound and an aromatic aldehyde.
 一価のフェノール化合物としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、p-オクチルフェノール、p-t-ブチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール等のモノアルキルフェノール;2,5-キシレノール、3,5-キシレノール、3,4-キシレノール、2,4-キシレノール、2,6-キシレノールのジアルキルフェノール;2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール等のトリアルキルフェノール、さらに、2-フェニルフェノール、4-フェニルフェノール、3-ベンジル‐1,1’‐ビフェニル‐2‐オール、3-ベンジル‐1,1’‐ビフェニル‐4‐オール、3-フェニルフェノール、2,6-ジフェニルフェノール等のヒドロキシビフェニル類等が挙げられる。溶剤溶解性、反応性、供給性の面で、2,5-キシレノール、2,6-キシレノール、2-フェニルフェノールが特に好ましい。これらのフェノール化合物は、1種類のみで用いることも2種以上併用することもできる。 Examples of monovalent phenol compounds include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, p-octylphenol, p-t-butylphenol, - Monoalkylphenols such as cyclohexylphenol, m-cyclohexylphenol, and p-cyclohexylphenol; dialkylphenols such as 2,5-xylenol, 3,5-xylenol, 3,4-xylenol, 2,4-xylenol, and 2,6-xylenol ; Trialkylphenols such as 2,3,5-trimethylphenol and 2,3,6-trimethylphenol, furthermore, 2-phenylphenol, 4-phenylphenol, 3-benzyl-1,1'-biphenyl-2-ol, Examples include hydroxybiphenyls such as 3-benzyl-1,1'-biphenyl-4-ol, 3-phenylphenol, and 2,6-diphenylphenol. In terms of solvent solubility, reactivity, and feedability, 2,5-xylenol, 2,6-xylenol, and 2-phenylphenol are particularly preferred. These phenol compounds can be used alone or in combination of two or more.
 芳香族アルデヒドとしては、例えば、2-ヒドロキシベンズアルデヒド、3-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド、4-ヒドロキシ-3-メチルベンズアルデヒド、4-ヒドロキシ-3,5-ジメチルベンズアルデヒド、4-ヒドロキシ-2,5-ジメチルベンズアルデヒド、3,5-ジエチル‐4-ヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒドが挙げられる。耐熱性、熱伝導率の観点から4-ヒドロキシベンズアルデヒドが好ましい。 Examples of aromatic aldehydes include 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 4-hydroxy-3-methylbenzaldehyde, 4-hydroxy-3,5-dimethylbenzaldehyde, 4-hydroxy-2,5 -dimethylbenzaldehyde, 3,5-diethyl-4-hydroxybenzaldehyde, and other hydroxybenzaldehydes. From the viewpoint of heat resistance and thermal conductivity, 4-hydroxybenzaldehyde is preferred.
 フェノール化合物と芳香族アルデヒドの重縮合は酸触媒を用いてもよく、例えば、酢酸、シュウ酸、硫酸、塩酸、フェノールスルホン酸、パラトルエンスルホン酸、酢酸亜鉛、酢酸マンガン等が挙げられる。これらの酸触媒は、1種類のみで用いることも2種以上併用することもできる。また、これらの酸触媒の中でも、活性に優れる点から、硫酸、パラトルエンスルホン酸が好ましい。なお、酸触媒は、反応前に加えても、反応途中で加えても構わない。 The polycondensation of a phenol compound and an aromatic aldehyde may be carried out using an acid catalyst, such as acetic acid, oxalic acid, sulfuric acid, hydrochloric acid, phenolsulfonic acid, p-toluenesulfonic acid, zinc acetate, manganese acetate, and the like. These acid catalysts can be used alone or in combination of two or more. Moreover, among these acid catalysts, sulfuric acid and para-toluenesulfonic acid are preferable because of their excellent activity. Note that the acid catalyst may be added before or during the reaction.
 フェノール化合物と芳香族アルデヒドの重縮合は、必要に応じて溶媒の存在下で重縮合物を得てもよい。溶媒としては、例えば、メタノール、エタノール、プロパノール等のモノアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、トリメチレングリコール、ジエチレングリコール、ポリエチレングリコール、グリセリン等のポリオール;2-エトキシエタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル;1,3-ジオキサン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル;エチレングリコールアセテート等のグリコールエステル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトンなどが挙げられる。これらの溶媒は、1種類のみで用いることも2種以上併用することもできる。また、これらの溶媒の中でも、得られる化合物の溶解性に優れる点から、2-エトキシエタノールが好ましい。 The polycondensation of a phenol compound and an aromatic aldehyde may be performed in the presence of a solvent to obtain a polycondensate, if necessary. Examples of the solvent include monoalcohols such as methanol, ethanol, and propanol; ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6 - Polyols such as hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, trimethylene glycol, diethylene glycol, polyethylene glycol, glycerin; 2-ethoxyethanol, ethylene glycol monomethyl ether, ethylene Glycol ethers such as glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, ethylene glycol monophenyl ether; 1,3-dioxane, 1, Examples include cyclic ethers such as 4-dioxane and tetrahydrofuran; glycol esters such as ethylene glycol acetate; and ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. These solvents can be used alone or in combination of two or more. Furthermore, among these solvents, 2-ethoxyethanol is preferred from the viewpoint of excellent solubility of the resulting compound.
 フェノール化合物と芳香族アルデヒドの重縮合する際の反応温度は、20~140℃の範囲であることが好ましく、より好ましくは80~110℃の範囲である。 The reaction temperature during polycondensation of the phenol compound and aromatic aldehyde is preferably in the range of 20 to 140°C, more preferably in the range of 80 to 110°C.
 フェノール化合物/芳香族アルデヒドの仕込み比率は、反応後のフェノール化合物を再沈殿等により容易に除去可能であることから、モル比で1/0.1~1/0.5の範囲であることが好ましく、より好ましくは、1/0.3~1/0.5の範囲である。 The charging ratio of phenol compound/aromatic aldehyde is preferably in the range of 1/0.1 to 1/0.5 in terms of molar ratio, since the phenol compound after the reaction can be easily removed by reprecipitation, etc. It is preferably in the range of 1/0.3 to 1/0.5.
 式(2-1)のビニル樹脂は、三官能ヒドロキシ化合物を芳香族ビニル化剤と反応させることにより、好適に得ることができる。限定されないが、例えば、上記式(2-4)で表される三官能ヒドロキシ化合物とクロロメチルスチレンとの反応により、上記式(2-1)で表される本発明における好適なビニル樹脂を得ることができる。この反応は周知のビニル化反応と同様に行うことができる。 The vinyl resin of formula (2-1) can be suitably obtained by reacting a trifunctional hydroxy compound with an aromatic vinylating agent. For example, but not limited to, a vinyl resin suitable for the present invention represented by the above formula (2-1) can be obtained by reacting a trifunctional hydroxy compound represented by the above formula (2-4) with chloromethylstyrene. be able to. This reaction can be carried out in the same manner as the well-known vinylation reaction.
 配合割合は、三官能ヒドロキシ化合物の官能基である水酸基1.0当量に対して、好ましくは芳香族ビニル化剤(例えばクロロメチルスチレン)を0.8~1.2当量である。ただし、三官能ヒドロキシ化合物の反応性が低い場合、芳香族ビニル化剤を過剰量仕込み、反応後に除去するとよい。 The blending ratio is preferably 0.8 to 1.2 equivalents of the aromatic vinylating agent (for example, chloromethylstyrene) to 1.0 equivalents of hydroxyl groups, which are the functional groups of the trifunctional hydroxy compound. However, if the reactivity of the trifunctional hydroxy compound is low, an excess amount of the aromatic vinylating agent may be added and removed after the reaction.
 芳香族ビニル化剤としては、ハロメチルスチレン、特にクロロメチルスチレンが好ましい。その他、ブロモメチルスチレン及びその異性体、置換基を持ったものなどが挙げられる。ハロメチル体の置換位置について、例えば、ハロメチルスチレンの場合、4-位が好ましく、4-位体が全体の60重量%以上であることが好ましい。 As the aromatic vinylating agent, halomethylstyrene, especially chloromethylstyrene is preferred. Other examples include bromomethylstyrene, its isomers, and those with substituents. Regarding the substitution position of the halomethyl compound, for example, in the case of halomethylstyrene, the 4-position is preferable, and the 4-position preferably accounts for 60% by weight or more of the total.
 三官能ヒドロキシ化合物と芳香族ビニル化剤との反応は、無溶剤下または溶媒の存在下行うことができる。該ヒドロキシ化合物に芳香族ビニル化剤を加え、水酸化金属を加えて反応を行い、生成した金属塩をろ過や水洗などの方法により除去して反応が可能である。溶媒はメチルエチルケトン、ベンゼン、トルエン、キシレン、メチルイソブチルケトン、ジエチレングリコールジメチルエーテル、シクロペンタノン、シクロヘキサノンなどが挙げられるがこれらに限定されるものではない。反応性の観点で、メチルエチルケトンが好ましい。水酸化金属の具体例としては水酸化ナトリウム、水酸化カリウムなどが挙げられるがこれらに限定されるものではない。 The reaction between the trifunctional hydroxy compound and the aromatic vinylating agent can be carried out without a solvent or in the presence of a solvent. The reaction can be carried out by adding an aromatic vinylating agent to the hydroxy compound, adding a metal hydroxide to carry out the reaction, and removing the generated metal salt by a method such as filtration or washing with water. Examples of the solvent include, but are not limited to, methyl ethyl ketone, benzene, toluene, xylene, methyl isobutyl ketone, diethylene glycol dimethyl ether, cyclopentanone, and cyclohexanone. From the viewpoint of reactivity, methyl ethyl ketone is preferred. Specific examples of metal hydroxide include sodium hydroxide, potassium hydroxide, etc., but are not limited thereto.
 ビニル化の反応は、好ましくは90℃以下、より好ましくは70℃以下の温度である。この温度より高い場合、ビニルベンジルエーテル基の熱による自己重合が進行して反応制御が困難となる場合がある。自己重合を抑えるためにキノン類、ニトロ化合物、ニトロフェノール類、ニトロソ,ニトロン化合物、酸素などの重合禁止剤を使用してもよい。 The temperature of the vinylation reaction is preferably 90°C or lower, more preferably 70°C or lower. If the temperature is higher than this, heat-induced self-polymerization of the vinylbenzyl ether group may proceed, making it difficult to control the reaction. In order to suppress self-polymerization, polymerization inhibitors such as quinones, nitro compounds, nitrophenols, nitroso, nitrone compounds, and oxygen may be used.
 反応終点は、芳香族ビニル化剤としてのハロメチルスチレンの残存量をGPC等の各種クロマトグラムにて追跡を行うことで決定でき、反応速度は、水酸化金属の種類や量、添加速度、固形分濃度等で調整可能である。 The end point of the reaction can be determined by tracking the remaining amount of halomethylstyrene as an aromatic vinylating agent using various chromatograms such as GPC, and the reaction rate can be determined depending on the type and amount of metal hydroxide, addition rate, solid It can be adjusted by adjusting the concentration etc.
<式(2-2)のビニル樹脂、式(2-3)のビニル樹脂>
 本発明の第2の実施形態に用いるビニル樹脂として、式(2-1)で表されるビニル樹脂以外に式(2-2)および(2-3)で表されるものも好適である。これらのビニル樹脂は組み合わせて使用してもよく、式(2-1)~(2-3)で表されるビニル樹脂が樹脂成分全体の50wt%以上含むことが好ましい。さらに好ましくは、70wt%以上である。使用割合がこれより少ないと硬化物とした際の耐熱性、熱伝導性等の向上効果が小さい場合がある。
<Vinyl resin of formula (2-2), vinyl resin of formula (2-3)>
As the vinyl resin used in the second embodiment of the present invention, in addition to the vinyl resin represented by formula (2-1), those represented by formulas (2-2) and (2-3) are also suitable. These vinyl resins may be used in combination, and it is preferable that the vinyl resins represented by formulas (2-1) to (2-3) contain 50 wt% or more of the entire resin component. More preferably, it is 70 wt% or more. If the proportion used is less than this, the effect of improving heat resistance, thermal conductivity, etc. in a cured product may be small.
 〔式(2-2)のビニル樹脂〕
 上記の式(2-2)において、nは繰り返し数(数平均)であり、0~20の数を示す。通常、繰返し数(n)の値が異なる成分の混合物であり、nの平均値(数平均)が好ましくは0.1~15の範囲であり、より好ましくは0.5~10の範囲である。
 Aは、独立して、単結合、酸素原子、硫黄原子、-SO-、-CO-、または二価の炭素数1~6の炭化水素基を示し、Xは、独立して、ベンゼン環、ナフタレン環又はビフェニル環を示す。熱伝導率の観点から、Aは単結合、Xはビフェニル環が好ましい。Aを有するビフェニル構造に結合する2つのビニルベンジルエーテル基の置換位置が、少なくとも2,2’体を含むことが望ましい。式(2-2)において、Aが単結合、すなわち両末端がビフェニル環の場合、その結合する2つのビニルベンジルエーテル基の置換位置は、4,4’位と2,2’位であることが好ましく、その両末端ビフェニルの比率は2,2’位が全体の40~90モル%であることが好ましい。Aが単結合以外、すなわちビニル樹脂の両末端がビフェニル環以外、例えばジフェニルメタン構造の場合は、その結合する2つのビニルベンジルエーテル基の置換位置は、4,4’位が30~100モル%が好ましい。
[Vinyl resin of formula (2-2)]
In the above formula (2-2), n is the number of repetitions (number average) and represents a number from 0 to 20. Usually, it is a mixture of components having different repeating number (n) values, and the average value (number average) of n is preferably in the range of 0.1 to 15, more preferably in the range of 0.5 to 10. .
A independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms, and X independently represents a benzene ring. , represents a naphthalene ring or a biphenyl ring. From the viewpoint of thermal conductivity, A is preferably a single bond, and X is preferably a biphenyl ring. It is desirable that the substitution positions of the two vinylbenzyl ether groups bonded to the biphenyl structure having A include at least a 2,2' form. In formula (2-2), when A is a single bond, that is, both ends are biphenyl rings, the substitution positions of the two bonded vinylbenzyl ether groups are the 4,4' position and the 2,2' position. is preferable, and the ratio of biphenyl at both terminals is preferably 40 to 90 mol% of the total at the 2,2' position. When A is other than a single bond, that is, when both ends of the vinyl resin are other than biphenyl rings, for example, a diphenylmethane structure, the substitution positions of the two bonded vinyl benzyl ether groups are such that the 4,4' position is 30 to 100 mol%. preferable.
 式(2-2)のビニル樹脂は、下記式(2-6)で表される多官能ビニル樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
The vinyl resin of formula (2-2) is preferably a polyfunctional vinyl resin represented by formula (2-6) below.
Figure JPOXMLDOC01-appb-C000017
 式(2-6)中のeおよびfは繰り返し数(数平均)であり、0~20の数を示す。好ましくは、eおよびfの値が異なる成分の混合物である。e/(e+f)の比率(モル比)は、0.50~0.95が好ましく、0.70~0.95がより好ましい。0.50未満の場合は、耐熱性、高熱伝導性の効果が小さい傾向があり、0.95より大きい場合は結晶性が強くなり、溶剤溶解性が低下する傾向がある。eの平均値は0.1~10が好ましく、より好ましくは0.5~5である。fの平均値は0.1~5が好ましく、より好ましくは、0.1~2である。
 Aについては、上述した式(2-2)と同様である。
e and f in formula (2-6) are the number of repetitions (number average) and represent a number from 0 to 20. Preferably, it is a mixture of components having different values of e and f. The ratio (molar ratio) of e/(e+f) is preferably 0.50 to 0.95, more preferably 0.70 to 0.95. When it is less than 0.50, the effect of heat resistance and high thermal conductivity tends to be small, and when it is more than 0.95, crystallinity tends to become strong and solvent solubility tends to decrease. The average value of e is preferably 0.1 to 10, more preferably 0.5 to 5. The average value of f is preferably 0.1 to 5, more preferably 0.1 to 2.
Regarding A, it is the same as the above-mentioned formula (2-2).
 上記式(2-6)で表される多官能ビニル樹脂は、式(2-7)で表される多価ヒドロキシ樹脂とクロロメチルスチレンを反応することにより製造することができる。
Figure JPOXMLDOC01-appb-C000018
The polyfunctional vinyl resin represented by the above formula (2-6) can be produced by reacting the polyhydric hydroxy resin represented by the formula (2-7) with chloromethylstyrene.
Figure JPOXMLDOC01-appb-C000018
 式(2-7)の多価ヒドロキシ樹脂において、A、e、f、e/(e+f)の比率は、上記式(2-6)の多官能ビニル樹脂と同様である。式(2-6)で表される多価ヒドロキシ樹脂は、水酸基当量が好ましくは100~350g/eqである。これらの水酸基が、部分的又は全体的にビニル化されることによって、式(2-6)で表される多官能ビニル樹脂となる。 In the polyvalent hydroxy resin of formula (2-7), the ratios of A, e, f, and e/(e+f) are the same as in the polyfunctional vinyl resin of formula (2-6) above. The polyhydric hydroxy resin represented by formula (2-6) preferably has a hydroxyl equivalent of 100 to 350 g/eq. When these hydroxyl groups are partially or completely vinylated, a polyfunctional vinyl resin represented by formula (2-6) is obtained.
 この式(2-7)の多価ヒドロキシ樹脂は、限定されないが、例えば下記式(2-11)に示すとおり、式(2-8)で表される4,4’-ジヒドロキシビフェニルと式(2-9)で表されるビフェニル構造を有する芳香族架橋剤とを反応させた後、式(2-10)で表される二官能のフェノール化合物と反応させることにより製造することができる。 This polyhydric hydroxy resin of formula (2-7) is not limited, but for example, as shown in formula (2-11) below, 4,4'-dihydroxybiphenyl represented by formula (2-8) and formula ( It can be produced by reacting with an aromatic crosslinking agent having a biphenyl structure represented by formula (2-9) and then reacting with a bifunctional phenol compound represented by formula (2-10).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 ここで、式(2-9)中のZは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。
Figure JPOXMLDOC01-appb-C000020
Here, Z in formula (2-9) represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000021
 ここで、Aは単結合、酸素原子、硫黄原子、-SO-、-CO-、または二価の炭素数1~6の炭化水素基を示す。
Figure JPOXMLDOC01-appb-C000021
Here, A represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 合成原料の式(2-8)で表される4,4’-ジヒドロキシビフェニルと式(2-10)で表される二官能のフェノール化合物の仕込み時のモル比率は、4,4’-ジヒドロキシビフェニルが0.50~0.95が好ましく、0.70~0.95がより好ましい。4,4’-ジヒドロキシビフェニルの比率がこの範囲より少ない場合は、耐熱性、高熱伝導性が不十分である傾向となり、多い場合は結晶性が強いために溶剤溶解性が低下する傾向がある。
 式(2-10)の二官能フェノール化合物としては、具体的には、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルフィド、ジヒドロキシジフェニルメタン類、2,2-ビス(4-ヒドロキシフェニル)プロパンであり、特に、溶剤溶解性の点から2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルメタン類が好ましい。ジヒドロキシジフェニルメタン類はオルト、メタ、パラの混合物でもよいが、異性体比が4,4’-ジヒドロキシジフェニルメタンが40%以下であるものが好ましい。4,4’-ジヒドロキシジフェニルメタンが多いと結晶性が強く、溶剤溶解性が低下する懸念がある。
The molar ratio of the synthesis raw materials 4,4'-dihydroxybiphenyl represented by formula (2-8) and the bifunctional phenol compound represented by formula (2-10) is 4,4'-dihydroxy Biphenyl is preferably 0.50 to 0.95, more preferably 0.70 to 0.95. If the ratio of 4,4'-dihydroxybiphenyl is less than this range, heat resistance and high thermal conductivity tend to be insufficient, and if it is higher, the solvent solubility tends to decrease due to strong crystallinity.
Specifically, the difunctional phenol compound of formula (2-10) includes 2,2'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxy diphenyl sulfone, 4,4'-dihydroxydiphenyl sulfide, dihydroxydiphenylmethanes, 2,2-bis(4-hydroxyphenyl)propane, and especially 2,2'-dihydroxybiphenyl, 4,4 from the viewpoint of solvent solubility. '-dihydroxydiphenyl ether and dihydroxydiphenylmethane are preferred. The dihydroxydiphenylmethane may be a mixture of ortho, meta, and para, but preferably has an isomer ratio of 4,4'-dihydroxydiphenylmethane of 40% or less. If there is a large amount of 4,4'-dihydroxydiphenylmethane, the crystallinity will be strong and there is a concern that the solvent solubility will decrease.
 上記式(2-9)で表される芳香族架橋剤において、Zは水酸基、ハロゲン原子又は炭素数1~6のアルコキシ基を示す。芳香族架橋剤として、具体的には、4,4’-ビスヒドロキシメチルビフェニル、4,4’-ビスクロロメチルビフェニル、4,4’-ビスブロモメチルビフェニル、4,4’-ビスメトキシメチルビフェニル、4,4’-ビスエトキシメチルビフェニルが挙げられる。反応性の観点からは、4,4’-ビスヒドロキシメチルビフェニル、又は4,4’-ビスクロロメチルビフェニルが好ましく、イオン性不純分低減の観点からは、4,4’-ビスヒドロキシメチルビフェニル、又は4,4’-ビスメトキシメチルビフェニルが好ましい。 In the aromatic crosslinking agent represented by the above formula (2-9), Z represents a hydroxyl group, a halogen atom, or an alkoxy group having 1 to 6 carbon atoms. Specific examples of the aromatic crosslinking agent include 4,4'-bishydroxymethylbiphenyl, 4,4'-bischloromethylbiphenyl, 4,4'-bisbromomethylbiphenyl, and 4,4'-bismethoxymethylbiphenyl. , 4,4'-bisethoxymethylbiphenyl. From the viewpoint of reactivity, 4,4'-bishydroxymethylbiphenyl or 4,4'-bischloromethylbiphenyl is preferable, and from the viewpoint of reducing ionic impurities, 4,4'-bishydroxymethylbiphenyl, Or 4,4'-bismethoxymethylbiphenyl is preferred.
 式(2-11)に示されるようなフェノール類と芳香族架橋剤とを反応させる際のモル比は、一般的にはフェノール類1モルに対して、芳香族架橋剤0.2~0.7モルの範囲であり、より好ましくは0.4~0.7モルの範囲である。0.2モルより少ないと得られる式(2-2)で表される多価ヒドロキシ樹脂のn=0体の比率が高くなり、特に式(2-8)で表される4,4’-ジヒドロキシビフェニルが多い場合、結晶性を示すなど溶解性の低下が懸念される。一方、0.7モルよりも多いと高分子量成分が多くなり、安定的に製造することが困難となる場合がある。 The molar ratio when reacting a phenol and an aromatic crosslinking agent as shown in formula (2-11) is generally 0.2 to 0.00% of the aromatic crosslinking agent per mole of the phenol. The amount is in the range of 7 mol, more preferably in the range of 0.4 to 0.7 mol. When the amount is less than 0.2 mol, the proportion of n=0 of the polyhydric hydroxy resin represented by the formula (2-2) obtained becomes high, especially the 4,4'- represented by the formula (2-8). If there is a large amount of dihydroxybiphenyl, there is a concern that the solubility may decrease, such as exhibiting crystallinity. On the other hand, if the amount is more than 0.7 mol, the amount of high molecular weight components increases, and stable production may become difficult.
 フェノール類と芳香族架橋剤との反応は、無触媒、又は無機酸、有機酸等の酸触媒の存在下に行うことができる。4,4’-ビスクロロメチルビフェニルを用いる際には、無触媒下で反応させることもできるが、一般的に、クロロメチル基と水酸基が反応してエーテル結合が生じるなどの副反応を抑えるために、酸性触媒の存在下に行うことがよい。この酸性触媒としては、周知の無機酸、有機酸より適宜選択することができ、例えば、塩酸、硫酸、燐酸等の鉱酸や、ギ酸、シュウ酸、トリフルオロ酢酸、p-トルエンスルホン酸、メタスルホン酸、トリフルオロメタスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、あるいは固体酸等が挙げられる。 The reaction between the phenols and the aromatic crosslinking agent can be carried out without a catalyst or in the presence of an acid catalyst such as an inorganic acid or an organic acid. When using 4,4'-bischloromethylbiphenyl, the reaction can be carried out without a catalyst, but in general, it is necessary to suppress side reactions such as the formation of ether bonds due to the reaction of chloromethyl groups and hydroxyl groups. It is preferable to carry out the reaction in the presence of an acidic catalyst. This acidic catalyst can be appropriately selected from well-known inorganic acids and organic acids, such as mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, formic acid, oxalic acid, trifluoroacetic acid, p-toluenesulfonic acid, and metasulfonic acid. Examples include organic acids such as acids, trifluorometasulfonic acid, Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride, and solid acids.
 通常、この反応は100~250℃で1~20時間行う。好ましくは100~180℃で、より好ましくは140~180℃で行うとよい。反応温度が低いと反応性が乏しく時間を要してしまい、反応温度が高いと樹脂の分解の恐れがある。 This reaction is usually carried out at 100 to 250°C for 1 to 20 hours. The temperature is preferably 100 to 180°C, more preferably 140 to 180°C. If the reaction temperature is low, the reactivity is poor and it takes time, and if the reaction temperature is high, there is a risk of decomposition of the resin.
 反応の際に溶剤として、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、メチルセロソルブ、エチルセロソルブ、ジエチレングリコールジメチルエーテル、トリグライム等のアルコール類や、ベンゼン、トルエン、クロロベンゼン、ジクロロベンゼン等の芳香族化合物などを使用することがよく、これらの中でエチルセロソルブ、ジエチレングリコールジメチルエーテル、トリグライムなどが特に好ましい。反応終了後、得られた多価ヒドロキシ樹脂は、減圧留去、水洗又は貧溶剤中での再沈殿等の方法により溶剤を除去してもよいが、溶剤を残したままビニル化反応の原料として用いてもよい。 As a solvent during the reaction, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, methyl cellosolve, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, aromatic compounds such as benzene, toluene, chlorobenzene, dichlorobenzene, etc. Among these, ethyl cellosolve, diethylene glycol dimethyl ether, triglyme, etc. are particularly preferred. After completion of the reaction, the solvent may be removed from the obtained polyhydric hydroxy resin by distillation under reduced pressure, washing with water, reprecipitation in a poor solvent, etc., but the resin may be used as a raw material for the vinylation reaction with the solvent remaining. May be used.
 式(2-2)のビニル樹脂、好ましくは、式(2-6)で表される多官能ビニル樹脂は、多価ヒドロキシ樹脂を芳香族ビニル化剤と反応させることにより、好適に得ることができる。例えば、上記式(2-7)で表される多価ヒドロキシ樹脂とクロロメチルスチレンとの反応により、上記式(2-6)で表される多官能ビニル樹脂を得ることができる。この反応は周知のビニル化反応と同様に行うことができる。
 なお、これらの配合割合、芳香族ビニル化剤の種類、反応条件、反応終点確認その他については、上述の式(2-1)のビニル樹脂を得る場合と同様とすることができる。
The vinyl resin of formula (2-2), preferably the polyfunctional vinyl resin represented by formula (2-6), can be suitably obtained by reacting a polyhydric hydroxy resin with an aromatic vinylizing agent. can. For example, a polyfunctional vinyl resin represented by the above formula (2-6) can be obtained by reacting a polyhydric hydroxy resin represented by the above formula (2-7) with chloromethylstyrene. This reaction can be carried out in the same manner as the well-known vinylation reaction.
Note that the blending ratio, type of aromatic vinylating agent, reaction conditions, confirmation of the reaction end point, etc. can be the same as in the case of obtaining the vinyl resin of formula (2-1) above.
 〔式(2-3)のビニル樹脂〕
 上記の式(2-3)において、Yは、独立して、直接結合、酸素原子、硫黄原子、-SO-、-CO-、-COO-、-CONH-、-CH-又は-C(CH-を示す。Bは、独立して、ベンゾニトリル構造又は-(CH-を示し、好ましくは、少なくとも1分子中にベンゾニトリル構造を含む。より好ましくは、少なくとも1分子中に、ベンゾニトリル構造及び-(CH-の両方の構造を持つ。qは3~10の数を示す。高熱伝導性の点で、Yは直接結合であるビフェニル構造、-SO-、-CO-、-COO-又は-CONH-が好ましく、より好ましくは直接結合であるビフェニル構造であり、そのうち4,4’位のビフェニル構造が特に好ましい。一方、成型性、溶剤溶解性の点で、酸素原子、硫黄原子、-CH-、-C(CH-が好ましい。式(2-3)のビニル樹脂は、「独立して」としたように、各Yが異なる構造の混合物とすることが可能であり、高熱伝導性、成型性、溶剤溶解性を調整することが可能である。pは繰り返し数であり、0~15の数を示す。好ましくは1~15の数を示すことがよい。好ましくは、pの値が異なる成分の混合物である。p値(平均値)としては、1.0~3.0が好ましく、より好ましくは1.5~2.5である。
[Vinyl resin of formula (2-3)]
In the above formula (2-3), Y independently represents a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C (CH 3 ) 2 - is shown. B independently represents a benzonitrile structure or -(CH 2 ) q -, and preferably contains a benzonitrile structure in at least one molecule. More preferably, at least one molecule has both a benzonitrile structure and a -(CH 2 ) q - structure. q represents a number from 3 to 10. In terms of high thermal conductivity, Y is preferably a biphenyl structure that is a direct bond, -SO 2 -, -CO-, -COO-, or -CONH-, and more preferably a biphenyl structure that is a direct bond, among which 4, A biphenyl structure at the 4' position is particularly preferred. On the other hand, in terms of moldability and solvent solubility, oxygen atoms, sulfur atoms, -CH 2 -, and -C(CH 3 ) 2 - are preferred. The vinyl resin of formula (2-3) can be made into a mixture with each Y having a different structure, as shown in "independently", and the high thermal conductivity, moldability, and solvent solubility can be adjusted. is possible. p is the number of repetitions and represents a number from 0 to 15. Preferably, the number is 1 to 15. Preferably, it is a mixture of components having different values of p. The p value (average value) is preferably 1.0 to 3.0, more preferably 1.5 to 2.5.
 式(2-3)のビニル樹脂は、p=0の化合物との混合物でもよく、ゲルパーミエーションクロマトグラフィーで測定した面積%(GPC面積%)で、p=0のものは40%以下が好ましい。より好ましくは、35%以下である。p=0のものが40%より多く含まれている場合、結晶性が強く、融点が200℃超過となり、溶剤溶解性も低下する傾向がある。また、pが15よりも大きいものは、反応性が低く、硬化時に未反応となる成分が生じると耐熱性が低下する傾向がある。 The vinyl resin of formula (2-3) may be a mixture with a compound where p = 0, and the area % measured by gel permeation chromatography (GPC area %) is preferably 40% or less of p = 0. . More preferably, it is 35% or less. When the content of p=0 is more than 40%, the crystallinity is strong, the melting point exceeds 200° C., and the solvent solubility tends to decrease. Furthermore, those with p greater than 15 have low reactivity, and if unreacted components are produced during curing, heat resistance tends to decrease.
 Bは、ベンゾニトリル構造又は-(CH-で表されるアルキル構造を示す。好ましくは、少なくとも1分子中にベンゾニトリル構造を含み、より好ましくは少なくとも1分子中にベンゾニトリル構造及び-(CH-で表されるアルキル構造の両方の構造を含む。すなわち、Bについても「独立して」としたように、式(2-3)のビニル樹脂は、Bが異なる構造の混合物とすることが可能であり、高熱伝導性、成型性、溶剤溶解性を調整することが可能である。Bについて、ベンゾニトリル構造を、好ましくは50モル%以上、より好ましくは70モル%以上含む。ベンゾニトリル構造とアルキル構造の比率は、原料化合物の質量に基づいて、アルキル構造が50モル%未満となることが好ましく、10モル%~40モル%がより好ましい。アルキル構造が50モル%より多い場合、硬化物の熱伝導性、耐熱性が低下しやすく、アルキル構造を含まない場合は結晶性が強くなりやすく、溶剤溶解性が低下する傾向がある。 B represents a benzonitrile structure or an alkyl structure represented by -(CH 2 ) q -. Preferably, at least one molecule contains a benzonitrile structure, and more preferably at least one molecule contains both a benzonitrile structure and an alkyl structure represented by -(CH 2 ) q -. In other words, as B is also said to be "independently", the vinyl resin of formula (2-3) can be a mixture of B with different structures, and has high thermal conductivity, moldability, and solvent solubility. It is possible to adjust. B preferably contains a benzonitrile structure in an amount of 50 mol% or more, more preferably 70 mol% or more. The ratio of the benzonitrile structure to the alkyl structure is preferably less than 50 mol%, more preferably 10 mol% to 40 mol%, based on the mass of the raw material compound. When the alkyl structure is more than 50 mol %, the thermal conductivity and heat resistance of the cured product tend to decrease, and when it does not contain an alkyl structure, the crystallinity tends to become strong and the solvent solubility tends to decrease.
 -(CH-で表されるアルキル構造について、qは繰り返し数であり、3~10の数を示す。より好ましくは、4~8の数である。3より小さいと柔軟性が低く、結晶性の緩和効果が低い傾向がある。10より大きいと、硬化物の熱伝導性、耐熱性が大幅に低下する傾向がある。 Regarding the alkyl structure represented by -(CH 2 ) q -, q is the repeating number and represents a number from 3 to 10. More preferably, the number is 4 to 8. If it is smaller than 3, flexibility tends to be low and the effect of relaxing crystallinity tends to be low. When it is larger than 10, the thermal conductivity and heat resistance of the cured product tend to decrease significantly.
 具体的には、以下の式(2-12)で表されるビニル樹脂を好ましく例示することができる。
Figure JPOXMLDOC01-appb-C000023
(但し、g、hはそれぞれ独立して、1~15の数を示し、qは3~10の数を示す。)
Specifically, a vinyl resin represented by the following formula (2-12) can be preferably exemplified.
Figure JPOXMLDOC01-appb-C000023
(However, g and h each independently represent a number from 1 to 15, and q represents a number from 3 to 10.)
 式(2-3)のビニル樹脂は、ヒドロキシ樹脂を芳香族ビニル化剤と反応させることにより、好適に得ることができる。例えば、一般式(2-13)で表されるヒドロキシ樹脂とクロロメチルスチレンとの反応により、上記式(2-3)で表される本発明のビニル樹脂を得ることができる。この反応は周知のビニル化反応と同様に行うことができる。
 なお、これらの配合割合、芳香族ビニル化剤の種類、反応条件、反応終点確認その他については、上述の式(2-1)のビニル樹脂を得る場合と同様とすることができる。
Figure JPOXMLDOC01-appb-C000024
(但し、Yは、独立して、直接結合、酸素原子、硫黄原子、-SO-、-CO-、-COO-、-CONH-、-CH-又は-C(CH-を示す。Bは、独立して、ベンゾニトリル構造又は-(CH-を示し、好ましくは、少なくとも1つはベンゾニトリル構造を含む。より好ましくは少なくとも1分子中にベンゾニトリル構造及び-(CH-で表されるアルキル構造の両方の構造を含む。pおよびqはそれぞれ独立して、pは0~15、qは3~10の数を示す。)
The vinyl resin of formula (2-3) can be suitably obtained by reacting a hydroxy resin with an aromatic vinylating agent. For example, the vinyl resin of the present invention represented by the above formula (2-3) can be obtained by reacting a hydroxy resin represented by the general formula (2-13) with chloromethylstyrene. This reaction can be carried out in the same manner as the well-known vinylation reaction.
Note that the blending ratio, type of aromatic vinylating agent, reaction conditions, confirmation of the reaction end point, etc. can be the same as in the case of obtaining the vinyl resin of formula (2-1) above.
Figure JPOXMLDOC01-appb-C000024
(However, Y independently represents a direct bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C(CH 3 ) 2 - B independently represents a benzonitrile structure or -(CH 2 ) q -, and preferably at least one contains a benzonitrile structure. More preferably, at least one molecule contains a benzonitrile structure and -( (CH 2 ) q includes both structures of the alkyl structure represented by -. p and q each independently represent a number from 0 to 15, and q represents a number from 3 to 10.)
 式(2-13)で表されるヒドロキシ樹脂(p=0の化合物との混合物である場合を含む)は、水酸基当量(g/eq)が、好ましくは150~300、より好ましくは200~270である。数平均分子量(Mn)が、好ましくは350~800、より好ましくは450~600である。
 pは、式(2-3)のビニル樹脂におけるpと同義であって、繰り返し数であり、0~15の数を示す。好ましくは1~15の数を示すことがよい。好ましくは、pの値が異なる成分の混合物である。p値(平均値)としては、好ましくは1.0~3.0、より好ましくは1.5~2.5である。
The hydroxy resin represented by formula (2-13) (including the case where it is a mixture with a compound where p=0) has a hydroxyl equivalent (g/eq) of preferably 150 to 300, more preferably 200 to 270. It is. The number average molecular weight (Mn) is preferably 350 to 800, more preferably 450 to 600.
p has the same meaning as p in the vinyl resin of formula (2-3), is the repeating number, and represents a number from 0 to 15. Preferably, the number is 1 to 15. Preferably, it is a mixture of components having different values of p. The p value (average value) is preferably 1.0 to 3.0, more preferably 1.5 to 2.5.
 式(2-13)で表されるヒドロキシ樹脂(フェノール性化合物)は、所定の構造を有する限り、製法については限定されないが、ベンゾニトリル化合物とジハロゲンアルキル化合物とのいずれか又は両方と、Y基を持つジヒドロキシ化合物とを、塩基性触媒の存在下に反応させることにより、好適に得ることができる。
 この場合、ベンゾニトリル化合物としては、例えば、2,4-ジクロロベンゾニトリル、2,5-ジクロロベンゾニトリル、2,6-ジクロロベンゾニトリル、3,5-ジクロロベンゾニトリル、2,4-ジブロモベンゾニトリル、2,5-ジブロモベンゾニトリル、2,6-ジブロモベンゾニトリル、3,5-ジブロモベンゾニトリルなどが挙げられ、ジハロゲンアルキル化合物としては、例えば、1,3-ジブロモプロパン、1,4-ジブロモブタン、1,5-ジブロモペンタン、1,6-ジブロモヘキサンなどが挙げられ、Y基を持つジヒドロキシ化合物としては、例えば、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、ビスフェノールA、ビスフェノールFなどが挙げられる。
 ヒドロキシ樹脂(フェノール性化合物)の製法に関して、より詳細な具体的条件は、例えば、WO2021/201046号を参照するとよい。
The hydroxy resin (phenolic compound) represented by formula (2-13) is not limited in its production method as long as it has a predetermined structure, but it can be produced by combining either or both of a benzonitrile compound and a dihalogen alkyl compound with a Y group. It can be suitably obtained by reacting a dihydroxy compound having the following in the presence of a basic catalyst.
In this case, examples of the benzonitrile compound include 2,4-dichlorobenzonitrile, 2,5-dichlorobenzonitrile, 2,6-dichlorobenzonitrile, 3,5-dichlorobenzonitrile, and 2,4-dibromobenzonitrile. , 2,5-dibromobenzonitrile, 2,6-dibromobenzonitrile, 3,5-dibromobenzonitrile, etc., and examples of the dihalogen alkyl compound include 1,3-dibromopropane, 1,4-dibromobutane. , 1,5-dibromopentane, 1,6-dibromohexane, etc., and examples of dihydroxy compounds having a Y group include 4,4'-dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4' -dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, bisphenol A, bisphenol F, and the like.
Regarding the method for producing a hydroxy resin (phenolic compound), for more detailed specific conditions, refer to, for example, WO2021/201046.
 本発明の第2の実施形態に用いるビニル樹脂は、単独でも硬化させることができるが、タルクやマイカなどの前記の層状粘土鉱物のほかにも、各種その他の添加剤を配合したビニル樹脂組成物として使用することも好適である。その他の添加剤の1つとして、特に、硬化促進のためにアゾ化合物、有機過酸化物などのラジカル重合開始剤を配合して硬化させることができる。ラジカル重合開始剤は、ビニル樹脂100重量部に対して、例えば、0.01~10重量部の範囲で配合するとよい。 Although the vinyl resin used in the second embodiment of the present invention can be cured alone, a vinyl resin composition containing various other additives in addition to the above-mentioned layered clay minerals such as talc and mica may be used. It is also suitable to use it as As one of the other additives, in particular, a radical polymerization initiator such as an azo compound or an organic peroxide can be added to accelerate curing. The radical polymerization initiator may be blended in an amount of, for example, 0.01 to 10 parts by weight per 100 parts by weight of the vinyl resin.
 本発明の第2の実施形態に係るビニル樹脂組成物は、ビニル樹脂と添加剤としての層状粘土鉱物とを必須成分とするが、それ以外のビニル化合物や他の熱硬化性樹脂を配合でき、例えばエポキシ樹脂、オキセタン樹脂、マレイミド樹脂、アクリレート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリフェニレンエーテル樹脂、ベンゾオキサジン樹脂などが挙げられる。 The vinyl resin composition according to the second embodiment of the present invention has a vinyl resin and a layered clay mineral as an additive as essential components, but other vinyl compounds and other thermosetting resins can be blended, Examples include epoxy resin, oxetane resin, maleimide resin, acrylate resin, polyester resin, polyurethane resin, polyphenylene ether resin, and benzoxazine resin.
 熱伝導率を高める為、例えば、ガラスクロス、カーボンファイバー、アルミナ、窒化ホウ素などの、前記の層状粘土鉱物を除く無機充填材を配合してもよい。 In order to increase thermal conductivity, inorganic fillers other than the above-mentioned layered clay minerals, such as glass cloth, carbon fiber, alumina, and boron nitride, may be blended.
 無機充填材は、より高い熱伝導率を付与する目的で、熱伝導率が高いものほど好ましい。好ましくは20W/m・K以上、より好ましくは30W/m・K以上、さらに好ましくは50W/m・K以上である。そして、無機充填材の少なくとも一部、好ましくは50wt%以上が20W/m・K以上の熱伝導率を有する。そして、無機充填材全体としての平均の熱伝導率が、20W/m・K以上、30W/m・K以上、及び50W/m・K以上の順に好ましさが向上する。 For the purpose of imparting higher thermal conductivity, the higher the thermal conductivity of the inorganic filler, the more preferable it is. Preferably it is 20 W/m·K or more, more preferably 30 W/m·K or more, and still more preferably 50 W/m·K or more. At least a portion of the inorganic filler, preferably 50 wt% or more, has a thermal conductivity of 20 W/m·K or more. The average thermal conductivity of the inorganic filler as a whole increases in the order of 20 W/m·K or more, 30 W/m·K or more, and 50 W/m·K or more.
 このような熱伝導率を有する無機充填材の例としては、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材等が挙げられる。本発明の第2の実施形態に係るビニル樹脂組成物における無機充填材の含有量は、半導体封止材に用いる場合の好ましい配合量は70重量%以上であり、更に好ましくは80重量%以上である。放熱基板に用いる場合の好ましい配合量は、流動性が必要であることから20~90重量%であり、より好ましくは、40~60重量%である。 Examples of inorganic fillers having such thermal conductivity include inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, and magnesium oxide. It will be done. The content of the inorganic filler in the vinyl resin composition according to the second embodiment of the present invention is preferably 70% by weight or more, more preferably 80% by weight or more when used in a semiconductor encapsulant. be. When used in a heat dissipation substrate, the preferred blending amount is 20 to 90% by weight, more preferably 40 to 60% by weight, since fluidity is required.
 接着力の向上や組成物の取り扱い作業の向上の為、各種のその他の添加剤として、例えばシランカップリング剤や消泡剤、内部離型剤や流れ調整剤などが挙げられる。また、着色剤、難燃剤、揺変性付与剤などの各種の公知の添加剤を、本発明の目的の範囲内で使用することができる。 In order to improve adhesive strength and improve handling of the composition, various other additives include, for example, silane coupling agents, antifoaming agents, internal mold release agents, and flow control agents. Additionally, various known additives such as colorants, flame retardants, thixotropy imparting agents, etc. can be used within the scope of the present invention.
 本発明のビニル樹脂組成物は、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等の溶剤に溶解させ、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して硬化物を得ることなどもできる。 The vinyl resin composition of the present invention can be dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, or cyclohexanone, and used as a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, or paper. It is also possible to obtain a cured product by hot press molding a prepreg obtained by impregnating a material and drying it by heating.
 また、場合により銅箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に、本発明の第2の実施形態に係るビニル樹脂組成物を塗布することにより積層物とすることができ、加熱乾燥して得た樹脂シートを熱プレス成形して硬化物を得ることもできる。 In addition, in some cases, a laminate can be obtained by applying the vinyl resin composition according to the second embodiment of the present invention on a sheet-like material such as copper foil, stainless steel foil, polyimide film, polyester film, etc. A cured product can also be obtained by hot press molding a resin sheet obtained by heating and drying.
 このような本発明の第2の実施形態に係るビニル樹脂組成物は、高熱伝導率の硬化物を与え、すなわち高熱伝導用の硬化物を提供する用途として適する。ここで、本発明の第2の実施形態に係るビニル樹脂組成物の硬化物は、熱伝導率が無機充填材を含有する場合は、8W/m・K以上が好ましく、10W/m・K以上がより好ましい。無機充填材を含有しない場合は、0.25W/m・K以上が好ましく、より好ましくは0.30W/m・K以上である。 The vinyl resin composition according to the second embodiment of the present invention is suitable for providing a cured product with high thermal conductivity, that is, providing a cured product for high thermal conductivity. Here, when the cured product of the vinyl resin composition according to the second embodiment of the present invention contains an inorganic filler, the thermal conductivity is preferably 8 W/m·K or more, and 10 W/m·K or more. is more preferable. When the inorganic filler is not contained, it is preferably 0.25 W/m·K or more, more preferably 0.30 W/m·K or more.
 以下、実施例及び比較例等を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。特に断りがない限り、「部」は重量部を表し、「%」は重量%を表す。 Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. However, the present invention is not limited to these. Unless otherwise specified, "parts" represent parts by weight, and "%" represent % by weight.
<第1の実施形態に係る実施例>
 以下、実施例により本発明の第1の実施形態をさらに具体的に説明する。
<Example according to the first embodiment>
Hereinafter, the first embodiment of the present invention will be described in more detail with reference to Examples.
合成例1-1(エポキシ樹脂Aの製造)
 4,4’-ジヒドロキシジフェニルエーテル100.0gをエピクロルヒドリン460g、ジエチレングリコールジメチルエーテル70gに溶解し、60℃、減圧下(約130Torr)、48%水酸化ナトリウム水溶液90.8gを3時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続して脱水後、エピクロルヒドリンを留去し、トルエン580gを加えた後、水洗により塩を除いた。その後、分液により水を除去後、トルエンを減圧留去し、白色結晶状のエポキシ樹脂(エポキシ樹脂A)126gを得た。エポキシ当量は163であり、加水分解性塩素は150ppm、融点は83℃であり、150℃での粘度は10mPa・sであった。GPC測定より求められた4,4’-ジヒドロキシジフェニルエーテルより得られるエポキシ樹脂のn=0(単量体)は91.2%であった。n=1以上は8.8%であった。
Synthesis Example 1-1 (Production of epoxy resin A)
100.0 g of 4,4'-dihydroxydiphenyl ether was dissolved in 460 g of epichlorohydrin and 70 g of diethylene glycol dimethyl ether, and 90.8 g of a 48% aqueous sodium hydroxide solution was added dropwise at 60° C. and under reduced pressure (approximately 130 Torr) over 3 hours. During this time, the produced water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After the dropwise addition was completed, the reaction was continued for another 1 hour, and after dehydration, epichlorohydrin was distilled off, 580 g of toluene was added, and the salt was removed by washing with water. Thereafter, water was removed by liquid separation, and toluene was distilled off under reduced pressure to obtain 126 g of a white crystalline epoxy resin (epoxy resin A). The epoxy equivalent was 163, the hydrolyzable chlorine was 150 ppm, the melting point was 83°C, and the viscosity at 150°C was 10 mPa·s. The n=0 (monomer) of the epoxy resin obtained from 4,4'-dihydroxydiphenyl ether was determined by GPC measurement to be 91.2%. The percentage of n=1 or more was 8.8%.
合成例1-2(エポキシ樹脂Bの製造)
 ヒドロキノン50.0g、4,4’-ジヒドロキシビフェニル100.0gをエピクロルヒドリン1000g、ジエチレングリコールジメチルエーテル150gに溶解し、60℃にて48%水酸化ナトリウムを16.5g加え1時間攪拌した。その後、減圧下(約130Torr)、48%水酸化ナトリウム水溶液148.8gを3時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続して脱水後、エピクロルヒドリンを留去し、メチルイソブチルケトン600gを加えた後、水洗により塩を除いた。その後、85℃にて48%水酸化ナトリウムを13.5g添加して1時間攪拌し、温水200mLで水洗した。その後、分液により水を除去後、メチルイソブチルケトンを減圧留去し、白色結晶状のエポキシ樹脂(エポキシ樹脂B)224gを得た。エポキシ当量は139であり、加水分解性塩素は320ppm、融点は125℃であり、150℃での粘度は3.4mPa・sであった。GPC測定より求められた4,4’-ジヒドロキシビフェニルより得られるエポキシ樹脂のn=0(単量体)は67.2%であった。またヒドロキノンより得られるエポキシ樹脂のn=0(単量体)は.23.1%であった。n=1以上は9.7%であった。
Synthesis Example 1-2 (Production of epoxy resin B)
50.0 g of hydroquinone and 100.0 g of 4,4'-dihydroxybiphenyl were dissolved in 1000 g of epichlorohydrin and 150 g of diethylene glycol dimethyl ether, and 16.5 g of 48% sodium hydroxide was added at 60° C. and stirred for 1 hour. Thereafter, 148.8 g of a 48% aqueous sodium hydroxide solution was added dropwise under reduced pressure (approximately 130 Torr) over 3 hours. During this time, the produced water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After the dropwise addition was completed, the reaction was continued for another 1 hour, and after dehydration, epichlorohydrin was distilled off, 600 g of methyl isobutyl ketone was added, and the salt was removed by washing with water. Thereafter, 13.5 g of 48% sodium hydroxide was added at 85° C., stirred for 1 hour, and washed with 200 mL of warm water. Thereafter, after water was removed by liquid separation, methyl isobutyl ketone was distilled off under reduced pressure to obtain 224 g of a white crystalline epoxy resin (epoxy resin B). The epoxy equivalent was 139, the hydrolyzable chlorine was 320 ppm, the melting point was 125°C, and the viscosity at 150°C was 3.4 mPa·s. The n=0 (monomer) of the epoxy resin obtained from 4,4'-dihydroxybiphenyl determined by GPC measurement was 67.2%. In addition, n=0 (monomer) of the epoxy resin obtained from hydroquinone is . It was 23.1%. The percentage of n=1 or more was 9.7%.
合成例1-3(エポキシ樹脂Cの製造)
 2Lの4口セパラブルフラスコに4,4’-ジヒドロキシビフェニル115.7gをNMP700gに溶解した後、炭酸カリウム56.7gを加え、窒素気流下、攪拌しながら120℃に昇温した。その後、2,6-ジクロロベンゾニトリル35.6gを加え、145℃に昇温し6時間反応させた。反応液に酢酸49.2gを加えて中和した後、減圧下、NMPを留去した。反応液にMIBK 500mLを加えて生成物を溶解した後、水洗により生成塩を除去した。その後、MIBKを減圧蒸留により除いて、ヒドロキシ樹脂129gを得た。得られたヒドロキシ樹脂の水酸基当量は170g/eq.、融点は272℃であった。得られたヒドロキシ樹脂50.0g、エピクロルヒドリン380g、ジエチレングリコールジメチルエーテル(ジグライム)96gを仕込み、減圧下(約130Torr)、65℃にて48.6%水酸化ナトリウム水溶液27.5gを3時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続し脱水した。その後、エピクロルヒドリン及びジグライムを減圧留去し、メチルイソブチルケトン200mLに溶解した後、濾過により生成した塩を除いた。その後、48%水酸化ナトリウム水溶液0.4gを加え、80℃で2時間反応させた。反応後、濾過、水洗を行った後、溶媒であるメチルイソブチルケトンを減圧留去し、常温固形のエポキシ樹脂43gを得た(エポキシ樹脂C)。得られたエポキシ樹脂Cの融点は139℃、エポキシ当量は226g/eq.、加水分解性塩素は80ppmであった。
Synthesis Example 1-3 (Production of epoxy resin C)
After dissolving 115.7 g of 4,4'-dihydroxybiphenyl in 700 g of NMP in a 2 L 4-neck separable flask, 56.7 g of potassium carbonate was added, and the temperature was raised to 120° C. with stirring under a nitrogen stream. Thereafter, 35.6 g of 2,6-dichlorobenzonitrile was added, the temperature was raised to 145°C, and the mixture was reacted for 6 hours. After neutralizing the reaction solution by adding 49.2 g of acetic acid, NMP was distilled off under reduced pressure. After adding 500 mL of MIBK to the reaction solution and dissolving the product, the formed salt was removed by washing with water. Thereafter, MIBK was removed by vacuum distillation to obtain 129 g of hydroxy resin. The hydroxyl equivalent of the obtained hydroxy resin was 170 g/eq. , the melting point was 272°C. 50.0 g of the obtained hydroxy resin, 380 g of epichlorohydrin, and 96 g of diethylene glycol dimethyl ether (diglyme) were charged, and 27.5 g of a 48.6% aqueous sodium hydroxide solution was added dropwise at 65° C. under reduced pressure (approximately 130 Torr) over 3 hours. . During this time, the produced water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After the dropwise addition was completed, the reaction was continued for another 1 hour for dehydration. Thereafter, epichlorohydrin and diglyme were distilled off under reduced pressure, dissolved in 200 mL of methyl isobutyl ketone, and the generated salt was removed by filtration. Thereafter, 0.4 g of a 48% aqueous sodium hydroxide solution was added, and the mixture was reacted at 80° C. for 2 hours. After the reaction, filtration and water washing were performed, and the solvent methyl isobutyl ketone was distilled off under reduced pressure to obtain 43 g of an epoxy resin that was solid at room temperature (epoxy resin C). The melting point of the obtained epoxy resin C was 139°C, and the epoxy equivalent was 226 g/eq. , hydrolyzable chlorine was 80 ppm.
合成例1-4(エポキシ樹脂Dの製造)
 1000mlの4口フラスコに、4,4’-ジヒドロキシビフェニル77.5g、ジエチレングリコールジメチルエーテル119.3g、4,4’-ビスクロロメチルビフェニル、41.8gを仕込み、窒素気流下、揖梓しながら160℃まで昇温して20時間反応させ、OH当量135g/eqの多価ヒドロキシ樹脂を生成させた。反応終了後、ジエチレングリコールジメチルエーテルを45.6g回収し、エピクロルヒドリン455.1gを加え、減圧下(約130Torr)62℃にて48%水酸化ナトリウム水溶液70.5gを4時間かけて滴下した。この間、生成する水はエピクロルヒドリンとの共沸により系外に除き、留出したエピクロルヒドリンは系内に戻した。滴下終了後、さらに1時間反応を継続した。その後、エピクロルヒドリンを留去し、メチルイソブチルケトンを加えた後、水洗により塩を除いた後、濾過、水洗を行ない、次にメチルイソブチルケトンを減圧留去し、エポキシ樹脂129gを得た(エポキシ樹脂D)。このエポキシ樹脂Dのエポキシ当量は200g/eq、軟化点は125℃、融点120℃、溶融粘度0.21Pa・s、加水分解性塩素は230ppmであった。
Synthesis Example 1-4 (Production of epoxy resin D)
77.5 g of 4,4'-dihydroxybiphenyl, 119.3 g of diethylene glycol dimethyl ether, and 41.8 g of 4,4'-bischloromethylbiphenyl were placed in a 1,000 ml four-necked flask, and the mixture was heated at 160°C under a nitrogen stream with stirring. The temperature was raised to 100 mL, and the reaction was carried out for 20 hours to produce a polyhydric hydroxy resin with an OH equivalent of 135 g/eq. After the reaction was completed, 45.6 g of diethylene glycol dimethyl ether was collected, 455.1 g of epichlorohydrin was added, and 70.5 g of a 48% aqueous sodium hydroxide solution was added dropwise at 62° C. under reduced pressure (approximately 130 Torr) over 4 hours. During this time, the produced water was removed from the system by azeotropy with epichlorohydrin, and the distilled epichlorohydrin was returned to the system. After the dropwise addition was completed, the reaction was continued for an additional hour. After that, epichlorohydrin was distilled off, methyl isobutyl ketone was added, salt was removed by water washing, filtration and water washing were performed, and then methyl isobutyl ketone was distilled off under reduced pressure to obtain 129 g of epoxy resin (epoxy resin D). This epoxy resin D had an epoxy equivalent of 200 g/eq, a softening point of 125°C, a melting point of 120°C, a melt viscosity of 0.21 Pa·s, and a hydrolyzable chlorine content of 230 ppm.
実施例1-1~1-9、比較例1-1~1-5
 エポキシ樹脂として、合成例1-1で得たエポキシ樹脂(エポキシ樹脂A)、合成例1-2で得たエポキシ樹脂(エポキシ樹脂B)、合成例1-3で得たエポキシ樹脂(エポキシ樹脂C)、合成例1-4で得たエポキシ樹脂(エポキシ樹脂D)を用いた。硬化剤として、4,4’-ジヒドロキシジフェニルエーテル(硬化剤A、OH当量101 g/eq.)、フェノ-ルノボラック(硬化剤B:アイカ工業製、BRG-557、OH当量105 g/eq.、軟化点82℃)を使用し、硬化促進剤としてトリフェニルホスフィン、無機充填材として球状アルミナ(デンカ製、DAW-10、平均粒径12.2μm)を使用し、添加剤として、タルク(添加剤A、平均粒径10~15μm、富士フィルム和光純薬製)、マイカ(添加剤B、合成雲母、富士フィルム和光純薬製)、一般的な造核剤として添加剤C(1,3:2,4-ビス(3,4-ジメチルベンジリデン)-D-ソルビトール、東京化成工業製)又は添加剤D(ナトリウム2,4,8,10-テトラ-tert-ブチル-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン-6-オラート6-オキシド、東京化成工業製)を使用した。
Examples 1-1 to 1-9, Comparative Examples 1-1 to 1-5
The epoxy resins used include the epoxy resin obtained in Synthesis Example 1-1 (Epoxy Resin A), the epoxy resin obtained in Synthesis Example 1-2 (Epoxy Resin B), and the epoxy resin obtained in Synthesis Example 1-3 (Epoxy Resin C). ), the epoxy resin obtained in Synthesis Example 1-4 (epoxy resin D) was used. As a curing agent, 4,4'-dihydroxydiphenyl ether (curing agent A, OH equivalent 101 g/eq.), phenol novolac (curing agent B: manufactured by Aica Kogyo, BRG-557, OH equivalent 105 g/eq., softening triphenylphosphine as a curing accelerator, spherical alumina (manufactured by Denka, DAW-10, average particle size 12.2 μm) as an inorganic filler, and talc (additive A) as an additive. , average particle size 10-15 μm, Fuji Film Wako Pure Chemical Industries, Ltd.), mica (additive B, synthetic mica, Fuji Film Wako Pure Chemical Industries, Ltd.), additive C (1,3:2, 4-bis(3,4-dimethylbenzylidene)-D-sorbitol, manufactured by Tokyo Kasei Kogyo) or additive D (sodium 2,4,8,10-tetra-tert-butyl-12H-dibenzo[d,g][ 1,3,2]dioxaphosphosine-6-olate 6-oxide (manufactured by Tokyo Kasei Kogyo) was used.
 表1に示す成分を配合し、ミキサーで十分混合した後、加熱ロールで約5分間混練したものを冷却し、粉砕してそれぞれ実施例1-1~1-9、比較例1-1~1-5のエポキシ樹脂組成物を得た。このエポキシ樹脂組成物を用いて175℃、5分の条件で成形後、180℃で12時間ポストキュアを行い、硬化成形物を得て、その物性を評価した。結果をまとめて表1に示す。なお、表1中の各成分の数字は重量部を表す。 The ingredients shown in Table 1 were blended, thoroughly mixed with a mixer, then kneaded with a heating roll for about 5 minutes, cooled, and pulverized for Examples 1-1 to 1-9 and Comparative Examples 1-1 to 1, respectively. An epoxy resin composition No.-5 was obtained. After molding using this epoxy resin composition at 175°C for 5 minutes, post-curing was performed at 180°C for 12 hours to obtain a cured molded product, and its physical properties were evaluated. The results are summarized in Table 1. Note that the numbers for each component in Table 1 represent parts by weight.
[評価]
(1)熱伝導率
 熱伝導率は、NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
(2)融点、融解熱の測定(DSC法)
 日立ハイテクサイエンス製TG/DTA7300型示差走査熱量分析装置を用い、約10mgの精秤した試料を用いて、窒素気流下、昇温速度10℃/分で測定した。なお、無機充填材を含んだ硬化物を試料とした場合、融解熱は樹脂成分のみに換算した。
(3)線膨張係数、ガラス転移温度
 線膨張係数およびガラス転移温度は、日立ハイテクサイエンス製TMA7100型熱機械測定装置を用いて、昇温速度10℃/分にて測定した。
(4)吸水率
 直径50mm、厚さ3mmの円盤を成形し、ポストキュア後、85℃、相対湿度85%の条件で100時間吸湿させた後の重量変化率とした。
(5)XRDの測定、結晶化度の算出
 リガク社製RINT TTR3を用いて、XRD測定を行った。測定条件は下記の通りとした。回折角度2θ:10°~30°、走査速度:0.25°/min、発散スリット:1/2degree、発散縦制限スリット:10mm、散乱スリット:1/2degree、受光スリット:0.3mm。
 結晶化度は、2θが28°から29°の領域に観察されるタルクの回析ピークを除き、下記の式により算出した。マイカを用いた場合は、6°から8°の領域に観察されるピークを除く。ここで、結晶性ピークとは、回折ピークの幅が5°以内、好ましくは3°以内のピークであるシャープなピークであり、非晶質ピークとは、回折ピーク幅が8°以上あるブロードなピークである。
 結晶化度=〔結晶性ピーク面積/(結晶性ピーク面積+非晶質ピーク面積)〕*100
[evaluation]
(1) Thermal conductivity The thermal conductivity was measured by an unsteady hot wire method using a NETZSCH model LFA447 thermal conductivity meter.
(2) Measurement of melting point and heat of fusion (DSC method)
Measurement was performed using a TG/DTA7300 differential scanning calorimeter manufactured by Hitachi High-Tech Science, using a precisely weighed sample of about 10 mg, under a nitrogen stream at a heating rate of 10° C./min. In addition, when a cured product containing an inorganic filler was used as a sample, the heat of fusion was converted only to the resin component.
(3) Coefficient of Linear Expansion, Glass Transition Temperature The coefficient of linear expansion and glass transition temperature were measured at a heating rate of 10° C./min using a thermomechanical measuring device TMA7100 manufactured by Hitachi High-Tech Science.
(4) Water absorption rate A disk with a diameter of 50 mm and a thickness of 3 mm was molded, and after post-curing, it was allowed to absorb moisture for 100 hours at 85° C. and a relative humidity of 85%. This was the weight change rate.
(5) XRD measurement and crystallinity calculation XRD measurement was performed using RINT TTR3 manufactured by Rigaku Corporation. The measurement conditions were as follows. Diffraction angle 2θ: 10° to 30°, scanning speed: 0.25°/min, divergence slit: 1/2 degree, divergence vertical restriction slit: 10 mm, scattering slit: 1/2 degree, light receiving slit: 0.3 mm.
The crystallinity was calculated by the following formula, excluding the talc diffraction peak observed in the 2θ range of 28° to 29°. When mica is used, the peak observed in the 6° to 8° region is excluded. Here, a crystalline peak is a sharp peak with a diffraction peak width of 5° or less, preferably 3° or less, and an amorphous peak is a broad peak with a diffraction peak width of 8° or more. It is the peak.
Crystallinity = [Crystalline peak area / (Crystalline peak area + Amorphous peak area)] * 100
 これらの結果から明らかなとおり、実施例で得られるエポキシ樹脂組成物は熱伝導性に優れることからパワーデバイス、および車載用途に適する。なお、所定の層状粘土鉱物を含有しない比較例に係るエポキシ樹脂組成物を用いた場合は、結晶性ピークは得られず非晶質なピークであったため、結晶化度はいずれも0%であった。 As is clear from these results, the epoxy resin compositions obtained in Examples have excellent thermal conductivity and are therefore suitable for power devices and automotive applications. In addition, when using the epoxy resin composition according to the comparative example that does not contain the predetermined layered clay mineral, no crystalline peak was obtained but an amorphous peak, so the crystallinity was 0% in both cases. Ta.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
[第1の実施形態についての発明の効果、産業上の利用可能性]
 第1の実施形態で例示されるエポキシ樹脂組成物は、成形性、信頼性に優れ、かつ高熱伝導性、低吸水性、低熱膨張性、高耐熱性、難燃性に優れた硬化成形物を与え、半導体封止、積層板、放熱基板等の電気・電子材料用絶縁材料として好適に応用され、優れた高放熱性、高耐熱性、難燃性および高寸法安定性が発揮される。このような特異的な効果が生ずる理由は、層状粘土鉱物が、ビフェニル構造等の剛直構造を有する特定のエポキシ樹脂硬化物の配向性を高めるためと推測される。
[Effects of the invention and industrial applicability of the first embodiment]
The epoxy resin composition exemplified in the first embodiment can produce cured molded products with excellent moldability, reliability, high thermal conductivity, low water absorption, low thermal expansion, high heat resistance, and flame retardancy. It is suitably applied as an insulating material for electrical and electronic materials such as semiconductor encapsulation, laminates, and heat dissipation substrates, and exhibits excellent heat dissipation, high heat resistance, flame retardancy, and high dimensional stability. The reason why such a specific effect occurs is presumed to be that the layered clay mineral enhances the orientation of a specific cured epoxy resin having a rigid structure such as a biphenyl structure.
<第2の実施形態に係る実施例>
 以下、実施例により本発明の第2の実施形態をさらに具体的に説明する。
 また、測定方法はそれぞれ以下の方法により測定した。
<Example according to the second embodiment>
Hereinafter, the second embodiment of the present invention will be described in more detail with reference to Examples.
In addition, the measurement methods were as follows.
1)OH当量(水酸基当量)
 電位差滴定装置を用い、1,4-ジオキサンを溶媒に用い、1.5mol/L塩化アセチルでアセチル化を行い、過剰の塩化アセチルを水で分解して0.5mol/L-水酸化カリウムを使用して滴定した。
1) OH equivalent (hydroxyl group equivalent)
Using a potentiometric titrator, use 1,4-dioxane as a solvent, perform acetylation with 1.5 mol/L acetyl chloride, decompose excess acetyl chloride with water, and use 0.5 mol/L-potassium hydroxide. and titrated.
2)ビニル当量
 試料にウィイス液(一塩化ヨウ素溶液)を反応させ、暗所に放置し、その後、過剰の塩化ヨウ素をヨウ素に還元し、ヨウ素分をチオ硫酸ナトリウムで滴定してヨウ素価を算出した。ヨウ素価をビニル当量に換算した。
2) Vinyl equivalent React the sample with Wiess solution (iodine monochloride solution), leave it in a dark place, then reduce excess iodine chloride to iodine, titrate the iodine content with sodium thiosulfate, and calculate the iodine value. did. The iodine value was converted into vinyl equivalent.
3)全塩素
 試料1.0gをブチルカルビトール25mlに溶解後、1N-KOHプロピレングリコール溶液25mlを加え10分間加熱還流した後、室温まで冷却し、さらに80%アセトン水100mlを加え、0.002N-AgNO水溶液で電位差滴定を行うことにより測定した。
3) Total chlorine After dissolving 1.0 g of the sample in 25 ml of butyl carbitol, add 25 ml of 1N-KOH propylene glycol solution, heat under reflux for 10 minutes, cool to room temperature, and then add 100 ml of 80% acetone water to dissolve 0.002N. - Measured by potentiometric titration with an aqueous AgNO 3 solution.
4)GPC測定
 本体(東ソー株式会社製、HLC-8220GPC)にカラム(東ソー株式会社製、TSKgel SuperMultiporeHZ―N 4本)を直列に備えたものを使用し、カラム温度は40℃にした。また、溶離液にはテトラヒドロフラン(THF)を使用し、0.35mL/分の流速とし、検出器は示差屈折率検出器を使用した。測定試料はサンプル0.1gを10mLのTHFに溶解し、マイクロフィルターで濾過したものを50μL使用した。データ処理は、東ソー株式会社製GPC-8020モデルIIバージョン6.00を使用した。
4) GPC measurement A main unit (HLC-8220GPC, manufactured by Tosoh Corporation) equipped with columns (4 TSKgel SuperMultipore HZ-N, manufactured by Tosoh Corporation) in series was used, and the column temperature was set at 40°C. Further, tetrahydrofuran (THF) was used as the eluent at a flow rate of 0.35 mL/min, and a differential refractive index detector was used as the detector. As a measurement sample, 0.1 g of the sample was dissolved in 10 mL of THF, and 50 μL of the solution was filtered with a microfilter. For data processing, GPC-8020 Model II version 6.00 manufactured by Tosoh Corporation was used.
5)融点、融解熱(DSC法)
 日立ハイテクサイエンス製DSC7020型示差走査熱量分析装置により、約10mgを精秤した試料を用いて、窒素気流下、昇温速度10℃/分の条件で測定した。
5) Melting point, heat of fusion (DSC method)
Using a differential scanning calorimeter DSC7020 model manufactured by Hitachi High-Tech Science Co., Ltd., measurement was performed using a precisely weighed sample of about 10 mg under a nitrogen stream at a heating rate of 10° C./min.
6)溶剤溶解性(析出温度)
 サンプル瓶に樹脂2g、メチルエチルケトン1gを秤量し、加熱溶解させた後、恒温槽内にて徐々に温度を低下させ、樹脂が析出した槽内の温度を測定した。析出温度(℃)が高いほど、溶剤溶解性が劣る。
6) Solvent solubility (precipitation temperature)
After weighing 2 g of resin and 1 g of methyl ethyl ketone into a sample bottle and heating and dissolving them, the temperature was gradually lowered in a constant temperature bath, and the temperature in the bath where the resin precipitated was measured. The higher the precipitation temperature (°C), the worse the solvent solubility.
7)ガラス転移点(Tg)
 熱機械測定装置(株式会社日立ハイテクサイエンス製 EXSTAR TMA/7100)により、昇温速度10℃/分の条件でTgを求めた。
7) Glass transition point (Tg)
Tg was determined using a thermomechanical measuring device (EXSTAR TMA/7100, manufactured by Hitachi High-Tech Science Co., Ltd.) at a temperature increase rate of 10° C./min.
8)5%重量減少温度(Td5)、残炭率
 熱重量/示差熱分析装置(日立ハイテクサイエンス製 EXSTAR TG/DTA7300)を用いて、窒素雰囲気下、昇温速度10℃/分の条件において、5%重量減少温度(Td5)を測定した。また、700℃における重量減少を測定し、残炭率として算出した。
8) 5% weight loss temperature (Td5), residual carbon percentage Using a thermogravimetric/differential thermal analyzer (EXSTAR TG/DTA7300 manufactured by Hitachi High-Tech Science), under nitrogen atmosphere and at a heating rate of 10°C/min, The 5% weight loss temperature (Td5) was measured. In addition, the weight loss at 700°C was measured and calculated as the residual carbon percentage.
9)熱伝導率
 熱伝導率は、NETZSCH製LFA447型熱伝導率計を用いて非定常熱線法により測定した。
9) Thermal conductivity The thermal conductivity was measured by an unsteady hot wire method using a NETZSCH model LFA447 thermal conductivity meter.
10)誘電率及び誘電正接
 JIS C 2138規格に従って測定した。測定周波数は1GHzの値で示した。
10) Dielectric constant and dielectric loss tangent Measured according to JIS C 2138 standard. The measurement frequency is shown as a value of 1 GHz.
11)電解脱離イオン化質量分析(FD-MS)
 質量分析計JMS-T100GCV(日本電子社製)を用いて測定した。試料をアセトンに溶解し、測定に供した。
11) Electrodesorption ionization mass spectrometry (FD-MS)
Measurement was performed using a mass spectrometer JMS-T100GCV (manufactured by JEOL Ltd.). The sample was dissolved in acetone and subjected to measurement.
(合成例2-1)
 1000mLの4口フラスコに、2,5-キシレノール(下記構造式2-14)73.6g(0.60モル)、
Figure JPOXMLDOC01-appb-C000026
p-ヒドロキシベンズアルデヒド(下記構造式2-15)24.4g(0.20モル)
Figure JPOXMLDOC01-appb-C000027
を仕込み、2-エトキシエタノール200.0gに溶解させた。氷浴中で冷却しながら硫酸20.0gを加えた後、100℃で3時間加熱、攪拌し反応させた。反応後、得られた溶液を水で再沈殿操作を行い、水洗、ろ過、真空乾燥を行うことによって、水酸基当量は118g/eqの三官能ヒドロキシ化合物を65.0g得た。当該三官能ヒドロキシ化合物は、式(2-4)において、R~Rがいずれもメチル基でありR及びRが水素原子の化合物である。
 次いで、1000mlの4口フラスコに得られた三官能ヒドロキシ化合物を59.0g(0.17モル)、メチルエチルケトン400g、クロロメチルスチレン(下記構造式2-16)91.6g(0.60モル)
Figure JPOXMLDOC01-appb-C000028
を加え、60℃に昇温し、メタノール101gに溶解した水酸化カリウム33.7gを3時間かけて滴下し、さらに6時間反応した。反応終了後、濾過し、溶剤を留去し、メタノールにて再沈殿し、大量の水で水洗し、減圧乾燥によりビニル樹脂102.4gを得た(ビニル樹脂A)。ビニル樹脂Aの基本構造は、式(2-1)において、R~Rがいずれもメチル基でありRおよびRが水素であり、ビニル当量は225g/eq、水酸基当量は12000g/eq、全塩素は600ppm、融点130℃、Mn780であった。
 得られたビニル樹脂AのGPCチャートを図3に示す。
(Synthesis example 2-1)
In a 1000 mL 4-necked flask, 73.6 g (0.60 mol) of 2,5-xylenol (Structural Formula 2-14 below),
Figure JPOXMLDOC01-appb-C000026
24.4 g (0.20 mol) of p-hydroxybenzaldehyde (Structural formula 2-15 below)
Figure JPOXMLDOC01-appb-C000027
was charged and dissolved in 200.0 g of 2-ethoxyethanol. After adding 20.0 g of sulfuric acid while cooling in an ice bath, the mixture was heated and stirred at 100° C. for 3 hours to react. After the reaction, the resulting solution was reprecipitated with water, washed with water, filtered, and vacuum dried to obtain 65.0 g of a trifunctional hydroxy compound with a hydroxyl equivalent of 118 g/eq. The trifunctional hydroxy compound is a compound in formula (2-4) in which R 1 to R 4 are all methyl groups and R 5 and R 6 are hydrogen atoms.
Next, 59.0 g (0.17 mol) of the obtained trifunctional hydroxy compound, 400 g of methyl ethyl ketone, and 91.6 g (0.60 mol) of chloromethylstyrene (Structural Formula 2-16 below) were placed in a 1000 ml four-necked flask.
Figure JPOXMLDOC01-appb-C000028
was added, the temperature was raised to 60°C, 33.7 g of potassium hydroxide dissolved in 101 g of methanol was added dropwise over 3 hours, and the reaction was further continued for 6 hours. After the reaction was completed, it was filtered, the solvent was distilled off, reprecipitated with methanol, washed with a large amount of water, and dried under reduced pressure to obtain 102.4 g of vinyl resin (vinyl resin A). The basic structure of vinyl resin A is that in formula (2-1), R 1 to R 4 are all methyl groups, R 5 and R 6 are hydrogen, the vinyl equivalent is 225 g/eq, and the hydroxyl equivalent is 12000 g/eq. eq, total chlorine was 600 ppm, melting point was 130° C., and Mn was 780.
A GPC chart of the obtained vinyl resin A is shown in FIG.
(合成例2-2)
 1000mlの4口フラスコに、4,4’-ジヒドロキシビフェニル(下記構造式2-17)65.3g(0.35モル)、
Figure JPOXMLDOC01-appb-C000029
ジエチレングリコールジメチルエーテル121.2g、4,4’-ビス(クロロメチル)ビフェニル(下記構造式2-18)58.7g(0.23モル)
Figure JPOXMLDOC01-appb-C000030
を仕込み、窒素気流下、攪拌しながら170℃まで昇温して3時間反応させ、さらにジヒドロキシジフェニルメタン(4,4’-ジヒドロキシジフェニルメタン(下記構造式2-19):36.2%、2,4’-ジヒドロキシジフェニルメタン:46.6%、2,2’―ジヒドロキシジフェニルメタン:17.2%)7.8g(0.04モル)
Figure JPOXMLDOC01-appb-C000031
を反応させ、式(2-7)に係る多価ヒドロキシ樹脂(水酸基当量129g/eq)を生成させた。
 反応終了後、ジエチレングリコールジメチルエーテルを50.7g回収し、メチルエチルケトン320g、クロロメチルスチレン135.5gを加え、60℃に昇温し、メタノール150gに溶解した水酸化カリウム49.8gを3時間かけて滴下し、さらに6時間反応した。反応終了後、濾過し、溶剤を留去し、メタノールにて再沈殿し、大量の水で水洗し、減圧乾燥により、式(2-6)(すわなち、式(2-2))に係る白色固体のビニル樹脂141gを得た(ビニル樹脂B)。ビニル樹脂Bのビニル当量は275g/eq、水酸基当量は15000g/eq、全塩素は300ppm、Mn1330、融点145℃であった。多価ヒドロキシ樹脂、ビニル樹脂Bの基本構造は、式(2-6)、(2-7)において、Aは-CH-基であり、e/(e+f)の比率(モル比)は0.93であり、eは4.2、fは0.3である。
 得られたビニル樹脂BのGPCチャートを図4に示す。
(Synthesis example 2-2)
In a 1000 ml four-necked flask, 65.3 g (0.35 mol) of 4,4'-dihydroxybiphenyl (Structural Formula 2-17 below),
Figure JPOXMLDOC01-appb-C000029
121.2 g of diethylene glycol dimethyl ether, 58.7 g (0.23 mol) of 4,4'-bis(chloromethyl)biphenyl (Structure 2-18 below)
Figure JPOXMLDOC01-appb-C000030
was charged, the temperature was raised to 170°C with stirring under a nitrogen stream, and the reaction was carried out for 3 hours, and further dihydroxydiphenylmethane (4,4'-dihydroxydiphenylmethane (Structure 2-19 below): 36.2%, 2,4 '-Dihydroxydiphenylmethane: 46.6%, 2,2'-dihydroxydiphenylmethane: 17.2%) 7.8g (0.04mol)
Figure JPOXMLDOC01-appb-C000031
were reacted to produce a polyhydric hydroxy resin (hydroxyl equivalent: 129 g/eq) according to formula (2-7).
After the reaction, 50.7 g of diethylene glycol dimethyl ether was collected, 320 g of methyl ethyl ketone and 135.5 g of chloromethylstyrene were added, the temperature was raised to 60°C, and 49.8 g of potassium hydroxide dissolved in 150 g of methanol was added dropwise over 3 hours. , and reacted for an additional 6 hours. After the reaction is completed, it is filtered, the solvent is distilled off, reprecipitated with methanol, washed with a large amount of water, and dried under reduced pressure to obtain formula (2-6) (that is, formula (2-2)). 141 g of such a white solid vinyl resin was obtained (vinyl resin B). Vinyl resin B had a vinyl equivalent of 275 g/eq, a hydroxyl equivalent of 15000 g/eq, a total chlorine content of 300 ppm, an Mn of 1330, and a melting point of 145°C. The basic structure of the polyvalent hydroxy resin and vinyl resin B is that in formulas (2-6) and (2-7), A is a -CH 2 - group, and the ratio (molar ratio) of e/(e+f) is 0. .93, e is 4.2, and f is 0.3.
A GPC chart of the obtained vinyl resin B is shown in FIG.
(合成例2-3)
 2Lの4口セパラブルフラスコに4,4’-ジヒドロキシビフェニル74.5g(0.4モル)、1,5-ジブロモペンタン(下記構造式2-20)18.4g(0.08モル)を仕込み、
Figure JPOXMLDOC01-appb-C000032
N-メチル-2-ピロリドン500gに溶解した後、炭酸カリウム41.5gを加え、窒素気流下、攪拌しながら120℃に昇温した。その後、2,6-ジクロロベンゾニトリル(下記構造式2-21)20.6g(0.12モル)
Figure JPOXMLDOC01-appb-C000033
を加え、145℃に昇温し6時間反応させた。反応液に酢酸28.2gを加えて中和した後、減圧下、N-メチル-2-ピロリドンを留去した。反応液にメチルイソブチルケトン250mLを加えて生成物を溶解した後、水洗により生成塩を除去した。その後、メチルイソブチルケトンを減圧蒸留により除いて、ヒドロキシ樹脂を72.6g得た。得られたヒドロキシ樹脂の水酸基当量は225g/eq、Mnは520であった。p値(平均値)は、2.3であった。ヒドロキシ樹脂の基本構造は、式(2-13)においてYは直接結合であって、Bがベンゾニトリル構造の場合の構造単位と、-(CH-(q=5)の場合の構造単位の両方を備えるものである。
 次いで、1000mlの4口フラスコに得られたヒドロキシ樹脂を74.3g(0.33モル)、メチルエチルケトン400g、クロロメチルスチレン61.0g(0.40モル)を加え、60℃に昇温し、メタノール70gに溶解した水酸化カリウム22.4g(0.40モル)を3時間かけて滴下し、さらに6時間反応した。反応終了後、濾過し、溶剤を留去し、メタノールにて再沈殿し、大量の水で水洗し、減圧乾燥により式(2-12)(すわなち、式(2-3))に係るビニル樹脂84.3gを得た(ビニル樹脂C)。ビニル樹脂Cのビニル当量は341g/eq、水酸基当量は10000g/eq、全塩素は900ppm、Mn710、融点174℃であった。ビニル樹脂Cの基本構造は、式(2-12)、式(2-3)において、qは5、gは1~3、hは1~3、p値(平均値)は、1.8であった。
 得られたビニル樹脂CのGPCチャートを図5に示し、FD-MSスペクトルを図6に示す。
(Synthesis example 2-3)
74.5 g (0.4 mol) of 4,4'-dihydroxybiphenyl and 18.4 g (0.08 mol) of 1,5-dibromopentane (structural formula 2-20 below) were placed in a 2L 4-neck separable flask. ,
Figure JPOXMLDOC01-appb-C000032
After dissolving in 500 g of N-methyl-2-pyrrolidone, 41.5 g of potassium carbonate was added, and the temperature was raised to 120° C. with stirring under a nitrogen stream. Then, 20.6 g (0.12 mol) of 2,6-dichlorobenzonitrile (Structural Formula 2-21 below)
Figure JPOXMLDOC01-appb-C000033
was added, the temperature was raised to 145°C, and the mixture was reacted for 6 hours. After neutralizing the reaction solution by adding 28.2 g of acetic acid, N-methyl-2-pyrrolidone was distilled off under reduced pressure. After 250 mL of methyl isobutyl ketone was added to the reaction solution to dissolve the product, the formed salt was removed by washing with water. Thereafter, methyl isobutyl ketone was removed by vacuum distillation to obtain 72.6 g of hydroxy resin. The hydroxyl equivalent of the obtained hydroxy resin was 225 g/eq, and the Mn was 520. The p value (average value) was 2.3. The basic structure of the hydroxy resin is a structural unit when Y is a direct bond and B is a benzonitrile structure in formula (2-13), and a structure when -(CH 2 ) q - (q=5) It has both units.
Next, 74.3 g (0.33 mol) of the obtained hydroxy resin, 400 g of methyl ethyl ketone, and 61.0 g (0.40 mol) of chloromethylstyrene were added to a 1000 ml four-necked flask, and the temperature was raised to 60°C. 22.4 g (0.40 mol) of potassium hydroxide dissolved in 70 g was added dropwise over 3 hours, and the reaction was further continued for 6 hours. After the reaction is completed, it is filtered, the solvent is distilled off, reprecipitated with methanol, washed with a large amount of water, and dried under reduced pressure to obtain a product according to formula (2-12) (that is, formula (2-3)). 84.3 g of vinyl resin was obtained (vinyl resin C). Vinyl resin C had a vinyl equivalent of 341 g/eq, a hydroxyl equivalent of 10,000 g/eq, a total chlorine content of 900 ppm, an Mn of 710, and a melting point of 174°C. The basic structure of vinyl resin C is formula (2-12) and formula (2-3), where q is 5, g is 1 to 3, h is 1 to 3, and the p value (average value) is 1.8. Met.
The GPC chart of the obtained vinyl resin C is shown in FIG. 5, and the FD-MS spectrum is shown in FIG.
(合成例2-4)
 1000mlの4口フラスコに、4,4’-ビス(クロロメチル)ビフェニル40.8g、4,4’-ジヒドロキシビフェニル75.5g、ジエチレングリコールジメチルエーテル120gを仕込み、窒素気流下、攪拌しながら160℃まで昇温して10時間反応させた。続いて、70℃にし、ジエチレングリコールジメチルエーテルを280g、クロロメチルスチレンを129.5g加え、48%水酸化カリウム100.0gを滴下しながら反応を行い、ガスクロマトグラフィーにて残存クロロメチルスチレンが無いことを確認し溶剤を減圧回収した。得られた樹脂をトルエンに溶解し中和、水洗を行い、ビニル樹脂を得た(ビニル樹脂D)。得られたビニル樹脂Dのビニル当量は256g/eq、水酸基当量は1500g/eq、全塩素は1270ppmでMn1100、融点210℃であった。
 ビニル樹脂Dの融点が比較的高いことについては以下のように推察される。すなわち、原料としてジヒドロキシジフェニルメタンを使用しないことから、合成例2-2と比べて、ビフェニル成分の含有量が多いことや、ビフェニル構造による分子運動の抑制に起因して、得られるヒドロキシ樹脂の融点が高くなったものと推察される。それにより、ヒドロキシ樹脂の溶剤溶解性が比較的低下することから、その後のクロロメチルスチレンとの反応において、未反応の水酸基(水素結合性を有する極性基)を多く残存することと同時に、柔軟性のあるビニルベンジルエーテル基が低減されることになったと推察される。
(Synthesis example 2-4)
A 1000 ml four-neck flask was charged with 40.8 g of 4,4'-bis(chloromethyl)biphenyl, 75.5 g of 4,4'-dihydroxybiphenyl, and 120 g of diethylene glycol dimethyl ether, and the temperature was raised to 160°C while stirring under a nitrogen stream. The mixture was heated and reacted for 10 hours. Next, the temperature was raised to 70°C, 280 g of diethylene glycol dimethyl ether and 129.5 g of chloromethylstyrene were added, and the reaction was carried out while dropping 100.0 g of 48% potassium hydroxide. Gas chromatography was performed to confirm that there was no residual chloromethylstyrene. After confirmation, the solvent was recovered under reduced pressure. The obtained resin was dissolved in toluene, neutralized, and washed with water to obtain a vinyl resin (vinyl resin D). The vinyl equivalent of the obtained vinyl resin D was 256 g/eq, the hydroxyl equivalent was 1500 g/eq, the total chlorine was 1270 ppm, the Mn was 1100, and the melting point was 210°C.
The reason why vinyl resin D has a relatively high melting point is inferred as follows. That is, since dihydroxydiphenylmethane is not used as a raw material, the melting point of the resulting hydroxy resin is lower than that in Synthesis Example 2-2 due to the higher biphenyl component content and the suppression of molecular movement by the biphenyl structure. It is assumed that the price has increased. As a result, the solvent solubility of the hydroxy resin is relatively reduced, so in the subsequent reaction with chloromethylstyrene, many unreacted hydroxyl groups (polar groups with hydrogen bonding properties) remain, and at the same time, flexibility It is inferred that certain vinyl benzyl ether groups were reduced.
(合成例2-5)
 1000mlの4口フラスコに、ジヒドロキシジフェニルメタン(4,4’-ジヒドロキシジフェニルメタン:36.2%、2,4’-ジヒドロキシジフェニルメタン:46.6%、2,2’―ジヒドロキシジフェニルメタン:17.2%)50.0g、メチルエチルケトン400g、クロロメチルスチレン80.1gを加え、60℃に昇温し、メタノール88gに溶解した水酸化カリウム29.5gを3時間かけて滴下し、さらに6時間反応した。反応終了後、濾過し、溶剤を留去し、メタノールにて再沈殿し、大量の水で水洗し、減圧乾燥によりビニル樹脂95.4gを得た(ビニル樹脂E)。ビニル樹脂Eのビニル当量は217g/eq、水酸基当量は17000g/eq、全塩素は400ppm、Mn440、融点80℃であった。
 ビニル樹脂Eの融点が比較的低いことについては以下のように推察される。すなわち、前記合成例2-4とは異なり、原料としてジヒドロキシジフェニルメタンのみを使用してクロロメチルスチレンと反応させていることから、合成例2-2と比べて、ビフェニル成分を含有しないことに起因して、得られるヒドロキシ樹脂の融点が低くなったものと推察される。
(Synthesis example 2-5)
In a 1000ml 4-necked flask, add dihydroxydiphenylmethane (4,4'-dihydroxydiphenylmethane: 36.2%, 2,4'-dihydroxydiphenylmethane: 46.6%, 2,2'-dihydroxydiphenylmethane: 17.2%) 50 .0 g, 400 g of methyl ethyl ketone, and 80.1 g of chloromethylstyrene were added, the temperature was raised to 60° C., 29.5 g of potassium hydroxide dissolved in 88 g of methanol was added dropwise over 3 hours, and the reaction was further continued for 6 hours. After the reaction was completed, it was filtered, the solvent was distilled off, reprecipitated with methanol, washed with a large amount of water, and dried under reduced pressure to obtain 95.4 g of vinyl resin (vinyl resin E). Vinyl resin E had a vinyl equivalent of 217 g/eq, a hydroxyl equivalent of 17,000 g/eq, a total chlorine content of 400 ppm, an Mn of 440, and a melting point of 80°C.
The reason why the melting point of vinyl resin E is relatively low is inferred as follows. That is, unlike Synthesis Example 2-4, only dihydroxydiphenylmethane is used as a raw material and reacted with chloromethylstyrene, so compared to Synthesis Example 2-2, this is due to the fact that it does not contain a biphenyl component. It is presumed that this is why the melting point of the obtained hydroxy resin was lowered.
実施例2-1~2-5、比較例2-1~2-4
 ビニル樹脂として合成例2-1~2-5で得たビニル樹脂A~Eを使用し、添加剤としてタルク(添加剤A、平均粒径10~15μm、富士フィルム和光純薬製)、硬化促進剤として有機過酸化物であるパーブチルP(日油株式会社製)、酸化防止剤としてアデカスタブAO-60(株式会社ADEKA製)、無機充填材Aとして球状アルミナ(デンカ製、DAW-10、平均粒径12.2μm)、無機充填材Bとして球状シリカ(デンカ製、FB-8S)を表1に示す配合割合で混合し、溶剤に溶解して均一な組成物とした。本組成物をPETフィルムに塗布し、130℃で5分乾燥を行い、樹脂組成物(樹脂シート)を得た。PETフィルムから取り出した組成物を鏡面板に挟み、減圧下130℃で15分及び210℃で80分2MPaの圧力をかけながら硬化した。得られた硬化物の特性を表2に示す。
Examples 2-1 to 2-5, Comparative Examples 2-1 to 2-4
Vinyl resins A to E obtained in Synthesis Examples 2-1 to 2-5 were used as vinyl resins, and talc (Additive A, average particle size 10 to 15 μm, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was used as an additive to accelerate curing. Perbutyl P (manufactured by NOF Corporation), which is an organic peroxide, was used as an agent, ADEKA STAB AO-60 (manufactured by ADEKA CORPORATION) was used as an antioxidant, and spherical alumina (manufactured by DENKA, DAW-10, average particle) was used as an inorganic filler A. As the inorganic filler B, spherical silica (FB-8S, manufactured by Denka) was mixed in the proportions shown in Table 1 and dissolved in a solvent to form a uniform composition. This composition was applied to a PET film and dried at 130°C for 5 minutes to obtain a resin composition (resin sheet). The composition taken out from the PET film was sandwiched between mirror plates and cured under reduced pressure at 130° C. for 15 minutes and at 210° C. for 80 minutes while applying a pressure of 2 MPa. Table 2 shows the properties of the obtained cured product.
 実施例のビニル樹脂組成物よりなる硬化物は、比較例に比べて、熱伝導率が高く、尚且つ低誘電率、低誘電正接という優れた物性を示した。
Figure JPOXMLDOC01-appb-T000034
The cured product made of the vinyl resin composition of the example exhibited excellent physical properties such as higher thermal conductivity, lower dielectric constant, and lower dielectric loss tangent compared to the comparative example.
Figure JPOXMLDOC01-appb-T000034
[第2の実施形態についての発明の効果、産業上の利用可能性]
 第2の実施形態で例示されるビニル樹脂組成物は、溶剤溶解性に優れ、積層、成形、注型、接着等の用途に使用されるビニル樹脂組成物及びその硬化物に適する。そして、この硬化物は耐熱性、熱分解安定性、熱伝導性、低誘電率、低誘電正接、難燃性にも優れたものとなるので、電気・電子部品類の封止、回路基板材料等に好適である。
 本発明の第2の実施形態に係るビニル樹脂組成物および硬化物は、高速通信機器の電子材料として電子部品や配線からの発熱を逃がしやすく信号損失か少ない材料として有用である。
 
[Effects of the invention and industrial applicability of the second embodiment]
The vinyl resin composition exemplified in the second embodiment has excellent solvent solubility and is suitable for vinyl resin compositions and cured products thereof used in applications such as lamination, molding, casting, and adhesion. This cured product has excellent heat resistance, thermal decomposition stability, thermal conductivity, low dielectric constant, low dielectric loss tangent, and flame retardancy, so it can be used as a material for encapsulating electrical and electronic components, and for circuit boards. It is suitable for
The vinyl resin composition and cured product according to the second embodiment of the present invention are useful as electronic materials for high-speed communication equipment as materials that easily dissipate heat from electronic components and wiring and cause little signal loss.

Claims (13)

  1.  少なくとも結晶性樹脂と添加剤とを含む樹脂組成物であって、添加剤が層状粘土鉱物であり、樹脂成分の100重量部に対して当該層状粘土鉱物を1~20重量部含有し、
     前記結晶性樹脂の融点が80℃超過200℃以下であることを特徴とする樹脂組成物。
    A resin composition containing at least a crystalline resin and an additive, the additive being a layered clay mineral, and containing 1 to 20 parts by weight of the layered clay mineral based on 100 parts by weight of the resin component,
    A resin composition characterized in that the crystalline resin has a melting point of more than 80°C and less than 200°C.
  2.  添加剤がタルク又はマイカであることを特徴とする請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the additive is talc or mica.
  3.  添加剤がタルクであることを特徴とする請求項2に記載の樹脂組成物。 3. The resin composition according to claim 2, wherein the additive is talc.
  4.  結晶性樹脂がエポキシ樹脂及び/又はビニル樹脂であることを特徴とする請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the crystalline resin is an epoxy resin and/or a vinyl resin.
  5.  結晶性樹脂は、融点が80℃超過180℃以下のエポキシ樹脂及び/又は融点が90~200℃のビニル樹脂であることを特徴とする請求項4に記載の樹脂組成物。 The resin composition according to claim 4, wherein the crystalline resin is an epoxy resin with a melting point of more than 80°C and 180°C or less and/or a vinyl resin with a melting point of 90 to 200°C.
  6.  結晶性樹脂がエポキシ樹脂であり、硬化剤を含み、当該樹脂組成物の硬化物のX線回折法(XRD)による測定において、回折角度2θが15°以上25°未満の領域に回折ピークが検出されることを特徴とする請求項1~5のいずれかに記載の樹脂組成物。 The crystalline resin is an epoxy resin and contains a curing agent, and a diffraction peak is detected in a region where the diffraction angle 2θ is 15° or more and less than 25° when measured by X-ray diffraction (XRD) of the cured product of the resin composition. The resin composition according to any one of claims 1 to 5, characterized in that:
  7.  エポキシ樹脂が、下記一般式(1-1)又は(1-2)で表されることを特徴とする請求項6に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1-1)中、Gはグリシジル基を示し、Aは、独立して、単結合、酸素原子、硫黄原子、-SO-、-CO-又は二価の炭素数1~6の炭化水素基を示し、nは0~20の数を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(1-2)中、Yは、独立して、単結合、酸素原子、硫黄原子、-SO2-、-CO-、-COO-、-CONH-、-CH-又は-C(CH-を示す。Bは、独立して、ベンゾニトリル構造又は-(CH-を示し、pは0~15、qは3~10の数を示す。)
    The resin composition according to claim 6, wherein the epoxy resin is represented by the following general formula (1-1) or (1-2).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1-1), G represents a glycidyl group, and A is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent carbon number of 1 to 6 represents a hydrocarbon group, and n represents a number from 0 to 20.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (1-2), Y is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C( CH 3 ) 2 -. B independently represents a benzonitrile structure or -(CH 2 ) q -, p represents a number from 0 to 15, and q represents a number from 3 to 10.)
  8.  結晶性樹脂がビニル樹脂であり、当該ビニル樹脂は、ビニル当量が150~1000g/eq、水酸基当量が5000g/eq以上、全塩素量が2000ppm以下であることを特徴とする請求項1~5のいずれかに記載の樹脂組成物。 The crystalline resin is a vinyl resin, and the vinyl resin has a vinyl equivalent of 150 to 1000 g/eq, a hydroxyl equivalent of 5000 g/eq or more, and a total chlorine amount of 2000 ppm or less. Any of the resin compositions.
  9.  ビニル樹脂が、下記一般式(2-1)~(2-3)のいずれか1種以上で表されることを特徴とする請求項8に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(2-1)中、R~Rは、それぞれ独立して、水素原子または一価の炭素数1~6の炭化水素基を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(2-2)中、Aは、独立して、単結合、酸素原子、硫黄原子、-SO-、-CO-又は二価の炭素数1~6の炭化水素基を示し、Xは、独立して、ベンゼン環、ナフタレン環又はビフェニル環であり、nは0~20の数を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(2-3)中、Yは、独立して、単結合、酸素原子、硫黄原子、-SO2-、-CO-、-COO-、-CONH-、-CH-又は-C(CH-を示す。Bは、独立して、ベンゾニトリル構造又は-(CH-を示し、pは0~15、qは3~10の数を示す。)
    The resin composition according to claim 8, wherein the vinyl resin is represented by one or more of the following general formulas (2-1) to (2-3).
    Figure JPOXMLDOC01-appb-C000003
    (In formula (2-1), R 1 to R 6 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000004
    (In formula (2-2), A independently represents a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, or a divalent hydrocarbon group having 1 to 6 carbon atoms, and are independently a benzene ring, a naphthalene ring or a biphenyl ring, and n represents a number from 0 to 20.)
    Figure JPOXMLDOC01-appb-C000005
    (In formula (2-3), Y is independently a single bond, an oxygen atom, a sulfur atom, -SO 2 -, -CO-, -COO-, -CONH-, -CH 2 - or -C( CH 3 ) 2 -. B independently represents a benzonitrile structure or -(CH 2 ) q -, p represents a number from 0 to 15, and q represents a number from 3 to 10.)
  10.  層状粘土鉱物を除く無機充填剤を20~90wt%含有することを特徴とする請求項1~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, containing 20 to 90 wt% of an inorganic filler excluding layered clay minerals.
  11.  高熱伝導用の硬化物を与える樹脂組成物であることを特徴とする請求項1~5のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 5, which is a resin composition that provides a cured product with high thermal conductivity.
  12.  結晶化度が10%以上である高熱伝導用の硬化物を与える樹脂組成物であることを特徴とする請求項6に記載の樹脂組成物。 The resin composition according to claim 6, which is a resin composition that provides a cured product for high thermal conductivity with a degree of crystallinity of 10% or more.
  13.  請求項1~5のいずれかに記載の樹脂組成物を硬化させて得られる硬化物。
     
     
    A cured product obtained by curing the resin composition according to any one of claims 1 to 5.

PCT/JP2023/028470 2022-08-05 2023-08-03 Resin composition, and cured product WO2024029602A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-125747 2022-08-05
JP2022125747A JP2024022282A (en) 2022-08-05 2022-08-05 Epoxy resin composition and cured product
JP2023107268 2023-06-29
JP2023-107268 2023-06-29

Publications (1)

Publication Number Publication Date
WO2024029602A1 true WO2024029602A1 (en) 2024-02-08

Family

ID=89849492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028470 WO2024029602A1 (en) 2022-08-05 2023-08-03 Resin composition, and cured product

Country Status (1)

Country Link
WO (1) WO2024029602A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238771A (en) * 2002-02-21 2003-08-27 Toshiba Corp Resin composition for casting
JP2005179568A (en) * 2003-12-22 2005-07-07 Toshiba Corp Epoxy resin composition and cast insulator
JP2007084759A (en) * 2005-09-26 2007-04-05 Hokko Chem Ind Co Ltd Reinforcement, epoxy resin composition, method for producing the same, and epoxy resin composite material
JP2009242657A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Epoxy resin composition and molded product
JP2010043245A (en) * 2008-07-16 2010-02-25 Nippon Steel Chem Co Ltd Crystalline modified epoxy resin, epoxy resin composition, and crystalline cured product
WO2019131095A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device
JP2020105428A (en) * 2018-12-28 2020-07-09 日鉄ケミカル&マテリアル株式会社 Epoxy resin, epoxy resin composition and cured product
JP2022102293A (en) * 2020-12-25 2022-07-07 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238771A (en) * 2002-02-21 2003-08-27 Toshiba Corp Resin composition for casting
JP2005179568A (en) * 2003-12-22 2005-07-07 Toshiba Corp Epoxy resin composition and cast insulator
JP2007084759A (en) * 2005-09-26 2007-04-05 Hokko Chem Ind Co Ltd Reinforcement, epoxy resin composition, method for producing the same, and epoxy resin composite material
JP2009242657A (en) * 2008-03-31 2009-10-22 Nippon Steel Chem Co Ltd Epoxy resin composition and molded product
JP2010043245A (en) * 2008-07-16 2010-02-25 Nippon Steel Chem Co Ltd Crystalline modified epoxy resin, epoxy resin composition, and crystalline cured product
WO2019131095A1 (en) * 2017-12-28 2019-07-04 日立化成株式会社 Encapsulating epoxy resin composition for ball grid array package, cured epoxy resin object, and electronic component/device
JP2020105428A (en) * 2018-12-28 2020-07-09 日鉄ケミカル&マテリアル株式会社 Epoxy resin, epoxy resin composition and cured product
JP2022102293A (en) * 2020-12-25 2022-07-07 日鉄ケミカル&マテリアル株式会社 Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product of the same

Similar Documents

Publication Publication Date Title
JP5166610B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product using the same
JP5330013B2 (en) Epoxy resin composition and cured product
JP5265461B2 (en) Crystalline modified epoxy resin, epoxy resin composition and crystalline cured product
JP6073754B2 (en) Epoxy resin composition and cured product thereof
JP2010070720A (en) Epoxy resin composition and molded product
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5079721B2 (en) Epoxy resin composition and molded article
JP5209556B2 (en) Epoxy resin composition and molded article
JP5570380B2 (en) Epoxy resin composition and cured product
JP5091052B2 (en) Epoxy resin composition and molded article
JP7320942B2 (en) Epoxy resin, epoxy resin composition and cured product
WO2013157061A1 (en) Epoxy resin composition and cured product
WO2024029602A1 (en) Resin composition, and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2022102293A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product of the same
JP7277136B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2023000691A (en) Epoxy resin composition and cured article thereof
JP5199847B2 (en) Epoxy resin composition and molded article
WO2023276851A1 (en) Epoxy resin, epoxy resin composition, and cured product of same
WO2022186292A1 (en) Epoxy resin, method for producing same, epoxy resin composition using same, and cured product
WO2023162693A1 (en) Epoxy resin, polyhydric hydroxy resin, epoxy resin composition, cured epoxy resin product, and method for producing polyhydric hydroxy resin
WO2024070773A1 (en) Multifunctional vinyl compound, composition thereof, and cured product
JP2024022282A (en) Epoxy resin composition and cured product
JP2012197366A (en) Epoxy resin composition and molding
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23850155

Country of ref document: EP

Kind code of ref document: A1