WO2024070731A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2024070731A1
WO2024070731A1 PCT/JP2023/033547 JP2023033547W WO2024070731A1 WO 2024070731 A1 WO2024070731 A1 WO 2024070731A1 JP 2023033547 W JP2023033547 W JP 2023033547W WO 2024070731 A1 WO2024070731 A1 WO 2024070731A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
control device
phase
correction amount
Prior art date
Application number
PCT/JP2023/033547
Other languages
French (fr)
Japanese (ja)
Inventor
広大 武田
峻 谷口
健太郎 松尾
渉 初瀬
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024070731A1 publication Critical patent/WO2024070731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a motor control device that controls the torque and speed of a motor.
  • the motor control device controls the motor current so that the motor torque and speed follow the command values. At this time, torque ripple occurs due to time harmonics of the motor current and spatial harmonics of the motor magnetic flux. Torque ripple is a cause of vibration and noise. In order to reduce the torque ripple, the motor control device executes torque ripple suppression control. In torque ripple suppression control, the current command value is corrected according to the torque ripple estimate value.
  • Torque ripple can also occur due to a gain error in the current sensor. If there is a gain error in the current sensor, a secondary vibration component occurs in the dq axis current converted from the motor current detection value (see, for example, "Equation (2)" in Patent Document 1 described below). The motor control device executes current control to remove this vibration component. This causes a current ripple in the motor current, which in turn generates a torque ripple.
  • Patent Document 1 The technology described in Patent Document 1 is known as a conventional technology for estimating and correcting the gain error of such a current sensor.
  • the motor control device has two operating modes: a normal operating mode and a CT correction drive mode.
  • the CT correction drive mode in the current control section, the d-axis current control section and the q-axis current control section are stopped, and only the non-interference control section continues to operate.
  • either the d-axis current command value Id* or the q-axis current command value Iq* is set to zero, and current flows only in one of the d and q axes.
  • only the pulsating component contained in either the d-axis current detection value or the q-axis current detection value is extracted to calculate the CT gain error.
  • the gain in the three-phase current calculation section is corrected based on the calculated CT gain error.
  • the motor control device has an operating sequence in which it starts up in a normal operating mode, goes through a CT correction drive mode, and then returns to the normal operating mode.
  • the motor control device is equipped with a special operation sequence to estimate and correct the gain error of the current sensor. This means that the development time and development costs of the motor control device may increase due to the need to set sequence execution conditions and stabilize control when switching sequences.
  • the present invention provides a motor control device that can stably and accurately estimate and compensate for the gain error of a current sensor without requiring a special operating sequence.
  • the motor control device generates a control signal for an inverter that drives an AC motor, and includes an error calculation unit that calculates the gain error of the current sensor using the amplitude value of the three-phase motor current detected by the current sensor, and a correction amount calculation unit that calculates a current correction amount to compensate for the gain error based on the gain error estimated by the error calculation unit.
  • FIG. 1 is a functional block diagram illustrating a configuration of a motor control device according to a first embodiment.
  • FIG. 4 is a functional block diagram illustrating a configuration of an error calculation unit in the first embodiment.
  • FIG. 4 is a functional block diagram illustrating a configuration of a correction amount calculation unit in the first embodiment.
  • 10 is a state transition diagram showing a change in the operation of the error estimating unit 102.
  • FIG. 4 is a flowchart showing an operation of a motor state determination unit 103.
  • 10 is a flowchart showing an operation of a correction destination selection unit 203.
  • FIG. 11 is a functional block diagram showing a configuration of a motor control device according to a second embodiment.
  • FIG. 11 is a functional block diagram illustrating a configuration of an error calculation unit in the second embodiment.
  • FIG. 11 is a functional block diagram illustrating a configuration of a correction amount calculation unit in the second embodiment.
  • 10 is a flowchart showing the operation of a correction destination selection unit
  • FIG. 1 is a functional block diagram showing the configuration of a motor control device according to a first embodiment of the present invention.
  • dq axis refers to the "d axis and q axis.”
  • X such as “i”
  • X dq refers to a “vector quantity (X d , X q )
  • X uvw refers to a “vector quantity (X u , X v , X w ).
  • uvw refers to three phases of AC, that is, "U phase, V phase, and W phase.”
  • the motor control device 1 controls the speed and torque of the motor 5 by controlling the switching of the inverter 4 that supplies AC power to the motor 5.
  • the motor control device 1 is configured with a processing device such as a microcomputer, and functions as each part by executing a specific program.
  • the inverter 4 is a three-phase inverter whose main circuit is a three-phase full-bridge circuit composed of semiconductor switching elements such as IGBTs and MOSFETs.
  • the control signal D* uvw generated by the motor control device 1 controls the on/off of the semiconductor switching elements that constitute the main circuit of the inverter 4.
  • the inverter 4 converts DC power input from a DC power source such as a storage battery into three-phase AC power and outputs a three-phase AC voltage v uvw .
  • the control signal D* uvw is a gate control signal for the semiconductor switching elements when the semiconductor switching elements are IGBTs or MOSFETs.
  • the control signal D* uvw is composed of six control signals, namely, a control signal for the U-phase upper arm (D* up ), a control signal for the U-phase lower arm (D* un ), a control signal for the V-phase upper arm (D* vp ), a control signal for the V-phase lower arm (D* vn ), a control signal for the W-phase upper arm (D* wp ) and a control signal for the W-phase lower arm (D* wn ), in order to control the switching of the three-phase full-bridge circuit which is the main circuit of the inverter 4.
  • the subscripts p and n represent the upper arm and lower arm, respectively.
  • the motor 5 is a three-phase AC synchronous motor, which is a rotating machine, such as a permanent magnet synchronous motor.
  • the motor 5 is not limited to a synchronous machine, and an induction machine may be used.
  • the motor 5 is not limited to a rotating machine, and a linear motor may be used.
  • the motor 5 may have a power generation function.
  • the motor control device 1 includes a dq-axis current command value 2 (i* dq ), a controller 3, an electrical angle calculation unit 6, an electrical angular velocity calculation unit 7, an A/D converter 8, a three-phase/dq-axis converter 9, a dq-axis current correction unit 10a, a three-phase current correction unit 10b, a current sensor 11, an error calculation unit 100, and a correction amount calculation unit 200.
  • the controller 3 generates a control signal D uvw * for controlling the switching of the inverter 4 in accordance with the difference between the dq-axis current detection value i dq and the dq-axis current command value i* dq (2) so that i dq coincides with i * dq .
  • the dq-axis current correction unit 10a corrects the difference input to the controller 3 by a dq-axis current correction amount ⁇ i dq .
  • ⁇ i dq is the correction amount of i dq , and compensates for the generation of vibration components of the dq-axis current detection value i dq caused by the gain error of the current sensor 11, as will be described later.
  • the controller 3 has a known configuration.
  • the controller 3 is composed of a dq-axis current controller that creates dq-axis voltage command values by PI calculation, a dq/three-phase converter that converts the dq-axis voltage command values into three-phase voltage command values, and a PWM controller that generates inverter control signals according to the three-phase voltage command values.
  • the dq-axis voltage command values may be created using known voltage equations.
  • the electrical angle calculation unit 6 calculates and outputs the electrical angle ⁇ e based on a rotational position signal from a rotation sensor (not shown) provided in the motor 5.
  • Resolvers Hall sensors, rotary encoders, etc. can be used as rotation sensors.
  • the electrical angular velocity calculation unit 7 calculates and outputs the electrical angular velocity ⁇ e based on a rotational position signal from a rotation sensor (not shown) provided in the motor 5.
  • the electrical angular velocity calculation unit 7 may be configured by a differentiator that differentiates ⁇ e output from the electrical angle calculation unit 6 to calculate ⁇ e .
  • the A/D converter 8 converts the current detection signal of the current sensor 11, obtained when the current sensor 11 acquires the three-phase motor actual current value i real uvw flowing in the distribution cable between the output of the inverter 4 and the motor 5, into a digital value handled by the motor control device 1, and outputs it as the three-phase motor current detection value i meas uvw .
  • the three-phase/dq-axis converter 9 calculates the dq-axis current detection value i dq based on the three-phase motor current detection value i meas uvw from the A/D converter 8 and the electrical angle ⁇ e from the electrical angle calculation unit 6.
  • the three-phase current correction unit 10b corrects i meas uvw by a correction coefficient m uvw described later.
  • the corrected three-phase motor current detection value is input to the three-phase/dq-axis converter 9.
  • the correction coefficient m uvw compensates for the generation of vibration components in the dq-axis current detection value i dq caused by a gain error (hereinafter referred to as "error") of the current sensor 11.
  • Current sensors 11 are provided on each of the three-phase distribution cables, or on two of the three-phase distribution cables.
  • A/D converter 8 converts the detection signals for the two phases into digital values, which are used as motor current detection values for the two phases.
  • a calculator (adder/subtractor) (not shown) calculates the motor current value for the remaining phase.
  • CT current transformer
  • Hall element a Hall element
  • the error calculation unit 100 calculates the error err uvw of the current sensor 11 based on the three-phase motor current detection value imeas uvw , the electrical angle ⁇ e , the electrical angular velocity ⁇ e , and the dq-axis current command value i dq *.
  • the correction amount calculation unit 200 calculates the dq-axis current correction amount ⁇ i dq used in the dq-axis current correction unit 10a and the correction coefficient m uvw used in the three-phase current correction unit 10b, based on the err uvw calculated by the error calculation unit 100 and the dq-axis current command value i* dq .
  • FIG. 2 is a functional block diagram showing the configuration of the error calculation unit 100 (FIG. 1) in the first embodiment.
  • the error calculation unit 100 includes a three-phase current amplitude estimation unit 101, an error estimation unit 102, and a motor state determination unit 103.
  • the subscripts “UVW” represent the three phases of AC, i.e., “U phase, V phase, and W phase.”
  • the motor state determination unit 103 determines the state of the motor 5 (FIG. 1) based on the dq axis current command values i* dq .
  • the error estimation unit 102 calculates and estimates the error err uvw of the current sensor 11 ( FIG. 1 ) based on the three-phase motor current amplitude values I UVW estimated by the three-phase current amplitude estimation unit 101 in accordance with the state of the motor 5 determined by the motor state determination unit 103.
  • FIG. 3 is a functional block diagram showing the configuration of the correction amount calculation unit 200 (FIG. 1) in the first embodiment.
  • the correction amount calculation unit 200 includes a dq-axis current correction amount calculation unit 201, a three-phase current correction amount calculation unit 202, and a correction destination selection unit 203.
  • the correction destination selection unit 203 selects, from ⁇ i dq and m uvw , a correction amount used to compensate for the occurrence of vibration components in the dq-axis current detection value i dq caused by the error of the current sensor 11. That is, the correction destination selection unit 203 selects, from the dq-axis current correction amount calculation unit 201 and the three-phase current correction amount calculation unit 202, a correction amount calculation unit that executes calculation of the correction amount.
  • the dq-axis current detection value i dq is expressed by the formula (1).
  • i dq is expressed as a column vector.
  • the column vector in the first term on the right side represents i real dq obtained by coordinate transformation of i real uvw .
  • the phase ⁇ in the second and third terms on the right side is a constant phase amount, as described later (see equation (12)).
  • the three-phase current correction unit 10b (FIG. 1) corrects the three-phase motor current detection values i meas uvw based on the equation (2).
  • the three-phase/dq-axis converter 9 calculates the dq-axis current detection value i dq from the corrected three-phase motor current detection value i meas uvw ′ and the electrical angle ⁇ e according to equation (3).
  • the controller 3 uses such dq-axis current detection values i_dq to generate the control signal D* uvw for controlling the switching of the inverter 4 (FIG. 1) as described above.
  • the means for estimating the three-phase motor current amplitude values IUVW in the three-phase current amplitude estimator 101 will be described using the U-phase motor current amplitude value IU as an example.
  • the U-phase motor current detection value i_meas u and the U-phase motor current amplitude value IU have the relationship shown in Equation (4).
  • the electrical angle ⁇ e may be corrected to be advanced by ⁇ e ⁇ t.
  • ⁇ c in equations (4) and (5) is a current phase in a rotating coordinate system and can be calculated from the dq-axis current detection values i dq . In this embodiment, however, it is calculated from the dq-axis current command values i* dq using equation (6).
  • ⁇ c may be calculated based on i* dq that has been passed through a low-pass filter (LPF) equivalent to a current control response expressed as a frequency.
  • LPF low-pass filter
  • table data representing the correspondence between ⁇ c and i dq may be used.
  • V-phase and W-phase motor current amplitude values I V and I W are expressed by equations (7) and (8) with phases shifted by ⁇ 2/3 ⁇ and 2/3 ⁇ , respectively, from the phase reference.
  • the denominators of equations (6) to (8) are trigonometric functions, a state of division by zero or very close to zero occurs twice per electrical angle cycle. Because the actual three-phase motor current is distorted from a sine wave, the current amplitude value may fluctuate significantly near the current zero crossing. This may reduce the accuracy of the error calculation in the error estimation unit 102. For this reason, when the value of the trigonometric function in the denominator falls below a certain value, the three-phase current amplitude estimation unit 101 may stop the calculation operation and output a predetermined value that is set in advance.
  • the error estimation unit 102 changes its operation based on the output (determination result) of the motor state determination unit 103.
  • FIG. 4 is a state transition diagram showing changes in the operation of the error estimation unit 102.
  • the initial value is (1, 1, 1).
  • the error may be set as the initial value.
  • the error estimation unit 102 calculates and outputs the error based on equation (9).
  • FIG. 5 is a flowchart showing the operation of the motor state determination unit 103.
  • step S101 When the motor state determination unit 103 starts processing (step S101), it determines in step S102 whether the time rate of change of the current phase amount ⁇ c of the motor 5, expressed by equation (6), is equal to or less than a predetermined constant value. If the motor state determination unit 103 determines that it is equal to or less than the constant value (YES in step S102), it then executes step S103, and if it determines that it is not equal to or less than the constant value, i.e., that it is greater than the constant value (NO in step S102), it then executes step S105.
  • step S103 the motor state determination unit 103 determines whether to perform error estimation. If the motor state determination unit 103 determines that an error estimation should be performed (YES in step S103), it next executes step S104, and if it determines that an error estimation should not be performed (NO in step S103), it next executes step S105.
  • step S104 the motor state determination unit 103 outputs "error estimation possible" as the motor state determination result. After executing step S104, the motor state determination unit 103 ends the series of processes.
  • step S105 the motor state determination unit 103 outputs "error estimation not possible" as the motor state determination result. After executing step S105, the motor state determination unit 103 ends the series of processes.
  • step S103 The criteria in step S103 are set appropriately, taking into account cases where the error estimation accuracy decreases or the calculation load increases.
  • step S103 may be omitted.
  • the error calculation includes division by the current amplitude value, so if the current amplitude value is small, the accuracy of the error calculation may decrease.
  • a conditional branch may be added to the operation of the motor state determination unit 103 so that "error estimation cannot be performed" is output when the current amplitude value is equal to or less than a predetermined constant value.
  • the second-order vibration component in the dq-axis current detection value i dq as shown in the third term on the right side of equation (1) is compensated for. Note that in this embodiment, the occurrence of the DC component of the dq-axis current as shown in the second term on the right side of equation (1) is not compensated for. Therefore, it is possible to suppress an unexpected decrease in torque accuracy due to compensation for the DC component.
  • the correction amount may be gradually adjusted according to the rotation speed of the motor 5.
  • the three-phase current correction amount calculation unit 202 calculates a correction coefficient m uvw based on the equation (14) using err uvw .
  • the correction of the three-phase motor current detection values using m uvw requires less calculation and has a smaller calculation load than the correction of the dq axis currents using ⁇ i dq .
  • the correction destination selection unit 203 selects the amount of correction to be calculated using the error err uvw from among m uvw and ⁇ i dq according to the conditions. That is, the correction destination selection unit 203 selects either the correction of the three-phase motor current detection value imeas uvw using the calculated m uvw or the correction of the dq-axis current detection value using the calculated ⁇ i dq . Note that if either one of them is selected in advance, the correction destination selection unit 203 may be omitted.
  • FIG. 6 is a flowchart showing the operation of the correction destination selection unit 203.
  • step S201 When the correction destination selection unit 203 starts processing (step S201), it determines in step S202 whether to perform error correction. If the correction destination selection unit 203 determines that error correction is to be performed (YES in step S202), it then executes step S204, and if it determines that error correction is not to be performed (NO in step S202), it then executes step S203.
  • step S204 the correction destination selection unit 203 determines whether to perform error correction on the d- and q-axis currents. If the correction destination selection unit 203 determines that error correction is to be performed on the d- and q-axis currents (YES in step S204), it next executes step S205, and if it determines that error correction is not to be performed on the d- and q-axis currents (NO in step S203), it next executes step S206.
  • step S203 the correction destination selection unit 203 instructs the dq-axis current correction amount calculation unit 201 to output "0" (vector amount) as ⁇ i dq , and instructs the three-phase current correction amount calculation unit 202 to output "1" (vector amount) as m uvw .
  • step S207 the correction destination selection unit 203 ends the series of processes.
  • step S205 the correction destination selection unit 203 instructs the dq-axis current correction amount calculation unit 201 to calculate and output ⁇ i dq using the error err uvw , and instructs the three-phase current correction amount calculation unit 202 to output "1" (vector amount) as m uvw .
  • step S207 the correction destination selection unit 203 ends the series of processes.
  • step S206 the correction destination selection unit 203 instructs the dq-axis current correction amount calculation unit 201 to output "0" (vector amount) as ⁇ i dq , and instructs the three-phase current correction amount calculation unit 202 to calculate and output m uvw using err uvw .
  • step S207 the correction destination selection unit 203 ends the series of processes.
  • error correction is performed on only one of the three-phase currents and the d- and q-axis currents. This improves the stability of the error correction operation in the motor control device.
  • step S204 The criteria in step S204 are set appropriately, taking into consideration cases where the error estimation accuracy decreases or the calculation load increases. Depending on the criteria in step S204, error correction may be performed on both the three-phase currents and the d- and q-axis currents.
  • the gain error of the current sensor is calculated based on the three-phase AC current amplitude value, and one of the three-phase current detection values and the dq-axis current detection values is corrected based on the calculated gain error.
  • the offset error of the current sensor has been compensated for in advance.
  • the offset error compensation of the current sensor can be performed, for example, by subtracting the average current value indicated by the output signal of the current sensor when no motor current is flowing from the motor current detection value.
  • the control unit for compensating for the gain error of the current sensor 11 is divided into an error calculation unit 100 that performs error estimation, and a correction amount calculation unit 200 that performs error correction.
  • the error calculation unit 100 may be operated to perform error estimation, and then the correction amount calculation unit 200 may be operated to perform error correction.
  • the correction amount calculation unit 200 may be operated to perform error correction based on the estimated error. Note that error estimation may be performed every time the motor 5 is started, or when a specified operation is performed on the motor control device 1.
  • FIG. 7 is a functional block diagram showing the configuration of a motor control device according to a second embodiment of the present invention.
  • the motor control device 1 of this embodiment does not have a current control system. Therefore, the dq-axis current detection values are not corrected to compensate for the gain error of the current sensor 11.
  • the motor control device 1 of this embodiment operates when current control is not being performed while the motor is being driven but motor current is flowing, i.e., when the dq-axis current command value and the actual dq-axis current flowing do not match, for example, when a three-phase short circuit of the inverter 4 is performed for overvoltage protection, etc.
  • the configuration of the motor control device 1 of this embodiment 2 is the part that operates in the above case in the motor control device of embodiment 1 ( Figure 1).
  • FIG. 8 is a functional block diagram showing the configuration of the error calculation unit 100 (FIG. 7) in the second embodiment.
  • the three-phase current amplitude estimation unit 101 calculates the three-phase motor current amplitude values I UVW based on the above-mentioned equations (5), (7), and (8), where the current phase ⁇ c in the rotating coordinate system is calculated from the d-axis and q-axis current detection values i dq using equation (15).
  • the motor state determination unit 103 in the second embodiment determines the state of the motor 5 (FIG. 7) by using the dq-axis current detection values i dq instead of the dq-axis current command values i* dq (FIG. 2).
  • FIG. 9 is a functional block diagram showing the configuration of the correction amount calculation unit 200 (FIG. 7) in the second embodiment.
  • FIG. 10 is a flowchart showing the operation of the correction destination selection unit 303.
  • Steps S301, S303, S304, S305, S306, S307, and S308 shown in FIG. 10 correspond to steps S201, S202, S204, S205, S206, S203, and S207 in FIG. 6 (Example 1), respectively.
  • step S301 when the correction destination selection unit 303 starts processing (step S301), it determines in step S302 whether current control is enabled. In this embodiment 2, since current control is not executed, the correction destination selection unit 303 determines that current control is not enabled (NO in step S302) and then executes step S306.
  • step S306 the correction destination selection unit 203 instructs the dq-axis current correction amount calculation unit 201 to output "0" (vector amount) as ⁇ i dq , and instructs the three-phase current correction amount calculation unit 202 to calculate and output m uvw using err uvw .
  • step S308 the correction destination selection unit 303 ends the series of processes.
  • the gain error of the current sensor is calculated based on the three-phase AC current amplitude value, and the three-phase current detection value is corrected based on the calculated gain error.
  • the present invention is not limited to the above-described embodiments, but includes various modified examples.
  • the above-described embodiments have been described in detail to clearly explain the present invention, and the present invention is not necessarily limited to those having all of the configurations described.
  • 1 Motor control device 2 dq axis current command value, 3 Controller, 4 Inverter, 5 Motor, 6 Electrical angle calculation unit, 7 Electrical angular velocity calculation unit, 8 A/D converter, 9 Three-phase/dq axis converter, 10a dq axis current correction unit, 10b Three-phase current correction unit, 100 Error calculation unit, 200 Correction amount calculation unit, 101 Three-phase current amplitude estimation unit, 102 Error estimation unit, 103 Motor state determination unit, 201 dq axis current correction amount calculation unit, 202 Three-phase current correction amount calculation unit, 203 Correction destination selection unit, 303 Correction destination selection unit.

Abstract

Disclosed is a motor control device that is capable of estimating and compensating for a gain error of an electric current sensor in a stable and accurate manner, without being equipped with a special operating sequence. This motor control device (1) generates a control signal (D*uvw) for an inverter (4) that drives an AC motor (5), the motor control device comprising: an error calculation unit (100) that calculates a gain error (erruvw) of an electric current sensor (11) by using an amplitude value of a three-phase motor electric current detected by the electric current sensor; and a correction amount calculation unit (200) that, on the basis of the gain error estimated by the error calculation unit, calculates electric current correction amounts (muvw, Δidp) for compensating for the gain error.

Description

モータ制御装置Motor Control Device
 本発明は、モータのトルクや速度を制御するモータ制御装置に関する。 The present invention relates to a motor control device that controls the torque and speed of a motor.
 モータ制御装置は、モータのトルクや速度が指令値に追従するように、モータ電流を制御する。このとき、モータ電流の時間高調波やモータ磁束の空間高調波により、トルクリプルが生じる。トルクリプルは、振動や騒音の発生要因となる。モータ制御装置は、トルクリプルを低減するために、トルクリプル抑制制御を実行する。トルクリプル抑制制御においては、トルクリプル推定値に応じて電流指令値が補正される。 The motor control device controls the motor current so that the motor torque and speed follow the command values. At this time, torque ripple occurs due to time harmonics of the motor current and spatial harmonics of the motor magnetic flux. Torque ripple is a cause of vibration and noise. In order to reduce the torque ripple, the motor control device executes torque ripple suppression control. In torque ripple suppression control, the current command value is corrected according to the torque ripple estimate value.
 トルクリプルは、電流センサのゲイン誤差によっても発生する。電流センサにゲイン誤差がある場合、モータ電流検出値から変換されるdq軸電流に、二次の振動成分が発生する(例えば、後述する特許文献1に記載の「式(2)」参照)。モータ制御装置は、この振動成分を除去するように電流制御を実行する。このため、モータ電流に電流リプルが生じるので、トルクリプルが発生する。 Torque ripple can also occur due to a gain error in the current sensor. If there is a gain error in the current sensor, a secondary vibration component occurs in the dq axis current converted from the motor current detection value (see, for example, "Equation (2)" in Patent Document 1 described below). The motor control device executes current control to remove this vibration component. This causes a current ripple in the motor current, which in turn generates a torque ripple.
 このような電流センサのゲイン誤差を推定・補正する従来技術として、特許文献1に記載された技術が知られている。  The technology described in Patent Document 1 is known as a conventional technology for estimating and correcting the gain error of such a current sensor.
 本従来技術では、モータ制御装置は、動作モードとして、通常の動作モードとCT補正駆動モードを備えている。CT補正駆動モードにおいては、電流制御部において、d軸電流制御部およびq軸電流制御部は停止状態となり、非干渉制御部のみが動作を継続する。このような動作状態において、d軸電流指令値Id*およびq軸電流指令値Iq*のいずれか一方を零に設定し、dq軸の一方にのみ電流を流す。このときd軸電流検出値およびq軸電流検出値のいずれかに含まれる脈動成分のみを抽出して、CTゲイン誤差を算出する。算出されたCTゲイン誤差に基づいて、三相電流演算部におけるゲインを補正する。 In this conventional technology, the motor control device has two operating modes: a normal operating mode and a CT correction drive mode. In the CT correction drive mode, in the current control section, the d-axis current control section and the q-axis current control section are stopped, and only the non-interference control section continues to operate. In this operating state, either the d-axis current command value Id* or the q-axis current command value Iq* is set to zero, and current flows only in one of the d and q axes. At this time, only the pulsating component contained in either the d-axis current detection value or the q-axis current detection value is extracted to calculate the CT gain error. The gain in the three-phase current calculation section is corrected based on the calculated CT gain error.
 本従来技術によるモータ制御装置は、通常の動作モードとして起動後、CT補正駆動モードを経て、再び通常の動作モードに復帰する動作シーケンスを備えている。 The motor control device according to this conventional technology has an operating sequence in which it starts up in a normal operating mode, goes through a CT correction drive mode, and then returns to the normal operating mode.
特開2016-19341号公報JP 2016-19341 A
 上記従来技術では、電流センサのゲイン誤差を推定・補正するために、モータ制御装置が特別な動作シーケンスを備えている。このため、シーケンス実施条件の設定や、シーケンス切り替え時における制御の安定化などのため、モータ制御装置の開発期間や開発コストが増加する可能性がある。 In the above conventional technology, the motor control device is equipped with a special operation sequence to estimate and correct the gain error of the current sensor. This means that the development time and development costs of the motor control device may increase due to the need to set sequence execution conditions and stabilize control when switching sequences.
 そこで、本発明は、特別な動作シーケンスを備えることなく、安定かつ正確に電流センサのゲイン誤差を推定・補償できるモータ制御装置を提供する。 The present invention provides a motor control device that can stably and accurately estimate and compensate for the gain error of a current sensor without requiring a special operating sequence.
 上記課題を解決するために、本発明によるモータ制御装置は、交流モータを駆動するインバータの制御信号を生成するものであって、電流センサによって検出される三相モータ電流の振幅値を用いて電流センサのゲイン誤差を計算する誤差計算部と、誤差計算部によって推定されるゲイン誤差に基づいて、ゲイン誤差を補償するための電流補正量を計算する補正量計算部と、を備える。 In order to solve the above problems, the motor control device according to the present invention generates a control signal for an inverter that drives an AC motor, and includes an error calculation unit that calculates the gain error of the current sensor using the amplitude value of the three-phase motor current detected by the current sensor, and a correction amount calculation unit that calculates a current correction amount to compensate for the gain error based on the gain error estimated by the error calculation unit.
 本発明によれば、特別な動作シーケンスによらず、安定かつ正確に電流センサのゲイン誤差を推定・補償できる
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to stably and accurately estimate and compensate for the gain error of a current sensor without relying on a special operation sequence. Problems, configurations and effects other than those described above will become apparent from the following description of the embodiments.
実施例1であるモータ制御装置の構成を示す機能ブロック図である。1 is a functional block diagram illustrating a configuration of a motor control device according to a first embodiment. 実施例1における誤差計算部の構成を示す機能ブロック図である。FIG. 4 is a functional block diagram illustrating a configuration of an error calculation unit in the first embodiment. 実施例1における補正量計算部の構成を示す機能ブロック図である。FIG. 4 is a functional block diagram illustrating a configuration of a correction amount calculation unit in the first embodiment. 誤差推定部102の動作の変更を示す状態遷移図である。10 is a state transition diagram showing a change in the operation of the error estimating unit 102. FIG. モータ状態判定部103の動作を示すフローチャートである。4 is a flowchart showing an operation of a motor state determination unit 103. 補正先選択部203の動作を示すフローチャートである。10 is a flowchart showing an operation of a correction destination selection unit 203. 実施例2であるモータ制御装置の構成を示す機能ブロック図である。FIG. 11 is a functional block diagram showing a configuration of a motor control device according to a second embodiment. 実施例2における誤差計算部の構成を示す機能ブロック図である。FIG. 11 is a functional block diagram illustrating a configuration of an error calculation unit in the second embodiment. 実施例2における補正量計算部の構成を示す機能ブロック図である。FIG. 11 is a functional block diagram illustrating a configuration of a correction amount calculation unit in the second embodiment. 補正先選択部303の動作を示すフローチャートである。10 is a flowchart showing the operation of a correction destination selection unit 303.
 以下、本発明の実施形態について、下記の実施例1~2により、図面を用いながら説明する。 The following describes an embodiment of the present invention using the following Examples 1 and 2 with reference to the drawings.
 各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 In each figure, the same reference numbers indicate the same components or components with similar functions.
 図1は、本発明の実施例1であるモータ制御装置の構成を示す機能ブロック図である。 FIG. 1 is a functional block diagram showing the configuration of a motor control device according to a first embodiment of the present invention.
 以下の記載において、「dq軸」という記載は、「d軸およびq軸」を表す。また、以下に記載する添え字付きのパラメータX(「i」など)については、特に断らない限り、「Xdq」は「ベクトル量(X,X)」を表し、「Xuvw」は「ベクトル量(X,X,X)」を表す。ここで、「uvw」は、交流の三相すなわち「U相、V相およびW相」を表す。 In the following description, the term "dq axis" refers to the "d axis and q axis." In addition, for the subscripted parameter X (such as "i") described below, unless otherwise specified, "X dq " refers to a "vector quantity (X d , X q )" and "X uvw " refers to a "vector quantity (X u , X v , X w )." Here, "uvw" refers to three phases of AC, that is, "U phase, V phase, and W phase."
 モータ制御装置1は、モータ5に交流電力を供給するインバータ4のスイッチングを制御することにより、モータ5の速度やトルクを制御する。 The motor control device 1 controls the speed and torque of the motor 5 by controlling the switching of the inverter 4 that supplies AC power to the motor 5.
 本実施例において、モータ制御装置1は、マイクロコンピュータなどの演算処理装置によって構成され、所定のプログラムを実行することにより、各部として機能する。 In this embodiment, the motor control device 1 is configured with a processing device such as a microcomputer, and functions as each part by executing a specific program.
 本実施例において、インバータ4は、IGBTやMOSFETのような半導体スイッチング素子から構成される三相フルブリッジ回路を主回路とする三相インバータである。 In this embodiment, the inverter 4 is a three-phase inverter whose main circuit is a three-phase full-bridge circuit composed of semiconductor switching elements such as IGBTs and MOSFETs.
 モータ制御装置1が生成する制御信号D*uvwによって、インバータ4の主回路を構成する半導体スイッチング素子のオン・オフが制御される。これにより、インバータ4は、蓄電池などの直流電源から入力する直流電力を三相交流電力に変換し、三相交流電圧vuvwを出力する。制御信号D*uvwは、半導体スイッチング素子がIGBTやMOSFETである場合、半導体スイッチング素子のゲート制御信号である。 The control signal D* uvw generated by the motor control device 1 controls the on/off of the semiconductor switching elements that constitute the main circuit of the inverter 4. As a result, the inverter 4 converts DC power input from a DC power source such as a storage battery into three-phase AC power and outputs a three-phase AC voltage v uvw . The control signal D* uvw is a gate control signal for the semiconductor switching elements when the semiconductor switching elements are IGBTs or MOSFETs.
 制御信号D*uvwは、インバータ4の主回路である三相フルブリッジ回路のスイッチングを制御するため、6個の制御信号、すなわちU相上アーム用制御信号(D*up)、U相下アーム用制御信号(D*un)、V相上アーム用制御信号(D*vp)、V相下アーム用制御信号(D*vn)、W相上アーム用制御信号(D*wp)およびW相下アーム用制御信号(D*wn)から構成される。なお、添え字p,nは、それぞれ上アーム、下アームを表す。 The control signal D* uvw is composed of six control signals, namely, a control signal for the U-phase upper arm (D* up ), a control signal for the U-phase lower arm (D* un ), a control signal for the V-phase upper arm (D* vp ), a control signal for the V-phase lower arm (D* vn ), a control signal for the W-phase upper arm (D* wp ) and a control signal for the W-phase lower arm (D* wn ), in order to control the switching of the three-phase full-bridge circuit which is the main circuit of the inverter 4. Note that the subscripts p and n represent the upper arm and lower arm, respectively.
 本実施例において、モータ5としては、回転機である三相交流同期モータ、例えば、永久磁石同期モータが適用される。 In this embodiment, the motor 5 is a three-phase AC synchronous motor, which is a rotating machine, such as a permanent magnet synchronous motor.
 モータ5としては、同期機に限らず、誘導機が適用されてもよい。また、モータ5としては、回転機に限らず、リニアモータが適用されてもよい。なお、モータ5は、発電機能を有してもよい。 The motor 5 is not limited to a synchronous machine, and an induction machine may be used. The motor 5 is not limited to a rotating machine, and a linear motor may be used. The motor 5 may have a power generation function.
 図1に示すように、モータ制御装置1は、dq軸電流指令値2(i*dq)と、制御器3と、電気角計算部6と、電気角速度計算部7と、A/D変換器8と、三相/dq軸変換器9と、dq軸電流補正部10aと、三相電流補正部10bと、電流センサ11と、誤差計算部100と、補正量計算部200と、を備える。 As shown in FIG. 1, the motor control device 1 includes a dq-axis current command value 2 (i* dq ), a controller 3, an electrical angle calculation unit 6, an electrical angular velocity calculation unit 7, an A/D converter 8, a three-phase/dq-axis converter 9, a dq-axis current correction unit 10a, a three-phase current correction unit 10b, a current sensor 11, an error calculation unit 100, and a correction amount calculation unit 200.
 制御器3は、dq軸電流検出値idqとdq軸電流指令値i*dq(2)との差分に応じて、idqがi*dqに一致するように、インバータ4のスイッチングを制御する制御信号Duvw*を生成する。本実施例において、dq軸電流補正部10aは、制御器3へ入力される差分量をdq軸電流補正量Δidqによって補正する。Δidqは、idqの補正量であり、後述するように、電流センサ11のゲイン誤差に起因するdq軸電流検出値idqの振動成分の発生を補償する。 The controller 3 generates a control signal D uvw * for controlling the switching of the inverter 4 in accordance with the difference between the dq-axis current detection value i dq and the dq-axis current command value i* dq (2) so that i dq coincides with i * dq . In this embodiment, the dq-axis current correction unit 10a corrects the difference input to the controller 3 by a dq-axis current correction amount Δi dq . Δi dq is the correction amount of i dq , and compensates for the generation of vibration components of the dq-axis current detection value i dq caused by the gain error of the current sensor 11, as will be described later.
 本実施例においては、制御器3は、公知の構成を有している。例えば、制御器3は、PI演算によりdq軸電圧指令値を作成するdq軸電流制御器と、dq軸電圧指令値を三相電圧指令値に変換するdq/三相変換器と、三相電圧指令値に応じてインバータの制御信号を生成するPWM制御器とから構成される。なお、PI演算に代えて、公知の電圧方程式を用いて、dq軸電圧指令値を作成してもよい。 In this embodiment, the controller 3 has a known configuration. For example, the controller 3 is composed of a dq-axis current controller that creates dq-axis voltage command values by PI calculation, a dq/three-phase converter that converts the dq-axis voltage command values into three-phase voltage command values, and a PWM controller that generates inverter control signals according to the three-phase voltage command values. Note that instead of PI calculation, the dq-axis voltage command values may be created using known voltage equations.
 電気角計算部6は、モータ5が備える回転センサ(図示せず)からの回転位置信号に基づき、電気角θを計算して出力する。回転センサは、モータ5の回転子の機械角(θ)に応じて回転位置信号を出力するが、電気角計算部6は、モータ5の極対数(p)、並びに、θとθとpとの関係(θ=p・θ)を用いて、θを計算する。 The electrical angle calculation unit 6 calculates and outputs the electrical angle θe based on a rotational position signal from a rotation sensor (not shown) provided in the motor 5. The rotation sensor outputs a rotational position signal according to the mechanical angle ( θm ) of the rotor of the motor 5, but the electrical angle calculation unit 6 calculates θe using the number of pole pairs (p) of the motor 5 and the relationship between θe , θm , and p ( θe =p· θm ).
 回転センサとしては、レゾルバ、ホールセンサ、ロータリエンコーダなどが適用できる。 Resolvers, Hall sensors, rotary encoders, etc. can be used as rotation sensors.
 電気角速度計算部7は、電気角計算部6と同様にモータ5が備える回転センサ(図示せず)からの回転位置信号に基づき、電気角速度ωを計算して出力する。電気角速度計算部7は、モータ5の極対数(p)、電気角θと機械角θとpとの関係(θ=p・θ)およびθとωの関係(ω=dθ/dt)用いて、ωを計算する。なお、電気角速度計算部7は、電気角計算部6の出力するθを微分してωを計算する微分器によって構成されてもよい。 Like the electrical angle calculation unit 6, the electrical angular velocity calculation unit 7 calculates and outputs the electrical angular velocity ωe based on a rotational position signal from a rotation sensor (not shown) provided in the motor 5. The electrical angular velocity calculation unit 7 calculates ωe using the number of pole pairs (p) of the motor 5, the relationship between the electrical angle θe and the mechanical angles θm and p ( θe = p · θm ), and the relationship between θe and ωe ( ωe = dθe / dt). Note that the electrical angular velocity calculation unit 7 may be configured by a differentiator that differentiates θe output from the electrical angle calculation unit 6 to calculate ωe .
 A/D変換器8は、インバータ4の出力とモータ5との間の配線ケーブルに流れる三相モータ実電流値irealuvwを電流センサ11によって取得するときの電流センサ11の電流検出信号を、モータ制御装置1が扱うデジタル値に変換して、三相モータ電流検出値imeasuvwとして出力する。 The A/D converter 8 converts the current detection signal of the current sensor 11, obtained when the current sensor 11 acquires the three-phase motor actual current value i real uvw flowing in the distribution cable between the output of the inverter 4 and the motor 5, into a digital value handled by the motor control device 1, and outputs it as the three-phase motor current detection value i meas uvw .
 三相/dq軸変換器9は、A/D変換器8からの三相モータ電流検出値imeasuvwと電気角計算部6からの電気角θeに基づきdq軸電流検出値idqを計算する。本実施例において、三相電流補正部10bは、後述する補正係数muvwによってimeasuvwを補正する。補正された三相モータ電流検出値が三相/dq軸変換器9に入力される。後述するように、補正係数muvwは、電流センサ11のゲイン誤差(以下、「誤差」と記す)に起因するdq軸電流検出値idqの振動成分の発生を補償する。 The three-phase/dq-axis converter 9 calculates the dq-axis current detection value i dq based on the three-phase motor current detection value i meas uvw from the A/D converter 8 and the electrical angle θe from the electrical angle calculation unit 6. In this embodiment, the three-phase current correction unit 10b corrects i meas uvw by a correction coefficient m uvw described later. The corrected three-phase motor current detection value is input to the three-phase/dq-axis converter 9. As described later, the correction coefficient m uvw compensates for the generation of vibration components in the dq-axis current detection value i dq caused by a gain error (hereinafter referred to as "error") of the current sensor 11.
 電流センサ11は、三相の配線ケーブルの各々、もしくは、三相の配線ケーブルの内の二相に設けられる。電流センサ11を二相分の配線ケーブルに設ける場合、A/D変換器8は、二相分の検出信号をデジタル値に変換し、二相分のモータ電流検出値とする。さらに、三相モータ電流の和が零になることを用いて、図示しない演算器(加減算器)によって、残る一相分のモータ電流値が計算される。 Current sensors 11 are provided on each of the three-phase distribution cables, or on two of the three-phase distribution cables. When current sensors 11 are provided on two-phase distribution cables, A/D converter 8 converts the detection signals for the two phases into digital values, which are used as motor current detection values for the two phases. Furthermore, by using the fact that the sum of the three-phase motor currents is zero, a calculator (adder/subtractor) (not shown) calculates the motor current value for the remaining phase.
 なお、電流センサ11としては、電流トランス(CT)やホール素子などが適用される。 In addition, a current transformer (CT) or a Hall element is used as the current sensor 11.
 誤差計算部100は、三相モータ電流検出値imeasuvwと、電気角θと、電気角速度ωと、dq軸電流指令値idq*とに基づいて、電流センサ11の誤差erruvwを計算する。 The error calculation unit 100 calculates the error err uvw of the current sensor 11 based on the three-phase motor current detection value imeas uvw , the electrical angle θ e , the electrical angular velocity ω e , and the dq-axis current command value i dq *.
 補正量計算部200は、誤差計算部100によって計算されたerruvwと、dq軸電流指令値i*dqとに基づいて、dq軸電流補正部10aにおいて用いられるdq軸電流補正量Δidqと、三相電流補正部10bにおいて用いられる補正係数muvwとを計算する。 The correction amount calculation unit 200 calculates the dq-axis current correction amount Δi dq used in the dq-axis current correction unit 10a and the correction coefficient m uvw used in the three-phase current correction unit 10b, based on the err uvw calculated by the error calculation unit 100 and the dq-axis current command value i* dq .
 図2は、実施例1における誤差計算部100(図1)の構成を示す機能ブロック図である。 FIG. 2 is a functional block diagram showing the configuration of the error calculation unit 100 (FIG. 1) in the first embodiment.
 図2に示すように、誤差計算部100は、三相電流振幅推定部101と、誤差推定部102と、モータ状態判定部103とを備えている。 As shown in FIG. 2, the error calculation unit 100 includes a three-phase current amplitude estimation unit 101, an error estimation unit 102, and a motor state determination unit 103.
 三相電流振幅推定部101は、三相モータ電流検出値imeasuvw(=(imeas,Imeas,Imeas))と、電気角θおよび電気角速度ω(図1)と、dq軸電流指令値I*dq(=(I*,I*))とに基づいて、三相モータ電流振幅値IUVW(=(I,I,I)を推定する。なお、添え字「UVW」は、交流の三相すなわち「U相、V相およびW相」を表す。 A three-phase current amplitude estimation unit 101 estimates three-phase motor current amplitude values I UVW (=(I U , IV , IW )) based on three-phase motor current detection values I meas uvw (=(I meas u , I meas v , I meas w )), the electrical angle θ e and the electrical angular velocity ω e ( FIG. 1 ), and a dq-axis current command value I* dq (=(I* d , I * q ) ) . Note that the subscripts “UVW” represent the three phases of AC, i.e., “U phase, V phase, and W phase.”
 モータ状態判定部103は、dq軸電流指令値i*dqに基づいて、モータ5(図1)の状態を判定する。 The motor state determination unit 103 determines the state of the motor 5 (FIG. 1) based on the dq axis current command values i* dq .
 誤差推定部102は、モータ状態判定部103によって判定されたモータ5の状態に応じて、三相電流振幅推定部101によって推定された三相モータ電流振幅値IUVWに基づいて電流センサ11(図1)の誤差erruvwを計算して推定する。 The error estimation unit 102 calculates and estimates the error err uvw of the current sensor 11 ( FIG. 1 ) based on the three-phase motor current amplitude values I UVW estimated by the three-phase current amplitude estimation unit 101 in accordance with the state of the motor 5 determined by the motor state determination unit 103.
 図3は、実施例1における補正量計算部200(図1)の構成を示す機能ブロック図である。 FIG. 3 is a functional block diagram showing the configuration of the correction amount calculation unit 200 (FIG. 1) in the first embodiment.
 図3に示すように、補正量計算部200は、dq軸電流補正量計算部201と、三相電流補正量計算部202と、補正先選択部203とを有している。 As shown in FIG. 3, the correction amount calculation unit 200 includes a dq-axis current correction amount calculation unit 201, a three-phase current correction amount calculation unit 202, and a correction destination selection unit 203.
 dq軸電流補正量計算部201は、誤差計算部100(図1,2)によって計算された誤差erruvw(=(err,err,err))と、機械角θ(図1)と、dq軸電流指令値i*dqとに基づいて、dq軸電流補正量Δidq(=(Δi,Δi))を計算する。 The dq-axis current correction amount calculation unit 201 calculates the dq-axis current correction amount Δi dq (=(Δi d , Δi q )) based on the error err uvw (=(err u , err v , err w )) calculated by the error calculation unit 100 (Figures 1 and 2), the mechanical angle θ e ( Figure 1 ), and the dq-axis current command value i* dq .
 三相電流補正量計算部202は、誤差erruvwに基づいて、補正係数muvw(=(m,m,m))を計算する。 The three-phase current correction amount calculation unit 202 calculates a correction coefficient m uvw (=(m u , m v , m w )) based on the error err uvw .
 補正先選択部203は、Δidqおよびmuvwから、電流センサ11の誤差に起因するdq軸電流検出値idqの振動成分の発生を補償するために用いる補正量を選択する。すなわち、補正先選択部203は、dq軸電流補正量計算部201および三相電流補正量計算部202から、補正量の計算を実行する補正量計算部を選択する。 The correction destination selection unit 203 selects, from Δi dq and m uvw , a correction amount used to compensate for the occurrence of vibration components in the dq-axis current detection value i dq caused by the error of the current sensor 11. That is, the correction destination selection unit 203 selects, from the dq-axis current correction amount calculation unit 201 and the three-phase current correction amount calculation unit 202, a correction amount calculation unit that executes calculation of the correction amount.
 ここで、電流センサ11の誤差に起因するdq軸電流検出値の振動成分の発生について、概略的に説明する。 Here, we provide an overview of the generation of vibration components in the d- and q-axis current detection values caused by errors in the current sensor 11.
 電流センサ11に誤差erruvwが有る場合の三相モータ電流検出値imeasuvwを何ら補正することなく回転座標へ座標変換すると、dq軸電流検出値idqは式(1)で表される。 When the three-phase motor current detection value imeas uvw in the case where the current sensor 11 has an error err uvw is transformed into the rotating coordinate system without any correction, the dq-axis current detection value i dq is expressed by the formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)の左辺においては、idqを列ベクトルで表している。右辺第一項の列ベクトルは、irealuvwを座標変換して得られるirealdqを表す。右辺第二および第三項における位相ψは、後述するように(式(12)参照)、一定値の位相量である。 In the left side of equation (1), i dq is expressed as a column vector. The column vector in the first term on the right side represents i real dq obtained by coordinate transformation of i real uvw . The phase ψ in the second and third terms on the right side is a constant phase amount, as described later (see equation (12)).
 式(1)の右辺第二および第三項が示すように、電流センサ11に誤差erruvwが有る場合、irealdqに対して誤差となる直流成分(第二項)および2次の振動成分(第三項)が生じる。 As the second and third terms on the right side of equation (1) indicate, when the current sensor 11 has an error err uvw , a DC component (second term) and a second-order vibration component (third term) that become errors with respect to ireal dq are generated.
 このように、irealuvwが振動成分を含まなくても、電流センサ11の誤差が有ると、idqに振動成分が生じる。 In this way, even if i real uvw does not contain any oscillatory components, if there is an error in the current sensor 11, an oscillatory component occurs in i dq .
 以下、上述のような電流センサ11の誤差に起因するdq軸電流検出値idqに発生する振動成分を補償するための、実施例1によるモータ制御装置1の動作について説明する。なお、適宜、図1~3を参照しながら、説明する。 Hereinafter, a description will be given of the operation of the motor control device 1 according to the first embodiment for compensating for the vibration components occurring in the dq-axis current detection values i dq due to the error of the current sensor 11 as described above. The description will be made with reference to FIGS. 1 to 3 as needed.
 三相電流補正部10b(図1)は、式(2)に基づいて、三相モータ電流検出値imeasuvwを補正する。 The three-phase current correction unit 10b (FIG. 1) corrects the three-phase motor current detection values i meas uvw based on the equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)が示すように、三相電流補正部10bは、imeasuvwに、補正量計算部200(図1)によって計算された補正係数muvwを乗じて、補正された三相モータ電流検出値imeasuvw’(=(imeas’,imeas’,imeas’)=(m・imeas,m・imeas,m・imeas))として三相/dq軸変換器9(図1)へ出力する。 As shown in equation (2), the three-phase current correction unit 10b multiplies i_meas uvw by the correction coefficient m_uvw calculated by the correction amount calculation unit 200 (FIG. 1), and outputs the result as a corrected three-phase motor current detection value i_meas uvw ' (=(i_meas u ', i_meas v ', i_meas w ')=( m_u ·i_meas u , m_v ·i_meas v , m_w ·i_meas w )) to the three-phase/dq-axis converter 9 (FIG. 1).
 なお、誤差計算部100(図1)によって誤差erruvwの計算が実行される前は、muvw(=(m,m,m))は(1,1,1)に設定される。 Note that before the error err uvw is calculated by the error calculation unit 100 (FIG. 1), m uvw (=(m u , m v , m w )) is set to (1, 1, 1).
 三相/dq軸変換器9は、補正された三相モータ電流検出値imeasuvw’と、電気角θとから、式(3)に基づいてdq軸電流検出値idqを計算する。 The three-phase/dq-axis converter 9 calculates the dq-axis current detection value i dq from the corrected three-phase motor current detection value i meas uvw ′ and the electrical angle θ e according to equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 制御器3(図1)は、このようなdq軸電流検出値idqを用いて、前述のようにインバータ4(図1)のスイッチングを制御する制御信号D*uvwを生成する。 The controller 3 (FIG. 1) uses such dq-axis current detection values i_dq to generate the control signal D* uvw for controlling the switching of the inverter 4 (FIG. 1) as described above.
 次に、誤差計算部100(図2)の動作について説明する。 Next, the operation of the error calculation unit 100 (Figure 2) will be explained.
 まず、三相電流振幅推定部101における三相モータ電流振幅値IUVWの推定手段について、U相モータ電流振幅値Iを例にして説明する。 First, the means for estimating the three-phase motor current amplitude values IUVW in the three-phase current amplitude estimator 101 will be described using the U-phase motor current amplitude value IU as an example.
 U相モータ電流検出値imeasとU相モータ電流振幅値Iとは、式(4)の関係にある。 The U-phase motor current detection value i_meas u and the U-phase motor current amplitude value IU have the relationship shown in Equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)においては、モータ5におけるU相磁束を位相基準としている。 In equation (4), the U-phase magnetic flux in motor 5 is used as the phase reference.
 式(4)に基づいて、Iは式(5)で表される。 Based on equation (4), Iu is expressed by equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 なお、電流検出タイミングが、電気角θの検出タイミングに対してΔtだけ遅れる場合、電気角θをωΔtだけ進める補正を行ってもよい。 When the current detection timing is delayed by Δt with respect to the detection timing of the electrical angle θ e , the electrical angle θ e may be corrected to be advanced by ω e Δt.
 式(4)および(5)におけるβは、回転座標系における電流位相であり、dq軸電流検出値idqから計算できるが、本実施例では、式(6)を用いて、dq軸電流指令値i*dqから計算される。 βc in equations (4) and (5) is a current phase in a rotating coordinate system and can be calculated from the dq-axis current detection values i dq . In this embodiment, however, it is calculated from the dq-axis current command values i* dq using equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 これにより、idqに含まれる電流センサの誤差やノイズのβcに対する影響が抑えられる。また、周波数として表される電流制御応答相当のローパスフィルタ(LPF)を通したi*dqに基づきβを計算してもよい。 This suppresses the effect of current sensor error and noise contained in i dq on β c. In addition, β c may be calculated based on i* dq that has been passed through a low-pass filter (LPF) equivalent to a current control response expressed as a frequency.
 なお、式(6)に代えて、さらに、βとidqとの対応を表すテーブルデータを用いてもよい。 In addition, instead of equation (6), table data representing the correspondence between β c and i dq may be used.
 V相およびW相モータ電流振幅値I,Iは、位相基準から、それぞれ、-2/3π、2/3πだけ位相をずらして、式(7)、式(8)で表される。 The V-phase and W-phase motor current amplitude values I V and I W are expressed by equations (7) and (8) with phases shifted by −2/3π and 2/3π, respectively, from the phase reference.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 三相電流振幅推定部101においては、式(6)~(8)の分母が三角関数であるため、電気角1周期について2度、ゼロ割もしくはゼロ割に非常に近い状態が発生する。実際の三相モータ電流は正弦波から歪むため、電流ゼロクロス付近で電流振幅値が大きく振れる可能性がある。したがって、誤差推定部102における誤差の計算精度が低下する可能性がある。そのため、三相電流振幅推定部101は、分母の三角関数の値がある一定値以下となる時、計算動作を停止して、予め設定される所定値を出力してもよい。 In the three-phase current amplitude estimation unit 101, because the denominators of equations (6) to (8) are trigonometric functions, a state of division by zero or very close to zero occurs twice per electrical angle cycle. Because the actual three-phase motor current is distorted from a sine wave, the current amplitude value may fluctuate significantly near the current zero crossing. This may reduce the accuracy of the error calculation in the error estimation unit 102. For this reason, when the value of the trigonometric function in the denominator falls below a certain value, the three-phase current amplitude estimation unit 101 may stop the calculation operation and output a predetermined value that is set in advance.
 誤差推定部102は、三相電流振幅推定部101から三相モータ電流振幅値IUVWを受ける。もし、電流センサの誤差がなければ、三相平衡の条件下で、I,I,Iは等しくなる。そこで、誤差推定部102は、I,I,Iの平均値Iave(=(I+I+I)/3)を真値として、式(9)を用いて、電流センサ11の誤差erruvwを計算して推定する。 Error estimator 102 receives three-phase motor current amplitude values I UVW from three-phase current amplitude estimator 101. If there are no current sensor errors, IU , IV , and IW will be equal under three-phase balance conditions. Therefore, error estimator 102 calculates and estimates error err uvw of current sensor 11 using equation (9) with average value I ave (=( IU + IV + IW )/3) of IU, IV , and IW as the true value .
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 誤差推定部102は、モータ状態判定部103の出力(判定結果)に基づき動作を変更する。 The error estimation unit 102 changes its operation based on the output (determination result) of the motor state determination unit 103.
 図4は、誤差推定部102の動作の変更を示す状態遷移図である。 FIG. 4 is a state transition diagram showing changes in the operation of the error estimation unit 102.
 初期状態S1において、誤差推定部102は、初期値として設定した誤差erruvw(=(err,err,err))の値を出力する。本実施例では、初期値は(1,1,1)である。また、予め誤差がわかっている場合、その誤差を初期値として設定してもよい。 In the initial state S1, the error estimator 102 outputs the value of the error erruvw (=( erru , errv , errw )) set as the initial value. In this embodiment, the initial value is (1, 1, 1). In addition, when the error is known in advance, the error may be set as the initial value.
 モータ状態判定部103の出力が「誤差推定実施可」であれば、状態S2に遷移する。状態S2において、誤差推定部102は、式(9)に基づいて誤差を計算して出力する。 If the output of the motor state determination unit 103 is "error estimation possible", the state transitions to S2. In state S2, the error estimation unit 102 calculates and outputs the error based on equation (9).
 モータ状態判定部103の出力が、「誤差推定実施不可」であれば、状態S3に遷移する。状態S3において、誤差推定部102は、誤差として前回値を保持して出力する。 If the output of the motor state determination unit 103 is "error estimation not possible", the state transitions to S3. In state S3, the error estimation unit 102 holds and outputs the previous value as the error.
 図5は、モータ状態判定部103の動作を示すフローチャートである。 FIG. 5 is a flowchart showing the operation of the motor state determination unit 103.
 モータ状態判定部103は、処理を開始すると(ステップS101)、ステップS102において、式(6)で表されるモータ5の電流位相量βcの時間変化率が所定の一定値以下であるかを判定する。モータ状態判定部103は、一定値以下であると判定すると(ステップS102のYES)、次にステップS103を実行し、一定値以下ではない、すなわち一定値より大であると判定すると(ステップS102のNO)、次にステップS105を実行する。 When the motor state determination unit 103 starts processing (step S101), it determines in step S102 whether the time rate of change of the current phase amount βc of the motor 5, expressed by equation (6), is equal to or less than a predetermined constant value. If the motor state determination unit 103 determines that it is equal to or less than the constant value (YES in step S102), it then executes step S103, and if it determines that it is not equal to or less than the constant value, i.e., that it is greater than the constant value (NO in step S102), it then executes step S105.
 ステップS103において、モータ状態判定部103は、誤差の推定を実施するかを判定する。モータ状態判定部103は、実施すると判定すると(ステップS103のYES)、次にステップS104を実行し、実施しないと判定すると(ステップS103のNO)、次にステップS105を実行する。 In step S103, the motor state determination unit 103 determines whether to perform error estimation. If the motor state determination unit 103 determines that an error estimation should be performed (YES in step S103), it next executes step S104, and if it determines that an error estimation should not be performed (NO in step S103), it next executes step S105.
 ステップS104において、モータ状態判定部103は、モータ状態の判定結果として「誤差推定実施可」を出力する。ステップS104を実行すると、モータ状態判定部103は、一連の処理を終了する。 In step S104, the motor state determination unit 103 outputs "error estimation possible" as the motor state determination result. After executing step S104, the motor state determination unit 103 ends the series of processes.
 ステップS105は、モータ状態判定部103は、モータ状態の判定結果として「誤差推定実施不可」を出力する。ステップS105を実行すると、モータ状態判定部103は、一連の処理を終了する。 In step S105, the motor state determination unit 103 outputs "error estimation not possible" as the motor state determination result. After executing step S105, the motor state determination unit 103 ends the series of processes.
 なお、ステップS103における判定基準は、誤差の推定精度が低下したり、計算負荷が増大したりする場合を考慮して、適宜設定される。 The criteria in step S103 are set appropriately, taking into account cases where the error estimation accuracy decreases or the calculation load increases.
 また、常に誤差の推定および補償を実施する場合には、ステップS103は省略してもよい。 In addition, if error estimation and compensation are always performed, step S103 may be omitted.
 また、式(9)が示すように、誤差の計算には電流振幅値による割り算が含まれるため、電流振幅値が小さい場合、誤差の計算精度が低下する可能性がある。そのような場合、モータ状態判定部103の動作に、電流振幅値が所定の一定値以下の場合に「誤差推定実施不可」を出力するような条件分岐を加えてもよい。 Also, as shown in equation (9), the error calculation includes division by the current amplitude value, so if the current amplitude value is small, the accuracy of the error calculation may decrease. In such a case, a conditional branch may be added to the operation of the motor state determination unit 103 so that "error estimation cannot be performed" is output when the current amplitude value is equal to or less than a predetermined constant value.
 次に、補正量計算部200(図3)の動作について説明する。 Next, the operation of the correction amount calculation unit 200 (Figure 3) will be explained.
 dq軸電流補正量計算部201は、誤差計算部100(図1、図2)によって計算された誤差erruvwを用いて、式(10)~(13)に基づき、dq軸電流補正量Δidq(=(Δi,Δi))を計算する。 The dq axis current correction amount calculation unit 201 calculates the dq axis current correction amount Δi dq (=(Δi d , Δi q )) based on the equations (10) to (13) using the error err uvw calculated by the error calculation unit 100 (FIGS. 1 and 2).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 本実施例では、式(10)および式(11)が示すように、式(1)の右辺第三項に示すようなdq軸電流検出値idqにおける2次の振動成分が補償される。なお、本実施例では、式(1)の右辺第二項に示すようなdq軸電流の直流成分の発生は補償されない。このため、直流成分の補償に伴う予期せぬトルク精度の低下を抑制できる。 In this embodiment, as shown in equations (10) and (11), the second-order vibration component in the dq-axis current detection value i dq as shown in the third term on the right side of equation (1) is compensated for. Note that in this embodiment, the occurrence of the DC component of the dq-axis current as shown in the second term on the right side of equation (1) is not compensated for. Therefore, it is possible to suppress an unexpected decrease in torque accuracy due to compensation for the DC component.
 なお、電流制御帯域以上では補償なしでもよいため、モータ5の回転数に応じて徐々に補正量を修正してもよい。 Note that since no compensation is required above the current control band, the correction amount may be gradually adjusted according to the rotation speed of the motor 5.
 三相電流補正量計算部202は、erruvwを用いて、式(14)に基づき、補正係数muvwを計算する。 The three-phase current correction amount calculation unit 202 calculates a correction coefficient m uvw based on the equation (14) using err uvw .
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 なお、muvwによる三相モータ電流検出値の補正は、Δidqによるdq軸電流の補正に比べ、計算量が少なく、計算負荷が小さい。 The correction of the three-phase motor current detection values using m uvw requires less calculation and has a smaller calculation load than the correction of the dq axis currents using Δi dq .
 補正先選択部203は、条件に応じて、muvwおよびΔidqの内、誤差erruvwを用いて計算する補正量を選択する。すなわち、補正先選択部203は、計算されたmuvwによる三相モータ電流検出値imeasuvwの補正と、計算されたΔidqによるdq軸電流検出値の補正との内、いずれか一方を選択する。なお、予めいずれか一方が選択される場合には、補正先選択部203は、省略してもよい。 The correction destination selection unit 203 selects the amount of correction to be calculated using the error err uvw from among m uvw and Δi dq according to the conditions. That is, the correction destination selection unit 203 selects either the correction of the three-phase motor current detection value imeas uvw using the calculated m uvw or the correction of the dq-axis current detection value using the calculated Δi dq . Note that if either one of them is selected in advance, the correction destination selection unit 203 may be omitted.
 図6は、補正先選択部203の動作を示すフローチャートである。 FIG. 6 is a flowchart showing the operation of the correction destination selection unit 203.
 補正先選択部203は、処理を開始すると(ステップS201)、ステップS202において、誤差補正を行うかを判定する。補正先選択部203は、誤差補正を行うと判定すると(ステップS202のYES)、次にステップS204を実行し、誤差補正を行わないと判定すると(ステップS202のNO)、次にステップS203を実行する。 When the correction destination selection unit 203 starts processing (step S201), it determines in step S202 whether to perform error correction. If the correction destination selection unit 203 determines that error correction is to be performed (YES in step S202), it then executes step S204, and if it determines that error correction is not to be performed (NO in step S202), it then executes step S203.
 ステップS204において、補正先選択部203は、dq軸電流に対して誤差補正を行なうかを判定する。補正先選択部203は、dq軸電流に対して誤差補正を行うと判定すると(ステップS204のYES)、次にステップS205を実行し、dq軸電流に対しては誤差補正を行わないと判定すると(ステップS203のNO)、次にステップS206を実行する。 In step S204, the correction destination selection unit 203 determines whether to perform error correction on the d- and q-axis currents. If the correction destination selection unit 203 determines that error correction is to be performed on the d- and q-axis currents (YES in step S204), it next executes step S205, and if it determines that error correction is not to be performed on the d- and q-axis currents (NO in step S203), it next executes step S206.
 ステップS203において、補正先選択部203は、dq軸電流補正量計算部201に対して、Δidqとして「0」(ベクトル量)を出力するように指令し、また三相電流補正量計算部202に対して、muvwとして「1」(ベクトル量)を出力するように指令する。補正先選択部203は、ステップS203を実行すると、一連の処理を終了する(ステップS207)。 In step S203, the correction destination selection unit 203 instructs the dq-axis current correction amount calculation unit 201 to output "0" (vector amount) as Δi dq , and instructs the three-phase current correction amount calculation unit 202 to output "1" (vector amount) as m uvw . After executing step S203, the correction destination selection unit 203 ends the series of processes (step S207).
 ステップS205において、補正先選択部203は、dq軸電流補正量計算部201に対して、誤差erruvwを用いてΔidqを計算して出力するように指令し、また三相電流補正量計算部202に対してmuvwとして「1」(ベクトル量)を出力するように指令する。補正先選択部203は、ステップS205を実行すると、一連の処理を終了する(ステップS207)。 In step S205, the correction destination selection unit 203 instructs the dq-axis current correction amount calculation unit 201 to calculate and output Δi dq using the error err uvw , and instructs the three-phase current correction amount calculation unit 202 to output "1" (vector amount) as m uvw . After executing step S205, the correction destination selection unit 203 ends the series of processes (step S207).
 ステップS206において、補正先選択部203は、dq軸電流補正量計算部201に対して、Δidqとして「0」(ベクトル量)を出力するように指令し、また三相電流補正量計算部202に対して、erruvwを用いてmuvwを計算して出力するように指令する。補正先選択部203は、ステップS206を実行すると、一連の処理を終了する(ステップS207)。 In step S206, the correction destination selection unit 203 instructs the dq-axis current correction amount calculation unit 201 to output "0" (vector amount) as Δi dq , and instructs the three-phase current correction amount calculation unit 202 to calculate and output m uvw using err uvw . After executing step S206, the correction destination selection unit 203 ends the series of processes (step S207).
 ステップS203,S205およびS206が示すように、本実施例では、誤差補正は、三相電流およびdq軸電流の内の一方のみに対して行われる。これにより、モータ制御装置における誤差補正動作の安定性が向上する。 As shown in steps S203, S205, and S206, in this embodiment, error correction is performed on only one of the three-phase currents and the d- and q-axis currents. This improves the stability of the error correction operation in the motor control device.
 なお、ステップS204における判定基準は、誤差の推定精度が低下したり、計算負荷が増大したりする場合を考慮して、適宜設定される。ステップS204における判定基準によっては、三相電流およびdq軸電流の両方に対して、誤差補正を行ってもよい。 The criteria in step S204 are set appropriately, taking into consideration cases where the error estimation accuracy decreases or the calculation load increases. Depending on the criteria in step S204, error correction may be performed on both the three-phase currents and the d- and q-axis currents.
 上述のように、本実施例によれば、三相交流電流振幅値に基づいて電流センサのゲイン誤差が計算され、計算されたゲイン誤差に基づいて三相電流検出値およびdq軸電流検出値の内の一方が補正される。これにより、特別な動作シーケンスを備えることなく、安定かつ正確に電流センサのゲイン誤差を推定・補償できる。 As described above, according to this embodiment, the gain error of the current sensor is calculated based on the three-phase AC current amplitude value, and one of the three-phase current detection values and the dq-axis current detection values is corrected based on the calculated gain error. This makes it possible to stably and accurately estimate and compensate for the gain error of the current sensor without having to provide a special operating sequence.
 なお、本実施例によるモータ制御装置がゲイン誤差の推定・補償を実行するときには、予め電流センサのオフセット誤差が補償されていることが好ましい。電流センサのオフセット誤差補償は、例えば、モータ電流を流していないときの電流センサの出力信号が示す平均的な電流値を、モータ電流検出値から差し引くことにより実施できる。 When the motor control device according to this embodiment estimates and compensates for the gain error, it is preferable that the offset error of the current sensor has been compensated for in advance. The offset error compensation of the current sensor can be performed, for example, by subtracting the average current value indicated by the output signal of the current sensor when no motor current is flowing from the motor current detection value.
 本実施例のモータ制御装置1においては、電流センサ11のゲイン誤差を補償するための制御部を、誤差推定を実行する誤差計算部100と、誤差補正を実行する補正量計算部200とに分けて備えている。これにより、誤差計算部100を動作させて誤差推定を行った後、補正量計算部200を動作させて誤差補正を行ってもよい。例えば、モータ5の起動時に、まず誤差計算部100により誤差を推定し、その後、補正量計算部200を動作させて、推定された誤差に基づいて誤差補正を行なう。なお、モータ5の起動時毎に誤差推定を行ってもよいし、モータ制御装置1に対して所定操作した場合に、誤差推定を行ってもよい。 In the motor control device 1 of this embodiment, the control unit for compensating for the gain error of the current sensor 11 is divided into an error calculation unit 100 that performs error estimation, and a correction amount calculation unit 200 that performs error correction. As a result, the error calculation unit 100 may be operated to perform error estimation, and then the correction amount calculation unit 200 may be operated to perform error correction. For example, when the motor 5 is started, the error is first estimated by the error calculation unit 100, and then the correction amount calculation unit 200 is operated to perform error correction based on the estimated error. Note that error estimation may be performed every time the motor 5 is started, or when a specified operation is performed on the motor control device 1.
 図7は、本発明の実施例2であるモータ制御装置の構成を示す機能ブロック図である。 FIG. 7 is a functional block diagram showing the configuration of a motor control device according to a second embodiment of the present invention.
 以下、主に、実施例1と異なる点について説明する。  Below, we will mainly explain the differences from Example 1.
 図7に示すように、本実施例のモータ制御装置1は、電流制御系を有していない。このため、電流センサ11のゲイン誤差補償のためにdq軸電流検出値は補正されない。 As shown in FIG. 7, the motor control device 1 of this embodiment does not have a current control system. Therefore, the dq-axis current detection values are not corrected to compensate for the gain error of the current sensor 11.
 本実施例のモータ制御装置1は、モータ駆動中に電流制御が行われていないがモータ電流が流れている場合、すなわち、dq軸電流指令値と実際に流れるdq軸電流とが一致しない場合、例えば、過電圧保護などのためにインバータ4の三相短絡が実行される場合に、動作する。 The motor control device 1 of this embodiment operates when current control is not being performed while the motor is being driven but motor current is flowing, i.e., when the dq-axis current command value and the actual dq-axis current flowing do not match, for example, when a three-phase short circuit of the inverter 4 is performed for overvoltage protection, etc.
 なお、本実施例2のモータ制御装置1の構成は、実施例1(図1)のモータ制御装置において上記の場合に動作する部分である。 The configuration of the motor control device 1 of this embodiment 2 is the part that operates in the above case in the motor control device of embodiment 1 (Figure 1).
 図8は、実施例2における誤差計算部100(図7)の構成を示す機能ブロック図である。 FIG. 8 is a functional block diagram showing the configuration of the error calculation unit 100 (FIG. 7) in the second embodiment.
 本実施例2における三相電流振幅推定部101は、三相モータ電流検出値imeasuvw(=(imeas,Imeas,Imeas))と、電気角θおよび電気角速度ω(図7)とに基づくとともに、さらにdq軸電流指令値i*dq(図2)に替えてdq軸電流検出値Idq(=(I,I))に基づいて、三相モータ電流振幅値IUVW(=(I,I,I)を推定する。 A three-phase current amplitude estimator 101 in the second embodiment estimates three-phase motor current amplitude values I UVW (=(I U , IV , IW )) based on three-phase motor current detection values imeas uvw (=(imeas u , Imeas v , Imeas w )), the electrical angle θ e and the electrical angular velocity ω e ( FIG. 7 ), and further based on a dq-axis current detection value I dq (=(I d , I q )) instead of the dq-axis current command value i* dq ( FIG . 2 ).
 三相電流振幅推定部101は、前述の式(5),(7)および(8)に基づいて三相モータ電流振幅値IUVWを計算する。ただし、回転座標系における電流位相βは、式(15)を用いて、dq軸電流検出値idqから計算される。 The three-phase current amplitude estimation unit 101 calculates the three-phase motor current amplitude values I UVW based on the above-mentioned equations (5), (7), and (8), where the current phase β c in the rotating coordinate system is calculated from the d-axis and q-axis current detection values i dq using equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 本実施例2におけるモータ状態判定部103は、dq軸電流指令値i*dq(図2)に替えてdq軸電流検出値idqを用いて、モータ5(図7)の状態を判定する。 The motor state determination unit 103 in the second embodiment determines the state of the motor 5 (FIG. 7) by using the dq-axis current detection values i dq instead of the dq-axis current command values i* dq (FIG. 2).
 図9は、実施例2における補正量計算部200(図7)の構成を示す機能ブロック図である。 FIG. 9 is a functional block diagram showing the configuration of the correction amount calculation unit 200 (FIG. 7) in the second embodiment.
 本実施例2におけるdq軸電流補正量計算部201は、誤差計算部100(図8)によって計算された誤差erruvw(=(err,err,err))と、機械角θ(図7)とに基づくとともに、dq軸電流指令値i*dq(図3)に替えてdq軸電流検出値idqに基づいて、dq軸電流補正量Δidq(=(Δi,Δi))を計算する。 The dq-axis current correction amount calculation unit 201 in this embodiment 2 calculates the dq-axis current correction amount Δi dq (=(Δi d , Δi q )) based on the error err uvw (=(err u , err v , err w ) ) calculated by the error calculation unit 100 (FIG. 8) and the mechanical angle θ e (FIG. 7), and also based on the dq-axis current detection value i dq instead of the dq-axis current command value i* dq (FIG. 3 ).
 図10は、補正先選択部303の動作を示すフローチャートである。 FIG. 10 is a flowchart showing the operation of the correction destination selection unit 303.
 図10に示すステップS301,S303,S304,S305,S306,S307およびS308は、それぞれ、前述の図6(実施例1)におけるステップS201,S202,S204,S205,S206,S203およびS207に相当する。 Steps S301, S303, S304, S305, S306, S307, and S308 shown in FIG. 10 correspond to steps S201, S202, S204, S205, S206, S203, and S207 in FIG. 6 (Example 1), respectively.
 本実施例2において、補正先選択部303は、処理を開始すると(ステップS301)、ステップS302において、電流制御が有効であるかを判定する。本実施例2においては、電流制御が実行されないので、補正先選択部303は、電流制御は有効ではないと判定し(ステップS302のNO)、次にステップS306を実行する。 In this embodiment 2, when the correction destination selection unit 303 starts processing (step S301), it determines in step S302 whether current control is enabled. In this embodiment 2, since current control is not executed, the correction destination selection unit 303 determines that current control is not enabled (NO in step S302) and then executes step S306.
 ステップS306において、補正先選択部203は、dq軸電流補正量計算部201に対して、Δidqとして「0」(ベクトル量)を出力するように指令し、また三相電流補正量計算部202に対して、erruvwを用いてmuvwを計算して出力するように指令する。補正先選択部303は、ステップS306を実行すると、一連の処理を終了する(ステップS308)。 In step S306, the correction destination selection unit 203 instructs the dq-axis current correction amount calculation unit 201 to output "0" (vector amount) as Δi dq , and instructs the three-phase current correction amount calculation unit 202 to calculate and output m uvw using err uvw . After executing step S306, the correction destination selection unit 303 ends the series of processes (step S308).
 本実施例2によれば、三相交流電流振幅値に基づいて電流センサのゲイン誤差が計算され、計算されたゲイン誤差に基づいて三相電流検出値が補正される。これにより、特別な動作シーケンスを備えることなく、安定かつ正確に電流センサのゲイン誤差を推定・補償できる。これにより、インバータ4の三相短絡動作時のようにモータ駆動中に電流制御が行われていないがモータ電流が流れている場合でも、特別な動作シーケンスを備えることなく、安定かつ正確に電流センサのゲイン誤差を推定・補償できる。 According to the second embodiment, the gain error of the current sensor is calculated based on the three-phase AC current amplitude value, and the three-phase current detection value is corrected based on the calculated gain error. This allows the current sensor gain error to be estimated and compensated for stably and accurately without a special operating sequence. This allows the current sensor gain error to be estimated and compensated for stably and accurately without a special operating sequence, even when no current control is performed during motor drive but motor current is flowing, such as during three-phase short-circuit operation of the inverter 4.
 なお、本発明は前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施形態の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 The present invention is not limited to the above-described embodiments, but includes various modified examples. For example, the above-described embodiments have been described in detail to clearly explain the present invention, and the present invention is not necessarily limited to those having all of the configurations described. In addition, it is possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
1 モータ制御装置、2 dq軸電流指令値、3 制御器、4 インバータ、5 モータ、6 電気角計算部、7 電気角速度計算部、8 A/D変換器、9 三相/dq軸変換器、10a dq軸電流補正部、10b 三相電流補正部、100 誤差計算部、200 補正量計算部、101 三相電流振幅推定部、102 誤差推定部、103 モータ状態判定部、201 dq軸電流補正量計算部、202 三相電流補正量計算部、203 補正先選択部、303 補正先選択部。 1 Motor control device, 2 dq axis current command value, 3 Controller, 4 Inverter, 5 Motor, 6 Electrical angle calculation unit, 7 Electrical angular velocity calculation unit, 8 A/D converter, 9 Three-phase/dq axis converter, 10a dq axis current correction unit, 10b Three-phase current correction unit, 100 Error calculation unit, 200 Correction amount calculation unit, 101 Three-phase current amplitude estimation unit, 102 Error estimation unit, 103 Motor state determination unit, 201 dq axis current correction amount calculation unit, 202 Three-phase current correction amount calculation unit, 203 Correction destination selection unit, 303 Correction destination selection unit.

Claims (13)

  1.  交流モータを駆動するインバータの制御信号を生成するモータ制御装置において、
     電流センサによって検出される三相モータ電流の振幅値を用いて前記電流センサのゲイン誤差を計算する誤差計算部と、
     前記誤差計算部によって推定される前記ゲイン誤差に基づいて、前記ゲイン誤差を補償するための電流補正量を計算する補正量計算部と、
    を備えることを特徴とするモータ制御装置。
    2. A motor control device that generates a control signal for an inverter that drives an AC motor,
    an error calculation unit that calculates a gain error of the current sensor using an amplitude value of a three-phase motor current detected by the current sensor;
    a correction amount calculation unit that calculates a current correction amount for compensating for the gain error based on the gain error estimated by the error calculation unit;
    A motor control device comprising:
  2.  請求項1に記載のモータ制御装置において、
     前記誤差計算部は、前記三相モータ電流の各相の前記振幅値と、三相の前記振幅値の平均値とに基づいて、前記ゲイン誤差を計算することを特徴とするモータ制御装置。
    2. The motor control device according to claim 1,
    The motor control device according to claim 1, wherein the error calculation unit calculates the gain error based on the amplitude value of each phase of the three-phase motor current and an average value of the amplitude values of the three phases.
  3.  請求項2に記載のモータ制御装置において、
     前記誤差計算部は、前記三相モータ電流の検出値と、前記交流モータの電気角および電気角速度と、dq軸電流の指令値とに基づいて、前記三相モータ電流の前記各相の前記振幅値を推定することを特徴とするモータ制御装置。
    3. The motor control device according to claim 2,
    the error calculation unit estimates the amplitude values of the respective phases of the three-phase motor current based on detection values of the three-phase motor current, an electrical angle and an electrical angular velocity of the AC motor, and command values of dq-axis currents.
  4.  請求項1に記載のモータ制御装置において、
     前記誤差計算部は、前記交流モータの電流位相量の時間変化率が所定値以下であるときに、前記ゲイン誤差の計算を実施することを特徴とするモータ制御装置。
    2. The motor control device according to claim 1,
    The motor control device according to claim 1, wherein the error calculation unit calculates the gain error when a time rate of change of a current phase amount of the AC motor is equal to or smaller than a predetermined value.
  5.  請求項1に記載のモータ制御装置において、
     前記補正量計算部は、前記三相モータ電流の検出値を補正する三相電流補正量と、dq軸電流の検出値を補正するdq軸電流補正量を計算することを特徴とするモータ制御装置。
    2. The motor control device according to claim 1,
    The motor control device according to claim 1, wherein the correction amount calculation unit calculates a three-phase current correction amount for correcting a detection value of the three-phase motor current, and a dq-axis current correction amount for correcting a detection value of a dq-axis current.
  6.  請求項5に記載のモータ制御装置において、
     前記補正量計算部は、前記三相電流補正量として、前記ゲイン誤差に基づいて、補正係数を計算し、
     前記補正量計算部は、前記ゲイン誤差と、前記交流モータの電気角と、前記dq軸電流の指令値に基づいて、前記dq軸電流補正量を計算することを特徴とするモータ制御装置。
    6. The motor control device according to claim 5,
    the correction amount calculation unit calculates a correction coefficient as the three-phase current correction amount based on the gain error;
    The motor control device according to claim 1, wherein the correction amount calculation unit calculates the dq-axis current correction amounts based on the gain error, an electrical angle of the AC motor, and command values of the dq-axis currents.
  7.  請求項5に記載のモータ制御装置において、
     前記補正量計算部は、前記三相電流補正量および前記dq軸電流補正量のいずれか一方を選択する選択部を備えることを特徴とするモータ制御装置。
    6. The motor control device according to claim 5,
    The motor control device according to claim 1, wherein the correction amount calculation unit includes a selection unit that selects either the three-phase current correction amount or the dq-axis current correction amount.
  8.  請求項5に記載のモータ制御装置において、
     前記三相電流補正量によって補正された前記三相モータ電流の前記検出値を前記dq軸電流の前記検出値に変換することを特徴とするモータ制御装置。
    6. The motor control device according to claim 5,
    a detection value of the three-phase motor current corrected by the three-phase current correction amount is converted into a detection value of the dq-axis current.
  9.  請求項5に記載のモータ制御装置において、
     前記dq軸電流補正量によって補正された前記dq軸電流の前記検出値と、前記dq軸電流の指令値とに基づいて、前記制御信号を生成する制御器を備えることを特徴とするモータ制御装置。
    6. The motor control device according to claim 5,
    A motor control device comprising: a controller that generates the control signal based on the detection values of the dq-axis currents corrected by the dq-axis current correction amounts and command values of the dq-axis currents.
  10.  請求項2に記載のモータ制御装置において、
     dq軸電流の指令値と前記dq軸電流の検出値とが一致しないモータ動作では、
     前記誤差計算部は、前記三相モータ電流の検出値と、前記交流モータの電気角および電気角速度と、前記dq軸電流の前記検出値とに基づいて、前記三相モータ電流の前記各相の前記振幅値を推定することを特徴とするモータ制御装置。
    3. The motor control device according to claim 2,
    In the motor operation where the command value of the dq axis current does not match the detected value of the dq axis current,
    the error calculation unit estimates the amplitude values of the respective phases of the three-phase motor current based on the detected values of the three-phase motor current, the electrical angle and electrical angular velocity of the AC motor, and the detected values of the dq-axis currents.
  11.  請求項10に記載のモータ制御装置において、
     前記補正量計算部は、前記三相モータ電流の前記検出値を補正する三相電流補正量と、前記dq軸電流の前記検出値を補正するdq軸電流補正量を計算することを特徴とするモータ制御装置。
    11. The motor control device according to claim 10,
    The motor control device according to claim 1, wherein the correction amount calculation unit calculates a three-phase current correction amount for correcting the detected value of the three-phase motor current, and a dq-axis current correction amount for correcting the detected value of the dq-axis current.
  12.  請求項11に記載のモータ制御装置において、
     前記dq軸電流の前記指令値と前記dq軸電流の前記検出値とが一致しない前記交流モータの動作では、
     前記補正量計算部は、前記三相電流補正量として、前記ゲイン誤差に基づいて、補正係数を計算し、
     前記補正量計算部は、前記ゲイン誤差と、前記モータの電気角と、前記dq軸電流の前記検出値に基づいて、前記dq軸電流補正量を計算することを特徴とするモータ制御装置。
    12. The motor control device according to claim 11,
    In an operation of the AC motor in which the command value of the dq-axis current does not match the detected value of the dq-axis current,
    the correction amount calculation unit calculates a correction coefficient as the three-phase current correction amount based on the gain error;
    The motor control device according to claim 1, wherein the correction amount calculation unit calculates the dq-axis current correction amounts based on the gain error, the electrical angle of the motor, and the detected values of the dq-axis currents.
  13.  請求項12に記載のモータ制御装置において、
     前記補正量計算部は、前記三相電流補正量および前記dq軸電流補正量の内、前記三相電流補正量を選択する選択部を備えることを特徴とするモータ制御装置。
    13. The motor control device according to claim 12,
    The motor control device according to claim 1, wherein the correction amount calculation unit includes a selection unit that selects the three-phase current correction amount from among the three-phase current correction amount and the dq-axis current correction amount.
PCT/JP2023/033547 2022-09-28 2023-09-14 Motor control device WO2024070731A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-154790 2022-09-28
JP2022154790A JP2024048720A (en) 2022-09-28 2022-09-28 Motor Control Device

Publications (1)

Publication Number Publication Date
WO2024070731A1 true WO2024070731A1 (en) 2024-04-04

Family

ID=90477605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033547 WO2024070731A1 (en) 2022-09-28 2023-09-14 Motor control device

Country Status (2)

Country Link
JP (1) JP2024048720A (en)
WO (1) WO2024070731A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274411A (en) * 1994-03-30 1995-10-20 Mitsubishi Electric Corp Power generation controller for vehicle
JP2011078295A (en) * 2008-10-30 2011-04-14 Denso Corp Motor control device of vehicle
JP2013219988A (en) * 2012-04-12 2013-10-24 Denso Corp Control device of rotating machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274411A (en) * 1994-03-30 1995-10-20 Mitsubishi Electric Corp Power generation controller for vehicle
JP2011078295A (en) * 2008-10-30 2011-04-14 Denso Corp Motor control device of vehicle
JP2013219988A (en) * 2012-04-12 2013-10-24 Denso Corp Control device of rotating machine

Also Published As

Publication number Publication date
JP2024048720A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP4357967B2 (en) Control device for synchronous reluctance motor
JP5257365B2 (en) Motor control device and control method thereof
JP4988329B2 (en) Beatless control device for permanent magnet motor
US6992448B2 (en) Motor control apparatus
KR101046802B1 (en) Control device of AC rotor and electric constant measurement method of AC rotor using this controller
US20170264227A1 (en) Inverter control device and motor drive system
US6927551B2 (en) Motor control apparatus and motor control method
JP6672902B2 (en) Motor control device
JP3674741B2 (en) Control device for permanent magnet synchronous motor
JP2004297966A (en) Ac motor controlling device
JP7225550B2 (en) motor controller
JP2013150498A (en) Controller and control method of synchronous motor
JP2000037098A (en) Power conversion apparatus using speed sensor-less vector control
US11309817B2 (en) Control device of rotating machine, and control device of electric vehicle
WO2024070731A1 (en) Motor control device
JP5262267B2 (en) Three-phase AC motor drive device
JP7251424B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP7247468B2 (en) motor controller
JP7363524B2 (en) Sensorless motor control device
JP4581603B2 (en) Electric motor drive
JP2013172550A (en) Motor controller and three-phase voltage command generating method of motor
JP7020112B2 (en) Motor control device
JP7009861B2 (en) Motor control device
JP2017158414A (en) Motor controller
JP7226211B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD