WO2024070251A1 - マット材、排ガス浄化装置及びマット材の製造方法 - Google Patents

マット材、排ガス浄化装置及びマット材の製造方法 Download PDF

Info

Publication number
WO2024070251A1
WO2024070251A1 PCT/JP2023/028877 JP2023028877W WO2024070251A1 WO 2024070251 A1 WO2024070251 A1 WO 2024070251A1 JP 2023028877 W JP2023028877 W JP 2023028877W WO 2024070251 A1 WO2024070251 A1 WO 2024070251A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
mat
sheet material
mat material
exhaust gas
Prior art date
Application number
PCT/JP2023/028877
Other languages
English (en)
French (fr)
Inventor
真希 松長
雄太 向後
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2024070251A1 publication Critical patent/WO2024070251A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to a mat material, an exhaust gas purification device, and a method for manufacturing the mat material.
  • Exhaust gas emitted from internal combustion engines such as diesel engines contains particulate matter (hereinafter referred to as PM), and in recent years, the harm that this PM poses to the environment and human body has become a problem.
  • exhaust gas also contains harmful gas components such as CO, HC, and NOx, and there are concerns about the impact that these harmful gas components have on the environment and human body.
  • the exhaust gas purification devices are composed of an exhaust gas treatment body made of porous ceramics such as silicon carbide or cordierite, a casing (cylindrical member) that houses the exhaust gas treatment body, and a retaining sealant arranged between the exhaust gas treatment body and the casing.
  • the main purpose of this retaining sealant is to prevent the exhaust gas treatment body from coming into contact with the casing that covers its outer periphery and being damaged by vibrations and shocks caused by the running of the automobile, and to prevent exhaust gas from leaking between the exhaust gas treatment body and the casing.
  • a mat material made of inorganic fibers is used as a holding and sealing material for such applications.
  • Mat materials made of inorganic fibers are also used for insulation and soundproofing, being wrapped around piping in automobiles, etc.
  • Patent Document 1 discloses a holding and sealing material in which a sheet material having an opening in at least a portion of its surface is placed on at least one of the first and second main surfaces of a base material. It also discloses that a sheet material made of a heat-sealing material is thermocompressed to the base material, thereby adhering the sheet material to the main surface of the base material without using an adhesive.
  • the sheet material is provided to prevent inorganic fibers contained in the base material from scattering.
  • a method for producing such a mat material As a method for producing such a mat material, a method of punching using a punching die having a punching blade (also called punching process) has been conventionally used. In this process, a sheet-like member made of inorganic fibers and a large-sized adhesive body to which a flexible sheet is attached are prepared, and by punching out this adhesive body, a large number of mat materials can be obtained in a single punching process.
  • the mat material has a longitudinal direction which corresponds to the wrapping direction, and a lateral direction which is perpendicular to the longitudinal direction.
  • a place where the mat material is punched in a direction in which the vertical direction of the adhesive body is the longitudinal direction of the mat material and a place where the mat material is punched in a direction in which the horizontal direction of the adhesive body is the longitudinal direction of the mat material are combined, so that as much mat material as possible can be obtained from one large-sized adhesive body.
  • two types of mat material are obtained which have different orientations between the length and width directions of the application body and the longitudinal direction of the mat material.
  • the sheet material is fixed to the base material by thermocompression bonding, and at this time the fibers forming the sheet material themselves melt and are attached to the base material. Therefore, it is believed that holes are formed in the fibers of the sheet material after thermocompression bonding, reducing the fiber strength. It is also believed that the flexibility of the sheet material is weakened by multiple fibers of the sheet material fusing to each other. As a result, there is a risk of the mat material cracking when the mat material with the sheet material attached is wrapped around an exhaust gas treatment body or the like.
  • the present invention was made in consideration of these problems, and aims to provide a mat material that can suppress the occurrence of cracks during wrapping.
  • the mat material according to the first aspect of the present invention is characterized in that a base mat containing inorganic fibers and having first and second main surfaces has a network formed on at least one of the first and second main surfaces, the network being made up of a plurality of bases made of an organic material and fibers extending in at least two directions from each of the plurality of bases.
  • the mat material according to the first aspect of the present invention has a network formed on at least one of the first and second main surfaces of the substrate mat, which is made of a plurality of bases made of an organic substance and fibers extending in at least two directions from each of the plurality of bases.
  • the mat material has high strength and flexibility, and is therefore able to suppress the occurrence of cracks when wrapped around the mat material.
  • the maximum width of each of the plurality of base portions is greater than the width of the fibers forming the network. This allows a larger number of fibers forming the network to be bonded more firmly, thereby improving the strength of the entire mat material, and as a result, the occurrence of cracks during wrapping of the mat material can be more effectively suppressed.
  • the glass transition point of the fibers forming the network is higher than the glass transition point of the organic material constituting the plurality of bases. This allows the network to be easily formed using the hot melt powder.
  • the network is preferably formed three-dimensionally. This improves the strength of the network formed on the first and/or second main surfaces of the substrate mat and also disperses the stress applied to the network, thereby more effectively suppressing the occurrence of cracks when the mat material is wrapped around it.
  • the fibers forming the network are composed of at least one of organic fibers and inorganic fibers. From the viewpoint of more effectively suppressing the occurrence of cracks when the mat material is wrapped, it is more preferable that the fibers forming the network are composed of organic fibers.
  • the mat material according to the second aspect of the present invention is characterized in that a base mat contains inorganic fibers and has first and second main surfaces, and a web is formed on at least one of the first and second main surfaces from fiber bundles formed by intertwining a plurality of fibers and single fibers.
  • the web contains fiber bundles, which are formed by intertwining a plurality of fibers. Furthermore, since the web is formed from such fiber bundles and short fibers, it is possible to prevent the strength and flexibility of the fibers forming the web from decreasing. As a result, it is possible to prevent the occurrence of cracks when the mat material is wrapped around the web.
  • the mat material according to the second aspect of the present invention includes a plurality of the fiber bundles having different stretch directions, and the web is formed from the plurality of the fiber bundles and the monofilaments. This allows the number of longitudinally oriented fibers and the number of laterally oriented fibers to be approximately the same.
  • the fiber bundles and the single fibers is curved. This increases the number of intersections between the fibers forming the web and distributes the stress applied to the web, making it possible to more effectively suppress the occurrence of cracks when the mat material is wrapped around it.
  • the web is preferably formed three-dimensionally. This improves the strength of the web formed on the first and/or second main surfaces of the base mat and distributes the stress applied to the web, thereby more effectively suppressing the occurrence of cracks when the mat material is wrapped around it.
  • the fiber bundles and the single fibers are each composed of at least one of organic fibers and inorganic fibers. From the viewpoint of more effectively suppressing the occurrence of cracks when the mat material is wrapped around, it is more preferable that the fiber bundles and the single fibers are each made of organic fibers.
  • the exhaust gas purification device of the present invention is an exhaust gas purification device comprising an exhaust gas treatment body through which exhaust gas flows, a holding seal material that is wrapped around the outer periphery of the exhaust gas treatment body, and a casing that houses the exhaust gas treatment body around which the holding seal material is wrapped, and is characterized in that the holding seal material is a mat material according to the first or second aspect of the present invention.
  • the mat material according to the first and second aspects of the present invention can suppress the occurrence of cracks during wrapping. Therefore, the exhaust gas purification device of the present invention can suppress the leakage of untreated exhaust gas through cracks in the mat material.
  • the method for manufacturing the mat material of the present invention is characterized by having a substrate mat preparation step of preparing a substrate mat containing inorganic fibers and having first and second main surfaces, a sheet material preparation step of preparing a sheet material containing fibers extending in at least two directions, a sheet material processing step of spraying hot melt powder on the sheet material, heating it, and adhering the hot melt powder to the sheet material, and a sheet material attachment step of thermocompression bonding the sheet material with the hot melt powder attached to at least one of the first and second main surfaces of the substrate mat, and attaching the sheet material to the substrate mat.
  • a hot melt powder is sprinkled on a sheet material containing fibers extending in at least two directions, the hot melt powder is adhered to the sheet material, and the sheet material with the hot melt powder adhered thereto is thermocompressed to at least one of the first and second main surfaces of the base mat, and the sheet material is attached to the base mat.
  • a network having a base can be formed by heating and melting the hot melt powder. As a result, it is possible to suppress the occurrence of cracks when the mat material is wrapped around the base mat.
  • FIG. 1 is a perspective view showing a schematic example of a mat member according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged plan view showing a schematic diagram of the network shown in FIG.
  • FIG. 3 is a perspective view that illustrates an example of a patch.
  • FIG. 4 is a top view that illustrates an example of a process for obtaining two types of mat materials by punching.
  • FIG. 5 is a perspective view that illustrates an example of the mat member according to the second aspect of the present invention.
  • FIG. 6 is an enlarged plan view showing a schematic view of the web shown in FIG.
  • FIG. 7 is a perspective view that illustrates another example of the patch.
  • FIG. 8 is a top view that illustrates another example of a process for obtaining two types of mat materials by punching.
  • FIG. 9 is a cross-sectional view that illustrates an example of an exhaust gas purification device of the present invention.
  • FIG. 10 is a photograph of the mat material of Comparative Example 1.
  • the present invention is not limited to the following configurations, and can be appropriately modified and applied within the scope that does not change the gist of the present invention. Note that a combination of two or more of the individual preferred configurations of the present invention described below also constitutes the present invention.
  • the mat material according to the first aspect of the present invention is characterized in that a base mat containing inorganic fibers and having first and second main surfaces has a network formed on at least one of the first and second main surfaces, the network being made up of a plurality of bases made of an organic material and fibers extending in at least two directions from each of the plurality of bases.
  • FIG. 1 is a perspective view showing a schematic example of a mat member according to a first embodiment of the present invention.
  • the mat material 10 shown in Figure 1 has a structure in which a network 70 consisting of an organic base and fibers (neither of which are shown in Figure 1) is formed on the first main surface 21 of a base material mat 20 having a first main surface 21 and a second main surface 22.
  • a convex portion 11 is formed at one end, that is, a first end
  • a concave portion 12 is formed at the other end, that is, a second end.
  • the convex portions 11 and the concave portions 12 are formed by overlapping the convex portions and the concave portions provided on the base mat 20 and the network 70, respectively.
  • the convex portions and concave portions of the mat material are shaped so as to fit together exactly when the mat material is wrapped around an exhaust gas purification device, an exhaust gas treatment body, or an exhaust pipe, which has a cylindrical outer periphery.
  • the direction indicated by the double-headed arrow W is the widthwise direction of the mat material
  • the direction indicated by the double-headed arrow T is the thickness direction of the mat material.
  • FIG. 1 shows a case where the network 70 is formed only on the first main surface 21 of the substrate mat 20, the network 70 may be formed on each of the first main surface 21 and the second main surface 22 of the substrate mat 20. Furthermore, in addition to the first main surface 21 and/or the second main surface 22 of the substrate mat 20, the network 70 may also be formed on the side surface of the substrate mat 20.
  • FIG. 2 is an enlarged plan view showing a schematic diagram of the network shown in FIG.
  • the base mat 20 is also shown by a dashed line in order to show the positional relationship between the network 70 and the base mat 20 .
  • the network 70 is formed by a plurality of bases 71 made of an organic substance, and fibers 72 extending in two directions from each of the plurality of bases 71 .
  • Such a network 70 has high strength and flexibility, and therefore can suppress the occurrence of cracks when the mat material 10 is wrapped around it.
  • the fibers 72 include longitudinally oriented fibers 31 and laterally oriented fibers 32 that extend in two directions, the longitudinal direction and the transverse direction, respectively.
  • the orientation direction of the vertically oriented fibers 31 is the vertical direction, which is approximately parallel to the longitudinal direction of the mat material 10 (the direction indicated by the double-headed arrow L in FIG. 1).
  • the orientation direction of the laterally oriented fibers 32 is the horizontal direction, which is approximately parallel to the short side direction of the mat material 10 (the direction indicated by the double-headed arrow W in FIG. 1).
  • the direction in which the length directions of the fibers constituting the vertically oriented fibers 31 are aligned is the orientation direction of the vertically oriented fibers 31, and the direction in which the length directions of the fibers constituting the horizontally oriented fibers 32 are aligned is the orientation direction of the horizontally oriented fibers 32.
  • Vertically oriented fibers 31, whose fibers are oriented (arranged) in the vertical direction, and laterally oriented fibers 32, whose fibers are oriented (arranged) in the horizontal direction, are layered to form a nonwoven fabric having fibers oriented vertically and horizontally.
  • the nonwoven fabric made of the fibers 72 is produced using a manufacturing process in which raw materials are spun directly into yarn, and the spun fibers are stretched in both the vertical and horizontal directions to orient the long fiber filaments in both the vertical and horizontal directions. Furthermore, the nonwoven fabric made of fibers 72 is an openwork nonwoven fabric, and has openings surrounded by longitudinally oriented fibers 31 and transversely oriented fibers 32 .
  • Figure 2 shows a case where one layer each of vertically oriented fibers 31 and horizontally oriented fibers 32 are laminated
  • the number of layers of vertically oriented fibers 31 and horizontally oriented fibers 32 is not particularly limited, and a total of three or more layers of vertically oriented fibers 31 and horizontally oriented fibers 32 may be laminated alternately.
  • the order in which the longitudinally oriented fibers 31 and the transversely oriented fibers 32 are layered is not particularly limited.
  • the network 70 may include fibers extending in three or more directions, for example, it may include fibers extending in a diagonal direction in addition to the vertically oriented fibers 31 and the horizontally oriented fibers 32.
  • the relationship between the orientation directions of the vertically oriented fibers 31 and the horizontally oriented fibers 32 and the longitudinal and transverse directions of the mat material 10 is not particularly limited, but it is preferable that one of the orientation directions of the vertically oriented fibers 31 and the horizontally oriented fibers 32 is parallel to the longitudinal direction of the mat material 10, and the other orientation direction of the vertically oriented fibers 31 and the horizontally oriented fibers 32 is parallel to the transverse direction of the mat material 10.
  • the bases 71 are distributed within the network 70, and unlike the fibers 72 that extend one-dimensionally, each base 71 extends in the longitudinal direction, lateral direction, and thickness direction (particularly the longitudinal direction and lateral direction) of the mat material 10.
  • the fibers 72 that extend in different directions are joined to each other by fusing each base 71.
  • the bases 71 are arranged in the areas where the vertically oriented fibers 31 and the horizontally oriented fibers 32 intersect, and these fibers are joined to each other.
  • the maximum width of each base 71 is larger than the width of the fibers 72.
  • the base 71 may be large enough to occupy at least a part of the area where a plurality of longitudinally oriented fibers 31 and a plurality of transversely oriented fibers 32 intersect, but it is more preferable that one base 71 includes a plurality of areas where the longitudinally oriented fibers 31 and the transversely oriented fibers 32 intersect.
  • the maximum width of each base 71 and the width of the fiber 72 are compared in a plan view of the network 70.
  • the base 71 also serves to fix the network 70 to the substrate mat 20. That is, the base 71 bonds the fibers 72 that form the network 70 by fusing to the substrate mat 20.
  • the network 70 is formed by a nonwoven fabric in which fibers 72 oriented in multiple directions (e.g., vertically oriented fibers 31 and horizontally oriented fibers 32) are laminated, and a base 71 that is distributed on the nonwoven fabric and joins fibers 72 of different orientation directions (e.g., vertically oriented fibers 31 and horizontally oriented fibers 32) located in different layers.
  • fibers 72 oriented in multiple directions e.g., vertically oriented fibers 31 and horizontally oriented fibers 32
  • a base 71 that is distributed on the nonwoven fabric and joins fibers 72 of different orientation directions (e.g., vertically oriented fibers 31 and horizontally oriented fibers 32) located in different layers.
  • the network 70 is formed three-dimensionally. That is, the network 70 extends in the longitudinal and lateral directions of the mat material 10 and has a thickness in the thickness direction of the mat material 10. This further improves the strength of the network 70 and distributes the stress applied to the network 70, making it possible to more effectively prevent cracks from occurring when the mat material 10 is wrapped around the network 70.
  • FIG. 2 shows a case in which network 70 includes fiber bundles formed by intertwining a plurality of fibers and single fibers
  • network 70 may be formed only from fiber bundles or only from single fibers. The details of these configurations will be described below.
  • the base mat constituting the mat material according to the first aspect of the present invention is made of inorganic fibers.
  • the inorganic fibers are not particularly limited and may be alumina-silica fibers, alumina fibers, silica fibers, etc. They may also be glass fibers or biosoluble fibers. They can be changed according to the properties required of the mat material, such as heat resistance and wind erosion resistance, and it is preferable to use fibers with a large diameter and fiber length that can comply with the environmental regulations of each country.
  • inorganic fibers of low crystalline alumina are preferred, and inorganic fibers of low crystalline alumina with a mullite composition are more preferred.
  • inorganic fibers containing a spinel type compound are even more preferred.
  • the base mat has a longitudinal direction which corresponds to the wrapping direction, and a lateral direction which is perpendicular to the longitudinal direction. It is preferable that the base material mat has a convex portion formed at one end, i.e., a first end, of the ends in the longitudinal direction of the base material mat, and a concave portion formed at the other end, i.e., a second end. It is preferable that the convex portion and the concave portion of the base material mat have shapes that fit exactly with each other when the mat material is wrapped around an exhaust gas purification device, an exhaust gas treatment body, or an exhaust pipe having a cylindrical outer periphery.
  • the base mat may have a shape in which no protrusions or recesses are formed.
  • the thickness of the base mat is preferably 2 to 30 mm. If the thickness of the base mat is less than 2 mm, the thickness is too thin, resulting in reduced heat insulation and soundproofing performance, whereas if the thickness of the base mat is more than 30 mm, the flexibility is reduced, resulting in reduced attachment to the member to which the base mat is to be attached.
  • the bulk density of the base mat is not particularly limited, but is preferably 0.05 to 0.30 g/cm 3 . If the bulk density of the base mat is less than 0.05 g/ cm3 , the inorganic fibers are weakly entangled and easily peeled off, making it difficult to maintain the shape of the base mat in a predetermined shape. On the other hand, if the bulk density of the base mat is more than 0.30 g/ cm3 , the base mat becomes hard, its attachment to the member to which it is attached is reduced, and the base mat becomes more likely to crack.
  • At least one of the first and second main surfaces of the substrate mat constituting the mat material according to the first aspect of the present invention has a network formed of a plurality of bases made of organic matter and fibers extending in at least two directions from each of the plurality of bases.
  • the organic matter constituting the base is different from the material of the fibers that form the network (hereafter referred to as network fibers); specifically, the base is formed by thermally fusing hot melt powder (hot melt adhesive) to the network fibers.
  • hot melt powder hot melt adhesive
  • the glass transition temperature Tg1 of the network fiber is higher than the glass transition temperature Tg2 of the organic material that constitutes the base. This makes it easy to form a network having a base using hot melt powder.
  • the glass transition point Tg1 of the network fiber is not particularly limited, but is preferably -140°C or higher and 90°C or lower, and more preferably -130°C or higher and 80°C or lower.
  • the glass transition point Tg2 of the organic material constituting the base is not particularly limited, but is preferably -140°C or higher and 90°C or lower, and more preferably -130°C or higher and 80°C or lower.
  • the difference between the glass transition point Tg1 of the network fiber and the glass transition point Tg2 of the organic material constituting the base i.e., (Tg1-Tg2), is not particularly limited, but is preferably 220°C or less, and more preferably 200°C or less in order to integrate the network fiber and the base.
  • the organic material constituting the base is not particularly limited as long as it can be used as a hot melt powder, but specific examples include polyethylene (PE), polyethylene terephthalate (PET), polyamide (PA), ethylene-vinyl acetate copolymer resin (EVA), etc.
  • PE polyethylene
  • PET polyethylene terephthalate
  • PA polyamide
  • EVA ethylene-vinyl acetate copolymer resin
  • the network fibers are preferably long filaments.
  • the long fiber filaments are preferably longer than ordinary short fiber fibers (e.g., 10 to 50 mm), and the average fiber length of the filaments is preferably longer than 100 mm, and more preferably the average fiber length of the filaments is several hundred mm or more.
  • the continuous fiber filaments may be continuous fibers.
  • the average fiber diameter of the network fibers is usually 10 ⁇ m or less in the main constituent filaments, and is preferably around 5 ⁇ m.
  • the network preferably has substantially the same planar shape as the base mat, i.e., the arrangement areas of the network and the base mat preferably substantially coincide with each other in a plan view. It is also preferable to form a sheet material composed of a network and attach this sheet material to a base mat. The sheet material and the base mat are preferably attached via a hot melt powder.
  • the basis weight of the sheet material composed of the network is not particularly limited, but is preferably 5 g/ m2 or more and 100 g/ m2 or less, more preferably 5 g/ m2 or more and 50 g/ m2 or less, and even more preferably 5 g/ m2 or more and 30 g/ m2 or less.
  • the basis weight of the sheet material referred to here is the basis weight per one sheet material.
  • the network fibers are preferably composed of at least one of organic fibers and inorganic fibers.
  • the longitudinally oriented fibers may be made of organic fibers and/or inorganic fibers
  • the transversely oriented fibers may be made of organic fibers and/or inorganic fibers.
  • the longitudinally oriented fibers and the transversely oriented fibers may be made of different materials, but typically, when the longitudinally oriented fibers are made of organic fibers, the transversely oriented fibers are also made of organic fibers, and when the longitudinally oriented fibers are made of inorganic fibers, the transversely oriented fibers are also made of inorganic fibers.
  • the network fibers are made of organic fibers, which can more effectively prevent the occurrence of cracks when the mat material is wrapped around the mat material.
  • both the longitudinally oriented fibers and the transversely oriented fibers may be made of organic fibers.
  • suitable materials for the network fibers include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), etc.
  • the base mat further contains at least one of an inorganic binder and an organic binder.
  • the amount of inorganic binder used may be, for example, more than 0 wt % and 15 wt % or less.
  • the amount of the organic binder used may be more than 0 wt % and not more than 15 wt %.
  • Alumina sol, silica sol, etc. can be used as inorganic binders.
  • organic binder it is preferable to use acrylic resin, acrylate-based latex, rubber-based latex, water-soluble organic polymers such as carboxymethyl cellulose or polyvinyl alcohol, thermoplastic resins such as styrene resin, thermosetting resins such as epoxy resin, etc.
  • the manufacturing method of the mat material of the present invention is characterized by having a base mat preparation step of preparing a base mat containing inorganic fibers and having first and second main surfaces; a sheet material preparation step of preparing a sheet material containing fibers extending in at least two directions; a sheet material processing step of spraying hot melt powder on the sheet material, heating it, and adhering the hot melt powder to the sheet material; and a sheet material attachment step of thermocompression-bonding the sheet material with the hot melt powder adhered to at least one of the first and second main surfaces of the base mat, and attaching the sheet material to the base mat.
  • the two types of mat material are a first mat material and a second mat material, and both types of mat material are mat materials related to the first aspect of the present invention.
  • a base mat having first and second main surfaces and a sheet material containing fibers extending in at least two directions are prepared.
  • the structure and physical properties of the base mat prepared here are the same as those of the base mat explained in the mat material according to the first embodiment of the present invention, and therefore detailed explanations thereof will be omitted here.
  • the structure and physical properties of the sheet material prepared here are the same as those of the network described in the mat material related to the first aspect of the present invention, except that it does not have a base, so detailed explanations will be omitted here.
  • the base mat and sheet material prepared here are preferably large sheets that can be punched to obtain a large number of mat materials according to the first aspect of the present invention.
  • the base mat can be obtained by various methods, for example, a papermaking method or a needling method.
  • the paper can be produced, for example, by the following method.
  • the inorganic fibers are opened and dispersed in a solvent to obtain a mixture.
  • the mixture is poured into a molding machine having a filtering mesh on the bottom, and the solvent in the mixture is removed to obtain an inorganic fiber aggregate.
  • the inorganic fiber aggregate is then dried to obtain a base mat.
  • the production can be carried out, for example, by the following method.
  • a spinning mixture made from a basic aluminum chloride aqueous solution and silica sol or the like is spun by a blowing method to produce an inorganic fiber precursor having an average fiber diameter of 3 to 10 ⁇ m.
  • the inorganic fiber precursor is then compressed to produce a continuous substrate mat of a predetermined size, which is then subjected to a firing treatment to obtain a substrate mat.
  • a needle punching treatment is performed either before or after this firing treatment to entangle the inorganic fibers.
  • the sheet material can be produced, for example, by the following method.
  • a raw material e.g., resin
  • a nonwoven fabric spinning device such as a melt-blown nonwoven fabric or a spunbond nonwoven fabric.
  • fibers are arranged in the machine direction (MD) and the cross direction (CD) and stretched to produce a machine stretched web in which a continuous body made of long fiber filaments is stretched in the machine direction, and a cross stretched web in which a continuous body made of the same long fiber filaments is stretched in the cross direction.
  • the machine stretched web and the cross stretched web are laminated and joined to produce a laminated sheet material (nonwoven fabric) in which machine oriented fibers and cross oriented fibers are laminated.
  • Methods for joining the longitudinally stretched web and the transversely stretched web include, for example, a water jet method, a needle punch method, a through air method, a thermal embossing method, an adhesive bonding method, a stitch bond method, an ultrasonic sealing method, an induction heat sealing method, and the like.
  • hot melt powder (powdered hot melt adhesive) is sprinkled on the sheet material and heated to adhere the hot melt powder to the sheet material.
  • the heating temperature and heating time at this time are not particularly limited, and can be set appropriately depending on the properties of the hot melt powder.
  • the sheet material having the hot melt powder adhered thereto is thermocompression-bonded to at least one of the first and second main surfaces of the base mat, thereby attaching the sheet material to the base mat.
  • the patch it is preferable to obtain the patch by attaching a large-sized sheet material to a large-sized base mat.
  • the conditions for the thermocompression bonding are not particularly limited and can be set appropriately depending on the properties of the hot melt powder.
  • the heating temperature is preferably 115° C. or higher and 140° C. or lower, and more preferably 120° C. or higher and 130° C. or lower, and the heating time is preferably 25 seconds or higher and 60 seconds or lower, and more preferably 30 seconds or higher and 50 seconds or lower.
  • FIG. 3 is a perspective view that illustrates an example of a patch.
  • the adhesive body 150 is a large-sized sheet material 130 attached onto a first main surface 121 of a large-sized base mat 120, and is a rectangular sheet having two vertical sides and two horizontal sides.
  • Sheet material 130 is a sheet material in which vertically oriented fibers and horizontally oriented fibers are laminated, and the orientation direction of the vertically oriented fibers of sheet material 130 is vertical and parallel to the two vertical sides of adhesive body 150, and the orientation direction of the horizontally oriented fibers of sheet material 130 is horizontal and parallel to the two horizontal sides of adhesive body 150.
  • the adhesive body is punched to produce a mat material of a desired shape.
  • a hot melt powder is sprinkled on a sheet material containing fibers extending in at least two directions, the hot melt powder is adhered to the sheet material, and the sheet material with the hot melt powder adhered thereto is thermocompressed to at least one of the first and second main surfaces of the base mat, and the sheet material is attached to the base mat.
  • a network having a base can be formed by heating and melting the hot melt powder. As a result, it is possible to suppress the occurrence of cracks when the mat material is wrapped around the base mat.
  • a process is carried out to obtain a first mat material in which the vertical direction of the adhesive body is the longitudinal direction of the mat material and the horizontal direction of the adhesive body is the short side direction of the mat material, and a second mat material in which the horizontal direction of the adhesive body is the longitudinal direction of the mat material and the vertical direction of the adhesive body is the short side direction of the mat material, and it is preferable to obtain two types of mat material, the first mat material and the second mat material.
  • FIG. 4 is a top view that illustrates an example of a process for obtaining two types of mat materials by punching.
  • the adhesive body 150 shown in FIG. 4 is subjected to a punching process to obtain two types of mat materials.
  • the left side of Figure 4 shows that a first mat material 1 is obtained in which the orientation direction of the vertically oriented fibers of the sheet material (the vertical direction shown in Figure 4) is the longitudinal direction of the mat material, and the orientation direction of the horizontally oriented fibers of the sheet material (the horizontal direction shown in Figure 4) is the short direction of the mat material.
  • Figure 4 shows that a second mat material 2 is obtained in which the orientation direction of the horizontally oriented fibers of the sheet material (the horizontal direction shown in Figure 4) is the longitudinal direction of the mat material, and the orientation direction of the vertically oriented fibers of the sheet material (the vertical direction shown in Figure 4) is the short direction of the mat material.
  • the first mat material 1 and the second mat material 2 have the same number and density of fibers (vertically or horizontally oriented fibers) of the sheet material oriented in the longitudinal direction of the mat material and the same number and density of fibers (horizontally or vertically oriented fibers) of the sheet material oriented in the short direction of the mat material, so they have approximately the same tensile strength and windability.
  • the orientation direction of one of the vertically oriented fibers and the horizontally oriented fibers of the sheet material is parallel to the longitudinal direction of the first mat material and parallel to the short direction of the second mat material. It is also preferable that the orientation direction of the other of the longitudinally oriented fibers and the transversely oriented fibers of the sheet material is parallel to the short side direction of the first mat material and parallel to the longitudinal direction of the second mat material.
  • the punching direction shown in FIG. 4 is a direction that satisfies the above conditions.
  • the mat material according to the first aspect of the present invention can also be produced without using such a sheet material.
  • fibers stretching in different directions may be sequentially laminated on at least one of the first and second main surfaces of the base mat using hot melt powder. More specifically, first, vertically oriented fibers (vertical stretched web) may be heat-pressed onto at least one of the first and second main surfaces of the base mat using hot melt powder, and then horizontally oriented fibers (horizontally stretched web) may be heat-pressed onto the vertically oriented fibers using hot melt powder.
  • the mat material according to a second aspect of the present invention is characterized in that a base mat contains inorganic fibers and has first and second main surfaces, and a web is formed on at least one of the first and second main surfaces from fiber bundles formed by intertwining a plurality of fibers and single fibers.
  • FIG. 5 is a perspective view that illustrates an example of the mat member according to the second aspect of the present invention.
  • the mat material 210 shown in Figure 5 has a structure in which a web 270 consisting of fiber bundles and single fibers (neither of which is shown in Figure 5) is formed on the first main surface 221 of a base mat 220 having a first main surface 221 and a second main surface 222.
  • a convex portion 211 is formed at one end, that is, a first end
  • a concave portion 212 is formed at the other end, that is, a second end.
  • the convex portions 211 and the concave portions 212 are formed by overlapping convex portions and concave portions provided on the base mat 220 and the web 270, respectively.
  • the convex portions and concave portions of the mat material are shaped so as to fit together exactly when the mat material is wrapped around an exhaust gas purification device, an exhaust gas treatment body, or an exhaust pipe, which has a cylindrical outer periphery.
  • the direction indicated by the double-headed arrow W is the widthwise direction of the mat material
  • the direction indicated by the double-headed arrow T is the thickness direction of the mat material.
  • FIG. 5 shows a case where the web 270 is formed only on the first main surface 221 of the substrate mat 220
  • the web 270 may be formed on each of the first main surface 221 and the second main surface 222 of the substrate mat 220.
  • the web 270 may also be formed on the side surface of the substrate mat 220.
  • FIG. 6 is an enlarged plan view showing a schematic view of the web shown in FIG.
  • the base mat 220 is also shown by a dashed line in order to show the positional relationship between the web 270 and the base mat 220 .
  • the web 270 is formed of fiber bundles 271 formed by intertwining a plurality of fibers, and single fibers 272 . This makes it possible to prevent the strength and flexibility of the fibers forming the web 270 from decreasing, thereby making it possible to prevent cracks from occurring when the mat material 210 is wrapped around the web 270 .
  • the fibers constituting the fiber bundle 271 are twisted and entangled with each other. In this manner, the fibers constituting the fiber bundle 271 are not fused to each other but are merely entangled with each other, and therefore, as described above, the flexibility of the web 270 can be prevented from decreasing.
  • the number of fibers constituting the fiber bundle 271 is not particularly limited, but is preferably 2 or more and 10 or less, and more preferably 3 or more and 7 or less.
  • the single fiber 272 is a fiber that is not entangled with other fibers.
  • the fiber bundle 271 includes multiple fiber bundles with different stretching directions, and the web 270 is formed from these multiple fiber bundles and single fibers 272. As a result, the number of fibers in the vertical direction and the number of fibers in the horizontal direction in the web 270 can be made approximately the same.
  • the fibers forming the web 270 include longitudinally oriented fibers 231 and laterally oriented fibers 232 that extend in two directions, the longitudinal direction and the transverse direction, respectively.
  • the orientation direction of the vertically oriented fibers 231 is the vertical direction, which is approximately parallel to the longitudinal direction of the mat material 210 (the direction indicated by the double-headed arrow L in FIG. 6).
  • the orientation direction of the laterally oriented fibers 232 is the horizontal direction, which is approximately parallel to the short side direction of the mat material 210 (the direction indicated by the double-headed arrow W in FIG. 6).
  • the direction in which the length directions of the fibers constituting the vertically oriented fibers 231 are aligned is the orientation direction of the vertically oriented fibers 231
  • the direction in which the length directions of the fibers constituting the horizontally oriented fibers 232 are aligned is the orientation direction of the horizontally oriented fibers 232.
  • Vertically oriented fibers 231, whose fibers are oriented (arranged) in the vertical direction, and laterally oriented fibers 232, whose fibers are oriented (arranged) in the horizontal direction, are layered to form a nonwoven fabric having fibers oriented vertically and horizontally.
  • This nonwoven fabric is produced using a manufacturing process in which raw materials are spun directly into yarn, and the spun fibers are stretched in both the longitudinal and transverse directions to orient the long fiber filaments in both the longitudinal and transverse directions.
  • this nonwoven fabric is an openwork nonwoven fabric, and has openings surrounded by vertically oriented fibers 231 and horizontally oriented fibers 232 .
  • longitudinally oriented fibers 231 are entangled to form longitudinally oriented fiber bundles 271a extending in the longitudinal direction, while the remaining longitudinally oriented fibers 231 exist as longitudinally oriented single fibers 272a extending in the longitudinal direction.
  • longitudinally oriented fibers 232 are entangled to form laterally oriented fiber bundles 271b extending in the laterally direction, while the remaining fibers of the laterally oriented fibers 232 exist as laterally oriented single fibers 272b extending in the laterally direction.
  • the fibers forming the web 270 do not necessarily need to be stretched in a straight line, and it is preferable that at least a part of the fibers forming the web 270 is curved. That is, as shown in Fig. 6, it is preferable that curved fiber bundles 271c and curved single fibers 272c are present. This increases the number of intersections between the fibers forming the web 270, and the stress applied to the web 270 can be dispersed, so that the occurrence of cracks when the mat material 210 is wound can be further suppressed. More specifically, the curved fiber bundle 271c and the curved single fiber 272c are each curved, for example, in an arc shape along their orientation direction (longitudinal or transverse direction).
  • either the curved fiber bundle 271c or the curved single fiber 272c may be present, but from the standpoint of preventing cracking of the mat material 210, it is preferable to have both.
  • Figure 6 shows a case where one layer each of the vertically oriented fibers 231 and the horizontally oriented fibers 232 are laminated
  • the number of layers of the vertically oriented fibers 231 and the horizontally oriented fibers 232 is not particularly limited, and the vertically oriented fibers 231 and the horizontally oriented fibers 232 may be laminated alternately in a total of three or more layers.
  • the order in which the longitudinally oriented fibers 231 and the transversely oriented fibers 232 are layered is not particularly limited.
  • the web 270 is formed three-dimensionally. That is, the web 270 extends in the longitudinal and lateral directions of the mat material 210 and has a thickness in the thickness direction of the mat material 210. This further improves the strength of the web 270 and distributes the stress applied to the web 270, making it possible to more effectively prevent cracks from occurring when the mat material 210 is wrapped around the web 270.
  • the web 270 may contain fibers that extend in three or more directions.
  • the web 270 may contain fibers that extend diagonally, and these fibers may result in fiber bundles and single fibers that extend diagonally.
  • the relationship between the orientation directions of the vertically oriented fibers 231 and the horizontally oriented fibers 232 and the longitudinal and short direction of the mat material 210 is not particularly limited, but it is preferable that one of the orientation directions of the vertically oriented fibers 231 and the horizontally oriented fibers 232 is parallel to the longitudinal direction of the mat material 210, and the other orientation direction of the vertically oriented fibers 231 and the horizontally oriented fibers 232 is parallel to the short direction of the mat material 210.
  • the orientation direction of either the vertically oriented fiber bundles 271a and vertically oriented single fibers 272a extending in the vertical direction, or the horizontally oriented fiber bundles 271b and horizontally oriented single fibers 272b extending in the horizontal direction is parallel to the longitudinal direction of the mat material 210, and that the orientation direction of the other is parallel to the short direction of the mat material 210.
  • the web 270 shown in Figures 5 and 6 further has multiple bases 273 made of organic matter, and fiber bundles 271 and single fibers 272 extend in multiple directions from each base 273.
  • the bases 273 are distributed within the web 270, and unlike fibers that extend one-dimensionally, each base 273 extends in the longitudinal direction, lateral direction, and thickness direction (particularly the longitudinal direction and lateral direction) of the mat material 210.
  • the bases 273 are fused together to bond the fiber bundles 271 and single fibers 272 that extend in different directions. In other words, the bases 273 are arranged in the areas where the fiber bundles 271 and single fibers 272 intersect, and bond these fibers together.
  • the base 273 also serves to fix the web 270 to the substrate mat 220. That is, the base 273 bonds the fibers that form the web 270 to the substrate mat 220 by fusing.
  • the web 270 is formed by a nonwoven fabric in which fiber bundles 271 and single fibers 272 (e.g., vertically oriented fibers 231 and horizontally oriented fibers 232) oriented in multiple directions are laminated, and a base 273 distributed on the nonwoven fabric and joining fibers of different orientation directions (e.g., vertically oriented fibers 231 and horizontally oriented fibers 232) located in different layers.
  • fiber bundles 271 and single fibers 272 e.g., vertically oriented fibers 231 and horizontally oriented fibers 232
  • base 273 distributed on the nonwoven fabric and joining fibers of different orientation directions (e.g., vertically oriented fibers 231 and horizontally oriented fibers 232) located in different layers.
  • the base mat constituting the mat material according to the second aspect of the present invention is made of inorganic fibers.
  • the inorganic fibers are not particularly limited and may be alumina-silica fibers, alumina fibers, silica fibers, etc. They may also be glass fibers or biosoluble fibers. They can be changed according to the properties required of the mat material, such as heat resistance and wind erosion resistance, and it is preferable to use fibers with a large diameter and fiber length that can comply with the environmental regulations of each country.
  • inorganic fibers of low crystalline alumina are preferred, and inorganic fibers of low crystalline alumina with a mullite composition are more preferred.
  • inorganic fibers containing a spinel type compound are even more preferred.
  • the base mat has a longitudinal direction which corresponds to the wrapping direction, and a lateral direction which is perpendicular to the longitudinal direction. It is preferable that the base material mat has a convex portion formed at one end, i.e., a first end, of the ends in the longitudinal direction of the base material mat, and a concave portion formed at the other end, i.e., a second end. It is preferable that the convex portion and the concave portion of the base material mat have shapes that fit exactly with each other when the mat material is wrapped around an exhaust gas purification device, an exhaust gas treatment body, or an exhaust pipe having a cylindrical outer periphery.
  • the base mat may have a shape in which no protrusions or recesses are formed.
  • the thickness of the base mat is preferably 2 to 30 mm. If the thickness of the base mat is less than 2 mm, the thickness is too thin, resulting in reduced heat insulation and soundproofing performance, whereas if the thickness of the base mat is more than 30 mm, the flexibility is reduced, resulting in reduced attachment to the member to which the base mat is to be attached.
  • the bulk density of the base mat is not particularly limited, but is preferably 0.05 to 0.30 g/cm 3 . If the bulk density of the base mat is less than 0.05 g/ cm3 , the inorganic fibers are weakly entangled and easily peeled off, making it difficult to maintain the shape of the base mat in a predetermined shape. On the other hand, if the bulk density of the base mat is more than 0.30 g/ cm3 , the base mat becomes hard, its attachment to the member to which it is attached is reduced, and the base mat becomes more likely to crack.
  • At least one of the first and second main surfaces of the base mat constituting the mat material according to the second aspect of the present invention has a web formed of fiber bundles formed by intertwining multiple fibers and single fibers.
  • the fibers forming the web are preferably long filaments.
  • the long fiber filaments are preferably longer than ordinary short fiber fibers (e.g., 10 to 50 mm), and the average fiber length of the filaments is preferably longer than 100 mm, and more preferably the average fiber length of the filaments is several hundred mm or more.
  • the continuous fiber filaments may be continuous fibers.
  • the average fiber diameter of the web fibers is usually 10 ⁇ m or less in the main constituent filaments, and is preferably around 5 ⁇ m.
  • the web may further have a plurality of bases composed of organic matter.
  • the organic matter constituting the base is different from the material of the web fibers; specifically, the base is formed by thermally fusing hot melt powder (hot melt adhesive) to the web fibers.
  • hot melt powder hot melt adhesive
  • the glass transition temperature Tg3 of the web fiber is higher than the glass transition temperature Tg4 of the organic material constituting the base. This makes it easy to form a web having a base using hot melt powder.
  • the glass transition point Tg3 of the web fibers is not particularly limited, but is preferably -140°C or higher and 90°C or lower, and more preferably -130°C or higher and 80°C or lower.
  • the glass transition point Tg4 of the organic material constituting the base is not particularly limited, but is preferably -140°C or higher and 90°C or lower, and more preferably -130°C or higher and 80°C or lower.
  • the difference between the glass transition point Tg3 of the web fibers and the glass transition point Tg4 of the organic material constituting the base i.e., (Tg3-Tg4), is not particularly limited, but is preferably 220°C or less, and more preferably 200°C or less in order to integrate the web fibers and the base.
  • the organic material constituting the base is not particularly limited as long as it can be used as a hot melt powder, but specific examples include polyethylene (PE), polyethylene terephthalate (PET), polyamide (PA), ethylene-vinyl acetate copolymer resin (EVA), etc.
  • PE polyethylene
  • PET polyethylene terephthalate
  • PA polyamide
  • EVA ethylene-vinyl acetate copolymer resin
  • the web preferably has substantially the same planar shape as the base mat, i.e., the areas of the web and the base mat preferably substantially coincide with each other in a plan view. It is also preferable that a sheet material made of a web is formed and that this sheet material is attached to the base mat.
  • the sheet material and the base mat are preferably attached via hot melt powder.
  • the basis weight of the sheet material composed of the web is not particularly limited, but is preferably 5 g/ m2 or more and 100 g/ m2 or less, more preferably 5 g/ m2 or more and 50 g/ m2 or less, and even more preferably 5 g/ m2 or more and 30 g/ m2 or less.
  • the basis weight of the sheet material referred to here is the basis weight per one sheet material.
  • the web fibers are preferably composed of at least one of organic fibers and inorganic fibers.
  • the longitudinally oriented fibers may be made of organic fibers and/or inorganic fibers
  • the transversely oriented fibers may be made of organic fibers and/or inorganic fibers.
  • the longitudinally oriented fibers and the transversely oriented fibers may be made of different materials, but typically, when the longitudinally oriented fibers are made of organic fibers, the transversely oriented fibers are also made of organic fibers, and when the longitudinally oriented fibers are made of inorganic fibers, the transversely oriented fibers are also made of inorganic fibers.
  • the web fibers are made of organic fibers, which can more effectively prevent the occurrence of cracks when the mat material is wrapped around the web.
  • both the longitudinally oriented fibers and the transversely oriented fibers may be made of organic fibers.
  • suitable materials for the web fibers include polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), etc.
  • the base mat further contains at least one of an inorganic binder and an organic binder.
  • the amount of inorganic binder used may be, for example, more than 0 wt % and 15 wt % or less.
  • the amount of the organic binder used may be more than 0 wt % and not more than 15 wt %.
  • Alumina sol, silica sol, etc. can be used as inorganic binders.
  • organic binder it is preferable to use acrylic resin, acrylate-based latex, rubber-based latex, water-soluble organic polymers such as carboxymethyl cellulose or polyvinyl alcohol, thermoplastic resins such as styrene resin, thermosetting resins such as epoxy resin, etc.
  • a method for manufacturing a mat material according to a second aspect of the present invention can be manufactured by the following steps: a base mat preparation step for preparing a base mat containing inorganic fibers and having first and second main surfaces; a sheet material preparation step for preparing a sheet material containing fiber bundles formed by intertwining a plurality of fibers and single fibers; a sheet material processing step for spraying hot melt powder on the sheet material, heating it, and adhering the hot melt powder to the sheet material; and a sheet material attachment step for thermocompression-bonding the sheet material with the hot melt powder adhered to at least one of the first and second main surfaces of the base mat, and attaching the sheet material to the base mat.
  • the two types of mat materials are a first mat material and a second mat material, and both types of mat materials are mat materials related to the second aspect of the present invention.
  • a base mat having first and second main surfaces, a fiber bundle formed by intertwining a plurality of fibers, and a sheet material including single fibers are prepared.
  • the structure and physical properties of the base mat prepared here are the same as those of the base mat explained in the mat material according to the second embodiment of the present invention, and therefore detailed explanations thereof will be omitted here.
  • the structure and physical properties of the sheet material prepared here are the same as those of the web described in the mat material related to the second aspect of the present invention, except that it does not have a base, so detailed explanation will be omitted here.
  • the base mat and sheet material prepared here are preferably large sheets that can be punched to obtain a large number of mat materials according to the second aspect of the present invention.
  • the substrate mat can be obtained by various methods, for example, it can be manufactured by a papermaking method or a needling method. More specifically, it can be manufactured by the method described in the method for manufacturing the mat material of the present invention, which is a method for manufacturing the mat material related to the first aspect of the present invention.
  • the sheet material can be manufactured, for example, by the method described in the method for manufacturing the mat material of the present invention, which is a method for manufacturing the mat material related to the first aspect of the present invention.
  • FIG. 7 is a perspective view that illustrates another example of the patch.
  • the attachment body 350 is a large-sized sheet material 330 attached onto a first main surface 321 of a large-sized base mat 320, and is a rectangular sheet having two vertical sides and two horizontal sides.
  • the sheet material 330 is a laminate of vertically oriented fibers and horizontally oriented fibers (both including fiber bundles and single fibers), with the orientation direction of the vertically oriented fibers of the sheet material 330 being vertical and parallel to the two vertical sides of the adhesive body 350, and the orientation direction of the horizontally oriented fibers of the sheet material 330 being horizontal and parallel to the two horizontal sides of the adhesive body 350.
  • the adhesive body is punched to produce a mat material of a desired shape.
  • hot melt powder is sprayed and heated on a sheet material including fiber bundles formed by intertwining multiple fibers and single fibers, the hot melt powder is adhered to the sheet material, and the sheet material with the hot melt powder adhered thereto is thermocompressed to at least one of the first and second main surfaces of a base mat, and the sheet material is attached to the base mat.
  • This makes it possible to more effectively prevent the strength and flexibility of the web fibers from decreasing. As a result, it is possible to more effectively prevent the occurrence of cracks when the mat material is wrapped around the mat.
  • a process is carried out to obtain a first mat material in which the vertical direction of the adhesive body is the longitudinal direction of the mat material and the horizontal direction of the adhesive body is the short side direction of the mat material, and a second mat material in which the horizontal direction of the adhesive body is the longitudinal direction of the mat material and the vertical direction of the adhesive body is the short side direction of the mat material, and it is preferable to obtain two types of mat material, the first mat material and the second mat material.
  • FIG. 8 is a top view that illustrates another example of a process for obtaining two types of mat materials by punching.
  • the adhesive body 350 shown in FIG. 8 is subjected to a punching process to obtain two types of mat materials.
  • the left side of Figure 8 shows that a first mat material 201 is obtained in which the orientation direction of the vertically oriented fibers (including fiber bundles and single fibers) of the sheet material (vertical direction shown in Figure 8) is the longitudinal direction of the mat material, and the orientation direction of the horizontally oriented fibers (including fiber bundles and single fibers) of the sheet material (horizontal direction shown in Figure 8) is the short direction of the mat material.
  • Figure 8 shows that a second mat material 202 is obtained in which the orientation direction (horizontal direction shown in Figure 8) of the horizontally oriented fibers (including fiber bundles and single fibers) of the sheet material is the longitudinal direction of the mat material, and the orientation direction (vertical direction shown in Figure 8) of the vertically oriented fibers (including fiber bundles and single fibers) of the sheet material is the short direction of the mat material.
  • the first mat material 201 and the second mat material 202 have the same number and density of fibers (vertically or horizontally oriented fibers) of the sheet material oriented in the longitudinal direction of the mat material and the same number and density of fibers (horizontally or vertically oriented fibers) of the sheet material oriented in the short direction of the mat material, so they have approximately the same tensile strength and windability.
  • the orientation direction of one of the vertically oriented fibers and the horizontally oriented fibers of the sheet material is parallel to the longitudinal direction of the first mat material and parallel to the short direction of the second mat material. It is also preferable that the orientation direction of the other of the longitudinally oriented fibers and the transversely oriented fibers of the sheet material is parallel to the short side direction of the first mat material and parallel to the longitudinal direction of the second mat material.
  • the punching direction shown in FIG. 8 is a direction that satisfies the above conditions.
  • a fiber bundle formed by intertwining multiple fibers, a sheet material containing single fibers (a laminated sheet material in which vertically oriented fibers and horizontally oriented fibers are laminated), and hot melt powder are used.
  • the mat material according to the second aspect of the present invention can also be manufactured without using these.
  • vertically oriented fibers (longitudinal stretched web) containing fiber bundles and single fibers and impregnated with a binder may be heat-pressed onto at least one of the first and second main surfaces of the base mat, and then horizontally oriented fibers (horizontal stretched web) containing fiber bundles and single fibers and impregnated with a binder may be heat-pressed onto the vertically oriented fibers.
  • the exhaust gas purification device of the present invention is an exhaust gas purification device comprising an exhaust gas treatment body through which exhaust gas flows, a retaining sealing material that is wrapped around the outer periphery of the exhaust gas treatment body, and a casing that houses the exhaust gas treatment body around which the retaining sealing material is wrapped, and is characterized in that the retaining sealing material is a mat material relating to the first or second aspect of the present invention.
  • the mat material according to the first and second aspects of the present invention can suppress the occurrence of cracks during wrapping. Therefore, the exhaust gas purification device of the present invention can suppress the leakage of untreated exhaust gas through cracks in the mat material (retaining seal material).
  • FIG. 9 is a cross-sectional view that illustrates an example of an exhaust gas purification device of the present invention.
  • the exhaust gas purification device 100 of the present invention comprises a casing 50, an exhaust gas treatment body 40 housed in the casing 50 and through which exhaust gas flows, and a retaining sealing material 60 disposed between the exhaust gas treatment body 40 and the casing 50 and holding the exhaust gas treatment body 40.
  • the holding seal material 60 is a mat material wrapped around the outer periphery of the exhaust gas treatment body.
  • the exhaust gas treatment body 40 has a columnar shape in which a large number of cells 41 are arranged in parallel in the longitudinal direction with cell walls 42 separating them.
  • an inlet pipe for introducing exhaust gas discharged from the internal combustion engine and an exhaust pipe through which exhaust gas that has passed through the exhaust gas purification device is discharged to the outside will be connected to the end of the casing 50.
  • exhaust gas discharged from an internal combustion engine and flowing into the exhaust gas purification device 100 (in Fig. 9, the exhaust gas is indicated by G, and the flow of the exhaust gas is indicated by arrows) flows into one cell 41 opening at the exhaust gas inlet end face of the exhaust gas treatment body (honeycomb filter) 40, and passes through a cell wall 42 separating the cells 41.
  • PM in the exhaust gas is captured by the cell wall 42, and the exhaust gas is purified.
  • the purified exhaust gas flows out from the other cell 41 opening at the exhaust gas outlet end face, and is discharged to the outside.
  • the holding seal material 60 is a mat material according to the first or second aspect of the present invention, and at least one of the first and second main surfaces of the holding seal material 60 is composed of a network constituting the mat material according to the first aspect of the present invention, or a web constituting the mat material according to the second aspect of the present invention.
  • the material of the casing constituting the exhaust gas purification device of the present invention is not particularly limited as long as it is a heat-resistant metal, and specific examples include metals such as stainless steel, aluminum, and iron.
  • the casing can be suitably shaped in a clamshell shape, or in a generally elliptical or polygonal shape in cross section.
  • the exhaust gas treatment body 40 shown in FIG. 9 is a filter in which one end of the cell 41 is sealed with a sealing material 43, but the exhaust gas treatment body constituting the exhaust gas purification device of the present invention does not need to have the cell ends sealed.
  • Such an exhaust gas treatment body can be suitably used as a catalyst carrier.
  • the exhaust gas treatment body 40 may be made of a non-oxide porous ceramic such as silicon carbide or silicon nitride, or may be made of an oxide porous ceramic such as alumina, cordierite, or mullite. Of these, silicon carbide is preferred.
  • the cell density in the cross section of the exhaust gas treatment body 40 is not particularly limited, but a preferred lower limit is 31.0 cells/ cm2 (200 cells/ inch2 ), a preferred upper limit is 93.0 cells/ cm2 (600 cells/ inch2 ), a more preferred lower limit is 38.8 cells/ cm2 (250 cells/ inch2 ), and a more preferred upper limit is 77.5 cells/ cm2 (500 cells/ inch2 ).
  • the exhaust gas treatment body 40 may support a catalyst for purifying the exhaust gas.
  • the catalyst to be supported is preferably a precious metal such as platinum, palladium, or rhodium, and among these, platinum is more preferable.
  • other catalysts such as alkali metals such as potassium or sodium, or alkaline earth metals such as barium may also be used. These catalysts may be used alone or in combination of two or more kinds. When these catalysts are supported, PM can be easily burned and removed, and toxic exhaust gas can also be purified.
  • the use of the mat material of the present invention is not particularly limited, and may be, for example, a battery use in addition to the use in exhaust gas purification devices. More specifically, it may be used in an electric storage device used in an electric vehicle or a hybrid vehicle driven by an electric motor. For example, by disposing it on the surface of a battery cell of the electric storage device or a battery storage device component such as a bus bar connecting the battery cells, even if a thermal runaway occurs in which a battery cell rapidly rises in temperature and continues to generate heat due to an internal short circuit or overcharging of the battery cell, it is possible to suppress damage to other battery storage device components.
  • the mat material of the present invention on the top, side walls and bottom walls of a battery case that houses a storage battery, it is possible to reliably prevent the spread of fire to the outside even if a flame occurs during thermal runaway. In this case, it is more preferable to use the mat material of the present invention in a laminated form.
  • the present disclosure (1) is a mat material characterized in that a base mat contains inorganic fibers and has first and second main surfaces, and at least one of the first and second main surfaces has a network formed of a plurality of bases made of an organic substance and fibers extending in at least two directions from each of the plurality of bases.
  • the present disclosure (2) is a mat material as described in the present disclosure (1), in which the maximum width of each of the multiple bases is greater than the width of the fibers forming the network.
  • the present disclosure (3) is a mat material according to the present disclosure (1) or (2), in which the glass transition point of the fibers forming the network is higher than the glass transition point of the organic material constituting the multiple bases.
  • the present disclosure (4) is a mat material in any combination with any of the present disclosures (1) to (3), in which the network is formed three-dimensionally.
  • the present disclosure (5) is a mat material in any combination with any of the present disclosures (1) to (4), in which the fibers forming the network are composed of at least one of organic fibers and inorganic fibers.
  • the present disclosure (6) is a mat material characterized in that a base mat contains inorganic fibers and has first and second main surfaces, and a web is formed on at least one of the first and second main surfaces from fiber bundles formed by intertwining a plurality of fibers and single fibers.
  • the present disclosure (7) includes a plurality of the fiber bundles having different drawing directions,
  • the web is a mat material according to the present disclosure (6), which is formed of a plurality of the fiber bundles and the single fibers.
  • the present disclosure (8) is a mat material according to the present disclosure (6) or (7), in which at least one of the fiber bundles and the single fibers is curved.
  • the present disclosure (9) is a mat material in any combination with any of the present disclosures (6) to (8), in which the web is formed three-dimensionally.
  • the present disclosure (10) is a mat material in any combination with any of the present disclosures (6) to (9), in which the fiber bundles and the single fibers are each composed of at least one of organic fibers and inorganic fibers.
  • the present disclosure (11) relates to an exhaust gas treatment body through which exhaust gas flows, A holding seal material that is wrapped around the outer periphery of the exhaust gas treatment body; a casing that houses the exhaust gas treatment body around which the holding sealing material is wrapped;
  • An exhaust gas purification device comprising: The exhaust gas purification device is characterized in that the holding sealer is a mat material in any combination with any of the mat materials disclosed in (1) to (10) of the present disclosure.
  • the present disclosure (12) provides a method for producing a substrate mat comprising: preparing a substrate mat including inorganic fibers and having first and second main surfaces; A sheet material preparation step of preparing a sheet material including fibers extending in at least two directions; a sheet material processing step of spraying hot melt powder on the sheet material and heating the sheet material to adhere the hot melt powder to the sheet material;
  • This method for manufacturing a mat material is characterized by having a sheet material attachment process in which the sheet material having the hot melt powder adhered thereto is thermally pressed onto at least one of the first and second main surfaces of the base mat, and the sheet material is attached to the base mat.
  • Example 1 A large-sized substrate mat made of inorganic fibers (mullite fibers) and having a basis weight (fiber weight per unit area) of 2400 g/ m2 was produced by a papermaking method.
  • a large-sized sheet material a laminated sheet material (nonwoven fabric) having fiber orientation in both directions was prepared, in which longitudinally oriented fibers in which PET fibers are oriented in the vertical direction and transversely oriented fibers in which PET fibers are oriented in the horizontal direction are laminated.
  • This sheet material has orientation in the direction in which the length of the PET fibers are aligned, and the angle between the orientation direction of the longitudinally oriented fibers and the orientation direction of the transversely oriented fibers is approximately 90°.
  • This sheet material also has a substantially square or rectangular opening. Furthermore, this sheet material has a basis weight of 10 g/ m2 .
  • Hot melt powder was sprinkled on this sheet material and heated to adhere the hot melt powder to the sheet material.
  • the hot melt powder used was one whose main component was polyethylene (PE).
  • the base mat and the sheet material to which the hot melt powder was attached were heat-pressed to attach the sheet material to the base mat.
  • the heating temperature was 130° C.
  • the heating time was 40 seconds
  • a constant pressure was applied.
  • a network is formed on the surface of the base mat, consisting of a plurality of bases made of organic matter and longitudinally oriented fibers and transversely oriented fibers extending in two directions, the vertical direction and the horizontal direction, from each of the plurality of bases.
  • the patch body was subjected to a punching process in the same arrangement as that shown typically in FIG. 4, to obtain two types of mat materials (a first mat material and a second mat material).
  • first mat material the orientation direction of the vertically oriented fibers of the sheet material is parallel to the longitudinal direction of the mat material
  • the orientation direction of the horizontally oriented fibers of the sheet material is parallel to the longitudinal direction of the mat material.
  • Example 2 A large-sized substrate mat made of inorganic fibers (mullite fibers) and having a basis weight (fiber weight per unit area) of 2400 g/ m2 was produced by a papermaking method.
  • a large-sized sheet material a laminated sheet material (nonwoven fabric) having fiber orientation in the vertical and horizontal directions, in which longitudinally oriented fibers in which PET fibers are oriented in the vertical direction and transversely oriented fibers in which PET fibers are oriented in the horizontal direction are laminated, was prepared.
  • This sheet material has orientation in the direction in which the length direction of the PET fibers is aligned, and the angle between the orientation direction of the longitudinally oriented fibers and the orientation direction of the transversely oriented fibers is approximately 90°.
  • the longitudinally oriented fibers include fiber bundles formed by intertwining multiple fibers and single fibers
  • the transversely oriented fibers include fiber bundles formed by intertwining multiple fibers and single fibers.
  • this sheet material has a substantially square or rectangular opening. Furthermore, this sheet material has a basis weight of 10 g/ m2 .
  • Hot melt powder was sprinkled on this sheet material and heated to adhere the hot melt powder to the sheet material.
  • the hot melt powder used was one whose main component was polyethylene (PE).
  • the base mat and the sheet material to which the hot melt powder was attached were heat-pressed to attach the sheet material to the base mat.
  • the heating temperature was 135° C.
  • the heating time was 35 seconds
  • a constant pressure was applied.
  • a web is formed on the surface of the base mat from fiber bundles extending in both the longitudinal and transverse directions and monofilaments extending in both the longitudinal and transverse directions.
  • the patch body was subjected to a punching process in the same arrangement as that shown typically in FIG. 8, to obtain two types of mat materials (a first mat material and a second mat material).
  • first mat material the orientation direction of the vertically oriented fibers of the sheet material is parallel to the longitudinal direction of the mat material
  • the orientation direction of the horizontally oriented fibers of the sheet material is parallel to the longitudinal direction of the mat material.
  • a large-sized base mat was prepared in the same manner as in Examples 1 and 2.
  • a large-sized sheet material was prepared by laminating and heat-sealing a vertical web formed by splitting a polyolefin film stretched in the vertical direction and a horizontal web formed by splitting a polyolefin film stretched in the horizontal direction.
  • the base mat and the sheet material were heat-pressed together without using any adhesive such as hot melt powder.
  • the sheet material was heat-sealed to the base mat.
  • a rectangular adhesive body having two vertical sides and two horizontal sides was obtained.
  • the patch body was then subjected to a punching process in the same manner as in Examples 1 and 2 to obtain two types of mat materials (a first mat material and a second mat material).
  • the orientation direction (vertical direction) of the vertical web of the sheet material is parallel to the longitudinal direction of the mat material
  • the orientation direction (horizontal direction) of the horizontal web of the sheet material is parallel to the longitudinal direction of the mat material
  • FIG. 10 is a photograph of the mat material of Comparative Example 1. As shown in FIG. 10, in the mat material of Comparative Example 1, cracks were generated in the area surrounded by the dashed line after wrapping. In addition, in the mat material of Comparative Example 1, the fibers of the sheet material after thermocompression bonding had small holes and multiple fibers were fused to each other. This is thought to have weakened the flexibility of the sheet material, causing cracks after winding.
  • Reference Signs List 1 201 First mat material 2, 202 Second mat material 10, 210 Mat material 11, 211 Convex portion 12, 212 Concave portion 20, 120, 220, 320 Base material mat 21, 121, 221, 321 First main surface 22, 222 of base material mat Second main surface 130, 330 of base material mat Sheet material 31, 231 Vertically oriented fibers 32, 232 Horizontally oriented fibers 40 Exhaust gas treatment body 41 Cell 42 Cell wall 43 Sealant 50 Casing 60 Holding seal material 70 Network 71, 273 Base 72 Fiber 100 Exhaust gas purification device 150, 350 Adhesive body 270 Web 271 Fiber bundle 271a Vertically oriented fiber bundle 271b Horizontally oriented fiber bundle 271c Curved fiber bundle 272 Single fiber 272a Vertically oriented single fiber 272b Horizontally oriented single fiber 272c Curved single fiber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

無機繊維を含み、第1及び第2の主表面を有する基材マットの、上記第1及び第2の主表面の少なくとも一方に、有機物から構成された複数の基部と、上記複数の基部のそれぞれから少なくとも2方向に延伸する繊維とによりネットワークが形成されていることを特徴とするマット材。

Description

マット材、排ガス浄化装置及びマット材の製造方法
本発明は、マット材、排ガス浄化装置及びマット材の製造方法に関する。
ディーゼルエンジン等の内燃機関から排出される排ガス中には、パティキュレートマター(以下、PMともいう)が含まれており、近年、このPMが環境や人体に害を及ぼすことが問題となっている。また、排ガス中には、COやHC、NOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境や人体に及ぼす影響についても懸念されている。
そこで、排ガス中のPMを捕集したり、有害なガス成分を浄化したりする排ガス浄化装置として、炭化ケイ素やコージェライト等の多孔質セラミックからなる排ガス処理体と、排ガス処理体を収容するケーシング(筒状部材)と、排ガス処理体とケーシングとの間に配設される保持シール材とから構成される排ガス浄化装置が種々提案されている。この保持シール材は、自動車の走行等により生じる振動や衝撃により、排ガス処理体がその外周を覆うケーシングと接触して破損するのを防止することや、排ガス処理体とケーシングとの間から排気ガスが漏れることを防止すること等を主な目的として配設されている。
このような用途で用いられる保持シール材としては、無機繊維からなるマット材が用いられる。無機繊維からなるマット材は、自動車等の配管に巻き付けて使用する断熱用途、防音用途にも用いられる。
特許文献1には、面内の少なくとも一部に開口を有するシート材がベース材の第1及び第2の主表面の少なくとも一方に設置された保持シール材が開示されている。また、熱融着性の材料から形成されたシート材をベース材に熱圧着することで、接着剤を使用せずにベース材の主表面にシート材を固着させることが開示されている。
特開2009-85092号公報
特許文献1において、シート材は、ベース材に含まれる無機繊維の飛散を防止するために設けられている。
このようなマット材の製造方法としては、打ち抜き刃を有する打ち抜き型によって打ち抜く方法(打ち抜き加工ともいう)が従来から用いられている。
この工程においては、無機繊維からなるシート状部材と、可撓性シートを貼り付けた大判の貼付体を準備し、この貼付体を打ち抜くことによって、多数のマット材を一度の打ち抜き加工により得ることができる。
マット材は、巻き付け方向となる長手方向と、長手方向に直交する短手方向を有する。
大判の貼付体1枚からこのようなマット材を得る場合、貼付体の縦方向がマット材の長手方向になる方向でマット材を打ち抜く場所と、貼付体の横方向がマット材の長手方向になる方向でマット材を打ち抜く場所とを組み合わせて、できるだけ多くのマット材を大判の貼付体1枚から得られるようにする。
この場合、貼付体の縦横方向とマット材の長手方向の向きの関係が異なる2種類のマット材が得られる。
また、特許文献1では、シート材は、熱圧着されることでベース材に固着させるが、このときシート材を形成している繊維自体が溶融することによりベース材に貼り付けられる。そのため、熱圧着後のシート材の繊維は穴が開き、繊維強度が低下すると考えられる。また、シート材の複数の繊維が互いに融着することにより、シート材の柔軟性が弱くなると考えられる。その結果、シート材が設けられたマット材を排ガス処理体等に巻き付ける際に、マット材の割れが発生するおそれがある。
本発明は、このような問題に鑑みてなされたものであり、巻き付けの際の割れの発生を抑制することができるマット材を提供することを目的とする。
本発明の第1の態様に係るマット材は、無機繊維を含み、第1及び第2の主表面を有する基材マットの、上記第1及び第2の主表面の少なくとも一方に、有機物から構成された複数の基部と、上記複数の基部のそれぞれから少なくとも2方向に延伸する繊維とによりネットワークが形成されていることを特徴とする。
本発明の第1の態様に係るマット材は、上記基材マットの上記第1及び第2の主表面の少なくとも一方に、有機物から構成された複数の基部と、上記複数の基部のそれぞれから少なくとも2方向に延伸する繊維とによりネットワークが形成されていることから、その強度及び柔軟性が高いため、マット材の巻き付けの際の割れの発生を抑制することができる。
本発明の第1の態様に係るマット材では、上記複数の基部の各々の最大幅は、上記ネットワークを形成する上記繊維の幅よりも大きいことが好ましい。
これにより、ネットワークを形成する繊維同士をより多く、強固に結合することが可能であるため、マット材全体の強度をより向上できる。その結果、マット材の巻き付けの際の割れの発生をより効果的に抑制することができる。
本発明の第1の態様に係るマット材では、上記ネットワークを形成する上記繊維のガラス転移点は、上記複数の基部を構成する上記有機物のガラス転移点より高いことが好ましい。
これにより、ホットメルトパウダーを使用して上記ネットワークを容易に形成することができる。
本発明の第1の態様に係るマット材では、上記ネットワークは、三次元的に形成されていることが好ましい。
これにより、基材マットの第1及び/又は第2の主表面に形成されたネットワークの強度を向上できるとともにネットワークに加わる応力を分散させることができるため、マット材の巻き付けの際の割れの発生をより効果的に抑制することができる。
本発明の第1の態様に係るマット材では、上記ネットワークを形成する上記繊維は、有機繊維及び無機繊維の少なくとも一方で構成されていることがより好ましい。
マット材の巻き付けの際の割れの発生をより効果的に抑制する観点からは、上記ネットワークを形成する上記繊維は、有機繊維で構成されていることがより好ましい。
本発明の第2の態様に係るマット材は、無機繊維を含み、第1及び第2の主表面を有する基材マットの、上記第1及び第2の主表面の少なくとも一方に、複数の繊維が交絡して形成された繊維束と、単繊維とによりウェブが形成されていることを特徴とする。
本発明の第2の態様に係るマット材では、上記ウェブが繊維束を含んでいるが、上記繊維束は、複数の繊維が交絡して形成されており、さらに、そのような繊維束と短繊維とによってウェブが形成されていることから、ウェブを形成している繊維の強度及び柔軟性が低下するのを抑制することができる。その結果、マット材の巻き付けの際の割れの発生を抑制することができる。
本発明の第2の態様に係るマット材は、延伸方向が互いに異なる複数の上記繊維束を含み、上記ウェブは、複数の上記繊維束と上記単繊維とにより形成されていることが好ましい。
これにより、縦配向繊維と横配向繊維とを同程度の繊維数とすることができる。
本発明の第2の態様に係るマット材では、上記繊維束及び上記単繊維の少なくとも一方は、湾曲していることが好ましい。
これにより、ウェブを形成している繊維同士の交点が増え、ウェブに加わる応力を分散させることができるため、マット材の巻き付けの際の割れの発生をより効果的に抑制することができる。
本発明の第2の態様に係るマット材では、上記ウェブは、三次元的に形成されていることが好ましい。
これにより、基材マットの第1及び/又は第2の主表面に形成されたウェブの強度を向上できるとともにウェブに加わる応力を分散させることができるため、マット材の巻き付けの際の割れの発生をより効果的に抑制することができる。
本発明の第2の態様に係るマット材では、上記繊維束及び上記単繊維は、それぞれ、有機繊維及び無機繊維の少なくとも一方で構成されていることがより好ましい。
マット材の巻き付けの際の割れの発生をより効果的に抑制する観点からは、上記繊維束及び上記単繊維は、それぞれ、有機繊維で構成されていることがより好ましい。
本発明の排ガス浄化装置は、排ガスが流通する排ガス処理体と、上記排ガス処理体の外周に巻き付けて使用される保持シール材と、上記保持シール材が巻き付けられた上記排ガス処理体を収容するケーシングと、を備える排ガス浄化装置であって、上記保持シール材は、本発明の第1又は第2の態様に係るマット材であることを特徴とする。
上述のように、本発明の第1及び第2の態様に係るマット材は、巻き付けの際の割れの発生を抑制することができる。そのため、本発明の排ガス浄化装置は、マット材の割れから未処理の排ガスが漏洩するのを抑制することができる。
本発明のマット材の製造方法は、無機繊維を含み、第1及び第2の主表面を有する基材マットを準備する基材マット準備工程と、少なくとも2方向に延伸する繊維を含むシート材を準備するシート材準備工程と、上記シート材にホットメルトパウダーを散布して加熱し、上記シート材に上記ホットメルトパウダーを付着させるシート材加工工程と、上記基材マットの上記第1及び第2の主表面の少なくとも一方に、上記ホットメルトパウダーが付着した上記シート材を熱圧着し、上記シート材を上記基材マットに貼り付けるシート材貼付工程と、を有することを特徴とする。
本発明のマット材の製造方法では、少なくとも2方向に延伸する繊維を含むシート材にホットメルトパウダーを散布して加熱し、上記シート材に上記ホットメルトパウダーを付着させ、上記基材マットの上記第1及び第2の主表面の少なくとも一方に、上記ホットメルトパウダーが付着した上記シート材を熱圧着し、上記シート材を上記基材マットに貼り付けることから、シート材を形成している繊維自体が溶融することを防止しつつシート材を基材マットに貼り付けることができる。そのため、シート材を形成している繊維の強度及び柔軟性が低下するのを抑制することができる。また、ホットメルトパウダーを加熱して溶融することで基部を有するネットワークを形成することができる。その結果、マット材の巻き付けの際の割れの発生を抑制することができる。
図1は、本発明の第1の態様に係るマット材の一例を模式的に示す斜視図である。 図2は、図1に示すネットワークを模式的に示す拡大平面図である。 図3は、貼付体の一例を模式的に示す斜視図である。 図4は、打ち抜き加工により2種類のマット材を得る工程の一例を模式的に示す上面図である。 図5は、本発明の第2の態様に係るマット材の一例を模式的に示す斜視図である。 図6は、図5に示すウェブを模式的に示す拡大平面図である。 図7は、貼付体の別の例を模式的に示す斜視図である。 図8は、打ち抜き加工により2種類のマット材を得る工程の別の例を模式的に示す上面図である。 図9は、本発明の排ガス浄化装置の一例を模式的に示す断面図である。 図10は、比較例1のマット材の写真である。
(発明の詳細な説明)
以下、本発明のマット材、排ガス浄化装置及びマット材の製造方法について具体的に説明する。しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
本発明の第1の態様に係るマット材は、無機繊維を含み、第1及び第2の主表面を有する基材マットの、上記第1及び第2の主表面の少なくとも一方に、有機物から構成された複数の基部と、上記複数の基部のそれぞれから少なくとも2方向に延伸する繊維とによりネットワークが形成されていることを特徴とする。
図1は、本発明の第1の態様に係るマット材の一例を模式的に示す斜視図である。
図1に示すマット材10は、第1の主表面21及び第2の主表面22を有する基材マット20の第1の主表面21に、有機物の基部及び繊維(いずれも図1では図示省略)からなるネットワーク70が形成された構造を有している。
マット材10の長手方向側(図1中、両矢印Lで示す方向)の端部のうち、一方の端部である第1の端部には凸部11が形成されており、他方の端部である第2の端部には凹部12が形成されている。
凸部11及び凹部12は、基材マット20とネットワーク70のそれぞれに設けられた凸部と凹部が重なって形成されている。
マット材の凸部及び凹部は、外周が円柱状の排ガス浄化装置、排ガス処理体や排気管にマット材を巻きつける際に、ちょうど互いに嵌合するような形状となっている。
なお、図1中、両矢印Wで示す方向がマット材の短手方向であり、両矢印Tで示す方向がマット材の厚さ方向である。
なお、図1では基材マット20の第1の主表面21のみにネットワーク70が形成された場合を示したが、基材マット20の第1の主表面21及び第2の主表面22にそれぞれネットワーク70を形成してもよい。また、基材マット20の第1の主表面21及び/又は第2の主表面22に加えて、基材マット20の側面にもネットワーク70を形成していてもよい。
図2は、図1に示すネットワークを模式的に示す拡大平面図である。
なお、図2には、ネットワーク70と基材マット20の配置関係を示すため、基材マット20についても破線で示している。
図2に示すように、ネットワーク70は、有機物から構成された複数の基部71と、複数の基部71のそれぞれから2方向に延伸する繊維72とにより形成されている。
このようなネットワーク70は、その強度及び柔軟性が高いため、マット材10の巻き付けの際の割れの発生を抑制することができる。
ここでは、繊維72として、縦方向及び横方向の2方向にそれぞれ延伸する縦配向繊維31及び横配向繊維32が存在している。
縦配向繊維31の配向方向は、縦方向であり、マット材10の長手方向(図1中、両矢印Lで示す方向)と略平行になっている。
横配向繊維32の配向方向は、横方向であり、マット材10の短手方向(図1中、両矢印Wで示す方向)と略平行になっている。
ここで、縦配向繊維31を構成する繊維の長さ方向が並ぶ方向が縦配向繊維31の配向方向になり、横配向繊維32を構成する繊維の長さ方向が並ぶ方向が横配向繊維32の配向方向になる。
縦方向に繊維が配向(配列)した縦配向繊維31と、横方向に繊維が配向(配列)した横配向繊維32とが積層され、縦横に繊維配向をもった不織布を構成している。
繊維72からなる不織布は、原料から直接紡糸する製造プロセスを用いて作製されており、紡糸した繊維を縦横それぞれの方向に延伸することによって長繊維フィラメントが縦横それぞれの方向に配向されている。
また、繊維72からなる不織布は、透かしのある不織布であり、縦配向繊維31と横配向繊維32に囲まれた開口が存在している。
なお、図2では縦配向繊維31及び横配向繊維32がそれぞれ一層ずつ積層された場合を示したが、縦配向繊維31及び横配向繊維32の積層数は特に限定されず、縦配向繊維31及び横配向繊維32が交互に計3層以上積層されてもよい。
また、縦配向繊維31及び横配向繊維32を積層する順序も特に限定されない。
さらに、ネットワーク70は、3方向以上の方向に延伸する繊維を含んでいてもよく、例えば、縦配向繊維31及び横配向繊維32に加えて斜め方向に延伸する繊維を含んでいてもよい。
また、縦配向繊維31及び横配向繊維32の配向方向と、マット材10の長手方向及び短手方向との関係は特に限定されないが、縦配向繊維31及び横配向繊維32の一方の配向方向がマット材10の長手方向と平行であり、縦配向繊維31及び横配向繊維32の他方の配向方向がマット材10の短手方向と平行であることが好ましい。
基部71は、ネットワーク70内に分布しており、各基部71は、一次元的に伸びる繊維72とは異なり、マット材10の長手方向、短手方向及び厚さ方向(特に長手方向及び短手方向)に広がりをもっている。そして、各基部71が融着することによって異なる方向に延伸する繊維72を互いに接合している。すなわち、縦配向繊維31及び横配向繊維32が交差する領域に基部71が配置され、それらの繊維同士を結合している。
このように、ネットワーク70を形成する繊維72同士をより多く、強固に結合する観点から、各基部71の最大幅は、繊維72の幅よりも大きいことが好ましい。その結果、マット材10の巻き付けの際の割れの発生をより効果的に抑制することができる。例えば、基部71は、複数本の縦配向繊維31と複数本の横配向繊維32とが交差する領域の少なくとも一部を占める大きさであってもよいが、一つの基部71で縦配向繊維31と横配向繊維32とが交差する領域を複数含むことはより好ましい。
なお、ここで、各基部71の最大幅と繊維72の幅とは、ネットワーク70の平面視において比較されることが好ましい。
また、基部71は、ネットワーク70を基材マット20に固定する役割を果たしている。すなわち、基部71は、融着することによってネットワーク70を形成する繊維72を基材マット20に接合している。
上述のように、ネットワーク70は、複数の方向に配向した繊維72(例えば縦配向繊維31及び横配向繊維32)が積層された不織布と、その不織布上に分布され、異なる層に位置する異なる配向方向の繊維72同士(例えば縦配向繊維31及び横配向繊維32同士)を接合する基部71とによって形成されている。
このように、ネットワーク70は、三次元的に形成されている。すなわち、ネットワーク70は、マット材10の長手方向及び短手方向に広がるとともに、マット材10の厚さ方向に厚みをもっている。
これにより、ネットワーク70の強度がより向上するとともにネットワーク70に加わる応力が分散されるため、マット材10の巻き付けの際の割れの発生をより効果的に抑制することができる。
なお、図2ではネットワーク70が複数の繊維が交絡して形成された繊維束と、単繊維とを含む場合を示したが、ネットワーク70は繊維束のみから形成されてもよいし、単繊維のみから形成されてもよい。
以下、これらの構成の詳細について説明する。
本発明の第1の態様に係るマット材を構成する基材マットは、無機繊維からなる。無機繊維は、特に限定されず、アルミナ-シリカ繊維、アルミナ繊維、シリカ繊維等であってもよい。また、ガラス繊維や生体溶解性繊維であってもよい。耐熱性や耐風蝕性等、マット材に要求される特性等に応じて変更すればよく、各国の環境規制に適合できるような太径繊維や繊維長のものを使用するのが好ましい。
この中でも、低結晶性アルミナ質の無機繊維が好ましく、ムライト組成の低結晶性アルミナ質の無機繊維がより好ましい。加えて、スピネル型化合物を含む無機繊維がさらに好ましい。
基材マットは、巻き付け方向となる長手方向と、長手方向に直交する短手方向を有する。
基材マットには、基材マットの長手方向側の端部のうち、一方の端部である第1の端部には凸部が形成されており、他方の端部である第2の端部には凹部が形成されていることが好ましい。基材マットの凸部及び凹部は、外周が円柱状の排ガス浄化装置、排ガス処理体や排気管にマット材を巻きつける際に、ちょうど互いに嵌合するような形状となっていることが好ましい。
また、基材マットは凸部及び凹部が形成されていない形状であってもよい。
上記基材マットの厚さは、2~30mmであることが好ましい。
基材マットの厚さが2mm未満であると、その厚さが薄すぎるため、断熱性能や防音性能が低下してしまう。一方、基材マットの厚さが30mmを超えると、柔軟性が低下し、装着対象となる部材への装着性が低下する。
上記基材マットのかさ密度は、特に限定されるものではないが、0.05~0.30g/cmであることが好ましい。
基材マットのかさ密度が0.05g/cm未満であると、無機繊維のからみ合いが弱く、無機繊維が剥離しやすいため、基材マットの形状を所定の形状に保ちにくくなる。一方、基材マットのかさ密度が0.30g/cmを超えると、基材マットが硬くなり、装着対象となる部材への装着性が低下し、基材マットが割れやすくなる。
本発明の第1の態様に係るマット材を構成する基材マットの第1及び第2の主表面の少なくとも一方には、有機物から構成された複数の基部と、上記複数の基部のそれぞれから少なくとも2方向に延伸する繊維とによりネットワークが形成されている。
上記基部を構成する有機物は、ネットワークを形成する繊維(以下、ネットワーク繊維と言う)の材質とは異なるものであり、具体的には、基部は、ホットメルトパウダー(ホットメルト接着剤)がネットワーク繊維に熱融着することによって形成されている。
したがって、上記ネットワーク繊維のガラス転移点Tg1は、基部を構成する有機物のガラス転移点Tg2より高いことが好ましい。これにより、ホットメルトパウダーを使用して基部を有するネットワークを容易に形成することができる
上記ネットワーク繊維のガラス転移点Tg1は、特に限定されないが、-140℃以上、90℃以下であることが好ましく、-130℃以上、80℃以下であることがより好ましい。
また、基部を構成する有機物のガラス転移点Tg2も特に限定されないが、-140℃以上、90℃以下であることが好ましく、-130℃以上、80℃以下であることがより好ましい。
さらに、ネットワーク繊維のガラス転移点Tg1と基部を構成する有機物のガラス転移点Tg2の差、すなわち(Tg1-Tg2)も特に限定されないが、220℃以下であることが好ましく、200℃以下であることが、ネットワーク繊維と基部を一体化するためにはより好ましい。
上記基部を構成する有機物は、ホットメルトパウダーとして利用可能なものであれば特に限定されないが、具体例としては、例えば、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、エチレン-酢酸ビニル共重合樹脂(EVA)等が挙げられる。
上記ネットワーク繊維は長繊維フィラメントであることが好ましい。
長繊維フィラメントは、通常の短繊維ファイバーの長さ(例えば10~50mm)より長い繊維であることが好ましく、フィラメントの平均繊維長が100mmより長いことが好ましく、フィラメントの平均繊維長が数百mm以上であることがより好ましい。
長繊維フィラメントは、連続長繊維であってもよい。
上記ネットワーク繊維の平均繊維径は、主たる構成フィラメントにおいて、通常10μm以下であり、5μm前後であることが好ましい。
上記ネットワークは、基材マットと実質的に同じ平面形状を有することが好ましい。すなわち、平面視において、ネットワークと基材マットの配置領域が実質的に一致することが好ましい。
また、ネットワークから構成されるシート材を形成し、このシート材が基材マットに貼り付けられていることが好ましい。シート材と基材マットの貼り付けは、ホットメルトパウダーを介して行うことが好ましい。
ネットワークから構成されるシート材の坪量は、特に限定されないが、5g/m以上、100g/m以下であることが好ましく、5g/m以上、50g/m以下であることがより好ましく、5g/m以上、30g/m以下であることがさらに好ましい。
なお、ここでいうシート材の坪量は、シート材1枚当たりの坪量である。
上記ネットワーク繊維は、有機繊維及び無機繊維の少なくとも一方で構成されていることが好ましい。
例えば、縦配向繊維は、有機繊維及び/又は無機繊維から構成されてもよいし、横配向繊維は、有機繊維及び/又は無機繊維から構成されてもよい。縦配向繊維及び横配向繊維の材質は、互いに異なっていてもよいが、通常では縦配向繊維が有機繊維から構成される場合は横配向繊維も有機繊維から構成されており、縦配向繊維が無機繊維から構成される場合は横配向繊維も無機繊維から構成されている。
上記ネットワーク繊維は、有機繊維で構成されていることがより好ましい。これにより、マット材の巻き付けの際の割れの発生をより効果的に抑制することができる。
例えば、縦配向繊維及び横配向繊維はいずれも有機繊維から構成されていてもよい。
より具体的には、上記ネットワーク繊維の好適な材質としては、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。
本発明の第1の態様に係るマット材では、上記基材マットは、さらに無機バインダ及び有機バインダの少なくとも一方を含むことが好ましい。
無機バインダの使用量(無機バインダの重量/マット材の重量)は、例えば、0wt%を超えて15wt%以下であってもよい。
有機バインダの使用量(有機バインダの重量/マット材の重量)は、0wt%を超えて15wt%以下であってもよい。
無機バインダとしては、アルミナゾル、シリカゾル等が使用できる。
有機バインダとしては、アクリル樹脂、アクリレート系ラテックス、ゴム系ラテックス、カルボキシメチルセルロース又はポリビニルアルコール等の水溶性有機重合体、スチレン樹脂等の熱可塑性樹脂、エポキシ樹脂等の熱硬化性樹脂等を用いることが好ましい。
続いて、本発明の第1の態様に係るマット材を製造することのできる方法である、本発明のマット材の製造方法について説明する。
本発明のマット材の製造方法は、無機繊維を含み、第1及び第2の主表面を有する基材マットを準備する基材マット準備工程と、少なくとも2方向に延伸する繊維を含むシート材を準備するシート材準備工程と、上記シート材にホットメルトパウダーを散布して加熱し、上記シート材に上記ホットメルトパウダーを付着させるシート材加工工程と、上記基材マットの上記第1及び第2の主表面の少なくとも一方に、上記ホットメルトパウダーが付着した上記シート材を熱圧着し、上記シート材を上記基材マットに貼り付けるシート材貼付工程と、を有することを特徴とする。
本発明のマット材の製造方法では、マット材を2種類製造することが好ましい。2種類のマット材は、第1のマット材及び第2のマット材であるが、いずれのマット材も本発明の第1の態様に係るマット材となる。
本発明のマット材の製造方法では、まず、第1及び第2の主表面を有する基材マットと、少なくとも2方向に延伸する繊維を含むシート材とを準備する。
ここで準備する基材マットの構造や物性は、本発明の第1の態様に係るマット材で説明した基材マットと同じものであるため、ここでの詳細な説明は省略する。
また、ここで準備するシート材の構造や物性は、基部を有さないことを除いて本発明の第1の態様に係るマット材で説明したネットワークと同じものであるため、ここでの詳細な説明は省略する。
ただし、ここで準備する基材マット及びシート材は、打ち抜き加工により本発明の第1の態様に係るマット材を多数得られるような大判のシートであることが好ましい。
基材マットは、種々の方法により得ることができるが、例えば、抄造法又はニードリング法により製造することができる。
抄造法の場合、例えば、以下の方法により製造することができる。
無機繊維を開繊し、開繊した無機繊維を溶媒中に分散させて混合液とする。底面にろ過用のメッシュが形成された成形器に混合液を流し込み、混合液中の溶媒を脱溶媒処理することで無機繊維集合体を得る。そして、無機繊維集合体を乾燥することにより基材マットを得ることができる。
ニードリング法の場合、例えば、以下の方法により製造することができる。
塩基性塩化アルミニウム水溶液とシリカゾル等とを原料とする紡糸用混合物をブローイング法により紡糸して3~10μmの平均繊維径を有する無機繊維前駆体を作製する。続いて、上記無機繊維前駆体を圧縮して所定の大きさの連続した基材マットを作製し、焼成処理を施すことにより基材マットを得ることができる。この焼成処理の前後のいずれかにニードルパンチング処理を行い、無機繊維同士を交絡させる。
シート材は、例えば、以下の方法により製造することができる。
まず、メルトブロー不織布やスパンボンド不織布等の不織布紡糸装置により原料(例えば樹脂)を溶融紡糸する。続いて、縦方向(MD)及び横方向(CD)のそれぞれの方向に繊維を配列し、かつ延伸することによって、長繊維フィラメントからなる連続体を縦方向に延伸した縦延伸ウェブと、同様の長繊維フィラメントからなる連続体を横方向に延伸した横延伸ウェブとを作製する。そして、この縦延伸ウェブと横延伸ウェブとを積層し接合することで、縦配向繊維と横配向繊維とが積層された積層シート材(不織布)を作製する。
縦延伸ウェブと横延伸ウェブとの接合方法としては、例えば、ウォータージェット法、ニードルパンチ法、スルーエアー法、熱エンボス法、接着剤接合法、ステッチボンド法、超音波シール法、誘導加熱シール法等を用いることができる。
次に、シート材にホットメルトパウダー(粉末状のホットメルト接着剤)を散布して加熱し、シート材にホットメルトパウダーを付着させる。
なお、このときの加熱温度と加熱時間は、特に限定されず、ホットメルトパウダーの特性に応じて適宜設定することができる。
次に、基材マットの第1及び第2の主表面の少なくとも一方に、ホットメルトパウダーが付着したシート材を熱圧着し、シート材を基材マットに貼り付ける。
このとき、大判の基材マットに大判のシート材を貼り付けて貼付体を得ることが好ましい。
なお、このときの熱圧着の条件も特に限定されず、ホットメルトパウダーの特性に応じて適宜設定することができるが、加熱温度は、115℃以上、140℃以下であることが好ましく、120℃以上、130℃以下であることがより好ましく、加熱時間は、25秒以上、60秒以下であることが好ましく、30秒以上、50秒以下であることがより好ましい。
図3は、貼付体の一例を模式的に示す斜視図である。
貼付体150は、大判の基材マット120の第1の主表面121上に大判のシート材130が貼り付けられたものであり、縦方向に二辺と横方向の二辺とを有する矩形状のシートである。
シート材130は、縦配向繊維と横配向繊維とが積層されたシート材であり、シート材130の縦配向繊維の配向方向が縦方向となっていて貼付体150の縦方向の二辺と平行であり、シート材130の横配向繊維の配向方向が横方向となっていて貼付体150の横方向の二辺と平行である。
続いて、貼付体に対して打ち抜き加工を行うことによって、所定の形状のマット材を作製することができる。
本発明のマット材の製造方法では、少なくとも2方向に延伸する繊維を含むシート材にホットメルトパウダーを散布して加熱し、シート材にホットメルトパウダーを付着させ、基材マットの第1及び第2の主表面の少なくとも一方に、ホットメルトパウダーが付着したシート材を熱圧着し、シート材を上記基材マットに貼り付けることから、シート材を形成している繊維、すなわちネットワーク繊維自体が溶融することを防止しつつシート材を基材マットに貼り付けることができる。そのため、ネットワーク繊維の強度及び柔軟性が低下するのを抑制することができる。また、ホットメルトパウダーを加熱して溶融することで基部を有するネットワークを形成することができる。その結果、マット材の巻き付けの際の割れの発生を抑制することができる。
貼付体の打ち抜き加工では、貼付体の縦方向がマット材の長手方向となり、貼付体の横方向がマット材の短手方向となる第1のマット材と、貼付体の横方向がマット材の長手方向となり、貼付体の縦方向がマット材の短手方向となる第2のマット材とを得る工程を行い、第1のマット材と第2のマット材という2種類のマット材を得ることが好ましい。
図4は、打ち抜き加工により2種類のマット材を得る工程の一例を模式的に示す上面図である。
図4に示す貼付体150に対し、打ち抜き加工を行い、2種類のマット材を得る。
図4の左側では、シート材の縦配向繊維の配向方向(図4に示される縦方向)がマット材の長手方向となり、シート材の横配向繊維の配向方向(図4に示される横方向)がマット材の短手方向となる第1のマット材1を得ることを示している。
また、図4の右側では、シート材の横配向繊維の配向方向(図4に示される横方向)がマット材の長手方向となり、シート材の縦配向繊維の配向方向(図4に示される縦方向)がマット材の短手方向となる第2のマット材2を得ることを示している。
第1のマット材1と第2のマット材2では、マット材の長手方向に配向したシート材の繊維(縦配向繊維又は横配向繊維)と、マット材の短手方向に配向したシート材の繊維(横配向繊維又は縦配向繊維)との本数及び密度が同等であるので、ほぼ同じ引張強度及び巻き付け性を示すこととなる。
また、打ち抜き加工においては、シート材の縦配向繊維及び横配向繊維の一方の配向方向が、第1のマット材の長手方向と平行であり、かつ、第2のマット材の短手方向と平行であるようにすることが好ましい。
また、シート材の縦配向繊維及び横配向繊維の他方の配向方向が、第1のマット材の短手方向と平行であり、かつ、第2のマット材の長手方向と平行であることが好ましい。
図4に示す打ち抜き方向は、上記の条件を満たす方向である。
なお、本発明のマット材の製造方法では、少なくとも2方向に延伸する繊維を含むシート材を用いる方法について説明したが、本発明の第1の態様に係るマット材は、このようなシート材を用いずに製造することもできる。
例えば、基材マットの第1及び第2の主表面の少なくとも一方に、ホットメルトパウダーを用いて異なる方向に延伸する繊維を順次積層してもよい。より具体的には、まず、基材マットの第1及び第2の主表面の少なくとも一方に、ホットメルトパウダーを用いて縦配向繊維(縦延伸ウェブ)を熱圧着し、その後、縦配向繊維上に、ホットメルトパウダーを用いて横配向繊維(横延伸ウェブ)を熱圧着してもよい。
次に、本発明の第2の態様に係るマット材について説明する。
本発明の第2の態様に係るマット材は、無機繊維を含み、第1及び第2の主表面を有する基材マットの、上記第1及び第2の主表面の少なくとも一方に、複数の繊維が交絡して形成された繊維束と、単繊維とによりウェブが形成されていることを特徴とする。
図5は、本発明の第2の態様に係るマット材の一例を模式的に示す斜視図である。
図5に示すマット材210は、第1の主表面221及び第2の主表面222を有する基材マット220の第1の主表面221に、繊維束及び単繊維(いずれも図5では図示省略)からなるウェブ270が形成された構造を有している。
マット材210の長手方向側(図5中、両矢印Lで示す方向)の端部のうち、一方の端部である第1の端部には凸部211が形成されており、他方の端部である第2の端部には凹部212が形成されている。
凸部211及び凹部212は、基材マット220とウェブ270のそれぞれに設けられた凸部と凹部が重なって形成されている。
マット材の凸部及び凹部は、外周が円柱状の排ガス浄化装置、排ガス処理体や排気管にマット材を巻きつける際に、ちょうど互いに嵌合するような形状となっている。
なお、図5中、両矢印Wで示す方向がマット材の短手方向であり、両矢印Tで示す方向がマット材の厚さ方向である。
なお、図5では基材マット220の第1の主表面221のみにウェブ270が形成された場合を示したが、基材マット220の第1の主表面221及び第2の主表面222にそれぞれウェブ270を形成してもよい。また、基材マット220の第1の主表面221及び/又は第2の主表面222に加えて、基材マット220の側面にもウェブ270を形成していてもよい。
図6は、図5に示すウェブを模式的に示す拡大平面図である。
なお、図6には、ウェブ270と基材マット220の配置関係を示すため、基材マット220についても破線で示している。
図6に示すように、ウェブ270は、複数の繊維が交絡して形成された繊維束271と、単繊維272とにより形成されている。
このため、ウェブ270を形成している繊維の強度及び柔軟性が低下するのを抑制することができるため、マット材210の巻き付けの際の割れの発生を抑制することができる。
繊維束271を構成する複数の繊維は、互いにねじれて絡まっている。このように繊維束271を構成する繊維同士が互いに融着しておらず、互いに絡まっているだけであるため、上述のようにウェブ270の柔軟性が低下するのを抑制することができる。
繊維束271を構成する繊維の本数は、特に限定されないが、2本以上、10本以下であることが好ましく、3本以上、7本以下であることがより好ましい。
なお、単繊維272は、他の繊維とは絡まっていない繊維である。
繊維束271は、延伸方向が互いに異なる複数の繊維束を含んでおり、ウェブ270は、これらの複数の繊維束と、単繊維272とにより形成されている。この結果、ウェブ270において、縦方向の繊維数と横方向の繊維数とを同程度とすることができる。
ここでは、ウェブ270を形成している繊維として、縦方向及び横方向の2方向にそれぞれ延伸する縦配向繊維231及び横配向繊維232が存在している。
縦配向繊維231の配向方向は、縦方向であり、マット材210の長手方向(図6中、両矢印Lで示す方向)と略平行になっている。
横配向繊維232の配向方向は、横方向であり、マット材210の短手方向(図6中、両矢印Wで示す方向)と略平行になっている。
ここで、縦配向繊維231を構成する繊維の長さ方向が並ぶ方向が縦配向繊維231の配向方向になり、横配向繊維232を構成する繊維の長さ方向が並ぶ方向が横配向繊維232の配向方向になる。
縦方向に繊維が配向(配列)した縦配向繊維231と、横方向に繊維が配向(配列)した横配向繊維232とが積層され、縦横に繊維配向をもった不織布を構成している。
この不織布は、原料から直接紡糸する製造プロセスを用いて作製されており、紡糸した繊維を縦横それぞれの方向に延伸することによって長繊維フィラメントが縦横それぞれの方向に配向されている。
また、この不織布は、透かしのある不織布であり、縦配向繊維231と横配向繊維232に囲まれた開口が存在している。
そして、縦配向繊維231の一部の繊維が交絡して縦方向に延伸する縦配向繊維束271aが形成されるとともに、縦配向繊維231の残りの繊維が縦方向に延伸する縦配向単繊維272aとして存在している。
同様に、横配向繊維232の一部の繊維が交絡して横方向に延伸する横配向繊維束271bが形成されるとともに、横配向繊維232の残りの繊維が横方向に延伸する横配向単繊維272bとして存在している。
ただし、ウェブ270を形成している繊維は、必ずしも直線状に延伸している必要はなく、ウェブ270を形成する繊維の少なくとも一部は、湾曲していることが好ましい。すなわち、図6に示したように、湾曲した繊維束271c及び湾曲した単繊維272cが存在することが好ましい。これにより、ウェブ270を形成している繊維同士の交点が増え、ウェブ270に加わる応力を分散させることができるため、マット材210の巻き付けの際の割れの発生をより抑制することができる。
より詳細には、湾曲した繊維束271c及び湾曲した単繊維272cは、それぞれ、その配向方向(縦方向又は横方向)に沿いながら例えば円弧状に湾曲している。
なお、湾曲した繊維束271c及び湾曲した単繊維272cは、いずれか一方のみでもよいが、マット材210の割れ抑制の観点からは、両方存在する方が好ましい。
また、図6では縦配向繊維231及び横配向繊維232がそれぞれ一層ずつ積層された場合を示したが、縦配向繊維231及び横配向繊維232の積層数は特に限定されず、縦配向繊維231及び横配向繊維232が交互に計3層以上積層されてもよい。
また、縦配向繊維231及び横配向繊維232を積層する順序も特に限定されない。
このように、ウェブ270は、三次元的に形成されている。すなわち、ウェブ270は、マット材210の長手方向及び短手方向に広がるとともに、マット材210の厚さ方向に厚みをもっている。
これにより、ウェブ270の強度がより向上するとともにウェブ270に加わる応力が分散されるため、マット材210の巻き付けの際の割れの発生をより効果的に抑制することができる。
なお、ウェブ270は、3方向以上の方向に延伸する繊維を含んでいてもよく、例えば、縦配向繊維231及び横配向繊維232に加えて斜め方向に延伸する繊維を含んでいてもよく、この繊維によって斜め方向に延伸する繊維束及び単繊維が存在していてもよい。
また、縦配向繊維231及び横配向繊維232の配向方向と、マット材210の長手方向及び短手方向との関係は特に限定されないが、縦配向繊維231及び横配向繊維232の一方の配向方向がマット材210の長手方向と平行であり、縦配向繊維231及び横配向繊維232の他方の配向方向がマット材210の短手方向と平行であることが好ましい。
すなわち、縦方向に延伸する縦配向繊維束271a及び縦配向単繊維272aと、横方向に延伸する横配向繊維束271b及び横配向単繊維272bとのうちのいずれか一方の配向方向がマット材210の長手方向と平行であり、他方の配向方向がマット材210の短手方向と平行であることが好ましい。
図5及び図6に示すウェブ270は、有機物から構成された複数の基部273をさらに有しており、各基部273から複数の方向に繊維束271や単繊維272が延伸している。
基部273は、ウェブ270内に分布しており、各基部273は、一次元的に伸びる繊維とは異なり、マット材210の長手方向、短手方向及び厚さ方向(特に長手方向及び短手方向)に広がりをもっている。そして、各基部273が融着することによって異なる方向に延伸する繊維束271や単繊維272を互いに接合している。すなわち、繊維束271や単繊維272が交差する領域に基部273が配置され、それらの繊維同士を結合している。
また、基部273は、ウェブ270を基材マット220に固定する役割を果たしている。すなわち、基部273は、融着することによってウェブ270を形成する繊維を基材マット220に接合している。
このように、ウェブ270は、複数の方向に配向した繊維束271及び単繊維272(例えば縦配向繊維231及び横配向繊維232)が積層された不織布と、その不織布上に分布され、異なる層に位置する異なる配向方向の繊維同士(例えば縦配向繊維231及び横配向繊維232同士)を接合する基部273とによって形成されている。
以下、これらの構成の詳細について説明する。
本発明の第2の態様に係るマット材を構成する基材マットは、無機繊維からなる。無機繊維は、特に限定されず、アルミナ-シリカ繊維、アルミナ繊維、シリカ繊維等であってもよい。また、ガラス繊維や生体溶解性繊維であってもよい。耐熱性や耐風蝕性等、マット材に要求される特性等に応じて変更すればよく、各国の環境規制に適合できるような太径繊維や繊維長のものを使用するのが好ましい。
この中でも、低結晶性アルミナ質の無機繊維が好ましく、ムライト組成の低結晶性アルミナ質の無機繊維がより好ましい。加えて、スピネル型化合物を含む無機繊維がさらに好ましい。
基材マットは、巻き付け方向となる長手方向と、長手方向に直交する短手方向を有する。
基材マットには、基材マットの長手方向側の端部のうち、一方の端部である第1の端部には凸部が形成されており、他方の端部である第2の端部には凹部が形成されていることが好ましい。基材マットの凸部及び凹部は、外周が円柱状の排ガス浄化装置、排ガス処理体や排気管にマット材を巻きつける際に、ちょうど互いに嵌合するような形状となっていることが好ましい。
また、基材マットは凸部及び凹部が形成されていない形状であってもよい。
上記基材マットの厚さは、2~30mmであることが好ましい。
基材マットの厚さが2mm未満であると、その厚さが薄すぎるため、断熱性能や防音性能が低下してしまう。一方、基材マットの厚さが30mmを超えると、柔軟性が低下し、装着対象となる部材への装着性が低下する。
上記基材マットのかさ密度は、特に限定されるものではないが、0.05~0.30g/cmであることが好ましい。
基材マットのかさ密度が0.05g/cm未満であると、無機繊維のからみ合いが弱く、無機繊維が剥離しやすいため、基材マットの形状を所定の形状に保ちにくくなる。一方、基材マットのかさ密度が0.30g/cmを超えると、基材マットが硬くなり、装着対象となる部材への装着性が低下し、基材マットが割れやすくなる。
本発明の第2の態様に係るマット材を構成する基材マットの第1及び第2の主表面の少なくとも一方には、複数の繊維が交絡して形成された繊維束と、単繊維とによりウェブが形成されている。
上記ウェブを形成する繊維(以下、ウェブ繊維と言う)は長繊維フィラメントであることが好ましい。
長繊維フィラメントは、通常の短繊維ファイバーの長さ(例えば10~50mm)より長い繊維であることが好ましく、フィラメントの平均繊維長が100mmより長いことが好ましく、フィラメントの平均繊維長が数百mm以上であることがより好ましい。
長繊維フィラメントは、連続長繊維であってもよい。
上記ウェブ繊維の平均繊維径は、主たる構成フィラメントにおいて、通常10μm以下であり、5μm前後であることが好ましい。
上記ウェブは、有機物から構成された複数の基部をさらに有していてもよい。
上記基部を構成する有機物は、ウェブ繊維の材質とは異なるものであり、具体的には、基部は、ホットメルトパウダー(ホットメルト接着剤)がウェブ繊維に熱融着することによって形成されている。
したがって、上記ウェブ繊維のガラス転移点Tg3は、基部を構成する有機物のガラス転移点Tg4より高いことが好ましい。これにより、ホットメルトパウダーを使用して基部を有するウェブを容易に形成することができる
上記ウェブ繊維のガラス転移点Tg3は、特に限定されないが、-140℃以上、90℃以下であることが好ましく、-130℃以上、80℃以下であることがより好ましい。
また、基部を構成する有機物のガラス転移点Tg4も特に限定されないが、-140℃以上、90℃以下であることが好ましく、-130℃以上、80℃以下であることがより好ましい。
さらに、ウェブ繊維のガラス転移点Tg3と基部を構成する有機物のガラス転移点Tg4の差、すなわち(Tg3-Tg4)も特に限定されないが、220℃以下であることが好ましく、200℃以下であることが、ウェブ繊維と基部を一体化するためにはより好ましい。
上記基部を構成する有機物は、ホットメルトパウダーとして利用可能なものであれば特に限定されないが、具体例としては、例えば、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、エチレン-酢酸ビニル共重合樹脂(EVA)等が挙げられる。
上記ウェブは、基材マットと実質的に同じ平面形状を有することが好ましい。すなわち、平面視において、ウェブと基材マットの配置領域が実質的に一致することが好ましい。
また、ウェブから構成されるシート材を形成し、このシート材が基材マットに貼り付けられていることが好ましい。シート材と基材マットの貼り付けは、ホットメルトパウダーを介して行うことが好ましい。
ウェブから構成されるシート材の坪量は、特に限定されないが、5g/m以上、100g/m以下であることが好ましく、5g/m以上、50g/m以下であることがより好ましく、5g/m以上、30g/m以下であることがさらに好ましい。
なお、ここでいうシート材の坪量は、シート材1枚当たりの坪量である。
上記ウェブ繊維は、有機繊維及び無機繊維の少なくとも一方で構成されていることが好ましい。
例えば、縦配向繊維は、有機繊維及び/又は無機繊維から構成されてもよいし、横配向繊維は、有機繊維及び/又は無機繊維から構成されてもよい。縦配向繊維及び横配向繊維の材質は、互いに異なっていてもよいが、通常では縦配向繊維が有機繊維から構成される場合は横配向繊維も有機繊維から構成されており、縦配向繊維が無機繊維から構成される場合は横配向繊維も無機繊維から構成されている。
上記ウェブ繊維は、有機繊維で構成されていることがより好ましい。これにより、マット材の巻き付けの際の割れの発生をより効果的に抑制することができる。
例えば、縦配向繊維及び横配向繊維はいずれも有機繊維から構成されていてもよい。
より具体的には、上記ウェブ繊維の好適な材質としては、ポリエチレンテレフタレート(PET)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。
本発明の第2の態様に係るマット材では、上記基材マットは、さらに無機バインダ及び有機バインダの少なくとも一方を含むことが好ましい。
無機バインダの使用量(無機バインダの重量/マット材の重量)は、例えば、0wt%を超えて15wt%以下であってもよい。
有機バインダの使用量(有機バインダの重量/マット材の重量)は、0wt%を超えて15wt%以下であってもよい。
無機バインダとしては、アルミナゾル、シリカゾル等が使用できる。
有機バインダとしては、アクリル樹脂、アクリレート系ラテックス、ゴム系ラテックス、カルボキシメチルセルロース又はポリビニルアルコール等の水溶性有機重合体、スチレン樹脂等の熱可塑性樹脂、エポキシ樹脂等の熱硬化性樹脂等を用いることが好ましい。
続いて、本発明の第2の態様に係るマット材の製造方法について説明する。
本発明の第2の態様に係るマット材の製造方法は、無機繊維を含み、第1及び第2の主表面を有する基材マットを準備する基材マット準備工程と、複数の繊維が交絡して形成された繊維束と、単繊維とを含むシート材を準備するシート材準備工程と、上記シート材にホットメルトパウダーを散布して加熱し、上記シート材に上記ホットメルトパウダーを付着させるシート材加工工程と、上記基材マットの上記第1及び第2の主表面の少なくとも一方に、上記ホットメルトパウダーが付着した上記シート材を熱圧着し、上記シート材を上記基材マットに貼り付けるシート材貼付工程と、により製造することが可能である。
このとき、マット材を2種類製造することが好ましい。2種類のマット材は、第1のマット材及び第2のマット材であるが、いずれのマット材も本発明の第2の態様に係るマット材となる。
上記製造方法では、まず、第1及び第2の主表面を有する基材マットと、複数の繊維が交絡して形成された繊維束と、単繊維とを含むシート材とを準備する。
ここで準備する基材マットの構造や物性は、本発明の第2の態様に係るマット材で説明した基材マットと同じものであるため、ここでの詳細な説明は省略する。
また、ここで準備するシート材の構造や物性は、基部を有さないことを除いて本発明の第2の態様に係るマット材で説明したウェブと同じものであるため、ここでの詳細な説明は省略する。
ただし、ここで準備する基材マット及びシート材は、打ち抜き加工により本発明の第2の態様に係るマット材を多数得られるような大判のシートであることが好ましい。
基材マットは、種々の方法により得ることができるが、例えば、抄造法又はニードリング法により製造することができる。より具体的には、本発明の第1の態様に係るマット材を製造することのできる方法である、本発明のマット材の製造方法で説明した方法により製造することができる。
シート材は、例えば、本発明の第1の態様に係るマット材を製造することのできる方法である、本発明のマット材の製造方法で説明した方法により製造することができる。
図7は、貼付体の別の例を模式的に示す斜視図である。
貼付体350は、大判の基材マット320の第1の主表面321上に大判のシート材330が貼り付けられたものであり、縦方向に二辺と横方向の二辺とを有する矩形状のシートである。
シート材330は、縦配向繊維と横配向繊維(いずれも繊維束及び単繊維を含む)が積層されたシート材であり、シート材330の縦配向繊維の配向方向が縦方向となっていて貼付体350の縦方向の二辺と平行であり、シート材330の横配向繊維の配向方向が横方向となっていて貼付体350の横方向の二辺と平行である。
続いて、貼付体に対して打ち抜き加工を行うことによって、所定の形状のマット材を作製することができる。
上記製造方法では、複数の繊維が交絡して形成された繊維束と、単繊維とを含むシート材にホットメルトパウダーを散布して加熱し、シート材にホットメルトパウダーを付着させ、基材マットの第1及び第2の主表面の少なくとも一方に、ホットメルトパウダーが付着したシート材を熱圧着し、シート材を上記基材マットに貼り付けることから、シート材を形成している繊維、すなわちウェブ繊維自体が溶融することを防止しつつシート材を基材マットに貼り付けることができる。そのため、ウェブ繊維の強度及び柔軟性が低下するのをより効果的に抑制することができる。その結果、マット材の巻き付けの際の割れの発生をより効果的に抑制することができる。
貼付体の打ち抜き加工では、貼付体の縦方向がマット材の長手方向となり、貼付体の横方向がマット材の短手方向となる第1のマット材と、貼付体の横方向がマット材の長手方向となり、貼付体の縦方向がマット材の短手方向となる第2のマット材とを得る工程を行い、第1のマット材と第2のマット材という2種類のマット材を得ることが好ましい。
図8は、打ち抜き加工により2種類のマット材を得る工程の別の例を模式的に示す上面図である。
図8に示す貼付体350に対し、打ち抜き加工を行い、2種類のマット材を得る。
図8の左側では、シート材の縦配向繊維(繊維束及び単繊維を含む)の配向方向(図8に示される縦方向)がマット材の長手方向となり、シート材の横配向繊維(繊維束及び単繊維を含む)の配向方向(図8に示される横方向)がマット材の短手方向となる第1のマット材201を得ることを示している。
また、図8の右側では、シート材の横配向繊維(繊維束及び単繊維を含む)の配向方向(図8に示される横方向)がマット材の長手方向となり、シート材の縦配向繊維(繊維束及び単繊維を含む)の配向方向(図8に示される縦方向)がマット材の短手方向となる第2のマット材202を得ることを示している。
第1のマット材201と第2のマット材202では、マット材の長手方向に配向したシート材の繊維(縦配向繊維又は横配向繊維)と、マット材の短手方向に配向したシート材の繊維(横配向繊維又は縦配向繊維)との本数及び密度が同等であるので、ほぼ同じ引張強度及び巻き付け性を示すこととなる。
また、打ち抜き加工においては、シート材の縦配向繊維及び横配向繊維の一方の配向方向が、第1のマット材の長手方向と平行であり、かつ、第2のマット材の短手方向と平行であるようにすることが好ましい。
また、シート材の縦配向繊維及び横配向繊維の他方の配向方向が、第1のマット材の短手方向と平行であり、かつ、第2のマット材の長手方向と平行であることが好ましい。
図8に示す打ち抜き方向は、上記の条件を満たす方向である。
なお、上記製造方法では、複数の繊維が交絡して形成された繊維束と、単繊維とを含むシート材(縦配向繊維と横配向繊維とが積層された積層シート材)及びホットメルトパウダーを用いる方法について説明したが、本発明の第2の態様に係るマット材は、これらを用いずに製造することもできる。
具体的には、例えば、基材マットの第1及び第2の主表面の少なくとも一方に、繊維束及び単繊維を含み、かつバインダを含浸させた縦配向繊維(縦延伸ウェブ)を熱圧着し、その後、縦配向繊維上に、繊維束及び単繊維を含み、かつバインダを含浸させた横配向繊維(横延伸ウェブ)を熱圧着してもよい。
以下、本発明の排ガス浄化装置について説明する。
本発明の排ガス浄化装置は、排ガスが流通する排ガス処理体と、上記排ガス処理体の外周に巻き付けて使用される保持シール材と、上記保持シール材が巻き付けられた上記排ガス処理体を収容するケーシングと、を備える排ガス浄化装置であって、上記保持シール材は、本発明の第1又は第2の態様に係るマット材であることを特徴とする。
上述のように、本発明の第1及び第2の態様に係るマット材は、巻き付けの際の割れの発生を抑制することができる。そのため、本発明の排ガス浄化装置は、マット材(保持シール材)の割れから未処理の排ガスが漏洩するのを抑制することができる。
図9は、本発明の排ガス浄化装置の一例を模式的に示す断面図である。
図9に示すように、本発明の排ガス浄化装置100は、ケーシング50と、ケーシング50に収容され、排ガスが流通する排ガス処理体40と、排ガス処理体40及びケーシング50の間に配設され、排ガス処理体40を保持する保持シール材60とを備えている。
保持シール材60は、排ガス処理体の外周に巻き付けられたマット材である。
排ガス処理体40は、多数のセル41がセル壁42を隔てて長手方向に並設された柱状のものである。セルはその一方の端部が封止材43により封止されている。
なお、ケーシング50の端部には、必要に応じて、内燃機関から排出された排ガスを導入する導入管と、排ガス浄化装置を通過した排ガスが外部に排出される排出管とが接続されることとなる。
上述した構成を有する排ガス浄化装置100を排ガスが通過する場合について、図9を参照して以下に説明する。
図9に示すように、内燃機関から排出され、排ガス浄化装置100に流入した排ガス(図9中、排ガスをGで示し、排ガスの流れを矢印で示す)は、排ガス処理体(ハニカムフィルタ)40の排ガス流入側端面に開口した一のセル41に流入し、セル41を隔てるセル壁42を通過する。この際、排ガス中のPMがセル壁42で捕集され、排ガスが浄化されることとなる。浄化された排ガスは、排ガス流出側端面に開口した他のセル41から流出し、外部に排出される。
図9に示す排ガス浄化装置100では、保持シール材60は本発明の第1又は第2の態様に係るマット材であり、保持シール材60の第1主面及び第2主面の少なくとも一方は、本発明の第1の態様に係るマット材を構成するネットワーク、又は、本発明の第2の態様に係るマット材を構成するウェブから構成されている。
本発明の排ガス浄化装置を構成するケーシングの材質は、耐熱性を有する金属であれば特に限定されず、具体的には、ステンレス、アルミニウム、鉄等の金属類が挙げられる。
また、ケーシングの形状は、略円筒型形状の他、クラムシェル型形状、ケーシング断面において略楕円型形状、略多角形型形状等を好適に用いることができる。
なお、図9に示す排ガス処理体40は、セル41のいずれか一方の端部が封止材43で封止されているフィルタであるが、本発明の排ガス浄化装置を構成する排ガス処理体は、セルの端部が封止されていなくてもよい。このような排ガス処理体は、触媒担体として好適に使用することが可能となる。
排ガス処理体40は、炭化珪素や窒化珪素等の非酸化物多孔質セラミックからなっていてもよく、アルミナ、コージェライト、ムライト等の酸化物多孔質セラミックからなっていてもよい。これらの中では、炭化珪素であることが好ましい。
排ガス処理体40の断面におけるセル密度は、特に限定されないが、好ましい下限は、31.0個/cm(200個/inch)、好ましい上限は、93.0個/cm(600個/inch)である。また、より好ましい下限は、38.8個/cm(250個/inch)、より好ましい上限は、77.5個/cm(500個/inch)である。
排ガス処理体40には、排ガスを浄化するための触媒を担持させてもよく、担持させる触媒としては、例えば、白金、パラジウム、ロジウム等の貴金属が好ましく、この中では、白金がより好ましい。また、その他の触媒として、例えば、カリウム、ナトリウム等のアルカリ金属、バリウム等のアルカリ土類金属を用いることもできる。これらの触媒は、単独で用いてもよいし、2種以上併用してもよい。
これら触媒が担持されていると、PMを燃焼除去しやすくなり、有毒な排ガスの浄化も可能になる。
なお、本発明のマット材の用途は特に限定されず、排ガス浄化装置用途の他に、例えば電池用途であってもよい。より詳細には、電動モータで駆動する電気自動車又はハイブリッド車に用いられる蓄電装置に利用することも可能である。例えば、蓄電装置の電池セルや、電池セル間を接続するバスバー等の蓄電装置部品の表面に配置することにより、電池セルの内部短絡や過充電等が原因で、ある電池セルが急激に昇温し、その後も発熱を継続するような熱暴走が生じた場合であっても、他の蓄電装置部品の損傷を抑制することが可能である。
また、本発明のマット材を、蓄電池を収容する電池ケースの天蓋、側壁及び底壁に用いることにより熱暴走時に火炎が発生しても、外部への延焼を確実に防ぐことができる。その際に、本発明のマット材を積層して用いることがより好ましい。
本明細書には以下の事項が開示されている。
本開示(1)は、無機繊維を含み、第1及び第2の主表面を有する基材マットの、前記第1及び第2の主表面の少なくとも一方に、有機物から構成された複数の基部と、前記複数の基部のそれぞれから少なくとも2方向に延伸する繊維とによりネットワークが形成されていることを特徴とするマット材である。
本開示(2)は、前記複数の基部の各々の最大幅は、前記ネットワークを形成する前記繊維の幅よりも大きい、本開示(1)に記載のマット材である。
本開示(3)は、前記ネットワークを形成する前記繊維のガラス転移点は、前記複数の基部を構成する前記有機物のガラス転移点より高い、本開示(1)又は(2)に記載のマット材である。
本開示(4)は、前記ネットワークは、三次元的に形成されている、本開示(1)~(3)のいずれかとの任意の組合せのマット材である。
本開示(5)は、前記ネットワークを形成する前記繊維は、有機繊維及び無機繊維の少なくとも一方で構成されている、本開示(1)~(4)のいずれかとの任意の組合せのマット材である。
本開示(6)は、無機繊維を含み、第1及び第2の主表面を有する基材マットの、前記第1及び第2の主表面の少なくとも一方に、複数の繊維が交絡して形成された繊維束と、単繊維とによりウェブが形成されていることを特徴とするマット材である。
本開示(7)は、延伸方向が互いに異なる複数の前記繊維束を含み、
前記ウェブは、複数の前記繊維束と前記単繊維とにより形成されている、本開示(6)に記載のマット材である。
本開示(8)は、前記繊維束及び前記単繊維の少なくとも一方は、湾曲している、本開示(6)又は(7)に記載のマット材である。
本開示(9)は、前記ウェブは、三次元的に形成されている、本開示(6)~(8)のいずれかとの任意の組合せのマット材である。
本開示(10)は、前記繊維束及び前記単繊維は、それぞれ、有機繊維及び無機繊維の少なくとも一方で構成されている、本開示(6)~(9)のいずれかとの任意の組合せのマット材である。
本開示(11)は、排ガスが流通する排ガス処理体と、
前記排ガス処理体の外周に巻き付けて使用される保持シール材と、
前記保持シール材が巻き付けられた前記排ガス処理体を収容するケーシングと、
を備える排ガス浄化装置であって、
前記保持シール材は、本開示(1)~(10)のいずれかとの任意の組合せのマット材であることを特徴とする排ガス浄化装置である。
本開示(12)は、無機繊維を含み、第1及び第2の主表面を有する基材マットを準備する基材マット準備工程と、
少なくとも2方向に延伸する繊維を含むシート材を準備するシート材準備工程と、
前記シート材にホットメルトパウダーを散布して加熱し、前記シート材に前記ホットメルトパウダーを付着させるシート材加工工程と、
前記基材マットの前記第1及び第2の主表面の少なくとも一方に、前記ホットメルトパウダーが付着した前記シート材を熱圧着し、前記シート材を前記基材マットに貼り付けるシート材貼付工程と、を有することを特徴とするマット材の製造方法である。
(実施例)
以下、本発明をより具体的に開示した実施例を示す。なお、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
抄造法により、目付量(単位面積当たりの繊維重量)が2400g/mである、無機繊維(ムライト繊維)からなる大判の基材マットを作製した。
大判のシート材として、縦方向にPET繊維が配向した縦配向繊維と、横方向にPET繊維が配向した横配向繊維とが積層された縦横に繊維配向をもった積層シート材(不織布)を準備した。これは、PET繊維の長さ方向が並ぶ方向に配向を有し、縦配向繊維の配向方向と横配向繊維の配向方向とのなす角度が略90°である。また、このシート材は、実質的に正方形又は長方形の開口を有する。さらに、このシート材は、秤量が10g/mである。
このシート材にホットメルトパウダーを散布して加熱し、シート材にホットメルトパウダーを付着させた。ホットメルトパウダーとしては、ポリエチレン(PE)を主成分とするものを使用した。
基材マットとホットメルトパウダーが付着したシート材とを熱圧着し、シート材を基材マットに貼り付けた。このときの加熱温度は、130℃であり、加熱時間は、40秒であり、一定の圧力で加圧した。
これにより、基材マットの表面には、有機物から構成された複数の基部と、複数の基部のそれぞれから縦方向及び横方向の2方向にそれぞれ延伸する縦配向繊維及び横配向繊維とによりネットワークが形成される。
また、この結果、図3に模式的に示した貼付体と同様の矩形状の貼付体を得た。
そして、貼付体に対して、図4に模式的に示す配置と同様にして、打ち抜き加工を行い、2種類のマット材(第1のマット材と第2のマット材)を得た。
第1のマット材は、シート材の縦配向繊維の配向方向がマット材の長手方向と平行になっており、第2のマット材は、シート材の横配向繊維の配向方向がマット材の長手方向と平行になっている。
(実施例2)
抄造法により、目付量(単位面積当たりの繊維重量)が2400g/mである、無機繊維(ムライト繊維)からなる大判の基材マットを作製した。
大判のシート材として、縦方向にPET繊維が配向した縦配向繊維と、横方向にPET繊維が配向した横配向繊維とが積層された縦横に繊維配向をもった積層シート材(不織布)を準備した。これは、PET繊維の長さ方向が並ぶ方向に配向を有し、縦配向繊維の配向方向と横配向繊維の配向方向とのなす角度が略90°である。また、縦配向繊維には、複数の繊維が交絡して形成された繊維束と、単繊維とが含まれ、横配向繊維には、複数の繊維が交絡して形成された繊維束と、単繊維とが含まれている。また、このシート材は、実質的に正方形又は長方形の開口を有する。さらに、このシート材は、秤量が10g/mである。
このシート材にホットメルトパウダーを散布して加熱し、シート材にホットメルトパウダーを付着させた。ホットメルトパウダーとしては、ポリエチレン(PE)を主成分とするものを使用した。
基材マットとホットメルトパウダーが付着したシート材とを熱圧着し、シート材を基材マットに貼り付けた。このときの加熱温度は、135℃であり、加熱時間は、35秒であり、一定の圧力で加圧した。
これにより、基材マットの表面には、縦方向及び横方向の2方向にそれぞれ延伸する繊維束と、縦方向及び横方向の2方向にそれぞれ延伸する単繊維とによりウェブが形成される。
また、この結果、図7に模式的に示した貼付体と同様の矩形状の貼付体を得た。
そして、貼付体に対して、図8に模式的に示す配置と同様にして、打ち抜き加工を行い、2種類のマット材(第1のマット材と第2のマット材)を得た。
第1のマット材は、シート材の縦配向繊維の配向方向がマット材の長手方向と平行になっており、第2のマット材は、シート材の横配向繊維の配向方向がマット材の長手方向と平行になっている。
(比較例1)
実施例1、2と同様にして大判の基材マットを作製した。
大判のシート材として、縦方向に延伸したポリオレフィンフィルムを割繊して縦方向に繊維配向を持つ縦ウェブと、横方向に延伸したポリオレフィンフィルムを割繊して横方向に繊維配向を持つ横ウェブとを積層して熱融着したものを準備した。
基材マットとシート材とをホットメルトパウダー等の接着剤を用いずに熱圧着した。すなわち、シート材を基材マットに熱融着させた。この結果、縦方向に二辺と横方向の二辺とを有する矩形状の貼付体を得た。
そして、貼付体に対して、実施例1、2と同様にして、打ち抜き加工を行い、2種類のマット材(第1のマット材と第2のマット材)を得た。
第1のマット材は、シート材の縦ウェブの配向方向(縦方向)がマット材の長手方向と平行になっており、第2のマット材は、シート材の横ウェブの配向方向(横方向)がマット材の長手方向と平行になっている。
(マット材の割れの有無)
φ200mmの円柱状の基体に対し、各実施例及び比較例で製造した2種類のマット材(第1のマット材及び第2のマット材)をそれぞれ巻き付けた。
巻き付けの際には基材マットを基体側とし、シート材が外側になるようにした。
そして、巻き付け後の各マット材について、割れの発生の有無を確認した。
表1に結果を示した。
割れ有無に示した○が割れの発生無し、×は割れの発生有りを示している。
Figure JPOXMLDOC01-appb-T000001
この結果から、基材マットの表面に、有機物から構成された複数の基部と、複数の基部のそれぞれから少なくとも2方向に延伸する繊維とによりネットワークを形成することで、マット材の巻き付けの際の割れの発生を防止することができることがわかる。
また、基材マットの表面に、複数の繊維が交絡して形成された繊維束と、単繊維とによりウェブを形成することで、マット材の巻き付けの際の割れの発生を防止することができることがわかる。
図10は、比較例1のマット材の写真である。
図10に示すように、比較例1のマット材は、巻き付け後に、破線で囲まれた部分に割れが発生していた。
また、比較例1のマット材では熱圧着後のシート材の繊維に微小な穴が開くとともに、複数の繊維が互いに融着していた。このため、シート材の柔軟性が弱くなり、巻き付け後に割れが発生したと考えられる。
1、201 第1のマット材
2、202 第2のマット材
10、210 マット材
11、211 凸部
12、212 凹部
20、120、220、320 基材マット
21、121、221、321 基材マットの第1の主表面
22、222 基材マットの第2の主表面
130、330 シート材
31、231 縦配向繊維
32、232 横配向繊維
40 排ガス処理体
41 セル
42 セル壁
43 封止材
50 ケーシング
60 保持シール材
70 ネットワーク
71、273 基部
72 繊維
100 排ガス浄化装置
150、350 貼付体
270 ウェブ
271 繊維束
271a 縦配向繊維束
271b 横配向繊維束
271c 湾曲した繊維束
272 単繊維
272a 縦配向単繊維
272b 横配向単繊維
272c 湾曲した単繊維

Claims (12)

  1. 無機繊維を含み、第1及び第2の主表面を有する基材マットの、前記第1及び第2の主表面の少なくとも一方に、有機物から構成された複数の基部と、前記複数の基部のそれぞれから少なくとも2方向に延伸する繊維とによりネットワークが形成されていることを特徴とするマット材。
  2. 前記複数の基部の各々の最大幅は、前記ネットワークを形成する前記繊維の幅よりも大きい請求項1に記載のマット材。
  3. 前記ネットワークを形成する前記繊維のガラス転移点は、前記複数の基部を構成する前記有機物のガラス転移点より高い請求項1又は2に記載のマット材。
  4. 前記ネットワークは、三次元的に形成されている請求項1~3のいずれか1項に記載のマット材。
  5. 前記ネットワークを形成する前記繊維は、有機繊維及び無機繊維の少なくとも一方で構成されている請求項1~4のいずれか1項に記載のマット材。
  6. 無機繊維を含み、第1及び第2の主表面を有する基材マットの、前記第1及び第2の主表面の少なくとも一方に、複数の繊維が交絡して形成された繊維束と、単繊維とによりウェブが形成されていることを特徴とするマット材。
  7. 延伸方向が互いに異なる複数の前記繊維束を含み、
    前記ウェブは、複数の前記繊維束と前記単繊維とにより形成されている請求項6に記載のマット材。
  8. 前記繊維束及び前記単繊維の少なくとも一方は、湾曲している請求項6又は7に記載のマット材。
  9. 前記ウェブは、三次元的に形成されている請求項6~8のいずれか1項に記載のマット材。
  10. 前記繊維束及び前記単繊維は、それぞれ、有機繊維及び無機繊維の少なくとも一方で構成されている請求項6~9のいずれか1項に記載のマット材。
  11. 排ガスが流通する排ガス処理体と、
    前記排ガス処理体の外周に巻き付けて使用される保持シール材と、
    前記保持シール材が巻き付けられた前記排ガス処理体を収容するケーシングと、
    を備える排ガス浄化装置であって、
    前記保持シール材は、請求項1~10のいずれか1項に記載のマット材であることを特徴とする排ガス浄化装置。
  12. 無機繊維を含み、第1及び第2の主表面を有する基材マットを準備する基材マット準備工程と、
    少なくとも2方向に延伸する繊維を含むシート材を準備するシート材準備工程と、
    前記シート材にホットメルトパウダーを散布して加熱し、前記シート材に前記ホットメルトパウダーを付着させるシート材加工工程と、
    前記基材マットの前記第1及び第2の主表面の少なくとも一方に、前記ホットメルトパウダーが付着した前記シート材を熱圧着し、前記シート材を前記基材マットに貼り付けるシート材貼付工程と、を有することを特徴とするマット材の製造方法。
PCT/JP2023/028877 2022-09-26 2023-08-08 マット材、排ガス浄化装置及びマット材の製造方法 WO2024070251A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022152537 2022-09-26
JP2022152538 2022-09-26
JP2022-152537 2022-09-26
JP2022-152538 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024070251A1 true WO2024070251A1 (ja) 2024-04-04

Family

ID=90477150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028877 WO2024070251A1 (ja) 2022-09-26 2023-08-08 マット材、排ガス浄化装置及びマット材の製造方法

Country Status (1)

Country Link
WO (1) WO2024070251A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082310A (ja) * 2006-09-29 2008-04-10 Ibiden Co Ltd シート材、その製造方法および排気ガス処理装置
JP2013155750A (ja) * 2013-05-20 2013-08-15 Ibiden Co Ltd 触媒コンバータ用保持シール材
WO2014007013A1 (ja) * 2012-07-04 2014-01-09 ニチアス株式会社 気体処理装置用保持材、気体処理装置及びこれらの製造方法
WO2019058459A1 (ja) * 2017-09-20 2019-03-28 日産自動車株式会社 Frp材の締結部構造、金属カラー及びその装着方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082310A (ja) * 2006-09-29 2008-04-10 Ibiden Co Ltd シート材、その製造方法および排気ガス処理装置
WO2014007013A1 (ja) * 2012-07-04 2014-01-09 ニチアス株式会社 気体処理装置用保持材、気体処理装置及びこれらの製造方法
JP2013155750A (ja) * 2013-05-20 2013-08-15 Ibiden Co Ltd 触媒コンバータ用保持シール材
WO2019058459A1 (ja) * 2017-09-20 2019-03-28 日産自動車株式会社 Frp材の締結部構造、金属カラー及びその装着方法

Similar Documents

Publication Publication Date Title
KR101177957B1 (ko) 샌드위치 하이브리드 장착 매트
EP2038523B1 (en) Multilayer mounting mat
US7550118B2 (en) Multilayer mats for use in pollution control devices
EP1772600B1 (en) Holding sealer and exhaust gas processing device
US8124023B2 (en) Holding sealing material, method for manufacturing holding sealing material and exhaust gas purifying apparatus
CA2521104A1 (en) Exhaust system component having insulated double wall
JP2012149605A (ja) 保持シール材、及び、電気加熱式排ガス浄化装置
US20140290228A1 (en) Holding sealing material for exhaust gas purifying apparatus, method for manufacturing holding sealing material, exhaust gas purifying apparatus, and method for manufacturing exhaust gas purifying apparatus
US20210140080A1 (en) Polycrystalline, aluminosilicate ceramic filaments, fibers, and nonwoven mats, and methods of making and using the same
JP2012140886A (ja) マット、マットの製造方法、及び、排ガス浄化装置
WO2024070251A1 (ja) マット材、排ガス浄化装置及びマット材の製造方法
JP2011149371A (ja) インシュレータ及び内燃機関の排気系
JP2014233920A (ja) 保持シール材、保持シール材の製造方法、排ガス浄化装置、及び、排ガス浄化装置の製造方法
WO2023276777A1 (ja) マット材、排ガス浄化装置及びマット材の製造方法
JP2020084798A (ja) マット材及びマット材の製造方法
EP3790850B1 (en) Nonwoven article of discontinuous polycrystalline, aluminosilicate ceramic fibers, and method of making and using the same
JP2020112093A (ja) マット材
JP2020033900A (ja) マット材の製造方法
JP7382243B2 (ja) マット材
JP6470549B2 (ja) 排ガス浄化装置
JP7449105B2 (ja) マット材
JP7186098B2 (ja) マット材
JP2021004592A (ja) マット材
JP2021122753A (ja) マット材
JP2014034967A (ja) 排ガス浄化装置の製造方法及び排ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871493

Country of ref document: EP

Kind code of ref document: A1