WO2024070071A1 - ステージ - Google Patents

ステージ Download PDF

Info

Publication number
WO2024070071A1
WO2024070071A1 PCT/JP2023/021870 JP2023021870W WO2024070071A1 WO 2024070071 A1 WO2024070071 A1 WO 2024070071A1 JP 2023021870 W JP2023021870 W JP 2023021870W WO 2024070071 A1 WO2024070071 A1 WO 2024070071A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
stage
heater
region
groove
Prior art date
Application number
PCT/JP2023/021870
Other languages
English (en)
French (fr)
Inventor
淳 二口谷
尚哉 相川
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2024070071A1 publication Critical patent/WO2024070071A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits

Definitions

  • One embodiment of the present invention relates to a stage on which a wafer or the like is placed.
  • Patent Document 1 discloses a ceramic plate having a temperature gradient profile in which the temperature of the inner peripheral region differs from that of the outer peripheral region by controlling a heater element in the inner peripheral region and a heater element in the outer peripheral region, respectively.
  • the temperature increases from the inner peripheral region toward the outer peripheral region, and it is possible to realize a temperature gradient profile in which the temperature difference between the inner peripheral region and the outer peripheral region is about 10°C.
  • one embodiment of the present invention aims to provide a stage that can realize a temperature gradient profile with a large temperature difference between the inner and outer regions.
  • a stage according to one embodiment of the present invention includes a first metal plate including a first groove, a second metal plate including a through hole located below the first metal plate, a third metal plate including a second groove located below the second metal plate, an insulating section in which the first groove, the through hole, and the second groove are interconnected, a first circulation flow path and a first heater provided in one of the first metal plate, the second metal plate, and the third metal plate, and at least one of the second circulation flow path and the second heater, the first circulation flow path and the second circulation flow path being provided in a first region bounded by the insulating section, and the first heater and the second heater being provided in a second region opposite the first region bounded by the insulating section.
  • the first region may be an area surrounded by an insulating portion.
  • the second region may be an area surrounded by an insulating portion.
  • the second heater may be provided on the same metal plate on which the first heater is provided.
  • One of two adjacent metal plates may be the same metal plate on which the first heater is provided, and the second circulation channel may be provided on the other of the two adjacent metal plates.
  • One of two spaced apart metal plates may be the same metal plate on which the first heater is provided, and the second circulation channel may be provided on the other of the two spaced apart metal plates.
  • One of the two adjacent metal plates may be a metal plate on which the first heater is provided, and the second heater may be provided on the other of the two adjacent metal plates.
  • the second circulation flow path may be provided on the other of the two adjacent metal plates.
  • the second circulation flow path may be provided on a metal plate different from the two adjacent metal plates.
  • One of the two separated metal plates may be a metal plate on which a first heater is provided, and a second heater may be provided on the other of the two separated metal plates.
  • the second circulation flow path may be provided on the other of the two separated metal plates.
  • the second circulation flow path may be provided on a metal plate different from the two separated metal plates.
  • the cross-sectional diameter of the second heater may be different from the cross-sectional diameter of the first heater.
  • the first heater and the second heater may be electrically insulated.
  • a stage includes a first metal plate including a first groove, a second metal plate including a through hole located below the first metal plate, a third metal plate including a second groove located below the second metal plate, an insulating section in which the first groove, the through hole, and the second groove are mutually connected, a first circulation flow path provided in one of the first metal plate, the second metal plate, and the third metal plate, a first heater provided in another metal plate different from the one metal plate, and at least one of a second circulation flow path and a second heater provided in a metal plate different from the one metal plate and the other metal plate, the first circulation flow path and the second circulation flow path being provided in a first region bounded by the insulating section, and the first heater and the second heater being provided in a second region opposite the first region bounded by the insulating section.
  • One metal plate may be adjacent to another metal plate.
  • One metal plate may be spaced apart from the other metal plate.
  • the temperature difference between the minimum surface temperature and the maximum surface temperature of the first metal plate may be 20°C or more.
  • the stage according to one embodiment of the present invention can realize a temperature gradient profile with a large temperature difference between the inner and outer regions. Therefore, even if there is a significant drop in temperature in the inner or outer region of the wafer placed on the stage, it is possible to correct the temperature of the inner or outer region of the wafer and make the temperature distribution within the wafer uniform.
  • FIG. 2 is a schematic perspective view showing a configuration of a stage according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view showing a configuration of a stage according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing a configuration of a stage according to an embodiment of the present invention.
  • 4 is a schematic plan view showing the configuration of a circulation channel of a stage according to one embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing the configuration of a circulation channel of a stage according to one embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing the configuration of a second metal plate of the stage according to the embodiment of the present invention.
  • FIG. 4 is a schematic plan view showing the configuration of a second metal plate of the stage according to the embodiment of the present invention.
  • 4 is a graph illustrating a temperature gradient profile of a stage according to an embodiment of the present invention.
  • 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a graph illustrating a temperature gradient profile of a stage according to an embodiment of the present invention.
  • 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a configuration of a plate portion of a stage according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an etching apparatus according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing the configuration of a CVD apparatus according to one embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing a configuration of a sputtering apparatus according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view illustrating a configuration of a deposition apparatus according
  • the same reference numeral is used to collectively represent multiple identical or similar components, and when each of these multiple components is to be distinguished from the others, a capital alphabet is added to the reference numeral.
  • the same reference numeral is used, followed by a hyphen and a natural number.
  • the "inner region” of the stage refers to the inner region surrounded by the insulating section and the region that overlaps with this region.
  • the “outer region” of the stage refers to the region outside the inner region. In other words, the “outer region” is the region on the outer periphery of the stage. Note that in this specification, the terms “inner region” and “outer region” are used not only for the stage but also for the wafer, and the “inner region” and “outer region” of the wafer refer to the regions that overlap with the “inner region” and “outer region” of the stage when the wafer is placed on the stage, respectively.
  • FIG. 1 is a schematic perspective view showing the configuration of a stage 10 according to one embodiment of the present invention.
  • FIG. 2 is a schematic top view showing the configuration of a stage 10 according to one embodiment of the present invention.
  • a circulating flow path 112 which will be described later, is indicated by a dotted line.
  • FIG. 3 is a cross-sectional view showing the configuration of a stage 10 according to one embodiment of the present invention. Specifically, FIG. 3 is a cross-sectional view showing a cross section of a portion of the stage 10 cut along line A1-A2 shown in FIG. 2.
  • FIG. 4A and FIG. 4B is a schematic cross-sectional view showing the configuration of the circulating flow path 112 of the stage 10 according to one embodiment of the present invention.
  • the stage 10 includes a plate portion 100 and a shaft portion 200.
  • the wafer is placed on a first surface 101 of the plate portion 100.
  • the shaft portion 200 is connected to a second surface 102 opposite the first surface 101 of the plate portion 100.
  • the wafer placed on the stage 10 may be, for example, silicon (Si), silicon carbide (SiC), sapphire, quartz, glass, gallium phosphide (GaP), gallium arsenide (GaAs), indium phosphide (InP), or gallium nitride (GaN), but is not limited to these.
  • the wafer is placed on the first surface 101 of the plate portion 100, so the first surface 101 may be provided with a step for guiding the wafer placed thereon.
  • the plate portion 100 includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 to the fourth metal plate 140 are stacked in this order. That is, the second metal plate 120 is located below the first metal plate 110, the third metal plate 130 is located below the second metal plate 120, and the fourth metal plate 140 is located below the third metal plate 130.
  • the first metal plate 110 and the second metal plate 120, the second metal plate 120 and the third metal plate 130, and the third metal plate 130 and the fourth metal plate 140 are connected to each other by welding, screwing, solid-state diffusion bonding, brazing, or the like.
  • the solder for brazing for example, an alloy containing silver, copper, and zinc, an alloy containing copper and zinc, copper containing a trace amount of phosphorus, an alloy containing aluminum, an alloy containing titanium, copper, and nickel, an alloy containing titanium, zirconium, and copper, or an alloy containing titanium, zirconium, copper, and nickel can be used.
  • the first metal plate 110 has a circular shape when viewed from above.
  • the second metal plate 120 to the fourth metal plate 140 overlapping the first metal plate 110 also have a circular shape.
  • the shapes of the first metal plate 110 to the fourth metal plate 140 are not limited to a circular shape.
  • the shapes of the first metal plate 110 to the fourth metal plate 140 may be appropriately determined according to the shape of the wafer, and the first metal plate 110 to the fourth metal plate 140 may have an elliptical or polygonal shape.
  • the thicknesses of the first metal plate 110 to the fourth metal plate 140 may be the same or different.
  • the material of the first metal plate 110 to the fourth metal plate 140 for example, a metal such as aluminum, titanium, iron, copper, nickel, molybdenum, tungsten, or gold, or an alloy containing these metals is used.
  • the alloy containing iron is, for example, stainless steel, Kovar, or 42 alloy.
  • the alloy containing nickel is, for example, Inconel or Hysteroy.
  • the first metal plate 110 is provided with a circulation passage 112 through which a cooling medium flows, and a heater 113.
  • the surface of the first metal plate 110 corresponds to the first surface 101 of the plate part 100, and the wafer is placed on the surface of the first metal plate 110.
  • the first metal plate 110 in order to efficiently conduct the heat generated by the heater 113 to the wafer and efficiently absorb the heat by the cooling medium flowing through the circulation passage 112, it is preferable to use a material with high thermal conductivity for the first metal plate 110.
  • a metal or alloy having a thermal conductivity of 200 W/mK or more and 430 W/mK or less can be used as the material of the first metal plate 110.
  • the first metal plate 110 to the fourth metal plate 140 may be made of the same material or different materials.
  • the metal or alloy contained in the first metal plate 110 to the fourth metal plate 140 preferably has a thermal expansion coefficient of 5 ⁇ 10 ⁇ 6 /K or more and 25 ⁇ 10 ⁇ 6 /K or less.
  • the materials of the two adjacent metal plates are selected so that the difference in the thermal expansion coefficient between them is 10 ⁇ 10 ⁇ 6 /K or less. This suppresses deformation of the stage 10 due to differences in thermal expansion, thereby improving the reliability of the stage 10.
  • the first metal plate 110 includes a circulation channel 112 and a heater 113.
  • the circulation channel 112 and the heater 113 are provided on the second metal plate 120 side of the first metal plate 110 and are blocked by the second metal plate 120.
  • the circulation channel 112 is provided in the inner region of the plate portion 100, and the heater 113 is provided in the outer region of the plate portion 100.
  • the second metal plate 120 also includes a circulation channel 122 and a heater 123.
  • the circulation channel 122 and the heater 123 are provided on the third metal plate 130 side of the second metal plate 120 and are blocked by the third metal plate 130.
  • the circulation channel 122 is provided in the inner region of the plate portion 100, and the heater 123 is provided in the outer region of the plate portion 100.
  • the circulation channel 112 overlaps with the circulation channel 122.
  • the heater 113 overlaps with the heater 123.
  • a cooling medium such as a liquid or gas, such as water, is introduced into the circulation channel 112 from the inlet 112a, and after circulating widely within the first metal plate 110 along the circulation channel 112, the cooling medium is discharged from the outlet 112b to the outside of the first metal plate 110 (see FIG. 2). As the cooling medium circulates, heat is exchanged between the cooling medium and the plate portion 100 or the wafer, and the inner region of the wafer is cooled.
  • the circulation channel 112 may be a structure formed directly in the first metal plate 110, or may be a structure in which a tubular member is disposed in a groove provided in the first metal plate 110.
  • the circulating flow passage 112 shown in FIG. 2 has a smoothly curved shape (i.e., the side surface of the circulating flow passage 112 has a smoothly curved surface), but the configuration of the circulating flow passage 112 is not limited to this.
  • the circulating flow passage 112 may have a zigzag shape.
  • the circulating flow passage 112 may have an uneven shape. In other words, the width of the circulating flow passage 112 may not be constant in the circumferential direction, but may vary.
  • the return flow passage 122 has a similar configuration to the return flow passage 112. However, the shape of the return flow passage 112 and the shape of the return flow passage 122 may be different. In addition, the conditions of the cooling medium flowing through the return flow passage 122 (e.g., type, temperature, flow rate, etc.) may be the same as or different from the conditions of the cooling medium flowing through the return flow passage 122. In other words, the cooling medium conditions of the return flow passage 112 and the return flow passage 122 can be controlled independently.
  • the heater 113 is driven under the control of a control device (not shown).
  • the heater 113 is, for example, constructed using an electric heating wire and is arranged along the outer periphery of the first metal plate 110.
  • the heater 113 may be embedded in the first metal plate 110, or may be arranged in a groove provided in the first metal plate 110.
  • the heater 113 can be installed on the first metal plate 110 by arranging the heater 113 in the groove of the first metal plate 110 and then covering it with a sprayed film or the like. The heater 113 heats the outer region of the wafer via the first metal plate 110.
  • Heater 123 has the same configuration as heater 113. However, heater 123 may differ from heater 113 in type, cross-sectional diameter, power density, etc. Furthermore, heater 123 can be controlled independently of heater 113. In other words, heater 113 and heater 123 are electrically insulated.
  • a heat insulating section 150 is provided between the circulation channel 112 arranged in the inner region of the first metal plate 110 (or the circulation channel 112 arranged in the inner region of the second metal plate 120) and the heater 113 arranged in the outer region of the first metal plate 110 (or the heater 113 arranged in the outer region of the second metal plate 120).
  • the configuration of the plate section 100 will be described with reference to Figures 5 to 7.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the plate portion 100 of the stage 10 according to one embodiment of the present invention.
  • FIGS. 6 and 7 is a schematic plan view showing the configuration of the second metal plate 120 of the stage 10 according to one embodiment of the present invention. Specifically, each of FIGS. 6 and 7 is a top view of the second metal plate 120.
  • the insulating section 150 includes a first groove 111 formed in the first metal plate 110, a through hole 121 formed in the second metal plate 120, and a second groove 131 formed in the third metal plate 130.
  • the first groove 111, the through hole 121, and the second groove 131 overlap each other.
  • the first groove 111 has an opening surface on the second metal plate 120 side.
  • the through hole 121 penetrates the second metal plate 120 and has opening surfaces on the first metal plate 110 side and the third metal plate 130 side.
  • the second groove 131 has an opening surface on the second metal plate 120 side.
  • the opening surface of the first groove 111 approximately coincides with the opening surface of one end of the through hole 121
  • the opening surface of the second groove 131 approximately coincides with the opening surface of the other end of the through hole 121. That is, the heat insulating section 150 has a structure in which the first groove 111, the through hole 121, and the second groove 131 are connected to each other. In other words, the heat insulating section 150 has a closed space that penetrates the second metal plate 120, has an upper surface formed on the first metal plate 110, and has a bottom surface formed on the third metal plate.
  • the heat insulating section 150 may be in a vacuum or may be filled with a liquid or gas.
  • the heat insulating section 150 may be connected to an external vacuum pump or the like to adjust the pressure, temperature, or gas flow rate.
  • an inert gas such as helium gas, argon gas, or nitrogen gas can be used.
  • the heat insulating section 150 may also be filled with a heat insulating material.
  • the first groove 111, the through hole 121, and the second groove 131 are formed circumferentially in the first metal plate 110, the second metal plate 120, and the third metal plate 130, respectively.
  • the through hole 121 is also provided circumferentially in the second metal plate 120. That is, the inner region and the outer region are separated in the second metal plate 120.
  • the second metal plate 120 is positioned so that the separated inner region and outer region of the second metal plate 120 do not come into contact when the second metal plate 120 is connected to the first metal plate 110 or the third metal plate 130, and is connected to the first metal plate 110 or the third metal plate 130.
  • the second metal plate 120 may be provided with connection regions 125a and 125b that connect the inner region and the outer region. Since the connection regions 125a and 125b can be a heat conduction path, it is preferable that the widths of the connection regions 125a and 125b are as small as possible. In addition, although two connection regions 125a and 125b are illustrated in FIG. 7, it is sufficient that the second metal plate 120 has at least one connection region 125. The number of connection regions 125 corresponds to the number of through holes 121. For example, if the second metal plate 120 has three connection regions 125, the second metal plate 120 has three through holes 121.
  • each of the first groove 111 and the second groove 131 may be divided into multiple portions.
  • the heat insulating section 150 is located between the circulation channels 112, 122 in the inner region and the heaters 113, 123 in the outer region.
  • the heat insulating section 150 is provided across the first metal plate 110, the second metal plate 120, and the third metal plate 130, and has a large space. Therefore, the heat insulating section 150 can suppress heat conduction from the inner region to the outer region and from the outer region to the inner region not only in the first metal plate 110, but also in the second metal plate 120 and the third metal plate 130. This makes it possible to increase the temperature difference between the inner region and the outer region in the stage 10.
  • FIG. 8 is a graph illustrating the temperature gradient profile of the stage 10 according to one embodiment of the present invention.
  • the horizontal axis of the graph shown in FIG. 8 indicates the position of the surface of the first metal plate 110 along a predetermined direction (for example, the direction of the A1-A2 line), with the center position of the surface of the first metal plate 110 set as zero, and the vertical axis of the graph indicates the surface temperature of the surface of the first metal plate 110.
  • the first position P1 and the second position P2 represent the positions of the insulating section 150 and the heater 113, respectively. In other words, the area between the two P1s corresponds to the inner region, and the area between P1 and P2 corresponds to the outer region.
  • the inner region of the first metal plate 110 is cooled by the cooling medium flowing through the circulation passages 112, 122 in the inner regions of the first metal plate 110 and the second metal plate 120.
  • the outer region of the first metal plate 110 is heated by the heaters 113, 123 in the outer regions of the first metal plate 110 and the second metal plate 120.
  • the heat of the outer region of the first metal plate 110 is conducted to the inner region, but since the insulating section 150 is provided between the inner region and the outer region, the heat conduction path between the inner region and the outer region is limited, and heat conduction from the outer region to the inner region is suppressed. Therefore, even if the outer region is heated by the heaters 113, 123, the temperature rise in the inner region is suppressed.
  • the temperature difference between the inner region and the outer region increases due to the reduction in the heat flow rate caused by the insulating section 150.
  • the maximum temperature difference between the minimum surface temperature T0 measured near the center of the first metal plate 110 and the maximum surface temperature T2 measured near the heater 113 is 20° C. or more, preferably 60° C. or more, and more preferably 100° C. or more.
  • the temperature difference between the inner and outer regions of the stage 10 can be adjusted by changing the power supplied to the heaters 113 and 123 or the conditions of the cooling medium flowing through the circulation channels 112 and 122. As described above, in the stage 10, the heaters 113 and 123 can be controlled independently, and the conditions of the cooling medium can also be controlled independently. Therefore, the stage 10 can increase the temperature difference between the inner and outer regions while adjusting the temperature of the inner and outer regions.
  • a flow path (not shown) through which the cooling medium flows is formed inside the shaft portion 200.
  • the shaft portion 200 sends the cooling medium to the inlet 112a via the flow path, and receives the cooling medium discharged from the outlet 112b.
  • One end of the shaft portion 200 is connected to the second surface 102 of the plate portion 100.
  • the other end of the shaft portion 200 is connected to a cooling medium supply source.
  • the supply source may be, but is not limited to, a tank and pump that holds the cooling medium, or a water pipe.
  • the lead wires of the heater 113 may also be stored inside the shaft portion 200. If an electrostatic chuck is provided, wiring connected to the electrostatic chuck may also be stored inside the shaft portion 200.
  • the shaft portion 200 may also be connected to a rotation mechanism. By connecting the shaft portion 200 to the rotation mechanism, the stage 10 can be rotated around the long axis of the shaft portion 200.
  • stage 10 has been explained above, but here we will explain the advantages of stage 10 compared to conventional stages.
  • the wafer placed on the stage may be heated, and in such cases, it is required to make the temperature distribution within the wafer uniform.
  • the temperature of the outer region may drop more than that of the inner region.
  • the temperature of the inner region of the wafer placed on the stage may rise.
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • stage 10 the temperature difference between the inner and outer regions of stage 10 is large, and the significant temperature drop described above can be corrected, making the temperature distribution within the wafer uniform.
  • stage 10 a temperature difference larger than the temperature difference at which ceramics cause cracks can be obtained, so stage 10 can be applied to more semiconductor devices than stages that use ceramics.
  • the thermal expansion coefficient of the metal or alloy contained in the first metal plate 110 to the fourth metal plate 140 is relatively larger than that of ceramic. Therefore, in a conventional stage in which the heat insulating section 150 is not provided and the temperature difference between the inner region and the outer region is increased by simply controlling the circulation passage 112 and the heater 113, the stage may be deformed by thermal stress. In other words, in the case of a conventional stage in which the heat insulating section 150 is not provided, the stage is deformed by thermal stress, so the temperature difference between the inner region and the outer region of the stage 10 cannot be increased. On the other hand, in the stage 10, the space of the heat insulating section 150 contracts or expands, thereby alleviating the thermal stress.
  • the heat insulating section 150 functions as a damper that absorbs the thermal stress caused by the temperature difference between the inner region and the outer region of the stage.
  • the heat insulating section 150 is provided across the first metal plate 110, the second metal plate 120, and the third metal plate 130. Therefore, in the stage 10, not only is the thermal stress in the first metal plate 110 on which the heater 113 is provided and the second metal plate 120 on which the heater 123 is provided, but also the thermal stress in the third metal plate 130 to which the heat from the heaters 113 and 123 is conducted is alleviated, so that the stage 10 is less likely to deform even when the temperature difference between the inner and outer regions is increased.
  • the insulating section 150 can prevent the heat from the heaters 113, 123 provided in the outer region from being conducted to the inner region.
  • the space created by the insulating section 150 reduces the cross-sectional area of the heat conduction path connecting the outer region and inner region of the plate section 100, so that the insulating section 150 can function as a thermal blockage/thermal choke.
  • the temperature difference between the inner region and the outer region becomes large in the stage 10, so that, for example, when the stage 10 is applied to a wafer with a significant temperature drop in the outer region, the temperature of the outer region of the wafer can be corrected and the temperature distribution within the wafer can be made uniform.
  • ⁇ Modification 1> A modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 9. Note that in the following, descriptions of configurations that are the same as or similar to the configuration of the stage 10 may be omitted.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the plate portion 100A of the stage 10A according to one embodiment of the present invention.
  • the plate section 100A of the stage 10A includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a through hole 121, a circulating flow path 122, and a heater 123.
  • the third metal plate 130 is provided with a second groove 131, a circulating flow path 132, and a heater 133. That is, in the stage 10A, the third metal plate 130 is also provided with a circulating flow path 132 and a heater 133, similar to the first metal plate 110 and the second metal plate 120.
  • the circulating flow path 132 and the heater 133 are arranged with the heat insulating section 150 sandwiched therebetween.
  • stage 10A In the inner region of stage 10A, the circulation channels 112, 122, and 132 overlap one another. In the outer region of stage 10A, the heaters 113, 123, and 133 overlap one another. In stage 10A, the heaters 113, 123, and 133 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 112, 122, and 132 can also be controlled independently. Therefore, stage 10A can increase the temperature difference between the inner and outer regions while adjusting the temperature of the inner and outer regions.
  • ⁇ Modification 2> Another modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 10. Note that in the following, descriptions of configurations that are the same as or similar to the configuration of the stage 10 or stage 10A may be omitted.
  • FIG. 10 is a schematic cross-sectional view showing the configuration of the plate portion 100B of the stage 10B according to one embodiment of the present invention.
  • the plate portion 100B of the stage 10B includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a through hole 121.
  • the third metal plate 130 is provided with a second groove 131, a circulating flow path 132, and a heater 133. That is, in the stage 10B, the first metal plate 110 and the third metal plate 130 are provided with the circulating flow paths 112, 132 and the heaters 113, 133, and the second metal plate 120 is not provided with a circulating flow path or a heater.
  • the circulation channels 112 and 132 overlap each other.
  • the heaters 113 and 133 overlap each other.
  • the heaters 113 and 133 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 112 and 132 can also be controlled independently.
  • the temperature difference between the inner region and the outer region can be adjusted by heating the first metal plate 110 with the heater 133 via the second metal plate 120, or cooling the first metal plate 110 with the cooling medium flowing through the circulation channel 132.
  • FIG. 11 is a schematic cross-sectional view showing the configuration of the plate portion 100C of the stage 10C according to one embodiment of the present invention.
  • the plate portion 100C of the stage 10C includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate is provided with a first groove 111.
  • the second metal plate 120 is provided with a through hole 121, a circulating flow path 122, and a heater 123.
  • the third metal plate 130 is provided with a second groove 131, a circulating flow path 132, and a heater 133. That is, in the stage 10C, the second metal plate 120 and the third metal plate 130 are provided with the circulating flow paths 122, 132 and the heaters 123, 133, and the first metal plate 110 is not provided with a circulating flow path or a heater.
  • the circulation channels 122, 132 overlap each other.
  • the heaters 123, 133 overlap each other.
  • the heaters 123, 133 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 122, 132 can also be controlled independently.
  • the heater 123 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 122 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner region and the outer region.
  • the temperature difference between the inner region and the outer region can be adjusted by controlling the heater 133 of the third metal plate 130 and the cooling medium flowing through the circulation channel 132.
  • ⁇ Modification 4> Another modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 12. Note that in the following, descriptions of configurations that are the same as or similar to the configurations of the stages 10 to 10C may be omitted.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the plate portion 100D of the stage 10D according to one embodiment of the present invention.
  • the plate portion 100D of the stage 10D includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a through hole 121 and a heater 123.
  • the third metal plate 130 is provided with a second groove 131. That is, in the stage 10D, the first metal plate 110 is provided with the circulating flow path 112 and the heater 113, and the third metal plate 130 is not provided with a circulating flow path or a heater.
  • the second metal plate 120 is provided with a heater 123, but not with a circulating flow path.
  • heaters 113, 123 overlap each other.
  • heaters 113, 123 can be controlled independently.
  • heater 113 heats the outer region of first metal plate 110, and the cooling medium flowing through circulation channel 112 cools the inner region of first metal plate 110, thereby increasing the temperature difference between the inner and outer regions.
  • the temperature of the outer region can be further adjusted by controlling heater 123 of second metal plate 120.
  • ⁇ Modification 5> Another modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 13. Note that in the following, descriptions of configurations that are the same as or similar to the configurations of the stages 10 to 10D may be omitted.
  • FIG. 13 is a schematic cross-sectional view showing the configuration of the plate portion 100E of the stage 10E according to one embodiment of the present invention.
  • the plate portion 100E of the stage 10E includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a through hole 121.
  • the third metal plate 130 is provided with a second groove 131, a circulating flow path 132, and a heater 133. That is, in the stage 10E, the first metal plate 110 is provided with the circulating flow path 112 and the heater 113, and the third metal plate 130 is not provided with a circulating flow path and a heater.
  • the second metal plate 120 is provided with a circulating flow path 122, but is not provided with a heater.
  • the circulation channels 112, 122 overlap each other.
  • the conditions of the cooling medium flowing through the circulation channels 112, 122 can be controlled independently.
  • the heater 113 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner and outer regions.
  • the temperature of the inner region can be further adjusted by controlling the conditions of the cooling medium flowing through the circulation channel 122 of the second metal plate 120.
  • FIG. 14 is a schematic cross-sectional view showing the configuration of the plate portion 100F of the stage 10F according to one embodiment of the present invention.
  • the plate portion 100F of the stage 10F includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, a first heater 113-1, and a second heater 113-2.
  • the second metal plate 120 is provided with a through hole 121.
  • the third metal plate 130 is provided with a second groove 131. That is, in the stage 10F, the first metal plate 110 is provided with the circulating flow path 112, the first heater 113-1, and the second heater 113-2, and the second metal plate 120 and the third metal plate 130 are not provided with a circulating flow path and heaters.
  • the first heater 113-1 and the second heater 113-2 can be controlled independently. That is, the first heater 113-1 and the second heater 11302 are electrically insulated. In stage 10F, the first heater 113-1 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate, thereby increasing the temperature difference between the inner region and the outer region. In addition, the temperature of the outer region can be further adjusted by controlling the second heater 113-2 of the first metal plate 110.
  • FIG. 15 is a schematic cross-sectional view showing the configuration of the plate portion 100G of the stage 10G according to one embodiment of the present invention.
  • the plate portion 100G of the stage 10G includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111 and a circulating flow path 112.
  • the second metal plate 120 is provided with a through hole 121 and a heater 123.
  • the third metal plate 130 is provided with a second groove 131 and a circulating flow path 132. That is, in the stage 10G, each of the first metal plate 110 to the third metal plate 130 is provided with either a circulating flow path or a heater.
  • the circulation channels 112, 132 overlap each other.
  • the conditions of the cooling medium flowing through the circulation channels 112, 132 can be controlled independently.
  • the heater 123 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner and outer regions.
  • the temperature of the outer region can be further adjusted by controlling the conditions of the cooling medium flowing through the circulation channel 132 of the third metal plate 130.
  • the plate section 100G is configured to include two circulation channels and one heater.
  • a plate section including one circulation channel and two heaters is also possible.
  • the temperature of the outer region can be adjusted by controlling one of the two heaters.
  • the two circulation channels or the two heaters may be disposed on two adjacent metal plates, respectively, or may be disposed on two separate metal plates, respectively.
  • ⁇ Modification 8> Another modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 16. Note that in the following, descriptions of configurations that are the same as or similar to the configurations of the stages 10 to 10G may be omitted.
  • FIG. 16 is a schematic cross-sectional view showing the configuration of the plate portion 100H of the stage 10H according to one embodiment of the present invention.
  • the plate portion 100H of the stage 10H includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a through hole 121.
  • the third metal plate 130 is provided with a second groove 131.
  • the fourth metal plate 140 is provided with a circulating flow path 142 and a heater 143. That is, in the stage 10H, at least one of the circulating flow path and the heater is provided in the fourth metal plate 140 connected to the shaft portion 200.
  • the circulation channels 112 and 142 overlap each other.
  • the heaters 113 and 143 overlap each other.
  • the heaters 113 and 143 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 112 and 142 can also be controlled independently.
  • the heater 113 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner region and the outer region.
  • the temperature difference between the inner region and the outer region can be adjusted by controlling the heater 143 of the fourth metal plate 140 and the cooling medium flowing through the circulation channel 142.
  • FIG. 17 is a schematic cross-sectional view showing the configuration of the plate portion 100I of the stage 10I according to one embodiment of the present invention.
  • the plate portion 100I of the stage 10I includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a first through hole 121, a circulating flow path 122, and a heater 123.
  • the third metal plate 130 is provided with a second through hole 134.
  • the fourth metal plate 140 is provided with a second groove 141.
  • a heat insulating portion 150I is formed in which the first groove 111, the first through hole 121, the second through hole 134, and the second groove 141 are connected to each other. That is, in the stage 10I, a second groove 141 is provided in the fourth metal plate 140 that is connected to the shaft portion 200, and a heat insulating portion 150I is provided across the first metal plate 110 to the fourth metal plate 140.
  • the circulation channels 112 and 122 overlap each other.
  • the heaters 113 and 123 overlap each other.
  • the heaters 113 and 123 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 112 and 122 can also be controlled independently.
  • the heater 113 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner region and the outer region.
  • the temperature difference between the inner region and the outer region can be adjusted by controlling the heater 123 of the second metal plate 120 and the cooling medium flowing through the circulation channel 122.
  • heat insulating section 150I is provided across first metal plate 110 to fourth metal plate 140, which further suppresses heat conduction from the inner region to the outer region and from the outer region to the inner region.
  • ⁇ Modification 10> Another modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 18. Note that in the following, descriptions of configurations that are the same as or similar to the configurations of the stages 10 to 10I may be omitted.
  • FIG. 18 is a schematic cross-sectional view showing the configuration of the plate portion 100J of the stage 10J according to one embodiment of the present invention.
  • the plate portion 100J of the stage 10J includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first through hole 114, a circulation passage 112, and a heater 113.
  • the second metal plate 120 is provided with a second through hole 121, a circulation passage 122, and a heater 123.
  • the third metal plate 130 is provided with a third through hole 134.
  • the fourth metal plate 140 is provided with a fourth through hole 144.
  • a heat insulating portion 150J is formed in which the first through hole 114, the second through hole 121, the third through hole 134, and the fourth through hole 144 are connected to each other. That is, in stage 10J, a second groove 141 is provided in the fourth metal plate 140 that is connected to the shaft portion 200, and a heat insulating portion 150J is provided across the first metal plate 110 to the fourth metal plate 140.
  • first through hole 114, the second through hole 121, the third through hole 134, and the fourth through hole 144 were all arranged circumferentially, the inner region and the outer region of the stage 10J would be separated. Therefore, at least one of the first through hole 114, the second through hole 121, the third through hole 134, and the fourth through hole 144 is provided with a connection region 125 as shown in FIG. 7.
  • the circulation channels 112 and 122 overlap each other.
  • the heaters 113 and 123 overlap each other.
  • the heaters 113 and 123 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 112 and 122 can also be controlled independently.
  • the heater 113 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner region and the outer region.
  • the temperature difference between the inner region and the outer region can be adjusted by controlling the heater 123 of the second metal plate 120 and the cooling medium flowing through the circulation channel 122.
  • heat insulating section 150J is provided across first metal plate 110 to fourth metal plate 140, which further suppresses heat conduction from the inner region to the outer region and from the outer region to the inner region.
  • ⁇ Modification 11> Another modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 19. Note that in the following, descriptions of configurations that are the same as or similar to the configurations of the stages 10 to 10J may be omitted.
  • FIG. 19 is a schematic cross-sectional view showing the configuration of the plate portion 100K of the stage 10K according to one embodiment of the present invention.
  • the plate portion 100K of the stage 10K includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a through hole 121, a circulating flow path 122, and a heater 123.
  • the third metal plate 130 is provided with a second groove 131.
  • the fourth metal plate 140 is provided with a third groove 141.
  • a first insulating portion 150J-1 is formed in which the first groove 111, the through hole 121, and the second groove 131 are connected to each other.
  • a second insulating portion 150J-2 is formed in which the third groove 141 is blocked by the third metal plate 130. That is, stage 10K has a heat insulating section 150K that is divided into two.
  • the circulation channels 112 and 122 overlap each other.
  • the heaters 113 and 123 overlap each other.
  • the heaters 113 and 123 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 112 and 122 can also be controlled independently.
  • the heater 113 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner region and the outer region.
  • the temperature difference between the inner region and the outer region can be adjusted by controlling the heater 123 of the second metal plate 120 and the cooling medium flowing through the circulation channel 122.
  • heat insulating section 150K is provided across first metal plate 110 to fourth metal plate 140, which further suppresses heat conduction from the inner region to the outer region and from the outer region to the inner region.
  • FIG. 19 illustrates the insulating section 150K divided into two, the insulating section 150K may be divided into three or more parts.
  • ⁇ Modification 12> Another modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 20. Note that in the following, descriptions of configurations that are the same as or similar to the configurations of the stages 10 to 10K may be omitted.
  • FIG. 20 is a schematic cross-sectional view showing the configuration of the plate portion 100L of the stage 10L according to one embodiment of the present invention.
  • the plate portion 100L of the stage 10L includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulation flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a first through hole 121, a circulation flow path 122, and a heater 123.
  • the third metal plate 130 is provided with a second through hole 134.
  • the fourth metal plate 140 is provided with a second groove 141. One end of the opening surface of the second through hole 134 is blocked by the fourth metal plate 140.
  • a first insulating portion 150J-1 is formed in which the first groove 111, the first through hole 121, and the second through hole 134 are connected to each other. Furthermore, the second groove 141 is open to the outside of the stage 10L, but by providing the second groove 141, the area in contact with the outside atmosphere is increased. The second groove 141 also reduces the cross-sectional area of the heat conduction path connecting the inner region and the outer region. Therefore, the second groove 141 functions as a second heat insulating section 150L-2 that suppresses heat conduction from the inner region to the outer region and from the outer region to the inner region. In other words, the stage 10L is provided with a heat insulating section 150L that is divided into two.
  • the circulation channels 112 and 122 overlap each other.
  • the heaters 113 and 123 overlap each other.
  • the heaters 113 and 123 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 112 and 122 can also be controlled independently.
  • the heater 113 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner region and the outer region.
  • the temperature difference between the inner region and the outer region can be adjusted by controlling the heater 123 of the second metal plate 120 and the cooling medium flowing through the circulation channel 122.
  • heat insulating section 150L is provided across first metal plate 110 to fourth metal plate 140, which further suppresses heat conduction from the inner region to the outer region and from the outer region to the inner region.
  • FIG. 20 illustrates a second groove 141 in the fourth metal plate 140 that comes into contact with the outside atmosphere
  • the stage 10L may also be configured such that a groove in the first metal plate 110 that comes into contact with the outside atmosphere is provided.
  • ⁇ Modification 13> Another modified example of the stage 10 according to an embodiment of the present invention will be described with reference to Fig. 21. Note that in the following, descriptions of configurations that are the same as or similar to the configurations of the stages 10 to 10L may be omitted.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of the plate portion 100M of the stage 10M according to one embodiment of the present invention.
  • the plate portion 100M of the stage 10M includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 is provided with a through hole 121, a circulating flow path 122, and a heater 123.
  • the third metal plate 130 is provided with a second groove 131.
  • the fourth metal plate 140 is provided with a third groove 141.
  • a first insulating portion 150M-1 is formed in which the first groove 111, the through hole 121, and the second groove 131 are connected to each other.
  • a second insulating portion 150M-2 is formed in which the opening surface of the third groove 141 is blocked by the third metal plate 130. That is, the stage 10M is provided with a heat insulating section 150M divided into two. However, in a plan view, the second heat insulating section 150M-2 does not overlap with the first heat insulating section 150M-1. In a plan view, the second heat insulating section 150M-2 overlaps with the heaters 113 and 123. For convenience, the following description will be given assuming that the first heat insulating section 150M-1 is the boundary between the inner region and the outer region, and the second heat insulating section 150M-2 is provided in the outer region.
  • the circulation channels 112 and 122 overlap each other.
  • the heaters 113 and 123 overlap each other.
  • the heaters 113 and 123 can be controlled independently, and the conditions of the cooling medium flowing through the circulation channels 112 and 122 can also be controlled independently.
  • the heater 113 heats the outer region of the first metal plate 110, and the cooling medium flowing through the circulation channel 112 cools the inner region of the first metal plate 110, thereby increasing the temperature difference between the inner region and the outer region.
  • the temperature difference between the inner region and the outer region can be adjusted by controlling the heater 123 of the second metal plate 120 and the cooling medium flowing through the circulation channel 122.
  • the first heat insulating section 150M-1 can suppress heat conduction from the inner region to the outer region and from the outer region to the inner region. Furthermore, in a position closer to the heaters 113, 123 in the outer region, the second insulating section 150M-2 can suppress the conduction of heat from the heaters 113, 123.
  • FIG. 21 illustrates the second insulating section 150M-2 formed by the third groove 141 provided in the fourth metal plate 140
  • the second insulating section 150M-2 may be formed by a groove (a groove different from the second groove 131) provided in the third metal plate 130, or may be formed by a groove provided in the third metal plate 130 and the third groove 141 provided in the fourth metal plate 140.
  • the width of the second groove 141 may be increased so that the second insulating section 150M-2 overlaps with the first insulating section 150M-1 in a plan view.
  • the second insulating section 150M-2 may be provided in the inner region.
  • the stage 10 includes a heat insulating section 150 in which the first groove 111 of the first metal plate 110, the through hole 121 of the second metal plate 120, and the second groove of the third metal plate 130 are connected to each other.
  • a first circulation flow path for cooling the inner region of the first metal plate 110 and a first heater for heating the outer region of the first metal plate 110 are provided, sandwiching the heat insulating section 150 therebetween.
  • the stage 10 can increase the temperature difference between the inner region and the outer region.
  • the stage 10 includes a second circulation flow path overlapping the first circulation flow path or a second heater overlapping the first heater.
  • the conditions of the cooling medium flowing through the first circulation flow path and the conditions of the cooling medium flowing through the second circulation flow path can be controlled independently.
  • the first heater and the second heater can be controlled independently. Therefore, the temperature of the inner region can be adjusted by controlling the conditions of the cooling medium flowing through the second circulation channel, or the temperature of the outer region can be adjusted by controlling the second heater. Therefore, in the stage 10, not only can the temperature difference between the inner region and the outer region be increased, but the temperature difference can also be adjusted.
  • FIG. 22 is a schematic cross-sectional view showing the configuration of a stage 11 according to one embodiment of the present invention.
  • the plate portion 300 of the stage 11 includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 includes a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 includes a through hole 121, a circulating flow path 122, and a heater 123.
  • the third metal plate 130 includes a second groove 131.
  • the plate portion 100 of the stage 11 also includes an insulating portion 150 in which the first groove 111 of the first metal plate 110, the through hole 121 of the second metal plate 120, and the second groove 131 of the third metal plate 130 are interconnected.
  • the circulation channels 112, 122 and the heaters 113, 123 are provided in the outer and inner regions, respectively, with the insulating section 150 as the boundary. That is, in the inner region, the heaters 113, 123 overlap each other. Also, in the outer region, the circulation channels 112, 122 overlap each other.
  • the heat insulating section 150 can suppress heat conduction from the inner region to the outer region and from the outer region to the inner region in each of the first metal plate 110 to the third metal plate. This can increase the temperature difference between the inner region and the outer region in the stage 11.
  • FIG. 23 is a graph illustrating 11 temperature gradient profiles according to one embodiment of the present invention.
  • the horizontal axis of the graph shown in FIG. 23 indicates the position of the surface of the first metal plate 110 along a specified direction, with the center position of the surface of the first metal plate 110 being zero, and the vertical axis of the graph indicates the surface temperature of the surface of the first metal plate 110.
  • the first position P1 and the third position P3 represent the positions of the insulating section 150 and the reflux flow path 112, respectively. In other words, the area between the two P1s corresponds to the inner region, and the area between P1 and P3 corresponds to the outer region.
  • the inner region of the first metal plate 110 is heated by controlling the heaters 113, 123 in the inner regions of the first metal plate 110 and the second metal plate 120.
  • the outer region of the first metal plate 110 is cooled by controlling the conditions of the cooling medium flowing through the circulation paths 112, 122 in the outer regions of the first metal plate 110 and the second metal plate 120.
  • the heat of the inner region of the first metal plate 110 is conducted to the outer region, but since the insulating section 150 is provided between the inner region and the outer region, the heat conduction path between the inner region and the outer region is limited, and heat conduction from the outer region to the inner region is suppressed. Therefore, even if the inner region is heated by the heaters 113, 123, the temperature rise in the outer region is suppressed.
  • the temperature difference between the inner region and the outer region increases due to the reduction in the heat flow rate caused by the insulating section 150.
  • the maximum temperature difference between the highest surface temperature T0 measured near the center of the first metal plate 110 and the lowest surface temperature T3 measured near the reflux duct 112 is 20°C or more, preferably 60°C or more, and more preferably 100°C or more.
  • the heaters 113 and 123 can be controlled independently, and the cooling medium conditions can also be controlled independently. Therefore, the stage 11 can increase the temperature difference between the inner and outer regions while adjusting the temperatures of the inner and outer regions.
  • the insulating section 150 can prevent the heat from the heaters 113, 123 provided in the outer region from being conducted to the inner region.
  • the space created by the insulating section 150 reduces the cross-sectional area of the heat conduction path connecting the outer region and inner region of the plate section 100, so that the insulating section 150 can function as a thermal blockage/thermal choke.
  • the temperature difference between the inner region and the outer region becomes large in the stage 11, so that, for example, when the stage 11 is applied to a wafer with a significant temperature drop in the inner region, the temperature of the inner region of the wafer can be corrected and the temperature distribution within the wafer can be made uniform.
  • stage 12 according to an embodiment of the present invention will be described with reference to Fig. 24. Note that in the following, descriptions of configurations that are the same as or similar to the configurations of the stage 10 or stage 11 may be omitted.
  • FIG. 24 is a schematic cross-sectional view showing the configuration of the stage 12 according to one embodiment of the present invention.
  • the plate portion 400 of the stage 12 includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 includes a first groove 111, a circulating flow path 112, and a heater 113.
  • the second metal plate 120 includes a through hole 121, a circulating flow path 122, and a heater 123.
  • the third metal plate 130 includes a second groove 131.
  • the plate portion 400 of the stage 12 also includes an insulating portion 150 in which the first groove 111 of the first metal plate 110, the through hole 121 of the second metal plate 120, and the second groove 131 of the third metal plate 130 are interconnected.
  • the circulation channel 112 and the heater 113 are provided in the inner region and the outer region, respectively, with the insulating section 150 as the boundary.
  • the circulation channel 122 and the heater 123 are provided in the outer region and the inner region, respectively, with the insulating section 150 as the boundary. That is, in the inner region, the circulation channel 112 and the heater 123 overlap each other. In the outer region, the heater 113 and the circulation channel 122 overlap each other.
  • stage 12 the temperature of the first metal plate 110 is controlled using a cooling medium flowing through a circulation passage 112 provided in the first metal plate 110 and a heater 113.
  • the heat insulating section 150 can suppress heat conduction from the outer region to the inner region, so that the temperature gradient profile shown in FIG. 8 is obtained and the temperature difference between the inner region and the outer region can be increased.
  • the cooling medium flowing through the circulation passage 122 can also be used to suppress heat conduction from the first metal plate 110 to the second metal plate 120.
  • the temperature of the first metal plate 110 is controlled using a heater 123 provided on the second metal plate 120 and a cooling medium flowing through the circulation passage 112.
  • the heat insulating section 150 can suppress heat conduction from the inner region to the outer region, so that the temperature gradient profile shown in FIG. 23 can be obtained and the temperature difference between the inner region and the outer region can be increased.
  • stage 12 can realize two types of temperature gradient profiles with large temperature differences between the inner and outer regions.
  • ⁇ Modification 1> A modified example of the position of the stage 12 according to an embodiment of the present invention will be described with reference to Fig. 25. Note that in the following, a description of the same or similar configuration as the stage 12 may be omitted.
  • FIG. 25 is a schematic cross-sectional view showing the configuration of the plate portion 400A of the stage 12A according to one embodiment of the present invention.
  • the plate portion 400A of the stage 12A includes a first metal plate 110, a second metal plate 120, a third metal plate 130, and a fourth metal plate 140.
  • the first metal plate 110 is provided with a first groove 111, a first circulation channel 112-1, a second circulation channel 112-2, a first heater 113-1, and a second heater 113-2.
  • the second metal plate 120 is provided with a through hole 121.
  • the third metal plate 130 is provided with a second groove 131.
  • the plate portion 400A of the stage 12A also includes a heat insulating portion 150 in which the first groove 111 of the first metal plate 110, the through hole 121 of the second metal plate 120, and the second groove 131 of the third metal plate 130 are connected to each other.
  • the first circulation passage 112-1 and the first heater 113-1 are provided in an inner region, with the thermal insulation section 150 as the boundary.
  • the second circulation passage 112-2 and the second heater 113-2 are provided in an outer region, with the thermal insulation section 150 as the boundary.
  • stage 12A the temperature of the first metal plate 110 is controlled using a cooling medium flowing through a first circulation passage 112-1 provided in the inner region and a second heater 113-2 provided in the outer region.
  • the heat insulating section 150 can suppress heat conduction from the outer region to the inner region, so that the temperature gradient profile shown in FIG. 8 is obtained and the temperature difference between the inner region and the outer region can be increased.
  • stage 12A the temperature of the first metal plate 110 is controlled using a first heater 113-1 provided in the inner region and a cooling medium flowing through a circulation passage provided in the outer region.
  • the heat insulating section 150 can suppress heat conduction to the inner region, so the temperature gradient profile shown in FIG. 23 can be obtained and the temperature difference between the inner region and the outer region can be increased.
  • stage 12A two types of temperature gradient profiles with large temperature differences between the inner and outer regions can be realized.
  • a circulation channel and a heater may be arranged in the second metal plate 120 or the third metal plate 130, similar to the first metal plate 110.
  • the temperature of the first metal plate 110 can be adjusted using a cooling medium and a heater that flow through the circulation channel arranged in the second metal plate 120 or the third metal plate 130.
  • the etching apparatus 50 includes a stage 10. Therefore, in the following, a description of the same or similar configuration as the configuration of the stage 10 described in the first embodiment may be omitted.
  • FIG. 26 is a schematic cross-sectional view showing the configuration of an etching apparatus 50 according to one embodiment of the present invention.
  • the etching apparatus 50 can perform dry etching on various films.
  • the etching apparatus 50 has a chamber 502.
  • the chamber 502 provides a space in which etching can be performed on a film such as a conductor, insulator, or semiconductor formed on a wafer.
  • An exhaust device 504 is connected to the chamber 502, which allows the interior of the chamber 502 to be set to a reduced pressure atmosphere.
  • An inlet pipe 506 for introducing a reactive gas is further provided in the chamber 502, and a reactive gas for etching is introduced into the chamber 502 via a valve 508.
  • a reactive gas for example, a fluorine-containing organic compound such as carbon tetrafluoride (CF 4 ), octafluorocyclobutane (c-C 4 F 8 ), decafluorocyclopentane (c-C 5 F 10 ), or hexafluorobutadiene (C 4 F 6 ) can be used.
  • a microwave source 512 can be provided at the top of the chamber 502 via a waveguide 510.
  • the microwave source 512 has an antenna for supplying microwaves, and outputs high-frequency microwaves such as 2.45 GHz microwaves or 13.56 MHz radio waves (RF).
  • the microwaves generated by the microwave source 512 are propagated to the top of the chamber 502 via the waveguide 510 and introduced into the chamber 502 via a window 514 made of quartz or ceramic.
  • the microwaves turn the reactive gas into plasma, and the etching of the film proceeds due to the electrons, ions, or radicals contained in the plasma.
  • a stage 10 for placing a wafer is provided at the bottom of the chamber 502.
  • a power source 524 is connected to the stage 10, high-frequency power is applied to the stage 10, and an electric field due to microwaves is formed in a direction perpendicular to the surface of the stage 10 and the surface of the wafer.
  • Magnets 516, 518, and 520 can be further provided on the top and sides of the chamber 502. Magnets 516, 518, and 520 may be permanent magnets or electromagnets having electromagnetic coils. Magnets 516, 518, and 520 generate a magnetic field parallel to the stage 10 and the wafer surface.
  • the combination of the magnetic field and the electric field due to the microwaves causes electrons in the plasma to resonate under the Lorentz force and are bound to the stage 10 and the wafer surface. As a result, a high-density plasma can be generated on the wafer surface.
  • stage 10 Further connected to the stage 10 is a heater power supply 530 that controls the heater 113 provided on the stage 10.
  • the stage 10 may further be connected to a power supply 526 for an electrostatic chuck that secures the wafer to the stage 10, a temperature controller 528 that controls the temperature of the medium circulated inside the stage 10, and a rotation control device (not shown) for rotating the stage 10.
  • the CVD apparatus 60 includes a stage 10. Therefore, in the following, a description of the same or similar configuration as the stage 10 described in the first embodiment may be omitted.
  • FIG. 27 is a schematic cross-sectional view showing the configuration of a CVD device 60 according to one embodiment of the present invention.
  • the CVD apparatus 60 has a chamber 602.
  • the CVD apparatus 60 provides a place where reactive gases are chemically reacted and various films are chemically formed on the wafer.
  • An exhaust device 604 is connected to the chamber 602, and the pressure inside the chamber 602 can be reduced.
  • An inlet pipe 606 is further provided in the chamber 602 for introducing a reactive gas, and a reactive gas for film formation is introduced into the chamber 602 via a valve 608.
  • the reactive gas various gases can be used depending on the film to be produced.
  • the gas may be liquid at room temperature.
  • silane, dichlorosilane, tetraethoxysilane, or the like a thin film of silicon, silicon oxide, silicon nitride, or the like can be formed.
  • tungsten fluoride or trimethylaluminum a thin metal film of tungsten or aluminum, or the like can be formed.
  • a microwave source 612 may be provided at the top of the chamber 602 via a waveguide 610. Microwaves generated by the microwave source 612 are introduced into the chamber 602 by the waveguide 610. The microwaves convert the reactive gas into plasma, and various active species contained in the plasma promote the chemical reaction of the gas, and the product of the chemical reaction is deposited on the wafer to form a thin film.
  • a magnet 644 for increasing the density of the plasma may be provided in the chamber 602.
  • a stage 10 is provided at the bottom of the chamber 602, and thin film deposition can be performed with the wafer placed on the stage 10. Similar to the etching apparatus 50, magnets 616 and 618 may also be provided on the side of the chamber 602.
  • a heater power supply 630 that controls the heater 113 provided on the stage 10 is connected to the stage 10.
  • the stage 10 may further be connected to a power supply 624 for supplying high frequency power to the stage 10, a power supply 626 for the electrostatic chuck, a temperature controller 628 that controls the temperature of the cooling medium circulated inside the stage 10, and a rotation control device (not shown) for rotating the stage 10.
  • the sputtering apparatus 70 includes a stage 10. Therefore, in the following, a description of the same or similar configuration as the configuration of the stage 10 described in the second embodiment may be omitted.
  • FIG. 28 is a schematic cross-sectional view showing the configuration of a sputtering device 70 according to one embodiment of the present invention.
  • the sputtering apparatus 70 has a chamber 702.
  • the sputtering apparatus 70 provides a field for collision of high-speed ions with a target and deposition of the target atoms generated during the collision onto a wafer.
  • An exhaust device 704 for reducing the pressure inside the chamber 702 is connected to the chamber 702.
  • An inlet pipe 706 and a valve 708 for introducing a sputtering gas such as argon into the chamber 702 are provided in the chamber 702.
  • a target stage 710 is provided at the bottom of the chamber 702, which holds a target containing the material to be deposited and functions as a cathode, and a target 712 is placed on top of the target stage 710.
  • a high-frequency power supply 714 is connected to the target stage 710, and plasma can be generated in the chamber 702 by the high-frequency power supply 714.
  • a stage 10 can be provided on top of the chamber 702. In this case, thin film formation proceeds with the wafer placed under the stage 10.
  • a heater power supply 730 is connected to the stage 10.
  • the stage 10 may also be connected to a power supply 724 for supplying high frequency power to the stage 10, a power supply 726 for the electrostatic chuck, a temperature controller 728, and a rotation control device (not shown) for rotating the stage 10.
  • FIG. 28 shows a configuration in which the stage 10 is installed at the top of the chamber 702 and the target stage 710 is installed at the bottom of the chamber 702, but the configuration of the sputtering device 70 is not limited to this, and the target 712 may be located above the stage 10.
  • the stage 10 may be installed so that the main surface of the wafer is positioned perpendicular to the horizontal plane, and the target stage 710 may be provided facing it.
  • the deposition apparatus 80 includes a stage 10. Therefore, in the following, a description of a configuration that is the same as or similar to the configuration of the stage 10 described in the first embodiment may be omitted.
  • FIG. 29 is a schematic cross-sectional view showing the configuration of a deposition device 80 according to one embodiment of the present invention.
  • the deposition apparatus 80 has a chamber 802.
  • the deposition apparatus 80 is provided with a space for evaporating material in the deposition source 810 and depositing the evaporated material onto the wafer.
  • An exhaust device 504 is connected to the chamber 802 to create a high vacuum inside the chamber 802.
  • An inlet pipe 806 is provided to the chamber 802 to return the chamber 802 to atmospheric pressure, and an inert gas such as nitrogen or argon is introduced into the chamber 802 via a valve 808.
  • a stage 10 may be provided on top of the chamber 802. Material deposition proceeds with the wafer placed under the stage 10. As with the etching apparatus 50, CVD apparatus 60, and sputtering apparatus 70, the stage 10 is further connected to a heater power supply 828. Optionally, the stage 10 may further be connected to a power supply 824 for an electrostatic chuck, a temperature controller 826, and a rotation control device 830 for rotating the stage 10. The stage 10 may further include a mask holder 816 for fixing a metal mask between the wafer and the deposition source 810. This allows the metal mask to be positioned near the wafer so that the opening of the metal mask overlaps with the area where the material is to be deposited.
  • the deposition source 810 is provided at the bottom of the chamber, and the material to be deposited is filled into the deposition source 810.
  • the deposition source 810 is provided with a heater for heating the material, and the heater is controlled by a control device 812. Deposition is started by creating a high vacuum inside the chamber 802 using the exhaust device 804, and heating the deposition source 810 to vaporize the material. When the deposition rate becomes constant, the shutter 814 is opened, and deposition of the material on the wafer begins.
  • the etching apparatus 50, CVD apparatus 60, sputtering apparatus 70, and deposition apparatus 80 described above in the fourth to seventh embodiments use a stage 10.
  • the stage 10 it is possible to make the temperature distribution within a wafer uniform for a wafer in which the temperature drop in the outer region is significant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Resistance Heating (AREA)

Abstract

ステージは、第1の溝を含む第1の金属プレートと、第1の金属プレートの下方に位置する、貫通口を含む第2の金属プレートと、第2の金属プレートの下方に位置する、第2の溝を含む第3の金属プレートと、第1の溝、貫通口、および第2の溝が互いに連通した断熱部と、第1の金属プレート、第2の金属プレート、および第3の金属プレートのうちの1つに設けられる第1の環流路および第1のヒータと、第2の環流路および第2のヒータの少なくとも1つと、を含み、第1の環流路および第2の環流路は、断熱部を境界とする第1の領域に設けられ、第1のヒータおよび第2のヒータは、断熱部を境界とする第1の領域の反対の第2の領域に設けられる。

Description

ステージ
 本発明の一実施形態は、ウェハ等が載置されるステージに関する。
 半導体を製造する半導体装置には、ウェハを載置するステージが設けられている。ステージには、ヒータの配置の自由度、コンタミネーション、および耐熱性等の観点から、一般的にセラミックが用いられている。例えば、セラミックを用いたステージとして、特許文献1には、内周領域のヒータエレメントと、外周領域のヒータエレメントとをそれぞれ制御することにより、内周領域の温度と外周領域の温度とが異なる温度勾配プロファイルを有するセラミックプレートが開示されている。特許文献1に開示されているようなセラミックプレートでは、内周領域から外周領域に向かって高温になり、内周領域と外周領域との温度差が10℃程度の温度勾配プロファイルを実現することが可能である。
国際公開第2018/030433号
 近年、ステージの内側領域と外側領域との温度差をさらに大きくしたいという要望がある。しかしながら、セラミックを用いたステージでは、内側領域と外側領域との温度差が10℃以上になると、ステージが破損するおそれがある。
 本発明の一実施形態は、上記問題に鑑み、内側領域と外側領域との温度差の大きい温度勾配プロファイルを実現することができるステージを提供することを目的の一つとする。
 本発明の一実施形態に係るステージは、第1の溝を含む第1の金属プレートと、第1の金属プレートの下方に位置する、貫通口を含む第2の金属プレートと、第2の金属プレートの下方に位置する、第2の溝を含む第3の金属プレートと、第1の溝、貫通口、および第2の溝が互いに連通した断熱部と、第1の金属プレート、第2の金属プレート、および第3の金属プレートのうちの1つに設けられる第1の環流路および第1のヒータと、第2の環流路および第2のヒータの少なくとも1つと、を含み、第1の環流路および第2の環流路は、断熱部を境界とする第1の領域に設けられ、第1のヒータおよび第2のヒータは、断熱部を境界とする第1の領域の反対の第2の領域に設けられる。
 第1の領域は、断熱部によって囲まれる領域であってもよい。第2の領域は、断熱部によって囲まれる領域であってもよい。
 第2のヒータは、第1のヒータが設けられる1つの金属プレートに設けられていてもよい。隣接する2つの金属プレートの一方が、第1のヒータが設けられる1つの金属プレートであり、第2の環流路は、隣接する2つの金属プレートの他方に設けられていてもよい。離隔した2つの金属プレートの一方が、第1のヒータが設けられる1つの金属プレートであり、第2の環流路は、離隔する2つの金属プレートの他方に設けられていてもよい。
 隣接する2つの金属プレートの一方が、第1のヒータが設けられる1つの金属プレートであり、第2のヒータは、隣接する2つの金属プレートの他方に設けられていてもよい。第2の環流路は、隣接する2つの金属プレートの他方に設けられていてもよい。第2の環流路は、隣接する2つの金属プレートと異なる金属プレートに設けられていてもよい。
 離隔する2つの金属プレートの一方が、第1のヒータが設けられる1つの金属プレートであり、第2のヒータは、離隔する2つの金属プレートの他方に設けられていてもよい。第2の環流路は、離隔する2つの金属プレートの他方に設けられていてもよい。第2の環流路は、離隔する2つの金属プレートと異なる金属プレートに設けられていてもよい。
 第2のヒータの断面径は、第1のヒータの断面径と異なっていてもよい。
 第1のヒータおよび第2のヒータは、電気的に絶縁されていてもよい。
 また、本発明の一実施形態に係るステージは、第1の溝を含む第1の金属プレートと、第1の金属プレートの下方に位置する、貫通口を含む第2の金属プレートと、第2の金属プレートの下方に位置する、第2の溝を含む第3の金属プレートと、第1の溝、貫通口、および第2の溝が互いに連通した断熱部と、第1の金属プレート、第2の金属プレート、および第3の金属プレートのうちの1つの金属プレートに設けられる第1の環流路と、1つの金属プレートと異なる別の金属プレートに設けられる第1のヒータと、1つの金属プレートおよび別の金属プレートと異なる金属プレートに設けられる、第2の環流路および第2のヒータの少なくとも1つと、を含み、第1の環流路および第2の環流路は、断熱部を境界とする第1の領域に設けられ、第1のヒータおよび第2のヒータは、断熱部を境界とする第1の領域の反対の第2の領域に設けられる。
 1つの金属プレートと別の金属プレートとは隣接していてもよい。
 1つの金属プレートと別の金属プレートとは離隔していてもよい。
 第1の金属プレートの最低表面温度と最大表面温度との温度差が20℃以上であってもよい。
 本発明の一実施形態に係るステージは、内側領域と外側領域との温度差の大きい温度勾配プロファイルを実現することができる。そのため、ステージに載置されるウェハの内側領域または外側領域の温度低下が顕著な場合であっても、ウェハの内側領域または外側領域の温度を補正し、ウェハ内の温度分布の均一化をすることができる。
本発明の一実施形態に係るステージの構成を示す模式的な斜視図である。 本発明の一実施形態に係るステージの構成を示す模式的な上面図である。 本発明の一実施形態に係るステージの構成を示す模式的な断面図である。 本発明の一実施形態に係るステージの環流路の構成を示す模式的な平面図である。 本発明の一実施形態に係るステージの環流路の構成を示す模式的な平面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージの第2の金属プレートの構成を示す模式的な平面図である。 本発明の一実施形態に係るステージの第2の金属プレートの構成を示す模式的な平面図である。 本発明の一実施形態に係るステージの温度勾配プロファイルを説明するグラフである。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージの温度勾配プロファイルを説明するグラフである。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るステージのプレート部の構成を示す模式的な断面図である。 本発明の一実施形態に係るエッチング装置の構成を示す模式的な断面図である。 本発明の一実施形態に係るCVD装置の構成を示す模式的な断面図である。 本発明の一実施形態に係るスパッタリング装置の構成を示す模式的な断面図である。 本発明の一実施形態に係る蒸着装置の構成を示す模式的な断面図である。
 以下、本出願で開示される発明の各実施形態について、図面を参照し説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な形態で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
 図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。また、説明の便宜上、上方または下方という語句を用いて説明するが、上方または下方はそれぞれステージの使用時(ウェハ載置時)における向きを示す。
 本明細書および図面において、同一または類似する複数の構成を総じて表記する際には同一の符号を用い、これら複数の構成のそれぞれを区別して表記する際には、さらに大文字のアルファベットを添えて表記する。一つの構成のうちの複数の部分をそれぞれ区別して表記する際には、同一の符号を用い、さらにハイフンと自然数を用いる。
 本明細書において、ステージの「内側領域」とは、断熱部で囲まれる内側の領域および当該領域と重畳する領域をいう。また、本明細書において、ステージの「外側領域」とは、内側領域の外側の領域をいう。すなわち、「外側領域」は、ステージの外周側の領域である。なお、本明細書では、ステージだけでなく、ウェハに対しても、「内側領域」および「外側領域」の用語を使用するが、ウェハの「内側領域」および「外側領域」は、それぞれ、ステージにウェハが載置されたときのステージの「内側領域」および「外側領域」と重畳する領域をいう。
<第1実施形態>
 図1~図8を参照して、本発明の一実施形態に係るステージ10について説明する。
 図1は、本発明の一実施形態に係るステージ10の構成を示す模式的な斜視図である。図2は、本発明の一実施形態に係るステージ10の構成を示す模式的な上面図である。図2では、後述する環流路112が点線で示されている。図3は、本発明の一実施形態に係るステージ10の構成を示す断面図である。具体的には、図3は、図2に示すA1-A2線で切断されたステージ10の一部の断面が示された断面図である。図4Aおよび図4Bの各々は、本発明の一実施形態に係るステージ10の環流路112の構成を示す模式的な断面図である。
 図1に示すように、ステージ10は、プレート部100およびシャフト部200を含む。ステージ10において、ウェハは、プレート部100の第1の面101に載置される。シャフト部200は、プレート部100の第1の面101と反対の第2の面102に接続している。
 ステージ10に載置されるウェハとして、例えば、シリコン(Si)、シリコンカーバイド(SiC)、サファイア、石英、ガラス、リン化ガリウム(GaP)、ヒ化ガリウム(GaAs)、リン化インジウム(InP)、または窒化ガリウム(GaN)などが用いられるが、これに限られない。上述したように、ウェハはプレート部100の第1の面101に載置されるため、第1の面101には、載置されるウェハをガイドするための段差が設けられていてもよい。
 プレート部100は、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110~第4の金属プレート140は、この順に積層されている。すなわち、第2の金属プレート120は第1の金属プレート110の下方に位置し、第3の金属プレート130は第2の金属プレート120の下方に位置し、および第4の金属プレート140は第3の金属プレート130の下方に位置する。
 第1の金属プレート110と第2の金属プレート120、第2の金属プレート120と第3の金属プレート130、および第3の金属プレート130と第4の金属プレート140とは、溶接、ネジ止め、固相拡散接合またはろう付などを用いて、互いに接続されている。ろう付用のろうとして、例えば、銀、銅、および亜鉛を含む合金、銅および亜鉛を含む合金、リンを微量含む銅、アルミニウムを含む合金、チタン、銅、およびニッケルを含む合金、チタン、ジルコニウム、および銅を含む合金、またはチタン、ジルコニウム、銅、およびニッケルを含む合金などを用いることができる。
 図2に示すように、上面視において、第1の金属プレート110は、円形状を有する。第1の金属プレート110と重畳する第2の金属プレート120~第4の金属プレート140も、円形状を有する。但し、第1の金属プレート110~第4の金属プレート140の形状は、円形状に限られない。第1の金属プレート110~第4の金属プレート140の形状はウェハの形状に合わせて適宜決定されればよく、第1の金属プレート110~第4の金属プレート140は、楕円形状または多角形状を有していてもよい。
 また、第1の金属プレート110~第4の金属プレート140の厚さは、同じであってもよく、異なっていてもよい。
 第1の金属プレート110~第4の金属プレート140の材料として、例えば、アルミニウム、チタン、鉄、銅、ニッケル、モリブデン、タングステン、もしくは金などの金属、またはこれらの金属を含む合金が用いられる。鉄を含む合金は、例えば、ステンレス鋼、コバール、または42アロイなどである。また、ニッケルを含む合金は、例えば、インコネルまたはハイステロイなどである。後述するように、第1の金属プレート110には、冷却媒体が流通する環流路112およびヒータ113が設けられる。第1の金属プレート110の表面は、プレート部100の第1の面101に相当し、ウェハは第1の金属プレート110の表面上に載置される。そのため、ヒータ113が発する熱をウェハに効率よく伝導し、および環流路112を流通する冷却媒体が熱を効率よく吸収するため、第1の金属プレート110には、熱伝導性の高い材料が用いられることが好ましい。例えば、第1の金属プレート110の材料として、200W/mK以上430W/mK以下の熱伝導率を有する金属または合金を用いることができる。なお、第1の金属プレート110~第4の金属プレート140には、同じ材料が用いられてもよく、異なる材料が用いられてもよい。第1の金属プレート110~第4の金属プレート140が異なる場合、第1の金属プレート110~第4の金属プレート140に含まれる金属または合金は、5×10-6/K以上25×10-6/K以下の熱膨張率を有することが好ましい。また、隣接する2つの金属プレートの熱膨張率の差が10×10-6/K以下となるように、それぞれの材料が選択されることが好ましい。これにより、熱膨張の違いによるステージ10の変形が抑制されるため、ステージ10の信頼性を向上させることができる。
 図3に示すように、第1の金属プレート110は、環流路112およびヒータ113を含む。環流路112およびヒータ113は、第1の金属プレート110の第2の金属プレート120側に設けられ、第2の金属プレート120によって閉塞されている。また、環流路112はプレート部100の内側領域に設けられ、ヒータ113はプレート部100の外側領域に設けられている。
 また、第2の金属プレート120は、環流路122およびヒータ123を含む。環流路122およびヒータ123は、第2の金属プレート120の第3の金属プレート130側に設けられ、第3の金属プレート130によって閉塞されている。また、環流路122はプレート部100の内側領域に設けられ、ヒータ123はプレート部100の外側領域に設けられている。
 平面視において、環流路112は、環流路122と重畳している。また、平面視において、ヒータ113は、ヒータ123と重畳している。
 環流路112には、入口112aから水などの液体または気体などの冷却媒体が導入され、環流路112に沿って第1の金属プレート110内を広範囲に亘って流通した後、冷却媒体は出口112bから第1の金属プレート110の外部に放出される(図2参照)。冷却媒体の流通により、冷却媒体とプレート部100またはウェハとの間で熱交換が行われ、ウェハの内側領域が冷却される。環流路112は、第1の金属プレート110に直接形成された構造であってもよく、第1の金属プレート110に設けられた溝内に管状部材が配置された構造であってもよい。
 平面視において、図2に示す環流路112は、滑らかな曲線形状を有する(すなわち、環流路112の側面が滑らかな曲面を有する。)が、環流路112の構成はこれに限られない。例えば、図4Aに示すように、平面視において、環流路112は、ジグザグ形状を有していてもよい。また、図4Bに示すように、平面視において、環流路112は、凹凸形状を有していてもよい。すなわち、環流路112の幅は周方向において一定ではなく、変化していてもよい。
 環流路122は、環流路112と同様の構成を有する。但し、環流路112の形状と環流路122の形状は、異なっていてもよい。また、環流路122を流通する冷却媒体の条件(例えば、種類、温度、または流量など)は、環流路122を流通する冷却媒体の条件と同じであってもよく、異なっていてもよい。すなわち、環流路112と環流路122とは、冷却媒体の条件を独立して制御することができる。
 ヒータ113は、制御装置(図示せず)の制御の下で駆動する。ヒータ113は、例えば、電熱線を用いて構成され、第1の金属プレート110の外周に沿って配設されている。ヒータ113は、第1の金属プレート110内に埋設されていてもよく、第1の金属プレート110に設けられた溝内に配設されていてもよい。例えば、第1の金属プレート110の溝にヒータ113が配設された後、溶射膜などで覆うことにより、第1の金属プレート110にヒータ113を設置することができる。ヒータ113は、第1の金属プレート110を介して、ウェハの外側領域を加熱する。
 ヒータ123は、ヒータ113と同様の構成を有する。但し、ヒータ123は、種類、断面径、または電力密度などがヒータ113と異なっていてもよい。また、ヒータ123は、ヒータ113と独立して制御することができる。すなわち、ヒータ113とヒータ123とは、電気的に絶縁されている。
 プレート部100では、第1の金属プレート110の内側領域に配置された環流路112(または第2の金属プレート120の内側領域に配置された環流路112)と第1の金属プレート110の外側領域に配置されたヒータ113(または第2の金属プレート120の外側領域に配置されたヒータ113)との間に、断熱部150が設けられている。ここで、図5~図7を参照して、プレート部100の構成について説明する。
 図5は、本発明の一実施形態に係るステージ10のプレート部100の構成を示す模式的な断面図である。図6および図7の各々は、本発明の一実施形態に係るステージ10の第2の金属プレート120の構成を示す模式的な平面図である。具体的には、図6および図7の各々は、第2の金属プレート120の上面図である。
 図5に示すように、断熱部150は、第1の金属プレート110に形成された第1の溝111、第2の金属プレート120に形成された貫通口121、および第3の金属プレート130に形成された第2の溝131を含む。第1の溝111、貫通口121、および第2の溝131は、互いに重畳している。第1の溝111は、第2の金属プレート120側に開口面を有する。貫通口121は、第2の金属プレート120内を貫通し、第1の金属プレート110側および第3の金属プレート130側に開口面を有する。第2の溝131は、第2の金属プレート120側に開口面を有する。第1の溝111の開口面は貫通口121の一端の開口面と略一致し、第2の溝131の開口面は貫通口121の他端の開口面と略一致している。すなわち、断熱部150は、第1の溝111、貫通口121、および第2の溝131が、互いに連通した構造を有する。換言すると、断熱部150は、第2の金属プレート120を貫通し、第1の金属プレート110に上面が形成され、第3の金属プレートに底面が形成された閉塞された空間を有する。断熱部150内は、真空であってもよく、液体または気体が充填されていてもよい。また、断熱部150内は、外部の真空ポンプなどと接続され、圧力、温度、またはガス流量を調整することができてもよい。断熱部150内に充填または断熱部150内を流通するガスとして、ヘリウムガス、アルゴンガス、または窒素ガスなどの不活性ガスを用いることができる。また、断熱部150内に、断熱材が充填されていてもよい。
 平面視において、第1の溝111、貫通口121、および第2の溝131は、それぞれ、第1の金属プレート110、第2の金属プレート120、および第3の金属プレート130に円周状に形成されている。図6に示すように、第2の金属プレート120においても、貫通口121が円周状に設けられている。すなわち、第2の金属プレート120では、内側領域と外側領域とが分離されている。この場合、第2の金属プレート120が第1の金属プレート110または第3の金属プレート130と接続されるときに、第2の金属プレート120の分離された内側領域と外側領域とが接しないように、第2の金属プレート120を配置し、第1の金属プレート110または第3の金属プレート130と接続する。但し、第2の金属プレート120に形成される貫通口121が円周状の全体に設けられ、第2の金属プレート120の内側領域と外側領域とが分離されていると、第2の金属プレート120の接続の際の取り扱いが困難な場合がある。そのため、図7に示すように、第2の金属プレート120には、内側領域と外側領域とを接続する接続領域125aおよび125bが設けられていてもよい。接続領域125aおよび接続領域125bは熱伝導経路となり得るため、接続領域125aおよび接続領域125bの幅は、できる限り小さいことが好ましい。また、図7には、2つの接続領域125aおよび125bが図示されているが、第2の金属プレート120には、少なくとも1つの接続領域125が設けられていればよい。接続領域125の数は貫通口121の数と対応している。例えば、第2の金属プレート120に3つの接続領域125が設けられている場合、第2の金属プレート120は、3つの貫通口121を有する。
 また、第1の溝111および第2の溝131の各々も、複数に分割されて設けられていてもよい。
 断熱部150は、内側領域の環流路112、122と外側領域のヒータ113、123との間に位置する。また、断熱部150は、第1の金属プレート110、第2の金属プレート120、および第3の金属プレート130に亘って設けられており、広い空間を有する。そのため、断熱部150は、第1の金属プレート110だけでなく、第2の金属プレート120および第3の金属プレート130においても、内側領域から外側領域への熱伝導および外側領域から内側領域への熱伝導を抑制することができる。これにより、ステージ10では、内側領域と外側領域との温度差を大きくすることができる。
 図8は、本発明の一実施形態に係るステージ10の温度勾配プロファイルを説明するグラフである。
 図8に示すグラフの横軸には、第1の金属プレート110の表面の中心位置をゼロとし、所定の方向(例えば、A1-A2線の方向)に沿った第1の金属プレート110の表面の位置が示され、グラフの縦軸には、第1の金属プレート110の表面の表面温度が示されている。第1の位置P1および第2の位置P2は、それぞれ、断熱部150およびヒータ113の位置を表している。すなわち、2つのP1の間が内側領域に相当し、P1とP2との間が外側領域に相当する。
 ステージ10では、第1の金属プレート110および第2の金属プレート120の内側領域の環流路112、122を流通する冷却媒体によって、第1の金属プレート110の内側領域が冷却される。一方、第1の金属プレート110および第2の金属プレート120の外側領域のヒータ113、123によって、第1の金属プレート110の外側領域が加熱される。第1の金属プレート110の外側領域の熱は内側領域へと伝導されるが、内側領域と外側領域との間に断熱部150が設けられているため、内側領域と外側領域との熱伝導経路が制限され、外側領域から内側領域への熱伝導が抑制される。そのため、ヒータ113、123によって外側領域が加熱されても、内側領域における温度上昇が抑制される。また、断熱部150による熱流量の減少により、内側領域と外側領域との温度差が大きくなる。例えば、第1の金属プレート110の中心近傍において測定される最低表面温度T0とヒータ113近傍において測定される最高表面温度T2との最大温度差は、20℃以上であり、好ましくは60℃以上であり、さらに好ましくは100℃以上である。ステージ10の内側領域と外側領域との温度差は、ヒータ113、123へ供給する電力、または環流路112、122を流通する冷却媒体の条件を変化させることにより、調整することができる。また、上述したように、ステージ10では、ヒータ113、123を独立して制御することができ、および冷却媒体の条件も独立して制御することができる。そのため、ステージ10は、内側領域の温度および外側領域の温度を調整しながら、内側領域と外側領域との温度差を大きくすることができる。
 シャフト部200の内部には、冷却媒体が流通する流路(図示せず)が形成されている。具体的には、シャフト部200は、流路を介して入口112aに冷却媒体を送り込むとともに、出口112bから放出される冷却媒体を受け入れる。シャフト部200の一端は、プレート部100の第2の面102と接続されている。シャフト部200の他端は、冷却媒体の供給源に接続されている。供給源は、冷却媒体を保持するタンクおよびポンプ、または水道管などであるが、これに限られない。
 また、シャフト部200の内部には、ヒータ113のリード線が格納されていてもよい。また、静電チャックが設けられる場合、シャフト部200の内部に、静電チャックと接続される配線が格納されていてもよい。
 また、シャフト部200は、回転機構と接続されていてもよい。シャフト部200が回転機構と接続されることにより、ステージ10をシャフト部200の長軸を中心として回転させることができる。
 以上、ステージ10の構成について説明したが、ここで、従来のステージと比較したときのステージ10の優位性について説明する。
 半導体装置における処理では、ステージに載置されたウェハが加熱される場合があり、その場合、ウェハ内の温度分布を均一化することが要求される。従来のステージでは、加熱した際に、外側領域が内側領域よりも温度が低下する場合がある。また、半導体装置によっては、ステージに載置されたウェハの内側領域の温度が上昇する場合がある。例えば、CVD(Chemical Vapor Deposition)装置またはALD(Atomic Layer Deposition)装置においてウェハ上に膜を成膜する場合、プラズマの印加によって、ウェハの中央部が局所的に温度上昇し、ウェハの外側領域の温度よりも内側領域の温度が高くなる。そのため、従来のステージでは、ウェハの外側領域において、顕著な温度低下が見られる。
 一方、ステージ10を用いる半導体装置では、ステージ10の内側領域と外側領域との温度差が大きく、上述したような顕著な温度低下を補正し、ウェハ内の温度分布を均一化することができる。特に、ステージ10では、セラミックによって割れが発生する温度差よりも大きな温度差を得ることができるため、ステージ10は、セラミックを用いるステージよりも多くの半導体装置に対して適用することができる。
 しかしながら、第1の金属プレート110~第4の金属プレート140に含まれる金属または合金の熱膨張係数は、セラミックの熱膨張係数よりも比較的大きい。そのため、断熱部150が設けられず、単に環流路112およびヒータ113のみの制御によって内側領域と外側領域との温度差を大きくする従来のステージでは、熱応力によってステージが変形する場合がある。換言すれば、断熱部150が設けられていない従来のステージの場合、熱応力によるステージの変形が生じるため、ステージ10の内側領域と外側領域との温度差を大きくすることができない。一方、ステージ10では、断熱部150の空間が収縮し、または膨張することよって、熱応力を緩和することができる。すなわち、断熱部150は、ステージの内側領域と外側領域との温度差によって生じた熱応力を吸収するダンパーとして機能する。また、ステージ10では、第1の金属プレート110、第2の金属プレート120、および第3の金属プレート130に亘って断熱部150が設けられている。そのため、ステージ10では、ヒータ113が設けられている第1の金属プレート110およびヒータ123がもうけられている第2の金属プレート120における熱応力だけでなく、ヒータ113、123からの熱が伝導される第3の金属プレート130における熱応力も緩和されるため、内側領域と外側領域との温度差を大きくする場合であっても、ステージ10が変形しにくい。
 以上説明したように、ステージ10では、断熱部150によって、外側領域に設けられたヒータ113、123からの熱が内側領域に伝導されることを抑制することができる。すなわち、断熱部150による空間によって、プレート部100の外側領域と内側領域とが接続される熱伝導経路の断面積が減少するため、断熱部150は熱閉塞/サーマルチョークとして機能することができる。これにより、ステージ10では、内側領域と外側領域との温度差が大きくなるため、例えば、外側領域の温度低下が顕著であるウェハに対してステージ10を適用すると、ウェハの外側領域の温度を補正し、ウェハ内の温度分布を均一化させることができる。
 以下では、本発明の一実施形態に係るステージ10のいくつかの変形例について説明する。なお、ステージ10の構成の変形は、以下で説明する変形例に限定されるものではない。
<変形例1>
 図9を参照して、本発明の一実施形態に係るステージ10の一変形例について説明する。なお、以下では、ステージ10の構成と同一または類似の構成の説明を省略する場合がある。
 図9は、本発明の一実施形態に係るステージ10Aのプレート部100Aの構成を示す模式的な断面図である。
 図9に示すように、ステージ10Aのプレート部100Aは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、貫通口121、環流路122、およびヒータ123が設けられている。第3の金属プレート130には、第2の溝131、環流路132、およびヒータ133が設けられている。すなわち、ステージ10Aでは、第1の金属プレート110および第2の金属プレート120と同様に、第3の金属プレート130にも環流路132およびヒータ133が設けられている。環流路132およびヒータ133は、断熱部150を間に挟んで配置されている。
 ステージ10Aの内側領域において、環流路112、122、132は、互いに重畳している。ステージ10Aの外側領域において、ヒータ113、123、133は、互いに重畳している。ステージ10Aでは、ヒータ113、123、133をそれぞれ独立して制御することができ、および環流路112、122、132を流通する冷却媒体の条件もそれぞれ独立して制御することができる。そのため、ステージ10Aは、内側領域の温度および外側領域の温度を調整しながら、内側領域と外側領域との温度差を大きくすることができる。
<変形例2>
 図10を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10またはステージ10Aの構成と同一または類似の構成の説明を省略する場合がある。
 図10は、本発明の一実施形態に係るステージ10Bのプレート部100Bの構成を示す模式的な断面図である。
 図10に示すように、ステージ10Bのプレート部100Bは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、貫通口121が設けられている。第3の金属プレート130には、第2の溝131、環流路132、およびヒータ133が設けられている。すなわち、ステージ10Bでは、第1の金属プレート110および第3の金属プレート130に環流路112、132およびヒータ113、133が設けられ、第2の金属プレート120に環流路およびヒータが設けられていない。
 ステージ10Bの内側領域において、環流路112、132は、互いに重畳している。ステージ10Bの外側領域において、ヒータ113、133は、互いに重畳している。ステージ10Bでは、ヒータ113、133をそれぞれ独立して制御することができ、および環流路112、132を流通する冷却媒体の条件もそれぞれ独立して制御することができる。ステージ10Bでは、第1の金属プレート110に設けられたヒータ113および環流路112を流通する冷却媒体によって内側領域と外側領域との十分な温度差が得られる場合に、第2の金属プレート120を介して、ヒータ133によって第1の金属プレート110を加熱し、または環流路132を流通する冷却媒体によって第1の金属プレート110を冷却することにより、内側領域と外側領域との温度差を調整することができる。
<変形例3>
 図11を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Bの構成と同一または類似の構成の説明を省略する場合がある。
 図11は、本発明の一実施形態に係るステージ10Cのプレート部100Cの構成を示す模式的な断面図である。
 図11に示すように、ステージ10Cのプレート部100Cは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレートには、第1の溝111が設けられている。第2の金属プレート120には、貫通口121、環流路122、およびヒータ123が設けられている。第3の金属プレート130には、第2の溝131、環流路132、およびヒータ133が設けられている。すなわち、ステージ10Cでは、第2の金属プレート120および第3の金属プレート130に環流路122、132およびヒータ123、133が設けられ、第1の金属プレート110に環流路およびヒータが設けられていない。
 ステージ10Cの内側領域において、環流路122、132は、互いに重畳している。ステージ10Cの外側領域において、ヒータ123、133は、互いに重畳している。ステージ10Cでは、ヒータ123、133をそれぞれ独立して制御することができ、および環流路122、132を流通する冷却媒体の条件もそれぞれ独立して制御することができる。ステージ10Cでは、ヒータ123が第1の金属プレート110の外側領域を加熱し、環流路122を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第3の金属プレート130のヒータ133および環流路132を流通する冷却媒体を制御することにより、内側領域と外側領域との温度差を調整することができる。
<変形例4>
 図12を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Cの構成と同一または類似の構成の説明を省略する場合がある。
 図12は、本発明の一実施形態に係るステージ10Dのプレート部100Dの構成を示す模式的な断面図である。
 図12に示すように、ステージ10Dのプレート部100Dは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、貫通口121およびヒータ123が設けられている。第3の金属プレート130には、第2の溝131が設けられている。すなわち、ステージ10Dでは、第1の金属プレート110に環流路112およびヒータ113が設けられ、第3の金属プレート130に環流路およびヒータが設けられていない。また、第2の金属プレート120には、ヒータ123は設けられているが、環流路は設けられていない。
 ステージ10Dの外側領域において、ヒータ113、123は、互いに重畳している。ステージ10Dでは、ヒータ113、123をそれぞれ独立して制御することができる。ステージ10Dでは、ヒータ113が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第2の金属プレート120のヒータ123の制御によって、外側領域の温度をさらに調整することができる。
<変形例5>
 図13を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Dの構成と同一または類似の構成の説明を省略する場合がある。
 図13は、本発明の一実施形態に係るステージ10Eのプレート部100Eの構成を示す模式的な断面図である。
 図13に示すように、ステージ10Eのプレート部100Eは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、貫通口121が設けられている。第3の金属プレート130には、第2の溝131、環流路132、およびヒータ133が設けられている。すなわち、ステージ10Eでは、第1の金属プレート110に環流路112およびヒータ113が設けられ、第3の金属プレート130に環流路およびヒータが設けられていない。また、第2の金属プレート120には、環流路122は設けられているが、ヒータは設けられていない。
 ステージ10Eの内側領域において、環流路112、122は、互いに重畳している。ステージ10Eでは、環流路112、122を流通する冷却媒体の条件をそれぞれ独立して制御することができる。ステージ10Eでは、ヒータ113が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第2の金属プレート120の環流路122を流通する冷却媒体の条件の制御によって、内側領域の温度をさらに調整することができる。
<変形例6>
 図14を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Eの構成と同一または類似の構成の説明を省略する場合がある。
 図14は、本発明の一実施形態に係るステージ10Fのプレート部100Fの構成を示す模式的な断面図である。
 図14に示すように、ステージ10Fのプレート部100Fは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、第1のヒータ113-1、および第2のヒータ113-2が設けられている。第2の金属プレート120には、貫通口121が設けられている。第3の金属プレート130には、第2の溝131が設けられている。すなわち、ステージ10Fでは、第1の金属プレート110に環流路112、第1のヒータ113-1、および第2のヒータ113-2が設けられ、第2の金属プレート120および第3の金属プレート130に環流路およびヒータが設けられていない。
 ステージ10Fでは、第1のヒータ113-1と第2のヒータ113-2とを独立して制御することができる。すなわち、第1のヒータ113-1と第2のヒータ11302とは、電気的に絶縁されている。ステージ10Fでは、第1のヒータ113-1が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレートの内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第1の金属プレート110の第2のヒータ113-2の制御によって、外側領域の温度をさらに調整することができる。
<変形例7>
 図15を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Fの構成と同一または類似の構成の説明を省略する場合がある。
 図15は、本発明の一実施形態に係るステージ10Gのプレート部100Gの構成を示す模式的な断面図である。
 図15に示すように、ステージ10Gのプレート部100Gは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111および環流路112が設けられている。第2の金属プレート120には、貫通口121およびヒータ123が設けられている。第3の金属プレート130には、第2の溝131および環流路132が設けられている。すなわち、ステージ10Gでは、第1の金属プレート110~第3の金属プレート130の各々に、環流路およびヒータのいずれか1つが設けられている。
 ステージ10Gの内側領域において、環流路112、132は、互いに重畳している。ステージ10Gでは、環流路112、132を流通する冷却媒体の条件をそれぞれ独立して制御することができる。ステージ10Gでは、ヒータ123が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第3の金属プレート130の環流路132を流通する冷却媒体の条件の制御によって、外側領域の温度をさらに調整することができる。
 なお、変形例7として、2つの環流路および1つのヒータを含むプレート部100Gの構成を説明したが、1つの環流路および2つのヒータを含むプレート部の構成も可能である。この場合、2つのヒータのうちの1つを制御することにより、外側領域の温度を調整することができる。また、2つの環流路または2つのヒータは、隣接する2つの金属プレートにそれぞれ配置されていてもよく、離隔する2つの金属プレートのそれぞれに配置されていてもよい。
<変形例8>
 図16を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Gの構成と同一または類似の構成の説明を省略する場合がある。
 図16は、本発明の一実施形態に係るステージ10Hのプレート部100Hの構成を示す模式的な断面図である。
 図16に示すように、ステージ10Hのプレート部100Hは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、貫通口121が設けられている。第3の金属プレート130には、第2の溝131が設けられている。第4の金属プレート140には、環流路142およびヒータ143が設けられている。すなわち、ステージ10Hでは、シャフト部200と接続される第4の金属プレート140に、環流路およびヒータの少なくとも1つが設けられている。
 ステージ10Hの内側領域において、環流路112、142は、互いに重畳している。ステージ10Hの外側領域において、ヒータ113、143は、互いに重畳している。ステージ10Hでは、ヒータ113、143をそれぞれ独立して制御することができ、環流路112、142を流通する冷却媒体の条件もそれぞれ独立して制御することができる。ステージ10Hでは、ヒータ113が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第4の金属プレート140のヒータ143および環流路142を流通する冷却媒体を制御することにより、内側領域と外側領域との温度差を調整することができる。
<変形例9>
 図17を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Hの構成と同一または類似の構成の説明を省略する場合がある。
 図17は、本発明の一実施形態に係るステージ10Iのプレート部100Iの構成を示す模式的な断面図である。
 図17に示すように、ステージ10Iのプレート部100Iは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、第1の貫通口121、環流路122、およびヒータ123が設けられている。第3の金属プレート130には、第2の貫通口134が設けられている。第4の金属プレート140には、第2の溝141が設けられている。プレート部100Iでは、第1の溝111、第1の貫通口121、第2の貫通口134、および第2の溝141が互いに連通した断熱部150Iが形成されている。すなわち、ステージ10Iでは、シャフト部200と接続される第4の金属プレート140に第2の溝141が設けられ、第1の金属プレート110~第4の金属プレート140に亘って断熱部150Iが設けられている。
 ステージ10Iの内側領域において、環流路112、122は、互いに重畳している。ステージ10Iの外側領域において、ヒータ113、123は、互いに重畳している。ステージ10Iでは、ヒータ113、123をそれぞれ独立して制御することができ、環流路112、122を流通する冷却媒体の条件もそれぞれ独立して制御することができる。ステージ10Iでは、ヒータ113が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第2の金属プレート120のヒータ123および環流路122を流通する冷却媒体を制御することにより、内側領域と外側領域との温度差を調整することができる。ステージ10Iでは、第1の金属プレート110~第4の金属プレート140に亘って断熱部150Iが設けられているため、内側領域から外側領域への熱伝導および外側領域から内側領域への熱伝導をさらに抑制することができる。
<変形例10>
 図18を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Iの構成と同一または類似の構成の説明を省略する場合がある。
 図18は、本発明の一実施形態に係るステージ10Jのプレート部100Jの構成を示す模式的な断面図である。
 図18に示すように、ステージ10Jのプレート部100Jは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の貫通口114、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、第2の貫通口121、環流路122、およびヒータ123が設けられている。第3の金属プレート130には、第3の貫通口134が設けられている。第4の金属プレート140には、第4の貫通口144が設けられている。プレート部100Jでは、第1の貫通口114、第2の貫通口121、第3の貫通口134、および第4の貫通口144が互いに連通した断熱部150Jが形成されている。すなわち、ステージ10Jでは、シャフト部200と接続される第4の金属プレート140に第2の溝141が設けられ、第1の金属プレート110~第4の金属プレート140に亘って断熱部150Jが設けられている。
 なお、第1の貫通口114、第2の貫通口121、第3の貫通口134、および第4の貫通口144の全てが円周状に設けられていると、ステージ10J内側領域と外側領域とが分離されてしまう。そのため、第1の貫通口114、第2の貫通口121、第3の貫通口134、および第4の貫通口144の少なくとも1つには、図7に示した接続領域125が設けられている。
 ステージ10Jの内側領域において、環流路112、122は、互いに重畳している。ステージ10Jの外側領域において、ヒータ113、123は、互いに重畳している。ステージ10Jでは、ヒータ113、123をそれぞれ独立して制御することができ、環流路112、122を流通する冷却媒体の条件もそれぞれ独立して制御することができる。ステージ10Jでは、ヒータ113が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第2の金属プレート120のヒータ123および環流路122を流通する冷却媒体を制御することにより、内側領域と外側領域との温度差を調整することができる。ステージ10Jでは、第1の金属プレート110~第4の金属プレート140に亘って断熱部150Jが設けられているため、内側領域から外側領域への熱伝導および外側領域から内側領域への熱伝導をさらに抑制することができる。
<変形例11>
 図19を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Jの構成と同一または類似の構成の説明を省略する場合がある。
 図19は、本発明の一実施形態に係るステージ10Kのプレート部100Kの構成を示す模式的な断面図である。
 図19に示すように、ステージ10Kのプレート部100Kは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、貫通口121、環流路122、およびヒータ123が設けられている。第3の金属プレート130には、第2の溝131が設けられている。第4の金属プレート140には、第3の溝141が設けられている。プレート部100Jでは、第1の溝111、貫通口121、および第2の溝131が互いに連通した第1の断熱部150J-1が形成されている。また、第3の溝141が第3の金属プレート130によって閉塞された第2の断熱部150J-2が形成されている。すなわち、ステージ10Kでは、2つに分割された断熱部150Kが設けられている。
 ステージ10Kの内側領域において、環流路112、122は、互いに重畳している。ステージ10Kの外側領域において、ヒータ113、123は、互いに重畳している。ステージ10Kでは、ヒータ113、123をそれぞれ独立して制御することができ、環流路112、122を流通する冷却媒体の条件もそれぞれ独立して制御することができる。ステージ10Kでは、ヒータ113が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第2の金属プレート120のヒータ123および環流路122を流通する冷却媒体を制御することにより、内側領域と外側領域との温度差を調整することができる。ステージ10Kでは、第1の金属プレート110~第4の金属プレート140に亘って断熱部150Kが設けられているため、内側領域から外側領域への熱伝導および外側領域から内側領域への熱伝導をさらに抑制することができる。
 なお、図19には、2つに分割された断熱部150Kを図示したが、断熱部150Kの分割数は、3つ以上であってもよい。
<変形例12>
 図20を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Kの構成と同一または類似の構成の説明を省略する場合がある。
 図20は、本発明の一実施形態に係るステージ10Lのプレート部100Lの構成を示す模式的な断面図である。
 図20に示すように、ステージ10Lのプレート部100Lは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、第1の貫通口121、環流路122、およびヒータ123が設けられている。第3の金属プレート130には、第2の貫通口134が設けられている。第4の金属プレート140には、第2の溝141が設けられている。第2の貫通口134の開口面の一端は、第4の金属プレート140によって閉塞されている。プレート部100Jでは、第1の溝111、第1の貫通口121、および第2の貫通口134が互いに連通した第1の断熱部150J-1が形成されている。また、第2の溝141は、ステージ10Lの外部に開放されているが、第2の溝141を設けることにより、外部の大気と接する面積が増加する。また、第2の溝141は、内側領域と外側領域とが接続される熱伝導経路の断面積を減少させる。そのため、第2の溝141は、内側領域から外側領域への熱伝導および外側領域から内側領域への熱伝導を抑制する第2の断熱部150L-2として機能する。すなわち、ステージ10Lでは、2つに分割された断熱部150Lが設けられている。
 ステージ10Lの内側領域において、環流路112、122は、互いに重畳している。ステージ10Lの外側領域において、ヒータ113、123は、互いに重畳している。ステージ10Kでは、ヒータ113、123をそれぞれ独立して制御することができ、環流路112、122を流通する冷却媒体の条件もそれぞれ独立して制御することができる。ステージ10Lでは、ヒータ113が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第2の金属プレート120のヒータ123および環流路122を流通する冷却媒体を制御することにより、内側領域と外側領域との温度差を調整することができる。ステージ10Lでは、第1の金属プレート110~第4の金属プレート140に亘って断熱部150Lが設けられているため、内側領域から外側領域への熱伝導および外側領域から内側領域への熱伝導をさらに抑制することができる。
 なお、図20には、第4の金属プレート140に外部の大気と接する第2の溝141を図示したが、ステージ10Lは、第1の金属プレート110に外部の大気と接する溝が設けられる構成であってもよい。
<変形例13>
 図21を参照して、本発明の一実施形態に係るステージ10の別の一変形例について説明する。なお、以下では、ステージ10~ステージ10Lの構成と同一または類似の構成の説明を省略する場合がある。
 図21は、本発明の一実施形態に係るステージ10Mのプレート部100Mの構成を示す模式的な断面図である。
 図21に示すように、ステージ10Mのプレート部100Mは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、環流路112、およびヒータ113が設けられている。第2の金属プレート120には、貫通口121、環流路122、およびヒータ123が設けられている。第3の金属プレート130には、第2の溝131が設けられている。第4の金属プレート140には、第3の溝141が設けられている。プレート部100Mでは、第1の溝111、貫通口121、および第2の溝131が互いに連通した第1の断熱部150M-1が形成されている。また、第3の溝141の開口面が第3の金属プレート130によって閉塞された第2の断熱部150M-2が形成されている。すなわち、ステージ10Mでは、2つに分割された断熱部150Mが設けられている。但し、平面視において、第2の断熱部150M-2は、第1の断熱部150M-1と重畳していない。平面視において、第2の断熱部150M-2は、ヒータ113、123と重畳している。なお、以下では、便宜上、第1の断熱部150M-1を内側領域と外側領域との境界とし、第2の断熱部150M-2が外側領域に設けられているとして説明する。
 ステージ10Mの内側領域において、環流路112、122は、互いに重畳している。ステージ10Mの外側領域において、ヒータ113、123は、互いに重畳している。ステージ10Mでは、ヒータ113、123をそれぞれ独立して制御することができ、環流路112、122を流通する冷却媒体の条件もそれぞれ独立して制御することができる。ステージ10Mでは、ヒータ113が第1の金属プレート110の外側領域を加熱し、環流路112を流通する冷却媒体が第1の金属プレート110の内側領域を冷却することにより、内側領域と外側領域との温度差を大きくする。また、第2の金属プレート120のヒータ123および環流路122を流通する冷却媒体を制御することにより、内側領域と外側領域との温度差を調整することができる。ステージ10Mでは、第1の断熱部150M-1が内側領域から外側領域への熱伝導および外側領域から内側領域への熱伝導を抑制することができる。また、外側領域のヒータ113、123により近い位置において、第2の断熱部150M-2がヒータ113、123からの熱の伝導を抑制することができる。
 なお、図21には、第4の金属プレート140に設けられた第3の溝141によって形成される第2の断熱部150M-2を図示したが、第2の断熱部150M-2は、第3の金属プレート130に設けられた溝(第2の溝131と異なる溝)によって形成されていてもよく、第3の金属プレート130に設けられた溝および第4の金属プレート140に設けられた第3の溝141によって形成されていてもよい。また、第2の溝141の幅を大きくし、平面視において、第2の断熱部150M-2が、第1の断熱部150M-1と重畳するようにしてもよい。さらに、第2の断熱部150M-2は、内側領域に設けられていてもよい。
 本実施形態においては、変形例1~変形例13で説明した構成を適宜組み合わせた構成も適用することができる。
 以上、変形例1~変形例13で説明した構成も含め、本発明の一実施形態に係るステージ10は、第1の金属プレート110の第1の溝111、第2の金属プレート120の貫通口121、および第3の金属プレート130の第2の溝が互いに連通した断熱部150を含む。また、断熱部150を間に挟み、第1の金属プレート110の内側領域を冷却するための第1の環流路および第1の金属プレート110の外側領域を加熱するための第1のヒータが設けられている。この構成により、ステージ10では、内側領域と外側領域との温度差を大きくすることができる。また、ステージ10は、第1の環流路と重畳する第2の環流路または第1のヒータと重畳する第2のヒータを含む。第1の環流路を流通する冷却媒体の条件および第2の環流路を流通する冷却媒体の条件は、独立して制御することができる。第1のヒータおよび第2のヒータは、独立して制御することができる。そのため、第2の環流路を流通する冷却媒体の条件を制御することによって内側領域の温度を調整し、または第2のヒータを制御することによって外側領域の温度を調整することができる。したがって、ステージ10では、内側領域と外側領域との温度差を大きくするだけでなく、温度差を調整することができる。
<第2実施形態>
 図22および図23を参照して、本発明の一実施形態に係るステージ11について説明する。なお、以下では、ステージ10の構成と同一または類似の構成の説明を省略する場合がある。
 図22は、本発明の一実施形態に係るステージ11の構成を示す模式的な断面図である。
 図22に示すように、ステージ11のプレート部300は、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110は、第1の溝111、環流路112、およびヒータ113を含む。第2の金属プレート120は、貫通口121、環流路122、およびヒータ123を含む。第3の金属プレート130は、第2の溝131を含む。また、ステージ11のプレート部100は、第1の金属プレート110の第1の溝111、第2の金属プレート120の貫通口121、および第3の金属プレート130の第2の溝131が互いに連通した断熱部150を含む。環流路112、122およびヒータ113、123は、断熱部150を境界として、それぞれ、外側領域および内側領域に設けられている。すなわち、内側領域において、ヒータ113、123は互いに重畳している。また、外側領域において、環流路112、122は互いに重畳している。
 断熱部150は、第1の金属プレート110~第3の金属プレートの各々において、内側領域から外側領域への熱伝導および外側領域から内側領域への熱伝導を抑制することができる。これにより、ステージ11では、内側領域と外側領域との温度差を大きくすることができる。
 図23は、本発明の一実施形態に係る11の温度勾配プロファイルを説明するグラフである。
 図23に示すグラフの横軸には、第1の金属プレート110の表面の中心位置をゼロとし、所定の方向に沿った第1の金属プレート110の表面の位置が示され、グラフの縦軸には、第1の金属プレート110の表面の表面温度が示されている。第1の位置P1および第3の位置P3は、それぞれ、断熱部150および環流路112の位置を表している。すなわち、2つのP1の間が内側領域に相当し、P1とP3との間が外側領域に相当する。
 ステージ11では、第1の金属プレート110および第2の金属プレート120の内側領域のヒータ113、123を制御することによって、第1の金属プレート110の内側領域が加熱される。一方、第1の金属プレート110および第2の金属プレート120の外側領域の環流路112、122を流通する冷却媒体の条件を制御することによって、第1の金属プレート110の外側領域が冷却される。第1の金属プレート110の内側領域の熱は外部領域へと伝導されるが、内側領域と外側領域との間に断熱部150が設けられているため、内側領域と外側領域との熱伝導経路が制限され、外側領域から内側領域への熱伝導が抑制される。そのため、ヒータ113、123によって内側領域が加熱されても、外側領域における温度上昇が抑制される。また、断熱部150による熱流量の減少により、内側領域と外側領域との温度差が大きくなる。例えば、第1の金属プレート110の中心近傍において測定される最高表面温度T0と環流路112近傍において測定される最低表面温度T3との最大温度差は、20℃以上であり、好ましくは60℃以上であり、さらに好ましくは100℃以上である。上述したように、ステージ11では、ヒータ113、123を独立して制御することができ、および冷却媒体の条件も独立して制御することができる。そのため、ステージ11は、内側領域の温度および外側領域の温度を調整しながら、内側領域と外側領域との温度差を大きくすることができる。
 以上説明したように、ステージ11では、断熱部150によって、外側領域に設けられたヒータ113、123からの熱が内側領域に伝導されることを抑制することができる。すなわち、断熱部150による空間によって、プレート部100の外側領域と内側領域とが接続される熱伝導経路の断面積が減少するため、断熱部150は熱閉塞/サーマルチョークとして機能することができる。これにより、ステージ11では、内側領域と外側領域との温度差が大きくなるため、例えば、内側領域の温度低下が顕著であるウェハに対してステージ11を適用すると、ウェハの内側領域の温度を補正し、ウェハ内の温度分布を均一化させることができる。
<第3実施形態>
 図24を参照して、本発明の一実施形態に係るステージ12について説明する。なお、以下では、ステージ10またはステージ11の構成と同一または類似の構成の説明を省略する場合がある。
 図24は、本発明の一実施形態に係るステージ12の構成を示す模式的な断面図である。
 図24に示すように、ステージ12のプレート部400は、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110は、第1の溝111、環流路112、およびヒータ113を含む。第2の金属プレート120は、貫通口121、環流路122、およびヒータ123を含む。第3の金属プレート130は、第2の溝131を含む。また、ステージ12のプレート部400は、第1の金属プレート110の第1の溝111、第2の金属プレート120の貫通口121、および第3の金属プレート130の第2の溝131が互いに連通した断熱部150を含む。第1の金属プレート110において、環流路112およびヒータ113は、断熱部150を境界として、それぞれ、内側領域および外側領域に設けられている。また、第2の金属プレート120において、環流路122およびヒータ123は、断熱部150を境界として、それぞれ、外側領域および内側領域に設けられている。すなわち、内側領域において、環流路112およびヒータ123は互いに重畳している。また、外側領域において、ヒータ113および環流路122は互いに重畳している。
 ステージ12では、第1の金属プレート110に設けられた環流路112を流通する冷却媒体およびヒータ113を用いて、第1の金属プレート110の温度を制御する。このとき、断熱部150により、外側領域から内側領域への熱伝導を抑制することができるため、図8に示す温度勾配プロファイルが得られ、内側領域と外側領域との温度差を大きくすることができる。なお、環流路122を流通する冷却媒体を用いて、第1の金属プレート110から第2の金属プレート120への熱伝導を抑制することもできる。
 また、ステージ12では、第2の金属プレート120に設けられたヒータ123および環流路112を流通する冷却媒体を用いて、第1の金属プレート110の温度を制御する。このとき、断熱部150により、内側領域から外側領域への熱伝導を抑制することができるため、図23に示す温度勾配プロファイルが得られ、内側領域と外側領域との温度差を大きくすることができる。
 したがって、ステージ12では、内側領域と外側領域との温度差の大きい2種類の温度勾配プロファイルを実現することができる。
<変形例1>
 図25を参照して、本発明の一実施形態に係るステージ12の位置変形例について説明する。なお、以下では、ステージ12の構成と同一または類似の構成の説明を省略する場合がある。
 図25は、本発明の一実施形態に係るステージ12Aのプレート部400Aの構成を示す模式的な断面図である。
 図25に示すように、ステージ12Aのプレート部400Aは、第1の金属プレート110、第2の金属プレート120、第3の金属プレート130、および第4の金属プレート140を含む。第1の金属プレート110には、第1の溝111、第1の環流路112-1、第2の環流路112-2、第1のヒータ113-1、および第2のヒータ113-2が設けられている。第2の金属プレート120には、貫通口121が設けられている。第3の金属プレート130には、第2の溝131が設けられている。また、ステージ12Aのプレート部400Aは、第1の金属プレート110の第1の溝111、第2の金属プレート120の貫通口121、および第3の金属プレート130の第2の溝131が互いに連通した断熱部150を含む。第1の環流路112-1および第1のヒータ113-1は、断熱部150を境界として、内側領域に設けられている。第2の環流路112-2および第2のヒータ113-2は、断熱部150を境界として、外側領域に設けられている。
 ステージ12Aでは、内側領域に設けられた第1の環流路112-1を流通する冷却媒体および外側領域に設けられた第2のヒータ113-2を用いて、第1の金属プレート110の温度を制御する。このとき、断熱部150により、外側領域から内側領域への熱伝導を抑制することができるため、図8に示す温度勾配プロファイルが得られ、内側領域と外側領域との温度差を大きくすることができる。
 また、ステージ12Aでは、内側領域に設けられた第1のヒータ113-1および外側領域に設けられた環流路を流通する冷却媒体を用いて、第1の金属プレート110の温度を制御する。このとき、断熱部150により、内側領域への熱伝導を抑制することができるため、図23に示す温度勾配プロファイルが得られ、内側領域と外側領域との温度差を大きくすることができる。
 したがって、ステージ12Aでは、内側領域と外側領域との温度差の大きい2種類の温度勾配プロファイルを実現することができる。なお、第2の金属プレート120または第3の金属プレート130に、第1の金属プレート110と同様に環流路およびヒータを配置してもよい。この場合、第2の金属プレート120または第3の金属プレート130に配置された環流路を流通する冷却媒体およびヒータを用いて、第1の金属プレート110の温度を調整することができる。
<第4実施形態>
 図26を参照して、本発明の一実施形態に係るエッチング装置50について説明する。エッチング装置50は、ステージ10を含む。そのため、以下では、第1実施形態で説明したステージ10の構成と同一または類似の構成の説明を省略する場合がある。
 図26は、本発明の一実施形態に係るエッチング装置50の構成を示す模式的な断面図である。
 エッチング装置50は、種々の膜に対してドライエッチングを行うことができる。エッチング装置50は、チャンバー502を有している。チャンバー502は、ウェハ上に形成された導電体、絶縁体、または半導体などの膜に対してエッチングを行う空間を提供する。
 チャンバー502には排気装置504が接続され、これにより、チャンバー502内を減圧雰囲気に設定することができる。チャンバー502には、さらに反応ガスを導入するための導入管506が設けられ、バルブ508を介してチャンバー502内にエッチング用の反応ガスが導入される。反応ガスとしては、例えば、四フッ化炭素(CF)、オクタフルオロシクロブタン(c-C)、デカフルオロシクロペンタン(c-C10)、またはヘキサフルオロブタジエン(C)などの含フッ素有機化合物を用いることができる。
 チャンバー502上部には導波管510を介してマイクロ波源512を設けることができる。マイクロ波源512はマイクロ波を供給するためのアンテナなどを有しており、例えば2.45GHzのマイクロ波や、13.56MHzのラジオ波(RF)といった高周波数のマイクロ波を出力する。マイクロ波源512で発生したマイクロ波は導波管510によってチャンバー502の上部へ伝播し、石英またはセラミックなどを含む窓514を介してチャンバー502内へ導入される。マイクロ波によって反応ガスがプラズマ化し、プラズマに含まれる電子、イオン、またはラジカルによって膜のエッチングが進行する。
 チャンバー502下部には、ウェハを載置するためのステージ10が設けられる。ステージ10には電源524が接続され、高周波電力がステージ10に与えられ、マイクロ波による電界がステージ10の表面、ウェハ表面に対して垂直な方向に形成される。チャンバー502の上部および側面には、さらに磁石516、磁石518、および磁石520を設けることができる。磁石516、磁石518、および磁石520は、永久磁石でもよく、電磁コイルを有する電磁石でもよい。磁石516、磁石518、および磁石520により、ステージ10およびウェハ表面に平行な磁界が生成される。磁界とマイクロ波による電界との連携により、プラズマ中の電子は、ローレンツ力を受けて共鳴し、ステージ10およびウェハ表面に束縛される。その結果、高い密度のプラズマをウェハ表面に発生させることができる。
 ステージ10には、さらに、ステージ10に設けられるヒータ113を制御するヒータ電源530が接続される。ステージ10には、さらに、任意の構成として、ウェハをステージ10に固定するための静電チャック用の電源526、ステージ10の内部に環流される媒体の温度制御を行う温度コントローラ528、およびステージ10を回転させるための回転制御装置(図示せず)が接続されてもよい。
<第5実施形態>
 図27を参照して、本発明の一実施形態に係るCVD装置60について説明する。CVD装置60は、ステージ10を含む。そのため、以下では、第1実施形態で説明したステージ10の構成と同一または類似の構成の説明を省略する場合がある。
 図27は、本発明の一実施形態に係るCVD装置60の構成を示す模式的な断面図である。
 CVD装置60はチャンバー602を有している。CVD装置60は、反応ガスを化学的に反応させ、種々の膜をウェハ上に化学的に形成する場を提供する。
 チャンバー602には排気装置604が接続され、チャンバー602内の圧力を低減することができる。チャンバー602にはさらに反応ガスを導入するための導入管606が設けられ、バルブ608を介してチャンバー602内に成膜用の反応ガスが導入される。反応ガスとしては、作製する膜に依存して種々のガスを用いることができる。ガスは、常温で液体でもよい。例えば、シラン、ジクロロシラン、またはテトラエトキシシランなどを用いることでシリコン、酸化ケイ素、または窒化ケイ素などの薄膜を形成することができる。また、フッ化タングステンまたはトリメチルアルミニウムなどを用いることで、タングステンまたはアルミニウムなどの金属薄膜を形成することができる。
 エッチング装置50と同様、チャンバー602上部には導波管610を介してマイクロ波源612を設けてもよい。マイクロ波源612で発生したマイクロ波は導波管610によってチャンバー602内部へ導入される。マイクロ波によって反応ガスがプラズマ化し、プラズマに含まれる種々の活性種によってガスの化学反応が促進され、化学反応によって得られる生成物がウェハ上に堆積し、薄膜が形成される。任意の構成として、プラズマの密度を増大させるための磁石644をチャンバー602内に設けることができる。チャンバー602の下部には、ステージ10が設けられ、ウェハがステージ10上に載置された状態で薄膜の堆積を行うことができる。エッチング装置50と同様、チャンバー602の側面にはさらに磁石616および磁石618を設けてもよい。
 ステージ10には、さらに、ステージ10に設けられるヒータ113を制御するヒータ電源630が接続される。ステージ10には、さらに、任意の構成として、高周波電力をステージ10に供給するための電源624、静電チャック用の電源626、ステージ10の内部に環流される冷却媒体の温度制御を行う温度コントローラ628、およびステージ10を回転させるための回転制御装置(図示しない)が接続されてもよい。
<第6実施形態>
 図28を参照して、本発明の一実施形態に係るスパッタリング装置70について説明する。スパッタリング装置70は、ステージ10を含む。そのため、以下では、第2実施形態で説明したステージ10の構成と同一または類似の構成の説明を省略する場合がある。
 図28は、本発明の一実施形態に係るスパッタリング装置70の構成を示す模式的な断面図である。
 スパッタリング装置70はチャンバー702を有する。スパッタリング装置70は、高速のイオンとターゲットの衝突、およびその際に発生するターゲット原子をウェハ上に堆積させるための場を提供する。
 チャンバー702にはチャンバー702内を減圧にするための排気装置704が接続される。チャンバー702にはアルゴンなどのスパッタリングガスをチャンバー702へ導入するための導入管706およびバルブ708が設けられる。
 チャンバー702の下部には、成膜する材料を含むターゲットを保持し、かつ陰極として機能するターゲットステージ710が設けられ、その上にターゲット712が設置される。ターゲットステージ710には高周波電源714が接続され、高周波電源714によってチャンバー702内にプラズマを発生することができる。
 チャンバー702の上部には、ステージ10を設けることができる。この場合、ウェハがステージ10の下に設置された状態で薄膜の形成が進行する。エッチング装置50やCVD装置60と同様、ステージ10にはヒータ電源730が接続される。ステージ10には、さらに、高周波電力をステージ10に供給するための電源724、静電チャック用の電源726、温度コントローラ728、およびステージ10を回転させるための回転制御装置(図示せず)が接続されてもよい。
 チャンバー702内で発生したプラズマによって加速されたアルゴンイオンは、ターゲット712に衝突し、ターゲット712の原子が弾き出される。弾き出された原子は、シャッター716が開放されている間、ステージ10の下に設置されるウェハへ飛翔し、堆積する。
 図28には、ステージ10がチャンバー702の上部に、ターゲットステージ710がチャンバー702の下部に設置される構成が図示されているが、スパッタリング装置70の構成はこれに限られず、ターゲット712がステージ10の上に位置するような構成であってもよい。あるいは、ウェハの主面が水平面に対して垂直に配置されるようにステージ10を設置し、それに対向するようにターゲットステージ710を設ける構成であってもよい。
<第7実施形態>
 図29を参照して、本発明の一実施形態に係る蒸着装置80について説明する。蒸着装置80は、ステージ10を含む。そのため、以下では、第1実施形態で説明したステージ10の構成と同一または類似の構成の説明を省略する場合がある。
 図29は、本発明の一実施形態に係る蒸着装置80の構成を示す模式的な断面図である。
 蒸着装置80はチャンバー802を有する。蒸着装置80は、蒸着源810における材料の蒸発、ならびに蒸発した材料をウェハ上へ堆積させるための空間が提供される。
 チャンバー802にはチャンバー802内を高真空にするための排気装置504が接続される。チャンバー802には、チャンバー802を大気圧に戻すための導入管806が設けられ、バルブ808を介して窒素またはアルゴンなどの不活性ガスがチャンバー802内に導入される。
 チャンバー802の上部には、ステージ10を設けることができる。ウェハがステージ10の下に設置された状態で材料の堆積が進行する。エッチング装置50、CVD装置60、およびスパッタリング装置70と同様、ステージ10には、さらに、ヒータ電源828が接続される。ステージ10には、さらに、任意の構成として、静電チャック用の電源824、温度コントローラ826、およびステージ10を回転させるための回転制御装置830が接続されてもよい。ステージ10は、さらに、ウェハと蒸着源810の間にメタルマスクを固定するためのマスクホルダ816を有してもよい。これにより、材料を堆積する領域にメタルマスクの開口部が重なるように、ウェハ近傍にメタルマスクを配置することができる。
 蒸着源810がチャンバーの下側に設けられ、蒸着する材料が蒸着源810に充填される。蒸着源810には材料を加熱するためのヒータが設けられており、ヒータは制御装置812によって制御される。排気装置804を用いてチャンバー802内を高真空にし、蒸着源810を加熱して材料を気化させることで蒸着が開始される。蒸着の速度が一定になった時にシャッター814を開放することで、ウェハ上において材料の堆積が開始される。
 以上、第4実施形態~第7実施形態において説明したエッチング装置50、CVD装置60、スパッタリング装置70、および蒸着装置80には、ステージ10が用いられる。ステージ10を用いることで、外側領域の温度低下が顕著であるウェハに対して、ウェハ内の温度分布を均一化することができる。
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、上述した各実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと理解される。
10、10A、10B、10C、10D、10E、10F、10G、10H、10I、10J、10K、10L、10M、11、12、12A:ステージ、 50:エッチング装置、 60:CVD装置、 70:スパッタリング装置、 80:蒸着装置、 100、100A、100B、100C、100D、100E、100F、100G、100H、100I、100J、100K、100L、100M:プレート部、 101:第1の面、 102:第2の面、 110:第1の金属プレート、 111:溝、 112:環流路、 112a:入口、 112b:出口、 113:ヒータ、 120:第2の金属プレート、 121:貫通口、 122:環流路、 123:ヒータ、 125、125a、125b:接続領域、 130:第3の金属プレート、 131:溝、 132:環流路、 133:ヒータ、 134:貫通口、 140:第4の金属プレート、 141:溝、 144:貫通口、 150、150L、150M:断熱部、 200:シャフト部、 300:プレート部、 400、400A:プレート部、 502:チャンバー、 504:排気装置、 506:導入管、 508:バルブ、 510:導波管、 512:マイクロ波源、 514:窓、 516、518、520:磁石、 524、526:電源、 528:温度コントローラ、 530:ヒータ電源、 602:チャンバー、 604:排気装置、 606:導入管、 608:バルブ、 610:導波管、 612:マイクロ波源、 616、618:磁石、 624、626:電源、 628:温度コントローラ、 630:ヒータ電源、 644:磁石、 702:チャンバー、 704:排気装置、 706:導入管、 708:バルブ、 710:ターゲットステージ、 712:ターゲット、 714:高周波電源、 716:シャッター、 724、726:電源、 728:温度コントローラ、 730:ヒータ電源、 802:チャンバー、 804:排気装置、 806:導入管、 808:バルブ、 810:蒸着源、 812:制御装置、 814:シャッター、 816:マスクホルダ、 824:電源、 826:温度コントローラ、 828:ヒータ電源、 830:回転制御装置

Claims (27)

  1.  第1の溝を含む第1の金属プレートと、
     前記第1の金属プレートの下方に位置する、第1の貫通口を含む第2の金属プレートと、
     前記第2の金属プレートの下方に位置する、第2の溝および第2の貫通口のうちの少なくとも1つを含む第3の金属プレートと、
     前記第1の溝、前記第1の貫通口、ならびに前記第2の溝および第2の貫通口のうちの少なくとも1つが互いに連通した断熱部と、
     前記第1の金属プレート、前記第2の金属プレート、および前記第3の金属プレートのうちの1つの金属プレートに設けられる第1の環流路および第1のヒータと、
     第2の環流路および第2のヒータの少なくとも1つと、を含み、
     前記第1の環流路および前記第2の環流路は、前記断熱部を境界とする第1の領域に設けられ、
     前記第1のヒータおよび前記第2のヒータは、前記断熱部を境界とする前記第1の領域の反対の第2の領域に設けられる、ステージ。
  2.  さらに、前記第3の金属プレートの下方に位置する第4の金属プレートを含み、
     前記第2の環流路および前記第2のヒータは、前記第4の金属プレートに設けられている、請求項1に記載のステージ。
  3.  前記第1の領域は、前記断熱部によって囲まれる領域である、請求項1に記載のステージ。
  4.  前記第2の領域は、前記断熱部によって囲まれる領域である、請求項1に記載のステージ。
  5.  前記第2のヒータは、前記第1のヒータが設けられる前記1つの金属プレートに設けられている、請求項1に記載のステージ。
  6.  隣接する2つの金属プレートの一方が、前記第1のヒータが設けられる前記1つの金属プレートであり、
     前記第2の環流路は、前記隣接する2つの金属プレートの他方に設けられている、請求項5に記載のステージ。
  7.  離隔した2つの金属プレートの一方が、前記第1のヒータが設けられる前記1つの金属プレートであり、
     前記第2の環流路は、前記離隔する2つの金属プレートの他方に設けられている、請求項5に記載のステージ。
  8.  隣接する2つの金属プレートの一方が、前記第1のヒータが設けられる前記1つの金属プレートであり、
     前記第2のヒータは、前記隣接する2つの金属プレートの他方に設けられている、請求項1に記載のステージ。
  9.  前記第2の環流路は、前記隣接する2つの金属プレートの他方に設けられている、請求項8に記載のステージ。
  10.  前記第2の環流路は、前記隣接する2つの金属プレートと異なる金属プレートに設けられている、請求項8に記載のステージ。
  11.  離隔する2つの金属プレートの一方が、前記第1のヒータが設けられる前記1つの金属プレートであり、
     前記第2のヒータは、前記離隔する2つの金属プレートの他方に設けられている、請求項1に記載のステージ。
  12.  前記第2の環流路は、前記離隔する2つの金属プレートの他方に設けられている、請求項11に記載のステージ。
  13.  前記第2の環流路は、前記離隔する2つの金属プレートと異なる金属プレートに設けられている、請求項11に記載のステージ。
  14.  前記第2のヒータの断面径は、前記第1のヒータの断面径と異なる、請求項1に記載のステージ。
  15.  前記第1のヒータおよび前記第2のヒータは、電気的に絶縁されている、請求項1に記載のステージ。
  16.  第1の溝を含む第1の金属プレートと、
     前記第1の金属プレートの下方に位置する、第1の貫通口を含む第2の金属プレートと、
     前記第2の金属プレートの下方に位置する、第2の溝および第2の貫通口のうちの少なくとも1つを含む第3の金属プレートと、
     前記第1の溝、前記第1の貫通口、ならびに前記第2の溝および第2の貫通口のうちの少なくとも1つが互いに連通した断熱部と、
     前記第1の金属プレート、前記第2の金属プレート、および前記第3の金属プレートのうちの1つの金属プレートに設けられる第1の環流路と、
     前記1つの金属プレートと異なる別の金属プレートに設けられる第1のヒータと、
     前記1つの金属プレートおよび前記別の金属プレートと異なる金属プレートに設けられる、第2の環流路および第2のヒータの少なくとも1つと、を含み、
     前記第1の環流路および前記第2の環流路は、前記断熱部を境界とする第1の領域に設けられ、
     前記第1のヒータおよび前記第2のヒータは、前記断熱部を境界とする前記第1の領域の反対の第2の領域に設けられる、ステージ。
  17.  さらに、前記第3の金属プレートの下方に位置する第4の金属プレートを含み、
     前記第2の環流路および第2のヒータの少なくとも1つは、前記第4の金属プレートに設けられている、請求項16に記載のステージ。
  18.  前記第1の領域は、前記断熱部によって囲まれる領域である、請求項16に記載のステージ。
  19.  前記第2の領域は、前記断熱部によって囲まれる領域である、請求項16に記載のステージ。
  20.  前記1つの金属プレートと前記別の金属プレートとは隣接している、請求項16に記載のステージ。
  21.  前記1つの金属プレートと前記別の金属プレートとは離隔している、請求項16に記載のステージ。
  22.  第1の溝を含む第1の金属プレートと、
     前記第1の金属プレートの下方に位置する、第1の貫通口を含む第2の金属プレートと、
     前記第2の金属プレートの下方に位置する、第2の溝および第2の貫通口の少なくとも1つを含む第3の金属プレートと、
     前記第1の溝、前記第1の貫通口、ならびに前記第2の溝および第2の貫通口の少なくとも1つが互いに連通した断熱部と、
     前記第1の金属プレート、前記第2の金属プレート、および前記第3の金属プレートのうちの1つの金属プレートに設けられる第1の環流路および第1のヒータと、
     第2の環流路および第2のヒータと、を含み、
     前記第1の環流路および前記第2のヒータは、前記断熱部を境界とする第1の領域に設けられ、
     前記第1のヒータおよび前記第2の環流路は、前記断熱部を境界とする前記第1の領域の反対の第2の領域に設けられる、ステージ。
  23.  さらに、前記第3の金属プレートの下方に位置する第4の金属プレートを含み、
     前記第2の環流路および前記第2のヒータの少なくとも1つは、前記第4の金属プレートに設けられる、請求項22に記載のステージ。
  24.  前記第2の環流路および前記第2のヒータは、前記第1の環流路および前記第1のヒータが設けられる前記1つの金属プレートに設けられている、請求項22に記載のステージ。
  25.  隣接する2つの金属プレートの一方が、前記第1の環流路および前記第1のヒータが設けられる前記1つの金属プレートであり、
     前記第2の環流路および前記第2のヒータは、前記隣接する2つの金属プレートの他方に設けられている、請求項22に記載のステージ。
  26.  離隔する2つの金属プレートの一方が、前記第1の環流路および前記第2の環流路が設けられる前記1つの金属プレートであり、
     前記第2の環流路および前記第2のヒータは、前記離隔する2つの金属プレートの他方に設けられている、請求項22に記載のステージ。
  27.  前記第1の金属プレートの最低表面温度と最大表面温度との温度差が20℃以上である、請求項1乃至請求項26のいずれか一項に記載のステージ。
     
PCT/JP2023/021870 2022-09-30 2023-06-13 ステージ WO2024070071A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158331 2022-09-30
JP2022158331A JP2024051933A (ja) 2022-09-30 2022-09-30 ステージ

Publications (1)

Publication Number Publication Date
WO2024070071A1 true WO2024070071A1 (ja) 2024-04-04

Family

ID=90476876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021870 WO2024070071A1 (ja) 2022-09-30 2023-06-13 ステージ

Country Status (3)

Country Link
JP (1) JP2024051933A (ja)
TW (1) TW202416421A (ja)
WO (1) WO2024070071A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204812A (ja) * 2010-03-25 2011-10-13 Tokyo Electron Ltd 複数温度領域分割制御構造体
JP2014150104A (ja) * 2013-01-31 2014-08-21 Tokyo Electron Ltd 載置台及びプラズマ処理装置
JP2017041628A (ja) * 2015-08-17 2017-02-23 エーエスエム アイピー ホールディング ビー.ブイ. サセプタ、基板処理装置
JP2017084523A (ja) * 2015-10-26 2017-05-18 日本発條株式会社 ヒータユニット
US20190204029A1 (en) * 2017-12-28 2019-07-04 Asm Ip Holding B.V. Cooling system, substrate processing system and flow rate adjusting method for cooling medium
JP2021027161A (ja) * 2019-08-05 2021-02-22 日本発條株式会社 ステージ、ステージを備える成膜装置または膜加工装置、および基板の温度制御方法
JP2022003667A (ja) * 2020-06-23 2022-01-11 日本特殊陶業株式会社 保持装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204812A (ja) * 2010-03-25 2011-10-13 Tokyo Electron Ltd 複数温度領域分割制御構造体
JP2014150104A (ja) * 2013-01-31 2014-08-21 Tokyo Electron Ltd 載置台及びプラズマ処理装置
JP2017041628A (ja) * 2015-08-17 2017-02-23 エーエスエム アイピー ホールディング ビー.ブイ. サセプタ、基板処理装置
JP2017084523A (ja) * 2015-10-26 2017-05-18 日本発條株式会社 ヒータユニット
US20190204029A1 (en) * 2017-12-28 2019-07-04 Asm Ip Holding B.V. Cooling system, substrate processing system and flow rate adjusting method for cooling medium
JP2021027161A (ja) * 2019-08-05 2021-02-22 日本発條株式会社 ステージ、ステージを備える成膜装置または膜加工装置、および基板の温度制御方法
JP2022003667A (ja) * 2020-06-23 2022-01-11 日本特殊陶業株式会社 保持装置

Also Published As

Publication number Publication date
JP2024051933A (ja) 2024-04-11
TW202416421A (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
KR100927913B1 (ko) 기판 탑재 기구 및 기판 처리 장치
KR100960424B1 (ko) 마이크로파 플라즈마 처리 장치
US10741368B2 (en) Plasma processing apparatus
KR100512155B1 (ko) 반도체 웨이퍼내의 접촉점, 비아 및 트렌치를 저온에서금속으로 충전하고 평탄화하는 장치
KR100307998B1 (ko) 프라즈마 처리방법
TWI390605B (zh) Processing device
WO2005103333A2 (en) Wafer heater assembly
WO2010032750A1 (ja) 基板処理装置および基板載置台
US20090041568A1 (en) Substrate processing apparatus, substrate placing table used for same, and member exposed to plasma
JPH1064983A (ja) ウエハステージ
JPH09260474A (ja) 静電チャックおよびウエハステージ
US11201040B2 (en) Substrate supporting unit and film forming device having the substrate supporting unit
US20220151031A1 (en) Heater
US20220157579A1 (en) Stage, film-forming apparatus or film-processing apparatus including the stage, and method for controlling temperature of substrate
US20020046807A1 (en) Plasma processing apparatus
US20230290611A1 (en) Distributed plasma source array
TW202017431A (zh) 加熱器及載台
CN112673709A (zh) 载物台、成膜装置和膜处理装置
US20240136214A1 (en) Long-life extended temperature range embedded diode design for electrostatic chuck with multiplexed heaters array
JP4583618B2 (ja) プラズマ処理装置
TWI826925B (zh) 電漿源組件和氣體分配組件
JP2023544237A (ja) 冷却された静電チャックを使用した半導体処理
WO2020061019A1 (en) Long-life high-power terminals for substrate support with embedded heating elements
WO2024070071A1 (ja) ステージ
JPH1064984A (ja) ウエハステージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871316

Country of ref document: EP

Kind code of ref document: A1