WO2024070067A1 - Film capacitor and module - Google Patents

Film capacitor and module Download PDF

Info

Publication number
WO2024070067A1
WO2024070067A1 PCT/JP2023/021733 JP2023021733W WO2024070067A1 WO 2024070067 A1 WO2024070067 A1 WO 2024070067A1 JP 2023021733 W JP2023021733 W JP 2023021733W WO 2024070067 A1 WO2024070067 A1 WO 2024070067A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
external electrode
film capacitor
intermediate member
capacitor
Prior art date
Application number
PCT/JP2023/021733
Other languages
French (fr)
Japanese (ja)
Inventor
賢 城岸
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024070067A1 publication Critical patent/WO2024070067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates to a film capacitor and a module.
  • a type of capacitor known is a film capacitor, which uses a flexible resin film as the dielectric film with opposing metal layers sandwiched between the dielectric film.
  • the capacitor elements that make up a film capacitor are manufactured, for example, by creating a laminate in which a metalized film having a metal layer provided on the surface of a dielectric film is wound or laminated, and then forming external electrodes (also called metallikon electrodes) on both end faces of the laminate.
  • Patent Document 1 discloses that in order to use such a film capacitor in a high-humidity, high-temperature environment, the film capacitor is wrapped in a laminate material that has a high barrier property against moisture, etc., and also discloses a motor that includes a capacitor wrapped in a laminate material. That is, Patent Document 1 discloses a motor that is characterized by having a motor drive capacitor that is enclosed in a laminate material and sealed with its terminal parts exposed to the outside, and is built in between the motor shell and the outer periphery of the stator coil.
  • the present invention has been made to solve the above problems, and the object of the present invention is to provide a film capacitor in which the laminate film covering the capacitor element is not easily damaged even when clamped with pressure. Furthermore, the object of the present invention is to provide a module that includes the above film capacitor.
  • the film capacitor of the present invention includes a capacitor element including an element body having end faces located at both ends in the longitudinal direction and side faces connecting the end faces, and external electrodes provided on the end faces of the element body, a laminate film covering the capacitor element, and an intermediate member disposed at least partially between the capacitor element and the laminate film.
  • the module of the present invention comprises a substrate, a fixture arranged on the substrate, and the film capacitor of the present invention that is attached to the substrate of the fixture, and the side of the element body of the film capacitor is attached to the fixture via the laminate film of the film capacitor.
  • the present invention can provide a film capacitor in which the laminate film covering the capacitor element is not easily damaged even when clamped with pressure. Furthermore, the present invention can provide a module including the above-mentioned film capacitor.
  • FIG. 1A is a perspective view illustrating an example of a film capacitor according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A.
  • FIG. 1C is an exploded view of the film capacitor according to the first embodiment of the present invention shown in FIG. 1A.
  • FIG. 2A is a cross-sectional view illustrating a schematic diagram of another example of an external electrode included in the film capacitor according to the first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view illustrating typically another example of an external electrode included in the film capacitor according to the first embodiment of the present invention.
  • FIG. 3A is a perspective view illustrating a schematic example of a wound film capacitor.
  • FIG. 3B is a cross-sectional view of the element body shown in FIG. 3A taken along line BB.
  • FIG. 4 is a perspective view that shows a schematic example of the first metallized film and the second metallized film that constitute the element body that constitutes the capacitor element shown in FIGS. 3A and 3B.
  • FIG. 5A is a perspective view illustrating an example of a module according to the first embodiment of the present invention.
  • FIG. FIG. 5B is a cross-sectional view of the module shown in FIG. 5A taken along line CC.
  • FIG. 5C is a cross-sectional view of the module shown in FIG. 5A taken along line DD.
  • FIG. 6A is a cross-sectional view illustrating an example of a film capacitor according to a second embodiment of the present invention.
  • FIG. 6B is an exploded view of an example of the film capacitor according to the second embodiment of the present invention.
  • FIG. 7A is a cross-sectional view illustrating an example of a film capacitor according to a third embodiment of the present invention.
  • FIG. 7B is an exploded view of an example of the film capacitor according to the third embodiment of the present invention.
  • FIG. 8A is a cross-sectional view illustrating an example of a film capacitor according to a fourth embodiment of the present invention.
  • FIG. 8B is an exploded view of an example of the film capacitor according to the fourth embodiment of the present invention.
  • the film capacitor of the present invention includes a capacitor element including an element body having end faces located at both ends in the longitudinal direction and side faces connecting the end faces to each other, and external electrodes provided on the end faces of the element body, a laminate film covering the capacitor element, and an intermediate member arranged at least partially between the capacitor element and the laminate film.
  • a capacitor element including an element body having end faces located at both ends in the longitudinal direction and side faces connecting the end faces to each other, and external electrodes provided on the end faces of the element body, a laminate film covering the capacitor element, and an intermediate member arranged at least partially between the capacitor element and the laminate film.
  • FIG. 1A is a perspective view illustrating an example of a film capacitor according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A.
  • FIG. 1C is an exploded view of the film capacitor according to the first embodiment of the present invention shown in FIG. 1A.
  • the film capacitor 1 shown in Figures 1A, 1B, and 1C includes a capacitor element 10, a laminate film 20 that covers the capacitor element 10, and an intermediate member 30 that is disposed between the capacitor element 10 and the laminate film 20.
  • the capacitor element 10 includes an element body 11 having end faces 11e located at both ends in the longitudinal direction (the direction indicated by the arrow L in Figures 1A, 1B, and 1C) and side faces 11s connecting the end faces 11e, and a pair of external electrodes 12 provided on both end faces 11e of the element body 11.
  • the element body 11 has, for example, a racetrack-shaped end face 11e and a columnar shape as a whole.
  • the side face 11s of the element body 11 is composed of a flat portion 11s1 formed in a flat shape and a curved portion 11s2 formed in a curved shape.
  • the external electrode 12 is, for example, in the form of a plate, and is shaped to cover the end surface 11 e of the element body 11 .
  • the external electrode 12 has an end face 12e that is visible when the external electrode 12 is viewed in a plane from the longitudinal direction L, and a side face 12s that is visible when the external electrode 12 is viewed in a plane from a direction perpendicular to the longitudinal direction L.
  • the end face 12e of the external electrode 12 has a racetrack shape in plan view.
  • the side surface s of the external electrode 12 is composed of a flat portion 12s1 formed in a flat shape and a curved portion 12s2 formed in a curved shape.
  • a pull-out terminal 40 electrically connected to the external electrode 12 is formed on the end surface 12e of the external electrode 12.
  • insulating resin 41 is disposed at the base of the protruding portion of the pull-out terminal 40. The insulating resin 41 is heat-welded to the laminate film 20, and also fixes the pull-out terminal 40.
  • laminate film 20 is formed by bonding a pair of upper and lower laminate materials 21 that cover capacitor element 10.
  • Laminate material 21 has a shape that follows the outer shape of capacitor element 10, and has, for example, a flange portion 22 on the outer edge. Laminate material 21 may also have a drawing opening 23 for drawing out drawing terminal 40.
  • the pair of laminate materials 21 are heat-welded to each other at the flange portion 22 to form the laminate film 20.
  • the insulating resin 41 and the flange portion 22 are heat-welded to each other.
  • the intermediate member 30 is disposed at least between the external electrode 12 and the laminate film 20. More specifically, the intermediate member 30 continuously covers the flat portion 11s1 of the side surface 11s of the element body 11 and the flat portion 12s1 of the side surface 12s of the external electrode 12. Therefore, in the film capacitor 1, the side surface 12s of the external electrode 12 and the laminate film 20 are separated from each other and are not in direct contact with each other.
  • the Young's modulus of the intermediate member 30 is preferably lower than the Young's modulus of the external electrodes 12 .
  • the ratio of the Young's modulus of the external electrode 12 to the Young's modulus of the intermediate member 30 is preferably 20 or more and 25,000 or less when expressed as Young's modulus of external electrode/Young's modulus of intermediate member.
  • the laminate film 20 When the film capacitor 1 is clamped with a pressure force in a direction perpendicular to the longitudinal direction L, the laminate film 20 is pressed against the flat portion 12 s 1 of the side surface 12 s of the external electrode 12 via the intermediate member 30 .
  • the Young's modulus of the intermediate member 30 is lower than that of the external electrode 12, the pressure applied to the laminate film 20 is reduced compared to when the laminate film 20 is directly pressed against the flat portion 12s1 of the side surface 12s of the external electrode 12.
  • the intermediate member 30 is made of a material that is easily elastically deformed, the pressure applied to the laminate film 20 is dispersed, making it possible to prevent the pressure from concentrating in one area. That is, in the film capacitor 1 , the intermediate member 30 functions as a buffer material that protects the external electrodes 12 .
  • the external electrode 12 is plate-shaped, and the angle between the end face 12e of the external electrode 12 and the side face 12s of the external electrode 12 is 90 degrees. Therefore, in Figure 1B, the end face 12e of the external electrode 12 and the side face 12s of the external electrode 12 are clearly separated without overlapping.
  • the external electrode may have a shape in which the corners are chamfered.
  • the chamfered portion is visible when the external electrode is viewed in a plan view from the longitudinal direction, and is also visible when the external electrode is viewed in a plan view from a direction perpendicular to the longitudinal direction.
  • the chamfered portion belongs to both the end face and the side face of the external electrode.
  • the external electrode may have a portion that belongs to both the end face and the side face of the external electrode.
  • FIGS. 2A and 2B are cross-sectional views illustrating schematic diagrams of another example of an external electrode included in the film capacitor according to the first embodiment of the present invention.
  • An external electrode 12' shown in Figs. 2A and 2B has the same configuration as the external electrode 12 described above, except that corners 12R' are chamfered.
  • the range (the portion indicated by the reference symbol "A1" in Fig. 2A) that can be seen when the external electrode 12' is viewed in plan from the longitudinal direction L is the end face 12e'.
  • the range (the portion indicated by the reference symbol "A2" in Fig.
  • the corner portion 12R' belongs to both the end face 12e' of the external electrode 12' and the side face 12s' of the external electrode 12'.
  • the external electrodes may have such a shape.
  • the element body may be a wound film capacitor in which a metallized film is laminated and wound, or it may be a laminated film capacitor in which a metallized film is laminated.
  • FIG. 3A is a perspective view illustrating a schematic example of a wound film capacitor.
  • FIG. 3B is a cross-sectional view of the element body shown in FIG. 3A taken along line BB.
  • the element body 11 is a laminate including a first metallized film 51 and a second metallized film 52.
  • the element body 11 is a wound body in which the first metallized film 51 and the second metallized film 52 are wound in a laminated state.
  • a pair of external electrodes 12 are electrically connected to both end faces of the element body 11.
  • the first metallized film 51 includes a first dielectric film 53 and a first metal layer 55 provided on the surface of the first dielectric film 53
  • the second metallized film 52 includes a second dielectric film 54 and a second metal layer 56 provided on the surface of the second dielectric film 54.
  • the first metal layer 55 and the second metal layer 56 face each other with the first dielectric film 53 or the second dielectric film 54 sandwiched therebetween. Furthermore, the first metal layer 55 is electrically connected to one of the external electrodes 12, and the second metal layer 56 is electrically connected to the other external electrode 12.
  • the first dielectric film 53 and the second dielectric film 54 may have different configurations, but preferably have the same configuration.
  • the first metal layer 55 is formed on one side of the first dielectric film 53 so as to reach one edge, but not to reach the other edge.
  • the second metal layer 56 is formed on one side of the second dielectric film 54 so as not to reach one edge, but to reach the other edge.
  • the first metal layer 55 and the second metal layer 56 are composed of, for example, an aluminum layer.
  • FIG. 4 is a perspective view showing a schematic example of a first metallized film and a second metallized film that constitute the element body of the capacitor element shown in FIGS. 3A and 3B.
  • the first dielectric film 53 and the second dielectric film 54 are stacked with a shift in the width direction (left and right direction in FIG. 3B) so that the end of the first metal layer 55 that reaches the side edge of the first dielectric film 53 and the end of the second metal layer 56 that reaches the side edge of the second dielectric film 54 are both exposed from the stacked films.
  • the element body 11 becomes a roll of metallized films by rolling up the first dielectric film 53 and the second dielectric film 54 in a stacked state, and is stacked with the first metal layer 55 and the second metal layer 56 exposed at their ends.
  • the second dielectric film 54 is wound on the outside of the first dielectric film 53, and the first metal layer 55 and the second metal layer 56 of each of the first dielectric film 53 and the second dielectric film 54 are wound so that they face inward.
  • the roll of metallized film may have a cylindrical winding shaft.
  • the winding shaft is disposed on the central axis of the rolled metallized film and serves as the winding shaft when winding the metallized film.
  • the external electrodes 12 are formed by spraying, for example, zinc, on each end face of the element body 11 obtained as described above.
  • One external electrode 12 contacts the exposed end of the first metal layer 55 and is thereby electrically connected to the first metal layer 55.
  • the other external electrode 12 contacts the exposed end of the second metal layer 56 and is thereby electrically connected to the second metal layer 56.
  • the dielectric film constituting the element body of the capacitor element may contain a curable resin as a main component, or may contain a thermoplastic resin as a main component. From the viewpoint of improving the heat resistance of the film capacitor, it is preferable that the dielectric film contains a curable resin as a main component.
  • the "main component of the dielectric film” means the component with the largest weight percentage, and preferably means the component with a weight percentage exceeding 50% by weight. Therefore, the dielectric film may contain, as components other than the main component, for example, additives such as silicone resin, and uncured portions of starting materials such as the first organic material and second organic material described below.
  • the curable resin may be a thermosetting resin or a photocurable resin.
  • thermosetting resin means a resin that can be cured by heat, and does not limit the curing method. Therefore, as long as it is a resin that can be cured by heat, resins that have been cured by methods other than heat (for example, light, electron beams, etc.) are also included in thermosetting resins. Furthermore, depending on the material, a reaction may be initiated due to the reactivity of the material itself, and resins that cure without necessarily being exposed to external heat or light are also considered to be thermosetting resins. The same applies to photocurable resins, and the curing method is not limited.
  • the curable resin may or may not have at least one of a urethane bond and a urea bond.
  • examples of such resins include urethane resins having urethane bonds, and urea resins having urea bonds.
  • the curable resin may also be a resin having both urethane bonds and urea bonds.
  • urethane bonds and/or urea bonds can be confirmed using a Fourier transform infrared spectrophotometer (FT-IR).
  • FT-IR Fourier transform infrared spectrophotometer
  • the curable resin is preferably a cured product of a first organic material and a second organic material.
  • it may be a cured product obtained by reacting a hydroxyl group (OH group) of the first organic material with an isocyanate group (NCO group) of the second organic material.
  • the dielectric film may contain at least one of an isocyanate group and a hydroxyl group.
  • the dielectric film may contain either an isocyanate group or a hydroxyl group, or may contain both an isocyanate group and a hydroxyl group.
  • FT-IR Fourier transform infrared spectrophotometer
  • the first organic material is preferably a polyol having multiple hydroxyl groups in the molecule.
  • polyols include polyether polyol, polyester polyol, and polyvinyl acetal. Two or more types of organic materials may be used in combination as the first organic material.
  • the second organic material is preferably an isocyanate compound, an epoxy resin, or a melamine resin, each of which has multiple functional groups in its molecule. Two or more organic materials may be used in combination as the second organic material. Of the second organic materials, an isocyanate compound is preferable.
  • isocyanate compounds include aromatic polyisocyanates such as diphenylmethane diisocyanate (MDI) and tolylene diisocyanate (TDI), and aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI). Modified versions of these polyisocyanates, such as modified versions with carbodiimide or urethane, may also be used.
  • MDI diphenylmethane diisocyanate
  • TDI tolylene diisocyanate
  • HDI hexamethylene diisocyanate
  • Modified versions of these polyisocyanates such as modified versions with carbodiimide or urethane, may also be used.
  • the epoxy resin is not particularly limited as long as it has an epoxy ring, and examples include bisphenol A type epoxy resin, biphenyl skeleton epoxy resin, cyclopentadiene skeleton epoxy resin, naphthalene skeleton epoxy resin, etc.
  • the melamine resin is not particularly limited as long as it is an organic nitrogen compound having a triazine ring at the center of the structure and three amino groups around it, and examples thereof include alkylated melamine resins. In addition, modified forms of melamine may also be used.
  • the dielectric film constituting the element body of the capacitor element is preferably obtained by forming a resin solution containing the first organic material and the second organic material into a film, and then curing it by heat treatment.
  • the dielectric film constituting the element body of the capacitor element may contain a vapor deposition polymer film as a main component.
  • the vapor deposition polymer film may or may not have at least one of a urethane bond and a urea bond.
  • vapor deposition polymerization films refer to films formed using the vapor deposition polymerization method, and are basically included in the category of curable resins.
  • the dielectric film constituting the element body of the capacitor element may contain a thermoplastic resin as a main component.
  • thermoplastic resin examples include polypropylene, polyethersulfone, polyetherimide, polyarylate, etc.
  • the dielectric film constituting the element body of the capacitor element may contain additives to impart other functions.
  • smoothness can be imparted by adding a leveling agent.
  • the additive is a material that has a functional group that reacts with a hydroxyl group and/or an isocyanate group and forms part of the crosslinked structure of the cured product. Examples of such materials include resins that have at least one functional group selected from the group consisting of epoxy groups, silanol groups, and carboxyl groups.
  • the thickness of the dielectric film that constitutes the element body of the capacitor element is not particularly limited, but it is preferable to design it appropriately according to the required capacitance and required element volume of the capacitor to be manufactured.
  • the thickness of the dielectric film can be measured using an optical film thickness gauge.
  • the type of metal contained in the metal layer constituting the element body of the capacitor element is not particularly limited, but it is preferable that the metal layer contains at least one metal selected from the group consisting of aluminum, titanium, zinc, magnesium, tin, and nickel.
  • the thickness of the metal layer constituting the element body of the capacitor element is not particularly limited, but from the viewpoint of suppressing damage to the metal layer, it is preferable that the thickness of the metal layer is 5 nm or more and 40 nm or less.
  • the thickness of the metal layer can be determined by observing a cross section of the metallized film cut in the thickness direction using an electron microscope such as a field emission scanning electron microscope (FE-SEM).
  • FE-SEM field emission scanning electron microscope
  • the lead terminal connected to the external electrode is preferably a lead wire or a bus bar.
  • the lead terminal is preferably connected to the external electrode by welding.
  • the material constituting the insulating resin arranged at the base of the protruding portion of the pull-out terminal is not particularly limited as long as it can be heat-sealed to the laminate film and can fix the pull-out terminal, but it is preferable that it is, for example, a polyolefin-based thermoplastic resin such as polypropylene.
  • the laminate film is a laminate material having a high barrier property against moisture, and is not particularly limited as long as the laminate materials can be thermally welded to each other.
  • An example of such a laminate film is a laminate film configured by laminating a first resin layer, a metal film, and a second resin layer in this order from the side closest to the capacitor element.
  • the first resin layer is a layer for thermally welding the laminate films together, and is preferably made of, for example, a polyolefin-based thermoplastic resin such as polypropylene resin.
  • the thickness of the first resin layer is preferably 20 ⁇ m or more and 150 ⁇ m or less.
  • the metal film is a layer for improving the barrier properties against moisture, and is preferably made of a vapor-deposited metal film.
  • the metal film is preferably made of a metal material such as aluminum.
  • the thickness of the metal film is preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the second resin layer is a layer for improving the barrier property against moisture and protecting the metal film, and is preferably made of a resin material such as nylon resin or polyethylene terephthalate resin.
  • the thickness of the second resin layer is preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the total thickness of the laminate film is preferably 80 ⁇ m or more and 200 ⁇ m or less, and more preferably 100 ⁇ m or more and 160 ⁇ m or less. If the thickness of the laminate film is less than 80 ⁇ m, the strength of the laminate film is reduced and the laminate film becomes more susceptible to breakage. If the thickness of the laminate film exceeds 200 ⁇ m, the processability of the laminate film may deteriorate, and the overall size of the film capacitor may become large, making it difficult to miniaturize products using the film capacitor.
  • the intermediate member may be made of any material capable of dispersing and equalizing the pressure applied to the laminate film, but it is preferable that the intermediate member be made of a resin material such as silicone rubber, fluororubber, urethane rubber, or elastic epoxy resin. Since these materials have high elasticity, the intermediate member made of these materials functions favorably as a cushioning material.
  • a resin material such as silicone rubber, fluororubber, urethane rubber, or elastic epoxy resin. Since these materials have high elasticity, the intermediate member made of these materials functions favorably as a cushioning material.
  • the thickness of the intermediate member is preferably designed appropriately depending on the pressure applied, the size of the capacitor element, etc., and is more preferably 0.2 mm or more and 2 mm or less, and even more preferably 0.5 mm or more and 1.2 mm or less. If the thickness of the intermediate member is less than 0.2 mm, the intermediate member is too thin and it becomes difficult to distribute the pressure on the laminate film. If the thickness of the intermediate member exceeds 2 mm, the overall size of the film capacitor tends to become large, and heat dissipation properties tend to deteriorate.
  • the Young's modulus of the intermediate member is preferably 5 MPa or more and 4 GPa or less, and more preferably 10 MPa or more and 700 MPa or less.
  • the intermediate member has sufficient strength, and when the film capacitor according to the first embodiment of the present invention is clamped with a pressure, the pressure applied to the laminate film is easily distributed and uniformed.
  • the intermediate member may contain a heat-transmitting material.
  • the intermediate member contains a heat-conducting material, the heat dissipation property of the film capacitor can be improved.
  • thermally conductive materials include inorganic materials such as aluminum oxide, magnesium oxide, silica, silicon nitride, boron nitride, and aluminum nitride.
  • the film capacitor 1 can be manufactured, for example, by the following method. First, the capacitor element 10, a pair of laminating materials 21, and a pair of intermediate members 30 are prepared. Next, the intermediate member 30 is disposed on the capacitor element 10 so as to continuously cover the flat portion 11 s 1 of the side surface 11 s of the element body 11 and the flat portion 12 s 1 of the side surface 12 s of the external electrode 12 . Next, the capacitor element 10 with the intermediate member 30 disposed thereon is sandwiched from above and below between a pair of laminate materials 21.
  • the lead-out terminal 40 of the capacitor element 10 is drawn out from the lead-out opening 23 of the laminate material 21, and the insulating resin 41 disposed at the base of the protruding portion of the lead-out terminal 40 is made to come into contact with the lead-out opening 23.
  • the flange portion 22 of the laminate material 21 is heat-pressed to heat-weld the flange portion 22 and integrate the laminate material 21.
  • the flange portion 22 is also heat-welded to the insulating resin 41 arranged at the base of the protruding portion of the lead-out terminal 40.
  • the heat-welding process is preferably performed in a vacuum in order to eliminate the air and moisture present therein.
  • the heat-welding process in a vacuum can effectively suppress the swelling of the laminate material 21 caused by the expansion of the air present when the film capacitor 1 is exposed to high temperatures, and the oxidation of the evaporated metal caused by the influence of the air and moisture present therein. Note that the heat-welding process in a vacuum causes the laminate film 20 to deform somewhat so as to conform to the internal members, but does not affect the characteristics of the film capacitor 1. By the above method, the film capacitor 1 can be manufactured.
  • a module including the film capacitor according to the first embodiment of the present invention is one aspect of the present invention.
  • the module according to the first embodiment of the present invention comprises a substrate, a fixing device arranged on the substrate, and a film capacitor according to the first embodiment of the present invention engaged with the substrate of the fixing device, the fixing device engaging a side of the element body of the film capacitor via the laminate film of the film capacitor.
  • FIG. 5A is a perspective view illustrating an example of a module according to the first embodiment of the present invention.
  • FIG. Fig. 5B is a cross-sectional view of the module shown in Fig. 5A taken along line CC
  • Fig. 5C is a cross-sectional view of the module shown in Fig. 5A taken along line DD. That is, FIG. 5B is a cross-sectional view of the module shown in FIG. 5A cut through the external electrode of the capacitor element
  • FIG. 5C is a cross-sectional view of the module shown in FIG. 5A cut through the element body of the capacitor element.
  • the module 60 shown in FIG. 5A includes a substrate 70 , a fixture 80 disposed on the substrate 70 , and a film capacitor 1 secured by the fixture 80 .
  • the lead-out terminal 40 of the film capacitor 1 is connected to other members. However, for the sake of convenience, the other members are omitted from the illustration in FIG. 5A.
  • the film capacitor 1 is arranged such that the planar portion 11s1 of the side surface 11s of the element body 11 and the planar portion 12s1 of the side surface 12s of the external electrode 12 are positioned perpendicular to the main surface 71 of the substrate 70, and the length direction L is parallel to the main surface 71 of the substrate 70.
  • the fixture 80 has a gripping portion 81.
  • the fixing tool 80 has a gripping portion 81 that engages the side surface 11 s of the element body 11 of the film capacitor 1 via the laminate film 20 of the film capacitor 1 .
  • the film capacitor 1 receives a pressure force from the side surface 11s of the element body 11 toward the center of the element body 11.
  • the laminate film and the external electrode will be in direct contact, and the laminate film will be pressed directly against the external electrode by the above pressure. Since the surface of the external electrode is rough and not very smooth, when the above pressure is applied to the film capacitor, the pressure will be concentrated in one part of the laminate film, making the laminate film prone to damage.
  • module 60 as shown in FIG. 5B, an intermediate member 30 is disposed between laminate film 20 and external electrode 12. Therefore, the pressure on laminate film 20 is dispersed more than if laminate film 20 were pressed directly against external electrode 12. This makes it possible to prevent pressure from concentrating on one part of laminate film 20, and as a result, it is possible to prevent damage to laminate film 20.
  • the film capacitor 1 is arranged so that the flat portion 11s1 of the side surface 11s of the element body 11 and the flat portion 12s1 of the side surface 12s of the external electrode 12 are positioned perpendicular to the main surface 71 of the substrate 70 and the length direction L is parallel to the main surface 71 of the substrate 70, but in the module according to the first embodiment of the present invention, the film capacitor may be arranged on the substrate in any state as long as the side surface of the element body of the film capacitor is fastened by a fastener via the laminate film of the film capacitor. For example, the film capacitor may be arranged so that its length direction intersects with the main surface of the substrate.
  • Such a module can be manufactured by changing the shape of the gripping portion, the shape of the fixture such as the arrangement position of the gripping portion, etc.
  • the material of the substrate 70 in the module 60 is not particularly limited, but examples include resin materials such as epoxy resin and ceramic materials such as alumina. In addition, fillers or woven fabrics made of inorganic or organic materials may be added to the material of the substrate 70.
  • the fixing device 80 in the module 60 is not particularly limited, but may be a screw-type fixing device, a clip-type fixing device, a spring-type fixing device, etc.
  • the film capacitor of the second embodiment of the present invention has the same configuration as the film capacitor of the first embodiment of the present invention, except that instead of the intermediate member continuously covering the flat portion of the side surface of the element body and the flat portion of the side surface of the external electrode, the intermediate member is arranged so as to cover the end face of the external electrode.
  • FIG. 6A is a cross-sectional view illustrating an example of a film capacitor according to a second embodiment of the present invention.
  • FIG. 6B is an exploded view of an example of the film capacitor according to the second embodiment of the present invention.
  • an intermediate member 130 is disposed so as to cover an end surface 12 e of the external electrode 12 .
  • the intermediate member 130 has a notch 131 for leading out the lead-out terminal 40 .
  • the cutout portion 131 in Figure 6B has a shape in which a continuous cutout extends from the center to the outer edge of the intermediate member 130, but in the film capacitor according to the second embodiment of the present invention, the cutout portion may be formed as a through hole.
  • the film capacitor 101 is clamped with a pressure applied in a direction parallel to the longitudinal direction L.
  • the laminate film 20 is pressed against the end faces 12 e of the external electrodes 12 via the intermediate members 130 . Therefore, the pressure applied to the laminate film 20 is dispersed more than when the laminate film 20 is directly pressed against the end surface 12e of the external electrode 12. This makes it possible to prevent the pressure from concentrating on a portion of the laminate film 20, and as a result, it is possible to prevent the laminate film 20 from being damaged. That is, in the film capacitor 101 , the intermediate member 130 functions as a buffer material that protects the external electrodes 12 .
  • the film capacitor of the third embodiment of the present invention has the same configuration as the film capacitor of the first embodiment of the present invention, except that instead of the intermediate member continuously covering the flat portion of the side surface of the element body and the flat portion of the side surface of the external electrode, the intermediate member continuously covers the side surface of the external electrode and the outer edge of the end face of the external electrode, and is positioned so as to expose a portion of the end face of the external electrode.
  • FIG. 7A is a cross-sectional view illustrating an example of a film capacitor according to a third embodiment of the present invention.
  • FIG. 7B is an exploded view of an example of the film capacitor according to the third embodiment of the present invention.
  • the intermediate member 230 is disposed so as to continuously cover the entire periphery of the side surface 12s of the external electrode 12 and the outer edge of the end face 12e of the external electrode 12, and to expose a part of the end face 12e of the external electrode 12.
  • the intermediate member 230 has an opening 231 that exposes the end face 12e of the external electrode 12.
  • the lead-out terminal 40 is led out from the opening 231 of the intermediate member 230 .
  • the film capacitor 201 may be clamped with a pressure force in a direction parallel to the length direction L, or may be clamped with a pressure force in a direction perpendicular to the length direction L. Regardless of the direction from which pressure is applied to the film capacitor 201 , the laminate film 20 is pressed against the side surface 12 s or the end surface 12 e of the external electrode 12 via the intermediate member 230 . Therefore, the pressure applied to the laminate film 20 is dispersed more than when the laminate film 20 is directly pressed against the side surface 12s or the end surface 12e of the external electrode 12. This makes it possible to prevent pressure from concentrating on a portion of the laminate film 20, and as a result, it is possible to prevent damage to the laminate film 20. That is, in the film capacitor 201 , the intermediate member 230 functions as a buffer material that protects the external electrodes 12 .
  • the film capacitor according to the fourth embodiment of the present invention differs from the film capacitor according to the first embodiment of the present invention in the position and function of the intermediate member. Note that in the film capacitor according to the fourth embodiment of the present invention, the capacitor element and the laminate film have the same configurations as those in the film capacitor according to the first embodiment of the present invention.
  • FIG. 8A is a cross-sectional view illustrating an example of a film capacitor according to a fourth embodiment of the present invention.
  • FIG. 8B is an exploded view of an example of the film capacitor according to the fourth embodiment of the present invention.
  • an intermediate member 330 is disposed so as to cover a flat portion 11s1 of a side surface 11s of an element body 11.
  • the flat portion 12s1 of the side surface 12s of the external electrode 12 is separated from the laminate film 20.
  • the flat portion 12s1 of the side surface 12s of the external electrode 12 is exposed, and a space 302 is formed between the laminate film 20 and the flat portion 12s1 of the side surface 12s of the external electrode 12.
  • the intermediate member 330 functions as a spacer for forming a space 302 between the laminate film 20 and the flat portion 12 s 1 of the side surface 12 s of the external electrode 12 .
  • the film capacitor 301 is sandwiched by a pressure applied from the side surface 11 s of the element body 11 toward the center of the element body 11 . Even if the film capacitor 301 is clamped with a pressure applied from the side surface 11s of the element body 11 toward the center of the element body 11, the intermediate member 330 functions as a spacer, so that the laminate film 20 does not come into contact with the external electrode 12, or even if it does come into contact, the laminate film 20 is not pressed strongly against the external electrode. Therefore, damage to the laminate film 20 can be prevented.
  • the Young's modulus of the intermediate member 330 is preferably lower than the Young's modulus of the external electrodes 12 .
  • the ratio of the Young's modulus of the external electrode 12 to the Young's modulus of the intermediate member 330 is preferably 20 or more and 25,000 or less when expressed as Young's modulus of external electrode/Young's modulus of intermediate member.
  • the Young's modulus of the intermediate member 330 is preferably 5 MPa or more and 4 GPa or less, and more preferably 10 MPa or more and 700 MPa or less.
  • the intermediate member may be made of any material as long as it can function as a spacer, but it is preferable that the intermediate member be made of a resin material such as silicone rubber, fluororubber, urethane rubber, or elastic epoxy resin. These materials function favorably as spacers.
  • the thickness of the intermediate member is preferably designed appropriately depending on the pressure applied, the size of the capacitor element, etc., and is more preferably 0.2 mm or more and 2 mm or less, and even more preferably 0.5 mm or more and 1.2 mm or less. If the thickness of the intermediate member is less than 0.2 mm, the intermediate member will be too thin, making it difficult to form a space between the laminate film and the external electrode. If the thickness of the intermediate member exceeds 2 mm, the overall size of the film capacitor tends to become large, and heat dissipation properties tend to deteriorate.
  • the element body has end faces in a racetrack shape, and the entire film capacitor is a cylindrical wound film capacitor.
  • the shape of the film capacitor of the present invention is not limited to the above shape, and may be a cylindrical shape or an elliptical cylindrical shape.
  • the film capacitor of the present invention may be a laminated film capacitor in which a metallized film is laminated, and its shape may be a rectangular parallelepiped or a cube.
  • the intermediate member is disposed so as to cover a portion of the external electrode.
  • the intermediate member when the intermediate member functions as a cushioning material, the intermediate member may be arranged in any manner as long as it is located at least partially between the laminate film and the external electrode in the direction in which pressure is applied.
  • the insulating layer 12 may be disposed so as to cover the entire side surface of the external electrode, or may be disposed so as to cover a part of the side surface of the external electrode.
  • the intermediate member when the intermediate member functions as a cushioning material, in the film capacitor of the present invention, the intermediate member may be arranged so as to cover the entire side surface of the element body, may be arranged so as to cover part of the side surface of the element body, or may not be arranged on the side surface of the element body.
  • the intermediate member is disposed so as to cover a portion of the side surface of the element body.
  • the intermediate member when the intermediate member functions as a cushioning material, the intermediate member may be positioned in any manner so long as it is positioned at least partially between the laminate film and the element body in the direction in which pressure is applied and at least a portion of the side surface of the external electrode is separated from the laminate film.
  • the intermediate member may be disposed so as to cover the entire side surface of the element body.
  • the side surfaces of the external electrodes and the laminate film are spaced apart from each other, forming a space therebetween.
  • the cushioning material is arranged in the area where the side surface of the external electrode and the laminate film are separated, so that no space does not have to be formed.
  • the present disclosure (1) is a film capacitor including a capacitor element including an element body having end faces located at both ends in the longitudinal direction and side faces connecting the end faces, and external electrodes provided on the end faces of the element body, a laminate film covering the capacitor element, and an intermediate member disposed at least partially between the capacitor element and the laminate film.
  • the present disclosure (2) is a film capacitor according to the present disclosure (1) in which the Young's modulus of the intermediate member is lower than the Young's modulus of the external electrode.
  • the present disclosure (3) is a film capacitor according to the present disclosure (1) or (2), in which the intermediate member is disposed between the external electrode and the laminate film.
  • the present disclosure (4) is a film capacitor according to the present disclosure (3), in which the external electrode has an end face visible when the external electrode is viewed in a planar view from the longitudinal direction and a side face visible when the external electrode is viewed in a planar view from a direction perpendicular to the longitudinal direction, and the intermediate member is arranged so as to cover at least a portion of the side face of the external electrode.
  • the present disclosure (5) is a film capacitor according to the present disclosure (3), in which the external electrode has an end face visible when the external electrode is viewed in a planar view from the longitudinal direction and a side face visible when the external electrode is viewed in a planar view from a direction perpendicular to the longitudinal direction, and the intermediate member is arranged to continuously cover the outer edges of the side face and the end face of the external electrode and to expose at least a portion of the end face of the external electrode.
  • the present disclosure (6) is a film capacitor according to the present disclosure (4) or (5), in which the intermediate member continuously covers the side surface of the element body and the side surface of the external electrode.
  • the present disclosure (7) is a film capacitor according to the present disclosure (3), in which the external electrode has an end face visible when the external electrode is viewed in a planar view from the longitudinal direction and a side face visible when the external electrode is viewed in a planar view from a direction perpendicular to the longitudinal direction, and the intermediate member is arranged so as to cover at least a portion of the end face of the external electrode.
  • the present disclosure (8) is a film capacitor according to the present disclosure (1) or (2), in which the external electrode has an end face visible when the external electrode is viewed in a planar view from the longitudinal direction and a side face visible when the external electrode is viewed in a planar view from a direction perpendicular to the longitudinal direction, the intermediate member is arranged to cover the side face of the element body, and at least a portion of the side face of the external electrode is separated from the laminate film.
  • the present disclosure (9) is a film capacitor according to the present disclosure (8), in which the side of the external electrode that is away from the laminate film is exposed, and a space is formed between the laminate film and the exposed portion of the side of the external electrode.
  • the present disclosure (10) is a module comprising a substrate, a fixture disposed on the substrate, and a film capacitor according to any one of the present disclosures (4) to (6), (8), and (9) that is secured to the substrate of the fixture, in which the side of the element body of the film capacitor is secured to the fixture via the laminate film of the film capacitor.

Abstract

Provided is a film capacitor in which a laminate film covering a capacitor element is hardly damaged even when being sandwiched by means of pressure force. A film capacitor (1) according to the present invention includes: a capacitor element (10) including an element body (11) having end surfaces (11e) located on both ends in the longitudinal direction (L) and lateral surfaces (11s) connecting the end surfaces (11e) to each other, and external electrodes (12) provided on the end surfaces (11e) of the element body (11); a laminate film (20) covering the capacitor element (10); and an intermediate member (30) disposed at at least a portion between the capacitor element (10) and the laminate film (20).

Description

フィルムコンデンサ及びモジュールFilm capacitors and modules
 本発明は、フィルムコンデンサ及びモジュールに関する。 The present invention relates to a film capacitor and a module.
 コンデンサの一種として、可撓性のある樹脂フィルムを誘電体フィルムとして用いながら、誘電体フィルムを挟んで互いに対向する金属層を配置した構造のフィルムコンデンサが知られている。フィルムコンデンサを構成するコンデンサ素子は、例えば、誘電体フィルムの表面に金属層が設けられた金属化フィルムが巻回又は積層されてなる積層体を作製した後、その積層体の両端面に外部電極(メタリコン電極とも呼ばれる)を形成することにより製造される。 A type of capacitor known is a film capacitor, which uses a flexible resin film as the dielectric film with opposing metal layers sandwiched between the dielectric film. The capacitor elements that make up a film capacitor are manufactured, for example, by creating a laminate in which a metalized film having a metal layer provided on the surface of a dielectric film is wound or laminated, and then forming external electrodes (also called metallikon electrodes) on both end faces of the laminate.
 特許文献1には、このようなフィルムコンデンサを高湿・高温な環境下で使用するため、フィルムコンデンサを湿気等に対するバリア性の高いラミネート材で包み込むこと、及び、ラミネート材で包み込まれたコンデンサを含むモータが開示されている。
 すなわち、特許文献1には、ラミネート材でコンデンサを包み込み、その端子部分を外部に呈出した状態で密閉したモータ駆動用コンデンサを、モータ外殻と固定子コイル外周との間に内蔵したことを特徴とするモータが開示されている。
Patent Document 1 discloses that in order to use such a film capacitor in a high-humidity, high-temperature environment, the film capacitor is wrapped in a laminate material that has a high barrier property against moisture, etc., and also discloses a motor that includes a capacitor wrapped in a laminate material.
That is, Patent Document 1 discloses a motor that is characterized by having a motor drive capacitor that is enclosed in a laminate material and sealed with its terminal parts exposed to the outside, and is built in between the motor shell and the outer periphery of the stator coil.
特許第4294446号公報Japanese Patent No. 4294446
 特許文献1に記載されたようなラミネート材に包み込まれたフィルムコンデンサを、接着剤等を使用せずに基板や筐体に固定するためには、一定の加圧力でフィルムコンデンサを挟持する必要がある。ラミネート材に包み込まれたフィルムコンデンサを一定の加圧力で挟持する場合、加圧力が大きくなると、ラミネートフィルムがフィルムコンデンサの外部電極に強く押し当てられることになる。
 一般的に、外部電極は金属溶射により形成されるが、その表面は平滑性が低く、粗い状態になっている。そのため、ラミネートフィルムが外部電極に強く押し当てられると、ラミネートフィルムの一部に圧力が集中し、ラミネートフィルムが容易に破損してしまうという問題があった。
In order to fix a film capacitor wrapped in a laminate material as described in Patent Document 1 to a substrate or a housing without using adhesives, etc., it is necessary to clamp the film capacitor with a constant pressure. When a film capacitor wrapped in a laminate material is clamped with a constant pressure, if the pressure increases, the laminate film will be strongly pressed against the external electrodes of the film capacitor.
Generally, external electrodes are formed by metal spraying, but their surfaces are rough and not very smooth, so when the laminate film is pressed strongly against the external electrodes, pressure is concentrated in one part of the laminate film, causing the laminate film to easily break.
 本発明は上記問題を解決するためになされた発明であり、本発明の目的は、加圧力で挟持されたとしても、コンデンサ素子を被覆するラミネートフィルムが破損しにくいフィルムコンデンサを提供することである。さらに、本発明の目的は、上記フィルムコンデンサを備えるモジュールを提供することである。 The present invention has been made to solve the above problems, and the object of the present invention is to provide a film capacitor in which the laminate film covering the capacitor element is not easily damaged even when clamped with pressure. Furthermore, the object of the present invention is to provide a module that includes the above film capacitor.
 本発明のフィルムコンデンサは、長さ方向の両端に位置する端面及び上記端面同士を接続する側面を有する素子本体と、上記素子本体の端面に設けられた外部電極とを含むコンデンサ素子と、上記コンデンサ素子を被覆するラミネートフィルムと、上記コンデンサ素子と上記ラミネートフィルムとの間の少なくとも一部に配置された中間部材とを含む。 The film capacitor of the present invention includes a capacitor element including an element body having end faces located at both ends in the longitudinal direction and side faces connecting the end faces, and external electrodes provided on the end faces of the element body, a laminate film covering the capacitor element, and an intermediate member disposed at least partially between the capacitor element and the laminate film.
 本発明のモジュールは、基板と、上記基板に配置された固定具と、上記固定具の上記基板に係止された上記本発明のフィルムコンデンサとを備え、上記固定具により、上記フィルムコンデンサのラミネートフィルムを介して、上記フィルムコンデンサの素子本体の側面が係止されている。 The module of the present invention comprises a substrate, a fixture arranged on the substrate, and the film capacitor of the present invention that is attached to the substrate of the fixture, and the side of the element body of the film capacitor is attached to the fixture via the laminate film of the film capacitor.
 本発明によれば、加圧力で挟持されたとしても、コンデンサ素子を被覆するラミネートフィルムが破損しにくいフィルムコンデンサを提供することができる。さらに、本発明によれば、上記フィルムコンデンサを備えるモジュールを提供することができる。 The present invention can provide a film capacitor in which the laminate film covering the capacitor element is not easily damaged even when clamped with pressure. Furthermore, the present invention can provide a module including the above-mentioned film capacitor.
図1Aは、本発明の1実施形態に係るフィルムコンデンサの一例を模式的に示す斜視図である。FIG. 1A is a perspective view illustrating an example of a film capacitor according to an embodiment of the present invention. 図1Bは、図1AのA-A線断面図である。FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A. 図1Cは、図1Aに示す本発明の第1実施形態に係るフィルムコンデンサの分解図である。FIG. 1C is an exploded view of the film capacitor according to the first embodiment of the present invention shown in FIG. 1A. 図2Aは、本発明の第1実施形態に係るフィルムコンデンサに含まれる外部電極の別の一例を模式的に示す断面図である。FIG. 2A is a cross-sectional view illustrating a schematic diagram of another example of an external electrode included in the film capacitor according to the first embodiment of the present invention. 図2Bは、本発明の第1実施形態に係るフィルムコンデンサに含まれる外部電極の別の一例を模式的に示す断面図である。FIG. 2B is a cross-sectional view illustrating typically another example of an external electrode included in the film capacitor according to the first embodiment of the present invention. 図3Aは、巻回型フィルムコンデンサの一例を模式的に示す斜視図である。FIG. 3A is a perspective view illustrating a schematic example of a wound film capacitor. 図3Bは、図3Aに示す素子本体のB-B線断面図である。FIG. 3B is a cross-sectional view of the element body shown in FIG. 3A taken along line BB. 図4は、図3A及び図3Bに示すコンデンサ素子を構成する素子本体を構成する第1の金属化フィルム及び第2の金属化フィルムの一例を模式的に示す斜視図である。FIG. 4 is a perspective view that shows a schematic example of the first metallized film and the second metallized film that constitute the element body that constitutes the capacitor element shown in FIGS. 3A and 3B. 図5Aは、本発明の第1実施形態に係るモジュールの一例を模式的に示す斜視図である。FIG. 5A is a perspective view illustrating an example of a module according to the first embodiment of the present invention. FIG. 図5Bは、図5Aに示すモジュールのC-C線断面図である。FIG. 5B is a cross-sectional view of the module shown in FIG. 5A taken along line CC. 図5Cは、図5Aに示すモジュールのD-D線断面図である。FIG. 5C is a cross-sectional view of the module shown in FIG. 5A taken along line DD. 図6Aは、本発明の第2実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。FIG. 6A is a cross-sectional view illustrating an example of a film capacitor according to a second embodiment of the present invention. 図6Bは、本発明の第2実施形態に係るフィルムコンデンサの一例の分解図である。FIG. 6B is an exploded view of an example of the film capacitor according to the second embodiment of the present invention. 図7Aは、本発明の第3実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。FIG. 7A is a cross-sectional view illustrating an example of a film capacitor according to a third embodiment of the present invention. 図7Bは、本発明の第3実施形態に係るフィルムコンデンサの一例の分解図である。FIG. 7B is an exploded view of an example of the film capacitor according to the third embodiment of the present invention. 図8Aは、本発明の第4実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。FIG. 8A is a cross-sectional view illustrating an example of a film capacitor according to a fourth embodiment of the present invention. 図8Bは、本発明の第4実施形態に係るフィルムコンデンサの一例の分解図である。FIG. 8B is an exploded view of an example of the film capacitor according to the fourth embodiment of the present invention.
 以下、本発明のフィルムコンデンサについて説明する。
 本発明のフィルムコンデンサは、長さ方向の両端に位置する端面及び上記端面同士を接続する側面を有する素子本体と、上記素子本体の端面に設けられた外部電極とを含むコンデンサ素子と、上記コンデンサ素子を被覆するラミネートフィルムと、上記コンデンサ素子と上記ラミネートフィルムとの間の少なくとも一部に配置された中間部材とを含む。
 本発明のフィルムコンデンサは、上記構成を有していれば、本発明の要旨を変更しない範囲において、適宜変更されてもよい。
The film capacitor of the present invention will be described below.
The film capacitor of the present invention includes a capacitor element including an element body having end faces located at both ends in the longitudinal direction and side faces connecting the end faces to each other, and external electrodes provided on the end faces of the element body, a laminate film covering the capacitor element, and an intermediate member arranged at least partially between the capacitor element and the laminate film.
As long as the film capacitor of the present invention has the above-mentioned configuration, it may be modified as appropriate without departing from the spirit and scope of the present invention.
 本明細書において、要素間の関係性を示す用語(例えば「垂直」、「平行」、「直交」等)及び要素の形状を示す用語は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。また、以下に示す図面は模式図であり、その寸法、縦横比の縮尺等は実際の製品と異なる場合がある。 In this specification, terms indicating the relationship between elements (e.g., "vertical," "parallel," "orthogonal," etc.) and terms indicating the shapes of elements are not expressions that only express a strict meaning, but also expressions that include a range of substantial equivalence, for example, differences of about a few percent. In addition, the drawings shown below are schematic diagrams, and the dimensions, aspect ratio, etc. may differ from those of the actual product.
 以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。また、以下において記載する個々の好ましい構成を複数組み合わせたものもまた本発明である。
 第2実施形態以降では、第1実施形態と共通の事項についての記述は省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。
The embodiments described below are merely examples, and it goes without saying that partial replacement or combination of the configurations shown in different embodiments is possible. In addition, a combination of multiple individual preferred configurations described below also constitutes the present invention.
In the second and subsequent embodiments, the description of the matters common to the first and second embodiments will be omitted, and only the differences will be described. In particular, the same effects and advantages due to the same configurations will not be mentioned in each embodiment.
(第1実施形態)
 まず、本発明の第1実施形態に係るフィルムコンデンサについて図面を用いて説明する。
 図1Aは、本発明の1実施形態に係るフィルムコンデンサの一例を模式的に示す斜視図である。
 図1Bは、図1AのA-A線断面図である。
 図1Cは、図1Aに示す本発明の第1実施形態に係るフィルムコンデンサの分解図である。
First Embodiment
First, a film capacitor according to a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1A is a perspective view illustrating an example of a film capacitor according to an embodiment of the present invention.
FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A.
FIG. 1C is an exploded view of the film capacitor according to the first embodiment of the present invention shown in FIG. 1A.
 図1A、図1B及び図1Cに示すフィルムコンデンサ1は、コンデンサ素子10と、コンデンサ素子10を被覆するラミネートフィルム20と、コンデンサ素子10とラミネートフィルム20との間に配置された中間部材30とを含む。 The film capacitor 1 shown in Figures 1A, 1B, and 1C includes a capacitor element 10, a laminate film 20 that covers the capacitor element 10, and an intermediate member 30 that is disposed between the capacitor element 10 and the laminate film 20.
 コンデンサ素子10は、長さ方向(図1A、図1B及び図1C中、矢印Lで示す方向)の両端に位置する端面11e及び端面11e同士を接続する側面11sを有する素子本体11と、素子本体11の両方の端面11eに設けられた一対の外部電極12とを含む。 The capacitor element 10 includes an element body 11 having end faces 11e located at both ends in the longitudinal direction (the direction indicated by the arrow L in Figures 1A, 1B, and 1C) and side faces 11s connecting the end faces 11e, and a pair of external electrodes 12 provided on both end faces 11e of the element body 11.
 図1Cに示すように、素子本体11は、例えば、端面11eがレーストラック状の形状であり、全体が柱状の形状である。また、素子本体11の側面11sは、平面状に形成されている平面部分11sと、曲面状に形成されている曲面部分11sから構成される。 1C, the element body 11 has, for example, a racetrack-shaped end face 11e and a columnar shape as a whole. The side face 11s of the element body 11 is composed of a flat portion 11s1 formed in a flat shape and a curved portion 11s2 formed in a curved shape.
 外部電極12は、例えば、板状であり、素子本体11の端面11eを覆う形状である。
 また、図1B及び図1Cに示すように、外部電極12は、外部電極12を長さ方向Lから平面視した際に見える端面12eと、外部電極12を長さ方向Lに垂直な方向から平面視した際に見える側面12sとを有する。
 図1Cに示すように、外部電極12の端面12eの平面視形状は、レーストラック状である。
 また、外部電極12の側面sは、平面状に形成されている平面部分12sと、曲面状に形成されている曲面部分12sから構成される。
The external electrode 12 is, for example, in the form of a plate, and is shaped to cover the end surface 11 e of the element body 11 .
As shown in Figures 1B and 1C, the external electrode 12 has an end face 12e that is visible when the external electrode 12 is viewed in a plane from the longitudinal direction L, and a side face 12s that is visible when the external electrode 12 is viewed in a plane from a direction perpendicular to the longitudinal direction L.
As shown in FIG. 1C, the end face 12e of the external electrode 12 has a racetrack shape in plan view.
The side surface s of the external electrode 12 is composed of a flat portion 12s1 formed in a flat shape and a curved portion 12s2 formed in a curved shape.
 図1B及び図1Cに示すように、外部電極12の端面12eには、外部電極12と電気的に接続されている引出端子40が形成されている。また、図1Cに示すように引出端子40の突出部の根元には、絶縁性樹脂41が配置されている。絶縁性樹脂41は、ラミネートフィルム20に熱溶着しており、また、引出端子40を固定している。 As shown in Figures 1B and 1C, a pull-out terminal 40 electrically connected to the external electrode 12 is formed on the end surface 12e of the external electrode 12. Also, as shown in Figure 1C, insulating resin 41 is disposed at the base of the protruding portion of the pull-out terminal 40. The insulating resin 41 is heat-welded to the laminate film 20, and also fixes the pull-out terminal 40.
 図1A、図1B及び図1Cに示すように、ラミネートフィルム20は、コンデンサ素子10を覆う上下一対のラミネート材21が接着されてなる。ラミネート材21は、コンデンサ素子10の外形に沿う形状であり、例えば、外縁にフランジ部22を有する。また、ラミネート材21には、引出端子40を引き出すための引出口23が形成されていてもよい。
 そして、一対のラミネート材21同士は、フランジ部22で熱溶着されてラミネートフィルム20を構成している。また、引出口23において、上記絶縁性樹脂41とフランジ部22とは熱溶着されている。
1A, 1B, and 1C, laminate film 20 is formed by bonding a pair of upper and lower laminate materials 21 that cover capacitor element 10. Laminate material 21 has a shape that follows the outer shape of capacitor element 10, and has, for example, a flange portion 22 on the outer edge. Laminate material 21 may also have a drawing opening 23 for drawing out drawing terminal 40.
The pair of laminate materials 21 are heat-welded to each other at the flange portion 22 to form the laminate film 20. At the outlet 23, the insulating resin 41 and the flange portion 22 are heat-welded to each other.
 図1B及び図1Cに示すように、フィルムコンデンサ1において、中間部材30は、少なくとも外部電極12とラミネートフィルム20との間に配置されている。より具体的には、中間部材30は、素子本体11の側面11sの平面部分11s及び外部電極12の側面12sの平面部分12sを連続して覆っている。
 そのため、フィルムコンデンサ1では、外部電極12の側面12sとラミネートフィルム20とは離れており、直接接触していない。
1B and 1C , in the film capacitor 1, the intermediate member 30 is disposed at least between the external electrode 12 and the laminate film 20. More specifically, the intermediate member 30 continuously covers the flat portion 11s1 of the side surface 11s of the element body 11 and the flat portion 12s1 of the side surface 12s of the external electrode 12.
Therefore, in the film capacitor 1, the side surface 12s of the external electrode 12 and the laminate film 20 are separated from each other and are not in direct contact with each other.
 また、フィルムコンデンサ1では、中間部材30のヤング率は、外部電極12のヤング率よりも低いことが好ましい。
 なお、中間部材30のヤング率に対する外部電極12のヤング率の比は、外部電極のヤング率/中間部材のヤング率で表したときに、20以上、25000以下であることが好ましい。
In the film capacitor 1 , the Young's modulus of the intermediate member 30 is preferably lower than the Young's modulus of the external electrodes 12 .
The ratio of the Young's modulus of the external electrode 12 to the Young's modulus of the intermediate member 30 is preferably 20 or more and 25,000 or less when expressed as Young's modulus of external electrode/Young's modulus of intermediate member.
 フィルムコンデンサ1が長さ方向Lに垂直な方向の加圧力で挟持される際、ラミネートフィルム20は、中間部材30を介して、外部電極12の側面12sの平面部分12sに押圧されることになる。
 上記の通り、中間部材30のヤング率は、外部電極12のヤング率よりも低いので、ラミネートフィルム20が外部電極12の側面12sの平面部分12sに直接押圧されるよりも、ラミネートフィルム20にかかる圧力が低減する。その結果、ラミネートフィルム20が破損することを防ぐことができる。
 また、中間部材30が弾性変形しやすい材料の場合、ラミネートフィルム20にかかる圧力が分散し、一部に圧力が集中することを防ぐことができる。
 つまり、フィルムコンデンサ1において、中間部材30は、外部電極12を保護する緩衝材として機能する。
When the film capacitor 1 is clamped with a pressure force in a direction perpendicular to the longitudinal direction L, the laminate film 20 is pressed against the flat portion 12 s 1 of the side surface 12 s of the external electrode 12 via the intermediate member 30 .
As described above, since the Young's modulus of the intermediate member 30 is lower than that of the external electrode 12, the pressure applied to the laminate film 20 is reduced compared to when the laminate film 20 is directly pressed against the flat portion 12s1 of the side surface 12s of the external electrode 12. As a result, damage to the laminate film 20 can be prevented.
Furthermore, if the intermediate member 30 is made of a material that is easily elastically deformed, the pressure applied to the laminate film 20 is dispersed, making it possible to prevent the pressure from concentrating in one area.
That is, in the film capacitor 1 , the intermediate member 30 functions as a buffer material that protects the external electrodes 12 .
 なお、図1B及び図1Cでは、外部電極12は板状であり、外部電極12の端面12eと外部電極12の側面12sとのなす角の角度は90度である。そのため、図1Bでは、外部電極12の端面12eと外部電極12の側面12sとが重複することなく明確に分かれている。 In addition, in Figures 1B and 1C, the external electrode 12 is plate-shaped, and the angle between the end face 12e of the external electrode 12 and the side face 12s of the external electrode 12 is 90 degrees. Therefore, in Figure 1B, the end face 12e of the external electrode 12 and the side face 12s of the external electrode 12 are clearly separated without overlapping.
 本発明のフィルムコンデンサでは、外部電極は角部が面取りされた形状であってもよい。面取り部分は、外部電極を長さ方向から平面視した際に見え、また、外部電極を長さ方向に垂直な方向から平面視した際にも見える。つまり、外部電極の端面及び外部電極の側面の両方に属することになる。このように、本発明のフィルムコンデンサでは、外部電極には、外部電極の端面及び外部電極の側面の両方に属する部分があってもよい。
 このような態様を、以下に図面を用いて説明する。
In the film capacitor of the present invention, the external electrode may have a shape in which the corners are chamfered. The chamfered portion is visible when the external electrode is viewed in a plan view from the longitudinal direction, and is also visible when the external electrode is viewed in a plan view from a direction perpendicular to the longitudinal direction. In other words, the chamfered portion belongs to both the end face and the side face of the external electrode. Thus, in the film capacitor of the present invention, the external electrode may have a portion that belongs to both the end face and the side face of the external electrode.
Such an embodiment will be described below with reference to the drawings.
 図2A及び図2Bは、本発明の第1実施形態に係るフィルムコンデンサに含まれる外部電極の別の一例を模式的に示す断面図である。
 図2A及び図2Bに示す外部電極12´は、角部12R´が面取りされた形状である以外、上記外部電極12と同じ構成である。
 図2Aにおいて、外部電極12´を、長さ方向Lから平面視した際に見える範囲(図2A中、符号「A1」で示す部分)が端面12e´である。また、図2Bにおいて、外部電極12´を、長さ方向Lに垂直な方向から平面視した際に見える範囲(図2B中、符号「A2」で示す部分)が端面12e´である。
 このように、外部電極12´では、角部12R´は外部電極12´の端面12e´及び外部電極12´の側面12s´の両方に属している。
 本発明の第1実施形態に係るフィルムコンデンサでは、外部電極はこのような形状であってもよい。
2A and 2B are cross-sectional views illustrating schematic diagrams of another example of an external electrode included in the film capacitor according to the first embodiment of the present invention.
An external electrode 12' shown in Figs. 2A and 2B has the same configuration as the external electrode 12 described above, except that corners 12R' are chamfered.
In Fig. 2A, the range (the portion indicated by the reference symbol "A1" in Fig. 2A) that can be seen when the external electrode 12' is viewed in plan from the longitudinal direction L is the end face 12e'. In Fig. 2B, the range (the portion indicated by the reference symbol "A2" in Fig. 2B) that can be seen when the external electrode 12' is viewed in plan from a direction perpendicular to the longitudinal direction L is the end face 12e'.
Thus, in the external electrode 12', the corner portion 12R' belongs to both the end face 12e' of the external electrode 12' and the side face 12s' of the external electrode 12'.
In the film capacitor according to the first embodiment of the present invention, the external electrodes may have such a shape.
 以下、フィルムコンデンサの各構成について詳述する。 The individual components of the film capacitor are described in detail below.
(コンデンサ素子)
 本発明の第1実施形態に係るフィルムコンデンサのコンデンサ素子において、素子本体は、金属化フィルムが積層された状態で巻回された巻回型フィルムコンデンサであってもよく、金属化フィルムが積層された積層型フィルムコンデンサであってもよい。
(Capacitor element)
In the capacitor element of the film capacitor according to the first embodiment of the present invention, the element body may be a wound film capacitor in which a metallized film is laminated and wound, or it may be a laminated film capacitor in which a metallized film is laminated.
 以下の説明では、素子本体が、金属化フィルムが積層された状態で巻回された巻回型フィルムコンデンサである場合について説明する。
 図3Aは、巻回型フィルムコンデンサの一例を模式的に示す斜視図である。
 図3Bは、図3Aに示す素子本体のB-B線断面図である。
In the following description, a wound film capacitor in which the element body is wound with a metallized film laminated thereon will be described.
FIG. 3A is a perspective view illustrating a schematic example of a wound film capacitor.
FIG. 3B is a cross-sectional view of the element body shown in FIG. 3A taken along line BB.
 図3A及び図3Bに示すコンデンサ素子10では、素子本体11は、第1の金属化フィルム51及び第2の金属化フィルム52を含む積層体である。素子本体11は、第1の金属化フィルム51と第2の金属化フィルム52とが積層された状態で巻回された巻回体である。素子本体11の両端面には、一対の外部電極12が電気的に接続されている。 In the capacitor element 10 shown in Figures 3A and 3B, the element body 11 is a laminate including a first metallized film 51 and a second metallized film 52. The element body 11 is a wound body in which the first metallized film 51 and the second metallized film 52 are wound in a laminated state. A pair of external electrodes 12 are electrically connected to both end faces of the element body 11.
 図3Bに示すように、第1の金属化フィルム51は、第1の誘電体フィルム53と、第1の誘電体フィルム53の表面に設けられた第1の金属層55とを備え、第2の金属化フィルム52は、第2の誘電体フィルム54と、第2の誘電体フィルム54の表面に設けられた第2の金属層56とを備えている。 As shown in FIG. 3B, the first metallized film 51 includes a first dielectric film 53 and a first metal layer 55 provided on the surface of the first dielectric film 53, and the second metallized film 52 includes a second dielectric film 54 and a second metal layer 56 provided on the surface of the second dielectric film 54.
 図3Bに示すように、第1の金属層55及び第2の金属層56は、第1の誘電体フィルム53又は第2の誘電体フィルム54を挟んで互いに対向している。さらに、第1の金属層55は、一方の外部電極12と電気的に接続されており、第2の金属層56は、他方の外部電極12と電気的に接続されている。 As shown in FIG. 3B, the first metal layer 55 and the second metal layer 56 face each other with the first dielectric film 53 or the second dielectric film 54 sandwiched therebetween. Furthermore, the first metal layer 55 is electrically connected to one of the external electrodes 12, and the second metal layer 56 is electrically connected to the other external electrode 12.
 第1の誘電体フィルム53及び第2の誘電体フィルム54は、それぞれ異なる構成を有していてもよいが、同一の構成を有していることが好ましい。 The first dielectric film 53 and the second dielectric film 54 may have different configurations, but preferably have the same configuration.
 第1の金属層55は、第1の誘電体フィルム53の一方の面において一方側縁にまで届くが、他方側縁にまで届かないように形成される。他方、第2の金属層56は、第2の誘電体フィルム54の一方の面において一方側縁にまで届かないが、他方側縁にまで届くように形成される。第1の金属層55及び第2の金属層56は、例えばアルミニウム層等から構成される。 The first metal layer 55 is formed on one side of the first dielectric film 53 so as to reach one edge, but not to reach the other edge. On the other hand, the second metal layer 56 is formed on one side of the second dielectric film 54 so as not to reach one edge, but to reach the other edge. The first metal layer 55 and the second metal layer 56 are composed of, for example, an aluminum layer.
 図4は、図3A及び図3Bに示すコンデンサ素子を構成する素子本体を構成する第1の金属化フィルム及び第2の金属化フィルムの一例を模式的に示す斜視図である。 FIG. 4 is a perspective view showing a schematic example of a first metallized film and a second metallized film that constitute the element body of the capacitor element shown in FIGS. 3A and 3B.
 図3B及び図4に示すように、第1の金属層55における第1の誘電体フィルム53の側縁にまで届いている側の端部、及び、第2の金属層56における第2の誘電体フィルム54の側縁にまで届いている側の端部がともに積層されたフィルムから露出するように、第1の誘電体フィルム53と第2の誘電体フィルム54とが互いに幅方向(図3Bでは左右方向)にずらされて積層される。図4に示すように、素子本体11は、第1の誘電体フィルム53及び第2の誘電体フィルム54が積層された状態で巻回されることによって金属化フィルムの巻回体となり、第1の金属層55及び第2の金属層56が端部で露出した状態を保持して、積み重なった状態とされる。 3B and 4, the first dielectric film 53 and the second dielectric film 54 are stacked with a shift in the width direction (left and right direction in FIG. 3B) so that the end of the first metal layer 55 that reaches the side edge of the first dielectric film 53 and the end of the second metal layer 56 that reaches the side edge of the second dielectric film 54 are both exposed from the stacked films. As shown in FIG. 4, the element body 11 becomes a roll of metallized films by rolling up the first dielectric film 53 and the second dielectric film 54 in a stacked state, and is stacked with the first metal layer 55 and the second metal layer 56 exposed at their ends.
 図3B及び図4では、第2の誘電体フィルム54が第1の誘電体フィルム53の外側になるように、かつ、第1の誘電体フィルム53及び第2の誘電体フィルム54の各々について、第1の金属層55及び第2の金属層56の各々が内方に向くように巻回されている。 In Figures 3B and 4, the second dielectric film 54 is wound on the outside of the first dielectric film 53, and the first metal layer 55 and the second metal layer 56 of each of the first dielectric film 53 and the second dielectric film 54 are wound so that they face inward.
 金属化フィルムの巻回体は、円柱状の巻回軸を備えていてもよい。巻回軸は、巻回状態の金属化フィルムの中心軸線上に配置されるものであり、金属化フィルムを巻回する際の巻軸となるものである。 The roll of metallized film may have a cylindrical winding shaft. The winding shaft is disposed on the central axis of the rolled metallized film and serves as the winding shaft when winding the metallized film.
 このような金属化フィルムの巻回体を、上下方向から扁平形状にプレスすると、端面がレーストラック状であり、全体の形状が柱状の素子本体となる。 When such a roll of metallized film is pressed from above and below into a flat shape, the end faces become racetrack-shaped and the overall shape of the element body becomes columnar.
 外部電極12は、上述のようにして得られた素子本体11の各端面上に、例えば亜鉛等を溶射することによって形成される。一方の外部電極12は、第1の金属層55の露出端部と接触し、それによって第1の金属層55と電気的に接続される。他方の外部電極12は、第2の金属層56の露出端部と接触し、それによって第2の金属層56と電気的に接続される。 The external electrodes 12 are formed by spraying, for example, zinc, on each end face of the element body 11 obtained as described above. One external electrode 12 contacts the exposed end of the first metal layer 55 and is thereby electrically connected to the first metal layer 55. The other external electrode 12 contacts the exposed end of the second metal layer 56 and is thereby electrically connected to the second metal layer 56.
 本発明のフィルムコンデンサにおいて、コンデンサ素子の素子本体を構成する誘電体フィルムは、硬化性樹脂を主成分として含んでもよく、熱可塑性樹脂を主成分として含んでもよい。フィルムコンデンサの耐熱性を向上させる観点から、誘電体フィルムは、硬化性樹脂を主成分として含むことが好ましい。 In the film capacitor of the present invention, the dielectric film constituting the element body of the capacitor element may contain a curable resin as a main component, or may contain a thermoplastic resin as a main component. From the viewpoint of improving the heat resistance of the film capacitor, it is preferable that the dielectric film contains a curable resin as a main component.
 本明細書において、「誘電体フィルムの主成分」とは、重量百分率が最も大きい成分を意味し、好ましくは、重量百分率が50重量%を超える成分を意味する。したがって、誘電体フィルムは、主成分以外の成分として、例えば、シリコーン樹脂等の添加剤や、後述する第1有機材料及び第2有機材料等の出発材料の未硬化部分を含んでもよい。 In this specification, the "main component of the dielectric film" means the component with the largest weight percentage, and preferably means the component with a weight percentage exceeding 50% by weight. Therefore, the dielectric film may contain, as components other than the main component, for example, additives such as silicone resin, and uncured portions of starting materials such as the first organic material and second organic material described below.
 硬化性樹脂は、熱硬化性樹脂であってもよく、光硬化性樹脂であってもよい。 The curable resin may be a thermosetting resin or a photocurable resin.
 本明細書において、熱硬化性樹脂とは、熱で硬化し得る樹脂を意味しており、硬化方法を限定するものではない。したがって、熱で硬化し得る樹脂である限り、熱以外の方法(例えば、光、電子ビーム等)で硬化した樹脂も熱硬化性樹脂に含まれる。また、材料によっては材料自体が持つ反応性によって反応が開始する場合があり、必ずしも外部から熱又は光等を与えずに硬化が進むものについても熱硬化性樹脂とする。光硬化性樹脂についても同様であり、硬化方法を限定するものではない。 In this specification, thermosetting resin means a resin that can be cured by heat, and does not limit the curing method. Therefore, as long as it is a resin that can be cured by heat, resins that have been cured by methods other than heat (for example, light, electron beams, etc.) are also included in thermosetting resins. Furthermore, depending on the material, a reaction may be initiated due to the reactivity of the material itself, and resins that cure without necessarily being exposed to external heat or light are also considered to be thermosetting resins. The same applies to photocurable resins, and the curing method is not limited.
 硬化性樹脂は、ウレタン結合及びユリア結合の少なくとも一方を有してもよく、有しなくてもよい。このような樹脂としては、例えば、ウレタン結合を有するウレタン樹脂、ユリア結合を有するユリア樹脂等が挙げられる。また、ウレタン結合及びユリア結合の両方を有する樹脂であってもよい。 The curable resin may or may not have at least one of a urethane bond and a urea bond. Examples of such resins include urethane resins having urethane bonds, and urea resins having urea bonds. The curable resin may also be a resin having both urethane bonds and urea bonds.
 なお、ウレタン結合及び/又はユリア結合の存在は、フーリエ変換赤外分光光度計(FT-IR)を用いて確認することができる。 The presence of urethane bonds and/or urea bonds can be confirmed using a Fourier transform infrared spectrophotometer (FT-IR).
 硬化性樹脂は、第1有機材料と第2有機材料との硬化物からなることが好ましい。例えば、第1有機材料が有する水酸基(OH基)と第2有機材料が有するイソシアネート基(NCO基)とが反応して得られる硬化物等が挙げられる。 The curable resin is preferably a cured product of a first organic material and a second organic material. For example, it may be a cured product obtained by reacting a hydroxyl group (OH group) of the first organic material with an isocyanate group (NCO group) of the second organic material.
 上記の反応によって硬化物を得る場合、出発材料の未硬化部分がフィルム中に残留してもよい。例えば、誘電体フィルムは、イソシアネート基及び水酸基の少なくとも一方を含んでもよい。この場合、誘電体フィルムは、イソシアネート基及び水酸基のいずれか一方を含んでもよく、イソシアネート基及び水酸基の両方を含んでもよい。 When a cured product is obtained by the above reaction, uncured portions of the starting material may remain in the film. For example, the dielectric film may contain at least one of an isocyanate group and a hydroxyl group. In this case, the dielectric film may contain either an isocyanate group or a hydroxyl group, or may contain both an isocyanate group and a hydroxyl group.
 なお、イソシアネート基及び/又は水酸基の存在は、フーリエ変換赤外分光光度計(FT-IR)を用いて確認することができる。 The presence of isocyanate groups and/or hydroxyl groups can be confirmed using a Fourier transform infrared spectrophotometer (FT-IR).
 第1有機材料は、分子内に複数の水酸基を有するポリオールであることが好ましい。ポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリビニルアセタール等が挙げられる。第1有機材料として、2種以上の有機材料を併用してもよい。 The first organic material is preferably a polyol having multiple hydroxyl groups in the molecule. Examples of polyols include polyether polyol, polyester polyol, and polyvinyl acetal. Two or more types of organic materials may be used in combination as the first organic material.
 第2有機材料は、分子内に複数の官能基を有する、イソシアネート化合物、エポキシ樹脂又はメラミン樹脂であることが好ましい。第2有機材料として、2種以上の有機材料を併用してもよい。第2有機材料の中では、イソシアネート化合物が望ましい。 The second organic material is preferably an isocyanate compound, an epoxy resin, or a melamine resin, each of which has multiple functional groups in its molecule. Two or more organic materials may be used in combination as the second organic material. Of the second organic materials, an isocyanate compound is preferable.
 イソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート(MDI)及びトリレンジイソシアネート(TDI)等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート(HDI)等の脂肪族ポリイソシアネート等が挙げられる。これらのポリイソシアネートの変性体、例えば、カルボジイミド又はウレタン等を有する変性体であってもよい。 Examples of isocyanate compounds include aromatic polyisocyanates such as diphenylmethane diisocyanate (MDI) and tolylene diisocyanate (TDI), and aliphatic polyisocyanates such as hexamethylene diisocyanate (HDI). Modified versions of these polyisocyanates, such as modified versions with carbodiimide or urethane, may also be used.
 エポキシ樹脂としては、エポキシ環を有する樹脂であれば特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル骨格エポキシ樹脂、シクロペンタジエン骨格エポキシ樹脂、ナフタレン骨格エポキシ樹脂等が挙げられる。 The epoxy resin is not particularly limited as long as it has an epoxy ring, and examples include bisphenol A type epoxy resin, biphenyl skeleton epoxy resin, cyclopentadiene skeleton epoxy resin, naphthalene skeleton epoxy resin, etc.
 メラミン樹脂としては、構造の中心にトリアジン環、その周辺にアミノ基3個を有する有機窒素化合物であれば特に限定されず、例えば、アルキル化メラミン樹脂等が挙げられる。その他、メラミンの変性体であってもよい。 The melamine resin is not particularly limited as long as it is an organic nitrogen compound having a triazine ring at the center of the structure and three amino groups around it, and examples thereof include alkylated melamine resins. In addition, modified forms of melamine may also be used.
 本発明のフィルムコンデンサにおいて、コンデンサ素子の素子本体を構成する誘電体フィルムは、好ましくは、第1有機材料及び第2有機材料を含む樹脂溶液をフィルム状に成形し、次いで、熱処理して硬化させることによって得られる。 In the film capacitor of the present invention, the dielectric film constituting the element body of the capacitor element is preferably obtained by forming a resin solution containing the first organic material and the second organic material into a film, and then curing it by heat treatment.
 本発明のフィルムコンデンサにおいて、コンデンサ素子の素子本体を構成する誘電体フィルムは、蒸着重合膜を主成分として含んでもよい。蒸着重合膜は、ウレタン結合及びユリア結合の少なくとも一方を有してもよく、有しなくてもよい。 In the film capacitor of the present invention, the dielectric film constituting the element body of the capacitor element may contain a vapor deposition polymer film as a main component. The vapor deposition polymer film may or may not have at least one of a urethane bond and a urea bond.
 なお、蒸着重合膜は、蒸着重合法により成膜されたものを指し、基本的には硬化性樹脂に含まれる。 In addition, vapor deposition polymerization films refer to films formed using the vapor deposition polymerization method, and are basically included in the category of curable resins.
 本発明のフィルムコンデンサにおいて、コンデンサ素子の素子本体を構成する誘電体フィルムは、熱可塑性樹脂を主成分として含んでもよい。熱可塑性樹脂としては、例えば、ポリプロピレン、ポリエーテルスルホン、ポリエーテルイミド、ポリアリレート等が挙げられる。 In the film capacitor of the present invention, the dielectric film constituting the element body of the capacitor element may contain a thermoplastic resin as a main component. Examples of the thermoplastic resin include polypropylene, polyethersulfone, polyetherimide, polyarylate, etc.
 本発明のフィルムコンデンサにおいて、コンデンサ素子の素子本体を構成する誘電体フィルムは、他の機能を付加するための添加剤を含むこともできる。例えば、レベリング剤を添加することで平滑性を付与することができる。添加剤は、水酸基及び/又はイソシアネート基と反応する官能基を有し、硬化物の架橋構造の一部を形成する材料であることがより好ましい。このような材料としては、例えば、エポキシ基、シラノール基及びカルボキシル基からなる群より選択される少なくとも1種の官能基を有する樹脂等が挙げられる。 In the film capacitor of the present invention, the dielectric film constituting the element body of the capacitor element may contain additives to impart other functions. For example, smoothness can be imparted by adding a leveling agent. It is more preferable that the additive is a material that has a functional group that reacts with a hydroxyl group and/or an isocyanate group and forms part of the crosslinked structure of the cured product. Examples of such materials include resins that have at least one functional group selected from the group consisting of epoxy groups, silanol groups, and carboxyl groups.
 本発明のフィルムコンデンサにおいて、コンデンサ素子の素子本体を構成する誘電体フィルムの厚さは特に限定されないが、作製するコンデンサの必要な静電容量、必要な素子体積に合わせて、適宜設計することが好ましい。 In the film capacitor of the present invention, the thickness of the dielectric film that constitutes the element body of the capacitor element is not particularly limited, but it is preferable to design it appropriately according to the required capacitance and required element volume of the capacitor to be manufactured.
 なお、誘電体フィルムの厚さは、光学式膜厚計を用いて測定することができる。 The thickness of the dielectric film can be measured using an optical film thickness gauge.
 本発明のフィルムコンデンサにおいて、コンデンサ素子の素子本体を構成する金属層に含まれる金属の種類は特に限定されないが、金属層は、アルミニウム、チタン、亜鉛、マグネシウム、スズ及びニッケルからなる群より選ばれる少なくとも1種を含むことが好ましい。 In the film capacitor of the present invention, the type of metal contained in the metal layer constituting the element body of the capacitor element is not particularly limited, but it is preferable that the metal layer contains at least one metal selected from the group consisting of aluminum, titanium, zinc, magnesium, tin, and nickel.
 本発明のフィルムコンデンサにおいて、コンデンサ素子の素子本体を構成する金属層の厚さは特に限定されないが、金属層の破損を抑制する観点から、金属層の厚さは、5nm以上、40nm以下であることが好ましい。 In the film capacitor of the present invention, the thickness of the metal layer constituting the element body of the capacitor element is not particularly limited, but from the viewpoint of suppressing damage to the metal layer, it is preferable that the thickness of the metal layer is 5 nm or more and 40 nm or less.
 なお、金属層の厚さは、金属化フィルムを厚さ方向に切断した断面を、電界放出型走査電子顕微鏡(FE-SEM)等の電子顕微鏡を用いて観察することにより特定することができる。 The thickness of the metal layer can be determined by observing a cross section of the metallized film cut in the thickness direction using an electron microscope such as a field emission scanning electron microscope (FE-SEM).
 本発明のフィルムコンデンサにおいて、外部電極に接続されている引出端子は、リード線やバスバーであることが好ましい。引出端子は溶接により外部電極に接続されていることが好ましい。 In the film capacitor of the present invention, the lead terminal connected to the external electrode is preferably a lead wire or a bus bar. The lead terminal is preferably connected to the external electrode by welding.
 本発明のフィルムコンデンサにおいて、引出端子の突出部の根元に配置された絶縁性樹脂を構成する材料は、ラミネートフィルムに熱溶着でき、引出端子を固定することができれば、特に限定されないが、例えば、ポリプロピレンに代表されるポリオレフィン系の熱可塑性樹脂であることが好ましい。 In the film capacitor of the present invention, the material constituting the insulating resin arranged at the base of the protruding portion of the pull-out terminal is not particularly limited as long as it can be heat-sealed to the laminate film and can fix the pull-out terminal, but it is preferable that it is, for example, a polyolefin-based thermoplastic resin such as polypropylene.
(ラミネートフィルム)
 本発明の第1実施形態に係るフィルムコンデンサにおいて、ラミネートフィルムは、湿気に対するバリア性の高いラミネート材であり、ラミネート材同士が熱溶着できれば特に限定されない。
 このようなラミネートフィルムとしては、上記コンデンサ素子に近い方から第1樹脂層、金属膜及び第2樹脂層が順に積層されて構成されるラミネートフィルムが挙げられる。
(Laminate film)
In the film capacitor according to the first embodiment of the present invention, the laminate film is a laminate material having a high barrier property against moisture, and is not particularly limited as long as the laminate materials can be thermally welded to each other.
An example of such a laminate film is a laminate film configured by laminating a first resin layer, a metal film, and a second resin layer in this order from the side closest to the capacitor element.
 第1樹脂層は、ラミネートフィルム同士を熱溶着するための層であり、例えば、ポリプロピレン樹脂に代表されるポリオレフィン系の熱可塑性樹脂であることが好ましい。
 また、第1樹脂層の厚さは、20μm以上、150μm以下であることが好ましい。
The first resin layer is a layer for thermally welding the laminate films together, and is preferably made of, for example, a polyolefin-based thermoplastic resin such as polypropylene resin.
The thickness of the first resin layer is preferably 20 μm or more and 150 μm or less.
 金属膜は、湿気に対するバリア性を向上させるための層であり、金属蒸着膜からなることが好ましい。
 また、金属膜は、例えば、アルミニウム等の金属材料から構成されることが好ましい。
 また、金属膜の厚さは、20μm以上、50μm以下であることが好ましい。
The metal film is a layer for improving the barrier properties against moisture, and is preferably made of a vapor-deposited metal film.
The metal film is preferably made of a metal material such as aluminum.
The thickness of the metal film is preferably 20 μm or more and 50 μm or less.
 第2樹脂層は、湿気に対するバリア性を向上させ、金属膜を保護するための層であり、例えば、ナイロン樹脂、ポリエチレンテレフタレート樹脂等の樹脂材料から構成されることが好ましい。
 また、第2樹脂層の厚さは、10μm以上、40μm以下であることが好ましい。
The second resin layer is a layer for improving the barrier property against moisture and protecting the metal film, and is preferably made of a resin material such as nylon resin or polyethylene terephthalate resin.
The thickness of the second resin layer is preferably 10 μm or more and 40 μm or less.
 本発明の第1実施形態に係るフィルムコンデンサにおいて、ラミネートフィルム全体の厚さは、80μm以上、200μm以下であることが好ましく、100μm以上、160μm以下であることがより好ましい。
 ラミネートフィルムの厚さが、80μm未満であると、ラミネートフィルムの強度が低くなり、ラミネートフィルムが破損しやすくなる。
 ラミネートフィルムの厚さが、200μmを超えると、ラミネートフィルムの加工性が悪化する虞がある。また、フィルムコンデンサ全体のサイズが大きくなりやすく、フィルムコンデンサを用いた製品を小型化しにくくなる。
In the film capacitor according to the first embodiment of the present invention, the total thickness of the laminate film is preferably 80 μm or more and 200 μm or less, and more preferably 100 μm or more and 160 μm or less.
If the thickness of the laminate film is less than 80 μm, the strength of the laminate film is reduced and the laminate film becomes more susceptible to breakage.
If the thickness of the laminate film exceeds 200 μm, the processability of the laminate film may deteriorate, and the overall size of the film capacitor may become large, making it difficult to miniaturize products using the film capacitor.
(中間部材)
 本発明の第1実施形態に係るフィルムコンデンサにおいて、中間部材は、ラミネートフィルムにかかる圧力を分散及び均一化することができればどのような材料からなっていてもよいが、シリコーンゴム、フッ素ゴム、ウレタンゴム、弾性エポキシ樹脂等の樹脂材料から構成されることが好ましい。
 これらの材料は弾性が高いので、これらの材料から構成される中間部材は緩衝材として好適に機能する。
(Intermediate part)
In the film capacitor according to the first embodiment of the present invention, the intermediate member may be made of any material capable of dispersing and equalizing the pressure applied to the laminate film, but it is preferable that the intermediate member be made of a resin material such as silicone rubber, fluororubber, urethane rubber, or elastic epoxy resin.
Since these materials have high elasticity, the intermediate member made of these materials functions favorably as a cushioning material.
 本発明の第1実施形態に係るフィルムコンデンサにおいて、中間部材の厚さは、加圧力や、コンデンサ素子の大きさ等により適宜設計することが好ましく、0.2mm以上、2mm以下であることがより好ましく、0.5mm以上、1.2mm以下であることがさらに好ましい。
 中間部材の厚さが0.2mm未満であると、中間部材が薄すぎ、ラミネートフィルムへの圧力を分散しにくくなる。
 中間部材の厚さが、2mmを超えると、フィルムコンデンサ全体のサイズが大きくなりやすく、放熱性も悪化しやすくなる。
In the film capacitor according to the first embodiment of the present invention, the thickness of the intermediate member is preferably designed appropriately depending on the pressure applied, the size of the capacitor element, etc., and is more preferably 0.2 mm or more and 2 mm or less, and even more preferably 0.5 mm or more and 1.2 mm or less.
If the thickness of the intermediate member is less than 0.2 mm, the intermediate member is too thin and it becomes difficult to distribute the pressure on the laminate film.
If the thickness of the intermediate member exceeds 2 mm, the overall size of the film capacitor tends to become large, and heat dissipation properties tend to deteriorate.
 本発明の第1実施形態に係るフィルムコンデンサにおいて、中間部材のヤング率は、5MPa以上、4GPa以下であることが好ましく、10MPa以上、700MPa以下であることがより好ましい。
 中間部材のヤング率が上記範囲である場合、中間部材は充分な強度を有する。また、本発明の第1実施形態に係るフィルムコンデンサが加圧力で挟持される際、ラミネートフィルム加圧力を分散及び均一化しやすくなる。
In the film capacitor according to the first embodiment of the present invention, the Young's modulus of the intermediate member is preferably 5 MPa or more and 4 GPa or less, and more preferably 10 MPa or more and 700 MPa or less.
When the Young's modulus of the intermediate member is within the above range, the intermediate member has sufficient strength, and when the film capacitor according to the first embodiment of the present invention is clamped with a pressure, the pressure applied to the laminate film is easily distributed and uniformed.
 本発明の第1実施形態に係るフィルムコンデンサでは、中間部材は、熱伝送性物質が含まれていてもよい。中間部材が熱伝導性物質を含むと、フィルムコンデンサの放熱性を向上させることができる。
 熱伝導性物質としては、酸化アルミニウムや酸化マグネシウム、シリカ、窒化ケイ素、窒化ホウ素、窒化アルミニウム等の無機材料が挙げられる。
In the film capacitor according to the first embodiment of the present invention, the intermediate member may contain a heat-transmitting material. When the intermediate member contains a heat-conducting material, the heat dissipation property of the film capacitor can be improved.
Examples of thermally conductive materials include inorganic materials such as aluminum oxide, magnesium oxide, silica, silicon nitride, boron nitride, and aluminum nitride.
 上記フィルムコンデンサ1は、例えば以下の方法で製造することができる。
 まず、コンデンサ素子10、一対のラミネート材21及び一対の中間部材30を準備する。
 次に、素子本体11の側面11sの平面部分11s及び外部電極12の側面12sの平面部分12sを連続して覆うように中間部材30をコンデンサ素子10に配置する。
 次に、中間部材30が配置されたコンデンサ素子10を、上下から一対のラミネート材21で挟み込む。この際、コンデンサ素子10の引出端子40が、ラミネート材21の引出口23から引き出され、引出端子40の突出部の根元に配置された絶縁性樹脂41が引出口23と接触するようにする。
 その後、ラミネート材21のフランジ部22を熱プレスすることによりフランジ部22を熱溶着し、ラミネート材21を一体化する。この際、フランジ部22は、引出端子40の突出部の根元に配置された絶縁性樹脂41とも熱溶着する。なお、熱溶着加工は内在する空気や水分を排除するために、真空化で実施することが好ましい。真空中での熱溶着加工により、フィルムコンデンサ1が高温に晒された際に内在する空気が膨張することにより生じるラミネート材21の膨れ、及び、内在する空気や水分の影響による蒸着金属の酸化を効果的に抑制することができる。なお、真空中での熱溶着加工により、ラミネートフィルム20が内部の部材に沿うように幾らか変形するが、フィルムコンデンサ1の特性には影響しない。
 以上の方法により、上記フィルムコンデンサ1を製造することができる。
The film capacitor 1 can be manufactured, for example, by the following method.
First, the capacitor element 10, a pair of laminating materials 21, and a pair of intermediate members 30 are prepared.
Next, the intermediate member 30 is disposed on the capacitor element 10 so as to continuously cover the flat portion 11 s 1 of the side surface 11 s of the element body 11 and the flat portion 12 s 1 of the side surface 12 s of the external electrode 12 .
Next, the capacitor element 10 with the intermediate member 30 disposed thereon is sandwiched from above and below between a pair of laminate materials 21. At this time, the lead-out terminal 40 of the capacitor element 10 is drawn out from the lead-out opening 23 of the laminate material 21, and the insulating resin 41 disposed at the base of the protruding portion of the lead-out terminal 40 is made to come into contact with the lead-out opening 23.
Thereafter, the flange portion 22 of the laminate material 21 is heat-pressed to heat-weld the flange portion 22 and integrate the laminate material 21. At this time, the flange portion 22 is also heat-welded to the insulating resin 41 arranged at the base of the protruding portion of the lead-out terminal 40. Note that the heat-welding process is preferably performed in a vacuum in order to eliminate the air and moisture present therein. The heat-welding process in a vacuum can effectively suppress the swelling of the laminate material 21 caused by the expansion of the air present when the film capacitor 1 is exposed to high temperatures, and the oxidation of the evaporated metal caused by the influence of the air and moisture present therein. Note that the heat-welding process in a vacuum causes the laminate film 20 to deform somewhat so as to conform to the internal members, but does not affect the characteristics of the film capacitor 1.
By the above method, the film capacitor 1 can be manufactured.
 次に、本発明の第1実施形態に係るフィルムコンデンサが使用されたモジュールについて説明する。
 なお、本発明の第1実施形態に係るフィルムコンデンサを備えるモジュールは、本発明の一態様である。
 本発明の第1実施形態に係るモジュールは、基板と、上記基板に配置された固定具と、上記固定具の上記基板に係止された上記本発明の第1実施形態に係るフィルムコンデンサとを備え、上記固定具により、上記フィルムコンデンサのラミネートフィルムを介して、上記フィルムコンデンサの素子本体の側面が係止されている。
Next, a module in which the film capacitor according to the first embodiment of the present invention is used will be described.
A module including the film capacitor according to the first embodiment of the present invention is one aspect of the present invention.
The module according to the first embodiment of the present invention comprises a substrate, a fixing device arranged on the substrate, and a film capacitor according to the first embodiment of the present invention engaged with the substrate of the fixing device, the fixing device engaging a side of the element body of the film capacitor via the laminate film of the film capacitor.
 このような本発明の第1実施形態に係るモジュールについて、以下に図面を用いて説明する。
 図5Aは、本発明の第1実施形態に係るモジュールの一例を模式的に示す斜視図である。
 図5Bは、図5Aに示すモジュールのC-C線断面図である。また、図5Cは、図5Aに示すモジュールのD-D線断面図である。
 すなわち、図5Bは、図5Aに示すモジュールを、コンデンサ素子の外部電極を通るように切断した断面図であり、図5Cは、図5Aに示すモジュールを、コンデンサ素子の素子本体を通るように切断した断面図である。
Such a module according to the first embodiment of the present invention will be described below with reference to the drawings.
FIG. 5A is a perspective view illustrating an example of a module according to the first embodiment of the present invention. FIG.
Fig. 5B is a cross-sectional view of the module shown in Fig. 5A taken along line CC, and Fig. 5C is a cross-sectional view of the module shown in Fig. 5A taken along line DD.
That is, FIG. 5B is a cross-sectional view of the module shown in FIG. 5A cut through the external electrode of the capacitor element, and FIG. 5C is a cross-sectional view of the module shown in FIG. 5A cut through the element body of the capacitor element.
 図5Aに示すモジュール60は、基板70と基板70に配置された固定具80と、固定具80により係止されたフィルムコンデンサ1を備える。
 なお、実際の製品では、フィルムコンデンサ1の引出端子40は、他の部材と接続されているが、説明の便宜上、図5Aでは、他の部材を省略して記載している。
The module 60 shown in FIG. 5A includes a substrate 70 , a fixture 80 disposed on the substrate 70 , and a film capacitor 1 secured by the fixture 80 .
In an actual product, the lead-out terminal 40 of the film capacitor 1 is connected to other members. However, for the sake of convenience, the other members are omitted from the illustration in FIG. 5A.
 図5A、図5B及び図5Cに示すモジュール60では、基板70の主面71に対し、素子本体11の側面11sの平面部分11s及び外部電極12の側面12sの平面部分12sが垂直に位置し、かつ、基板70の主面71に対し長さ方向Lが平行になるように、フィルムコンデンサ1が配置されている。 In the module 60 shown in FIGS. 5A, 5B, and 5C, the film capacitor 1 is arranged such that the planar portion 11s1 of the side surface 11s of the element body 11 and the planar portion 12s1 of the side surface 12s of the external electrode 12 are positioned perpendicular to the main surface 71 of the substrate 70, and the length direction L is parallel to the main surface 71 of the substrate 70.
 また、図5A、図5B及び図5Cに示すように、固定具80は把持部81を有している。
 固定具80は、把持部81でフィルムコンデンサ1のラミネートフィルム20を介して、フィルムコンデンサ1の素子本体11の側面11sを係止している。
As shown in FIGS. 5A, 5B, and 5C, the fixture 80 has a gripping portion 81.
The fixing tool 80 has a gripping portion 81 that engages the side surface 11 s of the element body 11 of the film capacitor 1 via the laminate film 20 of the film capacitor 1 .
 このようなモジュール60では、フィルムコンデンサ1は、素子本体11の側面11sから素子本体11の中心に向かう方向の加圧力を受ける。 In such a module 60, the film capacitor 1 receives a pressure force from the side surface 11s of the element body 11 toward the center of the element body 11.
 フィルムコンデンサが中間部材を備えていない場合、ラミネートフィルムと外部電極とは直接接触することになり、上記加圧力によりラミネートフィルムが外部電極に直接押圧されることになる。外部電極の表面は、平滑性が低く、粗い状態になっているので、上記加圧力がフィルムコンデンサにかかると、ラミネートフィルムの一部に圧力が集中し、ラミネートフィルムが容易に破損しやすくなる。 If the film capacitor does not have an intermediate member, the laminate film and the external electrode will be in direct contact, and the laminate film will be pressed directly against the external electrode by the above pressure. Since the surface of the external electrode is rough and not very smooth, when the above pressure is applied to the film capacitor, the pressure will be concentrated in one part of the laminate film, making the laminate film prone to damage.
 しかし、モジュール60では、図5Bに示すように、ラミネートフィルム20と外部電極12との間には、中間部材30が配置されている。従って、ラミネートフィルム20が外部電極12に直接押圧されるよりも、ラミネートフィルム20にかかる圧力が分散する。そのため、ラミネートフィルム20の一部に圧力が集中することを防ぐことができ、その結果、ラミネートフィルム20が破損することを防ぐことができる。 However, in module 60, as shown in FIG. 5B, an intermediate member 30 is disposed between laminate film 20 and external electrode 12. Therefore, the pressure on laminate film 20 is dispersed more than if laminate film 20 were pressed directly against external electrode 12. This makes it possible to prevent pressure from concentrating on one part of laminate film 20, and as a result, it is possible to prevent damage to laminate film 20.
 なお、上記モジュール60では、基板70の主面71に対し、素子本体11の側面11sの平面部分11s及び外部電極12の側面12sの平面部分12sが垂直に位置し、かつ、基板70の主面71に対し長さ方向Lが平行になるように、フィルムコンデンサ1が配置されているが、本発明の第1実施形態に係るモジュールでは、固定具により、フィルムコンデンサのラミネートフィルムを介して、フィルムコンデンサの素子本体の側面が係止されていれば、フィルムコンデンサは、どのような状態で、基板に配置されていてもよい。例えば、基板の主面に対し長さ方向が交わるように、フィルムコンデンサが配置されていてもよい。
 このようなモジュールは、把持部の形状や、把持部の配置位置等の固定具の形状を変更することにより製造することができる。
In the above module 60, the film capacitor 1 is arranged so that the flat portion 11s1 of the side surface 11s of the element body 11 and the flat portion 12s1 of the side surface 12s of the external electrode 12 are positioned perpendicular to the main surface 71 of the substrate 70 and the length direction L is parallel to the main surface 71 of the substrate 70, but in the module according to the first embodiment of the present invention, the film capacitor may be arranged on the substrate in any state as long as the side surface of the element body of the film capacitor is fastened by a fastener via the laminate film of the film capacitor. For example, the film capacitor may be arranged so that its length direction intersects with the main surface of the substrate.
Such a module can be manufactured by changing the shape of the gripping portion, the shape of the fixture such as the arrangement position of the gripping portion, etc.
 モジュール60における基板70の材料としては、特に限定されないが、エポキシ樹脂等の樹脂材料や、アルミナ等のセラミックス材料等が挙げられる。また、基板70の材料には、無機材料や有機材料からなるフィラーや織布等が添加されていてもよい。 The material of the substrate 70 in the module 60 is not particularly limited, but examples include resin materials such as epoxy resin and ceramic materials such as alumina. In addition, fillers or woven fabrics made of inorganic or organic materials may be added to the material of the substrate 70.
 モジュール60における固定具80としては、特に限定されないが、ねじ式固定具、クリップ式固定具、ばね式固定具等を用いることができる。 The fixing device 80 in the module 60 is not particularly limited, but may be a screw-type fixing device, a clip-type fixing device, a spring-type fixing device, etc.
(第2実施形態)
 次に、本発明の第2実施形態に係るフィルムコンデンサについて説明する。
 本発明の第2実施形態に係るフィルムコンデンサは、中間部材が、素子本体の側面の平面部分及び外部電極の側面の平面部分を連続して覆っているのに代えて、中間部材が、外部電極の端面を覆うように配置されている以外、本発明の第1実施形態に係るフィルムコンデンサと同じ構成である。
Second Embodiment
Next, a film capacitor according to a second embodiment of the present invention will be described.
The film capacitor of the second embodiment of the present invention has the same configuration as the film capacitor of the first embodiment of the present invention, except that instead of the intermediate member continuously covering the flat portion of the side surface of the element body and the flat portion of the side surface of the external electrode, the intermediate member is arranged so as to cover the end face of the external electrode.
 本発明の第2実施形態に係るフィルムコンデンサについて図面を用いて説明する。
 図6Aは、本発明の第2実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。
 図6Bは、本発明の第2実施形態に係るフィルムコンデンサの一例の分解図である。
A film capacitor according to a second embodiment of the present invention will be described with reference to the drawings.
FIG. 6A is a cross-sectional view illustrating an example of a film capacitor according to a second embodiment of the present invention.
FIG. 6B is an exploded view of an example of the film capacitor according to the second embodiment of the present invention.
 図6A及び図6Bに示すように、フィルムコンデンサ101では、中間部材130が、外部電極12の端面12eを覆うように配置されている。
 また、図6Bに示すように、中間部材130には引出端子40を引き出すための切り欠き部131が形成されている。
 なお、図6Bにおける切り欠き部131は、中間部材130の中央部から外縁部までを連続して切り欠いた形状であるが、本発明の第2実施形態に係るフィルムコンデンサでは、切り欠き部は、貫通孔として形成されていてもよい。
As shown in FIGS. 6A and 6B , in the film capacitor 101 , an intermediate member 130 is disposed so as to cover an end surface 12 e of the external electrode 12 .
As shown in FIG. 6B, the intermediate member 130 has a notch 131 for leading out the lead-out terminal 40 .
Note that the cutout portion 131 in Figure 6B has a shape in which a continuous cutout extends from the center to the outer edge of the intermediate member 130, but in the film capacitor according to the second embodiment of the present invention, the cutout portion may be formed as a through hole.
 フィルムコンデンサ101は、長さ方向Lに平行な方向の加圧力で挟持されることになる。
 フィルムコンデンサ101が、長さ方向Lに平行な方向の加圧力で挟持される際、ラミネートフィルム20は、中間部材130を介して、外部電極12の端面12eに押圧されることになる。
 そのため、ラミネートフィルム20が外部電極12の端面12eに直接押圧されるよりも、ラミネートフィルム20にかかる圧力が分散する。従って、ラミネートフィルム20の一部に圧力が集中することを防ぐことができ、その結果、ラミネートフィルム20が破損することを防ぐことができる。
 つまり、フィルムコンデンサ101において、中間部材130は、外部電極12を保護する緩衝材として機能する。
The film capacitor 101 is clamped with a pressure applied in a direction parallel to the longitudinal direction L.
When the film capacitor 101 is clamped with a pressure force in a direction parallel to the longitudinal direction L, the laminate film 20 is pressed against the end faces 12 e of the external electrodes 12 via the intermediate members 130 .
Therefore, the pressure applied to the laminate film 20 is dispersed more than when the laminate film 20 is directly pressed against the end surface 12e of the external electrode 12. This makes it possible to prevent the pressure from concentrating on a portion of the laminate film 20, and as a result, it is possible to prevent the laminate film 20 from being damaged.
That is, in the film capacitor 101 , the intermediate member 130 functions as a buffer material that protects the external electrodes 12 .
(第3実施形態)
 次に、本発明の第3実施形態に係るフィルムコンデンサについて説明する。
 本発明の第3実施形態に係るフィルムコンデンサは、中間部材が、素子本体の側面の平面部分及び外部電極の側面の平面部分を連続して覆っているのに代えて、中間部材が、外部電極の側面及び外部電極の端面の外縁を連続して覆い、かつ、外部電極の端面の一部を露出するように配置されている以外、本発明の第1実施形態に係るフィルムコンデンサと同じ構成である。
Third Embodiment
Next, a film capacitor according to a third embodiment of the present invention will be described.
The film capacitor of the third embodiment of the present invention has the same configuration as the film capacitor of the first embodiment of the present invention, except that instead of the intermediate member continuously covering the flat portion of the side surface of the element body and the flat portion of the side surface of the external electrode, the intermediate member continuously covers the side surface of the external electrode and the outer edge of the end face of the external electrode, and is positioned so as to expose a portion of the end face of the external electrode.
 本発明の第3実施形態に係るフィルムコンデンサについて図面を用いて説明する。
 図7Aは、本発明の第3実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。
 図7Bは、本発明の第3実施形態に係るフィルムコンデンサの一例の分解図である。
A film capacitor according to a third embodiment of the present invention will be described with reference to the drawings.
FIG. 7A is a cross-sectional view illustrating an example of a film capacitor according to a third embodiment of the present invention.
FIG. 7B is an exploded view of an example of the film capacitor according to the third embodiment of the present invention.
 図7A及び図7Bに示すように、フィルムコンデンサ201では、中間部材230が、外部電極12の側面12sの全周及び外部電極12の端面12eの外縁を連続して覆い、かつ、外部電極12の端面12eの一部を露出するように配置されている。つまり、中間部材230には、外部電極12の端面12eを露出する開口部231が形成されている。
 図7Bに示すように、引出端子40は、中間部材230の開口部231から引き出されている。
7A and 7B , in the film capacitor 201, the intermediate member 230 is disposed so as to continuously cover the entire periphery of the side surface 12s of the external electrode 12 and the outer edge of the end face 12e of the external electrode 12, and to expose a part of the end face 12e of the external electrode 12. In other words, the intermediate member 230 has an opening 231 that exposes the end face 12e of the external electrode 12.
As shown in FIG. 7B , the lead-out terminal 40 is led out from the opening 231 of the intermediate member 230 .
 フィルムコンデンサ201は、長さ方向Lに平行な方向の加圧力で挟持されてもよく、長さ方向Lに垂直な方向の加圧力で挟持されてもよい。
 いずれの方向からフィルムコンデンサ201が、加圧されたとしても、ラミネートフィルム20は、中間部材230を介して、外部電極12の側面12s又は端面12eに押圧されることになる。
 そのため、ラミネートフィルム20が外部電極12の側面12s又は端面12eに直接押圧されるよりも、ラミネートフィルム20にかかる圧力が分散する。従って、ラミネートフィルム20の一部に圧力が集中することを防ぐことができ、その結果、ラミネートフィルム20が破損することを防ぐことができる。
 つまり、フィルムコンデンサ201において、中間部材230は、外部電極12を保護する緩衝材として機能する。
The film capacitor 201 may be clamped with a pressure force in a direction parallel to the length direction L, or may be clamped with a pressure force in a direction perpendicular to the length direction L.
Regardless of the direction from which pressure is applied to the film capacitor 201 , the laminate film 20 is pressed against the side surface 12 s or the end surface 12 e of the external electrode 12 via the intermediate member 230 .
Therefore, the pressure applied to the laminate film 20 is dispersed more than when the laminate film 20 is directly pressed against the side surface 12s or the end surface 12e of the external electrode 12. This makes it possible to prevent pressure from concentrating on a portion of the laminate film 20, and as a result, it is possible to prevent damage to the laminate film 20.
That is, in the film capacitor 201 , the intermediate member 230 functions as a buffer material that protects the external electrodes 12 .
(第4実施形態)
 次に、本発明の第4実施形態に係るフィルムコンデンサについて説明する。
 本発明の第4実施形態に係るフィルムコンデンサは、中間部材の配置位置、及び、機能が本発明の第1実施形態に係るフィルムコンデンサと異なる。なお、本発明の第4実施形態に係るフィルムコンデンサでは、コンデンサ素子及びラミネートフィルムは、本発明の第1実施形態に係るフィルムコンデンサと同じ構成である。
Fourth Embodiment
Next, a film capacitor according to a fourth embodiment of the present invention will be described.
The film capacitor according to the fourth embodiment of the present invention differs from the film capacitor according to the first embodiment of the present invention in the position and function of the intermediate member. Note that in the film capacitor according to the fourth embodiment of the present invention, the capacitor element and the laminate film have the same configurations as those in the film capacitor according to the first embodiment of the present invention.
 図8Aは、本発明の第4実施形態に係るフィルムコンデンサの一例を模式的に示す断面図である。
 図8Bは、本発明の第4実施形態に係るフィルムコンデンサの一例の分解図である。
FIG. 8A is a cross-sectional view illustrating an example of a film capacitor according to a fourth embodiment of the present invention.
FIG. 8B is an exploded view of an example of the film capacitor according to the fourth embodiment of the present invention.
 図8A及び図8Bに示すように、フィルムコンデンサ301では、中間部材330は、素子本体11の側面11sの平面部分11sを覆うように配置されている。
 また、外部電極12の側面12sの平面部分12sと、ラミネートフィルム20とは離れている。さらに、外部電極12の側面12sの平面部分12sは露出しており、ラミネートフィルム20と外部電極12の側面12sの平面部分12sとの間には空間302が形成されている。
As shown in FIGS. 8A and 8B, in a film capacitor 301, an intermediate member 330 is disposed so as to cover a flat portion 11s1 of a side surface 11s of an element body 11.
In addition, the flat portion 12s1 of the side surface 12s of the external electrode 12 is separated from the laminate film 20. Furthermore, the flat portion 12s1 of the side surface 12s of the external electrode 12 is exposed, and a space 302 is formed between the laminate film 20 and the flat portion 12s1 of the side surface 12s of the external electrode 12.
 フィルムコンデンサ301では、中間部材330は、ラミネートフィルム20と外部電極12の側面12sの平面部分12sとの間に空間302を形成するためのスペーサーとして機能する。 In the film capacitor 301 , the intermediate member 330 functions as a spacer for forming a space 302 between the laminate film 20 and the flat portion 12 s 1 of the side surface 12 s of the external electrode 12 .
 フィルムコンデンサ301は、素子本体11の側面11sから素子本体11の中心に向かう方向の加圧力で挟持されることになる。
 フィルムコンデンサ301が、素子本体11の側面11sから素子本体11の中心に向かう方向の加圧力で挟持されたとしても、中間部材330がスペーサーとして機能するので、ラミネートフィルム20は外部電極12と接触しないか、接触したとしてもラミネートフィルム20は外部電極に強く押圧されない。
 そのため、ラミネートフィルム20が破損することを防ぐことができる。
The film capacitor 301 is sandwiched by a pressure applied from the side surface 11 s of the element body 11 toward the center of the element body 11 .
Even if the film capacitor 301 is clamped with a pressure applied from the side surface 11s of the element body 11 toward the center of the element body 11, the intermediate member 330 functions as a spacer, so that the laminate film 20 does not come into contact with the external electrode 12, or even if it does come into contact, the laminate film 20 is not pressed strongly against the external electrode.
Therefore, damage to the laminate film 20 can be prevented.
 フィルムコンデンサ301では、中間部材330のヤング率は、外部電極12のヤング率よりも低いことが好ましい。
 なお、中間部材330のヤング率に対する外部電極12のヤング率の比は、外部電極のヤング率/中間部材のヤング率で表したときに、20以上、25000以下であることが好ましい。
In the film capacitor 301 , the Young's modulus of the intermediate member 330 is preferably lower than the Young's modulus of the external electrodes 12 .
The ratio of the Young's modulus of the external electrode 12 to the Young's modulus of the intermediate member 330 is preferably 20 or more and 25,000 or less when expressed as Young's modulus of external electrode/Young's modulus of intermediate member.
 本発明の第4実施形態に係るフィルムコンデンサにおいて、中間部材330のヤング率は、5MPa以上、4GPa以下であることが好ましく、10MPa以上、700MPa以下であることがより好ましい。 In the film capacitor according to the fourth embodiment of the present invention, the Young's modulus of the intermediate member 330 is preferably 5 MPa or more and 4 GPa or less, and more preferably 10 MPa or more and 700 MPa or less.
 本発明の第4実施形態に係るフィルムコンデンサにおいて、中間部材は、スペーサーとして機能することができれば、どのような材料からなっていてもよいが、シリコーンゴム、フッ素ゴム、ウレタンゴム、弾性エポキシ樹脂等の樹脂材料から構成されることが好ましい。
 これらの材料はスペーサーとして好適に機能する。
In the film capacitor according to the fourth embodiment of the present invention, the intermediate member may be made of any material as long as it can function as a spacer, but it is preferable that the intermediate member be made of a resin material such as silicone rubber, fluororubber, urethane rubber, or elastic epoxy resin.
These materials function favorably as spacers.
 本発明の第4実施形態に係るフィルムコンデンサにおいて、中間部材の厚さは、加圧力や、コンデンサ素子の大きさ等により適宜設計することが好ましく、0.2mm以上、2mm以下であることがより好ましく、0.5mm以上、1.2mm以下であることがさらに好ましい。
 中間部材の厚さが0.2mm未満であると、中間部材が薄すぎ、ラミネートフィルムと外部電極との間に空間を形成しにくくなる。
 中間部材の厚さが、2mmを超えると、フィルムコンデンサ全体のサイズが大きくなりやすく、放熱性も悪化しやすくなる。
In the film capacitor according to the fourth embodiment of the present invention, the thickness of the intermediate member is preferably designed appropriately depending on the pressure applied, the size of the capacitor element, etc., and is more preferably 0.2 mm or more and 2 mm or less, and even more preferably 0.5 mm or more and 1.2 mm or less.
If the thickness of the intermediate member is less than 0.2 mm, the intermediate member will be too thin, making it difficult to form a space between the laminate film and the external electrode.
If the thickness of the intermediate member exceeds 2 mm, the overall size of the film capacitor tends to become large, and heat dissipation properties tend to deteriorate.
(その他の実施形態)
 本発明の第1実施形態~第4実施形態に係るフィルムコンデンサでは、素子本体が、端面がレーストラック状の形状であり、全体が柱状の巻回型フィルムコンデンサであった。しかし、本発明のフィルムコンデンサの形状は、上記形状に限られず、円柱状であってもよく、楕円柱状であってもよい。
 また、本発明のフィルムコンデンサは、金属化フィルムが積層された積層型フィルムコンデンサであってもよく、その形状は、直方体状であってもよく、立方体状であってもよい。
Other Embodiments
In the film capacitors according to the first to fourth embodiments of the present invention, the element body has end faces in a racetrack shape, and the entire film capacitor is a cylindrical wound film capacitor. However, the shape of the film capacitor of the present invention is not limited to the above shape, and may be a cylindrical shape or an elliptical cylindrical shape.
Furthermore, the film capacitor of the present invention may be a laminated film capacitor in which a metallized film is laminated, and its shape may be a rectangular parallelepiped or a cube.
 本発明の第1実施形態~第3実施形態に係るフィルムコンデンサでは、中間部材が、外部電極の一部を覆うように配置されていた。
 本発明のフィルムコンデンサでは、中間部材が緩衝材として機能する場合、中間部材は、圧力がかかる方向において、ラミネートフィルムと外部電極との間の少なくとも一部に配置されていれば、どのように配置されていてもよい。
In the film capacitors according to the first to third embodiments of the present invention, the intermediate member is disposed so as to cover a portion of the external electrode.
In the film capacitor of the present invention, when the intermediate member functions as a cushioning material, the intermediate member may be arranged in any manner as long as it is located at least partially between the laminate film and the external electrode in the direction in which pressure is applied.
 例えば、外部電極の側面の全体を覆うように配置されていてもよく、外部電極の側面の一部を覆うように配置されていてもよい。
 また、中間部材が緩衝材として機能する場合、本発明のフィルムコンデンサでは、中間部材は、素子本体の側面の全体を覆うように配置されていてもよく、素子本体の側面の一部を覆うように配置されていてもよく、素子本体の側面に配置されていなくてもよい。
For example, the insulating layer 12 may be disposed so as to cover the entire side surface of the external electrode, or may be disposed so as to cover a part of the side surface of the external electrode.
Furthermore, when the intermediate member functions as a cushioning material, in the film capacitor of the present invention, the intermediate member may be arranged so as to cover the entire side surface of the element body, may be arranged so as to cover part of the side surface of the element body, or may not be arranged on the side surface of the element body.
 本発明の第4実施形態に係るフィルムコンデンサでは、中間部材が、素子本体の側面の一部を覆うように配置されていた。
 本発明のフィルムコンデンサでは、中間部材が緩衝材として機能する場合、中間部材は、圧力がかかる方向において、ラミネートフィルムと素子本体との間の少なくとも一部に配置され、外部電極の側面の少なくとも一部と、ラミネートフィルムとが離れていれば、どのように配置されていてもよい。
 例えば中間部材は、素子本体の側面の全体を覆うように配置されていてもよい。
In the film capacitor according to the fourth embodiment of the present invention, the intermediate member is disposed so as to cover a portion of the side surface of the element body.
In the film capacitor of the present invention, when the intermediate member functions as a cushioning material, the intermediate member may be positioned in any manner so long as it is positioned at least partially between the laminate film and the element body in the direction in which pressure is applied and at least a portion of the side surface of the external electrode is separated from the laminate film.
For example, the intermediate member may be disposed so as to cover the entire side surface of the element body.
 また、本発明の第4実施形態に係るフィルムコンデンサでは、外部電極の側面と、ラミネートフィルムとは離れており、その間に空間が形成されていた。
 本発明に係るフィルムコンデンサでは、中間部材が緩衝材として機能する場合、外部電極の側面と、ラミネートフィルムとが離れている部分には、緩衝材が配置されており空間が形成されていなくてもよい。
Furthermore, in the film capacitor according to the fourth embodiment of the present invention, the side surfaces of the external electrodes and the laminate film are spaced apart from each other, forming a space therebetween.
In the film capacitor according to the present invention, when the intermediate member functions as a cushioning material, the cushioning material is arranged in the area where the side surface of the external electrode and the laminate film are separated, so that no space does not have to be formed.
 本明細書には、以下の事項が記載されている。 This specification includes the following:
 本開示(1)は、長さ方向の両端に位置する端面及び上記端面同士を接続する側面を有する素子本体と、上記素子本体の端面に設けられた外部電極とを含むコンデンサ素子と、上記コンデンサ素子を被覆するラミネートフィルムと、上記コンデンサ素子と上記ラミネートフィルムとの間の少なくとも一部に配置された中間部材とを含むフィルムコンデンサである。 The present disclosure (1) is a film capacitor including a capacitor element including an element body having end faces located at both ends in the longitudinal direction and side faces connecting the end faces, and external electrodes provided on the end faces of the element body, a laminate film covering the capacitor element, and an intermediate member disposed at least partially between the capacitor element and the laminate film.
 本開示(2)は、上記中間部材のヤング率が、上記外部電極のヤング率よりも低い本開示(1)に記載のフィルムコンデンサである。 The present disclosure (2) is a film capacitor according to the present disclosure (1) in which the Young's modulus of the intermediate member is lower than the Young's modulus of the external electrode.
 本開示(3)は、上記中間部材が、上記外部電極と上記ラミネートフィルムとの間に配置されている本開示(1)又は(2)に記載のフィルムコンデンサである。 The present disclosure (3) is a film capacitor according to the present disclosure (1) or (2), in which the intermediate member is disposed between the external electrode and the laminate film.
 本開示(4)は、上記外部電極が、上記外部電極を長さ方向から平面視した際に見える端面と、上記外部電極を長さ方向に垂直な方向から平面視した際に見える側面とを有し、上記中間部材は、上記外部電極の側面の少なくとも一部を覆うように配置されている本開示(3)に記載のフィルムコンデンサである。 The present disclosure (4) is a film capacitor according to the present disclosure (3), in which the external electrode has an end face visible when the external electrode is viewed in a planar view from the longitudinal direction and a side face visible when the external electrode is viewed in a planar view from a direction perpendicular to the longitudinal direction, and the intermediate member is arranged so as to cover at least a portion of the side face of the external electrode.
 本開示(5)は、上記外部電極が、上記外部電極を長さ方向から平面視した際に見える端面と、上記外部電極を長さ方向に垂直な方向から平面視した際に見える側面とを有し、上記中間部材は、上記外部電極の側面及び上記外部電極の端面の外縁を連続して覆い、かつ、上記外部電極の端面の少なくとも一部を露出するように配置されている本開示(3)に記載のフィルムコンデンサである。 The present disclosure (5) is a film capacitor according to the present disclosure (3), in which the external electrode has an end face visible when the external electrode is viewed in a planar view from the longitudinal direction and a side face visible when the external electrode is viewed in a planar view from a direction perpendicular to the longitudinal direction, and the intermediate member is arranged to continuously cover the outer edges of the side face and the end face of the external electrode and to expose at least a portion of the end face of the external electrode.
 本開示(6)は、上記中間部材が、上記素子本体の側面及び上記外部電極の側面を連続して覆っている本開示(4)又は(5)に記載のフィルムコンデンサである。 The present disclosure (6) is a film capacitor according to the present disclosure (4) or (5), in which the intermediate member continuously covers the side surface of the element body and the side surface of the external electrode.
 本開示(7)は、上記外部電極が、上記外部電極を長さ方向から平面視した際に見える端面と、上記外部電極を長さ方向に垂直な方向から平面視した際に見える側面とを有し、上記中間部材は、上記外部電極の端面の少なくとも一部を覆うように配置されている本開示(3)に記載のフィルムコンデンサである。 The present disclosure (7) is a film capacitor according to the present disclosure (3), in which the external electrode has an end face visible when the external electrode is viewed in a planar view from the longitudinal direction and a side face visible when the external electrode is viewed in a planar view from a direction perpendicular to the longitudinal direction, and the intermediate member is arranged so as to cover at least a portion of the end face of the external electrode.
 本開示(8)は、上記外部電極が、上記外部電極を長さ方向から平面視した際に見える端面と、上記外部電極を長さ方向に垂直な方向から平面視した際に見える側面とを有し、上記中間部材は、上記素子本体の側面を覆うように配置されており、上記外部電極の側面の少なくとも一部と、上記ラミネートフィルムとは離れている本開示(1)又は(2)に記載のフィルムコンデンサである。 The present disclosure (8) is a film capacitor according to the present disclosure (1) or (2), in which the external electrode has an end face visible when the external electrode is viewed in a planar view from the longitudinal direction and a side face visible when the external electrode is viewed in a planar view from a direction perpendicular to the longitudinal direction, the intermediate member is arranged to cover the side face of the element body, and at least a portion of the side face of the external electrode is separated from the laminate film.
 本開示(9)は、上記ラミネートフィルムと離れている上記外部電極の側部は露出しており、上記ラミネートフィルムと上記外部電極の側部の露出部分との間には空間が形成されている本開示(8)に記載のフィルムコンデンサである。 The present disclosure (9) is a film capacitor according to the present disclosure (8), in which the side of the external electrode that is away from the laminate film is exposed, and a space is formed between the laminate film and the exposed portion of the side of the external electrode.
 本開示(10)は、基板と、上記基板に配置された固定具と、上記固定具の上記基板に係止された本開示(4)~(6)、(8)及び(9)のいずれかに記載のフィルムコンデンサとを備え、上記固定具により、上記フィルムコンデンサのラミネートフィルムを介して、上記フィルムコンデンサの素子本体の側面が係止されているモジュールである。 The present disclosure (10) is a module comprising a substrate, a fixture disposed on the substrate, and a film capacitor according to any one of the present disclosures (4) to (6), (8), and (9) that is secured to the substrate of the fixture, in which the side of the element body of the film capacitor is secured to the fixture via the laminate film of the film capacitor.
1、101、201、301 フィルムコンデンサ
10 コンデンサ素子
11 素子本体
11e 素子本体の端面
11s 素子本体の側面
11s 素子本体の側面の平面部分
11s 素子本体の側面の曲面部分
12、12´ 外部電極
12e、12e´  :外部電極の端面
12R´ 外部電極の角部
12s、12s´ 外部電極の側面
12s 外部電極の側面の平面部分
12s 外部電極の側面の曲面部分
20 ラミネートフィルム
21 ラミネート材
22 フランジ部
23 引出口
30、130、230、330 中間部材
40 引出端子
41 絶縁性樹脂
51 第1の金属化フィルム
52 第2の金属化フィルム
53 第1の誘電体フィルム
54 第2の誘電体フィルム
55 第1の金属層
56 第2の金属層
60 モジュール
70 基板
71 基板の主面
80 固定具
81 把持部
131 切り欠き部
231 開口部
302 空間

 
1, 101, 201, 301 Film capacitor 10 Capacitor element 11 Element body 11e End face 11s of element body Side face 11s of element body 1 Flat portion 11s of side face of element body 2 Curved portion 12, 12' of side face of element body External electrode 12e, 12e': End face 12R' of external electrode Corner 12s, 12s' of external electrode Side face 12s of external electrode 1 Flat portion 12s of side face of external electrode 2 Curved portion 20 of side face of external electrode Laminate film 21 Laminate material 22 Flange portion 23 Lead outlet 30, 130, 230, 330 Intermediate member 40 Lead terminal 41 Insulating resin 51 First metallized film 52 Second metallized film 53 First dielectric film 54 Second dielectric film 55 First metal layer 56 Second metal layer 60 Module 70 Substrate 71 Main surface 80 of substrate Fixture 81 Grip portion 131 Notch portion 231 Opening 302 Space

Claims (10)

  1.  長さ方向の両端に位置する端面及び前記端面同士を接続する側面を有する素子本体と、前記素子本体の端面に設けられた外部電極とを含むコンデンサ素子と、
     前記コンデンサ素子を被覆するラミネートフィルムと、
     前記コンデンサ素子と前記ラミネートフィルムとの間の少なくとも一部に配置された中間部材とを含むフィルムコンデンサ。
    a capacitor element including an element body having end faces located at both ends in a longitudinal direction and side faces connecting the end faces, and an external electrode provided on the end faces of the element body;
    a laminate film covering the capacitor element;
    A film capacitor comprising: an intermediate member disposed at least partially between the capacitor element and the laminate film.
  2.  前記中間部材のヤング率が、前記外部電極のヤング率よりも低い請求項1に記載のフィルムコンデンサ。 The film capacitor of claim 1, wherein the Young's modulus of the intermediate member is lower than the Young's modulus of the external electrode.
  3.  前記中間部材は、前記外部電極と前記ラミネートフィルムとの間に配置されている請求項1又は2に記載のフィルムコンデンサ。 The film capacitor according to claim 1 or 2, wherein the intermediate member is disposed between the external electrode and the laminate film.
  4.  前記外部電極は、前記外部電極を長さ方向から平面視した際に見える端面と、前記外部電極を長さ方向に垂直な方向から平面視した際に見える側面とを有し、
     前記中間部材は、前記外部電極の側面の少なくとも一部を覆うように配置されている請求項3に記載のフィルムコンデンサ。
    the external electrode has an end face that is seen when the external electrode is viewed in a planar manner from a longitudinal direction, and a side face that is seen when the external electrode is viewed in a planar manner from a direction perpendicular to the longitudinal direction,
    The film capacitor according to claim 3 , wherein the intermediate member is disposed so as to cover at least a portion of a side surface of the external electrode.
  5.  前記外部電極は、前記外部電極を長さ方向から平面視した際に見える端面と、前記外部電極を長さ方向に垂直な方向から平面視した際に見える側面とを有し、
     前記中間部材は、前記外部電極の側面及び前記外部電極の端面の外縁を連続して覆い、かつ、前記外部電極の端面の少なくとも一部を露出するように配置されている請求項3に記載のフィルムコンデンサ。
    the external electrode has an end face that is seen when the external electrode is viewed in a planar manner from a longitudinal direction, and a side face that is seen when the external electrode is viewed in a planar manner from a direction perpendicular to the longitudinal direction,
    The film capacitor according to claim 3 , wherein the intermediate member is disposed so as to continuously cover the side surfaces of the external electrodes and the outer edges of the end faces of the external electrodes, and to expose at least a portion of the end faces of the external electrodes.
  6.  前記中間部材は、前記素子本体の側面及び前記外部電極の側面を連続して覆っている請求項4又は5に記載のフィルムコンデンサ。 The film capacitor according to claim 4 or 5, wherein the intermediate member continuously covers the side surface of the element body and the side surface of the external electrode.
  7.  前記外部電極は、前記外部電極を長さ方向から平面視した際に見える端面と、前記外部電極を長さ方向に垂直な方向から平面視した際に見える側面とを有し、
     前記中間部材は、前記外部電極の端面の少なくとも一部を覆うように配置されている請求項3に記載のフィルムコンデンサ。
    the external electrode has an end face that is seen when the external electrode is viewed in a planar manner from a longitudinal direction, and a side face that is seen when the external electrode is viewed in a planar manner from a direction perpendicular to the longitudinal direction,
    The film capacitor according to claim 3 , wherein the intermediate member is disposed so as to cover at least a portion of an end surface of the external electrode.
  8.  前記外部電極は、前記外部電極を長さ方向から平面視した際に見える端面と、前記外部電極を長さ方向に垂直な方向から平面視した際に見える側面とを有し、
     前記中間部材は、前記素子本体の側面を覆うように配置されており、
     前記外部電極の側面の少なくとも一部と、前記ラミネートフィルムとは離れている請求項1又は2に記載のフィルムコンデンサ。
    the external electrode has an end face that is seen when the external electrode is viewed in a planar manner from a longitudinal direction, and a side face that is seen when the external electrode is viewed in a planar manner from a direction perpendicular to the longitudinal direction,
    The intermediate member is disposed so as to cover a side surface of the element body,
    3. The film capacitor according to claim 1, wherein at least a part of a side surface of the external electrode is separated from the laminate film.
  9.  前記ラミネートフィルムと離れている前記外部電極の側部は露出しており、前記ラミネートフィルムと前記外部電極の側部の露出部分との間には空間が形成されている請求項8に記載のフィルムコンデンサ。 The film capacitor of claim 8, wherein the side of the external electrode that is away from the laminate film is exposed, and a space is formed between the laminate film and the exposed portion of the side of the external electrode.
  10.  基板と、
     前記基板に配置された固定具と、
     前記固定具の前記基板に係止された請求項4~6、8及び9のいずれかに記載のフィルムコンデンサとを備え、
     前記固定具により、前記フィルムコンデンサのラミネートフィルムを介して、前記フィルムコンデンサの素子本体の側面が係止されているモジュール。

     
    A substrate;
    A fixture disposed on the substrate;
    and a film capacitor according to any one of claims 4 to 6, 8 and 9, which is fixed to the substrate of the fixture;
    A module in which the side of the element body of the film capacitor is engaged by the fixing device via the laminate film of the film capacitor.

PCT/JP2023/021733 2022-09-30 2023-06-12 Film capacitor and module WO2024070067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-158115 2022-09-30
JP2022158115 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070067A1 true WO2024070067A1 (en) 2024-04-04

Family

ID=90476777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021733 WO2024070067A1 (en) 2022-09-30 2023-06-12 Film capacitor and module

Country Status (1)

Country Link
WO (1) WO2024070067A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155790A (en) * 1999-11-30 2001-06-08 Sony Corp Non-aqueous electrolyte cell
JP2016157755A (en) * 2015-02-24 2016-09-01 パナソニックIpマネジメント株式会社 Metallized film capacitor
JP2019204936A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Film capacitor
WO2022118616A1 (en) * 2020-12-02 2022-06-09 パナソニックIpマネジメント株式会社 Capacitor and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155790A (en) * 1999-11-30 2001-06-08 Sony Corp Non-aqueous electrolyte cell
JP2016157755A (en) * 2015-02-24 2016-09-01 パナソニックIpマネジメント株式会社 Metallized film capacitor
JP2019204936A (en) * 2018-05-25 2019-11-28 パナソニックIpマネジメント株式会社 Film capacitor
WO2022118616A1 (en) * 2020-12-02 2022-06-09 パナソニックIpマネジメント株式会社 Capacitor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2019146755A1 (en) Film capacitor, and outer case for film capacitor
EP1341245B1 (en) Battery pack
JP5374979B2 (en) Batteries and batteries
KR101666418B1 (en) Pouch-Type Battery Cell Having Film Member for Protecting Electrode Tap-Lead Joint Portion
US9246139B2 (en) Pouch case for secondary battery and secondary battery using the same
JP6944161B2 (en) Film capacitors and film capacitor manufacturing methods
KR102167214B1 (en) Battery Module Case and Battery Module Comprising The Same
JP7222489B2 (en) Film capacitor
US10879554B2 (en) Thin film battery
US20130149601A1 (en) Secondary battery
WO2024070067A1 (en) Film capacitor and module
WO2017163359A1 (en) Secondary battery device
JP2013038298A (en) Film capacitor
CN111095594A (en) Pouch case and secondary battery including the same
WO2021038970A1 (en) Film capacitor
CN217134211U (en) Thin film capacitor
WO2021024558A1 (en) Film capacitor and exterior case for film capacitor
JP7312261B2 (en) Film capacitor
WO2021039761A1 (en) Film capacitor
WO2024014111A1 (en) Capacitor
WO2021038973A1 (en) Film capacitor
CN217157969U (en) Thin film capacitor
WO2023282077A1 (en) Film capacitor
CN220914046U (en) Thin film capacitor
WO2020166170A1 (en) Film capacitor and exterior case for film capacitor