WO2024069951A1 - Machine tool control device and machine tool display device - Google Patents

Machine tool control device and machine tool display device Download PDF

Info

Publication number
WO2024069951A1
WO2024069951A1 PCT/JP2022/036751 JP2022036751W WO2024069951A1 WO 2024069951 A1 WO2024069951 A1 WO 2024069951A1 JP 2022036751 W JP2022036751 W JP 2022036751W WO 2024069951 A1 WO2024069951 A1 WO 2024069951A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
air cut
workpiece
cut amount
amount
Prior art date
Application number
PCT/JP2022/036751
Other languages
French (fr)
Japanese (ja)
Inventor
将司 安田
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2022580018A priority Critical patent/JP7252426B1/en
Priority to PCT/JP2022/036751 priority patent/WO2024069951A1/en
Publication of WO2024069951A1 publication Critical patent/WO2024069951A1/en

Links

Images

Definitions

  • This disclosure relates to a control device for a machine tool and a display device for a machine tool.
  • the workpiece is machined by oscillating the tool and workpiece relative to each other to prevent chips that are continuously generated during machining from becoming entangled in the workpiece or cutting tool, which can lead to machining defects or machine failures.
  • the amplitude magnification is often determined by the ratio of the amplitude to the feed rate of the tool per revolution of the spindle.
  • a value with a small margin is used rather than being set to the limit at which air cuts occur. For example, even if an air cut would theoretically occur at an amplitude magnification of 1.0, machining was performed with a margin set at an amplitude magnification of 1.2.
  • the amplitude multiplier value required to achieve chip shredding changes depending on the frequency multiplier setting, which is the number of oscillations per rotation of the spindle. This makes it difficult to understand how to set the amplitude multiplier in relation to whether chip shredding is possible, and makes it difficult to adjust the processing conditions.
  • This disclosure has been made in consideration of the above problems, and aims to provide technology that can accurately determine whether chip shredding is possible even when processing conditions change during oscillating cutting, and also makes it easy to adjust processing conditions.
  • the present disclosure relates to a control device for a machine tool that performs machining while oscillating a cutting tool and a workpiece relative to one another
  • the control device for a machine tool including: a condition acquisition unit that acquires, as a precondition, one or two pieces of information out of three pieces of information: information on the relative feed amount per rotation between the cutting tool and the workpiece; information on the relative number of oscillations per rotation between the cutting tool and the workpiece; and information on the oscillation amplitude for the relative feed amount per rotation between the cutting tool and the workpiece; an air cut amount acquisition unit that acquires a designated air cut amount that indicates the degree of air cut in the oscillation direction; and a machining control unit that determines, based on the precondition, the information out of the three pieces of information that has not been acquired by the condition acquisition unit, so that the air cut amount based on the gap between a pass of n rotations and a pass of a rotation later than n rotations becomes the designated air cut amount, and performs machining control.
  • the present disclosure also provides a display device for a machine tool that performs machining while oscillating a cutting tool and a workpiece relative to one another, the display device for the machine tool including: a condition input unit that accepts input of one or two pieces of information as preconditions out of three pieces of information: information on the relative feed rate per rotation between the cutting tool and the workpiece; information on the relative number of oscillations per rotation between the cutting tool and the workpiece; and information on the oscillation amplitude for the relative feed rate per rotation between the cutting tool and the workpiece; an air cut amount input unit that accepts input of a designated air cut amount that indicates the degree of air cut in the oscillation direction; an information calculation unit that calculates, based on the preconditions, the information out of the three pieces of information that has not been acquired by the condition acquisition unit so that the air cut amount based on the gap between the pass of n rotations and the pass of a rotation later than n rotations becomes the designated air cut amount; and a display unit that displays the information calculated by the information calculation unit
  • This disclosure provides technology that can accurately determine whether chip shredding is possible even when processing conditions change during oscillating cutting, and also makes it easy to adjust processing conditions.
  • FIG. 13 is a diagram for explaining swing cutting.
  • FIG. 2 is a functional block diagram of the control device for the machine tool according to the first embodiment.
  • 3 is a block diagram showing conditions acquired by a condition acquisition unit in the first embodiment;
  • FIG. FIG. 4 is a diagram showing an example of a machining program.
  • FIG. 2 is a diagram illustrating a schematic positional relationship between a workpiece and a cutting tool.
  • FIG. 11 is a block diagram showing conditions acquired by a condition acquisition unit according to the second embodiment.
  • FIG. 13 is a diagram illustrating a schematic positional relationship between a workpiece and a cutting tool when the taper angle is small.
  • FIG. 13 is a diagram illustrating a schematic positional relationship between a workpiece and a cutting tool when the taper angle is large.
  • FIG. 13 is a block diagram showing conditions acquired by a condition acquisition unit according to the third embodiment.
  • FIG. 11 is a functional block diagram of a display device of a machine tool according to a modified
  • a control device 1 for a machine tool according to a first embodiment of the present invention is for performing swing cutting, which cuts (turns) a workpiece while swinging a cutting tool and the workpiece relatively. First, swing cutting will be described with reference to FIG.
  • FIG. 1 is a diagram for explaining oscillating cutting.
  • at least one spindle S that rotates the cutting tool T and the workpiece W relative to each other and at least one feed axis (not shown) that moves the cutting tool T relative to the workpiece W are operated to rotate the cutting tool T and the workpiece W relative to each other and to perform cutting while oscillating the cutting tool T and the workpiece W relative to each other in the feed direction.
  • the tool path which is the trajectory of the cutting tool T, is set so that the current path partially overlaps with the previous path.
  • the current path partially includes the part that has been machined in the previous path, generating an air cut called an air cut, in which the cutting edge of the cutting tool T separates from the surface of the workpiece W, and the cutting chips are chopped up.
  • the shape of the workpiece is not limited in the oscillating cutting performed in this embodiment. In other words, it can be applied even when the workpiece has a tapered portion or an arc-shaped portion on the machining surface, requiring multiple feed axes (Z axis and X axis), or when the workpiece is cylindrical or cylindrical and only one specific feed axis (Z axis) is sufficient.
  • FIG. 2 is a functional block diagram of the machine tool control device 1 according to one embodiment of the present invention.
  • the machine tool control device 1 of this embodiment is configured using a computer equipped with memories such as a ROM (read only memory) and a RAM (random access memory), a CPU (control processing unit), and a communication control unit, which are connected to each other via a bus.
  • memories such as a ROM (read only memory) and a RAM (random access memory), a CPU (control processing unit), and a communication control unit, which are connected to each other via a bus.
  • the functions and operations of each of the above functional units are achieved by the cooperation of the CPU, memory, and control programs stored in the memory mounted on the computer.
  • the machine tool control device 1 may also be configured with a CNC (Computer Numerical Controller) or a PLC (Programmable Logic Controller), or may be connected to a higher-level computer that outputs machining conditions such as rotation speed in addition to machining programs.
  • FIG. 2 shows only a motor 3 that drives one feed axis.
  • the machine tool control device 1 includes a condition acquisition unit 11, an air cut amount acquisition unit 12, a machining control unit 13, a memory unit 14, an input unit 15, and a display unit 16.
  • the condition acquisition unit 11 acquires the machining conditions and the oscillation conditions for oscillating the workpiece W.
  • the machining conditions and the oscillation conditions may be, for example, those stored in the memory unit 14, or may be those output from an external computer.
  • the machining conditions include at least information regarding the relative feed rate per revolution between the cutting tool and the workpiece, and information regarding the shape of the cutting tool cutting edge, as well as information regarding, for example, the spindle rotation speed S (1/min), the feed rate of the cutting tool (mm/min), the workpiece diameter (mm), the clearance angle of the cutting tool (°), etc.
  • Examples of information regarding the relative feed rate per revolution between the cutting tool and the workpiece include the feed rate per revolution F (mm/rev) and a combination of the spindle rotation speed S (1/min) and the feed rate of the cutting tool (mm/min), and examples of information regarding the shape of the cutting tool cutting edge include the radius of the cutting edge (mm).
  • the oscillation conditions include information on the relative oscillation number per revolution between the cutting tool and the workpiece, and information on the oscillation amplitude relative to the feed amount per revolution between the cutting tool and the workpiece.
  • Information on the relative oscillation number per revolution between the cutting tool and the workpiece includes an oscillation frequency magnification I (times), which indicates the oscillation frequency per revolution of the spindle.
  • Information on the oscillation amplitude relative to the relative feed amount per revolution between the cutting tool and the workpiece includes an oscillation amplitude magnification K (times), which indicates the magnitude of the oscillation amplitude relative to the magnitude of the feed amount per revolution of the spindle.
  • the oscillation frequency magnification I may be specified directly, or may be calculated from the oscillation frequency (Hz) and the spindle rotation speed S (1/min) after specifying the oscillation frequency (Hz).
  • the oscillation amplitude magnification K may be specified directly, or may be calculated from the oscillation amplitude (mm), the feed rate (mm/min), and the spindle rotation speed S (1/min) after specifying the oscillation amplitude (mm).
  • the air cut amount acquisition unit 12 acquires a specified air cut amount that is specified in advance by an operator or the like.
  • the air cut amount may be, for example, stored in the memory unit 14, may be acquired from an external computer, or may be input via the input unit 15.
  • the air cut amount referred to here is the amount of air cut between the pass at the nth rotation and the pass at a rotation later than the nth rotation (n+1 or later rotations).
  • the amount of air cut between the pass at the nth rotation and the pass at the n+1th rotation is used to determine the machining conditions, but this is not limited to this.
  • the amount of air cut between the pass at the nth rotation and the pass at the n+2th rotation may be used to determine the machining conditions.
  • the air cut amount is the distance in the oscillation direction.
  • the feed axis oscillates in the feed direction, so the air cut amount is a numerical value that indicates the degree of air cut in the feed direction.
  • the air cut amount only needs to be an index that indicates the magnitude of the air cut, and may be expressed as the distance in the oscillation direction, an area including the oscillation direction, a level linked to the air cut amount previously determined in a table, or a multiplication factor relative to an arbitrary reference value (for example, the workpiece diameter or the feed amount).
  • the machining control unit 13 controls machining based on the conditions acquired by the condition acquisition unit 11 so that the air cut amount after machining starts becomes the designated air cut amount. Details of machining control by the machining control unit 13 will be described later.
  • the memory unit 14 stores various information for controlling and machining the machine tool.
  • the memory unit 14 stores the machining conditions, oscillation conditions, and air cut amount specified by the operator.
  • the machining conditions, oscillation conditions, and air cut amount are, for example, input by the operator into the machining program or specified as machine tool parameters.
  • the memory unit 14 may be configured to be located outside the control device 1 instead of inside it.
  • the input unit 15 inputs information related to processing in response to an operator's input operation on an input means (not shown), such as a keyboard or a touch panel.
  • the information related to processing input by the input unit 15 is stored in the memory unit 10, etc., or input to each part of the control device 1.
  • the display unit 16 displays various information related to the machine tool, the control device 1, and processing.
  • FIG. 3 is a block diagram showing the conditions acquired by the condition acquisition unit 11 in the first embodiment.
  • the condition acquisition unit 11 includes a frequency multiplication factor acquisition unit 21 and a feed amount acquisition unit 22.
  • the frequency multiplication factor acquisition unit 21 is an oscillation number acquisition unit that acquires information regarding the relative oscillation number per rotation between the cutting tool and the workpiece, and acquires the oscillation frequency multiplication factor I (times) as information regarding the oscillation number.
  • the feed amount acquisition unit 22 acquires the spindle feed amount F (mm/rev) per rotation as information regarding the relative feed amount per rotation between the cutting tool and the workpiece.
  • FIG. 4 is a diagram showing an example of a machining program, which is generated by an operator specifying various information via the input unit 15 or the like.
  • the block “S2000 M03” is a description that indicates that the spindle is to rotate in the forward direction.
  • the block “G8.5 P2 I0.5 L0.02” describes "I0.5” that indicates the frequency multiplication factor and "L0.02” that indicates the specified air cut amount.
  • "F0.1" in the block “G01 Z20.F0.1” is a description that indicates the feed amount.
  • the condition acquisition unit 11 of the control device 1 acquires the frequency multiplier and feed amount from the machining program, and the air cut amount acquisition unit 12 acquires the specified air cut amount.
  • the condition acquisition unit 11 acquires the frequency multiplier of 0.5 [times] from "I0.5” and the feed amount per revolution of 0.1 [mm/rev] from "F0.1".
  • the air cut amount acquisition unit 12 acquires the specified air cut amount of 0.02 [mm] from "L0.02".
  • the machining control unit 13 determines the oscillation amplitude for performing the oscillation cutting process using the following formula based on the frequency multiplier and feed amount, which are the conditions acquired by the condition acquisition unit 11, and the specified air cut amount acquired by the air cut amount acquisition unit 12.
  • I represents the frequency multiplication factor [times]
  • F represents the feed rate per revolution [mm/rev]
  • L represents the specified air cut amount [mm]
  • A represents the oscillation amplitude [mm]
  • represents the phase of the workpiece [°] at which the air cut amount becomes L.
  • FIG. 5 is a diagram showing a schematic diagram of the positional relationship between the workpiece W and the cutting tool T.
  • the machining control unit 13 performs oscillating cutting based on the oscillating amplitude A calculated using formula (1) so that the air cut amount between the previous pass, which is the nth cutting pass, and the current pass, which is the (n+1)th cutting pass, becomes the specified air cut amount.
  • the processing control unit 13 outputs information indicating the calculated oscillation amplitude to the display unit 16.
  • the display unit 16 communicates the oscillation amplitude to the operator by text information, graphic information, or a combination thereof indicating the oscillation amplitude.
  • the control device 1 for a machine tool that performs machining while oscillating the cutting tool T and the workpiece W relative to one another according to the first embodiment described above provides the following effects.
  • the control device 1 of the machine tool includes a condition acquisition unit 11 that acquires one or two pieces of information as preconditions out of three pieces of information: information on the relative feed rate per revolution between the cutting tool T and the workpiece W (e.g., feed rate F), information on the relative number of oscillations per revolution between the cutting tool T and the workpiece W (e.g., oscillation frequency magnification I), and information on the oscillation amplitude for the relative feed rate per revolution between the cutting tool T and the workpiece (e.g., oscillation amplitude magnification K); an air cut amount acquisition unit 12 that acquires a designated air cut amount indicating the degree of air cut in the oscillation direction; and a machining control unit 13 that determines the information among the three pieces of information that the condition acquisition unit 11 has not acquired based on preconditions so that the air cut amount based on the gap between the n-rotation pass and the rotation pass after the n-rotation becomes the designated air cut amount, and performs machining control.
  • a condition acquisition unit 11
  • condition acquisition unit 11 of this embodiment acquires the information on the feed amount and the information on the oscillation number as preconditions among the three pieces of information
  • processing control unit 13 determines the information on the oscillation amplitude based on the information on the feed amount and the information on the oscillation number so that the air cut amount based on the gap between the pass of n rotations and the pass of the rotation (n+1 rotations) after the n rotations becomes the specified air cut amount.
  • the control device 1 of this embodiment calculates the oscillation amplitude based on the specified air cut amount even if the feed rate changes, so it is possible to avoid a situation in which the results of the chip shredding judgment differ due to a change in the feed rate.
  • the control device 1 of this embodiment further includes a display unit 16 that outputs information determined by the processing control unit 13. This allows the operator to easily check safety and production plans based on the calculation results of the processing control unit 13, such as the oscillation amplitude.
  • [Second embodiment] 6 is a block diagram showing the conditions acquired by the condition acquisition unit 11a of the second embodiment.
  • the control device 1 according to the second embodiment is different from the control device 1 for a machine tool according to the first embodiment in the conditions acquired by the condition acquisition unit 11a and the control method of the machining control unit 13a, but the other configurations are the same as those of the first embodiment.
  • the condition acquisition unit 11a includes a frequency multiplication factor acquisition unit 21, a feed amount acquisition unit 22, and a taper information acquisition unit 23.
  • the taper information acquisition unit 23 acquires taper information on the taper of the workpiece W from the memory unit 14.
  • the taper information includes information on taper machining, such as the taper angle, which is the movement direction and movement angle of the cutting tool T.
  • the taper angle is, for example, the angle between the central axis and the surface of the workpiece W.
  • the taper information may be specified by the operator and written in the machining program, or may be held as a parameter of the machine tool.
  • the machining control unit 13a of the second embodiment changes the calculation of the oscillation amplitude by taking into account the magnitude of the taper angle. More specifically, the oscillation amplitude is calculated based on Fz, which is the speed component in the Z-axis direction of the feed amount F. The effect of the taper angle differs depending on the degree of the angle. Below, the calculation of Fz, which is the speed component in the Z-axis direction of the feed amount F, is explained separately for the cases when the taper angle is small and large.
  • FIG. 7 is a diagram showing a schematic diagram of the positional relationship between the workpiece and the cutting tool when the taper angle ⁇ 1 is small.
  • Fz which is the speed component in the Z-axis direction of the feed amount F
  • Fz will be approximately equal to F because F ⁇ Fz holds.
  • Fz feed amount 0.1 [mm/rev]
  • Fz 0.1 is substituted into formula (1) as F to calculate the oscillation amplitude A.
  • Figure 8 is a schematic diagram showing the positional relationship between the workpiece and the cutting tool when the taper angle is small.
  • F feed rate 0.1 [mm/rev]
  • Fz 0.01 [mm/rev].
  • Fz 0.01 is substituted as F into formula (1) to calculate the oscillation amplitude A.
  • the control device 1 for a machine tool that performs machining while oscillating the cutting tool T and the workpiece W relative to one another according to the second embodiment described above provides the following effects.
  • the condition acquisition unit 11a of the second embodiment acquires taper information related to the movement direction and movement angle of the cutting tool T, and the machining control unit 13a acquires the feed amount in the oscillation direction (feed amount Fz) based on the taper information and information related to the feed amount, and uses the feed amount in the oscillation direction to determine information (oscillation amplitude A) that the condition acquisition unit 11 has not acquired.
  • the specified air cut amount is not specified, so even if the feed rate is constant, the feed rate in the Z-axis direction changes, and the chip shredding judgment result changes.
  • the oscillation amplitude is calculated based on the specified air cut amount, so that it is possible to avoid a situation in which the chip shredding judgment result differs due to differences in taper angle.
  • FIG. 9 is a block diagram showing conditions acquired by a condition acquisition unit 11b of the third embodiment.
  • the control device 1 according to the third embodiment is different from the control device 1 for a machine tool according to the first embodiment in the conditions acquired by the condition acquisition unit 11b and the control method of the machining control unit 13b, but the other configurations are the same as those of the first embodiment.
  • condition acquisition unit 11b includes a feed amount acquisition unit 22 and a specific information acquisition unit 24.
  • the specific information acquisition unit 24 acquires specific information from the storage unit 14 for the machining control unit 13b to identify information on the relative number of oscillations per rotation between the cutting tool T and the workpiece W (oscillation frequency magnification I) and the oscillation amplitude for the relative feed amount per rotation between the cutting tool T and the workpiece (oscillation amplitude magnification K). If it is possible to uniquely determine either the oscillation frequency magnification I or the oscillation amplitude magnification K, it becomes possible to calculate the other using formula (1).
  • the specific information may be a specified chip length indicating the chip length specified by the operator. By setting the specified chip length, the oscillation frequency multiplier I can be uniquely determined.
  • the specific information can also be an upper limit value of the frequency. For example, it is possible to configure the oscillation frequency to be set close to the frequency upper limit value, and the oscillation number per one rotation of the spindle is fixed at 0.5 if the frequency upper limit value is not exceeded, and to reduce the oscillation number per one rotation of the spindle until it becomes equal to or less than the upper limit value if the upper limit value is exceeded. In this way, the oscillation frequency multiplier I can be specified.
  • the specific information can also be a recommended value of the oscillation frequency, and the oscillation frequency multiplier I can be uniquely determined even if the setting is such that operation is performed at the recommended value.
  • the oscillation amplitude magnification K can be uniquely specified. Furthermore, after specifying the oscillation amplitude magnification K as the specific information, if there are multiple options for the oscillation frequency magnification I, the oscillation frequency magnification I for performing processing control can be uniquely specified by selecting the oscillation frequency magnification I with the smaller value.
  • the specific information is set as the lower limit value of the oscillation amplitude, and if the oscillation frequency magnification I is 1.0 or I is 0.99 and is caught by the amplitude upper limit value, the oscillation frequency magnification I can be uniquely specified by shifting the oscillation frequency magnification I in the smaller direction.
  • the specified speed upper limit value, acceleration upper limit value, jerk upper limit value, etc. may be used as the specific information.
  • the acceleration may be controlled to be the minimum.
  • a plurality of these exemplified specific information may be combined. In this way, the specific information is a rule set in the machine tool, and may be information that the processing control unit 13 can specify.
  • the specific information can uniquely identify the feed rate using an index related to the cycle time and an index related to the surface roughness.
  • the machining control unit 13b in the third embodiment determines the oscillation frequency magnification I and the oscillation amplitude magnification K based on the feed amount, the specified air cut amount, and the specific information.
  • the control device 1 for a machine tool that performs machining while oscillating the cutting tool T and the workpiece W relative to one another according to the third embodiment described above provides the following effects.
  • the condition acquisition unit 11b in the third embodiment acquires, of the three pieces of information, information on the feed amount as a prerequisite, and acquires specific information indicating a condition for identifying information on the oscillation number or information on the oscillation amplitude, and the machining control unit 13b determines information on the oscillation number and information on the oscillation amplitude based on the information on the feed amount and the specific information so that the air cut amount based on the gap between the pass of n rotations and the pass of a rotation later than n rotations becomes the specified air cut amount.
  • the condition acquisition unit 11b acquires the feed amount
  • the oscillation frequency magnification I and the oscillation amplitude magnification K can be easily identified by utilizing the specific information.
  • control device 1 in the above embodiment can be modified as appropriate depending on the circumstances, such as omitting some functions or adding other functions.
  • the machining control units 13, 13a, and 13b all calculate the oscillation amplitude, but they may be configured to determine the amplitude magnification instead of the oscillation amplitude.
  • the amplitude is determined from the feed amount per spindle revolution and the amplitude magnification, and control is performed using that amplitude.
  • the machining control unit may be configured to determine information different from the information on the oscillation amplitude depending on the conditions acquired by the condition acquisition unit.
  • the condition acquisition unit may acquire information on the oscillation number and information on the oscillation amplitude, and the machining control unit may determine information on the feed amount based on the information on the oscillation number and the information on the oscillation amplitude.
  • the condition acquisition unit may acquire information on the oscillation number, information on the feed amount set in the machine tool, and specific information that identifies the information on the oscillation amplitude, and the machining control unit may determine information on the feed amount and information on the oscillation amplitude based on the information on the oscillation number and the specific information.
  • the condition acquisition unit may acquire information on the oscillation amplitude, and specific information that identifies the information on the feed amount set in the machine tool and the information on the oscillation number, and the machining control unit may determine information on the feed amount and information on the oscillation number based on the information on the oscillation amplitude and the specific information.
  • Specific numerical values can be calculated using formula (1).
  • the above-mentioned determination method and calculation method are merely examples, and the information required for processing control may be calculated using a method other than the method using the above-mentioned formula.
  • the present disclosure is applied to a control device for a machine tool, but is not limited to this.
  • the present disclosure may also be applied to a display device for a machine tool.
  • FIG. 10 is a functional block diagram of the display device 9 of the machine tool according to the modified example.
  • the display device 9 of the machine tool includes a condition input unit 91, an air cut amount input unit 92, an information calculation unit 93, and a display unit 96.
  • the condition input unit 91 corresponds to the condition acquisition units 11, 11a, and 11b in the above embodiment. That is, the condition input unit 91 accepts input of one or two pieces of information as prerequisites out of three pieces of information: information on the relative feed amount per revolution between the cutting tool and the workpiece, information on the relative number of oscillations per revolution between the cutting tool and the workpiece, and information on the oscillation amplitude for the relative feed amount per revolution between the cutting tool and the workpiece.
  • the air cut amount input unit 92 corresponds to the air cut amount acquisition unit 12 in the above embodiment. That is, the air cut amount input unit 92 accepts input of a specified air cut amount that indicates the degree of air cut in the swing direction.
  • the information calculation unit 93 corresponds to a part of the machining control units 13, 13a, and 13b in the above embodiment. That is, the information calculation unit 93 calculates, based on preconditions, the information among the three pieces of information that is not accepted by the condition input unit, so that the air cut amount based on the gap between the pass of n rotations and the pass of a rotation after n rotations becomes the specified air cut amount.
  • the display unit 96 corresponds to the display unit 16 in the above embodiment. That is, the display unit 96 displays the information calculated by the information calculation unit 93.
  • the machine tool display device 9 having the above configuration provides the same effects as the machine tool control device 1 according to the above embodiment.

Abstract

Provided is the technology that enables accurate assessment as to whether chip shredding is possible in oscillation cutting, even if machining conditions change, and that also facilitates adjustment of the machining conditions. A machine tool control device 1 comprises: a condition acquisition unit 11 that acquires, as preconditions, one or two items of information from among three items of information that are a feed amount F, an oscillation frequency multiplier I, and an oscillation amplitude multiplier K; an air cut amount acquisition unit 12 that acquires a designated air cut amount that indicates the degree of air cutting in a direction of oscillation; and a machining control unit 13 that, on the basis of the preconditions, determines the item(s) of information among the three items of information not acquired by the condition acquisition unit 11 so that an air cut amount based on an amount between n rotation passes and rotation passes subsequent to n rotations will be a designated air cut amount and performs machining control.

Description

工作機械の制御装置及び工作機械の表示装置Machine tool control device and machine tool display device
 本開示は、工作機械の制御装置及び工作機械の表示装置に関する。 This disclosure relates to a control device for a machine tool and a display device for a machine tool.
 従来、加工時に連続して発生する切り屑がワークや切削工具に絡まる等して加工不良や機械故障等の原因となるのを回避するべく、工具とワークを相対的に揺動させながらワークを加工する。  Conventionally, the workpiece is machined by oscillating the tool and workpiece relative to each other to prevent chips that are continuously generated during machining from becoming entangled in the workpiece or cutting tool, which can lead to machining defects or machine failures.
 この種の揺動加工において、工具の軌跡である工具経路を前回の工具経路に一部重なるように設定することにより、工具がワークの表面から離れるエアカットと呼ばれる空振りを発生させて切り屑を細断する技術が知られている(例えば、特許文献1及び特許文献2参照)。 In this type of oscillating machining, a technique is known in which the tool path, which is the trajectory of the tool, is set to overlap partially with the previous tool path, causing the tool to leave the surface of the workpiece, creating an air cut and shredding the chips (see, for example, Patent Documents 1 and 2).
特開2018-094690号公報JP 2018-094690 A 特開2020-009248号公報JP 2020-009248 A
 ところで、切削加工では、主軸1回転あたりの工具の送り量に対する振幅の比率である振幅倍率によって決定することが多かった。振幅倍率の設定では、確実にエアカットを発生させるため、エアカットが生じる限界の設定では無く、少しマージンを持たせた値とすることが行われている。例えば、理論値では振幅倍率1.0倍でエアカットが発生する場合であっても、マージンを持たせて振幅倍率1.2倍で加工を行っていた。 In cutting, the amplitude magnification is often determined by the ratio of the amplitude to the feed rate of the tool per revolution of the spindle. In setting the amplitude magnification, in order to ensure that air cuts occur, a value with a small margin is used rather than being set to the limit at which air cuts occur. For example, even if an air cut would theoretically occur at an amplitude magnification of 1.0, machining was performed with a margin set at an amplitude magnification of 1.2.
 しかしながら、振幅倍率に基づいて揺動振幅を決定する方法では、同一の振幅倍率でも、送り速度の違いによって切屑細断の可否が変わってしまう。また、テーパ加工においては、送り速度が一定であってもテーパ角度が大きいケースでは、揺動する方向の送り速度が低くなるため切屑細断の可否が変わってしまうことから、加工条件の調整が難しかった。 However, in the method of determining the oscillation amplitude based on the amplitude magnification, even with the same amplitude magnification, differences in the feed speed affect whether chips can be shredded. Also, in taper machining, even if the feed speed is constant, if the taper angle is large, the feed speed in the oscillation direction becomes slower, which affects whether chips can be shredded or not, making it difficult to adjust the machining conditions.
 また、そもそも、主軸1回転あたりの揺動回数である周波数倍率の設定値によって、切屑細断を実現するために必要な振幅倍率の値は変化するため、振幅倍率の設定方法そのものが切屑細断の可否との関係において分かり難く、加工条件の調整が難しかった。 Also, the amplitude multiplier value required to achieve chip shredding changes depending on the frequency multiplier setting, which is the number of oscillations per rotation of the spindle. This makes it difficult to understand how to set the amplitude multiplier in relation to whether chip shredding is possible, and makes it difficult to adjust the processing conditions.
 本開示は上記課題に鑑みてなされたものであり、揺動切削加工において加工条件が変わっても、切屑細断の可否を正確に判定でき、かつ加工条件の調整も容易になる技術を提供することを目的とする。 This disclosure has been made in consideration of the above problems, and aims to provide technology that can accurately determine whether chip shredding is possible even when processing conditions change during oscillating cutting, and also makes it easy to adjust processing conditions.
 本開示は、切削工具とワークを相対的に揺動させながら加工する工作機械の制御装置であって、前記切削工具と前記ワークの相対的な1回転あたりの送り量に関する情報と、前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、の3つの情報のうち、1又は2つの情報を前提条件として取得する条件取得部と、揺動する方向のエアカットの程度を示す指定エアカット量を取得するエアカット量取得部と、n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、前記指定エアカット量になるように、3つの情報のうち前記条件取得部が取得していない情報を前記前提条件に基づいて決定し、加工制御を行う加工制御部と、を備える工作機械の制御装置である。 The present disclosure relates to a control device for a machine tool that performs machining while oscillating a cutting tool and a workpiece relative to one another, the control device for a machine tool including: a condition acquisition unit that acquires, as a precondition, one or two pieces of information out of three pieces of information: information on the relative feed amount per rotation between the cutting tool and the workpiece; information on the relative number of oscillations per rotation between the cutting tool and the workpiece; and information on the oscillation amplitude for the relative feed amount per rotation between the cutting tool and the workpiece; an air cut amount acquisition unit that acquires a designated air cut amount that indicates the degree of air cut in the oscillation direction; and a machining control unit that determines, based on the precondition, the information out of the three pieces of information that has not been acquired by the condition acquisition unit, so that the air cut amount based on the gap between a pass of n rotations and a pass of a rotation later than n rotations becomes the designated air cut amount, and performs machining control.
 また本開示は、切削工具とワークを相対的に揺動させながら加工する工作機械の表示装置であって、前記切削工具と前記ワークの相対的な1回転あたりの送り量に関する情報と、前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、の3つの情報のうち、1又は2つの情報を前提条件として入力を受け付ける条件入力部と、揺動する方向のエアカットの程度を示す指定エアカット量の入力を受け付けるエアカット量入力部と、n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、前記指定エアカット量になるように、3つの情報のうち前記条件取得部が取得していない情報を前記前提条件に基づいて算出する情報算出部と、算出された前記情報算出部の情報を表示する表示部と、を備える工作機械の表示装置である。 The present disclosure also provides a display device for a machine tool that performs machining while oscillating a cutting tool and a workpiece relative to one another, the display device for the machine tool including: a condition input unit that accepts input of one or two pieces of information as preconditions out of three pieces of information: information on the relative feed rate per rotation between the cutting tool and the workpiece; information on the relative number of oscillations per rotation between the cutting tool and the workpiece; and information on the oscillation amplitude for the relative feed rate per rotation between the cutting tool and the workpiece; an air cut amount input unit that accepts input of a designated air cut amount that indicates the degree of air cut in the oscillation direction; an information calculation unit that calculates, based on the preconditions, the information out of the three pieces of information that has not been acquired by the condition acquisition unit so that the air cut amount based on the gap between the pass of n rotations and the pass of a rotation later than n rotations becomes the designated air cut amount; and a display unit that displays the information calculated by the information calculation unit.
 本開示によれば、揺動切削加工において加工条件が変わっても、切屑細断の可否を正確に判定でき、かつ加工条件の調整も容易になる技術を提供することができる。 This disclosure provides technology that can accurately determine whether chip shredding is possible even when processing conditions change during oscillating cutting, and also makes it easy to adjust processing conditions.
揺動切削を説明するための図である。FIG. 13 is a diagram for explaining swing cutting. 第1実施形態に係る工作機械の制御装置の機能ブロック図である。FIG. 2 is a functional block diagram of the control device for the machine tool according to the first embodiment. 第1実施形態の条件取得部が取得する条件を示すブロック図である。3 is a block diagram showing conditions acquired by a condition acquisition unit in the first embodiment; FIG. 加工プログラムの例を示す図である。FIG. 4 is a diagram showing an example of a machining program. ワークと切削工具の位置関係を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic positional relationship between a workpiece and a cutting tool. 第2実施形態の条件取得部が取得する条件を示すブロック図である。FIG. 11 is a block diagram showing conditions acquired by a condition acquisition unit according to the second embodiment. テーパ角度が小さい場合のワークと切削工具の位置関係を模式的に示す図である。FIG. 13 is a diagram illustrating a schematic positional relationship between a workpiece and a cutting tool when the taper angle is small. テーパ角度が大きい場合のワークと切削工具の位置関係を模式的に示す図である。FIG. 13 is a diagram illustrating a schematic positional relationship between a workpiece and a cutting tool when the taper angle is large. 第3実施形態の条件取得部が取得する条件を示すブロック図である。FIG. 13 is a block diagram showing conditions acquired by a condition acquisition unit according to the third embodiment. 変形例に係る工作機械の表示装置の機能ブロック図である。FIG. 11 is a functional block diagram of a display device of a machine tool according to a modified example.
 以下、本開示の実施形態について、図面を参照して詳しく説明する。 The following describes in detail the embodiments of the present disclosure with reference to the drawings.
[第1実施形態]
 本発明の第1実施形態に係る工作機械の制御装置1は、切削工具とワークを相対的に揺動させながらワークを切削加工(旋削加工)する揺動切削を実行するためのものである。まず、図1を参照して揺動切削について説明する。
[First embodiment]
A control device 1 for a machine tool according to a first embodiment of the present invention is for performing swing cutting, which cuts (turns) a workpiece while swinging a cutting tool and the workpiece relatively. First, swing cutting will be described with reference to FIG.
 図1は、揺動切削を説明するための図である。図1に示される揺動切削の一例では、切削工具TとワークWとを相対的に回転させる少なくとも1つの主軸Sと、切削工具TをワークWに対して相対移動させる少なくとも1つの送り軸(不図示)と、を動作させて、切削工具TとワークWとを相対的に回転させるとともに、切削工具TとワークWとを相対的に送り方向に揺動させながら切削加工する。このとき、切削工具Tの軌跡である工具経路は、前回経路に対して今回経路が部分的に重なるように設定される。即ち、前回経路で加工済の部分が今回経路に部分的に含まれることで、切削工具Tの刃先がワークWの表面から離れるエアカットと呼ばれる空振りが発生することにより、切屑が細断される。 FIG. 1 is a diagram for explaining oscillating cutting. In one example of oscillating cutting shown in FIG. 1, at least one spindle S that rotates the cutting tool T and the workpiece W relative to each other and at least one feed axis (not shown) that moves the cutting tool T relative to the workpiece W are operated to rotate the cutting tool T and the workpiece W relative to each other and to perform cutting while oscillating the cutting tool T and the workpiece W relative to each other in the feed direction. At this time, the tool path, which is the trajectory of the cutting tool T, is set so that the current path partially overlaps with the previous path. In other words, the current path partially includes the part that has been machined in the previous path, generating an air cut called an air cut, in which the cutting edge of the cutting tool T separates from the surface of the workpiece W, and the cutting chips are chopped up.
 なお、本実施形態で実行される揺動切削では、ワークの形状は限定されない。即ち、ワークが加工面にテーパ部や円弧状部を有することで複数の送り軸(Z軸及びX軸)が必要となる場合でも、ワークが円柱状や円筒状で送り軸が特定の1軸(Z軸)で足りる場合であっても、適用可能である。 In addition, the shape of the workpiece is not limited in the oscillating cutting performed in this embodiment. In other words, it can be applied even when the workpiece has a tapered portion or an arc-shaped portion on the machining surface, requiring multiple feed axes (Z axis and X axis), or when the workpiece is cylindrical or cylindrical and only one specific feed axis (Z axis) is sufficient.
 次に、工作機械の制御装置1の構成について説明する。図2は、本発明の一実施形態に係る工作機械の制御装置1の機能ブロック図である。本実施形態の工作機械の制御装置1は、例えば、バスを介して互いに接続された、ROM(read only memory)やRAM(random access memory)等のメモリ、CPU(control processing unit)、及び通信制御部を備えたコンピュータを用いて構成される。上記各機能部の機能及び動作は、上記コンピュータに搭載されたCPU、メモリ、及び該メモリに記憶された制御プログラムが協働することにより達成される。また、工作機械の制御装置1は、CNC(Computer Numerical Controller)やPLC(Programmable Logic Controller)等で構成されてもよいし、加工プログラムの他、回転速度等の加工条件等を出力する上位のコンピュータに接続されていてもよい。なお、図2では、便宜上、1つの送り軸を駆動するモータ3のみを示している。 Next, the configuration of the machine tool control device 1 will be described. FIG. 2 is a functional block diagram of the machine tool control device 1 according to one embodiment of the present invention. The machine tool control device 1 of this embodiment is configured using a computer equipped with memories such as a ROM (read only memory) and a RAM (random access memory), a CPU (control processing unit), and a communication control unit, which are connected to each other via a bus. The functions and operations of each of the above functional units are achieved by the cooperation of the CPU, memory, and control programs stored in the memory mounted on the computer. The machine tool control device 1 may also be configured with a CNC (Computer Numerical Controller) or a PLC (Programmable Logic Controller), or may be connected to a higher-level computer that outputs machining conditions such as rotation speed in addition to machining programs. For convenience, FIG. 2 shows only a motor 3 that drives one feed axis.
 図2に示されるように、工作機械の制御装置1は、条件取得部11と、エアカット量取得部12と、加工制御部13と、記憶部14と、入力部15と、表示部16と、を備える。 As shown in FIG. 2, the machine tool control device 1 includes a condition acquisition unit 11, an air cut amount acquisition unit 12, a machining control unit 13, a memory unit 14, an input unit 15, and a display unit 16.
 条件取得部11は、ワークWを揺動加工するための加工条件及び揺動条件を取得する。加工条件及び揺動条件は、例えば、記憶部14に記憶されるものを利用してもよいし、外部のコンピュータから出力されたものでもよい。 The condition acquisition unit 11 acquires the machining conditions and the oscillation conditions for oscillating the workpiece W. The machining conditions and the oscillation conditions may be, for example, those stored in the memory unit 14, or may be those output from an external computer.
 ここで、加工条件としては、切削工具とワークの相対的な1回転あたりの送り量に関する情報と、切削工具の刃先の形状に関する情報が少なくとも含まれる他、例えば、主軸の回転数S(1/min)、切削工具の送り速度(mm/min)、ワーク径(mm)、切削工具の逃げ角(°)等に関する情報が含まれる。なお、切削工具とワークの相対的な1回転あたりの送り量に関する情報としては、毎回転送り量F(mm/rev)や、主軸の回転数S(1/min)と切削工具の送り速度(mm/min)の組合せ等が挙げられ、切削工具の刃先の形状に関する情報としては、刃先のR(mm)が挙げられる。 The machining conditions include at least information regarding the relative feed rate per revolution between the cutting tool and the workpiece, and information regarding the shape of the cutting tool cutting edge, as well as information regarding, for example, the spindle rotation speed S (1/min), the feed rate of the cutting tool (mm/min), the workpiece diameter (mm), the clearance angle of the cutting tool (°), etc. Examples of information regarding the relative feed rate per revolution between the cutting tool and the workpiece include the feed rate per revolution F (mm/rev) and a combination of the spindle rotation speed S (1/min) and the feed rate of the cutting tool (mm/min), and examples of information regarding the shape of the cutting tool cutting edge include the radius of the cutting edge (mm).
 また、揺動条件としては、切削工具とワークの相対的な1回転あたりの揺動数に関する情報と、切削工具とワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報が含まれる。切削工具とワークの相対的な1回転あたりの揺動数に関する情報としては、主軸の1回転当たりの揺動周波数を示す揺動周波数倍率I(倍)が挙げられる。また、切削工具とワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報としては、主軸の1回転当たりの送り量の大きさに対する揺動振幅の大きさを示す揺動振幅倍率K(倍)が挙げられる。揺動周波数倍率I(倍)は直接指定してもよいし、揺動周波数(Hz)を指定した上で揺動周波数(Hz)と主軸の回転数S(1/min)から算出してもよい。また揺動振幅倍率K(倍)も同様に直接指定してもよいし、揺動振幅(mm)を指定した上で揺動振幅(mm)と送り速度(mm/min)と主軸の回転数S(1/min)から算出してもよい。 The oscillation conditions include information on the relative oscillation number per revolution between the cutting tool and the workpiece, and information on the oscillation amplitude relative to the feed amount per revolution between the cutting tool and the workpiece. Information on the relative oscillation number per revolution between the cutting tool and the workpiece includes an oscillation frequency magnification I (times), which indicates the oscillation frequency per revolution of the spindle. Information on the oscillation amplitude relative to the relative feed amount per revolution between the cutting tool and the workpiece includes an oscillation amplitude magnification K (times), which indicates the magnitude of the oscillation amplitude relative to the magnitude of the feed amount per revolution of the spindle. The oscillation frequency magnification I (times) may be specified directly, or may be calculated from the oscillation frequency (Hz) and the spindle rotation speed S (1/min) after specifying the oscillation frequency (Hz). Similarly, the oscillation amplitude magnification K (times) may be specified directly, or may be calculated from the oscillation amplitude (mm), the feed rate (mm/min), and the spindle rotation speed S (1/min) after specifying the oscillation amplitude (mm).
 エアカット量取得部12は、オペレータ等によって予め指定された指定エアカット量を取得する。エアカット量は、例えば、記憶部14に記憶されたものであってもよいし、外部のコンピュータから取得されたものでもよいし、入力部15を通じて入力されたものであってもよい。 The air cut amount acquisition unit 12 acquires a specified air cut amount that is specified in advance by an operator or the like. The air cut amount may be, for example, stored in the memory unit 14, may be acquired from an external computer, or may be input via the input unit 15.
 ここでいうエアカット量は、n回転におけるパスと、このn回転よりも後の回転(n+1以降の回転)におけるパスと、の間のエアカット量である。本実施形態では、n回転目のパスとn+1回転目のパスとの間のエアカット量が加工条件の決定のために用いられるが、これに限定されるわけではない。例えば、n回転目のパスとn+2回転目のパスとの間のエアカット量を加工条件の決定のために用いてもよい。 The air cut amount referred to here is the amount of air cut between the pass at the nth rotation and the pass at a rotation later than the nth rotation (n+1 or later rotations). In this embodiment, the amount of air cut between the pass at the nth rotation and the pass at the n+1th rotation is used to determine the machining conditions, but this is not limited to this. For example, the amount of air cut between the pass at the nth rotation and the pass at the n+2th rotation may be used to determine the machining conditions.
 本実施形態のエアカット量は、揺動方向の距離が用いられる。本実施形態では、送り軸による送り方向に揺動するので、エアカット量は、送り方向におけるエアカットの程度を示す数値となる。エアカット量は、エアカットの大きさを示す指標であればよく、揺動方向の距離であってもよいし、揺動方向を含む面積、あるいは予めテーブルで定められたエアカット量に紐づくレベル、あるいは任意の基準値(例えばワーク径や送り量等)に対する倍率で表現されてもよい。 In this embodiment, the air cut amount is the distance in the oscillation direction. In this embodiment, the feed axis oscillates in the feed direction, so the air cut amount is a numerical value that indicates the degree of air cut in the feed direction. The air cut amount only needs to be an index that indicates the magnitude of the air cut, and may be expressed as the distance in the oscillation direction, an area including the oscillation direction, a level linked to the air cut amount previously determined in a table, or a multiplication factor relative to an arbitrary reference value (for example, the workpiece diameter or the feed amount).
 加工制御部13は、加工開始後のエアカット量が指定エアカット量になるように、条件取得部11が取得した条件に基づいて加工制御を行う。加工制御部13による加工制御の詳細については後述する。 The machining control unit 13 controls machining based on the conditions acquired by the condition acquisition unit 11 so that the air cut amount after machining starts becomes the designated air cut amount. Details of machining control by the machining control unit 13 will be described later.
 記憶部14は、工作機械の制御や加工のための種々の情報を記憶する。本実施形態では、記憶部14は、加工条件、揺動条件及びオペレータに指定されたエアカット量を記憶する。加工条件、揺動条件及びエアカット量は、例えば、オペレータによって加工プログラムに入力されたものや工作機械のパラメータとして指定されるものでる。なお、記憶部14は、制御装置1の内部ではなく、外部に配置される構成であってもよい。 The memory unit 14 stores various information for controlling and machining the machine tool. In this embodiment, the memory unit 14 stores the machining conditions, oscillation conditions, and air cut amount specified by the operator. The machining conditions, oscillation conditions, and air cut amount are, for example, input by the operator into the machining program or specified as machine tool parameters. Note that the memory unit 14 may be configured to be located outside the control device 1 instead of inside it.
 入力部15は、例えばキーボードやタッチパネル等の入力手段(不図示)に対するオペレータの入力操作に応じて、加工に関する情報を入力する。入力部15により入力された加工に関する情報は、記憶部10等に記憶されたり、制御装置1の各部に入力されたりする。 The input unit 15 inputs information related to processing in response to an operator's input operation on an input means (not shown), such as a keyboard or a touch panel. The information related to processing input by the input unit 15 is stored in the memory unit 10, etc., or input to each part of the control device 1.
 表示部16は、工作機械、制御装置1及び加工に関する各種の情報を表示する。 The display unit 16 displays various information related to the machine tool, the control device 1, and processing.
 次に、図3を参照して条件取得部11が取得する条件及び加工制御部13による加工制御について説明する。図3は、第1実施形態の条件取得部11が取得する条件を示すブロック図である。 Next, the conditions acquired by the condition acquisition unit 11 and the processing control by the processing control unit 13 will be described with reference to FIG. 3. FIG. 3 is a block diagram showing the conditions acquired by the condition acquisition unit 11 in the first embodiment.
 図3に示されるように、条件取得部11は、周波数倍率取得部21と、送り量取得部22と、を備える。周波数倍率取得部21は、切削工具とワークの相対的な1回転あたりの揺動数に関する情報を取得する揺動数取得部であり、揺動数に関する情報として揺動周波数倍率I(倍)を取得する。送り量取得部22は、切削工具とワークの相対的な1回転あたりの送り量に関する情報として、主軸の毎回転送り量F(mm/rev)を取得する。 As shown in FIG. 3, the condition acquisition unit 11 includes a frequency multiplication factor acquisition unit 21 and a feed amount acquisition unit 22. The frequency multiplication factor acquisition unit 21 is an oscillation number acquisition unit that acquires information regarding the relative oscillation number per rotation between the cutting tool and the workpiece, and acquires the oscillation frequency multiplication factor I (times) as information regarding the oscillation number. The feed amount acquisition unit 22 acquires the spindle feed amount F (mm/rev) per rotation as information regarding the relative feed amount per rotation between the cutting tool and the workpiece.
 図4は、加工プログラムの例を示す図である。図4に示す加工プログラムは、入力部15等を通じて各種の情報がオペレータによって指定されたものである。
図4の加工プログラムのうち、「S2000 M03」のブロックは、主軸を正回転させることを示す記述である。「G8.5 P2 I0.5 L0.02」のブロックには、周波数倍率を示す「I0.5」と、指定エアカット量を示す「L0.02」が記述される。「G01 Z20.F0.1」のブロックにおける「F0.1」は、送り量を示す記述である。
4 is a diagram showing an example of a machining program, which is generated by an operator specifying various information via the input unit 15 or the like.
In the machining program of Figure 4, the block "S2000 M03" is a description that indicates that the spindle is to rotate in the forward direction. The block "G8.5 P2 I0.5 L0.02" describes "I0.5" that indicates the frequency multiplication factor and "L0.02" that indicates the specified air cut amount. "F0.1" in the block "G01 Z20.F0.1" is a description that indicates the feed amount.
 加工運転が開始されると、制御装置1の条件取得部11が、加工プログラムから周波数倍率、送り量を取得するとともに、エアカット量取得部12が指定エアカット量を取得する。図4の例では、条件取得部11は、「I0.5」から周波数倍率0.5[倍]と、「F0.1」から毎回転送り量0.1[mm/rev]と、を取得する。また、エアカット量取得部12は、「L0.02」から指定エアカット量0.02[mm]を取得する。 When machining operation is started, the condition acquisition unit 11 of the control device 1 acquires the frequency multiplier and feed amount from the machining program, and the air cut amount acquisition unit 12 acquires the specified air cut amount. In the example of Figure 4, the condition acquisition unit 11 acquires the frequency multiplier of 0.5 [times] from "I0.5" and the feed amount per revolution of 0.1 [mm/rev] from "F0.1". In addition, the air cut amount acquisition unit 12 acquires the specified air cut amount of 0.02 [mm] from "L0.02".
 加工制御部13は、条件取得部11が取得した条件である周波数倍率及び送り量と、エアカット量取得部12が取得した指定エアカット量と、に基づいて下記の式を利用して揺動切削加工を行うための揺動振幅を決定する。この例では、周波数倍率0.5[倍]、毎回転送り量0.1[mm/rev]、指定エアカット量=0.02[mm]が代入される。 The machining control unit 13 determines the oscillation amplitude for performing the oscillation cutting process using the following formula based on the frequency multiplier and feed amount, which are the conditions acquired by the condition acquisition unit 11, and the specified air cut amount acquired by the air cut amount acquisition unit 12. In this example, the frequency multiplier 0.5 [times], the feed amount per revolution 0.1 [mm/rev], and the specified air cut amount = 0.02 [mm] are substituted.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 数式(1)中、Iは周波数倍率[倍]、Fは毎回転送り量[mm/rev]、Lは指定エアカット量[mm]、Aは揺動振幅[mm]、θはエアカット量がLとなるワークの位相[°]、を表している。 In formula (1), I represents the frequency multiplication factor [times], F represents the feed rate per revolution [mm/rev], L represents the specified air cut amount [mm], A represents the oscillation amplitude [mm], and θ represents the phase of the workpiece [°] at which the air cut amount becomes L.
 図5は、ワークWと切削工具Tの位置関係を模式的に示す図である。図5に示されるように、加工制御部13は、n回目の切削パスである前回パスとn+1回目の切削パスである今回パスの間のエアカット量が、指定エアカット量になるように数式(1)を用いて算出した揺動振幅Aに基づいて揺動切削加工を行う。 FIG. 5 is a diagram showing a schematic diagram of the positional relationship between the workpiece W and the cutting tool T. As shown in FIG. 5, the machining control unit 13 performs oscillating cutting based on the oscillating amplitude A calculated using formula (1) so that the air cut amount between the previous pass, which is the nth cutting pass, and the current pass, which is the (n+1)th cutting pass, becomes the specified air cut amount.
 加工制御部13は、算出された揺動振幅を示す情報を表示部16に出力する。表示部16は、揺動振幅を示す文字情報、図形情報又はその組合せ等により、揺動振幅をオペレータに伝達する。 The processing control unit 13 outputs information indicating the calculated oscillation amplitude to the display unit 16. The display unit 16 communicates the oscillation amplitude to the operator by text information, graphic information, or a combination thereof indicating the oscillation amplitude.
 以上説明した第1実施形態に係る切削工具TとワークWを相対的に揺動させながら加工する工作機械の制御装置1によれば、以下の効果が奏される。 The control device 1 for a machine tool that performs machining while oscillating the cutting tool T and the workpiece W relative to one another according to the first embodiment described above provides the following effects.
 本実施形態に係る工作機械の制御装置1では、切削工具TとワークWの相対的な1回転あたりの送り量に関する情報(例えば、送り量F)と、切削工具TとワークWの相対的な1回転あたりの揺動数に関する情報(例えば、揺動周波数倍率I)と、切削工具Tと前記ワークの相対的な1回転あたりの送り量に対する揺動振幅(例えば、揺動振幅倍率K)に関する情報と、の3つの情報のうち、1又は2つの情報を前提条件として取得する条件取得部11と、揺動する方向のエアカットの程度を示す指定エアカット量を取得するエアカット量取得部12と、n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、指定エアカット量になるように、3つの情報のうち条件取得部11が取得していない情報を前提条件に基づいて決定し、加工制御を行う加工制御部13と、を備えた。これによって、目標とする指定エアカット量が設定されているので、揺動切削加工において加工条件が変わっても、切屑細断の可否を正確に判定でき、かつ加工条件の調整も容易になる。 The control device 1 of the machine tool according to this embodiment includes a condition acquisition unit 11 that acquires one or two pieces of information as preconditions out of three pieces of information: information on the relative feed rate per revolution between the cutting tool T and the workpiece W (e.g., feed rate F), information on the relative number of oscillations per revolution between the cutting tool T and the workpiece W (e.g., oscillation frequency magnification I), and information on the oscillation amplitude for the relative feed rate per revolution between the cutting tool T and the workpiece (e.g., oscillation amplitude magnification K); an air cut amount acquisition unit 12 that acquires a designated air cut amount indicating the degree of air cut in the oscillation direction; and a machining control unit 13 that determines the information among the three pieces of information that the condition acquisition unit 11 has not acquired based on preconditions so that the air cut amount based on the gap between the n-rotation pass and the rotation pass after the n-rotation becomes the designated air cut amount, and performs machining control. As a result, since the target designated air cut amount is set, even if the machining conditions change in the oscillation cutting process, it is possible to accurately determine whether chip shredding is possible, and it is also easy to adjust the machining conditions.
 また、本実施形態の条件取得部11は、3つの情報のうち、送り量に関する情報と揺動数に関する情報を前提条件として取得し、加工制御部13は、n回転のパスとn回転よりも後の回転(n+1回転)のパスとの間に基づくエアカット量が、指定エアカット量になるように、送り量に関する情報と揺動数に関する情報に基づいて揺動振幅に関する情報を決定する。従来技術のように、揺動振幅倍率の設定で揺動振幅を決める方法では、同一の振幅倍率でも、送り速度の違いによって切屑細断の可否が変わってしまう。例えば、周波数倍率0.5[倍]、振幅倍率1.2[倍]、送り量0.04[mm/rev]の場合、理論エアカット量8.0[μm]となる。一方、周波数倍率0.5[倍]、振幅倍率1.2[倍]であったとしても、送り量0.01[mm/rev]の場合は理論エアカット量2.0[μm]となってしまうのである。この点、本実施形態の制御装置1では、送り量が変化したとしても、指定エアカット量に基づいて揺動振幅を算出するので、送り量の変化に起因して切屑細断の判定結果が異なる事態を回避できる。 In addition, the condition acquisition unit 11 of this embodiment acquires the information on the feed amount and the information on the oscillation number as preconditions among the three pieces of information, and the processing control unit 13 determines the information on the oscillation amplitude based on the information on the feed amount and the information on the oscillation number so that the air cut amount based on the gap between the pass of n rotations and the pass of the rotation (n+1 rotations) after the n rotations becomes the specified air cut amount. In the method of determining the oscillation amplitude by setting the oscillation amplitude magnification as in the conventional technology, even with the same amplitude magnification, the possibility of chip shredding changes depending on the feed speed. For example, when the frequency magnification is 0.5 [times], the amplitude magnification is 1.2 [times], and the feed amount is 0.04 [mm/rev], the theoretical air cut amount is 8.0 [μm]. On the other hand, even if the frequency magnification is 0.5 [times] and the amplitude magnification is 1.2 [times], when the feed amount is 0.01 [mm/rev], the theoretical air cut amount is 2.0 [μm]. In this regard, the control device 1 of this embodiment calculates the oscillation amplitude based on the specified air cut amount even if the feed rate changes, so it is possible to avoid a situation in which the results of the chip shredding judgment differ due to a change in the feed rate.
 また、本実施形態の制御装置1は、加工制御部13が決定した情報を出力する表示部16をさらに備える。これにより、揺動振幅等の加工制御部13の算出結果に基づいて安全性や生産計画の確認をオペレータが容易に行うことができる。 The control device 1 of this embodiment further includes a display unit 16 that outputs information determined by the processing control unit 13. This allows the operator to easily check safety and production plans based on the calculation results of the processing control unit 13, such as the oscillation amplitude.
 次に、第1実施形態とは異なる実施形態について説明する。なお、以下の説明において上記実施形態と共通の構成については、同じ符号を付してその詳細な説明を省略する場合がある。 Next, an embodiment different from the first embodiment will be described. Note that in the following description, configurations common to the above embodiment will be given the same reference numerals and detailed descriptions thereof may be omitted.
[第2実施形態]
 図6は、第2実施形態の条件取得部11aが取得する条件を示すブロック図である。第2実施形態に係る制御装置1は、第1実施形態に係る工作機械の制御装置1と比べて、条件取得部11aが取得する条件と、加工制御部13aの制御方法と、が相違し、その他の構成は第1実施形態と共通である。
[Second embodiment]
6 is a block diagram showing the conditions acquired by the condition acquisition unit 11a of the second embodiment. The control device 1 according to the second embodiment is different from the control device 1 for a machine tool according to the first embodiment in the conditions acquired by the condition acquisition unit 11a and the control method of the machining control unit 13a, but the other configurations are the same as those of the first embodiment.
 図6に示すように、条件取得部11aは、周波数倍率取得部21と、送り量取得部22と、テーパ情報取得部23と、を備える。 As shown in FIG. 6, the condition acquisition unit 11a includes a frequency multiplication factor acquisition unit 21, a feed amount acquisition unit 22, and a taper information acquisition unit 23.
 テーパ情報取得部23は、記憶部14からワークWのテーパに関するテーパ情報を取得する。テーパ情報は、例えば、切削工具Tの移動方向及び移動角度であるテーパ角等のテーパ加工に関する情報が含まれる。テーパ角は、例えば、中心軸とワークWの表面がなす角度とする。また、テーパ情報は、オペレータによって指定されることによって加工プログラムに記述されるものであってもよいし、工作機械のパラメータとして保持されていてもよい。 The taper information acquisition unit 23 acquires taper information on the taper of the workpiece W from the memory unit 14. The taper information includes information on taper machining, such as the taper angle, which is the movement direction and movement angle of the cutting tool T. The taper angle is, for example, the angle between the central axis and the surface of the workpiece W. The taper information may be specified by the operator and written in the machining program, or may be held as a parameter of the machine tool.
 第2実施形態の加工制御部13aは、テーパ加工を行う場合は、テーパ角の大きさを加味して揺動振幅の算出を変更する。より具体的には、送り量FのZ軸方向の速度成分であるFzに基づいて揺動振幅を算出する。テーパ角の影響は、角度の程度によって異なる。以下、送り量FのZ軸方向の速度成分であるFzの算出について、テーパ角が小さい場合と大きい場合とに分けて説明する。 When performing taper machining, the machining control unit 13a of the second embodiment changes the calculation of the oscillation amplitude by taking into account the magnitude of the taper angle. More specifically, the oscillation amplitude is calculated based on Fz, which is the speed component in the Z-axis direction of the feed amount F. The effect of the taper angle differs depending on the degree of the angle. Below, the calculation of Fz, which is the speed component in the Z-axis direction of the feed amount F, is explained separately for the cases when the taper angle is small and large.
 図7は、テーパ角θ1が小さい場合のワークと切削工具の位置関係を模式的に示す図である。図7に示す例では、テーパ角θ1が小さいため、幾何学計算を利用して送り量FのZ軸方向の速度成分であるFzを算出したとしても、F≒Fzが成立するため送り量FのZ軸方向の速度成分FzはFと略一致することになる。例えば、F=送り量0.1[mm/rev]の場合であっても、Fz=0.1[mm/rev]とすることができる。この場合、Fz=0.1をFとして数式(1)に代入して揺動振幅Aを算出することになる。 FIG. 7 is a diagram showing a schematic diagram of the positional relationship between the workpiece and the cutting tool when the taper angle θ1 is small. In the example shown in FIG. 7, since the taper angle θ1 is small, even if geometric calculations are used to calculate Fz, which is the speed component in the Z-axis direction of the feed amount F, Fz will be approximately equal to F because F ≒ Fz holds. For example, even if F = feed amount 0.1 [mm/rev], Fz = 0.1 [mm/rev] can be used. In this case, Fz = 0.1 is substituted into formula (1) as F to calculate the oscillation amplitude A.
 図8はテーパ角が小さい場合のワークと切削工具の位置関係を模式的に示す図である。図7に示す例では、テーパ角θ2が大きいため、幾何学計算を利用してFzを算出してもF≒Fzが成立するとはいえない。例えば、F=送り量0.1[mm/rev]の場合、Fz=0.01[mm/rev]となる。この場合、Fz=0.01をFとして数式(1)に代入して揺動振幅Aを算出することになる。 Figure 8 is a schematic diagram showing the positional relationship between the workpiece and the cutting tool when the taper angle is small. In the example shown in Figure 7, because the taper angle θ2 is large, it cannot be said that F ≒ Fz holds even if Fz is calculated using geometric calculations. For example, when F = feed rate 0.1 [mm/rev], Fz = 0.01 [mm/rev]. In this case, Fz = 0.01 is substituted as F into formula (1) to calculate the oscillation amplitude A.
 以上説明した第2実施形態に係る切削工具TとワークWを相対的に揺動させながら加工する工作機械の制御装置1によれば、以下の効果が奏される。 The control device 1 for a machine tool that performs machining while oscillating the cutting tool T and the workpiece W relative to one another according to the second embodiment described above provides the following effects.
 第2実施形態の条件取得部11aは、切削工具Tの移動方向及び移動角度に関するテーパ情報を取得し、加工制御部13aは、テーパ情報と送り量に関する情報に基づいて揺動方向における送り量(送り量Fz)を取得し、当該揺動方向における送り量を用いて条件取得部11が取得していない情報(揺動振幅A)を決定する。従来の技術では、図6及び図7の何れの場合においても、指定エアカット量が指定されていないため、送り速度が一定であっても、Z軸方向での送り速度が変わってしまい、切屑細断の判定結果が変わってしまう。この点、第2実施形態の制御装置1では、テーパ角が大きくZ軸方向の速度成分が大きく異なる場合であっても、指定エアカット量に基づいて揺動振幅を算出するので、テーパ角の違いに起因して切屑細断の判定結果が異なる事態を回避できる。 The condition acquisition unit 11a of the second embodiment acquires taper information related to the movement direction and movement angle of the cutting tool T, and the machining control unit 13a acquires the feed amount in the oscillation direction (feed amount Fz) based on the taper information and information related to the feed amount, and uses the feed amount in the oscillation direction to determine information (oscillation amplitude A) that the condition acquisition unit 11 has not acquired. In the conventional technology, in either case of FIG. 6 or FIG. 7, the specified air cut amount is not specified, so even if the feed rate is constant, the feed rate in the Z-axis direction changes, and the chip shredding judgment result changes. In this regard, in the control device 1 of the second embodiment, even if the taper angle is large and the speed component in the Z-axis direction differs greatly, the oscillation amplitude is calculated based on the specified air cut amount, so that it is possible to avoid a situation in which the chip shredding judgment result differs due to differences in taper angle.
 [第3実施形態]
 図9は、第3実施形態の条件取得部11bが取得する条件を示すブロック図である。第3実施形態に係る制御装置1は、第1実施形態に係る工作機械の制御装置1と比べて、条件取得部11bが取得する条件と、加工制御部13bの制御方法と、が相違し、その他の構成は第1実施形態と共通である。
[Third embodiment]
9 is a block diagram showing conditions acquired by a condition acquisition unit 11b of the third embodiment. The control device 1 according to the third embodiment is different from the control device 1 for a machine tool according to the first embodiment in the conditions acquired by the condition acquisition unit 11b and the control method of the machining control unit 13b, but the other configurations are the same as those of the first embodiment.
 図9に示すように、条件取得部11bは、送り量取得部22と、特定情報取得部24と、を備える。 As shown in FIG. 9, the condition acquisition unit 11b includes a feed amount acquisition unit 22 and a specific information acquisition unit 24.
 特定情報取得部24は、切削工具TとワークWの相対的な1回転あたりの揺動数に関する情報(揺動周波数倍率I)と、切削工具Tと前記ワークの相対的な1回転あたりの送り量に対する揺動振幅(揺動振幅倍率K)と、を加工制御部13bが特定するための特定情報を記憶部14から取得する。揺動周波数倍率I又は揺動振幅倍率Kのどちらか一方を一意に決めることができれば、もう一方を数式(1)により算出することが可能となる。 The specific information acquisition unit 24 acquires specific information from the storage unit 14 for the machining control unit 13b to identify information on the relative number of oscillations per rotation between the cutting tool T and the workpiece W (oscillation frequency magnification I) and the oscillation amplitude for the relative feed amount per rotation between the cutting tool T and the workpiece (oscillation amplitude magnification K). If it is possible to uniquely determine either the oscillation frequency magnification I or the oscillation amplitude magnification K, it becomes possible to calculate the other using formula (1).
 特定情報取得部24が取得する特定情報の例について説明する。特定情報は、オペレータによって指定された切り屑長さを示す指定切り屑長さであってもよい。指定切り屑長さが設定されることにより、揺動周波数倍率Iを一意に決めることができる。また、特定情報は、周波数の上限値とすることもできる。例えば、揺動周波数を必ず周波数上限値近くにすると設定し、周波数上限値を越えなければ主軸1回転あたりの揺動回数を0.5回で固定し、上限値を越えるような場合は上限値以下になるまで主軸1回転あたりの揺動回数を下げるように構成することもできる。これによって揺動周波数倍率Iを特定できる。また、特定情報は、揺動周波数の推奨値とし、当該推奨値で運転する設定としても揺動周波数倍率Iを一意に決めることができる。 An example of the specific information acquired by the specific information acquisition unit 24 will be described. The specific information may be a specified chip length indicating the chip length specified by the operator. By setting the specified chip length, the oscillation frequency multiplier I can be uniquely determined. The specific information can also be an upper limit value of the frequency. For example, it is possible to configure the oscillation frequency to be set close to the frequency upper limit value, and the oscillation number per one rotation of the spindle is fixed at 0.5 if the frequency upper limit value is not exceeded, and to reduce the oscillation number per one rotation of the spindle until it becomes equal to or less than the upper limit value if the upper limit value is exceeded. In this way, the oscillation frequency multiplier I can be specified. The specific information can also be a recommended value of the oscillation frequency, and the oscillation frequency multiplier I can be uniquely determined even if the setting is such that operation is performed at the recommended value.
 また、特定情報は、揺動振幅の上限値とし、揺動振幅は必ず上限値にすると設定すれば、揺動振幅倍率Kが一意に特定できる。また、特定情報として、揺動振幅倍率Kを特定した上で、揺動周波数倍率Iの選択肢が複数ある場合は小さい数値の揺動周波数倍率Iを選択する設定とすることで加工制御を行うための揺動周波数倍率Iを一意に特定できる。また、特定情報は、揺動振幅の下限値とし、揺動周波数倍率Iが1.0やIが0.99で振幅上限値に引っかかる場合は、揺動周波数倍率Iを小さい方向にずらす設定とすることで揺動周波数倍率Iを一意に特定することができる。また、指定された速度上限値、加速度上限値、加加速度上限値等を特定情報としてもよい。あるいは、加速度が最低となるように制御してもよい。さらに、これらの例示した特定情報を複数組み合わせてもよい。このように、特定情報は、工作機械に設定されるルールであり、加工制御部13が情報を特定できる情報であればよい。 Furthermore, if the specific information is set as the upper limit value of the oscillation amplitude and the oscillation amplitude is always set to the upper limit value, the oscillation amplitude magnification K can be uniquely specified. Furthermore, after specifying the oscillation amplitude magnification K as the specific information, if there are multiple options for the oscillation frequency magnification I, the oscillation frequency magnification I for performing processing control can be uniquely specified by selecting the oscillation frequency magnification I with the smaller value. Furthermore, the specific information is set as the lower limit value of the oscillation amplitude, and if the oscillation frequency magnification I is 1.0 or I is 0.99 and is caught by the amplitude upper limit value, the oscillation frequency magnification I can be uniquely specified by shifting the oscillation frequency magnification I in the smaller direction. Furthermore, the specified speed upper limit value, acceleration upper limit value, jerk upper limit value, etc. may be used as the specific information. Alternatively, the acceleration may be controlled to be the minimum. Furthermore, a plurality of these exemplified specific information may be combined. In this way, the specific information is a rule set in the machine tool, and may be information that the processing control unit 13 can specify.
 上述の例では、送り量と揺動周波数倍率Iと揺動振幅倍率Kの3つの情報のうち、送り量の情報を取得し、さらに指定エアカット量と特定情報に基づいて揺動周波数倍率Iと揺動振幅倍率Kを決定したが、送り量の代わりに揺動周波数倍率I又は揺動振幅倍率Kの情報を取得し、残りの2つを指定エアカット量と特定情報に基づいて決定する構成でも良い。 In the above example, out of the three pieces of information, feed amount, oscillation frequency magnification I, and oscillation amplitude magnification K, information on the feed amount is obtained, and the oscillation frequency magnification I and oscillation amplitude magnification K are determined based on the specified air cut amount and specific information. However, a configuration in which information on the oscillation frequency magnification I or oscillation amplitude magnification K is obtained instead of the feed amount, and the remaining two are determined based on the specified air cut amount and specific information is also possible.
 その場合は、特定情報は、サイクルタイムに関する指標や面粗さに関する指標によって、送り速度を一意に特定できることが可能である。 In that case, the specific information can uniquely identify the feed rate using an index related to the cycle time and an index related to the surface roughness.
 第3実施形態の加工制御部13bは、送り量と指定エアカット量と特定情報に基づいて揺動周波数倍率Iと揺動振幅倍率Kを決定する。 The machining control unit 13b in the third embodiment determines the oscillation frequency magnification I and the oscillation amplitude magnification K based on the feed amount, the specified air cut amount, and the specific information.
 以上説明した第3実施形態に係る切削工具TとワークWを相対的に揺動させながら加工する工作機械の制御装置1によれば、以下の効果が奏される。 The control device 1 for a machine tool that performs machining while oscillating the cutting tool T and the workpiece W relative to one another according to the third embodiment described above provides the following effects.
 第3実施形態の条件取得部11bは、3つの情報のうち、送り量に関する情報を前提条件として取得するとともに、揺動数に関する情報又は揺動振幅に関する情報を特定する条件を示す特定情報を取得し、加工制御部13bは、n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、指定エアカット量になるように、送り量に関する情報と特定情報に基づいて揺動数に関する情報と揺動振幅に関する情報を決定する。これにより、条件取得部11bが送り量を取得する構成において、特定情報を利用することで揺動周波数倍率Iと揺動振幅倍率Kを容易に特定することができる。 The condition acquisition unit 11b in the third embodiment acquires, of the three pieces of information, information on the feed amount as a prerequisite, and acquires specific information indicating a condition for identifying information on the oscillation number or information on the oscillation amplitude, and the machining control unit 13b determines information on the oscillation number and information on the oscillation amplitude based on the information on the feed amount and the specific information so that the air cut amount based on the gap between the pass of n rotations and the pass of a rotation later than n rotations becomes the specified air cut amount. As a result, in a configuration in which the condition acquisition unit 11b acquires the feed amount, the oscillation frequency magnification I and the oscillation amplitude magnification K can be easily identified by utilizing the specific information.
 また、上記実施形態の制御装置1の構成も、一部の機能を省略したり、別の機能を追加したりする等、事情に応じて適宜変更することができる。 In addition, the configuration of the control device 1 in the above embodiment can be modified as appropriate depending on the circumstances, such as omitting some functions or adding other functions.
 上記実施形態では、加工制御部13、13a、13bは、何れも揺動振幅を算出しているが、揺動振幅に替えて振幅倍率を決定する構成としてもよい。この場合、制御の段階において、主軸1回転あたりの送り量と振幅倍率から振幅を決定し、その振幅で制御することになる。 In the above embodiment, the machining control units 13, 13a, and 13b all calculate the oscillation amplitude, but they may be configured to determine the amplitude magnification instead of the oscillation amplitude. In this case, in the control stage, the amplitude is determined from the feed amount per spindle revolution and the amplitude magnification, and control is performed using that amplitude.
 また、加工制御部は、条件取得部が取得した条件によっては揺動振幅に関する情報とは異なる情報を決定する構成としてもよい。例えば、条件取得部が、揺動数に関する情報と揺動振幅に関する情報を取得し、加工制御部が揺動数に関する情報と揺動振幅に関する情報に基づいて送り量に関する情報を決定してもよい。また、条件取得部が、揺動数に関する情報と、工作機械に設定される送り量に関する情報と揺動振幅に関する情報を特定する特定情報と、を取得し、加工制御部が揺動数に関する情報と特定情報に基づいて送り量に関する情報と揺動振幅に関する情報を決定してもよい。また、条件取得部が、揺動振幅に関する情報と、工作機械に設定される送り量に関する情報と揺動数に関する情報を特定する特定情報と、を取得し、加工制御部が揺動振幅に関する情報と特定情報に基づいて送り量に関する情報と揺動数に関する情報を決定してもよい。具体的な数値の算出は、数式(1)を利用することもできる。 The machining control unit may be configured to determine information different from the information on the oscillation amplitude depending on the conditions acquired by the condition acquisition unit. For example, the condition acquisition unit may acquire information on the oscillation number and information on the oscillation amplitude, and the machining control unit may determine information on the feed amount based on the information on the oscillation number and the information on the oscillation amplitude. The condition acquisition unit may acquire information on the oscillation number, information on the feed amount set in the machine tool, and specific information that identifies the information on the oscillation amplitude, and the machining control unit may determine information on the feed amount and information on the oscillation amplitude based on the information on the oscillation number and the specific information. The condition acquisition unit may acquire information on the oscillation amplitude, and specific information that identifies the information on the feed amount set in the machine tool and the information on the oscillation number, and the machining control unit may determine information on the feed amount and information on the oscillation number based on the information on the oscillation amplitude and the specific information. Specific numerical values can be calculated using formula (1).
 また、上述した判定方法及び算出方法は、一例であり、上述した数式を用いた方法とは異なる方法で加工制御に必要な情報を算出してもよい。 The above-mentioned determination method and calculation method are merely examples, and the information required for processing control may be calculated using a method other than the method using the above-mentioned formula.
 なお、本開示は上記実施形態に限定されるものではなく、本開示の目的を達成できる範囲での変形、改良は本開示に含まれる。 Note that this disclosure is not limited to the above-described embodiments, and any modifications or improvements that achieve the objectives of this disclosure are included in this disclosure.
 上記実施形態では、本開示を工作機械の制御装置に適用したが、これに限定されない。本開示を工作機械の表示装置に適用してもよい。 In the above embodiment, the present disclosure is applied to a control device for a machine tool, but is not limited to this. The present disclosure may also be applied to a display device for a machine tool.
 ここで、図10は、変形例に係る工作機械の表示装置9の機能ブロック図である。図10に示されるように、工作機械の表示装置9は、条件入力部91と、エアカット量入力部92と、情報算出部93と、表示部96と、を備える。 Here, FIG. 10 is a functional block diagram of the display device 9 of the machine tool according to the modified example. As shown in FIG. 10, the display device 9 of the machine tool includes a condition input unit 91, an air cut amount input unit 92, an information calculation unit 93, and a display unit 96.
 条件入力部91は、上記実施形態の条件取得部11,11a,11bに相当する。即ち、条件入力部91は、切削工具とワークの相対的な1回転あたりの送り量に関する情報と、切削工具とワークの相対的な1回転あたりの揺動数に関する情報と、切削工具とワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、の3つの情報のうち、1又は2つの情報を前提条件として入力を受け付ける。 The condition input unit 91 corresponds to the condition acquisition units 11, 11a, and 11b in the above embodiment. That is, the condition input unit 91 accepts input of one or two pieces of information as prerequisites out of three pieces of information: information on the relative feed amount per revolution between the cutting tool and the workpiece, information on the relative number of oscillations per revolution between the cutting tool and the workpiece, and information on the oscillation amplitude for the relative feed amount per revolution between the cutting tool and the workpiece.
 エアカット量入力部92は、上記実施形態のエアカット量取得部12に相当する。即ち、エアカット量入力部92は、揺動する方向のエアカットの程度を示す指定エアカット量の入力を受け付ける。 The air cut amount input unit 92 corresponds to the air cut amount acquisition unit 12 in the above embodiment. That is, the air cut amount input unit 92 accepts input of a specified air cut amount that indicates the degree of air cut in the swing direction.
 情報算出部93は、上記実施形態の加工制御部13,13a,13bの一部に相当する。即ち、情報算出部93は、n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、指定エアカット量になるように、3つの情報のうち条件入力部が受け付けていない情報を前提条件に基づいて算出する。 The information calculation unit 93 corresponds to a part of the machining control units 13, 13a, and 13b in the above embodiment. That is, the information calculation unit 93 calculates, based on preconditions, the information among the three pieces of information that is not accepted by the condition input unit, so that the air cut amount based on the gap between the pass of n rotations and the pass of a rotation after n rotations becomes the specified air cut amount.
 表示部96は、上記実施形態の表示部16に相当する。即ち、表示部96は、情報算出部93で算出された情報を表示する。 The display unit 96 corresponds to the display unit 16 in the above embodiment. That is, the display unit 96 displays the information calculated by the information calculation unit 93.
 上記の構成を備える工作機械の表示装置9によれば、上記実施形態に係る工作機械の制御装置1と同様の効果が奏される。 The machine tool display device 9 having the above configuration provides the same effects as the machine tool control device 1 according to the above embodiment.
 1 工作機械の制御装置
 11,11a,11b 条件取得部
 12 エアカット量取得部
 13,13a,13b 加工制御部
 16 表示部
 9 工作機械の表示装置
 91 条件入力部
 92 エアカット量入力部
 93 情報算出部
 96 表示部
REFERENCE SIGNS LIST 1 Machine tool control device 11, 11a, 11b Condition acquisition unit 12 Air cut amount acquisition unit 13, 13a, 13b Machining control unit 16 Display unit 9 Machine tool display device 91 Condition input unit 92 Air cut amount input unit 93 Information calculation unit 96 Display unit

Claims (5)

  1.  切削工具とワークを相対的に揺動させながら加工する工作機械の制御装置であって、
     前記切削工具と前記ワークの相対的な1回転あたりの送り量に関する情報と、前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、の3つの情報のうち、1又は2つの情報を前提条件として取得する条件取得部と、
     揺動する方向のエアカットの程度を示す指定エアカット量を取得するエアカット量取得部と、
     n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、前記指定エアカット量になるように、3つの情報のうち前記条件取得部が取得していない情報を前記前提条件に基づいて決定し、加工制御を行う加工制御部と、を備える工作機械の制御装置。
    A control device for a machine tool that performs machining while relatively swinging a cutting tool and a workpiece,
    a condition acquisition unit that acquires, as a precondition, one or two of the following three pieces of information: information on a relative feed amount per rotation between the cutting tool and the workpiece; information on a relative number of oscillations per rotation between the cutting tool and the workpiece; and information on an oscillation amplitude with respect to the relative feed amount per rotation between the cutting tool and the workpiece;
    an air cut amount acquisition unit that acquires a designated air cut amount indicating the degree of air cut in the swing direction;
    a machining control unit that determines, based on the preconditions, one of three pieces of information that has not been acquired by the condition acquisition unit, and performs machining control so that an air cut amount based on the gap between a path of n rotations and a path of a rotation later than n rotations becomes the specified air cut amount.
  2.  前記条件取得部は、3つの情報のうち、前記送り量に関する情報と前記揺動数に関する情報を前記前提条件として取得し、
     前記加工制御部は、n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、前記指定エアカット量になるように、前記送り量に関する情報と前記揺動数に関する情報に基づいて前記揺動振幅に関する情報を決定する、請求項1に記載の工作機械の制御装置。
    the condition acquisition unit acquires, as the precondition, information relating to the feed amount and information relating to the oscillation number among the three pieces of information;
    2. The control device for a machine tool according to claim 1, wherein the machining control unit determines information regarding the oscillation amplitude based on information regarding the feed amount and information regarding the oscillation number so that an air cut amount based on an air cut amount between a pass of n rotations and a pass of a rotation later than n rotations becomes the specified air cut amount.
  3.  前記条件取得部は、3つの情報のうち、いずれか1つの情報を前記前提条件として取得するとともに、残りの2つに関する情報を特定する条件を示す特定情報を取得し、
     前記加工制御部は、n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、前記指定エアカット量になるように、前記いずれか1つの情報と前記特定情報に基づいて前記残りの2つの情報を決定する、請求項1に記載の工作機械の制御装置。
    the condition acquisition unit acquires one of the three pieces of information as the prerequisite, and acquires specific information indicating a condition for identifying information on the remaining two pieces of information;
    2. The control device for a machine tool according to claim 1, wherein the machining control unit determines the remaining two pieces of information based on any one of the pieces of information and the specific information so that an air cut amount based on an air cut amount between a pass of n rotations and a pass of a rotation later than n rotations becomes the specified air cut amount.
  4.  前記条件取得部は、前記切削工具の移動方向及び移動角度に関するテーパ情報を取得し、
     前記加工制御部は、前記テーパ情報を用いて前記送り量を決定する、請求項1から3のいずれかに記載の工作機械の制御装置。
    the condition acquisition unit acquires taper information relating to a moving direction and a moving angle of the cutting tool;
    The control device for a machine tool according to claim 1 , wherein the machining control unit determines the feed amount by using the taper information.
  5.  切削工具とワークを相対的に揺動させながら加工する工作機械の表示装置であって、
     前記切削工具と前記ワークの相対的な1回転あたりの送り量に関する情報と、前記切削工具と前記ワークの相対的な1回転あたりの揺動数に関する情報と、前記切削工具と前記ワークの相対的な1回転あたりの送り量に対する揺動振幅に関する情報と、の3つの情報のうち、1又は2つの情報を前提条件として入力を受け付ける条件入力部と、
     揺動する方向のエアカットの程度を示す指定エアカット量の入力を受け付けるエアカット量入力部と、
     n回転のパスとn回転よりも後の回転のパスとの間に基づくエアカット量が、前記指定エアカット量になるように、3つの情報のうち前記条件入力部が受け付けていない情報を前記前提条件に基づいて算出する情報算出部と、
     前記情報算出部で算出された情報を表示する表示部と、を備える工作機械の表示装置。
    A display device for a machine tool that performs machining while oscillating a cutting tool and a workpiece relative to each other,
    a condition input unit that accepts input of one or two pieces of information as prerequisites out of three pieces of information: information on a relative feed amount per rotation between the cutting tool and the workpiece, information on a relative number of oscillations per rotation between the cutting tool and the workpiece, and information on an oscillation amplitude with respect to the relative feed amount per rotation between the cutting tool and the workpiece;
    an air cut amount input unit that receives an input of a designated air cut amount indicating the degree of air cut in the swing direction;
    an information calculation unit that calculates, based on the preconditions, information that is not accepted by the condition input unit among the three pieces of information, so that an air cut amount based on a gap between a path of n rotations and a path of a rotation subsequent to the n rotations becomes the designated air cut amount;
    and a display unit that displays the information calculated by the information calculation unit.
PCT/JP2022/036751 2022-09-30 2022-09-30 Machine tool control device and machine tool display device WO2024069951A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022580018A JP7252426B1 (en) 2022-09-30 2022-09-30 Machine tool control device and machine tool display device
PCT/JP2022/036751 WO2024069951A1 (en) 2022-09-30 2022-09-30 Machine tool control device and machine tool display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036751 WO2024069951A1 (en) 2022-09-30 2022-09-30 Machine tool control device and machine tool display device

Publications (1)

Publication Number Publication Date
WO2024069951A1 true WO2024069951A1 (en) 2024-04-04

Family

ID=85779536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036751 WO2024069951A1 (en) 2022-09-30 2022-09-30 Machine tool control device and machine tool display device

Country Status (2)

Country Link
JP (1) JP7252426B1 (en)
WO (1) WO2024069951A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090107308A1 (en) * 2007-10-16 2009-04-30 Woody Bethany A Methods and systems for chip breaking in turning applications using cnc toolpaths
JP2014523348A (en) * 2011-06-15 2014-09-11 ザウアー ウルトラソニック ゲーエムベーハー Machine tools, machining methods for workpieces
WO2019026768A1 (en) * 2017-08-01 2019-02-07 シチズン時計株式会社 Machine tool control device, and machine tool
JP2020163487A (en) * 2019-03-28 2020-10-08 ファナック株式会社 Servo control device
WO2021241552A1 (en) * 2020-05-29 2021-12-02 ファナック株式会社 Machine tool control device
JP2021194721A (en) * 2020-06-10 2021-12-27 シチズン時計株式会社 Control device of machine tool and machine tool
WO2022085114A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Numerical control device and numerical control method
WO2022181594A1 (en) * 2021-02-26 2022-09-01 ファナック株式会社 Computer
JP7158604B1 (en) * 2021-06-02 2022-10-21 三菱電機株式会社 Numerical controller, learning device, reasoning device, and numerical control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090107308A1 (en) * 2007-10-16 2009-04-30 Woody Bethany A Methods and systems for chip breaking in turning applications using cnc toolpaths
JP2014523348A (en) * 2011-06-15 2014-09-11 ザウアー ウルトラソニック ゲーエムベーハー Machine tools, machining methods for workpieces
WO2019026768A1 (en) * 2017-08-01 2019-02-07 シチズン時計株式会社 Machine tool control device, and machine tool
JP2020163487A (en) * 2019-03-28 2020-10-08 ファナック株式会社 Servo control device
WO2021241552A1 (en) * 2020-05-29 2021-12-02 ファナック株式会社 Machine tool control device
JP2021194721A (en) * 2020-06-10 2021-12-27 シチズン時計株式会社 Control device of machine tool and machine tool
WO2022085114A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Numerical control device and numerical control method
WO2022181594A1 (en) * 2021-02-26 2022-09-01 ファナック株式会社 Computer
JP7158604B1 (en) * 2021-06-02 2022-10-21 三菱電機株式会社 Numerical controller, learning device, reasoning device, and numerical control method

Also Published As

Publication number Publication date
JP7252426B1 (en) 2023-04-04

Similar Documents

Publication Publication Date Title
JP6530780B2 (en) Display device and processing system for oscillating cutting
US8688257B2 (en) Programming apparatus
US7058473B2 (en) Method and device for generation of machining program
JP2008027045A (en) Numerical control apparatus provided with interference checking function
WO2021167014A1 (en) Machine tool control device
JP2009098982A (en) Working simulation device and its program
JP6708690B2 (en) Display device
US20210247734A1 (en) Numerical control device and numerical control method
JP7044734B2 (en) Servo controller
JP4639058B2 (en) Threading machine
JP4059411B2 (en) NC machine tool controller
WO2024069951A1 (en) Machine tool control device and machine tool display device
JP2010186374A (en) Numerical control apparatus for controlling machine tool having tool breakage detecting function
JP2004206723A (en) Tool manufacturing device and manufacturing method
JP2000235411A (en) Numerical controller using machining information
WO2024069954A1 (en) Machine tool control device and machine tool display device
WO2022264260A1 (en) Information processing device, device for controlling machine tool, and computer program
JP2020013433A (en) Numerical control device, numerical control method, and numerical control program
WO2021177449A1 (en) Device and method for controlling machine tool
JP6813129B1 (en) Numerical control device, machine learning device, and numerical control method
JP4037087B2 (en) Thread cutting control method and control device for numerically controlled machine tool and numerically controlled machine tool incorporating the same
WO2024062544A1 (en) Display device for machine tool
WO2024062607A1 (en) Machine tool control device
WO2023218649A1 (en) Control device for machine tool
WO2023139743A1 (en) Information processing device, machine tool control device, and computer program