WO2024069870A1 - ナビゲーション経路に対応するネットワークの制御 - Google Patents

ナビゲーション経路に対応するネットワークの制御 Download PDF

Info

Publication number
WO2024069870A1
WO2024069870A1 PCT/JP2022/036500 JP2022036500W WO2024069870A1 WO 2024069870 A1 WO2024069870 A1 WO 2024069870A1 JP 2022036500 W JP2022036500 W JP 2022036500W WO 2024069870 A1 WO2024069870 A1 WO 2024069870A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
base station
information
group
network controller
Prior art date
Application number
PCT/JP2022/036500
Other languages
English (en)
French (fr)
Inventor
仁 中里
紗季 田中
遥 堀内
啓佑 高見
Original Assignee
楽天モバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 楽天モバイル株式会社 filed Critical 楽天モバイル株式会社
Priority to PCT/JP2022/036500 priority Critical patent/WO2024069870A1/ja
Publication of WO2024069870A1 publication Critical patent/WO2024069870A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions

Definitions

  • This disclosure relates to controlling a network that corresponds to a navigation route.
  • route search systems such as car navigation systems provide a navigation route by inputting a start point and a finish point into a user's terminal.
  • This navigation route can take into account traffic congestion, travel time, toll roads, and the user's preferences.
  • route search systems is expected to increase further with the development of high-speed, large-capacity communication networks.
  • the user terminal may not be able to continue using the communication service via the base station.
  • the user terminal may not be able to obtain the navigation route in real time, making it difficult for the route search system to continue operating.
  • Patent Document 1 an example of conventional technology, discloses a navigation device that prevents the guided route from having to be detouring due to avoiding dead zones and efficiently obtains desired information in communication-enabled areas by determining in advance which areas on the guided route are areas where communication with an information server is possible.
  • the navigation device disclosed in Patent Document 1 can obtain radio wave condition information (predicted radio wave reception strength) at each point required for communication between a mobile unit and an information server, preventing the guided route from having to be detouring.
  • base stations with low communication demand may be turned off in order to reduce energy consumption or level out the resources used.
  • base stations that communicate with user terminals infrequently may be turned off to reduce power consumption in the communication network.
  • the present disclosure has been made in consideration of the above, and aims to provide a network controller and navigation method that can achieve both a reduction in energy consumption or a leveling out of resource usage, and the continuous use of communication services such as a route search system.
  • the network controller has one or more processors.
  • the one or more processors acquire application information indicating an application currently being executed on each of the multiple user terminals.
  • the one or more processors also acquire route candidates from a start point to a goal point along which the multiple user terminals move.
  • the one or more processors also group the multiple user terminals based on the application information.
  • the one or more processors also assign the route candidates to each of the groups formed by grouping.
  • the one or more processors also generate a startup request for a base station corresponding to a navigation route according to the assigned route candidates.
  • the navigation method uses one or more processors to acquire application information indicating an application currently being executed in each of a plurality of user terminals.
  • the navigation method also uses the one or more processors to acquire route candidates from a start point to a goal point along which the plurality of user terminals move.
  • the navigation method also uses the one or more processors to group the plurality of user terminals based on the application information.
  • the navigation method also uses the one or more processors to assign the route candidates to each of the groups formed by grouping.
  • the navigation method also uses the one or more processors to generate a start-up request for a base station corresponding to a navigation route according to the assigned route candidates.
  • FIG. 1 is a diagram showing an example of a route search to which a navigation system is applied.
  • FIG. 2 is a functional block diagram showing the configuration of the navigation system and its peripherals according to the first embodiment.
  • FIG. 3 is a diagram for explaining a specific example of group formation.
  • FIG. 4 is a sequence diagram showing the operation of the navigation system according to the first embodiment.
  • FIG. 5 is a sequence diagram showing an example of a start-up process of a base station.
  • FIG. 6 is a diagram showing an application example of the navigation system according to the first embodiment.
  • FIG. 7 is a functional block diagram showing the configuration of the navigation system and its peripherals according to the second embodiment.
  • FIG. 8 is a sequence diagram showing the operation of the navigation system according to the second embodiment.
  • FIG. 9 is a block diagram illustrating an example of a hardware configuration of a route providing device.
  • FIG. 10 is a block diagram showing an example of a hardware configuration of a network controller.
  • (Embodiment 1) 1 is a diagram showing an example of a route search to which a navigation system is applied.
  • a vehicle equipped with a user terminal 1 travels from a start point 2 to a goal point 3.
  • a first base station 4a, a second base station 4b, a third base station 4c, a fourth base station 4d, a fifth base station 4e, and a sixth base station 4f are shown.
  • the first base station 4a, the second base station 4b, the third base station 4c, the fourth base station 4d, the fifth base station 4e, and the sixth base station 4f are collectively referred to as "base stations 4".
  • Each of the base stations 4 includes at least an RU (Radio Unit).
  • the RU has an antenna for transmitting and receiving radio waves. In FIG. 1, the position of the RU is shown for each of the base stations 4.
  • FIG. 1 shows a first area 5a, a second area 5b, a third area 5c, a fourth area 5d, a fifth area 5e, and a sixth area 5f.
  • the first area 5a, the second area 5b, the third area 5c, the fourth area 5d, the fifth area 5e, and the sixth area 5f are collectively referred to as "area 5".
  • Each of the areas 5 is an area where radio waves can be transmitted and received between each antenna of the corresponding base station 4.
  • the start point 2 is located in the first area 5a
  • the goal point 3 is located in the fourth area 5d.
  • the first route 6a and the second route 6b shown in FIG. 1 have been searched for by the navigation system as candidate routes from the start point 2 to the goal point 3.
  • the first route 6a is a route from the start point 2 to the goal point 3, passing through the first area 5a, the second area 5b, the third area 5c, and the fourth area 5d in this order.
  • the second route 6b is a route from the start point 2 to the goal point 3, passing through the first area 5a, the fifth area 5e, the sixth area 5f, and the fourth area 5d in this order.
  • UE user equipment
  • the user terminal 1 performs wireless communication with a base station 4 with which it can communicate while moving along the first route 6a or the second route 6b.
  • the user terminal 1 is mounted on a vehicle, and the vehicle travels from a start point 2 to a goal point 3.
  • An example of such a user terminal 1 is a car navigation terminal.
  • the present disclosure is not limited to this, and the user terminal 1 may be a terminal that exists in the vehicle separately from the vehicle, or may simply be a terminal carried by a user who is in the vehicle.
  • the user terminal 1 may also be a terminal carried by a user who is not in a vehicle and travels on foot. In other words, the type and means of transportation of the user terminal 1 are not limited in the present disclosure.
  • each of the base stations 4 includes at least an RU.
  • the RU is communicatively connected to a DU (Distributed Unit) (not shown).
  • the DU may be provided in the same location as the RU to which it is connected, for example, in the base station 4 that includes the RU, or may be provided in a location remote from the RU to which it is connected, for example, in a data center.
  • the DU is also communicatively connected to a CU (Centralized Unit) (not shown).
  • the CU may be provided in the same location as the DU to which it is connected, for example, in the base station 4 that includes the DU or a data center, or may be provided in a location remote from the DU to which it is connected.
  • the base station 4 includes at least an RU, and may further include a DU, or may further include a CU.
  • the DU may be a virtualized DU (vDU) built on a virtualization platform.
  • the CU may be a virtualized CU (vCU) built on a virtualization platform.
  • DU virtualized DU
  • CU virtualized CU
  • the RU and DU can be switched between on and off states under the control of another device not shown. If the DU is a vDU, the DU can be switched between on and off states by adding or deleting a vDU on the virtualization platform. Examples of devices that switch the RU and DU between on and off states include management devices such as an OSS (Operation Support System) or EMS in the wireless network system.
  • OSS Operaation Support System
  • EMS EMS in the wireless network system.
  • the base station 4 When the base station 4 is in the on state, the base station 4 can communicate with the user terminal 1. When the base station 4 is in the on state, it means that the RU provided in the base station 4, the DU connected to this RU, and the CU connected to this DU are all on. On the other hand, when the base station 4 is in the off state, it cannot communicate with the user terminal 1. When the base station 4 is in the off state (indicated as Sleep in Figure 1), it means that at least one of the RU and the DU connected to this RU is off.
  • base stations 4 with low communication demand may be turned off.
  • the DU constituting a base station 4 with low communication demand is a vDU
  • the user terminal 1 moves, for example, along the first route 6a or the second route 6b while communicating wirelessly with the base stations 4 corresponding to each of the areas 5 that the user terminal 1 passes through.
  • the user terminal 1 since the first base station 4a is on, the user terminal 1 can use the communication service by transmitting and receiving radio waves to the first base station 4a in the first area 5a.
  • the second base station 4b, the third base station 4c, and the fourth base station 4d are on, the user terminal 1 can use the communication service in the second area 5b, the third area 5c, and the fourth area 5d. Therefore, when the user terminal 1 moves along the first route 6a, it can continuously use the communication service from the start point 2 to the goal point 3 without any interruption in the radio waves.
  • the user terminal 1 since the fifth base station 4e is off, the user terminal 1 cannot transmit or receive radio waves to or from the fifth base station 4e even if it is in the fifth area 5e, and cannot use the communication service unless it transmits or receives radio waves to or from another base station 4.
  • the sixth base station 4f since the sixth base station 4f is off, the user terminal 1 cannot use the communication service even if it is in the sixth area 5f. Therefore, when the user terminal 1 moves along the second route 6b, radio waves are interrupted in a position within the fifth area 5e or the sixth area 5f that does not overlap with any of the other areas 5, and the user terminal 1 cannot continuously use the communication service.
  • the fifth base station 4e and the sixth base station 4f on the second route 6b searched by the navigation system are switched from an off state to an on state.
  • FIG. 2 is a functional block diagram showing a navigation system 30 and its peripheral configuration according to the first embodiment.
  • the navigation system 30 shown in FIG. 2 has at least a route providing device 10 and a network controller 20.
  • the navigation system 30 is also connected to a RAN (Radio Access Network) 40 and a management device 50.
  • the RAN 40 is a network in a wireless network system that performs wireless communication with a user terminal 1, and the above-mentioned RU, DU and CU are included in the RAN 40.
  • the start point information is information indicating the position of the start point 2, and may include, for example, the longitude and latitude of the start point 2.
  • the finish point information is information indicating the position of the finish point 3, and may include, for example, the longitude and latitude of the finish point 3.
  • the route providing device 10 shown in FIG. 2 has a map information processing unit 11 and a route information providing unit 12.
  • the map information processing unit 11 stores map information such as a dynamic map.
  • a dynamic map is a database-like map that adds various traffic information such as vehicle positions to a high-precision three-dimensional map.
  • the map information processing unit 11 generates one or more route candidates based on the map information and the start point information and finish point information acquired from the user terminal 1. At this time, the map information processing unit 11 may generate route candidates using, for example, a known method, and may further generate route candidates taking into consideration traffic congestion, travel time, toll roads, user preferences, etc.
  • the map information processing unit 11 generates a first route 6a and a second route 6b as route candidates based on the start point information of the start point 2 and the finish point information of the finish point 3.
  • the route information providing unit 12 notifies the network controller 20 of information on route candidates (hereinafter referred to as "route information") generated by the map information processing unit 11.
  • the route information includes, for example, identification information of roads through which each route candidate passes and the number of route candidates.
  • the route information providing unit 12 provides the navigation route determined from the route candidates to the user terminal 1 via the RAN 40.
  • the network controller 20 includes a base station information acquisition unit 21, a base station information storage unit 22, a route information acquisition unit 23, a startup request generation unit 24, an application information acquisition unit (hereinafter abbreviated as "APP information acquisition unit”) 25, an application information storage unit (hereinafter abbreviated as "APP information storage unit”) 26, a group formation unit 27, and a route allocation unit 28.
  • the network controller 20 may be, for example, a RIC (RAN Intelligent Controller) or a real-time RIC.
  • the base station information acquisition unit 21 acquires base station information including operation information indicating the operation state of one or more base stations 4 included in the RAN 40 and specification information indicating the specifications of each of the base stations 4 from a management device 50 communicatively connected to the RAN 40.
  • the operation information indicates whether the DU and RU equipped in the base station 4 are in an on state or an off state.
  • the specification information indicates the processing capabilities of each of the DU and RU equipped in the base station 4, and includes, for example, information identifying the CPU (Central Processing Unit) of the server that constitutes the DU and RU.
  • the base station information acquisition unit 21 may acquire the base station information of the base station 4 at regular intervals, for example by polling or Syslog.
  • the base station information storage unit 22 stores the base station information acquired by the base station information acquisition unit 21 as a database or the like. That is, the base station information storage unit 22 stores operation information indicating an on or off state in association with the identification information of each of the DUs and RUs equipped in the base station 4. The base station information storage unit 22 also stores spec information indicating processing capabilities in association with the identification information of each of the DUs and RUs equipped in the base station 4.
  • the route information acquisition unit 23 acquires information on route candidates (route information) generated by the map information processing unit 11 of the route providing device 10 from the route information providing unit 12 of the route providing device 10.
  • the route information acquired by the route information acquisition unit 23 includes, for example, the number of route candidates from the start point to the goal point.
  • the startup request generation unit 24 generates a startup request to request the startup of base stations 4 in order to start up all of the base stations 4 that are off and that correspond to each area 5 through which the navigation route passes, based on the operation information of each base station 4 that corresponds to each area 5 through which the determined navigation route passes.
  • the startup request generation unit 24 then transmits the generated startup request to the management device 50.
  • the startup request includes, for example, information on all base stations 4 that are off and that correspond to the area 5 through which the navigation route passes.
  • the startup request does not necessarily have to include information on all base stations 4 that are in the off state. For example, if a rule is established in advance that automatically starts the fourth base station 4d when the third base station 4c is started, and it is desired to start both the third base station 4c and the fourth base station 4d that are in the off state, the startup request may include, for example, information on the third base station 4c but not information on the fourth base station 4d.
  • the startup request generating unit 24 may also transmit to the management device 50 a startup request to sequentially start up the off-state base stations 4 corresponding to each area 5 through which the determined navigation route passes, from the start point 2 to the goal point 3.
  • the APP information acquisition unit 25 acquires application information (hereinafter referred to as "APP information") of multiple user terminals, including the user terminal 1, from a management device 50 that is communicatively connected to the RAN 40.
  • APP information includes identification information of applications running on each user terminal, and is periodically collected by the management device 50 via the RAN 40.
  • the APP information storage unit 26 stores the APP information acquired by the APP information acquisition unit 25 as a database or the like. Specifically, the APP information storage unit 26 stores the identification information of the application being executed for each user terminal in association with the identification information of each user terminal.
  • the group forming unit 27 forms a group of user terminals based on the route information acquired by the route information acquiring unit 23 and the APP information for each user terminal stored by the APP information storing unit 26. At this time, the group forming unit 27 divides multiple user terminals that share a common start point 2 and goal point 3 into groups whose number is up to the number of route candidates.
  • the group formation unit 27 reads APP information indicating the applications running on each user terminal from the APP information storage unit 26, and identifies the QoS (Quality of Service) required by each application. Then, the group formation unit 27 determines the group to which this user terminal belongs according to the highest required QoS of each application running on the user terminal. In other words, the group formation unit 27 groups user terminals according to the level of communication quality required by the running applications.
  • QoS Quality of Service
  • applications APP#1, APP#2, APP#3, and APP#4 are running in user terminal UE#1, and applications APP#1, APP#2, and APP#5 are running in user terminal UE#2.
  • the group formation unit 27 reads information on the applications running in these user terminals from the APP information storage unit 26, and identifies the QoS required by each application.
  • the group forming unit 27 identifies the requested QoS of APP#1 as 1, the requested QoS of APP#2 as 2, the requested QoS of APP#3 as 3, the requested QoS of APP#4 as 1, and the requested QoS of APP#5 as 0. Note that here, it is assumed that an application with a higher requested QoS requires a higher communication quality.
  • the requested QoS is a relatively large value for applications that require real-time communication, for example, and a relatively small value for applications that do not require communication, for example.
  • the group forming unit 27 selects the highest requested QoS from the requested QoS of the applications running in each user terminal, and determines the group corresponding to the selected requested QoS as the group to which the user terminal belongs. That is, for example, the application with the highest requested QoS among the applications running in UE #1 is APP #3, and since its requested QoS is 3, the group forming unit 27 determines the group to which UE #1 belongs to as group #1. Also, for example, the application with the highest requested QoS among the applications running in UE #2 is APP #2, and since its requested QoS is 2, the group forming unit 27 determines the group to which UE #2 belongs to as group #2. In this way, the group forming unit 27 forms groups corresponding to the requested QoS by determining the group to which each user terminal belongs according to the highest requested QoS for each user terminal.
  • the group formation unit 27 appropriately sets the correspondence between the highest requested QoS and the group to which it belongs, so that the total number of groups is equal to or less than the number of route candidates. That is, the group formation unit 27 divides multiple user terminals that share a common start point 2 and goal point 3 into groups equal to or less than the number of route candidates. Therefore, for example, if the number of route candidates is three, the group formation unit 27 divides multiple user terminals moving from the start point 2 to the goal point 3 into groups 1 to 3. This makes it possible to assign at least one route candidate to each group, and to assign route candidates suitable for the requested QoS of each group.
  • the route allocation unit 28 assigns route candidates to each group of user terminals formed by the group formation unit 27, and determines the navigation route to be provided to the user terminals of each group. At this time, the route allocation unit 28 may assign route candidates with more off-state base stations 4 to a group with a high requested QoS than to a group with a low requested QoS, for example. In this way, the route allocation unit 28 can set a route candidate with more off-state base stations 4 and fewer competing user terminals as the navigation route for a group with a high requested QoS. As a result, it is possible to increase the likelihood that the requested QoS will be achieved in user terminals traveling along the navigation route.
  • the route allocation unit 28 may also refer to the specification information included in the base station information and, for example, allocate route candidates in which base stations 4 with high processing capabilities are located to a group with a high requested QoS rather than to a group with a low requested QoS. This allows the route allocation unit 28 to set route candidates in which base stations 4 with high specifications and high processing capabilities are located as navigation routes for groups with high requested QoS. As a result, it is possible to increase the likelihood that the requested QoS will be achieved in a user terminal moving along the navigation route.
  • the route allocation unit 28 notifies the route information providing unit 12 of the route providing device 10 of information on the determined navigation route for each group.
  • the route allocation unit 28 also notifies the startup request generating unit 24 of information on each navigation route in order to generate a startup request for the base station 4 corresponding to the area 5 through which the navigation route of each group passes.
  • the route allocation unit 28 may notify the startup request generating unit 24 of information only on the navigation route of the group with a high requested QoS, and may not notify the startup request generating unit 24 of information on the navigation route of the group with a low requested QoS. Even in this case, the base station 4 on the navigation route on which the user terminal of the group with a high requested QoS moves is started, and communication can be continued efficiently.
  • the user terminal of the group can continue communication using the base station of the 4G network.
  • the management device 50 is communicatively connected to the RAN 40, and acquires operation information and specification information of each of one or more base stations 4 included in the RAN 40.
  • the management device 50 may acquire the operation information and specification information of the base stations 4 at regular intervals, for example by polling or Syslog.
  • the operation information of the base station 4 may indicate, for example, whether the RU connected to the DU is on or off.
  • the specification information of the base station 4 may be, for example, information identifying the CPU of the DU and RU that constitute the base station 4.
  • the management device 50 may acquire the operation information and specification information of the RU from the DU connected to the RU.
  • the management device 50 not only manages the navigation system 30, but also manages each configuration within the RAN 40.
  • An example of such a management device 50 is an EMS (Element Management System).
  • the management device 50 also acquires APP information running on multiple user terminals including the user terminal 1.
  • the management device 50 may acquire APP information of user terminals connected to the RAN 40 at regular intervals.
  • An example of such a management device 50 is MEC (Multi-access Edge Computing).
  • the management device 50 may be configured to include both an EMS and a MEC.
  • the navigation system 30 when base station information of the base stations 4 in the RAN 40 is stored in the base station information storage unit 22 included in the network controller 20, the navigation system 30 does not need to acquire operation information and specification information of the base stations 4 from the management device 50 one by one during navigation operation. Therefore, the navigation system 30 can quickly perform operations that utilize the operation information and specification information of the base stations 4.
  • FIG. 4 is a sequence diagram explaining the operation of the navigation system 30 according to the first embodiment.
  • the management device 50 acquires operation information and specification information of one or more base stations 4 in the RAN 40 at regular intervals. Specifically, the management device 50 requests one or more DUs in the RAN 40 to transmit operation information and specification information. The DU that has been requested to transmit operation information and specification information transmits to the management device 50 the operation information and specification information of the DU and the operation information and specification information of one or more RUs connected to the DU. In this way, the management device 50 acquires operation information and specification information of the base stations 4 (i.e., DUs and RUs) in the RAN 40. Note that the management device 50 may acquire the operation information and specification information of the base stations 4 at different intervals.
  • the operation information and specification information of the base station 4 acquired by the management device 50 is acquired and stored by the network controller 20 at regular intervals.
  • the acquisition of the operation information and specification information by the network controller 20 may be performed, for example, by polling or Syslog.
  • the network controller 20 may acquire the operation information and specification information of the base station 4 from the management device 50 at different intervals.
  • the navigation system 30 By acquiring the operation information and specification information, the latest operation information and specification information of the base station 4 in the RAN 40 is stored in the base station information storage unit 22 of the network controller 20. Therefore, when the navigation system 30 is in operation, it can operate quickly without having to acquire operation information and specification information one by one.
  • the network controller 20 and management device 50 may acquire operation information and specification information of the base station 4 as appropriate while the navigation system 30 is operating.
  • the management device 50 also periodically collects information about APPs being executed on each of a plurality of user terminals, including the user terminal 1, and transmits the collected APP information to the network controller 20.
  • the management device 50 periodically collects APP information about each user terminal from the DU and CU with which the user terminal communicates.
  • the APP information acquired by the management device 50 is acquired at regular intervals by the network controller 20.
  • the APP information storage unit 26 of the network controller 20 stores information on APPs currently being executed in each of the multiple user terminals connected to the RAN 40.
  • the user terminal 1 transmits information about the start point 2 and the goal point 3 to the route providing device 10. Based on the information about the start point 2 and the goal point 3 transmitted from the user terminal 1 and the map information, the route providing device 10 searches for one or more route candidates in the map information and generates route information. Then, the route providing device 10 transmits the generated route information to the network controller 20.
  • the network controller 20 groups multiple user terminals that share a common start point 2 and goal point 3 based on the route information and APP information. Specifically, the group formation unit 27 of the network controller 20 groups multiple user terminals that share the same start point and goal point as user terminal 1 into groups the number of which is less than or equal to the number of route candidates, according to the required QoS of the application being executed.
  • the group forming unit 27 reads the APP information for each user terminal and identifies the requested QoS of each application running in each user terminal.
  • the requested QoS of an application can be identified from a network slice, for example, based on the identification information of the network slice associated with the application.
  • the group forming unit 27 determines the group corresponding to the highest requested QoS among the requested QoS of the applications running by the user terminal as the group to which this user terminal belongs. This makes it possible to group user terminals by requested QoS, and to form groups of user terminals according to the priority of the running applications.
  • the network controller 20 When the network controller 20 forms groups of user terminals, it assigns route candidates to each group. That is, the route assignment unit 28 of the network controller 20 assigns one route candidate indicated by the route information to each group of user terminals.
  • the route assignment unit 28 may assign route candidates with many off-state base stations 4 to a group with a high required QoS, for example, to reduce competition between user terminals.
  • the route assignment unit 28 may also assign route candidates with base stations 4 with high processing capabilities to a group with a high required QoS, for example, to increase the possibility that the required QoS will be achieved.
  • the route candidates assigned to the groups in this way become the optimal routes for the user terminals belonging to each group. Then, the network controller 20 transmits optimal route information indicating the optimal route for the user terminals of each group to the route providing device 10.
  • the route providing device 10 transmits navigation route information to each user terminal, with the optimal route for each user terminal being the navigation route.
  • the user terminal 1 receives the navigation route information, it displays the navigation route on the screen.
  • the present disclosure is not limited to this, and if the user terminal 1 is a vehicle that performs automatic driving control, automatic driving control may be performed using the navigation route information without displaying the navigation route on the screen.
  • the network controller 20 determines the base station (hereinafter referred to as the "used base station") that the user terminals belonging to each group will use when traveling along the optimal route. Then, based on the operation information stored in the base station information storage unit 22, the network controller 20 sends to the management device 50 a request to start up base stations 4 that are off among the determined used base stations. This executes the startup process for the off-state base stations 4, and all used base stations for the user terminals of each group are started up. As a result, the user terminals traveling along the navigation route can continuously use the communication service.
  • the base station hereinafter referred to as the "used base station
  • FIG. 5 is a sequence diagram showing an example of the startup process of a base station 4 that is in the off state.
  • a base station in use that is in the off state may be referred to as the "base station to be started.”
  • the network controller 20 sends a startup request for the base station 4 to be started among the determined base stations to be used to the management device 50.
  • the management device 50 performs instantiation of the DU corresponding to the base station 4 to be started that received the startup request.
  • a new session is opened between the RU of the base station 4 to be started and the instantiated DU, and a notification of the start-up completion of the base station 4 to be started is sent to the management device 50.
  • the management device 50 sends a startup completion notification for the base station 4 to be started to the network controller 20.
  • the network controller 20 sends a startup completion notification to the route providing device 10.
  • FIG. 6 is a diagram showing an application example of the navigation system 30 according to the first embodiment.
  • FIG. 6 shows two candidate routes from the starting point 102 to the goal point 103 at the start, and five areas.
  • the two candidate routes are a first route 106a and a second route 106b.
  • the five areas are a first area 105a, a second area 105b, a third area 105c, a fourth area 105d, and a fifth area 105e.
  • the first area 105a, the second area 105b, the fourth area 105d, and the fifth area 105e are areas in which the corresponding base stations are on. Therefore, user terminals present in the first area 105a, the second area 105b, the fourth area 105d, and the fifth area 105e can use communication services using wireless communication.
  • the third area 105c is an area in which the corresponding base station is off at the start. Therefore, a user terminal present in the third area 105c cannot use communication services using wireless communication at the start unless it communicates with a base station in another area.
  • the first route 106a is a route that passes through the first area 105a, the second area 105b, the fifth area 105e, and the fourth area 105d in this order from the start point 102 to the goal point 103. Therefore, the user terminals of the group whose navigation route is the first route 106a can reach the goal point 103 from the start point 102 while continuing wireless communication with the base station.
  • the second route 106b is a route that passes through the first area 105a, the second area 105b, the third area 105c, and the fourth area 105d in this order from the start point 102 to the goal point 103. Therefore, by executing the startup process of the base station corresponding to the third area 105c as described above, the user terminals of the group whose navigation route is the second route 106b can reach from the start point 102 to the goal point 103 while continuing wireless communication with the base station.
  • a base station that is off and on the movement route of the user terminal is activated based on the navigation route.
  • This makes it possible to enable the continuous use of communication services such as a route search system.
  • it is possible to achieve both a reduction in energy consumption or level out resource usage and the continuous use of communication services such as a route search system.
  • FIG. 7 is a functional block diagram showing a navigation system 30a and its peripheral configuration according to embodiment 2.
  • the same parts as in FIG. 2 are given the same reference numerals, and their description will be omitted.
  • the route providing device 10a has a route information providing unit 12a instead of the route information providing unit 12 shown in FIG. 2, and the network controller 20a has a route information obtaining unit 23a and a recommended route determining unit 29 instead of the route information obtaining unit 23 and the route allocation unit 28 shown in FIG. 2.
  • the route information providing unit 12a notifies the network controller 20a of the route information generated by the map information processing unit 11.
  • the route information includes, for example, identification information of the roads through which each route candidate passes and the number of route candidates.
  • the route information providing unit 12a also provides the recommended route notified by the network controller 20a to the user terminal 1 via the RAN 40, and prompts the user terminal 1 to determine a navigation route from the recommended route.
  • the route information providing unit 12a then notifies the network controller 20a of the navigation route determined by the user terminal 1.
  • the route information acquisition unit 23a acquires route information generated by the map information processing unit 11 of the route providing device 10 from the route information providing unit 12a of the route providing device 10a.
  • the route information acquisition unit 23a also acquires the navigation route determined by the user terminal 1 from the route information providing unit 12a of the route providing device 10a. Then, the route information acquisition unit 23a notifies the startup request generation unit 24 of the information on the navigation route of the user terminal 1 in order to generate a startup request for the base station 4 corresponding to the area 5 through which the navigation route passes.
  • the recommended route determination unit 29 assigns route candidates to each group of user terminals formed by the group formation unit 27, and determines the route candidates assigned to each group as the recommended route to be recommended to the user terminals of each group. At this time, the recommended route determination unit 29 may determine the recommended route by assigning route candidates with more off-state base stations 4 to a group with a high required QoS than to a group with a low required QoS. The recommended route determination unit 29 may also determine the recommended route by referring to the specification information included in the base station information, for example, by assigning route candidates with base stations 4 with high processing capabilities to a group with a high required QoS than to a group with a low required QoS. The recommended route determination unit 29 then notifies the route information provision unit 12a of the route provision device 10a of the information on the recommended route for each group that has been determined.
  • FIG. 8 is a sequence diagram explaining the operation of the navigation system 30 according to the second embodiment. Below, only the differences between FIG. 8 and FIG. 4 will be explained.
  • the network controller 20a When the network controller 20a forms groups of user terminals, it assigns route candidates to each group and determines a recommended route for each group. That is, the recommended route determination unit 29 of the network controller 20a determines a recommended route for each group by, for example, assigning route candidates with a larger number of off-state base stations 4 or route candidates in which base stations 4 with high processing power are located, if the group's required QoS is higher. The recommended route for each group determined in this way is notified to the route providing device 10a.
  • the route providing device 10a transmits the recommended route for each user terminal to each user terminal, and determines a navigation route based on the recommended route. That is, for example, a screen may be displayed to ask the user whether the recommended route should be used as the navigation route, or a screen may be displayed to allow the user to select a navigation route from the recommended route for the group to which the user terminal belongs and the recommended routes for other groups. In this way, the navigation route is determined in the user terminal 1.
  • the user terminal 1 transmits navigation route information to the route providing device 10a and displays the navigation route on the screen.
  • the present disclosure is not limited to this, and if the user terminal 1 is a vehicle that performs automatic driving control, automatic driving control may be performed using the navigation route information without displaying the navigation route on the screen.
  • the route providing device 10a When the route providing device 10a receives navigation route information from the user terminal 1, it transmits this navigation route information to the network controller 20a.
  • the network controller 20a determines the base stations to be used by the user terminal 1 when moving along the navigation route, and transmits a request to the management device 50 to start up the base stations 4 that are off among the base stations to be used, based on the operation information stored in the base station information storage unit 22.
  • the start-up process of the base stations 4 that are off is executed, and all base stations to be used by the user terminal 1 are started up.
  • the user terminal 1 moving along the navigation route can continuously use communication services.
  • the off-state base station on the movement route of the user terminal is activated based on the navigation route determined by the user terminal.
  • This makes it possible to enable the continuous use of communication services such as a route search system.
  • it is possible to achieve both the reduction in energy consumption or level out resource usage and the continuous use of communication services such as a route search system.
  • the route providing device 10, 10a according to the above-mentioned first and second embodiments can be configured using a processor and a memory.
  • FIG. 9 is a block diagram showing an example of the hardware configuration of the route providing device 10 according to the first embodiment.
  • the route providing device 10a according to the second embodiment can also have a similar configuration to the route providing device 10. As shown in FIG. 9, the route providing device 10 has a transmission/reception unit 110 and a processing unit 120.
  • the transmitter/receiver unit 110 transmits and receives data between the user terminal 1 and the network controller 20.
  • the processing unit 120 has a processor 122, a memory 124, and a storage 126. Note that the processing unit 120 may have multiple processors 122 or multiple memories 124. That is, the processing unit 120 has one or more processors 122 and one or more memories 124.
  • the processor 122 has, for example, a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array) or a DSP (Digital Signal Processor), and operates the transmission/reception unit 110 and performs various types of data processing.
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processor
  • Memory 124 includes, for example, RAM (Random Access Memory) or ROM (Read Only Memory), and stores data used in the data processing performed by processor 122.
  • Storage 126 includes, for example, a hard disk drive (HDD) or a solid state drive (SSD), and stores, for example, map information.
  • HDD hard disk drive
  • SSD solid state drive
  • the route providing device 10 may also have other components not shown, such as a display unit and an input/output unit.
  • the network controllers 20 and 20a according to the first and second embodiments can be configured using a processor and a memory.
  • FIG. 10 is a block diagram showing an example of the hardware configuration of the network controller 20 according to the first embodiment.
  • the network controller 20a according to the second embodiment can also have a similar configuration to the network controller 20.
  • the network controller 20 has a transmission/reception unit 210 and a processing unit 220.
  • the transmission/reception unit 210 transmits and receives data between the route providing device 10 and the management device 50.
  • the processing unit 220 has a processor 222, a memory 224, and a storage 226. Note that the processing unit 220 may have multiple processors 222 or multiple memories 224. That is, the processing unit 220 has one or more processors 222 and one or more memories 224.
  • the processor 222 includes, for example, a CPU, FPGA, or DSP, and operates the transceiver unit 210 and performs various types of data processing.
  • Memory 224 includes, for example, RAM or ROM, and stores data used in the data processing performed by processor 222.
  • Storage 226 includes, for example, an HDD or SSD, and stores, for example, operation information and specification information of base station 4, as well as APP information for each user terminal.
  • the network controller 20 may also have other components not shown, such as a display unit and an input/output unit.
  • the route providing device 10, 10a and the network controller 20, 20a are described as separate devices, but the present disclosure is not limited to this.
  • the route providing device 10, 10a and the network controller 20, 20a may be configured as an integrated device, and the route providing device 10, 10a and the network controller 20, 20a may share at least one of the transceiver, the processor, the memory, and the storage.
  • the processes performed by the route providing devices 10, 10a and the network controllers 20, 20a described in the above embodiments can each be written as a computer-executable program.
  • the program can be stored on a computer-readable, non-transitory recording medium and installed on the computer.
  • Examples of such recording media include portable recording media such as CD-ROMs, DVD disks, and USB memory, as well as semiconductor memories such as flash memories.
  • connection means a logical connection for communication.
  • an RU connected to a DU means that the DU and RU are logically connected so that they can communicate with each other. Therefore, the DU and RU may be directly physically connected with a physical cable or the like, but this is not limited to this, and multiple devices or wireless communication devices may be placed between the DU and RU.
  • a system having one or more processors The one or more processors: Acquire application information indicating applications currently being executed on each of a plurality of user terminals; Obtaining route candidates from a start point to a goal point along which the plurality of user terminals move; Grouping the plurality of user terminals based on the application information; Assigning the route candidates to each of the groups formed by the grouping; generating an activation request for a base station corresponding to a navigation route according to the assigned route candidate; A network controller that performs the processing.
  • the grouping process includes: The network controller according to claim 1, further comprising: a network controller that forms groups equal to or smaller than the number of acquired route candidates.
  • the grouping process includes: Identifying the Quality of Service (QoS) required by an application running on each user terminal;
  • QoS Quality of Service
  • the network controller according to claim 1 or 2 further comprising a process of determining a group corresponding to the highest QoS among QoS of applications being executed in the user terminal as a group to which the user terminal belongs.
  • the one or more processors further performing a process of obtaining operation information indicating whether the base station is in an on state or an off state;
  • the allocating process includes: The network controller according to [3], further comprising: a route candidate having a larger number of off-state base stations arranged therein, the higher the QoS corresponding to the group.
  • the one or more processors Further performing a process of acquiring specification information indicating a processing capacity of the base station;
  • the allocating process includes: The network controller according to claim 3, further comprising: a network controller for allocating a route candidate in which a base station with high processing capability is arranged, the higher the QoS corresponding to the group.
  • the generating process includes: The network controller according to any one of claims 1 to 2, further comprising: determining a route candidate assigned to a group as a navigation route for the group; and generating a startup request for a base station corresponding to the navigation route for each group.
  • the generating process includes: The network controller according to any one of claims 1 to 2, further comprising: a network controller that acquires information on a navigation route determined by a user terminal based on route candidates assigned to a group; and generates a startup request for a base station corresponding to the navigation route of the user terminal.
  • the one or more processors further performing a process of obtaining operation information indicating whether the base station is in an on state or an off state;
  • the generating process includes: The network controller according to any one of claims 1 to 2, further comprising: a base station control unit that controls the navigation route and a base station control unit that controls the navigation route;
  • [10] acquiring application information indicating an application currently being executed on each of a plurality of user terminals; Obtaining route candidates from a start point to a goal point along which the plurality of user terminals move; Grouping the plurality of user terminals based on the application information; Assigning the route candidates to each of the groups formed by the grouping; generating an activation request for a base station corresponding to a navigation route according to the assigned route candidate; A navigation method having a process.
  • REFERENCE SIGNS LIST 10 10a Route providing device 11 Map information processing unit 12, 12a Route information providing unit 20, 20a Network controller 21 Base station information acquisition unit 22 Base station information storage unit 23, 23a Route information acquisition unit 24 Start request generation unit 25 APP information acquisition unit 26 APP information storage unit 27 Group formation unit 28 Route allocation unit 29 Recommended route determination unit 110, 210 Transmitting/receiving unit 120, 220 Processing unit 122, 222 Processor 124, 224 Memory 126, 226 Storage

Abstract

消費エネルギーの低減又は使用リソースの平準化と、経路検索システムの継続的な動作と、を両立可能とするため、ネットワークコントローラは、1又は複数のプロセッサを有する。1又は複数のプロセッサは、複数のユーザ端末それぞれにおいて実行中のアプリケーションを示すアプリケーション情報を取得し、前記複数のユーザ端末が移動するスタート地点からゴール地点までの経路候補を取得し、前記アプリケーション情報に基づいて、前記複数のユーザ端末をグループ分けし、グループ分けして形成されるグループそれぞれに、前記経路候補を割り当て、割り当てられた経路候補に応じたナビゲーション経路に対応する基地局の起動依頼を生成する、処理を実行する。

Description

ナビゲーション経路に対応するネットワークの制御
 本開示は、ナビゲーション経路に対応するネットワークの制御に関する。
 一般に、カーナビゲーションシステム等の経路検索システム(ナビゲーションシステム)は、ユーザ端末におけるスタート地点及びゴール地点の入力により、ナビゲーション経路を提供する。このナビゲーション経路は、渋滞状況、所要時間、有料道路及びユーザの志向等を考慮したものとすることができる。今後、高速大容量通信網の整備などにより、経路検索システムの利用は、さらに進むと考えられる。
 ところで、経路検索システムによって得られたナビゲーション経路上においては、ユーザ端末と基地局との間の通信が困難な場合もある。ユーザ端末と基地局との間の通信が困難な場合には、ユーザ端末が基地局経由の通信サービスの利用を継続することができなくなる。具体的には、例えば経路検索システムにおいて、ユーザ端末がナビゲーション経路をリアルタイムで取得することができず、経路検索システムの継続的な動作が困難になることがある。
 従来技術の一例である特許文献1には、誘導経路上のどこが情報サーバとの通信が継続的に可能なエリアなのかを事前に把握することにより、不感地帯の回避に伴う誘導経路の迂回化を防ぎ、通信可能エリアで所望の情報を効率良く取得するナビゲーション装置が開示されている。特許文献1に開示されたナビゲーション装置によれば、移動体と情報サーバとの通信に必要な各地点での電波状態情報(予測される電波の受信強度)が得られ、誘導経路の迂回化を防ぐことができる。
特開2006-98147号公報
 上述したように高速大容量通信網の整備が進められる一方で、消費エネルギーの低減又は使用リソースの平準化のために、通信需要の少ない一部の基地局をオフすることがある。すなわち、ユーザ端末との通信頻度が低い基地局がオフにされ、通信網における消費電力の低減が図られることがある。
 しかしながら、一部の基地局をオフすると、ユーザ端末と基地局との間の通信が困難な領域が拡大し、上述したようにユーザの通信利用の継続性が損なわれ、経路検索システム等の継続的な動作が困難になる。
 本開示は、上記に鑑みてなされたものであって、消費エネルギーの低減又は使用リソースの平準化と、経路検索システム等の通信サービスの継続的な利用と、を両立することができるネットワークコントローラ及びナビゲーション方法を提供することを目的とする。
 本開示の一態様によれば、ネットワークコントローラは、1又は複数のプロセッサを有する。前記1又は複数のプロセッサは、複数のユーザ端末それぞれにおいて実行中のアプリケーションを示すアプリケーション情報を取得する。また、前記1又は複数のプロセッサは、前記複数のユーザ端末が移動するスタート地点からゴール地点までの経路候補を取得する。また、前記1又は複数のプロセッサは、前記アプリケーション情報に基づいて、前記複数のユーザ端末をグループ分けする。また、前記1又は複数のプロセッサは、グループ分けして形成されるグループそれぞれに、前記経路候補を割り当てる。また、前記1又は複数のプロセッサは、割り当てられた経路候補に応じたナビゲーション経路に対応する基地局の起動依頼を生成する。
 また、本開示の一態様によれば、ナビゲーション方法は、1又は複数のプロセッサを用いて、複数のユーザ端末それぞれにおいて実行中のアプリケーションを示すアプリケーション情報を取得する。また、ナビゲーション方法は、前記1又は複数のプロセッサを用いて、前記複数のユーザ端末が移動するスタート地点からゴール地点までの経路候補を取得する。また、ナビゲーション方法は、前記1又は複数のプロセッサを用いて、前記アプリケーション情報に基づいて、前記複数のユーザ端末をグループ分けする。また、ナビゲーション方法は、前記1又は複数のプロセッサを用いて、グループ分けして形成されるグループそれぞれに、前記経路候補を割り当てる。また、ナビゲーション方法は、前記1又は複数のプロセッサを用いて、割り当てられた経路候補に応じたナビゲーション経路に対応する基地局の起動依頼を生成する。
図1は、ナビゲーションシステムが適用される経路検索の一例を示す図である。 図2は、実施の形態1に係るナビゲーションシステムと周辺の構成を示す機能ブロック図である。 図3は、グループ形成の具体例を説明する図である。 図4は、実施の形態1に係るナビゲーションシステムの動作を示すシーケンス図である。 図5は、基地局の起動処理の一例を示すシーケンス図である。 図6は、実施の形態1に係るナビゲーションシステムの適用例を示す図である。 図7は、実施の形態2に係るナビゲーションシステムと周辺の構成を示す機能ブロック図である。 図8は、実施の形態2に係るナビゲーションシステムの動作を示すシーケンス図である。 図9は、経路提供装置のハードウェア構成の一例を示すブロック図である。 図10は、ネットワークコントローラのハードウェア構成の一例を示すブロック図である。
 以下、添付図面を参照して、本開示に係る実施の形態について説明する。以下に説明する実施の形態は例示であり、この記載によって限定解釈されるものではない。
(実施の形態1)
 図1は、ナビゲーションシステムが適用される経路検索の一例を示す図である。図1において、ユーザ端末1を搭載する車両は、スタート地点2からゴール地点3まで走行する。
 図1には、第1の基地局4aと、第2の基地局4bと、第3の基地局4cと、第4の基地局4dと、第5の基地局4eと、第6の基地局4fと、が示されている。以下においては、第1の基地局4aと、第2の基地局4bと、第3の基地局4cと、第4の基地局4dと、第5の基地局4eと、第6の基地局4fと、をまとめて「基地局4」という。基地局4の各々は、少なくともRU(Radio Unit)を備える。RUは、電波送受信のためのアンテナを有する。図1においては、基地局4の各々としてRUの位置が示されている。
 また、図1には、第1のエリア5aと、第2のエリア5bと、第3のエリア5cと、第4のエリア5dと、第5のエリア5eと、第6のエリア5fと、が示されている。以下においては、第1のエリア5aと、第2のエリア5bと、第3のエリア5cと、第4のエリア5dと、第5のエリア5eと、第6のエリア5fと、をまとめて「エリア5」という。エリア5の各々は、対応する基地局4の各々のアンテナとの間で電波送受信が可能なエリアである。図1に示すように、スタート地点2は第1のエリア5aに存在し、ゴール地点3は第4のエリア5dに存在する。
 ここで、スタート地点2からゴール地点3までの経路候補として、図1に示す第1の経路6a及び第2の経路6bがナビゲーションシステムによって検索されたものとする。第1の経路6aは、スタート地点2からゴール地点3まで、第1のエリア5a、第2のエリア5b、第3のエリア5c及び第4のエリア5dをこの順に通過する経路である。一方、第2の経路6bは、スタート地点2からゴール地点3まで、第1のエリア5a、第5のエリア5e、第6のエリア5f及び第4のエリア5dをこの順に通過する経路である。
 図1に示す第1の経路6a又は第2の経路6bに沿ってユーザ端末(UE:User Equipment)1が移動する場合について説明する。
 ユーザ端末1は、第1の経路6a又は第2の経路6bに沿って移動しつつ通信可能な基地局4と無線通信を行う。図1においては、ユーザ端末1は車両に搭載され、この車両がスタート地点2からゴール地点3まで進行する。このようなユーザ端末1として、カーナビゲーション端末を例示することができる。ただし、本開示はこれに限定されるものではなく、ユーザ端末1は、車両とは別に車内に存在する端末であっても良いし、車両に乗車しているユーザが単に所持している端末であっても良い。また、ユーザ端末1は、車両に乗車していない、徒歩で移動するユーザが所持する端末であっても良い。すなわち、本開示において、ユーザ端末1の種類及び移動手段は限定されるものではない。
 上述したように、基地局4の各々は、少なくともRUを備える。RUは、図示しないDU(Distributed Unit)に通信可能に接続される。DUは、接続されるRUと同じ場所、例えばRUを備える基地局4に設けられていても良いし、接続されるRUとは離れた場所、例えばデータセンタに設けられていても良い。また、DUは、図示しないCU(Centralized Unit)に通信可能に接続される。CUは、接続されるDUと同じ場所、例えばDUを備える基地局4又はデータセンタに設けられていても良いし、接続されるDUとは離れた場所に設けられていても良い。すなわち、基地局4は、少なくともRUを備え、DUをさらに備えていても良いし、CUをさらに備えていても良い。
 なお、DUは、仮想化基盤に構築された仮想化DU(vDU)であっても良い。同様に、CUは、仮想化基盤に構築された仮想化CU(vCU)であっても良い。以下の説明においては、原則として、DUとvDUとを区別せずにDUと称し、CUとvCUとを区別せずにCUと称する。
 RU及びDUは、図示しない他の装置に制御されて、オン状態とオフ状態とを切り替えることができる。DUがvDUである場合には、仮想化基盤上においてvDUを追加又は削除することで、DUのオン状態とオフ状態とを切り替えることができる。RU及びDUに対するオン状態とオフ状態との切り替えを行う装置としては、無線ネットワークシステム内のOSS(Operation Support System)又はEMS等の管理装置を例示することができる。
 なお、基地局4がオン状態である場合には、この基地局4は、ユーザ端末1と通信可能である。基地局4がオン状態であるとは、基地局4が備えるRUと、このRUに接続するDUと、このDUに接続するCUと、がすべてオンであることをいう。一方、基地局4がオフ状態である場合には、この基地局4は、ユーザ端末1と通信することができない。基地局4がオフ状態である(図1ではSleepと表記)とは、RUと、このRUに接続するDUと、のうち少なくとも一方がオフであることをいう。
 ところで、消費エネルギーの低減又は使用リソースの平準化等を目的として、基地局4のうち通信需要が少ないものがオフ状態にされることがある。例えば通信需要が少ない基地局4を構成するDUがvDUである場合には、仮想化基盤上でvDUを削除することにより、このvDUに接続するRUを備える基地局4を速やかにオフ状態に移行させることが可能である。
 上述したように、ユーザ端末1は、通過するエリア5の各々に対応する基地局4と無線通信しつつ、例えば第1の経路6a又は第2の経路6bに沿って移動する。図1において、第1の基地局4aがオン状態であるため、ユーザ端末1は、第1のエリア5aにおいて第1の基地局4aと電波を送受信することで通信サービスを利用することができる。同様に、第2の基地局4b、第3の基地局4c及び第4の基地局4dがオン状態であるため、ユーザ端末1は、第2のエリア5b、第3のエリア5c及び第4のエリア5dにおいて通信サービスを利用することができる。したがって、ユーザ端末1は、第1の経路6aに沿って移動する場合には、スタート地点2からゴール地点3まで電波を途切れさせることなく通信サービスを継続的に利用することができる。
 これに対して、図1において、第5の基地局4eがオフ状態であるため、ユーザ端末1は、第5のエリア5e内に存在していても第5の基地局4eと電波を送受信することができず、他の基地局4と電波の送受信を行わない限り、通信サービスを利用することができない。同様に、第6の基地局4fがオフ状態であるため、ユーザ端末1は、第6のエリア5f内に存在していても通信サービスを利用することができない。したがって、ユーザ端末1は、第2の経路6bに沿って移動する場合には、第5のエリア5e又は第6のエリア5f内であって他のエリア5のいずれとも重ならない位置において電波が途切れるため、通信サービスを継続的に利用することができない。
 このように、第1の経路6aにおいては、ユーザ端末1と基地局4との間の通信が確保されるため、ユーザの通信利用の継続性が確保されるのに対し、第2の経路6bにおいては、ユーザ端末1と基地局4との間の通信が途切れてしまうことがあり、ユーザの通信利用の継続性を確保することが困難である。そこで、本実施の形態においては、ナビゲーションシステムによって検索された第2の経路6b上にある第5の基地局4e及び第6の基地局4fをオフ状態からオン状態に移行させる。以下、基地局4をオフ状態からオン状態に移行させることが可能な構成について説明する。
 図2は、実施の形態1に係るナビゲーションシステム30と周辺の構成を示す機能ブロック図である。図2に示すナビゲーションシステム30は、少なくとも経路提供装置10及びネットワークコントローラ20を有する。また、このナビゲーションシステム30は、RAN(Radio Access Network:無線アクセスネットワーク)40及び管理装置50に接続する。RAN40は、無線ネットワークシステムにおいて、ユーザ端末1との間で無線通信を行うネットワークであり、上述したRU、DU及びCUは、RAN40に含まれる。
スタート地点情報は、スタート地点2の位置を示す情報であり、例えばスタート地点2の経緯度を含んでいても良い。また、ゴール地点情報は、ゴール地点3の位置を示す情報であり、例えばゴール地点3の経緯度を含んでいても良い。図2に示す経路提供装置10は、地図情報処理部11と、経路情報提供部12と、を有する。
 地図情報処理部11は、例えばダイナミックマップ(Dynamic Map)などの地図情報を記憶する。ダイナミックマップは、高精度3次元地図に車両の位置等の様々な交通情報を付加したデータベース的マップである。地図情報処理部11は、地図情報と、ユーザ端末1から取得したスタート地点情報及びゴール地点情報と、に基づいて、1又は複数の経路候補を生成する。このとき、地図情報処理部11は、例えば公知の手法を用いて経路候補を生成しても良く、さらに渋滞状況、所要時間、有料道路及びユーザの志向等を考慮して経路候補を生成しても良い。
 図1に示した例では、地図情報処理部11は、スタート地点2のスタート地点情報及びゴール地点3のゴール地点情報に基づいて、第1の経路6a及び第2の経路6bを経路候補として生成する。
 経路情報提供部12は、地図情報処理部11によって生成された経路候補の情報(以下「経路情報」という)をネットワークコントローラ20へ通知する。経路情報は、例えば各経路候補が通過する道路の識別情報や経路候補の数を含む。また、経路情報提供部12は、経路候補から決定されたナビゲーション経路をRAN40を介してユーザ端末1に提供する。
 ネットワークコントローラ20は、基地局情報取得部21と、基地局情報記憶部22と、経路情報取得部23と、起動依頼生成部24と、アプリケーション情報取得部(以下「APP情報取得部」と略記する)25と、アプリケーション情報記憶部(以下「APP情報記憶部」と略記する)26と、グループ形成部27と、経路割当部28と、を備える。ネットワークコントローラ20は、例えばRIC(RAN Intelligent Controller)であっても良いし、リアルタイムRICであっても良い。
 基地局情報取得部21は、RAN40と通信可能に接続した管理装置50から、RAN40に含まれる1又は複数の基地局4の各々の稼動状態を示す稼動情報と、基地局4の各々のスペックを示すスペック情報とを含む基地局情報を取得する。稼動情報は、基地局4が備えるDU及びRUがそれぞれオン状態であるか又はオフ状態であるかを示す。また、スペック情報は、基地局4が備えるDU及びRUそれぞれの処理能力を示し、例えばDU及びRUを構成するサーバのCPU(Central Processing Unit)を特定する情報などを含む。基地局情報取得部21は、例えばポーリング又はSyslog等によって、一定の周期で基地局4の基地局情報を取得しても良い。
 基地局情報記憶部22は、基地局情報取得部21によって取得された基地局情報をデータベース等として記憶する。すなわち、基地局情報記憶部22は、基地局4が備えるDU及びRUそれぞれの識別情報に対応付けてオン状態又はオフ状態を示す稼動情報を記憶する。また、基地局情報記憶部22は、基地局4が備えるDU及びRUそれぞれの識別情報に対応付けて処理能力を示すスペック情報を記憶する。
 経路情報取得部23は、経路提供装置10の地図情報処理部11によって生成された経路候補の情報(経路情報)を経路提供装置10の経路情報提供部12から取得する。経路情報取得部23が取得する経路情報には、例えばスタート地点からゴール地点までの経路候補の数などが含まれている。
 起動依頼生成部24は、決定されたナビゲーション経路が通過する各エリア5に対応する各基地局4の稼動情報に基づいて、ナビゲーション経路が通過する各エリア5に対応するオフ状態である基地局4のすべてを起動するために、基地局4の起動を依頼する起動依頼を生成する。そして、起動依頼生成部24は、生成した起動依頼を管理装置50へ送信する。起動依頼には、例えばナビゲーション経路が通過するエリア5に対応する基地局4であって、すべてのオフ状態の基地局4の情報が含まれる。
 ただし、起動依頼には必ずしもすべてのオフ状態の基地局4の情報が含まれなくても良い。例えば、第3の基地局4cを起動させた場合には自動的に第4の基地局4dも起動するというルールが事前に設けられている場合に、オフ状態の第3の基地局4c及び第4の基地局4dの両方を起動させたいときは、起動依頼は、例えば第3の基地局4cの情報を含む一方、第4の基地局4dの情報を含まなくても良い。
 なお、起動依頼生成部24は、決定されたナビゲーション経路が通過する各エリア5に対応するオフ状態の基地局4をスタート地点2からゴール地点3まで順次起動させる起動依頼を管理装置50に送信しても良い。
 APP情報取得部25は、RAN40と通信可能に接続した管理装置50から、ユーザ端末1を含む複数のユーザ端末のアプリケーション情報(以下「APP情報」という)を取得する。APP情報は、各ユーザ端末において実行されているアプリケーションの識別情報などを含み、定期的にRAN40を介して管理装置50によって収集されている。
 APP情報記憶部26は、APP情報取得部25によって取得されたAPP情報をデータベース等として記憶する。具体的には、APP情報記憶部26は、各ユーザ端末の識別情報に対応付けて、ユーザ端末ごとに実行中のアプリケーションの識別情報を記憶する。
 グループ形成部27は、経路情報取得部23によって取得された経路情報と、APP情報記憶部26によって記憶されたユーザ端末ごとのAPP情報と、に基づいて、ユーザ端末のグループを形成する。このとき、グループ形成部27は、スタート地点2及びゴール地点3が共通する複数のユーザ端末を、経路候補の数を上限とした数のグループにグループ分けする。
 具体的には、グループ形成部27は、各ユーザ端末において実行中のアプリケーションを示すAPP情報をAPP情報記憶部26から読み出し、各アプリケーションによって要求されるQoS(Quality of Service)を特定する。そして、グループ形成部27は、ユーザ端末において実行中のアプリケーションそれぞれの要求QoSのうち最も高い要求QoSに応じて、このユーザ端末が所属するグループを決定する。つまり、グループ形成部27は、実行中のアプリケーションによって要求される通信品質の高さに応じてユーザ端末をグループ分けする。
 ここで、図3を参照して、グループ形成部27によるグループ形成の具体例について説明する。
 図3に示すように、ユーザ端末UE#1においては、アプリケーションAPP#1、APP#2、APP#3及びAPP#4が実行中であり、ユーザ端末UE#2においては、アプリケーションAPP#1、APP#2及びAPP#5が実行中であるものとする。グループ形成部27は、これらのユーザ端末において実行中のアプリケーションの情報をAPP情報記憶部26から読み出すと、それぞれのアプリケーションによって要求されるQoSを特定する。
 図3に示す例では、グループ形成部27は、APP#1の要求QoSを1、APP#2の要求QoSを2、APP#3の要求QoSを3、APP#4の要求QoSを1、APP#5の要求QoSを0と特定する。なお、ここでは、要求QoSが大きいアプリケーションほど、要求される通信品質が高いアプリケーションであるものとする。要求QoSは、例えばリアルタイム通信を必要とするアプリケーションでは比較的大きい値となり、例えば通信が不要なアプリケーションでは比較的小さい値となる。
 グループ形成部27は、ユーザ端末それぞれにおいて実行中のアプリケーションの要求QoSから最も高い要求QoSを選択し、選択した要求QoSに対応するグループをユーザ端末が所属するグループとして決定する。すなわち、例えばUE#1において実行中のアプリケーションのうち要求QoSが最も高いアプリケーションはAPP#3であり、その要求QoSは3であるため、グループ形成部27は、UE#1の所属グループをグループ#1に決定する。また、例えばUE#2において実行中のアプリケーションのうち要求QoSが最も高いアプリケーションはAPP#2であり、その要求QoSは2であるため、グループ形成部27は、UE#2の所属グループをグループ#2に決定する。このように、グループ形成部27は、ユーザ端末ごとの最も高い要求QoSに応じて各ユーザ端末の所属グループを決定することにより、要求QoSに対応するグループを形成する。
 グループ形成部27は、最も高い要求QoSと所属グループとの対応関係を適切に設定することにより、グループの総数が経路候補の数以下となるようにする。すなわち、グループ形成部27は、スタート地点2及びゴール地点3が共通する複数のユーザ端末を、経路候補の数以下のグループにグループ分けする。したがって、例えば経路候補の数が3であれば、グループ形成部27は、スタート地点2からゴール地点3まで移動する複数のユーザ端末を1から3グループにグループ分けする。これにより、各グループに少なくとも1つの経路候補を割り当てることができ、グループごとの要求QoSに適した経路候補の割り当てが可能となる。
 経路割当部28は、グループ形成部27によって形成されたユーザ端末のグループにそれぞれ経路候補を割り当て、各グループのユーザ端末へ提供するナビゲーション経路を決定する。このとき、経路割当部28は、例えば要求QoSが低いグループよりも要求QoSが高いグループに対して、オフ状態の基地局4が多い経路候補を割り当てるようにしても良い。これにより、経路割当部28は、オフ状態の基地局4が多く競合するユーザ端末が少ない経路候補を、要求QoSが高いグループのナビゲーション経路とすることができる。結果として、ナビゲーション経路を移動するユーザ端末において、要求QoSが達成される可能性を高めることができる。
 また、経路割当部28は、基地局情報に含まれるスペック情報を参照して、例えば要求QoSが低いグループよりも要求QoSが高いグループに対して、処理能力が高い基地局4が配置された経路候補を割り当てるようにしても良い。これにより、経路割当部28は、高スペックで処理能力が高い基地局4が配置された経路候補を、要求QoSが高いグループのナビゲーション経路とすることができる。結果として、ナビゲーション経路を移動するユーザ端末において、要求QoSが達成される可能性を高めることができる。
 経路割当部28は、決定した各グループのナビゲーション経路の情報を経路提供装置10の経路情報提供部12へ通知する。また、経路割当部28は、各グループのナビゲーション経路が通過するエリア5に対応する基地局4の起動依頼を生成させるために、それぞれのナビゲーション経路の情報を起動依頼生成部24へ通知する。経路割当部28は、例えば要求QoSが高いグループのナビゲーション経路のみの情報を起動依頼生成部24へ通知し、要求QoSが低いグループのナビゲーション経路の情報を起動依頼生成部24へ通知しなくても良い。この場合でも、要求QoSが高いグループのユーザ端末が移動するナビゲーション経路上の基地局4が起動され、効率的に通信を継続することができる。また、例えば4Gネットワークと5Gネットワークが混在するヘテロジニアスネットワークが構築されている場合には、要求QoSが低いグループのナビゲーション経路上の5Gネットワークの基地局4が起動されなくても、当該グループのユーザ端末は、4Gネットワークの基地局を用いて通信を継続することができる。
 管理装置50は、RAN40と通信可能に接続し、RAN40内に含まれる1又は複数の基地局4の各々の稼動情報及びスペック情報を取得する。管理装置50は、例えばポーリング又はSyslog等によって、一定の周期で基地局4の稼動情報及びスペック情報を取得しても良い。基地局4の稼動情報は、例えばDUに接続したRUがオン状態であるか又はオフ状態であるかを示していても良い。また、基地局4のスペック情報は、例えば基地局4を構成するDU及びRUのCPUを識別する情報であっても良い。管理装置50は、RUの稼動情報及びスペック情報をRUに接続するDUから取得しても良い。
 なお、管理装置50は、ナビゲーションシステム30を管理するのみならず、RAN40内の各構成も管理する。このような管理装置50としては、例えばEMS(Element Management System)を挙げることができる。また、管理装置50は、ユーザ端末1を含む複数のユーザ端末において実行中のAPP情報を取得する。管理装置50は、一定の周期でRAN40に接続するユーザ端末のAPP情報を取得しても良い。このような管理装置50としては、例えばMEC(Multi-access Edge Computing)を挙げることができる。管理装置50は、EMS及びMECの双方を含む構成であっても良い。
 図2に示すように、ネットワークコントローラ20に含まれる基地局情報記憶部22にRAN40内の基地局4の基地局情報が記憶されると、ナビゲーションシステム30は、ナビゲーション動作時に管理装置50から基地局4の稼働情報及びスペック情報を逐一取得する必要がない。したがって、ナビゲーションシステム30は、基地局4の稼働情報及びスペック情報を利用した動作を速やかに実行することが可能である。
 次いで、上記のように構成されたナビゲーションシステム30の動作について、図4を参照しながら説明する。図4は、実施の形態1に係るナビゲーションシステム30の動作を説明するシーケンス図である。
 管理装置50は、RAN40内の1又は複数の基地局4の稼動情報及びスペック情報を一定の周期で取得している。具体的には、管理装置50は、RAN40の1又は複数のDUに対して稼動情報及びスペック情報を送信するように要求する。稼動情報及びスペック情報を要求されたDUは、管理装置50に対して当該DUの稼動情報及びスペック情報と、当該DUに接続する1又は複数のRUの稼動情報及びスペック情報と、を送信する。これにより、管理装置50は、RAN40内の基地局4(すなわち、DU及びRU)の稼動情報及びスペック情報を取得する。なお、管理装置50は、基地局4の稼働情報及びスペック情報をそれぞれ異なる周期で取得しても良い。
 管理装置50によって取得された基地局4の稼動情報及びスペック情報は、ネットワークコントローラ20によって一定の周期で取得され記憶される。ネットワークコントローラ20による稼動情報及びスペック情報の取得は、例えばポーリング又はSyslog等によって実行されても良い。なお、ネットワークコントローラ20は、基地局4の稼働情報及びスペック情報をそれぞれ異なる周期で管理装置50から取得しても良い。
 稼動情報及びスペック情報が取得されることにより、ネットワークコントローラ20の基地局情報記憶部22には、RAN40内の基地局4の最新の稼動情報及びスペック情報が記憶される。このため、ナビゲーションシステム30の動作時には、稼動情報及びスペック情報を逐一取得することなく速やかに動作することができる。
 ただし、本開示はこれに限定されるものではなく、ネットワークコントローラ20及び管理装置50による基地局4の稼動情報及びスペック情報の取得は、ナビゲーションシステム30の動作時に適宜実行されても良い。
 また、管理装置50は、ユーザ端末1を含む複数のユーザ端末それぞれにおいて実行中のAPP情報を一定の周期で収集し、収集したAPP情報をネットワークコントローラ20へ送信する。管理装置50は、ユーザ端末が通信するDU及びCUから定期的に各ユーザ端末のAPP情報を収集する。
 管理装置50によって取得されたAPP情報は、ネットワークコントローラ20によって一定の周期で取得される。APP情報が取得されることにより、ネットワークコントローラ20のAPP情報記憶部26には、RAN40に接続する複数のユーザ端末それぞれにおいて実行中のAPP情報が記憶される。
 ユーザ端末1は、スタート地点2及びゴール地点3の情報を経路提供装置10へ送信する。経路提供装置10は、ユーザ端末1から送信されたスタート地点2及びゴール地点3の情報と、地図情報とに基づいて、地図情報における1又は複数の経路候補を検索し、経路情報を生成する。そして、経路提供装置10は、生成した経路情報をネットワークコントローラ20へ送信する。
 ネットワークコントローラ20は、経路情報及びAPP情報に基づいて、スタート地点2及びゴール地点3が共通する複数のユーザ端末をグループ分けする。具体的には、ネットワークコントローラ20のグループ形成部27は、スタート地点及びゴール地点がユーザ端末1と同じ複数のユーザ端末を、実行中のアプリケーションの要求QoSに応じて、経路候補の数以下のグループにグループ分けする。
 すなわち、グループ形成部27は、ユーザ端末ごとのAPP情報を読み出し、ユーザ端末それぞれにおいて実行中の各アプリケーションの要求QoSを特定する。アプリケーションの要求QoSは、例えばアプリケーションに対応付けられたネットワークスライスの識別情報に基づいて、ネットワークスライスから特定することができる。そして、グループ形成部27は、ユーザ端末が実行中のアプリケーションの要求QoSのうち最も高い要求QoSに対応するグループを、このユーザ端末が所属するグループとして決定する。これにより、要求QoSごとにユーザ端末をグループ分けすることができ、実行中のアプリケーションの優先度に応じてユーザ端末のグループを形成することができる。
 ネットワークコントローラ20は、ユーザ端末のグループを形成すると、それぞれのグループに経路候補を割り当てる。すなわち、ネットワークコントローラ20の経路割当部28は、ユーザ端末の各グループに対して、経路情報によって示される経路候補を1つずつ割り当てる。経路割当部28は、例えば要求QoSが高いグループに対してオフ状態の基地局4が多い経路候補を割り当て、ユーザ端末間の競合が低減されるようにしても良い。また、経路割当部28は、例えば要求QoSが高いグループに対して処理能力が高い基地局4が配置された経路候補を割り当て、要求QoSが達成される可能性を高めても良い。このようにしてグループに割り当てられた経路候補は、それぞれのグループに所属するユーザ端末の最適経路となる。そこで、ネットワークコントローラ20は、各グループのユーザ端末の最適経路を示す最適経路情報を経路提供装置10へ送信する。
 経路提供装置10は、それぞれのユーザ端末の最適経路をナビゲーション経路として、ナビゲーション経路情報を各ユーザ端末へ送信する。ユーザ端末1は、ナビゲーション経路情報を受信すると、ナビゲーション経路を画面表示する。ただし、本開示はこれに限定されるものではなく、ユーザ端末1が自動運転制御を行う車両である場合には、ナビゲーション経路を画面表示することなく、ナビゲーション経路情報を用いて自動運転制御を行っても良い。
 ところで、ユーザ端末の各グループに経路候補を割り当てることにより、グループごとの最適経路が決定されると、ネットワークコントローラ20は、各グループに所属するユーザ端末が最適経路を移動する際に使用する基地局(以下「使用基地局」という)を決定する。そして、ネットワークコントローラ20は、基地局情報記憶部22に記憶された稼動情報に基づき、決定した使用基地局のうちオフ状態である基地局4の起動依頼を管理装置50へ送信する。これにより、オフ状態である基地局4の起動処理が実行され、各グループのユーザ端末の使用基地局がすべて起動する。結果として、ナビゲーション経路を移動するユーザ端末は、通信サービスを継続的に利用することができる。
 図5は、オフ状態である基地局4の起動処理の一例を示すシーケンス図である。以下の説明では、オフ状態の使用基地局を「起動すべき基地局」ということがある。
 ネットワークコントローラ20は、決定した使用基地局のうち起動すべき基地局4の起動依頼を管理装置50に送る。管理装置50は、起動依頼を受けた起動すべき基地局4に対応するDUのインスタンシエーションを行う。
 RAN40においては、起動すべき基地局4のRUとインスタンシエーションされたDUとの新しいセッションが開設され、起動すべき基地局4の起動完了通知が管理装置50へ送信される。
 管理装置50は、起動すべき基地局4の起動完了通知をネットワークコントローラ20に送る。ネットワークコントローラ20は、起動完了通知を経路提供装置10に送る。
 次に、実施の形態1に係るナビゲーションシステム30の適用例について説明する。図6は、実施の形態1に係るナビゲーションシステム30の適用例を示す図である。図6には、スタート時における、スタート地点102からゴール地点103までの2つの経路候補と、5つのエリアと、が示されている。2つの経路候補は、第1の経路106a及び第2の経路106bである。また、5つのエリアは、第1のエリア105a、第2のエリア105b、第3のエリア105c、第4のエリア105d及び第5のエリア105eである。
 第1のエリア105a、第2のエリア105b、第4のエリア105d及び第5のエリア105eは、対応する基地局がオン状態のエリアである。このため、第1のエリア105a、第2のエリア105b、第4のエリア105d及び第5のエリア105e内に存在するユーザ端末は、無線通信を用いて通信サービスを利用することができる。
 一方、第3のエリア105cは、スタート時には対応する基地局がオフ状態のエリアである。このため、第3のエリア105c内に存在するユーザ端末は、他のエリアにある基地局との通信を行わない限り、スタート時の状態では無線通信を用いて通信サービスを利用することができない。
 第1の経路106aは、スタート地点102からゴール地点103まで、第1のエリア105a、第2のエリア105b、第5のエリア105e及び第4のエリア105dをこの順に通過する経路である。したがって、ナビゲーション経路が第1の経路106aであるグループのユーザ端末は、基地局との無線通信を継続しつつスタート地点102からゴール地点103まで到達することができる。
 第2の経路106bは、スタート地点102からゴール地点103まで、第1のエリア105a、第2のエリア105b、第3のエリア105c及び第4のエリア105dをこの順に通過する経路である。したがって、上述したように第3のエリア105cに対応する基地局の起動処理を実行することで、ナビゲーション経路が第2の経路106bであるグループのユーザ端末は、基地局との無線通信を継続しつつスタート地点102からゴール地点103まで到達することができる。
 以上のように、本実施の形態によれば、消費エネルギーの低減又は使用リソースの平準化のために通信需要の少ない基地局をオフにする場合であっても、ナビゲーション経路に基づき、ユーザ端末の移動経路にあるオフ状態の基地局を起動する。このため、経路検索システム等の通信サービスの継続的な利用を可能とすることができる。結果として、消費エネルギーの低減又は使用リソースの平準化と、経路検索システム等の通信サービスの継続的な利用と、を両立することができる。
(実施の形態2)
 上記実施の形態1においては、ネットワークコントローラ20がナビゲーション経路を決定する例について説明したが、本開示はこれに限定されるものではなく、ユーザ端末1においてナビゲーション経路が決定されても良い。そこで、実施の形態2においては、ユーザ端末1においてナビゲーション経路が決定される場合について説明する。
 図7は、実施の形態2に係るナビゲーションシステム30aと周辺の構成を示す機能ブロック図である。図7において、図2と同じ部分には同じ符号を付し、その説明を省略する。図7に示すナビゲーションシステム30aにおいて、経路提供装置10aは、図2に示す経路情報提供部12に代えて経路情報提供部12aを有し、ネットワークコントローラ20aは、図2に示す経路情報取得部23及び経路割当部28に代えて経路情報取得部23a及び推奨経路決定部29を有する。
 経路情報提供部12aは、地図情報処理部11によって生成された経路情報をネットワークコントローラ20aへ通知する。経路情報は、例えば各経路候補が通過する道路の識別情報や経路候補の数を含む。また、経路情報提供部12aは、ネットワークコントローラ20aから通知される推奨経路をRAN40を介してユーザ端末1に提供し、推奨経路からナビゲーション経路を決定するように促す。そして、経路情報提供部12aは、ユーザ端末1によって決定されたナビゲーション経路をネットワークコントローラ20aへ通知する。
 経路情報取得部23aは、経路提供装置10の地図情報処理部11によって生成された経路情報を経路提供装置10aの経路情報提供部12aから取得する。また、経路情報取得部23aは、ユーザ端末1によって決定されたナビゲーション経路を経路提供装置10aの経路情報提供部12aから取得する。そして、経路情報取得部23aは、ナビゲーション経路が通過するエリア5に対応する基地局4の起動依頼を生成させるために、ユーザ端末1のナビゲーション経路の情報を起動依頼生成部24へ通知する。
 推奨経路決定部29は、グループ形成部27によって形成されたユーザ端末のグループにそれぞれ経路候補を割り当て、グループごとに割り当てられた経路候補を各グループのユーザ端末に推奨する推奨経路に決定する。このとき、推奨経路決定部29は、例えば要求QoSが低いグループよりも要求QoSが高いグループに対して、オフ状態の基地局4が多い経路候補を割り当てて推奨経路を決定しても良い。また、推奨経路決定部29は、基地局情報に含まれるスペック情報を参照して、例えば要求QoSが低いグループよりも要求QoSが高いグループに対して、処理能力が高い基地局4が配置された経路候補を割り当てて推奨経路を決定しても良い。そして、推奨経路決定部29は、決定した各グループの推奨経路の情報を経路提供装置10aの経路情報提供部12aへ通知する。
 図8は、実施の形態2に係るナビゲーションシステム30の動作を説明するシーケンス図である。以下、図8について、図4と異なる点のみ説明する。
 ネットワークコントローラ20aが、経路情報及びAPP情報に基づいて、スタート地点2及びゴール地点3が共通する複数のユーザ端末をグループ分けするまでは、上記実施の形態1(図4)と同様の処理が実行される。
 ネットワークコントローラ20aは、ユーザ端末のグループを形成すると、それぞれのグループに経路候補を割り当て、グループごとの推奨経路を決定する。すなわち、ネットワークコントローラ20aの推奨経路決定部29は、例えばグループの要求QoSが高いほど、オフ状態の基地局4が多い経路候補を割り当てたり処理能力が高い基地局4が配置された経路候補を割り当てたりすることにより、グループの推奨経路を決定する。このようにして決定されたグループごとの推奨経路は、経路提供装置10aへ通知される。
 経路提供装置10aは、それぞれのユーザ端末の推奨経路を各ユーザ端末へ送信し、推奨経路に基づいてナビゲーション経路を決定させる。すなわち、例えば推奨経路をナビゲーション経路として良いかをユーザに確認する画面表示をさせたり、ユーザ端末が所属するグループの推奨経路と他のグループの推奨経路とからユーザにナビゲーション経路を選択させる画面表示をさせたりする。これにより、ユーザ端末1において、ナビゲーション経路が決定される。
 ユーザ端末1は、ナビゲーション経路が決定されると、ナビゲーション経路情報を経路提供装置10aへ送信するとともに、ナビゲーション経路を画面表示する。ただし、本開示はこれに限定されるものではなく、ユーザ端末1が自動運転制御を行う車両である場合には、ナビゲーション経路を画面表示することなく、ナビゲーション経路情報を用いて自動運転制御を行っても良い。
 経路提供装置10aは、ユーザ端末1からナビゲーション経路情報を受信すると、このナビゲーション経路情報をネットワークコントローラ20aへ送信する。そして、ネットワークコントローラ20aは、ユーザ端末1がナビゲーション経路を移動する際に使用する使用基地局を決定し、基地局情報記憶部22に記憶された稼動情報に基づき、使用基地局のうちオフ状態である基地局4の起動依頼を管理装置50へ送信する。これにより、実施の形態1と同様に、オフ状態である基地局4の起動処理が実行され、ユーザ端末1の使用基地局がすべて起動する。結果として、ナビゲーション経路を移動するユーザ端末1は、通信サービスを継続的に利用することができる。
 以上のように、本実施の形態によれば、消費エネルギーの低減又は使用リソースの平準化のために通信需要の少ない基地局をオフにする場合であっても、ユーザ端末によって決定されたナビゲーション経路に基づき、ユーザ端末の移動経路にあるオフ状態の基地局を起動する。このため、経路検索システム等の通信サービスの継続的な利用を可能とすることができる。結果として、消費エネルギーの低減又は使用リソースの平準化と、経路検索システム等の通信サービスの継続的な利用と、を両立することができる。
 上記実施の形態1、2に係る経路提供装置10、10aは、プロセッサ及びメモリを用いて構成することができる。図9は、実施の形態1に係る経路提供装置10のハードウェア構成の一例を示すブロック図である。実施の形態2に係る経路提供装置10aも経路提供装置10と同様の構成とすることが可能である。図9に示すように、経路提供装置10は、送受信部110及び処理部120を有する。
 送受信部110は、ユーザ端末1及びネットワークコントローラ20との間でデータを送受信する。
 処理部120は、プロセッサ122、メモリ124及びストレージ126を有する。なお、処理部120は、複数のプロセッサ122又は複数のメモリ124を有していても良い。すなわち、処理部120は、1又は複数のプロセッサ122及び1又は複数のメモリ124を有する。
 プロセッサ122は、例えばCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)又はDSP(Digital Signal Processor)などを有し、送受信部110を動作させるとともに、各種のデータ処理を実行する。
 メモリ124は、例えばRAM(Random Access Memory)又はROM(Read Only Memory)などを有し、プロセッサ122が実行するデータ処理に用いられるデータを記憶する。
 ストレージ126は、例えばHDD(Hard Disk Drive)又はSSD(Solid State Drive)などを有し、例えば地図情報などを記憶する。
 なお、経路提供装置10は、例えば表示部や入出力部など、図示しない他の構成を有していても良い。
 上記実施の形態1、2に係るネットワークコントローラ20、20aは、プロセッサ及びメモリを用いて構成することができる。図10は、実施の形態1に係るネットワークコントローラ20のハードウェア構成の一例を示すブロック図である。実施の形態2に係るネットワークコントローラ20aもネットワークコントローラ20と同様の構成とすることが可能である。図10に示すように、ネットワークコントローラ20は、送受信部210及び処理部220を有する。
 送受信部210は、経路提供装置10及び管理装置50との間でデータを送受信する。
 処理部220は、プロセッサ222、メモリ224及びストレージ226を有する。なお、処理部220は、複数のプロセッサ222又は複数のメモリ224を有していても良い。すなわち、処理部220は、1又は複数のプロセッサ222及び1又は複数のメモリ224を有する。
 プロセッサ222は、例えばCPU、FPGA又はDSPなどを有し、送受信部210を動作させるとともに、各種のデータ処理を実行する。
 メモリ224は、例えばRAM又はROMなどを有し、プロセッサ222が実行するデータ処理に用いられるデータを記憶する。
 ストレージ226は、例えばHDD又はSSDなどを有し、例えば基地局4の稼動情報及びスペック情報、並びにユーザ端末ごとのAPP情報などを記憶する。
 なお、ネットワークコントローラ20は、例えば表示部や入出力部など、図示しない他の構成を有していても良い。
 上記各実施の形態においては、経路提供装置10、10aとネットワークコントローラ20、20aとを別の装置として記載したが、本開示はこれに限定されるものではない。すなわち、経路提供装置10、10a及びネットワークコントローラ20、20aを一体的に構成し、経路提供装置10、10aとネットワークコントローラ20、20aとが、送受信部、プロセッサ、メモリ及びストレージのうちの少なくとも1つを共有しても良い。
 また、上記各実施の形態において説明した経路提供装置10、10a及びネットワークコントローラ20、20aによる処理を、それぞれコンピュータが実行可能なプログラムとして記述することも可能である。この場合、このプログラムをコンピュータが読み取り可能かつ非一時的(non-transitory)な記録媒体に格納し、コンピュータに導入することも可能である。このような記録媒体としては、例えばCD-ROM、DVDディスク、USBメモリなどの可搬型記録媒体、及び例えばフラッシュメモリなどの半導体メモリが挙げられる。
 なお、本開示は、上記の実施の形態に限定されるものではなく、上述した構成に対して、構成要素の付加、削除又は転換を行った様々な変形例も含むものとする。
 また、本開示において用いられる「接続」という用語は、通信のための論理的接続を意味する。例えば、「DUに接続しているRU」は、DUとRUとが通信可能なように論理的に接続されていることを意味する。したがって、DUとRUとが物理的なケーブル等で物理的に直接接続されていても良いが、これに限定されるものではなく、DUとRUとの間に複数の機器又は無線通信機器が配置されていても良い。
 以上説明した本開示には、下記[1]から[10]が含まれる。
[1] 1又は複数のプロセッサを有し、
 前記1又は複数のプロセッサは、
 複数のユーザ端末それぞれにおいて実行中のアプリケーションを示すアプリケーション情報を取得し、
 前記複数のユーザ端末が移動するスタート地点からゴール地点までの経路候補を取得し、
 前記アプリケーション情報に基づいて、前記複数のユーザ端末をグループ分けし、
 グループ分けして形成されるグループそれぞれに、前記経路候補を割り当て、
 割り当てられた経路候補に応じたナビゲーション経路に対応する基地局の起動依頼を生成する、
 処理を実行するネットワークコントローラ。
[2] 前記グループ分けする処理は、
 取得された経路候補の数以下のグループを形成する
 [1]に記載のネットワークコントローラ。
[3] 前記グループ分けする処理は、
 それぞれのユーザ端末において実行中のアプリケーションが要求するQoS(Quality of Service)を特定し、
 ユーザ端末において実行中のアプリケーションのQoSのうち最も高いQoSに対応するグループを、当該ユーザ端末が所属するグループと決定する
 処理を含む[1]又は[2]に記載のネットワークコントローラ。
[4] 前記特定する処理は、
 アプリケーションに対応付けられるネットワークスライスの識別情報に基づいて、前記QoSを特定する
 [3]に記載のネットワークコントローラ。
[5] 前記1又は複数のプロセッサは、
 基地局がオン状態であるかオフ状態であるかを示す稼動情報を取得する処理をさらに実行し、
 前記割り当てる処理は、
 グループに対応するQoSが高いほど、オフ状態の基地局が多く配置された経路候補を割り当てる
 [3]に記載のネットワークコントローラ。
[6] 前記1又は複数のプロセッサは、
 基地局の処理能力を示すスペック情報を取得する処理をさらに実行し、
 前記割り当てる処理は、
 グループに対応するQoSが高いほど、処理能力が高い基地局が配置された経路候補を割り当てる
 [3]に記載のネットワークコントローラ。
[7] 前記生成する処理は、
 グループに割り当てられた経路候補を当該グループのナビゲーション経路に決定し、グループごとのナビゲーション経路に対応する基地局の起動依頼を生成する
 [1]又は[2]に記載のネットワークコントローラ。
[8] 前記生成する処理は、
 グループに割り当てられた経路候補に基づいてユーザ端末が決定したナビゲーション経路の情報を取得し、当該ユーザ端末のナビゲーション経路に対応する基地局の起動依頼を生成する
 [1]又は[2]に記載のネットワークコントローラ。
[9] 前記1又は複数のプロセッサは、
 基地局がオン状態であるかオフ状態であるかを示す稼動情報を取得する処理をさらに実行し、
 前記生成する処理は、
 前記ナビゲーション経路に対応する基地局の稼動情報に基づいて、オフ状態の基地局の起動依頼を生成する
 [1]又は[2]に記載のネットワークコントローラ。
[10] 複数のユーザ端末それぞれにおいて実行中のアプリケーションを示すアプリケーション情報を取得し、
 前記複数のユーザ端末が移動するスタート地点からゴール地点までの経路候補を取得し、
 前記アプリケーション情報に基づいて、前記複数のユーザ端末をグループ分けし、
 グループ分けして形成されるグループそれぞれに、前記経路候補を割り当て、
 割り当てられた経路候補に応じたナビゲーション経路に対応する基地局の起動依頼を生成する、
 処理を有するナビゲーション方法。
 10、10a 経路提供装置
 11 地図情報処理部
 12、12a 経路情報提供部
 20、20a ネットワークコントローラ
 21 基地局情報取得部
 22 基地局情報記憶部
 23、23a 経路情報取得部
 24 起動依頼生成部
 25 APP情報取得部
 26 APP情報記憶部
 27 グループ形成部
 28 経路割当部
 29 推奨経路決定部
 110、210 送受信部
 120、220 処理部
 122、222 プロセッサ
 124、224 メモリ
 126、226 ストレージ

 

Claims (10)

  1.  1又は複数のプロセッサを有し、
     前記1又は複数のプロセッサは、
     複数のユーザ端末それぞれにおいて実行中のアプリケーションを示すアプリケーション情報を取得し、
     前記複数のユーザ端末が移動するスタート地点からゴール地点までの経路候補を取得し、
     前記アプリケーション情報に基づいて、前記複数のユーザ端末をグループ分けし、
     グループ分けして形成されるグループそれぞれに、前記経路候補を割り当て、
     割り当てられた経路候補に応じたナビゲーション経路に対応する基地局の起動依頼を生成する、
     処理を実行するネットワークコントローラ。
  2.  前記グループ分けする処理は、
     取得された経路候補の数以下のグループを形成する
     請求項1に記載のネットワークコントローラ。
  3.  前記グループ分けする処理は、
     それぞれのユーザ端末において実行中のアプリケーションが要求するQoS(Quality of Service)を特定し、
     ユーザ端末において実行中のアプリケーションのQoSのうち最も高いQoSに対応するグループを、当該ユーザ端末が所属するグループと決定する
     処理を含む請求項1に記載のネットワークコントローラ。
  4.  前記特定する処理は、
     アプリケーションに対応付けられるネットワークスライスの識別情報に基づいて、前記QoSを特定する
     請求項3に記載のネットワークコントローラ。
  5.  前記1又は複数のプロセッサは、
     基地局がオン状態であるかオフ状態であるかを示す稼動情報を取得する処理をさらに実行し、
     前記割り当てる処理は、
     グループに対応するQoSが高いほど、オフ状態の基地局が多く配置された経路候補を割り当てる
     請求項3に記載のネットワークコントローラ。
  6.  前記1又は複数のプロセッサは、
     基地局の処理能力を示すスペック情報を取得する処理をさらに実行し、
     前記割り当てる処理は、
     グループに対応するQoSが高いほど、処理能力が高い基地局が配置された経路候補を割り当てる
     請求項3に記載のネットワークコントローラ。
  7.  前記生成する処理は、
     グループに割り当てられた経路候補を当該グループのナビゲーション経路に決定し、グループごとのナビゲーション経路に対応する基地局の起動依頼を生成する
     請求項1に記載のネットワークコントローラ。
  8.  前記生成する処理は、
     グループに割り当てられた経路候補に基づいてユーザ端末が決定したナビゲーション経路の情報を取得し、当該ユーザ端末のナビゲーション経路に対応する基地局の起動依頼を生成する
     請求項1に記載のネットワークコントローラ。
  9.  前記1又は複数のプロセッサは、
     基地局がオン状態であるかオフ状態であるかを示す稼動情報を取得する処理をさらに実行し、
     前記生成する処理は、
     前記ナビゲーション経路に対応する基地局の稼動情報に基づいて、オフ状態の基地局の起動依頼を生成する
     請求項1に記載のネットワークコントローラ。
  10.  1又は複数のプロセッサを用いて、複数のユーザ端末それぞれにおいて実行中のアプリケーションを示すアプリケーション情報を取得し、
     前記1又は複数のプロセッサを用いて、前記複数のユーザ端末が移動するスタート地点からゴール地点までの経路候補を取得し、
     前記1又は複数のプロセッサを用いて、前記アプリケーション情報に基づいて、前記複数のユーザ端末をグループ分けし、
     前記1又は複数のプロセッサを用いて、グループ分けして形成されるグループそれぞれに、前記経路候補を割り当て、
     前記1又は複数のプロセッサを用いて、割り当てられた経路候補に応じたナビゲーション経路に対応する基地局の起動依頼を生成する、
     処理を有するナビゲーション方法。

     
PCT/JP2022/036500 2022-09-29 2022-09-29 ナビゲーション経路に対応するネットワークの制御 WO2024069870A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036500 WO2024069870A1 (ja) 2022-09-29 2022-09-29 ナビゲーション経路に対応するネットワークの制御

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036500 WO2024069870A1 (ja) 2022-09-29 2022-09-29 ナビゲーション経路に対応するネットワークの制御

Publications (1)

Publication Number Publication Date
WO2024069870A1 true WO2024069870A1 (ja) 2024-04-04

Family

ID=90476891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036500 WO2024069870A1 (ja) 2022-09-29 2022-09-29 ナビゲーション経路に対応するネットワークの制御

Country Status (1)

Country Link
WO (1) WO2024069870A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012633A (ja) * 2003-06-20 2005-01-13 Seiko Epson Corp 移動無線システム及び移動無線通信方法
JP2009188883A (ja) * 2008-02-08 2009-08-20 Toyota Motor Corp 車両用通信装置、通信システム、通信制御方法
JP2014003355A (ja) * 2012-06-15 2014-01-09 Toyota Infotechnology Center Co Ltd 路車間通信システム、管理サーバ、および車両
US9557183B1 (en) * 2015-12-08 2017-01-31 Uber Technologies, Inc. Backend system for route planning of autonomous vehicles
WO2018138939A1 (ja) * 2017-01-25 2018-08-02 富士通株式会社 基地局装置、端末装置、無線通信システム、及びシステム情報通知方法
US20180270624A1 (en) * 2017-03-17 2018-09-20 Samsung Electronics Co., Ltd. Methods and apparatuses for supporting wireless communication of vehicle
JP2019068411A (ja) * 2017-09-28 2019-04-25 株式会社デンソー 車両用通信システム、車両用通信装置および管理装置
JP2021069037A (ja) * 2019-10-25 2021-04-30 矢崎総業株式会社 車両通信システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012633A (ja) * 2003-06-20 2005-01-13 Seiko Epson Corp 移動無線システム及び移動無線通信方法
JP2009188883A (ja) * 2008-02-08 2009-08-20 Toyota Motor Corp 車両用通信装置、通信システム、通信制御方法
JP2014003355A (ja) * 2012-06-15 2014-01-09 Toyota Infotechnology Center Co Ltd 路車間通信システム、管理サーバ、および車両
US9557183B1 (en) * 2015-12-08 2017-01-31 Uber Technologies, Inc. Backend system for route planning of autonomous vehicles
WO2018138939A1 (ja) * 2017-01-25 2018-08-02 富士通株式会社 基地局装置、端末装置、無線通信システム、及びシステム情報通知方法
US20180270624A1 (en) * 2017-03-17 2018-09-20 Samsung Electronics Co., Ltd. Methods and apparatuses for supporting wireless communication of vehicle
JP2019068411A (ja) * 2017-09-28 2019-04-25 株式会社デンソー 車両用通信システム、車両用通信装置および管理装置
JP2021069037A (ja) * 2019-10-25 2021-04-30 矢崎総業株式会社 車両通信システム

Similar Documents

Publication Publication Date Title
JP7003937B2 (ja) スペクトル管理装置、方法、地理的位置データベース及びサブシステム
KR102317881B1 (ko) 분산형 컴퓨팅 네트워크, 특히 분산형 컴퓨팅 네트워크의 에지 클라우드 컴퓨터를 운영하기 위한 방법
US7047021B2 (en) Communication system
KR101736877B1 (ko) 기반구조가 없는 네트워크에서 사용자 단말기의 디투디 아이디 할당 장치 및 그 방법
KR101090602B1 (ko) 페이징 영역 관리 방법 및 장치
US20100331017A1 (en) Method and system of efficiently using mobile terminal context
JP2014003355A (ja) 路車間通信システム、管理サーバ、および車両
KR20180098798A (ko) 엣지 클라우드에서 모바일 단말에 자원을 할당하는 방법 및 그 장치
WO2016150494A1 (en) Methods and apparatus for evaluating communication network resource along a navigational route
WO2016074515A1 (zh) 网络节点的选择、激活方法及装置
EP3956768A1 (en) Power management of movable edge computing servers
CN110351804B (zh) 通信方法、装置、计算机可读介质及电子设备
CN113574963B (zh) 控制装置、控制方法以及存储介质
WO2024069870A1 (ja) ナビゲーション経路に対応するネットワークの制御
US9380464B2 (en) Method and device for determining and assisting in determining back-up frequency in cognitive radio system
WO2024069862A1 (ja) ナビゲーション経路に対応するネットワークの制御
CN111123338A (zh) 定位方法及装置、电子设备及存储介质
WO2023157140A1 (ja) ネットワークコントローラ及びナビゲーションシステム
WO2023233535A1 (ja) ユーザの将来のトラフィック需要を予測したナビゲーションの動的な変更
JP7366683B2 (ja) 情報処理装置
CN114339683A (zh) 车载无线短距离通信系统及其通信资源分配方法
JP7393263B2 (ja) 情報処理装置
WO2023127097A1 (ja) ナビゲーションシステム、経路決定装置、ネットワークコントローラ及びナビゲーション方法
JP2021117728A (ja) 情報処理装置
WO2024004176A1 (ja) 通信継続性のための、ナビゲーションシステム、制御装置及びナビゲーション方法