WO2024069866A1 - Bonding member and semiconductor device - Google Patents

Bonding member and semiconductor device Download PDF

Info

Publication number
WO2024069866A1
WO2024069866A1 PCT/JP2022/036485 JP2022036485W WO2024069866A1 WO 2024069866 A1 WO2024069866 A1 WO 2024069866A1 JP 2022036485 W JP2022036485 W JP 2022036485W WO 2024069866 A1 WO2024069866 A1 WO 2024069866A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
less
thermal expansion
metal particles
joining
Prior art date
Application number
PCT/JP2022/036485
Other languages
French (fr)
Japanese (ja)
Inventor
浩次 山▲崎▼
紀和 境
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/036485 priority Critical patent/WO2024069866A1/en
Priority to JP2023508568A priority patent/JP7267522B1/en
Publication of WO2024069866A1 publication Critical patent/WO2024069866A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs

Definitions

  • This disclosure relates to a joining member and a semiconductor device.
  • semiconductor elements with substrates made of silicon (Si), gallium arsenide (GaAs), etc. are widely used.
  • the operating temperature of such semiconductor elements is 100°C to 125°C.
  • the solder material used to join these semiconductor elements to circuit boards is required to have a high melting point to accommodate the multi-stage soldering that occurs during manufacturing, crack resistance to repeated thermal stress associated with startup and shutdown, and resistance to contamination of the device.
  • next-generation devices with substrates made of silicon carbide (SiC) or gallium nitride (GaN).
  • SiC silicon carbide
  • GaN gallium nitride
  • the temperature at the junction between the semiconductor element and the circuit board will reach 175°C. Furthermore, the temperature at the junction between the circuit board and the heat sink will also rise to a temperature close to this, depending on the operating conditions and heat dissipation performance. For this reason, high reliability is required for the junction between the circuit board and the heat sink, as well as the junction between the semiconductor element and the circuit board.
  • a conventional method for manufacturing a highly heat-resistant bonded body is to add a large amount of metal particles such as Ag or Cu to Sn, and form a bonding layer from an Ag-Sn alloy phase (e.g., Ag 3 Sn: melting point 480°C), a Cu-Sn alloy (e.g., Cu 6 Sn 5 : melting point 415°C, Cu 3 Sn: melting point 676°C), etc. by metal diffusion caused by heating (300°C or less) during bonding.
  • an Ag-Sn alloy phase e.g., Ag 3 Sn: melting point 480°C
  • a Cu-Sn alloy e.g., Cu 6 Sn 5 : melting point 415°C, Cu 3 Sn: melting point 676°C
  • Patent Document 1 JP Patent Publication 2002-314241 A discloses a connection method or electronic device using solder, in which the Sn in the solder ball melts and forms an intermetallic compound at the interface with the Cu in the metal ball, connecting the Cu metal balls.
  • the molten Sn also forms an intermetallic compound with the electrodes of the semiconductor chip and the electrodes of the intermediate substrate, connecting the Cu metal balls to these electrodes.
  • connection portion has sufficient strength to withstand the process of subsequent solder connection, as the Sn in the solder ball becomes a Cu-Sn intermetallic compound (Cu 6 Sn 5 , melting point: approximately 630° C.), causing the contact portion and its vicinity to have a high melting point, and even if some of the Sn remains, as long as other portions do not melt.
  • Cu-Sn intermetallic compound Cu 6 Sn 5 , melting point: approximately 630° C.
  • the metal balls are not limited to Cu, and may be Ag, Au, Al, Ni, Cu alloys, Cu-Sn compounds, Ag-Sn compounds, Au-Sn compounds, Al-Ag compounds, Zn-Al compounds, etc., and Patent Document 1 also states that Au has good wettability and therefore has the effect of reducing voids in the connection.
  • Patent Document 2 (WO 2012/108395) describes that by heating and melting solder containing Sn-based metal and Cu-based metal at the connection, an intermetallic compound with a melting point of 310°C or higher is formed. It also discloses that the ratio of Sn-based metal components contained in the connection is 30% by volume or less.
  • adding a large amount of metal particles such as Cu particles or Ag particles reduces the fluidity of Sn, leaving the areas sealed between the metal particles unjoined, creating voids and making the joints susceptible to cracks when subjected to thermal shock.
  • Ag-Sn alloys such as Ag 3 Sn or Cu-Sn alloys such as Cu 6 Sn 5 have a solid solution region of about 5 mass % Ag or Cu and Sn in terms of the metal phase diagram.
  • the interface between Ag 3 Sn and Cu 6 Sn 5 becomes a void if there is no Sn phase with a low melting point, and becomes the starting point of cracks.
  • the inventors of the present invention believe that in semiconductor devices that operate at high temperatures, it is important to ensure not only the mechanical properties of the material or the heat cycle resistance of the individual parts to which it is applied, but also the reliability of the device in the power cycles that accompany actual operation (repeated heating and cooling caused by repeatedly turning the application of power to the semiconductor device on and off).
  • the objective of this disclosure is to provide a joining member with high joining reliability against power cycles in semiconductor devices that operate at high temperatures.
  • the joining member includes metal particles containing Ni as a main component, a low-melting point phase containing Sn as a main component and having a melting point of less than 300°C, and an intermetallic compound having a melting point of 300°C or higher that is formed by interdiffusion between Sn and the metal particles.
  • the ratio of the amount of the low melting point phase to the total amount of the joining members is 2 vol % or more and less than 20 vol %.
  • the thermal expansion coefficients of the first object and the second object are equal to or greater than 3 ⁇ 10 ⁇ 6 /K and less than 13 ⁇ 10 ⁇ 6 /K, and the difference in thermal expansion coefficient between the first object and the second object is less than 5 ⁇ 10 ⁇ 6 /K.
  • the thermal expansion coefficient of the joining member is 16 ⁇ 10 ⁇ 6 /K or more and less than 20 ⁇ 10 ⁇ 6 /K.
  • a low melting point phase (e.g., a Sn-only phase) is left remaining, ensuring wettability to the joined members (objects to be joined), and by optimizing the amount of this remaining phase, vertical cracks during power cycles can be suppressed.
  • the joining member disclosed herein is applied to joining multiple objects whose thermal expansion coefficient difference is within a specific range, and therefore can suppress lateral cracks caused by shear stress resulting from the difference in thermal expansion coefficient between multiple objects to be joined.
  • the tensile stress and compressive stress (tensile-compressive stress) caused by the difference in thermal expansion coefficient between the objects to be joined and the joining material is suppressed, resulting in excellent joining reliability even when operating at high temperatures (e.g., 175°C).
  • FIG. 1 is a flowchart showing a manufacturing procedure of a semiconductor device (bonding member).
  • FIG. 2 is a schematic cross-sectional view showing a first step in FIG. 1 .
  • FIG. 2 is a schematic cross-sectional view showing a second step in FIG. 1 .
  • FIG. 2 is a schematic cross-sectional view showing a third step in FIG. 1 .
  • FIG. 2 is a schematic cross-sectional view showing a fourth step in FIG. 1 .
  • FIG. 2 is a schematic cross-sectional view showing a fifth step in FIG. 1 .
  • the joining member 1 of this embodiment includes metal particles 11, a low melting point phase 12, and an intermetallic compound 13.
  • Metal particles 11 contain Ni as a main component.
  • the "main component” refers to the component contained in metal particles 11 that is present in the largest amount.
  • the content of Sn in metal particles 11 is preferably 60 mass% or more, more preferably 70 mass% or more, and even more preferably 80 mass% or more.
  • the metal particles 11 may further contain at least one component selected from the group consisting of Fe, Cr, C, Cu, and Si.
  • the low melting point phase 12 contains Sn as a main component and has a melting point of less than 300°C.
  • the "main component” refers to the component contained in the low melting point phase 12 in the greatest amount.
  • the content of Sn in the low melting point phase 12 is preferably 60 mass% or more, more preferably 70 mass% or more, and even more preferably 80 mass% or more.
  • the low melting point phase may further contain, for example, Ag and Cu (in addition to Sn).
  • the Ag content may be 3 mass% or more and less than 4 mass%
  • the Cu content may be 0.5 mass% or more and less than 1.0 mass%. If the Ag and Cu contents are within this range, it is expected that the effects of the present disclosure can be obtained more reliably.
  • the intermetallic compound 13 is a compound (phase) formed by interdiffusion between Sn and metal particles 11, and has a melting point of 300°C or higher.
  • the ratio of the amount of the low melting point phase 12 to the total amount of the joining member 1 is 2 volume % or more and less than 20 volume %.
  • the thermal expansion coefficients of the first object 2 and the second object 3 are greater than or equal to 3 ⁇ 10 ⁇ 6 /K and less than 13 ⁇ 10 ⁇ 6 /K, and the difference in thermal expansion coefficient between the first object 2 and the second object 3 is less than 5 ⁇ 10 ⁇ 6 /K.
  • the thermal expansion coefficient of the joining member is not less than 16 ⁇ 10 ⁇ 6 /K and less than 20 ⁇ 10 ⁇ 6 /K.
  • the inventors conducted reliability tests on semiconductor devices using power cycles and found that suppressing cracks (vertical cracks) that occur in the thickness direction of the layers of the joining material during power cycles is important for improving joining reliability.
  • the reliability of the joint depends not only on the material that makes up the joining member, such as solder, but also on the composition of the joined members (objects to be joined). For this reason, in order to improve the reliability of power modules, it is necessary to consider not only the composition of the materials of the joining members, but also the composition of the joined members.
  • the inventors have discovered the bonding material disclosed herein that has high bonding reliability against power cycles in semiconductor devices that operate at high temperatures.
  • the semiconductor device according to the present embodiment includes a heat sink 2 and a circuit board 3 (a board having a semiconductor element and a wiring circuit).
  • the heat sink 2 and the circuit board 3 are joined via the highly reliable joining member 1 described in the first embodiment. This provides a highly reliable semiconductor device.
  • the semiconductor device of this embodiment can be manufactured by a manufacturing method that includes a step of joining a heat sink and a circuit board (see Figures 1 to 6).
  • a solder sheet 10 is cut to a predetermined size (see Figure 2), which is made of a low-melting-point phase 12 containing Sn as the main component and having a melting point of 300°C or less, and in which metal particles 11 made of Ni are dispersed.
  • each element was added and melted to obtain the composition shown below (the values indicate mass percentages. Sn is the remainder of the composition ratio of the other elements), and a bulk body was produced.
  • a rolled solder sheet 10 was produced using a rolling process at 100°C or less so that the thickness was 100 ⁇ m.
  • Ni particles metal particles 11
  • a sheet made of a low melting point phase 12 is layered on top of it to create a mixed sheet.
  • the thickness is 100 ⁇ m, but this is not essential.
  • the cut size is the same as the upper member, 10 mm x 10 mm.
  • the solder sheet 10 may be manufactured not only by rolling, but also by melting the bulk and sequentially pouring the molten solder through thin slits.
  • the combination of elements is more than three elements as described above (for example, when Bi, In, Sb, etc. are added to Sn-Ag-Cu)
  • the composition of the bulk may become non-uniform due to temperature variations in the melting furnace.
  • the solder composition may be adjusted by first manufacturing a bulk of Sn-Ag-Cu, melting it again, and adding a specified amount of the remaining Bi, In, Sb, etc.
  • the solder sheet 10 may be manufactured by first forming solder balls, uniformly scattering the solder balls on a flat plate, and compression molding the solder sheet 10.
  • the solder sheet 10 is placed on the first object 2 (lower member) (see Figure 3).
  • a predetermined amount of rust inhibitor with a decomposition temperature of 100°C or less that does not affect the bonding properties may be applied to the outermost surface of the CuMo alloy plate.
  • an organic agent that thermally decomposes at a high temperature of 100°C or more may be used as a tack material to prevent the solder sheet 10 from shifting from its designated position.
  • the viscosity of the tack material is preferably 200 Pa ⁇ s or more.
  • a resist film may be applied to the areas other than the joint of the first object 2 to prevent the solder sheet 10 from shifting.
  • the solder sheet 10 may be slightly curved during cutting or handling. This is because the solder sheet 10 melts to some extent when heated, so the effect of the initial shape of the solder sheet is small. However, if the solder sheet 10 is curved so much that the second object 3 (upper member) cannot be placed on it in the next process, the solder sheet 10 is straightened so that it is parallel on another flat plate.
  • the second object 3 (upper component) is placed on the solder sheet 10 (see Figure 4).
  • the above-mentioned tack material may be applied between the joined member (upper member) 1 and the solder sheet 10 to fix the mounting position.
  • the surfaces of the members to be joined (first object 2 and second object 3) on the joining side are plated with Cu or Ni, or are coated with a film of Au, Ag, Pt, etc., on the order of several tens of nanometers.
  • the laminate of each component obtained in the above steps was placed on a hot plate 5 in a heating furnace 5 (see FIG. 5). Then, formic acid, a typical organic acid capable of reducing oxide films, was sealed in the heating furnace 5, and the solder sheet 10 was melted by heating at 180°C for 5 minutes and then at 260°C for 3 minutes to form the joining member 1.
  • formic acid a typical organic acid capable of reducing oxide films
  • the low melting point phase 12 and metal particles 11 in the solder sheet 10 form a compound through thermal diffusion.
  • the ratio of compounds (intermetallic compounds) formed between the metal particles 11 and Sn varies depending on the particle size and amount of the metal particles 11 added. For this reason, it is preferable to adjust the particle size and amount of the metal particles 11 added so that the low melting point phase 12 remains.
  • the reason for this is that if most of the joining member 1 is made up of metal particles 11 and intermetallic compounds 13, the Sn in the low melting point phase 12 cannot deform, so there is no problem with the reliability of the joining.
  • the surfaces of the general-purpose members to be joined are rough, and the surface roughness (unevenness) may be on the order of a few ⁇ m.
  • the low-melting point phase 12 needs to wet and spread over the volume of the unevenness on the surface.
  • the surface area of the metal particles 11 in the solder sheet 10 becomes large, and the low-melting point phase 12 reacts preferentially with the metal particles 11, and the low-melting point phase 12 does not wet sufficiently to the surfaces of the members to be joined.
  • the particle size and amount of metal particles 11 added it is preferable to adjust the particle size and amount of metal particles 11 added so that the low melting point phase 12 remains.
  • the particle size (average particle size: D50) of metal particles 11 added to solder sheet 10 is 5 to 20 ⁇ m, and the compounding ratio of metal particles in solder sheet 10 is 8 to 30 mass %.
  • the sample on which the joining member 1 was formed was placed on a cooling plate 6 and cooled (see Figure 6).
  • solder joint is made of a material that melts completely, like regular solder, there is a possibility that the joined parts (upper or lower parts) will warp or swell (causing unevenness) due to thermal contraction. For this reason, it is desirable to cool gradually during the cooling process. For example, it is generally cooled to 100°C within 60 seconds, but in order to reduce warping, it may take approximately 400 seconds to reach 100°C.
  • the main component of the metal particles 11 is Ni, which has a lower thermal expansion coefficient than Sn, the amount of thermal contraction of the solder sheet 10 is small, and since the thermal expansion coefficients of the members to be joined (first object 2 and second object 3) are each 3 ⁇ 10 ⁇ 6 /K or more and less than 13 ⁇ 10 ⁇ 6 /K, and the difference in the thermal expansion coefficient between the first object 2 and the second object 3 is less than 5 ⁇ 10 ⁇ 6 /K, warping is small and it is possible to reduce residual stress generated in the joining member 1. For this reason, there is no particular need to extend the time of the cooling process.
  • a circuit board on which a semiconductor element and a circuit pattern are formed can be joined to a heat sink via the above-mentioned joining member 1.
  • the joining member 1 (solder sheet 10) can be applied to the die bond portion, base attachment portion, etc. of a power module, regardless of the size of the joining area.
  • the oxygen concentration in the solder sheet 10 is also important.
  • the metal particles 11 contain Ni, which is easily oxidized, and the surface area of the metal particles 11 is large. For this reason, even if only a small amount of surface oxidation of the metal particles 11 occurs, if the oxidation progresses from the interface of the metal particles 11, the overall amount of oxidation will become large, significantly affecting wettability. Therefore, if the oxygen concentration in the solder sheet 10 is high, a good bonding member will not be formed unless it is stored in a vacuum desiccator or the like. Therefore, in order to form a good bonding member, it is preferable that the oxygen concentration in the solder sheet 10 is greater than 0 and less than 500 ppm.
  • Example 1 Following the procedure of the above embodiment described with reference to Fig. 1, bonding samples (samples 1 to 7) were produced by changing the thermal expansion coefficients of the first object 2 and the second object 3 as shown in Table 1.
  • the particle size (average particle size: D50) of the metal particles 11 added to the solder sheet 10 was 10 ⁇ m.
  • a CuMo alloy plate (thickness: 1 mm, size: 20 mm x 20 mm) was used as the first object 2.
  • the outermost surface of the CuMo alloy plate was solid copper, and no plating was applied to this outermost surface.
  • the compounding ratio of Cu and Mo was changed to change the thermal expansion coefficient as shown in Table 1.
  • an Invar alloy was used as the first object with a thermal expansion coefficient of 2.
  • the thermal expansion coefficient can be adjusted as desired by changing the thickness of the three layers that make up the board.
  • the second object 3 has a thickness of 100 ⁇ m and a size of 10 mm ⁇ 10 mm.
  • the thermal expansion coefficient of this second object 3 was changed as shown in Table 1 by changing the compounding ratio of the CuMo alloy and the Invar alloy, as in the first object 2.
  • the surfaces of the joining sides of the first object 2 and the second object 3 were plated with Ni to a thickness of 3 ⁇ m.
  • a high-speed thermal shock test simulating a power cycle test was conducted on the bonded samples of the combinations shown in Table 1 obtained as described above. Specifically, a thermal shock test was conducted in which one cycle consisting of 10 seconds of power ON (attained temperature: 175°C) and 10 seconds of power OFF (attained temperature: 50°C) was repeated 100,000 times.
  • this result is also related to the thermal expansion coefficient of the joint (joining member and joined member).
  • a lateral tensile and compressive stress is applied to the joining member restrained by the joined members (first object 2 and second object 3), causing vertical cracks.
  • the thermal expansion coefficient of the joining member 1 is small, the generated stress can also be reduced.
  • metal particles 11 containing Ni as a main component are used. It is difficult to predict from publicly known literature the extent to which the thermal expansion coefficient of the joining member 1 using the metal particles 11 will affect the joining reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Die Bonding (AREA)

Abstract

Provided is a bonding member (1) that bonds a first object (2) and a second object (3). The bonding member (1) includes: metal particles (11) containing Ni as a main component; a low-melting-point phase (12) including Sn as a main component and having a melting point of less than 300°C; and an intermetallic compound (13) that is the result of interdiffusion between the Sn and the metal particles (11) and has a melting point of 300°C or greater. The percentage of the amount of the low-melting-point phase (12) to the total amount of the bonding member (1) is greater than or equal to 2 vol% and less than 20 vol%. The thermal expansion coefficients of the first object (2) and the second object (3) are greater than or equal 3 x 10-6/K and less than 13 x 10-6/K, and the difference between the thermal expansion coefficients of the first object (2) and the second object (3) is less than 5 x 10-6/K. The thermal expansion coefficient of the bonding member (1) is greater than or equal to 16 x 10-6/K and less than 20 x 10-6/K.

Description

接合部材および半導体装置Bonding member and semiconductor device
 本開示は、接合部材および半導体装置に関する。 This disclosure relates to a joining member and a semiconductor device.
 近年、半導体装置に対する信頼性の要求はますます高まっている。特に、熱膨張係数の異なる部品の接合部(例えば、半導体素子と回路基板との接合部、または、回路基板と放熱板との接合部)についての寿命信頼性の向上が求められている。 In recent years, there has been an increasing demand for reliability in semiconductor devices. In particular, there is a demand for improved life reliability in joints between parts with different thermal expansion coefficients (for example, the joint between a semiconductor element and a circuit board, or the joint between a circuit board and a heat sink).
 従来、シリコン(Si)、ガリウム砒素(GaAs)等を用いた基材を有する半導体素子が多く使われている。そのような半導体素子の動作温度は100℃~125℃である。それらの半導体素子と回路基板との接合に用いられるはんだ材には、製造時の多段階はんだ接合に対応するための高融点、起動と停止に伴う繰り返し熱応力に対する耐クラック性、および、デバイスの汚染耐性が求められる。 Traditionally, semiconductor elements with substrates made of silicon (Si), gallium arsenide (GaAs), etc. are widely used. The operating temperature of such semiconductor elements is 100°C to 125°C. The solder material used to join these semiconductor elements to circuit boards is required to have a high melting point to accommodate the multi-stage soldering that occurs during manufacturing, crack resistance to repeated thermal stress associated with startup and shutdown, and resistance to contamination of the device.
 それら要求に対して、例えば、Siデバイス用のはんだ材として95Pb-5Sn(質量%)が使用され、ガリウム砒素デバイス用のはんだ材として80Au-20Sn(質量%)が使用されてきた。 To meet these requirements, for example, 95Pb-5Sn (mass%) has been used as a solder material for Si devices, and 80Au-20Sn (mass%) has been used as a solder material for gallium arsenide devices.
 しかしながら、有害な鉛(Pb)を大量に含有する95Pb-5Snは、環境負荷低減の観点から問題がある。また、貴金属を多く含む80Au-20Snは、貴金属の価格高騰または埋蔵量の点から問題がある。したがって、両者について代替材が強く望まれていた。 However, 95Pb-5Sn contains a large amount of harmful lead (Pb), which is problematic from the perspective of reducing the environmental impact. Also, 80Au-20Sn, which contains a large amount of precious metals, is problematic in terms of the rising price of precious metals and their limited reserves. Therefore, there has been a strong demand for alternative materials for both.
 一方、省エネルギーの観点から、次世代デバイスとしてシリコンカーバイド(SiC)または窒化ガリウム(GaN)を用いた基材を有するデバイスの開発が盛んになされている。これらの動作温度は、175℃以上とされており、将来的には300℃になるとも言われている。 On the other hand, from the perspective of energy conservation, there has been active development of next-generation devices with substrates made of silicon carbide (SiC) or gallium nitride (GaN). The operating temperature of these devices is expected to be 175°C or higher, and it is said that this will reach 300°C in the future.
 これは、半導体素子と回路基板との接合部の温度が175℃になることを意味する。また、回路基板と放熱板との接合部の温度も、動作条件および放熱性能によっては、これに近い温度まで上昇する。このため、半導体素子と回路基板との接合部とともに、回路基板と放熱板との接合部には、高い信頼性が求められている。 This means that the temperature at the junction between the semiconductor element and the circuit board will reach 175°C. Furthermore, the temperature at the junction between the circuit board and the heat sink will also rise to a temperature close to this, depending on the operating conditions and heat dissipation performance. For this reason, high reliability is required for the junction between the circuit board and the heat sink, as well as the junction between the semiconductor element and the circuit board.
 上記のように、従来および次世代のデバイスにおいて、融点が高く、かつ耐熱性に優れた上記接合部を構造する部材(接合部材)が求められている。 As described above, conventional and next-generation devices require materials (joint materials) that have high melting points and excellent heat resistance to form the above-mentioned joints.
 従来の高耐熱な接合体の製造方法として、Sn中にAg、Cu等の金属粒子を多く添加して、接合時の加熱(300℃以下)による金属拡散によって、接合層をAg-Sn合金相(例えば、AgSn:融点480℃)、Cu-Sn合金(例えば、CuSn:融点415℃、CuSn:融点676℃)等で形成する方法が知られている。 A conventional method for manufacturing a highly heat-resistant bonded body is to add a large amount of metal particles such as Ag or Cu to Sn, and form a bonding layer from an Ag-Sn alloy phase (e.g., Ag 3 Sn: melting point 480°C), a Cu-Sn alloy (e.g., Cu 6 Sn 5 : melting point 415°C, Cu 3 Sn: melting point 676°C), etc. by metal diffusion caused by heating (300°C or less) during bonding.
 例えば、特許文献1(特開2002-314241号公報)では、はんだを用いた接続方法または電子機器に関して、はんだボールのSnが溶融して、金属ボールのCuとの界面で金属間化合物を形成し、Cuの金属ボール間が連結された接合構造が開示されている。なお、溶融したSnは、半導体チップの電極、中間基板の電極等とも金属間化合物を形成するため、Cuの金属ボールとそれらの電極とが連結されている。 For example, Patent Document 1 (JP Patent Publication 2002-314241 A) discloses a connection method or electronic device using solder, in which the Sn in the solder ball melts and forms an intermetallic compound at the interface with the Cu in the metal ball, connecting the Cu metal balls. The molten Sn also forms an intermetallic compound with the electrodes of the semiconductor chip and the electrodes of the intermediate substrate, connecting the Cu metal balls to these electrodes.
 また、接続部は、はんだボールのSnがCu-Sn金属間化合物(CuSn、融点:約630℃)となって、接触部およびその近傍は高融点化し、たとえSnの一部が残っても、他の部分が溶融しなければ、後付けのはんだ接続時のプロセスに耐えられる強度を十分に確保できると、特許文献1に記載されている。 Furthermore, Patent Document 1 describes that the connection portion has sufficient strength to withstand the process of subsequent solder connection, as the Sn in the solder ball becomes a Cu-Sn intermetallic compound (Cu 6 Sn 5 , melting point: approximately 630° C.), causing the contact portion and its vicinity to have a high melting point, and even if some of the Sn remains, as long as other portions do not melt.
 なお、金属ボールとして、Cuに限らず、Ag、Au、Al、Ni、Cu合金、Cu-Sn化合物、Ag-Sn化合物、Au-Sn化合物、Al-Ag化合物、Zn-Al化合物などを用いても良く、Auはぬれ性が良いために接続部のボイド低減効果を有する旨も、特許文献1に記載されている。 In addition, the metal balls are not limited to Cu, and may be Ag, Au, Al, Ni, Cu alloys, Cu-Sn compounds, Ag-Sn compounds, Au-Sn compounds, Al-Ag compounds, Zn-Al compounds, etc., and Patent Document 1 also states that Au has good wettability and therefore has the effect of reducing voids in the connection.
 また、特許文献2(国際公開第2012/108395号)では、接続部において、Sn系金属とCu系金属を含むはんだを加熱溶融することにより、310℃以上の融点を持つ金属間化合物が形成されることが記載されている。なお、接続部に含まれるSn系金属成分の比率が30体積%以下であることも開示されている。 Patent Document 2 (WO 2012/108395) describes that by heating and melting solder containing Sn-based metal and Cu-based metal at the connection, an intermetallic compound with a melting point of 310°C or higher is formed. It also discloses that the ratio of Sn-based metal components contained in the connection is 30% by volume or less.
特開2002-314241号公報JP 2002-314241 A 国際公開第2012/108395号International Publication No. 2012/108395
 しかし、特許文献1および特許文献2に示されている従来の半導体装置の製造方法では、Sn粒子に対する金属粒子の添加量について、熱衝撃試験でのクラック耐性に関する評価はなされていない。 However, in the conventional semiconductor device manufacturing methods shown in Patent Documents 1 and 2, the amount of metal particles added relative to Sn particles has not been evaluated in terms of crack resistance in thermal shock tests.
 例えば、Cu粒子、Ag粒子等の金属粒子を多く添加すると、Snの流動性が悪くなるため、金属粒子同士で密閉された箇所は未接合部となり、ボイドが発生し、接合部に熱衝撃が加わった際にクラックが生じ易い。 For example, adding a large amount of metal particles such as Cu particles or Ag particles reduces the fluidity of Sn, leaving the areas sealed between the metal particles unjoined, creating voids and making the joints susceptible to cracks when subjected to thermal shock.
 加えて、AgSnに代表されるAg-Sn合金、または、CuSnに代表されるCu-Sn合金は、金属状態図から考えると、5質量%程度のAgまたはCuとSnとの固溶領域を有する。しかし、2相分離型の様相を示すため、AgSnとCuSnとの界面は、低融点のSn相が無ければ空隙となり、クラックの起点となる。 In addition, Ag-Sn alloys such as Ag 3 Sn or Cu-Sn alloys such as Cu 6 Sn 5 have a solid solution region of about 5 mass % Ag or Cu and Sn in terms of the metal phase diagram. However, since they show a two-phase separation type phase, the interface between Ag 3 Sn and Cu 6 Sn 5 becomes a void if there is no Sn phase with a low melting point, and becomes the starting point of cracks.
 一方、本発明者らは、高温動作する半導体装置においては、材料としての機械特性、または、適用した部品単体としての耐ヒートサイクル性だけではなく、実際の動作を伴うパワーサイクル(半導体装置に対して電力印加のONとOFFを繰り返すことで発熱と冷却を繰り返すこと)における装置としての信頼性を確保することが重要であると考えた。 On the other hand, the inventors of the present invention believe that in semiconductor devices that operate at high temperatures, it is important to ensure not only the mechanical properties of the material or the heat cycle resistance of the individual parts to which it is applied, but also the reliability of the device in the power cycles that accompany actual operation (repeated heating and cooling caused by repeatedly turning the application of power to the semiconductor device on and off).
 本開示の目的は、高温動作する半導体装置において、パワーサイクルに対する接合信頼性の高い接合部材を提供することである。 The objective of this disclosure is to provide a joining member with high joining reliability against power cycles in semiconductor devices that operate at high temperatures.
 第1対象物と第2対象物とを接合する、接合部材。
 接合部材は、Niを主成分として含む金属粒子と、Snを主成分として含み300℃未満の融点を有する低融点相と、Snと前記金属粒子との間の相互拡散により生じた300℃以上の融点を有する金属間化合物と、を含む。
 前記接合部材の総量に対する前記低融点相の量の比率は2体積%以上20体積%未満である。
 前記第1対象物および前記第2対象物の熱膨張係数は3×10-6/K以上13×10-6/K未満であり、前記第1対象物と前記第2対象物との間の熱膨張係数の差は5×10-6/K未満である。
 前記接合部材の熱膨張係数は16×10-6/K以上20×10-6/K未満である。
A joining member that joins the first object and the second object.
The joining member includes metal particles containing Ni as a main component, a low-melting point phase containing Sn as a main component and having a melting point of less than 300°C, and an intermetallic compound having a melting point of 300°C or higher that is formed by interdiffusion between Sn and the metal particles.
The ratio of the amount of the low melting point phase to the total amount of the joining members is 2 vol % or more and less than 20 vol %.
The thermal expansion coefficients of the first object and the second object are equal to or greater than 3×10 −6 /K and less than 13×10 −6 /K, and the difference in thermal expansion coefficient between the first object and the second object is less than 5×10 −6 /K.
The thermal expansion coefficient of the joining member is 16×10 −6 /K or more and less than 20×10 −6 /K.
 本開示によれば、高温動作する半導体装置において、パワーサイクルに対する接合信頼性の高い接合部材を提供することができる。 According to the present disclosure, it is possible to provide a joining member with high joining reliability against power cycles in a semiconductor device that operates at high temperatures.
 具体的には、本開示の接合部材では、低融点相(例えば、Sn単独相)を残存させることで、被接合部材(接合対象物)への濡れ性を確保し、その残存量を適正化することで、パワーサイクルにおける縦クラックを抑制することができる。 Specifically, in the joining member disclosed herein, a low melting point phase (e.g., a Sn-only phase) is left remaining, ensuring wettability to the joined members (objects to be joined), and by optimizing the amount of this remaining phase, vertical cracks during power cycles can be suppressed.
 また、本開示の接合部材は、熱膨張係数差が特定の範囲内である複数の接合対象物の接合に適用されるため、複数の接合対象物間の熱膨張係数差に起因するせん断応力によって生じる横クラックを抑制することができる。 In addition, the joining member disclosed herein is applied to joining multiple objects whose thermal expansion coefficient difference is within a specific range, and therefore can suppress lateral cracks caused by shear stress resulting from the difference in thermal expansion coefficient between multiple objects to be joined.
 更に、特定の範囲内の熱膨張係数を有する接合部材を採用することで、接合対象物と接合部材との間の熱膨張係数差に起因する引張応力および圧縮応力(引張圧縮応力)が抑制され、高温(例えば、175℃)での動作においても優れた接合信頼性を有する。 Furthermore, by using a joining material with a thermal expansion coefficient within a specific range, the tensile stress and compressive stress (tensile-compressive stress) caused by the difference in thermal expansion coefficient between the objects to be joined and the joining material is suppressed, resulting in excellent joining reliability even when operating at high temperatures (e.g., 175°C).
半導体装置(接合部材)の製造手順を示すフローチャートである。1 is a flowchart showing a manufacturing procedure of a semiconductor device (bonding member). 図1の第1工程を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a first step in FIG. 1 . 図1の第2工程を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a second step in FIG. 1 . 図1の第3工程を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a third step in FIG. 1 . 図1の第4工程を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a fourth step in FIG. 1 . 図1の第5工程を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing a fifth step in FIG. 1 .
 以下、本開示の実施の形態について説明する。なお、図面において、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。 The following describes an embodiment of the present disclosure. Note that in the drawings, dimensional relationships such as length, width, thickness, and depth have been changed as appropriate to clarify and simplify the drawings, and do not represent actual dimensional relationships.
 実施の形態1.
 <接合部材>
 本実施の形態の接合部材1は、第1対象物2(例えば、放熱板)と第2対象物3(例えば、半導体素子および配線回路を有する回路基板)とを接合する部材である(図6参照)。なお、接合部材1は、後述のはんだシート10とは異なり、加熱工程により溶融した後に凝固したはんだ(はんだ合金)からなる部材であり、被接合部材(第1対象物2および第2対象物3)の両者と接合した状態で存在する部材である。
Embodiment 1.
<Joining materials>
The joining member 1 of this embodiment is a member that joins a first object 2 (e.g., a heat sink) and a second object 3 (e.g., a circuit board having a semiconductor element and a wiring circuit) (see FIG. 6). Note that, unlike a solder sheet 10 described later, the joining member 1 is a member made of solder (solder alloy) that is melted by a heating process and then solidified, and exists in a state where it is joined to both of the members to be joined (the first object 2 and the second object 3).
 本実施の形態の接合部材1は、金属粒子11と、低融点相12と、金属間化合物13と、を含む。 The joining member 1 of this embodiment includes metal particles 11, a low melting point phase 12, and an intermetallic compound 13.
 金属粒子11は、Niを主成分として含む。ここで、「主成分」とは、金属粒子11に含まれる成分のうち最も量が多い成分である。金属粒子11中のSnの含有率は、好ましくは60質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。 Metal particles 11 contain Ni as a main component. Here, the "main component" refers to the component contained in metal particles 11 that is present in the largest amount. The content of Sn in metal particles 11 is preferably 60 mass% or more, more preferably 70 mass% or more, and even more preferably 80 mass% or more.
 金属粒子11は、さらに、Fe、Cr、C、CuおよびSiからなる群から選択される少なくとも1種の成分を含み得る。 The metal particles 11 may further contain at least one component selected from the group consisting of Fe, Cr, C, Cu, and Si.
 低融点相12は、Snを主成分として含み、300℃未満の融点を有する。ここで、「主成分」とは、低融点相12に含まれる成分のうち最も量が多い成分である。低融点相12中のSnの含有率は、好ましくは60質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。 The low melting point phase 12 contains Sn as a main component and has a melting point of less than 300°C. Here, the "main component" refers to the component contained in the low melting point phase 12 in the greatest amount. The content of Sn in the low melting point phase 12 is preferably 60 mass% or more, more preferably 70 mass% or more, and even more preferably 80 mass% or more.
 低融点相は、例えば、(Snに加えて)さらにAgおよびCuを含み得る。この場合、例えば、Agの含有率は3質量%以上4質量%未満であってもよく、Cuの含有率は0.5質量%以上1.0質量%未満であってもよい。なお、AgおよびCuの含有率がこの範囲内であれば、本開示の効果がより確実に得られることが期待される。 The low melting point phase may further contain, for example, Ag and Cu (in addition to Sn). In this case, for example, the Ag content may be 3 mass% or more and less than 4 mass%, and the Cu content may be 0.5 mass% or more and less than 1.0 mass%. If the Ag and Cu contents are within this range, it is expected that the effects of the present disclosure can be obtained more reliably.
 金属間化合物13は、Snと金属粒子11との間の相互拡散により生じた化合物(相)であり、300℃以上の融点を有する。 The intermetallic compound 13 is a compound (phase) formed by interdiffusion between Sn and metal particles 11, and has a melting point of 300°C or higher.
 また、本実施の形態の接合部材1において、接合部材1の総量に対する低融点相12の量の比率は、2体積%以上20体積%未満である。 In addition, in the joining member 1 of this embodiment, the ratio of the amount of the low melting point phase 12 to the total amount of the joining member 1 is 2 volume % or more and less than 20 volume %.
 また、第1対象物2および第2対象物3の熱膨張係数は、3×10-6/K以上13×10-6/K未満であり、かつ、第1対象物2と第2対象物3との間の熱膨張係数の差は5×10-6/K未満である。 Furthermore, the thermal expansion coefficients of the first object 2 and the second object 3 are greater than or equal to 3×10 −6 /K and less than 13×10 −6 /K, and the difference in thermal expansion coefficient between the first object 2 and the second object 3 is less than 5×10 −6 /K.
 また、接合部材の熱膨張係数は、16×10-6/K以上20×10-6/K未満である。 The thermal expansion coefficient of the joining member is not less than 16×10 −6 /K and less than 20×10 −6 /K.
 なお、本発明者らは、半導体装置に対してパワーサイクルでの信頼性試験を行った結果、パワーサイクルでは、接合部材の層に対して厚み方向に生じるクラック(縦クラック)の抑制が、接合信頼性の向上に重要であることを見出した。 The inventors conducted reliability tests on semiconductor devices using power cycles and found that suppressing cracks (vertical cracks) that occur in the thickness direction of the layers of the joining material during power cycles is important for improving joining reliability.
 さらに、はんだ等の接合部材を構成する材料だけではなく、被接合部材(接合対象物)の構成によっても、接合部の信頼性は左右される。このため、パワーモジュールの信頼性を高めるためには、接合部材の材料の組成だけでなく、被接合部材の構成も併せた検討が必要であると考えられる。 Furthermore, the reliability of the joint depends not only on the material that makes up the joining member, such as solder, but also on the composition of the joined members (objects to be joined). For this reason, in order to improve the reliability of power modules, it is necessary to consider not only the composition of the materials of the joining members, but also the composition of the joined members.
 なお、この縦クラックについて、参考文献(山崎浩次,“鉛フリーはんだ接合部の縦割れ発生条件に関する研究”,第26回エレクトロニクス実装学術講演大会,9C-14)には、Cu板同士をはんだ接合したサンプル、および、Mo板同士をはんだ接合したサンプルに対して、高速ヒートサイクル試験(+50℃/+175℃、温度差:125℃)を実施したところ、どちらも同じはんだ材を用いて接合されているにも関わらず、前者では縦クラックが発生せず、後者では縦クラックが発生したことが記載されている。 In regards to these vertical cracks, the reference (Yamazaki Koji, "Research into the conditions for vertical cracks in lead-free solder joints", 26th Electronics Packaging Academic Lecture Conference, 9C-14) states that when a high-speed heat cycle test (+50°C/+175°C, temperature difference: 125°C) was conducted on a sample in which Cu plates were soldered together, and a sample in which Mo plates were soldered together, vertical cracks did not occur in the former, but did occur in the latter, even though both were joined using the same solder material.
 これには、はんだ材と被接合部材との熱膨張係数差に起因する引張応力および圧縮応力(引張圧縮応力)が関係している。低熱膨張性の部材で拘束されると熱膨張係数の大きいはんだには引張圧縮応力がかかり、更に加熱のよってはんだに動的再結晶が生じることで、はんだの主成分であるSnの粒界または内部析出物伝いに縦クラックが発生する。 This is related to the tensile stress and compressive stress (tensile-compressive stress) caused by the difference in the thermal expansion coefficient between the solder material and the joined parts. When solder is restrained by a low-thermal expansion material, the solder, which has a large thermal expansion coefficient, is subjected to tensile-compressive stress, and when heated, dynamic recrystallization occurs in the solder, causing vertical cracks to form along the grain boundaries or internal precipitates of Sn, the main component of the solder.
 なお、被接合部材間(2つの接合対象物の間)で熱膨張係数差が大きい場合は、縦クラックではなく、横クラックが主に発生することが知られている。 It is known that when there is a large difference in the thermal expansion coefficient between the joined components (between two objects to be joined), horizontal cracks tend to occur rather than vertical cracks.
 本発明者らは、上述のような検討の結果によって、高温動作する半導体装置におけるパワーサイクルに対する接合信頼性の高い本開示の接合部材を見出した。 As a result of the above-mentioned investigations, the inventors have discovered the bonding material disclosed herein that has high bonding reliability against power cycles in semiconductor devices that operate at high temperatures.
 実施の形態2.
 <半導体装置>
 本実施の形態に係る半導体装置は、放熱板2と、回路基板3(半導体素子および配線回路を有する基板)と、を備える。放熱板2と回路基板3とは、実施の形態1に記載の接合信頼製の高い接合部材1を介して接合されている。これにより、信頼性の高い半導体装置が提供される。
Embodiment 2.
<Semiconductor Device>
The semiconductor device according to the present embodiment includes a heat sink 2 and a circuit board 3 (a board having a semiconductor element and a wiring circuit). The heat sink 2 and the circuit board 3 are joined via the highly reliable joining member 1 described in the first embodiment. This provides a highly reliable semiconductor device.
 本実施の形態の半導体装置は、放熱板と回路基板とを接合する工程(図1~図6参照)を含む製造方法によって、製造され得る。 The semiconductor device of this embodiment can be manufactured by a manufacturing method that includes a step of joining a heat sink and a circuit board (see Figures 1 to 6).
 以下、図1に示されるフローチャートを参照して、本実施の形態の半導体装置の製造方法において、回路基板と放熱板を接合する際の手順の一例について、説明する。 Below, an example of the procedure for joining a circuit board and a heat sink in the semiconductor device manufacturing method of this embodiment will be described with reference to the flowchart shown in Figure 1.
 最初に、第1工程(S1)として、Snを主成分として含み300℃以下の融点を有する低融点相12中に、Niからなる金属粒子11が分散されてなる、はんだシート10を所定のサイズにカットする(図2参照)。 First, in the first step (S1), a solder sheet 10 is cut to a predetermined size (see Figure 2), which is made of a low-melting-point phase 12 containing Sn as the main component and having a melting point of 300°C or less, and in which metal particles 11 made of Ni are dispersed.
 具体的には、低融点相12のはんだ組成の代表例としてSn-3.3Ag-0.5Cu(数値は質量%を示す。Snは他の元素の組成比の残部である。)で示される組成となるように各元素を添加し溶解して、バルク体を作製した。 Specifically, as a representative example of the solder composition of the low melting point phase 12, each element was added and melted to obtain the composition shown below (the values indicate mass percentages. Sn is the remainder of the composition ratio of the other elements), and a bulk body was produced.
 次に、厚みが100μmになるように、100℃以下の圧延プロセスにより、ロール状のはんだシート10を作製した。 Next, a rolled solder sheet 10 was produced using a rolling process at 100°C or less so that the thickness was 100 μm.
 その後、Ni粒子(金属粒子11)をはんだシート10内に均一に分散し、更に上から低融点相12からなるシートを重ねあわせて混合シートを作製した。本実施の形態では100μm厚としたが、これに依らない。またカットサイズは上部材と同じサイズ10mm×10mmにカットした。 Then, Ni particles (metal particles 11) are uniformly dispersed in the solder sheet 10, and a sheet made of a low melting point phase 12 is layered on top of it to create a mixed sheet. In this embodiment, the thickness is 100 μm, but this is not essential. The cut size is the same as the upper member, 10 mm x 10 mm.
 なお、はんだシート10の製造については、圧延だけでなく、バルク体を溶融させて薄いスリットから溶けたはんだを順次流し込むことにより、はんだシート10を製造してもよい。また、上記のように元素の組み合わせが3元素より多い場合(例えばSn-Ag-CuにBi、In、Sb等を添加する場合)、溶解炉の温度バラつきによって、バルク体の組成が不均一になる場合がある。その場合はSn-Ag-Cuのバルク体を最初に製造し、その後再度溶解させて残りのBi、In、Sb等を所定量添加することではんだ組成の調整をしてもよい。他に、一旦はんだボール化して、そのはんだボールを均一に平板にばらまき、圧縮成型してはんだシート10を製造してもよい。 In addition, the solder sheet 10 may be manufactured not only by rolling, but also by melting the bulk and sequentially pouring the molten solder through thin slits. Also, when the combination of elements is more than three elements as described above (for example, when Bi, In, Sb, etc. are added to Sn-Ag-Cu), the composition of the bulk may become non-uniform due to temperature variations in the melting furnace. In that case, the solder composition may be adjusted by first manufacturing a bulk of Sn-Ag-Cu, melting it again, and adding a specified amount of the remaining Bi, In, Sb, etc. Alternatively, the solder sheet 10 may be manufactured by first forming solder balls, uniformly scattering the solder balls on a flat plate, and compression molding the solder sheet 10.
 次に、第2工程(S2)として、第1対象物2(下部材)に上記はんだシート10を載せる(図3参照)。 Next, in the second step (S2), the solder sheet 10 is placed on the first object 2 (lower member) (see Figure 3).
 なお、CuMo合金板の最表面には、酸化防止のため、接合性に影響を与えない分解温度100℃以下の防錆剤を所定量塗布してもよい。また、はんだシート10を載せる際、はんだシート10が所定位置からズレないように100℃以上の高温で熱分解する有機剤をタック材として使用してもよい。タック材の粘度としては200Pa・s以上が好ましい。あるいは、はんだシート10がズレない様に第1対象物2の接合部以外にはレジスト膜を塗布しておけばよい。 In addition, to prevent oxidation, a predetermined amount of rust inhibitor with a decomposition temperature of 100°C or less that does not affect the bonding properties may be applied to the outermost surface of the CuMo alloy plate. Also, when placing the solder sheet 10, an organic agent that thermally decomposes at a high temperature of 100°C or more may be used as a tack material to prevent the solder sheet 10 from shifting from its designated position. The viscosity of the tack material is preferably 200 Pa·s or more. Alternatively, a resist film may be applied to the areas other than the joint of the first object 2 to prevent the solder sheet 10 from shifting.
 はんだシート10については、カット時あるいはハンドリング時に多少の湾曲が生じていてもよい。これは、はんだシート10が加熱によってある程度溶融するので、はんだシートの初期形状による影響が小さいためである。ただし、次工程で第2対象物3(上部材)を載せるため、第2対象物3(上部材)を載せられない程、はんだシート10が大きく湾曲している場合は、はんだシート10を別の平板上で平行に矯正する。 The solder sheet 10 may be slightly curved during cutting or handling. This is because the solder sheet 10 melts to some extent when heated, so the effect of the initial shape of the solder sheet is small. However, if the solder sheet 10 is curved so much that the second object 3 (upper member) cannot be placed on it in the next process, the solder sheet 10 is straightened so that it is parallel on another flat plate.
 次に、第3工程(S3)として、第2対象物3(上部材)をはんだシート10上に載せる(図4参照)。 Next, in the third step (S3), the second object 3 (upper component) is placed on the solder sheet 10 (see Figure 4).
 なお、被接合部材(上部材)1とはんだシート10との間に、搭載位置を固定させるため上述のタック材を塗布してもよい。 The above-mentioned tack material may be applied between the joined member (upper member) 1 and the solder sheet 10 to fix the mounting position.
 なお、被接合部材(第1対象物2および第2対象物3)の接合側の表面は、(めっき)はCuまたはNiのめっきが施されているか、または、数十nmオーダのAu膜、Ag膜、Pt膜等で被覆されていることが好ましい。 It is preferable that the surfaces of the members to be joined (first object 2 and second object 3) on the joining side are plated with Cu or Ni, or are coated with a film of Au, Ag, Pt, etc., on the order of several tens of nanometers.
 次に、第4工程(S4)として、上記の工程で得られた各部材の積層体を、加熱炉5内のホットプレート5上に載置した(図5参照)。そして、加熱炉5内に酸化膜を還元できる代表的な有機酸であるギ酸を封入し、180℃で5分間の加熱、および、その後の260℃で3分間の加熱により、はんだシート10を溶融させて、接合部材1を形成した。 Next, in the fourth step (S4), the laminate of each component obtained in the above steps was placed on a hot plate 5 in a heating furnace 5 (see FIG. 5). Then, formic acid, a typical organic acid capable of reducing oxide films, was sealed in the heating furnace 5, and the solder sheet 10 was melted by heating at 180°C for 5 minutes and then at 260°C for 3 minutes to form the joining member 1.
 ここで、はんだシート10内の低融点相12と金属粒子11は熱拡散により化合物を形成する。金属粒子11の粒径および添加量によって、金属粒子11とSnとの化合物(金属間化合物)の形成割合は変化する。このため、低融点相12が残るように、金属粒子11の粒径および添加量を調整することが好ましい。 Here, the low melting point phase 12 and metal particles 11 in the solder sheet 10 form a compound through thermal diffusion. The ratio of compounds (intermetallic compounds) formed between the metal particles 11 and Sn varies depending on the particle size and amount of the metal particles 11 added. For this reason, it is preferable to adjust the particle size and amount of the metal particles 11 added so that the low melting point phase 12 remains.
 その理由について、まず、接合部材1の多くの部分が金属粒子11および金属間化合物13で形成されていれば、低融点相12のSnが変形することができないため、接合信頼性の点では問題がない。 Firstly, the reason for this is that if most of the joining member 1 is made up of metal particles 11 and intermetallic compounds 13, the Sn in the low melting point phase 12 cannot deform, so there is no problem with the reliability of the joining.
 一方、汎用の被接合部材(第1対象物2および第2対象物3)の表面には粗さがあり、表面粗さ(凹凸)が数μmオーダである場合もあり得る。このため、無加圧で接合する際に、その表面の凹凸の体積分も低融点相12が濡れ広がる必要がある。しかし、金属粒子11が多量に存在すると、はんだシート10内で金属粒子11の表面積が大きくなり、低融点相12が金属粒子11と優先的に反応してしまい、低融点相12が被接合部材の表面に十分に濡れなくなってしまう。 On the other hand, the surfaces of the general-purpose members to be joined (first object 2 and second object 3) are rough, and the surface roughness (unevenness) may be on the order of a few μm. For this reason, when joining without pressure, the low-melting point phase 12 needs to wet and spread over the volume of the unevenness on the surface. However, if a large amount of metal particles 11 is present, the surface area of the metal particles 11 in the solder sheet 10 becomes large, and the low-melting point phase 12 reacts preferentially with the metal particles 11, and the low-melting point phase 12 does not wet sufficiently to the surfaces of the members to be joined.
 このため、本実施の形態では、低融点相12が残るように、金属粒子11の粒径および添加量を調整することが好ましい。例えば、はんだシート10に添加される金属粒子11の粒径(平均粒径:D50)は、5~20μmであり、はんだシート10中の金属粒子の配合率は、8~30質量%である。 For this reason, in this embodiment, it is preferable to adjust the particle size and amount of metal particles 11 added so that the low melting point phase 12 remains. For example, the particle size (average particle size: D50) of metal particles 11 added to solder sheet 10 is 5 to 20 μm, and the compounding ratio of metal particles in solder sheet 10 is 8 to 30 mass %.
 なお、被接合部材へのダメージが懸念されない場合は、加圧を加えて接合をおこなってもよい。 If there is no concern about damage to the joined parts, pressure may be applied to join them.
 次に、第5工程(S5)として、接合部材1が形成された試料を冷却プレート6上に置き、冷却をおこなった(図6参照)。 Next, in the fifth step (S5), the sample on which the joining member 1 was formed was placed on a cooling plate 6 and cooled (see Figure 6).
 この際、通常のはんだのように完全溶融する材料ではんだ接合部材が形成される場合、熱収縮によって被接合部材(上部材または下部材)が反る、あるいはうねる(凹凸が生じる)という問題が生じる可能性がある。このため、冷却工程で徐々に冷却を行うことが望ましい。例えば、一般には100℃まで60秒以内で冷却するが、反りを低減させようとすると100℃まで約400秒かけておこなう場合がある。 In this case, if the solder joint is made of a material that melts completely, like regular solder, there is a possibility that the joined parts (upper or lower parts) will warp or swell (causing unevenness) due to thermal contraction. For this reason, it is desirable to cool gradually during the cooling process. For example, it is generally cooled to 100°C within 60 seconds, but in order to reduce warping, it may take approximately 400 seconds to reach 100°C.
 本開示では、金属粒子11の主成分がSnよりも熱膨張係数の低いNiであるため、はんだシート10の熱収縮量が小さく、また、被接合部材(第1対象物2および第2対象物3)の各々の熱膨張係数が3×10-6/K以上13×10-6/K未満であり、第1対象物2および第2対象物3の間の熱膨張係数差は5×10-6/K未満であるため、反りは小さく、接合部材1に生じる残留応力も低くすることができる。このため、特に、冷却工程の時間を長くする必要がない。 In the present disclosure, since the main component of the metal particles 11 is Ni, which has a lower thermal expansion coefficient than Sn, the amount of thermal contraction of the solder sheet 10 is small, and since the thermal expansion coefficients of the members to be joined (first object 2 and second object 3) are each 3×10 −6 /K or more and less than 13×10 −6 /K, and the difference in the thermal expansion coefficient between the first object 2 and the second object 3 is less than 5×10 −6 /K, warping is small and it is possible to reduce residual stress generated in the joining member 1. For this reason, there is no particular need to extend the time of the cooling process.
 実際のパワーモジュールへの適用においては、例えば、半導体素子および回路パターンが形成された回路基板と、放熱板とが、上記の接合部材1を介して接合され得る。接合部材1(はんだシート10)は、接合面積サイズに依らず、パワーモジュールのダイボンド部、ベース付け部等への適用が可能である。 In actual application to a power module, for example, a circuit board on which a semiconductor element and a circuit pattern are formed can be joined to a heat sink via the above-mentioned joining member 1. The joining member 1 (solder sheet 10) can be applied to the die bond portion, base attachment portion, etc. of a power module, regardless of the size of the joining area.
 なお、はんだシート10中の酸素濃度も重要である。金属粒子11が酸化されやすいNiを含み、金属粒子11の表面積は大きい。このため、わずかな金属粒子11の表面酸化が生じた場合でも、金属粒子11の界面から酸化が進んでいくと、全体としての酸化量は大きくなり、濡れ性に大きく影響する。そのため、はんだシート10中の酸素濃度が高いと、真空デシケータ内等で保管しておかないと良好な接合部材が形成されない。したがって、良好な接合部材を形成するためには、はんだシート10中の酸素濃度は、0より多く500ppm未満であることが好ましい。 The oxygen concentration in the solder sheet 10 is also important. The metal particles 11 contain Ni, which is easily oxidized, and the surface area of the metal particles 11 is large. For this reason, even if only a small amount of surface oxidation of the metal particles 11 occurs, if the oxidation progresses from the interface of the metal particles 11, the overall amount of oxidation will become large, significantly affecting wettability. Therefore, if the oxygen concentration in the solder sheet 10 is high, a good bonding member will not be formed unless it is stored in a vacuum desiccator or the like. Therefore, in order to form a good bonding member, it is preferable that the oxygen concentration in the solder sheet 10 is greater than 0 and less than 500 ppm.
 以下に実施例を挙げて本開示をさらに詳細に説明するが、本開示はこれら実施例に限定されるものではない。 The present disclosure will be explained in more detail below with reference to examples, but the present disclosure is not limited to these examples.
 (試験例1)
 図1を参照して説明した上記実施の形態の通りの手順で、第1対象物2および第2対象物3の各々の熱膨張係数を表1に示されるように変化させて、接合サンプル(サンプル1~7)を作製した。なお、はんだシート10に添加される金属粒子11の粒径(平均粒径:D50)は10μmである。
(Test Example 1)
Following the procedure of the above embodiment described with reference to Fig. 1, bonding samples (samples 1 to 7) were produced by changing the thermal expansion coefficients of the first object 2 and the second object 3 as shown in Table 1. The particle size (average particle size: D50) of the metal particles 11 added to the solder sheet 10 was 10 µm.
 第1対象物2としては、CuMo合金板(厚み:1mm、サイズ:20mm×20mm)を使用した。CuMo合金板の最表面は銅無垢であり、該最表面にめっき処理は施されていない。このCuMo合金板では、CuとMoの配合比率を変えて、表1に示されるように熱膨張係数を変化させた。ただし、熱膨張係数が2の第1対象物としては、インバー合金を使用した。 A CuMo alloy plate (thickness: 1 mm, size: 20 mm x 20 mm) was used as the first object 2. The outermost surface of the CuMo alloy plate was solid copper, and no plating was applied to this outermost surface. In this CuMo alloy plate, the compounding ratio of Cu and Mo was changed to change the thermal expansion coefficient as shown in Table 1. However, an Invar alloy was used as the first object with a thermal expansion coefficient of 2.
 なお、DBC(Direct Bonded Copper)基板またはCIC(銅・インバー・銅)基板では、それらの基板を構成する三層の厚さにより、熱膨張係数を任意に調整することができる。 In addition, with DBC (Direct Bonded Copper) boards or CIC (Copper-Invar-Copper) boards, the thermal expansion coefficient can be adjusted as desired by changing the thickness of the three layers that make up the board.
 第2対象物3の厚みは100μm、サイズは10mm×10mmである。この第2対象物3の熱膨張係数は、第1対象物2と同様にCuMo合金およびインバー合金の配合比率によって、表1に示されるように変化させた。 The second object 3 has a thickness of 100 μm and a size of 10 mm × 10 mm. The thermal expansion coefficient of this second object 3 was changed as shown in Table 1 by changing the compounding ratio of the CuMo alloy and the Invar alloy, as in the first object 2.
 被接合部材の種類によって濡れ性が異なることがないようにするため、第1対象物2および第2対象物3の各々の接合側の表面には、厚み3μmのNiめっきが施された。 In order to ensure that the wettability does not differ depending on the type of joined material, the surfaces of the joining sides of the first object 2 and the second object 3 were plated with Ni to a thickness of 3 μm.
 上記のようにして得られた表1に示される組み合わせの接合サンプルについて、パワーサイクル試験を模擬した高速熱衝撃試験をおこなった。具体的には、10秒間の通電ON(到達温度:175℃)と10秒間の通電OFF(到達温度:50℃)とからなる1サイクルを10万サイクル繰り返す熱衝撃試験を実施した。 A high-speed thermal shock test simulating a power cycle test was conducted on the bonded samples of the combinations shown in Table 1 obtained as described above. Specifically, a thermal shock test was conducted in which one cycle consisting of 10 seconds of power ON (attained temperature: 175°C) and 10 seconds of power OFF (attained temperature: 50°C) was repeated 100,000 times.
 熱衝撃試験後に、接合サンプルの接合部材の層の厚み方向の断面を作成し、該断面についての透過X線画像を2値化して画像解析を行うことにより、該断面における接合部材全体の面積(100%)に対する接合部材に生じた空隙の面積比率を測定した。そして、空隙の面積比率が10%以上である場合を「NG」と評価し、10%未満であれば実用上問題ないため「OK」と評価した。評価結果を表1に示す。 After the thermal shock test, a cross section was made in the thickness direction of the layers of the bonding members of the bonded sample, and the transmitted X-ray image of the cross section was binarized and subjected to image analysis to measure the area ratio of voids that had occurred in the bonding members to the total area (100%) of the bonding members in the cross section. If the area ratio of voids was 10% or more, it was evaluated as "NG", and if it was less than 10%, it was evaluated as "OK" since there was no problem in practical use. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示される結果から、第1対象物2および第2対象物3の熱膨張係数が3×10-6/K(3.0×10-6/K)以上13×10-6/K(13.0×10-6/K)未満であり、第1対象物2と第2対象物3との間の熱膨張係数の差が5×10-6/K(5.0×10-6/K)未満である場合は、評価結果がOKであり、高速熱衝撃試験後に接合部材に空隙が発生しにくいことが分かる。したがって、本開示によれば、高温動作する半導体装置においてパワーサイクルに対する接合信頼性の高い接合部材、および、それを用いた半導体装置を提供できることが分かる。 From the results shown in Table 1, it can be seen that when the thermal expansion coefficients of the first object 2 and the second object 3 are equal to or greater than 3×10 -6 / K (3.0× 10 -6 /K) and less than 13×10 -6 / K (13.0×10 -6 /K), and the difference in the thermal expansion coefficients between the first object 2 and the second object 3 is less than 5×10 -6 /K (5.0× 10 -6 /K), the evaluation result is OK, and voids are unlikely to occur in the bonding member after the high-speed thermal shock test. Therefore, it can be seen that the present disclosure can provide a bonding member having high bonding reliability against power cycles in a semiconductor device operating at high temperatures, and a semiconductor device using the same.
 なお、この結果には、接合部(接合部材と被接合部材)の熱膨張係数も関係している。上述の通り、被接合部材(第1対象物2および第2対象物3)で拘束された接合部材には、横方向の引張圧縮応力が加わり、縦方向の割れが生じる。すなわち、接合部材1の熱膨張係数が小さければ発生する応力も小さくすることができる。本開示では、Niを主成分として含む金属粒子11を使用している。該金属粒子11を使用した接合部材1の熱膨張係数が接合信頼性にどの程度影響するかを、公知文献から予想するのは困難である。 Note that this result is also related to the thermal expansion coefficient of the joint (joining member and joined member). As mentioned above, a lateral tensile and compressive stress is applied to the joining member restrained by the joined members (first object 2 and second object 3), causing vertical cracks. In other words, if the thermal expansion coefficient of the joining member 1 is small, the generated stress can also be reduced. In this disclosure, metal particles 11 containing Ni as a main component are used. It is difficult to predict from publicly known literature the extent to which the thermal expansion coefficient of the joining member 1 using the metal particles 11 will affect the joining reliability.
 本発明者らが実際に接合部材1の熱膨張係数等を検討した結果、接合部材の熱膨張係数が16×10-6/K以上20×10-6/K未満であり、かつ、接合部材の断面(接合部材の層の厚み方向の断面)において、接合部材の全体の面積(100%)に対して、上記低融点相(Snを主成分として含み300℃未満の融点を有する相)の面積の比率が2%以上20%未満である場合(すなわち、接合部材1の総量に対する低融点相12の量の比率が2体積%以上20体積%未満である場合)に、良好な結果(表1のサンプル2~4)が得られることが分かった。 As a result of the inventors' actual investigation of the thermal expansion coefficient etc. of the joining member 1, it was found that good results (samples 2 to 4 in Table 1) can be obtained when the thermal expansion coefficient of the joining member is 16×10 −6 /K or more and less than 20×10 −6 /K, and when the ratio of the area of the above-mentioned low melting point phase (a phase containing Sn as a main component and having a melting point of less than 300°C) to the total area (100%) of the joining member in the cross section of the joining member (cross section in the thickness direction of the layers of the joining member) is 2% or more and less than 20% (i.e., when the ratio of the amount of the low melting point phase 12 to the total amount of the joining member 1 is 2% or more and less than 20% by volume).
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed herein should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1 接合部材、10 はんだシート、11 金属粒子、12 低融点相、13 金属間化合物、2 第1対象物(放熱板)、3 第2対象物(回路基板)、4 加熱炉、5 ホットプレート、6 冷却プレート。 1. Joining material, 10. Solder sheet, 11. Metal particles, 12. Low melting point phase, 13. Intermetallic compound, 2. First object (heat sink), 3. Second object (circuit board), 4. Heating furnace, 5. Hot plate, 6. Cooling plate.

Claims (5)

  1.  第1対象物と第2対象物とを接合する、接合部材であって、
     Niを主成分として含む金属粒子と、
     Snを主成分として含み300℃未満の融点を有する低融点相と、
     Snと前記金属粒子との間の相互拡散により生じた300℃以上の融点を有する金属間化合物と、
    を含み、
     前記接合部材の総量に対する前記低融点相の量の比率は2体積%以上20体積%未満であり、
     前記第1対象物および前記第2対象物の熱膨張係数は3×10-6/K以上13×10-6/K未満であり、前記第1対象物と前記第2対象物との間の熱膨張係数の差は5×10-6/K未満であり、
     前記接合部材の熱膨張係数は16×10-6/K以上20×10-6/K未満である、接合部材。
    A joining member for joining a first object and a second object,
    Metal particles containing Ni as a main component;
    A low melting point phase containing Sn as a main component and having a melting point of less than 300°C;
    an intermetallic compound having a melting point of 300° C. or higher produced by interdiffusion between Sn and the metal particles;
    Including,
    A ratio of the amount of the low melting point phase to the total amount of the joining members is 2 vol% or more and less than 20 vol%,
    the thermal expansion coefficients of the first object and the second object are 3×10 −6 /K or more and less than 13×10 −6 /K, and the difference in thermal expansion coefficient between the first object and the second object is less than 5×10 −6 /K;
    The bonding member has a thermal expansion coefficient of 16×10 −6 /K or more and less than 20×10 −6 /K.
  2.  前記低融点相は、さらにAgおよびCuを含む、請求項1に記載の接合部材。 The joining member according to claim 1, wherein the low melting point phase further contains Ag and Cu.
  3.  前記金属粒子は、さらに、Fe、Cr、C、CuおよびSiからなる群から選択される少なくとも1種の成分を含む、請求項1または2に記載の接合部材。 The joining member according to claim 1 or 2, wherein the metal particles further contain at least one component selected from the group consisting of Fe, Cr, C, Cu and Si.
  4.  前記第1対象物が、放熱板であり、
     前記第2対象物が、半導体素子および配線回路を有する回路基板である、請求項1~3のいずれか1項に記載の接合部材。
    the first object is a heat sink,
    The joining member according to any one of claims 1 to 3, wherein the second object is a circuit board having a semiconductor element and a wiring circuit.
  5.  放熱板と、半導体素子および配線回路を有する回路基板と、を備え、
     前記放熱板と前記回路基板とが、請求項4に記載の接合部材を介して接合されている、半導体装置。
    a heat sink and a circuit board having a semiconductor element and a wiring circuit;
    A semiconductor device, wherein the heat sink and the circuit board are joined via the joining member according to claim 4 .
PCT/JP2022/036485 2022-09-29 2022-09-29 Bonding member and semiconductor device WO2024069866A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/036485 WO2024069866A1 (en) 2022-09-29 2022-09-29 Bonding member and semiconductor device
JP2023508568A JP7267522B1 (en) 2022-09-29 2022-09-29 Bonding materials and semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036485 WO2024069866A1 (en) 2022-09-29 2022-09-29 Bonding member and semiconductor device

Publications (1)

Publication Number Publication Date
WO2024069866A1 true WO2024069866A1 (en) 2024-04-04

Family

ID=86239435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036485 WO2024069866A1 (en) 2022-09-29 2022-09-29 Bonding member and semiconductor device

Country Status (2)

Country Link
JP (1) JP7267522B1 (en)
WO (1) WO2024069866A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506733A (en) * 2006-10-17 2010-03-04 フライズ・メタルズ・インコーポレイテッド Materials and associated methods for use in wiring electrical equipment
JP2014147966A (en) * 2013-02-04 2014-08-21 Hitachi Ltd Joining material, joining method, joining structure, and semiconductor device
JP2017039167A (en) * 2009-04-02 2017-02-23 オーメット サーキッツ インク Conductive composition containing mixed alloy filler
WO2017119205A1 (en) * 2016-01-07 2017-07-13 株式会社村田製作所 Metal composition, intermetallic compound member and bonded body
JP2017172029A (en) * 2016-03-25 2017-09-28 新日鐵住金株式会社 JOINT MATERIAL AND JOINT STRUCTURE USING Ni NANOPARTICLES
WO2018030262A1 (en) * 2016-08-09 2018-02-15 株式会社村田製作所 Method for manufacturing module component
JP2021037547A (en) * 2019-05-27 2021-03-11 千住金属工業株式会社 Solder alloy, solder paste, solder ball, solder preform, solder joint, onboard electronic circuit, ecu electronic circuit, onboard electronic circuit device, and ecu electronic circuit device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506733A (en) * 2006-10-17 2010-03-04 フライズ・メタルズ・インコーポレイテッド Materials and associated methods for use in wiring electrical equipment
JP2017039167A (en) * 2009-04-02 2017-02-23 オーメット サーキッツ インク Conductive composition containing mixed alloy filler
JP2014147966A (en) * 2013-02-04 2014-08-21 Hitachi Ltd Joining material, joining method, joining structure, and semiconductor device
WO2017119205A1 (en) * 2016-01-07 2017-07-13 株式会社村田製作所 Metal composition, intermetallic compound member and bonded body
JP2017172029A (en) * 2016-03-25 2017-09-28 新日鐵住金株式会社 JOINT MATERIAL AND JOINT STRUCTURE USING Ni NANOPARTICLES
WO2018030262A1 (en) * 2016-08-09 2018-02-15 株式会社村田製作所 Method for manufacturing module component
JP2021037547A (en) * 2019-05-27 2021-03-11 千住金属工業株式会社 Solder alloy, solder paste, solder ball, solder preform, solder joint, onboard electronic circuit, ecu electronic circuit, onboard electronic circuit device, and ecu electronic circuit device

Also Published As

Publication number Publication date
JP7267522B1 (en) 2023-05-01

Similar Documents

Publication Publication Date Title
TWI650426B (en) Advanced solder alloy and soldering method for electronic interconnection
TWI461252B (en) A bonding method, a bonding structure, an electronic device, an electronic device manufacturing method, and an electronic component
CN108290250B (en) Soldered joint
CN105393348B (en) Conjugant and power module substrate
TWI505899B (en) A bonding method, a bonding structure, and a method for manufacturing the same
EP1202345A2 (en) Semiconductor power element heat dissipation board, conductor plate therefor, heat sink material and solder material
US9773721B2 (en) Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
KR20110033117A (en) Substrate for power module, power module, and method for producing substrate for power module
WO2015141295A1 (en) Bonded body, substrate for power modules, power module and method for producing bonded body
WO2003046981A1 (en) Module structure and module comprising it
JP5614507B2 (en) Sn-Cu lead-free solder alloy
KR20110015544A (en) Substrate for power module, power module, and method for producing substrate for power module
JP5725061B2 (en) Power module substrate and power module substrate with heat sink
WO2006016479A1 (en) Heat sink member and method for manufacture thereof
WO2018168858A1 (en) Solder material
EP2265099B1 (en) Semiconductor device and method of manufacturing the same
JP5231727B2 (en) Joining method
WO2024069866A1 (en) Bonding member and semiconductor device
Holaday et al. Transient liquid phase bonding
JP6928297B2 (en) Copper / ceramic joints and insulated circuit boards
WO2021117327A1 (en) Copper/ceramic assembly and insulated circuit board
JP6887183B1 (en) Solder alloys and molded solders
JP4910789B2 (en) Power element mounting substrate, power element mounting substrate manufacturing method, and power module
JP6509469B1 (en) Junction structure, semiconductor device and method of manufacturing the same
WO2023248302A1 (en) Solder bonding member, semiconductor device, solder bonding method and method for producing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960926

Country of ref document: EP

Kind code of ref document: A1