WO2024069783A1 - Control device, mounting device, management device and information processing method - Google Patents

Control device, mounting device, management device and information processing method Download PDF

Info

Publication number
WO2024069783A1
WO2024069783A1 PCT/JP2022/036092 JP2022036092W WO2024069783A1 WO 2024069783 A1 WO2024069783 A1 WO 2024069783A1 JP 2022036092 W JP2022036092 W JP 2022036092W WO 2024069783 A1 WO2024069783 A1 WO 2024069783A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
component
mounting
components
processing object
Prior art date
Application number
PCT/JP2022/036092
Other languages
French (fr)
Japanese (ja)
Inventor
智也 藤本
一也 小谷
雄哉 稲浦
賢志郎 西田
雅史 天野
博史 大池
健二 杉山
壮太 横山
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/036092 priority Critical patent/WO2024069783A1/en
Publication of WO2024069783A1 publication Critical patent/WO2024069783A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • This specification discloses a control device, an implementation device, a management device, and an information processing method.
  • a mounting device that mounts components on a processing object such as a circuit board
  • uses a data creation device to create mounting data based on an image of the underside of the component, and creates inspection data based on an image of the topside of the component (see, for example, Patent Document 1).
  • a data creation device to create mounting data based on an image of the underside of the component, and creates inspection data based on an image of the topside of the component.
  • inspection data can be created using captured images of parts, but because the data creation device uses the parts to create images, there is still waste of parts and the efficiency of data generation is still not sufficient, so further improvements are required.
  • This disclosure has been made in consideration of these problems, and its primary objective is to provide a control device, implementation device, management device, and information processing method that can execute processing with improved efficiency.
  • control device implementation device, management device, and information processing method disclosed in this specification employ the following means to achieve the above-mentioned primary objective.
  • the control device of the present disclosure includes: A control device used in a mounting system including a printing device that prints a viscous fluid on a processing object, and a mounting device that picks up components from a component supply unit that has a holding member holding components and supplies the components, and mounts the components on the processing object that has been printed, a control unit that acquires a component image obtained by capturing an image of a component held by a holding member of the component supply unit and a base image that includes a portion of the processing object that has been printed on, on which the component is to be placed, or that includes a portion of the processing object that has not been printed on, on which the component is to be placed, and generates a reference image in which the component image is placed at a mounting position of the base image; It is equipped with the following:
  • the parts held in the parts supply unit are photographed to obtain a part image, which is then combined with the base image to generate a reference image. This means that no special parts are required for image generation, allowing for more efficient processing.
  • FIG. 1 is a schematic explanatory diagram showing an example of a mounting system 10.
  • FIG. 2 is a schematic explanatory diagram showing an example of a mounting device 13.
  • 13 is an explanatory diagram of an example in which a holding member 71 is imaged by a mark camera 34.
  • FIG. 4 is an explanatory diagram of an example of a substrate S during mounting processing.
  • FIG. 6 is a flowchart showing an example of a print inspection processing routine.
  • 11 is a flowchart showing an example of a reference image generation processing routine.
  • FIG. 4 is an explanatory diagram showing an example of a generation process of a part image 91.
  • FIG. 4 is an explanatory diagram showing an example of a generation process of a base image 92 and a reference image 93.
  • 11 is a flowchart showing an example of a mounting-inspection processing routine.
  • FIG. 1 is a schematic diagram showing an example of a mounting system 10.
  • FIG. 2 is a schematic diagram showing an example of a mounting device 13.
  • FIG. 3 is an explanatory diagram of an example of imaging a holding member 71 with a mark camera 34.
  • FIG. 4 is an explanatory diagram of an example of a board S during mounting processing, with FIG. 4A being before printing processing, FIG. 4B being after printing processing, and FIG. 4C being after component P has been placed.
  • the mounting system 10 is a system that executes mounting processing related to processing for mounting component P on board S, for example.
  • the left-right direction (X-axis), front-back direction (Y-axis), and up-down direction (Z-axis) are as shown in FIG. 1.
  • the mounting system 10 is configured as a production line in which mounting devices 13 that mount components P on a substrate S as an object to be processed are arranged in the transport direction of the substrate S.
  • the substrate S is described as the object to be processed, but the object is not particularly limited as long as the components P are mounted on the substrate S, and may be a three-dimensional base material.
  • the mounting system 10 includes a printing device 11, a print inspection device 12, a mounting device 13, a mounting inspection device 14, and a management PC 18.
  • the printing device 11 is a device that prints a viscous fluid such as solder paste on the substrate S.
  • the printing device 11 may be a device that prints an adhesive or conductive paste as the viscous fluid.
  • the print inspection device 12 is a device that inspects the state of the printed solder.
  • the mounting device 13 is a device that mounts components P on the substrate S.
  • the mounting inspection device 14 is a device that inspects the state of the components P mounted by the mounting device 13.
  • the mounting device 13 may be a mounting-inspection device that has the functions of the mounting inspection device 14.
  • the mounting device 13 has a holding member 71 that holds components P, and picks up components P from a component supply unit 22 that supplies the components P, and mounts the components P on a board S before or after printing.
  • the mounting device 13 includes a board processing unit 21, a component supply unit 22, a parts camera 24, a control device 25, and a mounting unit 30.
  • the mounting device 13 also has a function to perform an inspection process to inspect the components P and the board S.
  • the board processing unit 21 is a unit that carries in, transports, fixes the board S at the mounting position, and carries it out.
  • the board processing unit 21 has a pair of conveyor belts that are spaced apart from each other and span the left and right directions in FIG. 1. The board S is transported by this conveyor belt.
  • the component supply section 22 has multiple feeders 23 with reels and a tray unit, and is removably attached to the front side of the mounting device 13.
  • Each reel is wound with tape as a holding member, and multiple components P are held on the surface of the tape along the longitudinal direction of the tape. This tape is unwound rearward from the reel, and with the components P exposed, it is sent by the feeder 23 to a collection position where they are collected by the collection member 33.
  • the tray unit has a tray on which multiple components P are arranged and placed, and this tray is moved in and out of the specified collection position.
  • the part camera 24 is a unit that captures images of one or more components P picked up and held by the mounting head 32. This part camera 24 is disposed between the component supply section 22 and the board processing section 21. The imaging range of this part camera 24 is above the part camera 24. When the mounting head 32 holding the component P passes above the part camera 24, the part camera 24 captures an image of the component P, and outputs the captured image data to the control device 25.
  • the mounting section 30 is a unit that picks up components P from the component supply section 22 and places them on the board S fixed to the board processing section 21.
  • the mounting section 30 includes a head moving section 31, a mounting head 32, a picking member 33, and a mark camera 34.
  • the head moving section 31 includes a slider that moves in the XY directions along a guide rail, and a motor that drives the slider.
  • the mounting head 32 is removably attached to the slider and moves in the XY directions by the head moving section 31.
  • the mounting head 32 has one or more picking members 33 (e.g., 16, 8, 4, etc.) removably attached to its underside, and can pick up multiple components P at once.
  • the picking member 33 may be a suction nozzle that uses negative pressure to pick up components, or a mechanical chuck that grips the components P.
  • the mark camera 34 is disposed on the underside of the mounting head 32, and is an imaging unit capable of imaging the board S, components P, etc. from above.
  • the mark camera 34 may be disposed, for example, on the underside of the mounting head 32, or on the underside of the slider of the head moving unit 31.
  • the mark camera 34 moves in the XY directions as the mounting head 32 moves.
  • the lower part of the mark camera 34 is an imaging area, and it images reference marks attached to the board S used to grasp the position of the board S, electrodes E formed on the board S, components P arranged on the board S, and holding members 71 of the feeder 23 of the component supply unit 22, and outputs the images to the control device 25.
  • the board S on which the mounting head 32 places the components P.
  • the mounting head 32 places the components P on multiple electrodes E of the board S on which solder is printed.
  • the board S has at least electrodes Ea1 to Ea6 on which the components Pa1 to Pa6 are placed, and electrodes Eb1 to Eb3 on which the components Pb1 to Pb3 are placed.
  • the electrodes Ea1 to Ea6 are collectively referred to as electrodes Ea
  • the electrodes Eb1 to Eb3 are collectively referred to as electrodes E
  • the components Pa1 to Pa6 are collectively referred to as components Pa
  • the components Pb1 to Pb3 are collectively referred to as components Pb
  • the components Pa to Pb are collectively referred to as components P.
  • the control device 25 is configured as a microprocessor centered on the CPU 26, and includes a memory unit 27 for storing various data.
  • the control device 25 has a function for controlling the entire mounting device 13, as well as a function for performing abnormality inspections such as whether components P and electrodes E are present and whether their shapes are within the allowable range, and a printing inspection such as whether the solder is properly printed on the electrodes E.
  • the control device 25 outputs control signals to the board processing unit 21, the component supply unit 22, the part camera 24, and the mounting unit 30, and inputs signals from the mounting unit 30, the component supply unit 22, the part camera 24, and the mounting unit 30.
  • the memory unit 27 stores mounting condition information including the mounting order for mounting the components P on the board S, the arrangement positions of the components P, and the type of collection member 33 from which the components P can be collected, as well as a reference image used during the mounting inspection.
  • the print inspection device 12 includes a board processing unit 41, a control device 42, and an inspection unit 45.
  • the board processing unit 41 is a unit similar to the board processing unit 21 of the mounting device 13.
  • the control device 42 has a configuration similar to the control device 25, and includes a CPU 43 and a memory unit 44.
  • the inspection unit 45 is a unit that inspects the board S itself and the state of the solder paste printed on the board S, and includes a head moving unit 46, an inspection head 47, and an imaging unit 48.
  • the head moving unit 46 is a unit that moves the inspection head 47 in the XY direction, similar to the head moving unit 31.
  • the inspection head 47 is provided with an imaging unit 48 that images the board S from above, and moves in the XY direction by the head moving unit 46.
  • the print inspection device 12 uses reference information including information such as the reference position where the solder paste is printed and the shape of the printed solder paste to inspect whether there are any abnormalities in the shape of the printed solder paste and whether the solder paste is printed
  • the mounting inspection device 14 includes a board processing unit 51, a control device 52, and an inspection unit 55.
  • the board processing unit 51 is a unit similar to the board processing unit 21 of the mounting device 13.
  • the control device 52 has the same configuration as the control device 25, and includes a CPU 53 and a memory unit 54.
  • the inspection unit 55 is a unit that inspects the state of the components P arranged on the board S, and includes a head moving unit 56, an inspection head 57, and an imaging unit 58.
  • the head moving unit 56 is a unit that moves the inspection head 57 in the XY direction, similar to the head moving unit 31.
  • the inspection head 57 is provided with an imaging unit 58 that images the board S from above, and moves in the XY direction by the head moving unit 56.
  • the mounting inspection device 14 uses reference information including information such as the reference position where the components P are arranged to inspect for missing components P or abnormalities in the arrangement position.
  • the mounting inspection device 14 is arranged downstream of the mounting device 13, which does not have
  • the management PC 18 is a computer that manages information about each device in the mounting system 10.
  • the management PC 18 is equipped with a control device 62, a communication unit 65, a display, and an input device.
  • the control device 62 is configured as a microprocessor centered on a CPU 63, and is equipped with a memory unit 64.
  • the memory unit 64 stores information for managing the production of the mounting system 10, as well as mounting condition information corresponding to each mounting device 13, including the mounting order for mounting components P on the board S, the placement positions of components P, and the type of collection material from which components P can be collected.
  • the communication unit 65 is an interface for exchanging information with external devices.
  • the printing process routine for executing the printing process is stored in the memory of the printing control unit 21, and is executed by the control unit of the printing device 11 after the mounting system 10 is started.
  • the control unit first carries out a process of carrying and fixing the board S by the board processing unit 30, and raising it to the printing height to bring the board S into contact with the screen mask.
  • the control unit ejects solder onto the screen mask M, moves the print head, and lowers the squeegee to bring the squeegee into contact with the upper surface of the screen mask M.
  • control unit moves the squeegee in the front-rear direction to print the solder on the board S.
  • the control unit ejects the printed board S outside the device, and when there is a next board S, carries out a transport and fixing process on the board S.
  • the control unit of the printing device 11 repeatedly executes this process until the production of the current board S is completed.
  • FIG. 5 is a flow chart showing an example of a print inspection process routine executed by the control device 42 of the print inspection device 12.
  • This routine is stored in the memory unit 44 of the print inspection device 12, and is executed by the CPU 43 of the control device 42 after the mounting system 10 is started.
  • the CPU 43 causes the substrate processing unit 41 to transport the printed substrate S to the inspection position and fix it (S100).
  • the CPU 43 causes the imaging unit 48 of the inspection head 47 to image the substrate S (S110).
  • the CPU 43 sets any of the printed electrodes E on the substrate S as the inspection target (S120).
  • the CPU 43 may set the inspection target in order, for example, starting from the electrode Ea1.
  • the CPU 43 acquires a reference image corresponding to this inspection target (S130) and determines whether the imaged inspection target is within an acceptable range for the reference image (S140).
  • the reference image may be, for example, an image of solder ideally printed on the electrode E.
  • the specified tolerance range may be empirically determined, for example, by empirically determining the relationship between the printed state of the solder and the state of the component P after reflow, within a range in which no defects occur in the component P after reflow.
  • the CPU 43 stores the inspection object as having good printing (S150).
  • the CPU 43 stores the inspection object as having a printing defect (S160).
  • the CPU 43 judges whether or not all the inspection objects of the current board S have been inspected (S170), and if not all have been inspected, executes the processing from S120 onwards. That is, the CPU 43 sets the next inspection object in S120 and judges whether or not the image of the inspection object is within the tolerance range for the reference image.
  • the CPU 43 executes a transport process according to the inspection result (S180). For example, the CPU 43 executes a process of transporting the board S with all inspection results being good to the mounting device 13, and executes a transport to remove the board S with even one printing defect from the production line. The CPU 43 then determines whether the print inspection is complete (S190), and if the print inspection is not complete, executes the processes from S100 onward. On the other hand, if the print inspection is complete in S190, the CPU 43 ends this routine. In this way, the print inspection device 12 supplies the boards S with all good print results to the mounting device 13.
  • FIG. 6 is a flow chart showing an example of a reference image generation process routine executed by the control device 25 of the mounting device 13.
  • This routine is stored in the storage unit 27, and is executed by the CPU 26 of the control device 25 after the mounting system 10 is started.
  • the CPU 26 judges whether it is the reference image generation timing (S200).
  • the reference image generation timing include when a new component P is used, such as when the feeder 23 is attached to the attachment portion of the component supply unit 22, or when the reference image is determined to be of low suitability and the reference image is updated.
  • the timing when the feeder 23 is attached to the attachment portion of the component supply unit 22 will be mainly described.
  • the CPU 26 executes the component image generation process of S200 to S280 (S10). Specifically, the CPU 26 first moves the mark camera 34 onto the corresponding feeder 23 of the component supply unit 22 (S210), captures an image to obtain its feature amount (S220), and stores it as a component-free image (S230).
  • the "feature amount” may be, for example, a brightness value or its variance.
  • FIG. 7 is an explanatory diagram showing an example of the generation process of the component image 91, where FIG. 7A is a supply unit captured image 80, FIG. 7B is a supply unit captured image 85, and FIG. 7C is an explanatory diagram showing the generation process of the component image 91.
  • the supply unit captured images 80 and 85 include the holding member 81, the storage unit 82, the feed hole 83, and the feeder 84 as images.
  • the CPU 26 obtains an image of only the holding member 71 at the leading portion of the holding member 71 (FIG. 7A).
  • the CPU 26 executes a process of sending out the holding member 71 (S240), captures an image to obtain its characteristic amount (S250), and judges whether or not there is a change in the characteristic amount (S260).
  • the CPU 26 executes the process from S240 onwards, and if there is a change in the characteristic amount in S260, the CPU 26 stores the supply unit captured image 85 as an image with a component in the storage unit 27 (S270).
  • the supply unit captured image 85 including the component P is captured (FIG. 7B).
  • the brightness value, which is the characteristic amount, changes, so that the presence of the component P can be confirmed.
  • the CPU 26 creates a difference image between a component-free image 86 obtained by capturing an image of the holding member 71 not holding a component P and a component-containing image 87 obtained by capturing an image of the holding member 71 holding a component P, performs blob processing on the difference image, cuts it out using a minimum bounding rectangle, generates a component image 91 that is an image of the component P, and stores it in the storage unit 27 (S280).
  • the CPU 26 rotates and corrects the position of the component P as necessary (FIG. 7C). In this way, the CPU 26 captures an image of the component P held by the holding member 71 of the component supply unit 22 to obtain the component image 91.
  • the CPU 26 executes the substrate image generation process (S20) of S290 to S310 and the reference image generation process (S30) of S320. Specifically, the CPU 26 moves the mark camera 34 onto the substrate S on which printing has been completed and before the placement of the components P (S290), captures an image of the substrate S, and stores it as a substrate image 90 (S300). Next, the CPU 26 extracts the area of the portion where each component P is to be placed, and stores each as a substrate image (S310). Next, the CPU 26 generates a reference image in which the component image is placed at the mounting position of the substrate image (S320). FIG.
  • FIG. 8 is an explanatory diagram showing an example of the generation process of the substrate image 92 and the reference image 93, where FIG. 8A is the substrate image 90, and FIG. 8B is an explanatory diagram of the generation process of the substrate image 92 and the reference image 93.
  • the substrate image 90 includes a plurality of areas A in which the components P are placed, including the electrodes E on which the solder is printed.
  • the CPU 26 captures an image of the board S (FIG. 8A).
  • the CPU 26 extracts each area A and stores it in the memory unit 27 as a base image 92. In this way, the CPU 26 obtains a base image including the area on the printed board S where components P will be placed.
  • the CPU 26 then generates a reference image 93 in which the component image 91 is placed at the mounting position of the base image 92.
  • the CPU 26 determines whether or not the reference images have been generated for all feeders 23 (S330), and if reference images have not been generated for all feeders 23, executes the processes from S200 onwards. On the other hand, when reference images 93 have been generated for all feeders 23 in S330, this routine ends. In this way, the reference image 93 can be obtained using the captured image of the component P on the component supply unit 22 and the captured image of the printed board S.
  • FIG. 9 is a flowchart showing an example of a mounting-inspection process routine executed by the control device 25 of the mounting device 13.
  • This routine is stored in the memory unit 27 of the mounting device 13, and is executed by the CPU 26 of the control device 25 after the mounting system 10 is started.
  • the CPU 26 first executes the mounting process of S400 to S450 (S40). Specifically, the CPU 26 reads and acquires the mounting condition information of the board S to be produced this time (S400), and causes the board processing unit 21 to transport the board S to the mounting position and perform the fixing process (S410).
  • the CPU 26 causes the mounting head 32 to pick up the components P to be picked up, which are set based on the mounting condition information (S420).
  • the CPU 26 causes the parts camera 24 to capture an image of the picked up components P, acquire the picking state of the components P (S430), correct the position of the components P based on the obtained picking state, and place them at the mounting position on the board S (S440).
  • the CPU 26 determines whether there is a next part P to be collected and placed (S450), and if there is a next part P to be collected and placed, executes the process from S420 onwards.
  • the CPU 26 executes a component inspection process in S460 to S540 to inspect the state of the component P on the board S (S50). Specifically, the CPU 26 uses the mark camera 34 to capture an image of the component P placed on the board S (S460) and sets the inspection target (S470). For example, the CPU 26 may set the inspection targets in order starting from component Pa1 in the board S of FIG. 4C. When the inspection target component P is set, the CPU 26 acquires the corresponding reference image 93 by reading it from the storage unit 27 (S480) and determines whether the placement state of the component P is within a predetermined tolerance range (S490).
  • the predetermined tolerance range may be empirically determined, for example, by empirically determining the relationship between the mounting state of the component P and the state of the component P after reflow, within a range in which no defects occur in the component P after reflow.
  • the mounting state may include the amount of deviation in the XY directions and the rotation angle.
  • the CPU 26 stores the inspection result in the storage unit 27 and outputs it to the management PC 18 (S530), and determines whether the production of the board S is completed (S540).
  • the CPU 26 executes the processing from S410 onwards.
  • this routine ends. In this way, the CPU 26 executes the inspection processing of the mounting state of the component P using the reference image 93 generated from the captured image.
  • the control device 25 of this embodiment is an example of a control device of this disclosure
  • the CPU 26 is an example of a control unit
  • the part image 91 is an example of a part image
  • the base image 92 is an example of a base image
  • the reference image 93 is an example of a reference image.
  • the part supply unit 22 is an example of a part supply unit
  • the holding member 71 is an example of a holding member
  • the mounting unit 30 is an example of a mounting unit
  • the mark camera 34 is an example of a part imaging unit and a base imaging unit. Note that in this embodiment, an example of an information processing method of this disclosure is also clarified by explaining the operation of the control device 25.
  • the control device 25 of the present embodiment described above is used in a mounting system 10 including a printing device 11 that prints solder as a viscous fluid on a substrate S as a processing object, and a mounting device 13 that picks up components P from a component supply unit 22 that has a holding member 71 holding the components P and supplies the components P, and mounts the components P on the printed substrate S.
  • the control device 25 includes a CPU 26 that serves as a control unit that acquires a component image 91 obtained by capturing an image of the components P held on the holding member 71 of the component supply unit 22, and a base image 92 that is a portion on the printed substrate S where the components P are to be placed, and generates a reference image 93 in which the component image 91 is placed at the mounting position of the base image 92.
  • the control device 25 does not consume any components P for image generation, and therefore can execute more efficient processing without wasting the components P.
  • the CPU 26 obtains the component image 91 by the difference between the captured images of the holding member 71 holding the component P and the holding member 71 not holding the component P, so the control device 25 can obtain the component image 91 more reliably depending on the presence or absence of the component P on the holding member 71.
  • the CPU 26 obtains the base image 92 obtained by capturing the substrate S after inspecting the printing state of the viscous fluid for the substrate S printed by the printing device 11, so the control device 25 can obtain the base image 92 that reflects a more appropriate printing state.
  • the CPU 26 captures the printed substrate S using the mark camera 34, which is an imaging device that can reproduce the same imaging conditions as those for executing the component inspection process that inspects the state of the component P on the substrate S, so the control device 25 can further reduce the influence of differences in image quality when using the reference image 93. Furthermore, the CPU 26 uses the reference image 93 in the component inspection process that inspects the state of the component P on the substrate S, so the reference image to be used in the component inspection process can be obtained more efficiently.
  • the mounting device 13 also includes a component supplying section 22 having a holding member 71 holding a component P and supplying the component P, a mounting section 30 that picks up the component P from the holding member 71 and mounts it on the board S, a component imaging section that images the component P on the holding member 71 of the component supplying section 22 and a mark camera 34 as a base imaging section that images the board S, and the control device 25 described above.
  • the CPU 26 of the control device 25 acquires a component image 91 from the image captured by the mark camera 34, and acquires a base image 92 from the image captured by the mark camera 34.
  • the function of the control device 25 described above can be realized in the mounting device 13.
  • the CPU 26 inspects the printing state of the viscous fluid on the board S printed by the printing device 11, and acquires a base image 92 obtained by imaging the board S after inspecting the printing state, so that a reference image 93 that reflects a more appropriate printing state can be acquired.
  • control device 25 since the control device 25 generates the reference image 93 from the component image 91 and the base image 92, it is possible to perform performance evaluation of the component inspection process using the reference image with a misaligned mounting position, for example, without having to prepare a board S on which the component P is mounted misaligned. Furthermore, since the control device 25 obtains the base image 92 from the printed board S, it is possible to perform inspection preparations that include the effects of viscous fluids.
  • control device disclosed in this specification is in no way limited to the above-mentioned embodiment, and can be implemented in various forms as long as it falls within the technical scope of the present invention.
  • the base image 92 is obtained from a substrate S on which a viscous fluid has been printed, but this is not particularly limited, and a base image may be obtained that includes a portion of the substrate S as a processing target on which components P are to be placed that has not been printed.
  • This control device 25 does not take into account the effects of the viscous fluid, but since no particular components P are consumed for image generation, it is possible to execute processing with higher efficiency without wasting components P.
  • the printed board S is imaged to obtain the base image 92 using the mark camera 34, which is an imaging device capable of reproducing the same imaging conditions as those for performing the component inspection process to inspect the state of the component P on the board S, but this is not particularly limited, and the base image 92 may be obtained using another imaging device different from the component inspection process.
  • the imaging of the base image 92 for the reference image 93 and the imaging of the component inspection process are performed using the mark camera 34 with the same imaging conditions, but for example, the base image 92 may be obtained using an image captured by the print inspection device 12, and the imaging of the component inspection process may be performed by the mark camera 34.
  • the reference image 93 is generated by the control device 25 of the mounting device 13, but the present invention is not limited to this.
  • the control device 62 of the management PC 18 may acquire the component image 91 and the base image 92 to generate the reference image 93.
  • the management PC 18 is used in the mounting system 10 including the printing device 11 that prints a viscous fluid on the substrate S as the processing object, and the mounting device 13 that has a holding member 71 that holds the components P and supplies the components P, picks up the components P from the component supply unit 22 that supplies the components P, and mounts them on the printing object, and is a management device that manages information about the mounting system 10.
  • the function of the above-mentioned control device can be realized by the management device.
  • the function of the control device 25 included in the mounting device 13 may be provided by one or more of the control device 52 of the mounting inspection device 14 and the control device 42 of the print inspection device 12. This control device can also perform processing with higher efficiency without wasting the components P.
  • the reference image 93 is described as being used for the part inspection process, but is not limited to this and may be used for other processes.
  • the control device 25 may use the reference image 93 for one or more of the learning process of part inspection on the processing object and the performance evaluation process of part inspection on the processing object.
  • the control device 25 may generate multiple reference images 93 with the mounting position of the part P shifted, and use these reference images 93 for the learning process.
  • the control device 25 may also generate multiple reference images 93 with the mounting position of the part P shifted, and use these reference images 93 for the performance evaluation process of part inspection. With this control device, the reference images used for the learning process and the performance evaluation process can be acquired more efficiently.
  • the mounting device 13 has been described as having the functions of a mounting device and a mounting inspection device, but this is not particularly limited, and the mounting device 13 may have only the mounting processing function, and the mounting inspection device 14 may have only the component inspection processing function. Specifically, the mounting device 13 executes the process of S40, and the mounting inspection device 14 executes the process of S50.
  • This mounting system 10 also does not consume the components P specifically for image generation, so it is possible to execute processing with higher efficiency without wasting the components P.
  • the component image 91 is captured by the mark camera 34 of the mounting device 13
  • the substrate image 92 is captured by the imaging unit 48 of the print inspection device 12
  • the component inspection process is captured by the imaging unit 58 of the mounting inspection device 14, so it is preferable that these imaging conditions are within a predetermined tolerance range.
  • image quality may differ depending on the imaging resolution and the lighting device, so it is preferable to image the printed board S by a device that executes the component inspection process. If the print inspection device 12, mounting device 13, and mounting inspection device 14 can obtain highly compatible images, the substrate image 92 may be obtained by the print inspection device 12.
  • control device 25 and mounting device 13 has been described as a control device 25 and mounting device 13, but is not limited to this and may be an information processing method.
  • the information processing method of the present disclosure may be configured as follows.
  • the information processing method of the present disclosure includes: 1. An information processing method executed by a computer used in a mounting system including a printing device that prints a viscous fluid on a processing object, and a mounting device that picks up components from a component supply unit that has a holding member holding components and supplies the components, and mounts the components on the processing object that has been printed, comprising: (a) acquiring a part image obtained by imaging a part held by a holding member of the part supply unit, and a base image including a portion of the processing object that has been printed on and on which the part is to be placed, or including a portion of the processing object that has not been printed on and on which the part is to be placed; (b) generating a reference image by arranging the acquired component image at a mounting position of the base image; It includes.
  • control device described above like the control device described above, it is possible to execute processing with improved efficiency.
  • various aspects of any of the control devices, implementation devices, and management devices described above may be adopted, and a step may be added that realizes the functions of any of the control devices, implementation devices, and management devices described above.
  • the inspection device and inspection method disclosed herein can be used in the technical field of devices that perform processes such as picking and placing parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

This control device is used in a mounting system which includes a printing device for printing a viscous fluid onto a processing target, and a mounting device for extracting a component from a component supply unit, which supplies components and has a holding member for holding components, and mounting the same onto the processing target which has been printed upon. The control device is equipped with a control unit for obtaining a component image obtained by imaging a component held by the holding member of the component supply unit and a substrate image which includes a location on a printed processing target where a component is to be positioned or a location on an unprinted processing target where a component is to be positioned, and generating a reference image by positioning the component image in the mounting location in the substrate image.

Description

制御装置、実装装置、管理装置及び情報処理方法CONTROL DEVICE, MOUNTING DEVICE, MANAGEMENT DEVICE, AND INFORMATION PROCESSING METHOD
 本明細書では、制御装置、実装装置、管理装置及び情報処理方法を開示する。 This specification discloses a control device, an implementation device, a management device, and an information processing method.
 従来、基板などの処理対象物に対して部品を実装する実装装置としては、例えば、データ作成装置によって、部品の下面側の画像に基づいて実装用データを作成し、部品の上面側の画像に基づいて検査用データを作成するものが提案されている(例えば、特許文献1など参照)。この装置では、1台のデータ作成装置で、実装用データと検査用データの両方を能率良く作成できる。  Conventionally, a mounting device that mounts components on a processing object such as a circuit board has been proposed that uses a data creation device to create mounting data based on an image of the underside of the component, and creates inspection data based on an image of the topside of the component (see, for example, Patent Document 1). With this device, both mounting data and inspection data can be created efficiently with a single data creation device.
国際公開第2013/168277号International Publication No. 2013/168277
 ところで、上述した特許文献1では、部品の撮像画像を用いて検査用データを作成することができるが、データ作成装置が部品を使用して画像を作成することから、部品の無駄がまだあり、データ生成の効率化はまだ十分でなく、更なる改良が求められていた。 In the above-mentioned Patent Document 1, inspection data can be created using captured images of parts, but because the data creation device uses the parts to create images, there is still waste of parts and the efficiency of data generation is still not sufficient, so further improvements are required.
 本開示は、このような課題に鑑みなされたものであり、効率をより高めた処理を実行することができる制御装置、実装装置、管理装置及び情報処理方法を提供することを主目的とする。 This disclosure has been made in consideration of these problems, and its primary objective is to provide a control device, implementation device, management device, and information processing method that can execute processing with improved efficiency.
 本明細書で開示する制御装置、実装装置、管理装置及び情報処理方法は、上述の主目的を達成するために以下の手段を採った。 The control device, implementation device, management device, and information processing method disclosed in this specification employ the following means to achieve the above-mentioned primary objective.
 本開示の制御装置は、
 処理対象物に粘性流体を印刷処理する印刷装置と、部品を保持した保持部材を有し部品を供給する部品供給部から部品を採取して前記印刷処理された処理対象物に実装処理する実装装置を含む実装システムに用いられる制御装置であって、
 前記部品供給部の保持部材に保持された部品を撮像して得られた部品画像と、前記印刷処理された前記処理対象物の該部品を配置する部位を含むか又は前記印刷処理されていない前記処理対象物の該部品を配置する部位を含む基体画像と、を取得し、該部品画像を該基体画像の実装位置に配置した基準画像を生成する制御部、
 を備えたものである。
The control device of the present disclosure includes:
A control device used in a mounting system including a printing device that prints a viscous fluid on a processing object, and a mounting device that picks up components from a component supply unit that has a holding member holding components and supplies the components, and mounts the components on the processing object that has been printed,
a control unit that acquires a component image obtained by capturing an image of a component held by a holding member of the component supply unit and a base image that includes a portion of the processing object that has been printed on, on which the component is to be placed, or that includes a portion of the processing object that has not been printed on, on which the component is to be placed, and generates a reference image in which the component image is placed at a mounting position of the base image;
It is equipped with the following:
 この制御装置では、部品供給部に保持された部品を撮像して部品画像を得て、基体画像と合成して基準画像を生成するため、特別に画像生成のために部品を必要としないため、効率をより高めた処理を実行することができる。 In this control device, the parts held in the parts supply unit are photographed to obtain a part image, which is then combined with the base image to generate a reference image. This means that no special parts are required for image generation, allowing for more efficient processing.
実装システム10の一例を示す概略説明図。FIG. 1 is a schematic explanatory diagram showing an example of a mounting system 10. 実装装置13の一例を示す概略説明図。FIG. 2 is a schematic explanatory diagram showing an example of a mounting device 13. 保持部材71をマークカメラ34で撮像する一例の説明図。13 is an explanatory diagram of an example in which a holding member 71 is imaged by a mark camera 34. FIG. 実装処理を行う際の基板Sの一例の説明図。4 is an explanatory diagram of an example of a substrate S during mounting processing. FIG. 印刷検査処理ルーチンの一例を示すフローチャート。6 is a flowchart showing an example of a print inspection processing routine. 基準画像生成処理ルーチンの一例を示すフローチャート。11 is a flowchart showing an example of a reference image generation processing routine. 部品画像91の生成処理の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of a generation process of a part image 91. 基体画像92及び基準画像93の生成処理の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of a generation process of a base image 92 and a reference image 93. 実装-検査処理ルーチンの一例を示すフローチャート。11 is a flowchart showing an example of a mounting-inspection processing routine.
 本実施形態を、図面を参照しながら以下に説明する。図1は、実装システム10の一例を示す概略説明図である。図2は、実装装置13の一例を示す概略説明図である。図3は、保持部材71をマークカメラ34で撮像する一例の説明図である。図4は、実装処理を行う際の基板Sの一例の説明図であり、図4Aが印刷処理前、図4Bが印刷処理後、図4Cが部品Pを配置したあとの説明図である。実装システム10は、例えば、部品Pを基板Sに実装する処理に関する実装処理を実行するシステムである。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1に示した通りとする。 This embodiment will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a mounting system 10. FIG. 2 is a schematic diagram showing an example of a mounting device 13. FIG. 3 is an explanatory diagram of an example of imaging a holding member 71 with a mark camera 34. FIG. 4 is an explanatory diagram of an example of a board S during mounting processing, with FIG. 4A being before printing processing, FIG. 4B being after printing processing, and FIG. 4C being after component P has been placed. The mounting system 10 is a system that executes mounting processing related to processing for mounting component P on board S, for example. In this embodiment, the left-right direction (X-axis), front-back direction (Y-axis), and up-down direction (Z-axis) are as shown in FIG. 1.
 実装システム10は、例えば、処理対象物としての基板Sに部品Pを実装処理する実装装置13が基板Sの搬送方向に配列された生産ラインとして構成されている。ここでは、処理対象物を基板Sとして説明するが、部品Pを実装するものであれば特に限定されず、3次元形状の基材としてもよい。この実装システム10は、図1に示すように、印刷装置11と、印刷検査装置12と、実装装置13と、実装検査装置14と、管理PC18とを含んで構成されている。印刷装置11は、基板Sにはんだペーストなどの粘性流体を印刷する装置である。なお、印刷装置11は、粘性流体として、接着剤や導電性ペーストなどを印刷する装置としてもよい。印刷検査装置12は、印刷済みのはんだの状態を検査する装置である。実装装置13は、基板Sに部品Pを実装処理する装置である。実装検査装置14は、実装装置13で実装された部品Pの状態を検査する装置である。なお、実装装置13は、実装検査装置14の機能を有する実装-検査装置としてもよい。 The mounting system 10 is configured as a production line in which mounting devices 13 that mount components P on a substrate S as an object to be processed are arranged in the transport direction of the substrate S. Here, the substrate S is described as the object to be processed, but the object is not particularly limited as long as the components P are mounted on the substrate S, and may be a three-dimensional base material. As shown in FIG. 1, the mounting system 10 includes a printing device 11, a print inspection device 12, a mounting device 13, a mounting inspection device 14, and a management PC 18. The printing device 11 is a device that prints a viscous fluid such as solder paste on the substrate S. The printing device 11 may be a device that prints an adhesive or conductive paste as the viscous fluid. The print inspection device 12 is a device that inspects the state of the printed solder. The mounting device 13 is a device that mounts components P on the substrate S. The mounting inspection device 14 is a device that inspects the state of the components P mounted by the mounting device 13. The mounting device 13 may be a mounting-inspection device that has the functions of the mounting inspection device 14.
 実装装置13は、部品Pを保持した保持部材71を有し、部品Pを供給する部品供給部22から部品Pを採取して、印刷処理前又は印刷処理後の基板Sに実装処理する装置である。実装装置13は、図2に示すように、基板処理部21と、部品供給部22と、パーツカメラ24と、制御装置25と、実装部30とを備えている。この実装装置13は、部品Pを基板Sに配置する実装処理を実行する機能のほか、部品Pや基板Sを検査する検査処理を実行する機能も備えている。基板処理部21は、基板Sの搬入、搬送、実装位置での固定、搬出を行うユニットである。基板処理部21は、図1の前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルトを有している。基板Sはこのコンベアベルトにより搬送される。 The mounting device 13 has a holding member 71 that holds components P, and picks up components P from a component supply unit 22 that supplies the components P, and mounts the components P on a board S before or after printing. As shown in FIG. 2, the mounting device 13 includes a board processing unit 21, a component supply unit 22, a parts camera 24, a control device 25, and a mounting unit 30. In addition to performing a mounting process to place components P on the board S, the mounting device 13 also has a function to perform an inspection process to inspect the components P and the board S. The board processing unit 21 is a unit that carries in, transports, fixes the board S at the mounting position, and carries it out. The board processing unit 21 has a pair of conveyor belts that are spaced apart from each other and span the left and right directions in FIG. 1. The board S is transported by this conveyor belt.
 部品供給部22は、リールを備えた複数のフィーダ23やトレイユニットを有し、実装装置13の前側に着脱可能に取り付けられている。各リールには、保持部材としてのテープが巻き付けられ、テープの表面には、複数の部品Pがテープの長手方向に沿って保持されている。このテープは、リールから後方に向かって巻きほどかれ、部品Pが露出した状態で、採取部材33で採取される採取位置にフィーダ23により送り出される。トレイユニットは、部品Pを複数配列して載置するトレイを有し、所定の採取位置へこのトレイを出し入れする。 The component supply section 22 has multiple feeders 23 with reels and a tray unit, and is removably attached to the front side of the mounting device 13. Each reel is wound with tape as a holding member, and multiple components P are held on the surface of the tape along the longitudinal direction of the tape. This tape is unwound rearward from the reel, and with the components P exposed, it is sent by the feeder 23 to a collection position where they are collected by the collection member 33. The tray unit has a tray on which multiple components P are arranged and placed, and this tray is moved in and out of the specified collection position.
 パーツカメラ24は、実装ヘッド32に採取され保持された1以上の部品Pの画像を撮像するユニットである。このパーツカメラ24は、部品供給部22と基板処理部21との間に配置されている。このパーツカメラ24の撮像範囲は、パーツカメラ24の上方である。パーツカメラ24は、部品Pを保持した実装ヘッド32がパーツカメラ24の上方を通過する際、その画像を撮像し、撮像画像データを制御装置25へ出力する。 The part camera 24 is a unit that captures images of one or more components P picked up and held by the mounting head 32. This part camera 24 is disposed between the component supply section 22 and the board processing section 21. The imaging range of this part camera 24 is above the part camera 24. When the mounting head 32 holding the component P passes above the part camera 24, the part camera 24 captures an image of the component P, and outputs the captured image data to the control device 25.
 実装部30は、部品Pを部品供給部22から採取し、基板処理部21に固定された基板Sへ配置するユニットである。実装部30は、ヘッド移動部31と、実装ヘッド32と、採取部材33と、マークカメラ34とを備えている。ヘッド移動部31は、ガイドレールに導かれてXY方向へ移動するスライダと、スライダを駆動するモータとを備えている。実装ヘッド32は、スライダに取り外し可能に装着されており、ヘッド移動部31によりXY方向へ移動する。実装ヘッド32は、その下面側に1以上の採取部材33(例えば、16個や8個、4個など)が取り外し可能に装着されており、複数の部品Pを1度に採取可能である。採取部材33は、負圧を利用して部品を採取する吸着ノズルや、部品Pを把持するメカニカルチャックとしてもよい。 The mounting section 30 is a unit that picks up components P from the component supply section 22 and places them on the board S fixed to the board processing section 21. The mounting section 30 includes a head moving section 31, a mounting head 32, a picking member 33, and a mark camera 34. The head moving section 31 includes a slider that moves in the XY directions along a guide rail, and a motor that drives the slider. The mounting head 32 is removably attached to the slider and moves in the XY directions by the head moving section 31. The mounting head 32 has one or more picking members 33 (e.g., 16, 8, 4, etc.) removably attached to its underside, and can pick up multiple components P at once. The picking member 33 may be a suction nozzle that uses negative pressure to pick up components, or a mechanical chuck that grips the components P.
 マークカメラ34は、実装ヘッド32の下面側に配設され、基板Sや部品Pなどを上方から撮像可能な撮像部である。マークカメラ34は、例えば、実装ヘッド32の下面に配設されていてもよいし、ヘッド移動部31のスライダの下面に配設されていてもよい。マークカメラ34は、実装ヘッド32の移動に伴ってXY方向へ移動する。このマークカメラ34は、下方が撮像領域であり、基板Sに付された基板Sの位置把握に用いられる基準マークや、基板S上に形成された電極E、基板S上に配置された部品P、部品供給部22のフィーダ23が有する保持部材71などを撮像しその画像を制御装置25へ出力する。 The mark camera 34 is disposed on the underside of the mounting head 32, and is an imaging unit capable of imaging the board S, components P, etc. from above. The mark camera 34 may be disposed, for example, on the underside of the mounting head 32, or on the underside of the slider of the head moving unit 31. The mark camera 34 moves in the XY directions as the mounting head 32 moves. The lower part of the mark camera 34 is an imaging area, and it images reference marks attached to the board S used to grasp the position of the board S, electrodes E formed on the board S, components P arranged on the board S, and holding members 71 of the feeder 23 of the component supply unit 22, and outputs the images to the control device 25.
 ここで、実装ヘッド32が部品Pを配置する基板Sについて説明する。実装ヘッド32は、はんだが印刷された基板Sの複数の電極E上に部品Pを配置する。図4に示すように、基板Sは、部品Pa1~Pa6を配置する電極Ea1~Ea6と、部品Pb1~Pb3を配置する電極Eb1~Eb3とを少なくとも有している。ここでは、電極Ea1~Ea6を電極Eaと総称し、電極Eb1~Eb3を電極Ebと総称し、電極Ea~Ebを電極Eと総称し、部品Pa1~Pa6を部品Paと総称し、部品Pb1~Pb3を部品Pbと総称し、部品Pa~Pbを部品Pと総称する。 Here, we will explain the board S on which the mounting head 32 places the components P. The mounting head 32 places the components P on multiple electrodes E of the board S on which solder is printed. As shown in FIG. 4, the board S has at least electrodes Ea1 to Ea6 on which the components Pa1 to Pa6 are placed, and electrodes Eb1 to Eb3 on which the components Pb1 to Pb3 are placed. Here, the electrodes Ea1 to Ea6 are collectively referred to as electrodes Ea, the electrodes Eb1 to Eb3 are collectively referred to as electrodes E, the components Pa1 to Pa6 are collectively referred to as components Pa, the components Pb1 to Pb3 are collectively referred to as components Pb, and the components Pa to Pb are collectively referred to as components P.
 制御装置25は、図2に示すように、CPU26を中心とするマイクロプロセッサとして構成されており、各種データを記憶する記憶部27などを備えている。制御装置25は、実装装置13の装置全体を制御する機能のほか、部品Pや電極Eの有無やその形状が許容範囲内であるかなどの異常検査や、電極Eへのはんだの印刷が適正であるかなどの印刷検査を実行する機能を有している。制御装置25は、基板処理部21や、部品供給部22、パーツカメラ24、実装部30へ制御信号を出力し、実装部30や部品供給部22、パーツカメラ24、実装部30からの信号を入力する。記憶部27には、部品Pを基板Sへ実装する実装順や部品Pの配置位置、部品Pを採取可能な採取部材33の種別などを含む実装条件情報や、実装検査時に用いる基準画像などが記憶されている。 As shown in FIG. 2, the control device 25 is configured as a microprocessor centered on the CPU 26, and includes a memory unit 27 for storing various data. The control device 25 has a function for controlling the entire mounting device 13, as well as a function for performing abnormality inspections such as whether components P and electrodes E are present and whether their shapes are within the allowable range, and a printing inspection such as whether the solder is properly printed on the electrodes E. The control device 25 outputs control signals to the board processing unit 21, the component supply unit 22, the part camera 24, and the mounting unit 30, and inputs signals from the mounting unit 30, the component supply unit 22, the part camera 24, and the mounting unit 30. The memory unit 27 stores mounting condition information including the mounting order for mounting the components P on the board S, the arrangement positions of the components P, and the type of collection member 33 from which the components P can be collected, as well as a reference image used during the mounting inspection.
 印刷検査装置12は、図1に示すように、基板処理部41と、制御装置42と、検査部45とを備えている。基板処理部41は、実装装置13の基板処理部21と同様のユニットである。制御装置42は、制御装置25と同様の構成であり、CPU43と記憶部44とを有している。検査部45は、基板S自体や、基板S上に印刷されたはんだペーストの状態を検査するユニットであり、ヘッド移動部46と、検査ヘッド47と、撮像部48とを備えている。ヘッド移動部46は、ヘッド移動部31と同様に検査ヘッド47をXY方向に移動するユニットである。検査ヘッド47は、基板Sを上方から撮像する撮像部48が配設されており、ヘッド移動部46によりXY方向に移動する。印刷検査装置12は、はんだペーストが印刷される基準位置や印刷されたはんだペーストの形状などの情報を含む基準情報を用いて、印刷されたはんだペーストの形状に異常が無いか、はんだペーストが適切な位置に印刷されているかなどの検査を行う。 As shown in FIG. 1, the print inspection device 12 includes a board processing unit 41, a control device 42, and an inspection unit 45. The board processing unit 41 is a unit similar to the board processing unit 21 of the mounting device 13. The control device 42 has a configuration similar to the control device 25, and includes a CPU 43 and a memory unit 44. The inspection unit 45 is a unit that inspects the board S itself and the state of the solder paste printed on the board S, and includes a head moving unit 46, an inspection head 47, and an imaging unit 48. The head moving unit 46 is a unit that moves the inspection head 47 in the XY direction, similar to the head moving unit 31. The inspection head 47 is provided with an imaging unit 48 that images the board S from above, and moves in the XY direction by the head moving unit 46. The print inspection device 12 uses reference information including information such as the reference position where the solder paste is printed and the shape of the printed solder paste to inspect whether there are any abnormalities in the shape of the printed solder paste and whether the solder paste is printed in the appropriate position.
 実装検査装置14は、基板処理部51と、制御装置52と、検査部55とを備えている。基板処理部51は、実装装置13の基板処理部21と同様のユニットである。制御装置52は、制御装置25と同様の構成であり、CPU53と記憶部54とを有している。検査部55は、基板S上に配置された部品Pの状態を検査するユニットであり、ヘッド移動部56と、検査ヘッド57と、撮像部58とを備えている。ヘッド移動部56は、ヘッド移動部31と同様に検査ヘッド57をXY方向に移動するユニットである。検査ヘッド57は、基板Sを上方から撮像する撮像部58が配設されており、ヘッド移動部56によりXY方向に移動する。実装検査装置14は、部品Pの配置される基準位置などの情報を含む基準情報を用いて、部品Pの欠品や配置位置に異常が無いかなどの検査を行う。なお、実装検査装置14は、実装検査処理機能を有しない実装装置13の下流側に配設される。 The mounting inspection device 14 includes a board processing unit 51, a control device 52, and an inspection unit 55. The board processing unit 51 is a unit similar to the board processing unit 21 of the mounting device 13. The control device 52 has the same configuration as the control device 25, and includes a CPU 53 and a memory unit 54. The inspection unit 55 is a unit that inspects the state of the components P arranged on the board S, and includes a head moving unit 56, an inspection head 57, and an imaging unit 58. The head moving unit 56 is a unit that moves the inspection head 57 in the XY direction, similar to the head moving unit 31. The inspection head 57 is provided with an imaging unit 58 that images the board S from above, and moves in the XY direction by the head moving unit 56. The mounting inspection device 14 uses reference information including information such as the reference position where the components P are arranged to inspect for missing components P or abnormalities in the arrangement position. The mounting inspection device 14 is arranged downstream of the mounting device 13, which does not have a mounting inspection processing function.
 管理PC18は、実装システム10の各装置の情報を管理するコンピュータである。管理PC18は、制御装置62と、通信部65と、ディスプレイと、入力装置とを備えている。制御装置62は、CPU63を中心とするマイクロプロセッサとして構成されており、記憶部64を備えている。記憶部64には、実装システム10の生産を管理する情報のほか、部品Pを基板Sへ実装する実装順や部品Pの配置位置、部品Pを採取可能な採取部材の種別などを含む各実装装置13に対応する実装条件情報などが記憶されている。通信部65は、外部機器と情報をやりとりするインターフェイスである。 The management PC 18 is a computer that manages information about each device in the mounting system 10. The management PC 18 is equipped with a control device 62, a communication unit 65, a display, and an input device. The control device 62 is configured as a microprocessor centered on a CPU 63, and is equipped with a memory unit 64. The memory unit 64 stores information for managing the production of the mounting system 10, as well as mounting condition information corresponding to each mounting device 13, including the mounting order for mounting components P on the board S, the placement positions of components P, and the type of collection material from which components P can be collected. The communication unit 65 is an interface for exchanging information with external devices.
 次に、こうして構成された本実施形態の実装システム10の動作、まず、印刷装置11によって基板Sにはんだを印刷する処理について説明する。印刷処理を実行する印刷処理ルーチンは、印刷制御部21の記憶部に記憶され、実装システム10が起動されたあと、印刷装置11の制御部によって実行される。印刷処理ルーチンを開始すると、制御部は、まず、基板Sを基板処理部30により搬送、固定させて印刷高さへ上昇することでスクリーンマスクに基板Sを当接させる処理を行う。次に、制御部は、スクリーンマスクM上にはんだを吐出させ、印刷ヘッドを移動させると共にスキージを下降させてスキージをスクリーンマスクMの上面に当接させる。続いて、制御部は、前後方向にスキージを移動させてはんだを基板S上に印刷する。基板Sにはんだを印刷すると、制御部は、印刷済の基板Sを装置外へ排出させ、次の基板Sがあるときには、基板Sに搬送固定処理を実行する。印刷装置11の制御部は、現在の基板Sの生産が終了するまでこの処理を繰り返し実行する。 Next, the operation of the mounting system 10 of this embodiment thus configured, first the process of printing solder on the board S by the printing device 11 will be described. The printing process routine for executing the printing process is stored in the memory of the printing control unit 21, and is executed by the control unit of the printing device 11 after the mounting system 10 is started. When the printing process routine is started, the control unit first carries out a process of carrying and fixing the board S by the board processing unit 30, and raising it to the printing height to bring the board S into contact with the screen mask. Next, the control unit ejects solder onto the screen mask M, moves the print head, and lowers the squeegee to bring the squeegee into contact with the upper surface of the screen mask M. Next, the control unit moves the squeegee in the front-rear direction to print the solder on the board S. When the solder is printed on the board S, the control unit ejects the printed board S outside the device, and when there is a next board S, carries out a transport and fixing process on the board S. The control unit of the printing device 11 repeatedly executes this process until the production of the current board S is completed.
 次に、印刷検査装置12での検査処理について説明する。図5は、印刷検査装置12の制御装置42により実行される印刷検査処理ルーチンの一例を表すフローチャートである。このルーチンは、印刷検査装置12の記憶部44に記憶され、実装システム10が起動したあと、制御装置42のCPU43によって実行される。このルーチンを開始すると、CPU43は、基板処理部41によって印刷済みの基板Sを検査位置まで搬送させ、固定処理させる(S100)。次に、CPU43は、検査ヘッド47の撮像部48によってこの基板Sを撮像処理させる(S110)。次に、CPU43は、基板S上にある印刷済みの電極Eのいずれかを検査対象に設定する(S120)。CPU43は、例えば、電極Ea1から順に検査対象に設定するものとしてもよい。検査対象を設定すると、CPU43は、この検査対象に対応する基準画像を取得し(S130)、撮像された検査対象が基準画像に対して許容範囲内であるか否かを判定する(S140)。基準画像は、例えば、理想的に電極E上にはんだが印刷された画像としてもよい。また、所定の許容範囲は、例えば、はんだの印刷状態と、リフロー後の部品Pの状態との関係を経験的に求め、リフロー後の部品Pに不具合が生じない範囲に経験的に定められているものとしてもよい。 Next, the inspection process in the print inspection device 12 will be described. FIG. 5 is a flow chart showing an example of a print inspection process routine executed by the control device 42 of the print inspection device 12. This routine is stored in the memory unit 44 of the print inspection device 12, and is executed by the CPU 43 of the control device 42 after the mounting system 10 is started. When this routine is started, the CPU 43 causes the substrate processing unit 41 to transport the printed substrate S to the inspection position and fix it (S100). Next, the CPU 43 causes the imaging unit 48 of the inspection head 47 to image the substrate S (S110). Next, the CPU 43 sets any of the printed electrodes E on the substrate S as the inspection target (S120). The CPU 43 may set the inspection target in order, for example, starting from the electrode Ea1. When the inspection target is set, the CPU 43 acquires a reference image corresponding to this inspection target (S130) and determines whether the imaged inspection target is within an acceptable range for the reference image (S140). The reference image may be, for example, an image of solder ideally printed on the electrode E. Furthermore, the specified tolerance range may be empirically determined, for example, by empirically determining the relationship between the printed state of the solder and the state of the component P after reflow, within a range in which no defects occur in the component P after reflow.
 S140で検査対象の画像が基準画像に対して許容範囲内であるときには、CPU43は、検査対象が印刷良好であるものとして記憶する(S150)。一方、検査対象の画像が基準画像に対して許容範囲内で無いときには、CPU43は、検査対象が印刷不良であるものとして記憶する(S160)。S160のあと、またはS150のあと、CPU43は、現基板Sの検査対象を全て検査したか否かを判定し(S170)、全て検査していないときには、S120以降の処理を実行する。即ち、CPU43は、S120で次の検査対象を設定し、検査対象の画像が基準画像に対して許容範囲であるか否かの判定を実行する。一方、S170で検査対象を全て検査したときには、CPU43は、検査結果に応じた搬送処理を実行する(S180)。CPU43は、例えば、検査結果が全て良好である基板Sに対しては、実装装置13へ搬送する処理を実行し、印刷不良が1つでも存在する基板Sは、生産ラインから排除する搬送を実行する。そして、CPU43は、印刷検査を完了したか否かを判定し(S190)、印刷検査を完了していないときには、S100以降の処理を実行する。一方、S190で印刷検査が完了したときには、CPU43は、このルーチンを終了する。このように、印刷検査装置12では、印刷結果が全て良好な基板Sを実装装置13へ供給する。 When the image of the inspection object is within the tolerance range for the reference image in S140, the CPU 43 stores the inspection object as having good printing (S150). On the other hand, when the image of the inspection object is not within the tolerance range for the reference image, the CPU 43 stores the inspection object as having a printing defect (S160). After S160 or after S150, the CPU 43 judges whether or not all the inspection objects of the current board S have been inspected (S170), and if not all have been inspected, executes the processing from S120 onwards. That is, the CPU 43 sets the next inspection object in S120 and judges whether or not the image of the inspection object is within the tolerance range for the reference image. On the other hand, when all the inspection objects have been inspected in S170, the CPU 43 executes a transport process according to the inspection result (S180). For example, the CPU 43 executes a process of transporting the board S with all inspection results being good to the mounting device 13, and executes a transport to remove the board S with even one printing defect from the production line. The CPU 43 then determines whether the print inspection is complete (S190), and if the print inspection is not complete, executes the processes from S100 onward. On the other hand, if the print inspection is complete in S190, the CPU 43 ends this routine. In this way, the print inspection device 12 supplies the boards S with all good print results to the mounting device 13.
 続いて、実装装置13において、部品Pを実装した基板Sを検査するために用いられる基準画像の生成処理について説明する。図6は、実装装置13の制御装置25が実行する基準画像生成処理ルーチンの一例を示すフローチャートである。このルーチンは、記憶部27に記憶され。実装システム10が起動したあと、制御装置25のCPU26によって実行される。このルーチンを開始すると、CPU26は、基準画像生成タイミングであるか否かを判定する(S200)。基準画像生成タイミングは、例えば、フィーダ23が部品供給部22の装着部に装着されたタイミングなど、新たな部品Pを使用するときや、基準画像の適正性が低いと判定され基準画像を更新する際などが挙げられる。ここでは、フィーダ23が部品供給部22の装着部に装着されたタイミングを主として説明する。 Next, the process of generating a reference image used in the mounting device 13 to inspect the board S on which the components P are mounted will be described. FIG. 6 is a flow chart showing an example of a reference image generation process routine executed by the control device 25 of the mounting device 13. This routine is stored in the storage unit 27, and is executed by the CPU 26 of the control device 25 after the mounting system 10 is started. When this routine is started, the CPU 26 judges whether it is the reference image generation timing (S200). Examples of the reference image generation timing include when a new component P is used, such as when the feeder 23 is attached to the attachment portion of the component supply unit 22, or when the reference image is determined to be of low suitability and the reference image is updated. Here, the timing when the feeder 23 is attached to the attachment portion of the component supply unit 22 will be mainly described.
 基準画像生成タイミングであるときには、CPU26は、S200~S280の部品画像生成処理を実行する(S10)。具体的には、CPU26は、まず、部品供給部22の該当するフィーダ23上へマークカメラ34を移動させ(S210)、画像を撮像してその特徴量を取得し(S220)、部品無画像として記憶する(S230)。ここで、「特徴量」としては、例えば、輝度値やその分散などが挙げられる。図7は、部品画像91の生成処理の一例を示す説明図であり、図7Aが供給部撮像画像80、図7Bが供給部撮像画像85、図7Cが部品画像91の生成処理の説明図である。供給部撮像画像80,85には、画像としての保持部材81、収容部82、送り孔83及びフィーダ84などが含まれる。図3に示すように、保持部材71の先頭において、数カ所の収容部72には部品Pが収容されていない。したがって、CPU26は、保持部材71の先頭部分では、保持部材71のみの画像が得られる(図7A)。次に、CPU26は、保持部材71を送り出す処理を実行し(S240)、画像を撮像してその特徴量を取得し(S250)、特徴量に変化があるか否かを判定する(S260)。特徴量に変化がないときには、CPU26は、S240以降の処理を実行し、S260で特徴量に変化があるときには、供給部撮像画像85を部品有画像として記憶部27に記憶させる(S270)。保持部材71が送り出されて部品P収容された収容部72が撮像位置に到達すると、部品Pを含む供給部撮像画像85が撮像される(図7B)。このとき、図7A,Bに示すように、特徴量である輝度値が変化するため、部品Pの存在を確認することができる。続いて、CPU26は、部品Pを保持していない保持部材71を撮像した部品無画像86と、部品Pを保持した保持部材71を撮像した部品有画像87との差分画像を作成し、差分画像をブロブ処理し最小外接矩形で切り出して部品Pの撮像画像である部品画像91を生成し、記憶部27に記憶する(S280)。このとき、CPU26は、必要に応じて部品Pの回転、位置補正を行う(図7C)。このように、CPU26は、部品供給部22の保持部材71に保持された部品Pを撮像して部品画像91を得るのである。 When it is the reference image generation timing, the CPU 26 executes the component image generation process of S200 to S280 (S10). Specifically, the CPU 26 first moves the mark camera 34 onto the corresponding feeder 23 of the component supply unit 22 (S210), captures an image to obtain its feature amount (S220), and stores it as a component-free image (S230). Here, the "feature amount" may be, for example, a brightness value or its variance. FIG. 7 is an explanatory diagram showing an example of the generation process of the component image 91, where FIG. 7A is a supply unit captured image 80, FIG. 7B is a supply unit captured image 85, and FIG. 7C is an explanatory diagram showing the generation process of the component image 91. The supply unit captured images 80 and 85 include the holding member 81, the storage unit 82, the feed hole 83, and the feeder 84 as images. As shown in FIG. 3, at the front of the holding member 71, several storage units 72 do not contain components P. Therefore, the CPU 26 obtains an image of only the holding member 71 at the leading portion of the holding member 71 (FIG. 7A). Next, the CPU 26 executes a process of sending out the holding member 71 (S240), captures an image to obtain its characteristic amount (S250), and judges whether or not there is a change in the characteristic amount (S260). If there is no change in the characteristic amount, the CPU 26 executes the process from S240 onwards, and if there is a change in the characteristic amount in S260, the CPU 26 stores the supply unit captured image 85 as an image with a component in the storage unit 27 (S270). When the holding member 71 is sent out and the storage unit 72 containing the component P reaches the imaging position, the supply unit captured image 85 including the component P is captured (FIG. 7B). At this time, as shown in FIGS. 7A and B, the brightness value, which is the characteristic amount, changes, so that the presence of the component P can be confirmed. Next, the CPU 26 creates a difference image between a component-free image 86 obtained by capturing an image of the holding member 71 not holding a component P and a component-containing image 87 obtained by capturing an image of the holding member 71 holding a component P, performs blob processing on the difference image, cuts it out using a minimum bounding rectangle, generates a component image 91 that is an image of the component P, and stores it in the storage unit 27 (S280). At this time, the CPU 26 rotates and corrects the position of the component P as necessary (FIG. 7C). In this way, the CPU 26 captures an image of the component P held by the holding member 71 of the component supply unit 22 to obtain the component image 91.
 S280で部品画像を生成すると、CPU26は、S290~S310の基体画像生成処理(S20)及びS320の基準画像生成処理を実行する(S30)。具体的には、CPU26は、印刷済み且つ部品Pの配置前の基板S上へマークカメラ34を移動させ(S290)、基板Sの画像を撮像し、基板撮像画像90として記憶する(S300)。次に、CPU26は、それぞれの部品Pを配置する部位の領域を抽出し、それぞれを基体画像として記憶する(S310)。次に、CPU26は、部品画像を基体画像の実装位置に配置した基準画像を生成する(S320)。図8は、基体画像92及び基準画像93の生成処理の一例を示す説明図であり、図8Aが基板撮像画像90、図8Bが基体画像92及び基準画像93の生成処理の説明図である。基板撮像画像90には、はんだが印刷された電極Eを含み部品Pが配置される領域Aが複数含まれている。CPU26は、印刷状態が良好である基板Sに対して部品Pを配置する前に、基板Sの画像を撮像する(図8A)。そして、CPU26は、各領域Aを抽出し、基体画像92として記憶部27に記憶する。このように、CPU26は、印刷処理された基板Sの部品Pを配置する部位を含む基体画像を得るのである。そして、CPU26は、部品画像91を基体画像92の実装位置に配置した基準画像93を生成する。 After generating the component image in S280, the CPU 26 executes the substrate image generation process (S20) of S290 to S310 and the reference image generation process (S30) of S320. Specifically, the CPU 26 moves the mark camera 34 onto the substrate S on which printing has been completed and before the placement of the components P (S290), captures an image of the substrate S, and stores it as a substrate image 90 (S300). Next, the CPU 26 extracts the area of the portion where each component P is to be placed, and stores each as a substrate image (S310). Next, the CPU 26 generates a reference image in which the component image is placed at the mounting position of the substrate image (S320). FIG. 8 is an explanatory diagram showing an example of the generation process of the substrate image 92 and the reference image 93, where FIG. 8A is the substrate image 90, and FIG. 8B is an explanatory diagram of the generation process of the substrate image 92 and the reference image 93. The substrate image 90 includes a plurality of areas A in which the components P are placed, including the electrodes E on which the solder is printed. Before placing components P on a board S with a good printing condition, the CPU 26 captures an image of the board S (FIG. 8A). The CPU 26 then extracts each area A and stores it in the memory unit 27 as a base image 92. In this way, the CPU 26 obtains a base image including the area on the printed board S where components P will be placed. The CPU 26 then generates a reference image 93 in which the component image 91 is placed at the mounting position of the base image 92.
 S320のあと、または、S200で基準画像生成タイミングでないときには、CPU26は、全てのフィーダ23に対して上記基準画像を生成したか否かを判定し(S330)、全てのフィーダ23に対して基準画像を生成していないときには、S200以降の処理を実行する。一方、S330で全てのフィーダ23に対して基準画像93を生成したときには、このルーチンを終了する。このように、部品供給部22上の部品Pの撮像画像と、印刷済みの基板Sの撮像画像とを用いて基準画像93を得ることができる。 After S320, or when it is not the timing for generating a reference image in S200, the CPU 26 determines whether or not the reference images have been generated for all feeders 23 (S330), and if reference images have not been generated for all feeders 23, executes the processes from S200 onwards. On the other hand, when reference images 93 have been generated for all feeders 23 in S330, this routine ends. In this way, the reference image 93 can be obtained using the captured image of the component P on the component supply unit 22 and the captured image of the printed board S.
 次に、実装装置13での実装処理及び検査処理について説明する。図9は、実装装置13の制御装置25により実行される実装-検査処理ルーチンの一例を示すフローチャートである。このルーチンは、実装装置13の記憶部27に記憶され、実装システム10が起動されたあと制御装置25のCPU26によって実行される。このルーチンを開始すると、CPU26は、まず、S400~S450の実装処理を実行する(S40)。具体的には、CPU26は、今回生産する基板Sの実装条件情報を読み出して取得し(S400)、基板処理部21によって基板Sを実装位置まで搬送させ、固定処理させる(S410)。次に、CPU26は、実装条件情報に基づいて設定された、採取対象の部品Pを実装ヘッド32に採取させる(S420)。次に、CPU26は、採取された部品Pをパーツカメラ24で撮像させ、部品Pの採取状態を取得し(S430)、得られた採取状態に基づいて、部品Pの位置補正を行い、基板S上の実装位置へ配置させる(S440)。続いて、CPU26は、次に採取配置する部品Pがあるか否かを判定し(S450)、次に採取配置する部品Pがあるときには、S420以降の処理を実行する。 Next, the mounting process and the inspection process in the mounting device 13 will be described. FIG. 9 is a flowchart showing an example of a mounting-inspection process routine executed by the control device 25 of the mounting device 13. This routine is stored in the memory unit 27 of the mounting device 13, and is executed by the CPU 26 of the control device 25 after the mounting system 10 is started. When this routine is started, the CPU 26 first executes the mounting process of S400 to S450 (S40). Specifically, the CPU 26 reads and acquires the mounting condition information of the board S to be produced this time (S400), and causes the board processing unit 21 to transport the board S to the mounting position and perform the fixing process (S410). Next, the CPU 26 causes the mounting head 32 to pick up the components P to be picked up, which are set based on the mounting condition information (S420). Next, the CPU 26 causes the parts camera 24 to capture an image of the picked up components P, acquire the picking state of the components P (S430), correct the position of the components P based on the obtained picking state, and place them at the mounting position on the board S (S440). Next, the CPU 26 determines whether there is a next part P to be collected and placed (S450), and if there is a next part P to be collected and placed, executes the process from S420 onwards.
 一方、S450で、次に採取配置する部品Pがないときには、CPU26は、S460~S540での基板S上の部品Pの状態を検査する部品検査処理を実行する(S50)。具体的には、CPU26は、基板S上に配置した部品Pをマークカメラ34によって撮像し(S460)、検査対象を設定する(S470)。CPU26は、例えば、図4Cの基板Sにおいて、部品Pa1から順に検査対象に設定するものとしてもよい。検査対象の部品Pを設定すると、CPU26は、該当する基準画像93を記憶部27から読み出すことにより取得し(S480)、部品Pの配置状態が所定の許容範囲内であるか否かを判定する(S490)。所定の許容範囲は、例えば、部品Pの実装状態と、リフロー後の部品Pの状態との関係を経験的に求め、リフロー後の部品Pに不具合が生じない範囲に経験的に定められているものとしてもよい。なお、実装状態には、XY方向のずれ量や、回転角度などが含まれるものとしてもよい。検査対象が許容範囲内であるときには、CPU26は、該当部品を良好配置部品に設定し(S500)、検査対象が許容範囲内でないときには、該当部品を不良配置部品に設定する(S510)。S510のあと、またはS500のあと、CPU26は、未検査部品があるか否かを判定し(S520)、未検査部品があるときには、S470以降の処理を実行する。一方、S520で未検査部品がないときには、CPU26は、検査結果を記憶部27に保存すると共に、管理PC18へ出力し(S530)、基板Sの生産が完了したか否かを判定する(S540)。基板Sの生産が完了していないときには、CPU26は、S410以降の処理を実行する。一方、S540で基板Sの生産が完了したときには、このルーチンを終了する。このように、CPU26は、撮像画像から生成した基準画像93を用いて、部品Pの実装状態の検査処理を実行するのである。 On the other hand, when there is no component P to be picked and placed next in S450, the CPU 26 executes a component inspection process in S460 to S540 to inspect the state of the component P on the board S (S50). Specifically, the CPU 26 uses the mark camera 34 to capture an image of the component P placed on the board S (S460) and sets the inspection target (S470). For example, the CPU 26 may set the inspection targets in order starting from component Pa1 in the board S of FIG. 4C. When the inspection target component P is set, the CPU 26 acquires the corresponding reference image 93 by reading it from the storage unit 27 (S480) and determines whether the placement state of the component P is within a predetermined tolerance range (S490). The predetermined tolerance range may be empirically determined, for example, by empirically determining the relationship between the mounting state of the component P and the state of the component P after reflow, within a range in which no defects occur in the component P after reflow. The mounting state may include the amount of deviation in the XY directions and the rotation angle. When the inspection target is within the allowable range, the CPU 26 sets the corresponding part as a good placement part (S500), and when the inspection target is not within the allowable range, the corresponding part is set as a bad placement part (S510). After S510 or after S500, the CPU 26 determines whether there is an uninspected part (S520), and when there is an uninspected part, executes the processing from S470 onwards. On the other hand, when there is no uninspected part in S520, the CPU 26 stores the inspection result in the storage unit 27 and outputs it to the management PC 18 (S530), and determines whether the production of the board S is completed (S540). When the production of the board S is not completed, the CPU 26 executes the processing from S410 onwards. On the other hand, when the production of the board S is completed in S540, this routine ends. In this way, the CPU 26 executes the inspection processing of the mounting state of the component P using the reference image 93 generated from the captured image.
 ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態の制御装置25が本開示の制御装置の一例であり、CPU26が制御部の一例であり、部品画像91が部品画像の一例であり、基体画像92が基体画像の一例であり、基準画像93が基準画像の一例である。また、部品供給部22が部品供給部の一例であり、保持部材71が保持部材の一例であり、実装部30が実装部の一例であり、マークカメラ34が部品撮像部及び基体撮像部の一例である。なお、本実施形態では、制御装置25の動作を説明することにより本開示の情報処理方法の一例も明らかにしている。 Here, the correspondence between the components of this embodiment and the components of this disclosure will be clarified. The control device 25 of this embodiment is an example of a control device of this disclosure, the CPU 26 is an example of a control unit, the part image 91 is an example of a part image, the base image 92 is an example of a base image, and the reference image 93 is an example of a reference image. In addition, the part supply unit 22 is an example of a part supply unit, the holding member 71 is an example of a holding member, the mounting unit 30 is an example of a mounting unit, and the mark camera 34 is an example of a part imaging unit and a base imaging unit. Note that in this embodiment, an example of an information processing method of this disclosure is also clarified by explaining the operation of the control device 25.
 以上説明した本実施形態の制御装置25は、処理対象物としての基板Sに粘性流体としてのはんだを印刷処理する印刷装置11と、部品Pを保持した保持部材71を有し部品Pを供給する部品供給部22から部品Pを採取して印刷処理された基板Sに実装処理する実装装置13を含む実装システム10に用いられる。この制御装置25は、部品供給部22の保持部材71に保持された部品Pを撮像して得られた部品画像91と、印刷処理された基板Sの部品Pを配置する部位である基体画像92と、を取得し、部品画像91を基体画像92の実装位置に配置した基準画像93を生成する制御部としてのCPU26を備える。この制御装置25では、画像生成のために部品Pを特別に消費しないため、部品Pの無駄などを生じることなく、効率をより高めた処理を実行することができる。 The control device 25 of the present embodiment described above is used in a mounting system 10 including a printing device 11 that prints solder as a viscous fluid on a substrate S as a processing object, and a mounting device 13 that picks up components P from a component supply unit 22 that has a holding member 71 holding the components P and supplies the components P, and mounts the components P on the printed substrate S. The control device 25 includes a CPU 26 that serves as a control unit that acquires a component image 91 obtained by capturing an image of the components P held on the holding member 71 of the component supply unit 22, and a base image 92 that is a portion on the printed substrate S where the components P are to be placed, and generates a reference image 93 in which the component image 91 is placed at the mounting position of the base image 92. The control device 25 does not consume any components P for image generation, and therefore can execute more efficient processing without wasting the components P.
 また、CPU26は、部品Pを保持した保持部材71と部品Pを保持していない保持部材71とを撮像した撮像画像に基づいて、これらの差分により部品画像91を取得するため、この制御装置25では、保持部材71の部品Pの有無によって、より確実に部品画像91を取得することができる。また、CPU26は、印刷装置11が印刷処理した基板Sに対して、粘性流体の印刷状態を検査したあとの基板Sを撮像した基体画像92を取得するため、この制御装置25では、より適正な印刷状態を反映した基体画像92を取得することができる。更に、CPU26は、基板S上の部品Pの状態を検査する部品検査処理を実行するのと同じ撮像条件を再現可能な撮像装置であるマークカメラ34を用いて印刷済みの基板Sを撮像するため、この制御装置25では、基準画像93の使用時において、画質の差などによる影響をより低減することができる。更にまた、CPU26は、基板S上の部品Pの状態を検査する部品検査処理に基準画像93を用いるため、部品検査処理に用いる基準画像をより効率よく取得することができる。 The CPU 26 obtains the component image 91 by the difference between the captured images of the holding member 71 holding the component P and the holding member 71 not holding the component P, so the control device 25 can obtain the component image 91 more reliably depending on the presence or absence of the component P on the holding member 71. The CPU 26 obtains the base image 92 obtained by capturing the substrate S after inspecting the printing state of the viscous fluid for the substrate S printed by the printing device 11, so the control device 25 can obtain the base image 92 that reflects a more appropriate printing state. Furthermore, the CPU 26 captures the printed substrate S using the mark camera 34, which is an imaging device that can reproduce the same imaging conditions as those for executing the component inspection process that inspects the state of the component P on the substrate S, so the control device 25 can further reduce the influence of differences in image quality when using the reference image 93. Furthermore, the CPU 26 uses the reference image 93 in the component inspection process that inspects the state of the component P on the substrate S, so the reference image to be used in the component inspection process can be obtained more efficiently.
 また、実装装置13は、部品Pを保持した保持部材71を有し部品Pを供給する部品供給部22と、保持部材71から部品Pを採取し基板Sへ実装処理する実装部30と、部品供給部22の保持部材71上にある部品Pを撮像する部品撮像部及び基板Sを撮像する基体撮像部としてのマークカメラ34と、上述した制御装置25と、を備える。この実装装置13において、制御装置25のCPU26は、マークカメラ34で撮像した撮像画像から部品画像91を取得し、マークカメラ34で撮像した撮像画像から基体画像92を取得する。この実装装置13では、上述した制御装置25の機能を実装装置13で実現することができる。また、実装装置13において、CPU26は、印刷装置11が印刷処理した基板Sに対して粘性流体の印刷状態を検査し、この印刷状態を検査したあとの基板Sを撮像した基体画像92を取得するため、より適正な印刷状態を反映した基準画像93を取得することができる。 The mounting device 13 also includes a component supplying section 22 having a holding member 71 holding a component P and supplying the component P, a mounting section 30 that picks up the component P from the holding member 71 and mounts it on the board S, a component imaging section that images the component P on the holding member 71 of the component supplying section 22 and a mark camera 34 as a base imaging section that images the board S, and the control device 25 described above. In this mounting device 13, the CPU 26 of the control device 25 acquires a component image 91 from the image captured by the mark camera 34, and acquires a base image 92 from the image captured by the mark camera 34. In this mounting device 13, the function of the control device 25 described above can be realized in the mounting device 13. In addition, in the mounting device 13, the CPU 26 inspects the printing state of the viscous fluid on the board S printed by the printing device 11, and acquires a base image 92 obtained by imaging the board S after inspecting the printing state, so that a reference image 93 that reflects a more appropriate printing state can be acquired.
 また、制御装置25では、部品画像91と基体画像92とから基準画像93を生成するため、例えば、部品Pがずれて実装した基板Sを用意しなくても、実装位置ずれを生じた基準画像を用いて、部品検査処理の性能評価などを行うこともできる。更に、制御装置25では、印刷済みの基板Sから基体画像92を取得するため、粘性流体の影響を含んだ検査準備を行うことができる。 In addition, since the control device 25 generates the reference image 93 from the component image 91 and the base image 92, it is possible to perform performance evaluation of the component inspection process using the reference image with a misaligned mounting position, for example, without having to prepare a board S on which the component P is mounted misaligned. Furthermore, since the control device 25 obtains the base image 92 from the printed board S, it is possible to perform inspection preparations that include the effects of viscous fluids.
 なお、本明細書で開示する制御装置は、上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that the control device disclosed in this specification is in no way limited to the above-mentioned embodiment, and can be implemented in various forms as long as it falls within the technical scope of the present invention.
 例えば、上述した実施形態では、粘性流体を印刷済みの基板Sから基体画像92を取得するものとしたが、特にこれに限定されず、印刷処理されていない処理対象物としての基板Sの部品Pを配置する部位を含む基体画像を取得するものとしてもよい。この制御装置25では、粘性流体の影響については考慮しないが、画像生成のために部品Pを特別に消費しないため、部品Pの無駄などを生じることなく、効率をより高めた処理を実行することはできる。 For example, in the above-described embodiment, the base image 92 is obtained from a substrate S on which a viscous fluid has been printed, but this is not particularly limited, and a base image may be obtained that includes a portion of the substrate S as a processing target on which components P are to be placed that has not been printed. This control device 25 does not take into account the effects of the viscous fluid, but since no particular components P are consumed for image generation, it is possible to execute processing with higher efficiency without wasting components P.
 上述した実施形態では、基板S上の部品Pの状態を検査する部品検査処理を実行するのと同じ撮像条件を再現可能な撮像装置であるマークカメラ34を用いて印刷済みの基板Sを撮像して基体画像92を取得するものとしたが、特にこれに限定されず、部品検査処理と異なる他の撮像装置を用いて基体画像92を取得するものとしてもよい。実装システム10では、基準画像93用の基体画像92の撮像と、部品検査処理の撮像とを、撮像条件が同一のマークカメラ34を用いて行うものとしたが、例えば、印刷検査装置12で撮像した撮像画像を用いて基体画像92を取得し、マークカメラ34で部品検査処理の撮像を行うものとしてもよい。このとき、基準画像93と部品検査処理の撮像画像との間に撮像条件に基づく相違があると部品検査処理に悪影響を及ぼすことがあり得るため、粘性流体の印刷状態を検査する撮像画像に対して所定の許容範囲内にある撮像状態の基体画像92を取得可能にすることが望ましい。 In the above embodiment, the printed board S is imaged to obtain the base image 92 using the mark camera 34, which is an imaging device capable of reproducing the same imaging conditions as those for performing the component inspection process to inspect the state of the component P on the board S, but this is not particularly limited, and the base image 92 may be obtained using another imaging device different from the component inspection process. In the mounting system 10, the imaging of the base image 92 for the reference image 93 and the imaging of the component inspection process are performed using the mark camera 34 with the same imaging conditions, but for example, the base image 92 may be obtained using an image captured by the print inspection device 12, and the imaging of the component inspection process may be performed by the mark camera 34. In this case, if there is a difference based on the imaging conditions between the reference image 93 and the image captured in the component inspection process, this may have an adverse effect on the component inspection process, so it is desirable to be able to obtain the base image 92 in an imaging state that is within a predetermined tolerance range for the image captured to inspect the printing state of the viscous fluid.
 上述した実施形態では、実装装置13が備える制御装置25によって、基準画像93を生成するものとして説明したが、特にこれに限定されず、管理PC18の制御装置62が、部品画像91及び基体画像92を取得して基準画像93を生成するものとしてもよい。この管理PC18は、処理対象物としての基板Sに粘性流体を印刷処理する印刷装置11と、部品Pを保持した保持部材71を有し部品Pを供給する部品供給部22から部品Pを採取して印刷処理された処理対象物に実装処理する実装装置13を含む実装システム10に用いられ、この実装システム10の情報を管理する管理装置である。この管理PC18は、上述した制御装置を備えるため、上述した制御装置の機能を管理装置で実現することができる。また、実装装置13が備える制御装置25の機能は、実装検査装置14の制御装置52や、印刷検査装置12の制御装置42などのうち1以上が有するものとしてもよい。この制御装置においても、部品Pの無駄などを生じることなく、効率をより高めた処理を実行することができる。 In the above embodiment, the reference image 93 is generated by the control device 25 of the mounting device 13, but the present invention is not limited to this. The control device 62 of the management PC 18 may acquire the component image 91 and the base image 92 to generate the reference image 93. The management PC 18 is used in the mounting system 10 including the printing device 11 that prints a viscous fluid on the substrate S as the processing object, and the mounting device 13 that has a holding member 71 that holds the components P and supplies the components P, picks up the components P from the component supply unit 22 that supplies the components P, and mounts them on the printing object, and is a management device that manages information about the mounting system 10. Since the management PC 18 includes the above-mentioned control device, the function of the above-mentioned control device can be realized by the management device. The function of the control device 25 included in the mounting device 13 may be provided by one or more of the control device 52 of the mounting inspection device 14 and the control device 42 of the print inspection device 12. This control device can also perform processing with higher efficiency without wasting the components P.
 上述した実施形態では、基準画像93を部品検査処理に用いるものとして説明したが、特にこれに限定されず、他の処理に用いるものとしてもよい。例えば、制御装置25は、処理対象物上の部品検査の学習処理や、処理対象物上の部品検査の性能評価処理のうち1以上の処理に基準画像93を用いるものとしてもよい。制御装置25は、部品Pの実装位置をずらした複数の基準画像93を生成し、この基準画像93を学習処理に用いるものとしてもよい。また、制御装置25は、部品Pの実装位置をずらした複数の基準画像93を生成し、この基準画像93を部品検査の性能評価処理に用いるものとしてもよい。この制御装置では、学習処理や、性能評価処理に用いる基準画像を、より効率よく取得することができる。 In the above embodiment, the reference image 93 is described as being used for the part inspection process, but is not limited to this and may be used for other processes. For example, the control device 25 may use the reference image 93 for one or more of the learning process of part inspection on the processing object and the performance evaluation process of part inspection on the processing object. The control device 25 may generate multiple reference images 93 with the mounting position of the part P shifted, and use these reference images 93 for the learning process. The control device 25 may also generate multiple reference images 93 with the mounting position of the part P shifted, and use these reference images 93 for the performance evaluation process of part inspection. With this control device, the reference images used for the learning process and the performance evaluation process can be acquired more efficiently.
 上述した実施形態では、実装装置13が実装装置と実装検査装置の機能を有するものとして説明したが、特にこれに限定されず、実装装置13は、実装処理の機能のみを有し、実装検査装置14が部品検査処理の機能のみを有するものとしてもよい。具体的には、実装装置13は、S40の処理を実行し、実装検査装置14は、S50の処理を実行する。この実装システム10においても、画像生成のために部品Pを特別に消費しないため、部品Pの無駄などを生じることなく、効率をより高めた処理を実行することができる。この場合において、部品画像91は実装装置13のマークカメラ34で撮像し、基体画像92は印刷検査装置12の撮像部48で撮像し、部品検査処理では実装検査装置14の撮像部58で撮像することから、これらの撮像状態は所定の許容範囲に入るものとすることが好ましい。なお、撮像解像度や照明装置の相違により画質が相違することがあるため、印刷済みの基板Sの撮像は、部品検査処理を実行する装置で撮像することが望ましい。印刷検査装置12、実装装置13及び実装検査装置14で互換性の高い画像が得られる場合は、印刷検査装置12で基体画像92を取得してもよい。 In the above embodiment, the mounting device 13 has been described as having the functions of a mounting device and a mounting inspection device, but this is not particularly limited, and the mounting device 13 may have only the mounting processing function, and the mounting inspection device 14 may have only the component inspection processing function. Specifically, the mounting device 13 executes the process of S40, and the mounting inspection device 14 executes the process of S50. This mounting system 10 also does not consume the components P specifically for image generation, so it is possible to execute processing with higher efficiency without wasting the components P. In this case, the component image 91 is captured by the mark camera 34 of the mounting device 13, the substrate image 92 is captured by the imaging unit 48 of the print inspection device 12, and the component inspection process is captured by the imaging unit 58 of the mounting inspection device 14, so it is preferable that these imaging conditions are within a predetermined tolerance range. Note that image quality may differ depending on the imaging resolution and the lighting device, so it is preferable to image the printed board S by a device that executes the component inspection process. If the print inspection device 12, mounting device 13, and mounting inspection device 14 can obtain highly compatible images, the substrate image 92 may be obtained by the print inspection device 12.
 上述した実施形態では、制御装置25や実装装置13として本開示を説明したが、特にこれに限定されず、情報処理方法としてもよい。 In the above-mentioned embodiment, the present disclosure has been described as a control device 25 and mounting device 13, but is not limited to this and may be an information processing method.
 ここで、本開示の情報処理方法は、以下のように構成してもよい。例えば、本開示の情報処理方法は、
 処理対象物に粘性流体を印刷処理する印刷装置と、部品を保持した保持部材を有し部品を供給する部品供給部から部品を採取して前記印刷処理された処理対象物に実装処理する実装装置を含む実装システムに用いられるコンピュータが実行する情報処理方法であって、
(a)前記部品供給部の保持部材に保持された部品を撮像して得られた部品画像と、前記印刷処理された前記処理対象物の該部品を配置する部位を含むか又は前記印刷処理されていない前記処理対象物の該部品を配置する部位を含む基体画像と、を取得するステップと、
(b)取得した前記部品画像を前記基体画像の実装位置に配置した基準画像を生成するステップと、
 を含むものである。
Here, the information processing method of the present disclosure may be configured as follows. For example, the information processing method of the present disclosure includes:
1. An information processing method executed by a computer used in a mounting system including a printing device that prints a viscous fluid on a processing object, and a mounting device that picks up components from a component supply unit that has a holding member holding components and supplies the components, and mounts the components on the processing object that has been printed, comprising:
(a) acquiring a part image obtained by imaging a part held by a holding member of the part supply unit, and a base image including a portion of the processing object that has been printed on and on which the part is to be placed, or including a portion of the processing object that has not been printed on and on which the part is to be placed;
(b) generating a reference image by arranging the acquired component image at a mounting position of the base image;
It includes.
 この情報処理方法では、上述した制御装置と同様に、効率をより高めた処理を実行することができる。なお、この情報処理方法において、上述した制御装置、実装装置及び管理装置のうちいずれかの種々の態様を採用してもよいし、また上述した制御装置、実装装置及び管理装置のうちいずれかの機能を実現するようなステップを追加してもよい。 In this information processing method, like the control device described above, it is possible to execute processing with improved efficiency. Note that in this information processing method, various aspects of any of the control devices, implementation devices, and management devices described above may be adopted, and a step may be added that realizes the functions of any of the control devices, implementation devices, and management devices described above.
 本明細書では、出願当初の請求項5において「請求項1又は2に記載の制御装置」を「請求項1~4のいずれか1項に記載の制御装置」に変更した技術思想や、出願当初の請求項6において「請求項1又は2に記載の制御装置」を「請求項1~5のいずれか1項に記載の制御装置」に変更した技術思想、出願当初の請求項8において「請求項1又は2に記載の制御装置」を「請求項1~5のいずれか1項に記載の制御装置」に変更した技術思想も開示されている。  This specification also discloses the technical idea of changing "the control device according to claim 1 or 2" to "the control device according to any one of claims 1 to 4" in claim 5 as originally filed, the technical idea of changing "the control device according to claim 1 or 2" to "the control device according to any one of claims 1 to 5" in claim 6 as originally filed, and the technical idea of changing "the control device according to claim 1 or 2" to "the control device according to any one of claims 1 to 5" in claim 8 as originally filed.
 本開示の検査装置や検査方法は、部品を採取、配置などの処理を行う装置の技術分野に利用可能である。 The inspection device and inspection method disclosed herein can be used in the technical field of devices that perform processes such as picking and placing parts.
10 実装システム、11 印刷装置、12 印刷検査装置、13 実装装置、14 実装検査装置、18 管理PC、21 基板処理部、22 部品供給部、23 パーツカメラ、25 制御装置、26 CPU、27 記憶部、28 基準画像情報、29,29B 閾値情報、30 実装部、31 ヘッド移動部、32 実装ヘッド、33 吸着ノズル、34 マークカメラ、41,51 基板処理部、42,52 制御装置、43,53 CPU、44,54 記憶部、45,55 検査部、46,56 ヘッド移動部、47,5,57 検査ヘッド、48,58 撮像部、70 保持部材、71 収容部、72 送り孔、80 供給部撮像画像、81 保持部材、82 収容部、83 送り孔、84 フィーダ、85 供給部撮像画像、86 部品無画像、87 部品有画像、90 基板撮像画像、91 部品画像、92 基体画像、93 基準画像、E,Ea1~Ea6,Eb1~Eb3 電極、P,Pa1~Pa6,Pb1~Pb3 部品、S 基板。 10 Mounting system, 11 Printing device, 12 Printing inspection device, 13 Mounting device, 14 Mounting inspection device, 18 Management PC, 21 Substrate processing unit, 22 Part supply unit, 23 Parts camera, 25 Control device, 26 CPU, 27 Memory unit, 28 Reference image information, 29, 29B Threshold information, 30 Mounting unit, 31 Head moving unit, 32 Mounting head, 33 Suction nozzle, 34 Mark camera, 41, 51 Substrate processing unit, 42, 52 Control device, 43, 53 CPU, 44, 54 Memory unit, 45, 55 Inspection section, 46, 56 Head moving section, 47, 5, 57 Inspection head, 48, 58 Imaging section, 70 Holding member, 71 Storage section, 72 Feed hole, 80 Supply section image, 81 Holding member, 82 Storage section, 83 Feed hole, 84 Feeder, 85 Supply section image, 86 Image without components, 87 Image with components, 90 Board image, 91 Part image, 92 Base image, 93 Reference image, E, Ea1-Ea6, Eb1-Eb3 Electrodes, P, Pa1-Pa6, Pb1-Pb3 Parts, S Board.

Claims (9)

  1.  処理対象物に粘性流体を印刷処理する印刷装置と、部品を保持した保持部材を有し部品を供給する部品供給部から部品を採取して前記印刷処理された処理対象物に実装処理する実装装置を含む実装システムに用いられる制御装置であって、
     前記部品供給部の保持部材に保持された部品を撮像して得られた部品画像と、前記印刷処理された前記処理対象物の該部品を配置する部位を含むか又は前記印刷処理されていない前記処理対象物の該部品を配置する部位を含む基体画像と、を取得し、該部品画像を該基体画像の実装位置に配置した基準画像を生成する制御部、
     を備えた制御装置。
    A control device used in a mounting system including a printing device that prints a viscous fluid on a processing object, and a mounting device that picks up components from a component supply unit that has a holding member holding components and supplies the components, and mounts the components on the processing object that has been printed,
    a control unit that acquires a component image obtained by capturing an image of a component held by a holding member of the component supply unit and a base image that includes a portion of the processing object that has been printed on, on which the component is to be placed, or that includes a portion of the processing object that has not been printed on, on which the component is to be placed, and generates a reference image in which the component image is placed at a mounting position of the base image;
    A control device comprising:
  2.  前記制御部は、前記部品を保持した前記保持部材と前記部品を保持していない前記保持部材とを撮像した撮像画像に基づいて前記部品画像を取得する、請求項1に記載の制御装置。 The control device according to claim 1, wherein the control unit acquires the part image based on captured images of the holding member holding the part and the holding member not holding the part.
  3.  前記制御部は、前記印刷装置が印刷処理した前記処理対象物に対して前記粘性流体の印刷状態を検査したあとの前記処理対象物を撮像した前記基体画像を取得する、請求項1又は2に記載の制御装置。 The control device according to claim 1 or 2, wherein the control unit acquires the base image by capturing an image of the processing object after inspecting the printing state of the viscous fluid on the processing object that has been printed by the printing device.
  4.  前記制御部は、前記粘性流体の印刷状態を検査する撮像画像に対して所定の許容範囲内にある撮像状態の前記基体画像を取得する、請求項3に記載の制御装置。 The control device according to claim 3, wherein the control unit acquires the substrate image in an imaged state that is within a predetermined tolerance range for the imaged image that inspects the printing state of the viscous fluid.
  5.  前記制御部は、前記処理対象物上の前記部品の状態を検査する部品検査処理、前記処理対象物上の部品検査の学習処理、及び前記処理対象物上の部品検査の性能評価処理のうち1以上の処理に前記基準画像を用いる、請求項1又は2に記載の制御装置。 The control device according to claim 1 or 2, wherein the control unit uses the reference image for one or more of a part inspection process for inspecting the state of the part on the processing object, a learning process for part inspection on the processing object, and a performance evaluation process for part inspection on the processing object.
  6.  部品を保持した保持部材を有し部品を供給する部品供給部と、
     前記保持部材から前記部品を採取し前記処理対象物へ実装処理する実装部と、
     前記部品供給部の保持部材上にある部品を撮像する部品撮像部と、
     前記処理対象物を撮像する基体撮像部と、
     請求項1又は2に記載の制御装置と、
     を備え、前記制御装置の制御部は、前記部品撮像部で撮像した撮像画像から前記部品画像を取得し、前記基体撮像部で撮像した撮像画像から前記基体画像を取得する、実装装置。
    a component supply unit having a holding member that holds the components and supplies the components;
    a mounting unit that picks up the component from the holding member and mounts the component on the processing object;
    a component imaging unit that images a component on a holding member of the component supply unit;
    A substrate imaging unit that images the processing object;
    A control device according to claim 1 or 2;
    a control unit of the control device acquires the component image from an image captured by the component imaging unit, and acquires the base image from an image captured by the base imaging unit.
  7.  前記制御部は、前記印刷装置が印刷処理した前記処理対象物に対して前記粘性流体の印刷状態を検査し、該印刷状態を検査したあとの前記処理対象物を撮像した前記基体画像を取得する、請求項6に記載の実装装置。 The mounting device according to claim 6, wherein the control unit inspects the printing state of the viscous fluid on the processing object that has been printed by the printing device, and obtains the base image that captures the processing object after inspecting the printing state.
  8.  処理対象物に粘性流体を印刷処理する印刷装置と、部品を保持した保持部材を有し部品を供給する部品供給部から部品を採取して前記印刷処理された処理対象物に実装処理する実装装置を含む実装システムに用いられ該実装システムの情報を管理する管理装置であって、
     請求項1又は2に記載の制御装置、
     を備えた管理装置。
    A management device for managing information of a mounting system that is used in the mounting system, the management device including a printing device that prints a viscous fluid on a processing object, and a mounting device that picks up components from a component supply unit that has a holding member that holds components and supplies the components, and mounts the components on the processing object that has been printed, the management device comprising:
    The control device according to claim 1 or 2,
    A management device comprising:
  9.  処理対象物に粘性流体を印刷処理する印刷装置と、部品を保持した保持部材を有し部品を供給する部品供給部から部品を採取して前記印刷処理された処理対象物に実装処理する実装装置を含む実装システムに用いられるコンピュータが実行する情報処理方法であって、
    (a)前記部品供給部の保持部材に保持された部品を撮像して得られた部品画像と、前記印刷処理された前記処理対象物の該部品を配置する部位を含むか又は前記印刷処理されていない前記処理対象物の該部品を配置する部位を含む基体画像と、を取得するステップと、
    (b)取得した前記部品画像を前記基体画像の実装位置に配置した基準画像を生成するステップと、
     を含む情報処理方法。
    1. An information processing method executed by a computer used in a mounting system including a printing device that prints a viscous fluid on a processing object, and a mounting device that picks up components from a component supply unit that has a holding member holding components and supplies the components, and mounts the components on the processing object that has been printed, comprising:
    (a) acquiring a part image obtained by imaging a part held by a holding member of the part supply unit, and a base image including a portion of the processing object that has been printed on, on which the part is to be placed, or including a portion of the processing object that has not been printed on, on which the part is to be placed;
    (b) generating a reference image by arranging the acquired component image at a mounting position of the base image;
    An information processing method comprising:
PCT/JP2022/036092 2022-09-28 2022-09-28 Control device, mounting device, management device and information processing method WO2024069783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036092 WO2024069783A1 (en) 2022-09-28 2022-09-28 Control device, mounting device, management device and information processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/036092 WO2024069783A1 (en) 2022-09-28 2022-09-28 Control device, mounting device, management device and information processing method

Publications (1)

Publication Number Publication Date
WO2024069783A1 true WO2024069783A1 (en) 2024-04-04

Family

ID=90476648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036092 WO2024069783A1 (en) 2022-09-28 2022-09-28 Control device, mounting device, management device and information processing method

Country Status (1)

Country Link
WO (1) WO2024069783A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271234A (en) * 1998-03-23 1999-10-05 Omron Corp Inspecting device and method, and inspecting reference data forming device
JP2009094283A (en) * 2007-10-09 2009-04-30 Yamaha Motor Co Ltd Method of producing mounting board, surface mounting machine, and mounting board production control device
JP4836100B2 (en) * 2008-06-10 2011-12-14 パイオニア株式会社 Method and apparatus for creating electronic component mounting data
WO2022149264A1 (en) * 2021-01-08 2022-07-14 株式会社Fuji Component presence/absence detection device, training method for component presence/absence detection device, and component mounting machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271234A (en) * 1998-03-23 1999-10-05 Omron Corp Inspecting device and method, and inspecting reference data forming device
JP2009094283A (en) * 2007-10-09 2009-04-30 Yamaha Motor Co Ltd Method of producing mounting board, surface mounting machine, and mounting board production control device
JP4836100B2 (en) * 2008-06-10 2011-12-14 パイオニア株式会社 Method and apparatus for creating electronic component mounting data
WO2022149264A1 (en) * 2021-01-08 2022-07-14 株式会社Fuji Component presence/absence detection device, training method for component presence/absence detection device, and component mounting machine

Similar Documents

Publication Publication Date Title
JP4674220B2 (en) Component transfer device, surface mounter, and electronic component inspection device
US20120004759A1 (en) Component mounting line and component mounting method
JP6487327B2 (en) Mounting inspection device
JP4045838B2 (en) Component mounting management method
CN108029243B (en) Mounting device, shooting processing method and shooting unit
JP6037580B2 (en) Component mounter
CN107006148B (en) Component mounting device and component mounting system
JP6047760B2 (en) Component mounting system and component mounting method
WO2021019609A1 (en) Substrate work system
JP2019175914A (en) Image management method and image management device
WO2017126025A1 (en) Mounting apparatus and image processing method
WO2024069783A1 (en) Control device, mounting device, management device and information processing method
JP2004235582A (en) Method for inspection of mounting error, and substrate inspection apparatus using this method
JP5881237B2 (en) Inspection apparatus, processing apparatus, information processing apparatus, object manufacturing apparatus, and manufacturing method thereof
JP7425091B2 (en) Inspection equipment and inspection method
JP7406571B2 (en) Inspection equipment and inspection method
CN114041332B (en) Mounting device, mounting system, and inspection mounting method
JP2019220718A (en) Component mounting apparatus
CN114073175B (en) Component mounting system
JP7257514B2 (en) Component mounting system and learning device
JP7261303B2 (en) Mounting equipment, mounting system, and inspection mounting method
WO2023195173A1 (en) Component mounting system and image classification method
JP7377631B2 (en) career
WO2021014615A1 (en) Mounting device and method for controlling mounting device
JPWO2018016025A1 (en) Board work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960846

Country of ref document: EP

Kind code of ref document: A1