WO2024069203A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2024069203A1
WO2024069203A1 PCT/IB2022/000568 IB2022000568W WO2024069203A1 WO 2024069203 A1 WO2024069203 A1 WO 2024069203A1 IB 2022000568 W IB2022000568 W IB 2022000568W WO 2024069203 A1 WO2024069203 A1 WO 2024069203A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
cooling device
heat sink
plasma actuator
flow
Prior art date
Application number
PCT/IB2022/000568
Other languages
French (fr)
Japanese (ja)
Inventor
淳平 新井田
健太 江森
滋春 山上
瑛美 高橋
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2022/000568 priority Critical patent/WO2024069203A1/en
Publication of WO2024069203A1 publication Critical patent/WO2024069203A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a cooling device, and more specifically, to a cooling device having a heat sink and a plasma actuator.
  • Power conversion devices such as converters contain electronic components that generate heat, such as semiconductors, capacitors, and coils, and heat sinks are attached to cool these electronic components.
  • the cooling performance of a heat sink generally depends on its volume (heat capacity), material (thermal conductivity), and surface area (heat transfer area) depending on its shape. Therefore, if the heat sink itself is enlarged to improve its cooling performance, the entire power conversion device will become larger, making it difficult to miniaturize the power conversion device.
  • Patent Document 1 discloses a cooling device in which electrodes are provided on the fins of a heat sink to act as a plasma actuator, generating an induced flow between the fins.
  • the fins are given the function of a plasma actuator, and the heat sink itself must be processed, making it less versatile.
  • part of the fins must be covered with an insulator, reducing the heat dissipation area.
  • the present invention was made in consideration of the problems with the conventional technology, and its purpose is to provide a versatile, inexpensive cooling device that does not require machining of the heat sink itself.
  • the inventors have completed the present invention by arranging the plasma actuator on the upstream side of the heat sink so that the main surface of the dielectric is parallel to the main surface of the fin, and by generating an induced flow in the direction of the main airflow.
  • the cooling device of the present invention comprises a heat sink having a plurality of fins erected on a base plate with a flow path formed between the fins, a fan that directs a main airflow through the flow path, and a plasma actuator that discharges between electrodes separated by a plate-shaped dielectric to generate an induced flow.
  • the plasma actuator is arranged upstream of the heat sink in the flow direction of the main airflow, with the main surface of the dielectric and the main surface of the fin parallel to each other, and the flow direction of the induced flow is the same as the flow direction of the main airflow.
  • the plasma actuator is provided upstream of the heat sink so that the main surface of its dielectric is parallel to the main surface of the heat sink fins, making it possible to provide a cooling device that does not require processing of the heat sink, is inexpensive, and can improve cooling efficiency by thinning the boundary layer near the fins.
  • FIG. 1 is a cross-sectional view showing a main part of an example of a plasma actuator.
  • FIG. 1 is a perspective view showing an example of a cooling device of the present invention.
  • FIG. 1 is an XY plan view of a cooling device with a gap between the plasma actuator and the fins of the heat sink.
  • FIG. 4 is a diagram showing the distance between an exposed electrode and a covered electrode.
  • FIG. 13 is a diagram showing a distance between an exposed electrode and a covered electrode that can be substituted for the distance in the flow path direction only.
  • 1 is a cross-sectional view of a main portion of a plasma actuator that generates an induced flow on both sides of a dielectric body.
  • FIG. 1 is a cross-sectional view showing a main portion of a plasma actuator that generates an induced flow on both sides of a dielectric body.
  • FIG. 1 is an XY plan view of a cooling device in which plasma actuators and additional fins are provided alternately.
  • 4 is a diagram illustrating the intake and exhaust directions of air by a blower fan.
  • FIG. FIG. 1 is an XY plan view of a cooling device in which a plasma actuator is arranged in accordance with the rotor blades of a blower fan.
  • FIG. 13 is a diagram showing a state in which the flow of an induced flow is changed by a gap.
  • FIG. 13 is a diagram showing a state in which the induced flow flows linearly without being changed by a gap.
  • the cooling device of the present invention includes a heat sink, a fan, and a plasma actuator.
  • the heat sink has multiple fins standing on one main surface of the base plate, with airflow paths formed between the fins.
  • the fan directs the main airflow through the airflow paths to promote heat dissipation from the heat sink.
  • the plasma actuator has electrodes separated by a plate-shaped dielectric, which are offset in the in-plane direction of the main surface of the dielectric.
  • a voltage is applied between the electrodes to generate a barrier discharge, generating an induced flow in the in-plane direction of the main surface of the dielectric.
  • the plasma actuator is disposed upstream of the heat sink in the direction of the main airflow, with the main surface of its dielectric parallel to the main surface of the fins of the plasma actuator, and generates the induced flow in the same direction as the main airflow, thereby thinning the boundary layer created by friction between the main airflow and the fins, improving cooling efficiency.
  • the X-axis direction (length direction of the heat sink) is the flow direction of the main airflow
  • the Y-axis direction is the width direction of the heat sink
  • the Z-axis direction is the height direction of the heat sink.
  • a heat generating body (body to be cooled) is in contact with the other main surface of the base plate.
  • the cooling device of the present invention is not a cooling device in which the heat sink and plasma actuator are integrated, but rather the heat sink itself is endowed with the function of a plasma actuator. Since the heat sink and the plasma actuator are separate components, there is no need to process the heat sink, and commercially available products can be used, making it highly versatile and inexpensive.
  • the flow path width (Y-axis direction) of the heat sink is not narrowed by the plasma actuator, which suppresses pressure loss of the main airflow and ensures the withstand voltage of the dielectric without the need to thin the dielectric to ensure the flow path width.
  • the plasma actuator is arranged so that the main surface of its dielectric is parallel to the main surface of the fin, and by matching the height of the plasma actuator to the height of the fin, an induced flow can be generated over the entire height direction (Z-axis direction) of the fin.
  • the boundary layer can be made thin over the entire height direction (Z-axis direction) of the flow passage formed between the fins of the heat sink, improving cooling efficiency.
  • Such a plasma actuator can be arranged upright on a support member that is arranged parallel to the main surface of the base plate of the heat sink.
  • the thickness of the dielectric of the plasma actuator is the same as the thickness of the heat sink fins, and that the main surface of the dielectric and the main surface of the fins are arranged on the same plane.
  • the cooling device has a gap between the plasma actuator and the fins of the heat sink, as shown in Figure 3.
  • heat sinks are often made of metals such as aluminum that have high thermal conductivity, and if the plasma actuator and heat sink are in close proximity, undesirable discharges can occur between the plasma actuator's electrode and the heat sink.
  • the gap cuts off the heat transfer path from the heat sink to the plasma actuator, making it difficult for heat to be transferred from the heat sink to the plasma actuator, preventing the temperature of the plasma actuator from becoming too high, improving the durability and reliability of the plasma actuator.
  • the distance d between the plasma actuator and the heat sink is preferably less than three times the thickness t of the fins.
  • the induced flow flowing over the dielectric surface creates a negative pressure in the gap compared to the dielectric surface, and the induced flow is pulled inward in the thickness direction of the fin in the gap, disrupting the flow.
  • the induced flow then collides with the edge of the fin and flows out toward the center of the flow path, making it impossible to thin the boundary layer and reducing cooling efficiency.
  • the phrase "the induced flow flows linearly" refers to a state in which the induced flow does not generate vortexes caused by hitting the ends of the fins.
  • the distance d between the plasma actuator and the heat sink is 0.75 times or less the width w of the flow passage formed between the fins. This makes it possible to further suppress turbulence of the induced flow.
  • the plasma actuator is preferably a combination of electrodes separated by a plate-shaped dielectric, the electrodes being an exposed electrode with its surface exposed, and a covered electrode entirely covered by a dielectric, the exposed electrode having a ground potential and the covered electrode having a high potential.
  • Electrodes are arranged so that the exposed electrode is on the upstream side and the covered electrode is on the downstream side in the main airflow direction, i.e., the covered electrode is offset toward the heat sink from the exposed electrode.
  • the exposed electrode has a low potential
  • the high potential electrode is a covered electrode, which prevents discharge from the high potential electrode to the heat sink. This allows the plasma actuator and the heat sink to be placed close to each other, improving cooling efficiency and enabling the cooling device to be made smaller.
  • the exposed electrode may have a portion exposed on the surface of the dielectric, or may be partially buried in the dielectric so that the surface of the dielectric and the surface of the exposed electrode are flush with each other.
  • the exposed electrode and the covered electrode are arranged so that the distance between them is narrower than the distance between the covered electrode and the fin.
  • the distance between the exposed electrode and the covered electrode refers to the distance between the exposed electrode and the covered electrode at their closest points, as shown in Figure 4, but it may also be substituted with the distance component only in the flow path direction, as shown in Figure 5.
  • the plasma actuator can also have two of the above-mentioned exposed electrodes, which can be arranged in opposing positions with a dielectric between them, as shown in Figure 6.
  • the plasma actuator Since the plasma actuator has two exposed electrodes of the same potential, a barrier discharge occurs on both main surfaces of the plasma actuator, and an induced flow occurs on both main surfaces of the plasma actuator, making it possible for a single plasma actuator to generate an induced flow in two adjacent flow paths.
  • the additional fins are in contact with the fins of the heat sink and have a plate shape extending from the fins of the heat sink to the upstream side in the flow direction of the main airflow, and are positioned opposite the exposed electrode of the plasma actuator across the flow path.
  • the high-potential electrode is covered with a dielectric and the exposed electrode is at ground potential, so even if an additional metal fin is provided opposite the exposed electrode, no discharge will occur toward this additional fin.
  • the additional fins are in contact with the fins of the heat sink, so they can dissipate heat transferred from the heat sink, increasing the surface area of the fins per unit volume of the cooling device and improving the cooling process.
  • the plasma actuator is preferably burst driven.
  • Burst driving is a driving method in which the AC voltage applied between the electrodes is periodically switched on and off.
  • an induced flow occurs when the voltage is on and stops when the voltage is off, creating a pressure difference in the direction of the induced flow, which creates a flow in the opposite direction to the induced flow and generates a vortex.
  • the generation of these vortices causes the main airflow to oscillate in the Y-axis direction as it hits the fins on both sides that form the flow path, thinning the boundary layers on both sides of the flow path that form near the fins, improving cooling performance.
  • the heat sink preferably has straight fins that are erected on the base plate. If the fins are flat, the induced flow flows along the fins, reducing pressure loss and thinning the boundary layer away from the plasma actuator, improving cooling performance.
  • the heat sink preferably also has a lid on the side (top) of the fin opposite the base plate. Providing a lid on the top of the fin prevents leakage of the main airflow through the flow path, and allows the main airflow through the flow path to flow to the outlet of the flow path, improving cooling performance.
  • the lid Furthermore, by extending the lid to the upstream end of the plasma actuator in the direction of the main airflow, and providing a support member on which the plasma actuator is erected so that it is flush with the base plate of the heat sink on the opposite side of the lid, it is possible to prevent leakage of the main airflow from the location where the plasma actuator is installed.
  • the cooling device can have multiple combinations of plasma actuators and heat sinks in the flow path direction. As the flow path becomes longer, a boundary layer is more likely to develop downstream, but by having a plasma actuator in the middle of the flow path, the boundary layer that develops downstream can be made thinner, improving cooling efficiency even if the flow path is long.
  • the fan may be installed either upstream or downstream of the heat sink in the direction of the main airflow, depending on where the cooling device is installed.
  • the main airflow is generated by drawing in the surrounding air into the flow path, so the flow of the main airflow is less likely to be disturbed than when the fan is located upstream, and the main airflow can be straightened from near the entrance of the flow path.
  • the fan may be an axial fan, but is preferably a blower fan (centrifugal fan).
  • the direction of the fan's rotation axis and the direction of discharge are the same, and the shape of the main airflow that is discharged is roughly cylindrical, which differs from the shape of the heat sink's flow path inlet surface. Therefore, it is necessary to straighten the airflow using a nozzle or other device, and make the shape of the main airflow rectangular to match the shape of the flow path inlet surface.
  • blower fans have a rotational axis direction, i.e., the air intake and exhaust directions, that are perpendicular to each other, as shown in Figure 8. Therefore, by aligning the height of the blower fan with the height of the heat sink, it is possible to match the shape of the main airflow discharged to the shape of the flow path inlet face without using a nozzle, and it is possible to reduce the height of the cooling device and make it more compact.
  • blower fan As the fan, it is preferable to arrange multiple plasma actuators so that their tips on the upstream side of the main airflow follow the arc described by the rotor blades of the blower fan, as shown in Figure 9. This allows the main airflow generated by the blower fan to flow through the flow path between the fins without diffusing to the surrounding area.
  • an additional fin can be provided between the plasma actuator, which is arranged along the arc of the blower fan's rotor blades, and the heat sink fin, which abuts against the fin and extends from the fin upstream of the main airflow.
  • the plasma actuators are arranged along the arc described by the blower fan's rotor blades, the plasma actuators at both ends of the heat sink's width will be farther away from the heat sink, making it more difficult to thin the boundary layer.
  • the cooling efficiency can be improved.
  • Example 1 The thickness of the fin and plasma actuator was changed in the range of 0.5 mm to 3.0 mm to form a flow path with a flow path width (Y-axis direction) of 5 mm, and an induced flow was generated from the plasma actuator with a volume force of 3,700 N/ m3 .
  • the flow pattern of the induced flow was investigated by changing the gap between the plasma actuator and the fin and the thickness of the fin.
  • FIG. 10 shows the case where the fin thickness is 1 mm and the gap is 4 mm
  • FIG. 11 shows the case where the fin thickness is 1 mm and the gap is 3 mm.
  • the flow of the induced flow changes and flows toward the center of the flow channel, whereas in FIG. 11, the induced flow flows linearly.
  • the induced flow remains unchanged and flows in a straight line.
  • Example 2 Using a fin and plasma actuator with a thickness of 1 mm, a flow path was formed by changing the flow path width (Y-axis direction) in the range of 2 mm to 5 mm, and an induced flow was generated from the plasma actuator with a volume force of 3700 N/ m3 .
  • the flow pattern of the induced flow was investigated by changing the gap between the plasma actuator and the fin and the flow path width (Y-axis direction). The results are shown in Table 2. It should be noted that no effect was obtained from the plasma actuator when the flow path width was 1 mm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)

Abstract

A cooling device according to the present invention comprises: a heatsink in which a plurality of fins are installed upright on a base plate and a flow path is formed between the fins; a fan that causes a main air stream to flow into the flow path; and a plasma actuator that discharges electricity between electrodes separated by a plate-shaped dielectric body and generates an induced flow. The plasma actuator is such that the main face of the dielectric body and the main faces of the fins are disposed upstream of the heatsink in the flow direction of the main air stream so as to be parallel to each other, and the flow direction of the induced flow is set to be the same as the flow direction of the main air stream; and therefore it is possible to provide a cooling device which is inexpensive due to machining of a heatsink not being necessary, and which can improve cooling efficiency by the thinning a boundary layer near the fins.

Description

冷却装置Cooling system
 本発明は、冷却装置に係り、更に詳細には、ヒートシンクとプラズマアクチュエータとを備える冷却装置に関する。 The present invention relates to a cooling device, and more specifically, to a cooling device having a heat sink and a plasma actuator.
 コンバータ等の電力変換装置には、半導体、コンデンサ、コイルなど、発熱体となる電子部品が含まれており、これらの電子部品を冷却するためにヒートシンクが取り付けられる。 Power conversion devices such as converters contain electronic components that generate heat, such as semiconductors, capacitors, and coils, and heat sinks are attached to cool these electronic components.
 近年、電力変換装置の小型化や大電力化が要求されており、電子部品を高密度に配置して小型化すると、電力変換装置内の発熱要素の密度が上昇し、加えて大電力化によって発熱要素の発熱量が増大するので、これらを冷却するヒートシンクの性能も向上させる必要がある。 In recent years, there has been a demand for smaller power conversion devices with higher power output. When electronic components are arranged densely to reduce size, the density of heat-generating elements in the power conversion device increases. In addition, the amount of heat generated by the heat-generating elements increases as the power increases, so the performance of the heat sinks that cool these components must also be improved.
 ヒートシンクの冷却性能は、一般的にその体積(熱容量)、材料(熱伝導率)、及び形状に応じた表面積(伝熱面積)に依存するため、ヒートシンクの冷却性能を向上させるためにヒートシンク自体を大型化すると、電力変換装置全体が大型化してしまうので、電力変換装置を小型化することは困難である。 The cooling performance of a heat sink generally depends on its volume (heat capacity), material (thermal conductivity), and surface area (heat transfer area) depending on its shape. Therefore, if the heat sink itself is enlarged to improve its cooling performance, the entire power conversion device will become larger, making it difficult to miniaturize the power conversion device.
 特許文献1には、ヒートシンクのフィンに電極を設けてプラズマアクチュエータとし、フィンの間に誘起流を発生させる冷却装置が開示されている。 Patent Document 1 discloses a cooling device in which electrodes are provided on the fins of a heat sink to act as a plasma actuator, generating an induced flow between the fins.
日本国特開2014−183175号公報Japanese Patent Publication No. 2014-183175
 しかしながら、特許文献1に記載の冷却装置にあっては、フィンにプラズマアクチュエータの機能を持たせたものであり、ヒートシンク自体を加工しなければならず汎用性が低い。加えて、フィンの一部を絶縁体で覆う必要があり、放熱面積が減少してしまう。 However, in the cooling device described in Patent Document 1, the fins are given the function of a plasma actuator, and the heat sink itself must be processed, making it less versatile. In addition, part of the fins must be covered with an insulator, reducing the heat dissipation area.
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、ヒートシンク自体を加工する必要がなく、汎用性が高い安価な冷却装置を提供することにある。 The present invention was made in consideration of the problems with the conventional technology, and its purpose is to provide a versatile, inexpensive cooling device that does not require machining of the heat sink itself.
 本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、プラズマアクチュエータを、誘電体の主面と上記フィンの主面とが平行になるようにヒートシンクの上流側に配置し、誘起流を主気流の流れ方向に発生させることで本発明を完成するに至った。 As a result of extensive research into achieving the above objective, the inventors have completed the present invention by arranging the plasma actuator on the upstream side of the heat sink so that the main surface of the dielectric is parallel to the main surface of the fin, and by generating an induced flow in the direction of the main airflow.
 即ち、本発明の冷却装置は、ベースプレートに複数のフィンが立設し、上記フィンの間に流路が形成されたヒートシンクと、上記流路内に主気流を流すファンと、板状の誘電体で隔てられた電極間で放電し、誘起流を発生させるプラズマアクチュエータと、を備える。
 そして、プラズマアクチュエータが、上記ヒートシンクよりも上記主気流の流れ方向上流側に、上記誘電体の主面と上記フィンの主面とが平行に配置され、上記誘起流の流れ方向が、上記主気流の流れ方向と同じであることを特徴とする。
That is, the cooling device of the present invention comprises a heat sink having a plurality of fins erected on a base plate with a flow path formed between the fins, a fan that directs a main airflow through the flow path, and a plasma actuator that discharges between electrodes separated by a plate-shaped dielectric to generate an induced flow.
The plasma actuator is arranged upstream of the heat sink in the flow direction of the main airflow, with the main surface of the dielectric and the main surface of the fin parallel to each other, and the flow direction of the induced flow is the same as the flow direction of the main airflow.
 本発明によれば、プラズマアクチュエータを、その誘電体の主面がヒートシンクのフィンの主面と平行になるように、ヒートシンクの上流側に設けることとしたため、ヒートシンクの加工が不要で安価であると共に、フィン近傍の境界層を薄くして冷却効率を向上できる冷却装置を提供することができる。 According to the present invention, the plasma actuator is provided upstream of the heat sink so that the main surface of its dielectric is parallel to the main surface of the heat sink fins, making it possible to provide a cooling device that does not require processing of the heat sink, is inexpensive, and can improve cooling efficiency by thinning the boundary layer near the fins.
プラズマアクチュエータ一例を示すの要部断面図である。1 is a cross-sectional view showing a main part of an example of a plasma actuator. 本発明の冷却装置の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a cooling device of the present invention. プラズマアクチュエータとヒートシンクのフィンとの間に隙間がある冷却装置のX−Y平面図である。FIG. 1 is an XY plan view of a cooling device with a gap between the plasma actuator and the fins of the heat sink. 露出電極と被覆電極との間隔を示す図である。FIG. 4 is a diagram showing the distance between an exposed electrode and a covered electrode. 露出電極と被覆電極との間隔を代用できる流路方向の成分のみの間隔を示す図である。FIG. 13 is a diagram showing a distance between an exposed electrode and a covered electrode that can be substituted for the distance in the flow path direction only. 誘電体の両側に誘起流を発生させるプラズマアクチュエータの要部断面図である。1 is a cross-sectional view of a main portion of a plasma actuator that generates an induced flow on both sides of a dielectric body. プラズマアクチュエータと付加フィンとを交互に設けた冷却装置のX−Y平面図である。FIG. 1 is an XY plan view of a cooling device in which plasma actuators and additional fins are provided alternately. ブロアファン空気の吸込み方向と吐出し方向とを説明する図である。4 is a diagram illustrating the intake and exhaust directions of air by a blower fan. FIG. ブロアファンの回転翼に合わせてプラズマアクチュエータを配置した冷却装置のX−Y平面図である。FIG. 1 is an XY plan view of a cooling device in which a plasma actuator is arranged in accordance with the rotor blades of a blower fan. 誘起流の流れが隙間によって変化した状態を示す図である。FIG. 13 is a diagram showing a state in which the flow of an induced flow is changed by a gap. 誘起流の流れが隙間によって変化せず直線的に流れる状態を示す図である。FIG. 13 is a diagram showing a state in which the induced flow flows linearly without being changed by a gap.
 本発明の冷却装置について詳細に説明する。
 本発明の冷却装置は、ヒートシンクと、ファンと、プラズマアクチュエータとを備える。
The cooling device of the present invention will now be described in detail.
The cooling device of the present invention includes a heat sink, a fan, and a plasma actuator.
 上記ヒートシンクは、ベースプレートの一方の主面に複数のフィンが立設してフィンの間に流路が形成されている。上記ファンは、上記流路内に主気流を流してヒートシンクからの放熱を促進する。 The heat sink has multiple fins standing on one main surface of the base plate, with airflow paths formed between the fins. The fan directs the main airflow through the airflow paths to promote heat dissipation from the heat sink.
 また、上記プラズマアクチュエータは、図1に示すように、板状の誘電体で隔てられた電極が上記誘電体の主面の面内方向にオフセットして配置されている。そして、上記電極間に電圧を印加することでバリア放電し、上記誘電体の主面の面内方向に誘起流を発生させる。 As shown in Figure 1, the plasma actuator has electrodes separated by a plate-shaped dielectric, which are offset in the in-plane direction of the main surface of the dielectric. A voltage is applied between the electrodes to generate a barrier discharge, generating an induced flow in the in-plane direction of the main surface of the dielectric.
 上記プラズマアクチュエータは、図2に示すように、上記ヒートシンクの上記主気流の流れ方向上流側に、その誘電体の主面がプラズマアクチュエータのフィンの主面と平行になるように配置され、上記主気流の流れ方向と同じ方向に上記誘起流を発生させ、主気流とフィンとの摩擦によって生じる境界層を薄くして冷却効率を向上させる。 As shown in FIG. 2, the plasma actuator is disposed upstream of the heat sink in the direction of the main airflow, with the main surface of its dielectric parallel to the main surface of the fins of the plasma actuator, and generates the induced flow in the same direction as the main airflow, thereby thinning the boundary layer created by friction between the main airflow and the fins, improving cooling efficiency.
 なお、図2中、X軸方向(ヒートシンクの長さ方向)が主気流の流れ方向、Y軸方向がヒートシンクの幅方向、Z軸方向がヒートシンクの高さ方向である。また、ベースプレートの他方の主面には、発熱体(被冷却体)が当接している。 In FIG. 2, the X-axis direction (length direction of the heat sink) is the flow direction of the main airflow, the Y-axis direction is the width direction of the heat sink, and the Z-axis direction is the height direction of the heat sink. A heat generating body (body to be cooled) is in contact with the other main surface of the base plate.
 本発明の冷却装置は、ヒートシンク自体にプラズマアクチュエータの機能を付与した、ヒートシンクとプラズマアクチュエータとが一体の冷却装置ではなく、ヒートシンクとプラズマアクチュエータとがそれぞれ別の部材であるので、ヒートシンクを加工する必要がなく、市販品を使用できるので汎用性が高く安価である。 The cooling device of the present invention is not a cooling device in which the heat sink and plasma actuator are integrated, but rather the heat sink itself is endowed with the function of a plasma actuator. Since the heat sink and the plasma actuator are separate components, there is no need to process the heat sink, and commercially available products can be used, making it highly versatile and inexpensive.
 また、ヒートシンクのフィンにプラズマアクチュエータを設けるものでないため、ヒートシンクの流路幅(Y軸方向)がプラズマアクチュエータによって狭くなることがなく、主気流の圧損を抑制できると共に、流路幅を確保するために誘電体を薄くする必要がなく誘電体の耐電圧を確保できる。 In addition, because the plasma actuator is not attached to the fins of the heat sink, the flow path width (Y-axis direction) of the heat sink is not narrowed by the plasma actuator, which suppresses pressure loss of the main airflow and ensures the withstand voltage of the dielectric without the need to thin the dielectric to ensure the flow path width.
 さらに、本発明の冷却装置は、プラズマアクチュエータが、その誘電体の主面がフィンの主面と平行に配置されており、プラズマアクチュエータの高さをフィンの高さに合わせることで、フィンの高さ方向(Z軸方向)全域に亘り、誘起流を発生させることができる。 Furthermore, in the cooling device of the present invention, the plasma actuator is arranged so that the main surface of its dielectric is parallel to the main surface of the fin, and by matching the height of the plasma actuator to the height of the fin, an induced flow can be generated over the entire height direction (Z-axis direction) of the fin.
 したがって、ヒートシンクのフィン間に形成された流路の高さ方向(Z軸方向)全域に亘って境界層を薄くできるので冷却効率が向上する。 As a result, the boundary layer can be made thin over the entire height direction (Z-axis direction) of the flow passage formed between the fins of the heat sink, improving cooling efficiency.
 このようなプラズマアクチュエータは、ヒートシンクのベースプレートの主面と平行に設けた支持部材に立設させて配置することができる。 Such a plasma actuator can be arranged upright on a support member that is arranged parallel to the main surface of the base plate of the heat sink.
 上記プラズマアクチュエータは、誘電体の厚さがヒートシンクのフィンの厚さと同じであり、かつ、誘電体の主面と上記フィンの主面とが同一平面上に配置されていることが好ましい。 It is preferable that the thickness of the dielectric of the plasma actuator is the same as the thickness of the heat sink fins, and that the main surface of the dielectric and the main surface of the fins are arranged on the same plane.
 これにより、誘電体とフィンと間に段差がなく、上記フィンの主面近傍に流れる誘起流の圧損を小さくできるので、さらに遠くまで境界層を薄くすることが可能であり、冷却性能が向上する。なお、上記「厚さが同じ」は、作製誤差を排除するものでない。 As a result, there is no step between the dielectric and the fin, and the pressure loss of the induced flow near the main surface of the fin can be reduced, making it possible to make the boundary layer thinner further, improving cooling performance. Note that the above "same thickness" does not exclude manufacturing errors.
 上記冷却装置は、図3に示すように、プラズマアクチュエータと上記ヒートシンクのフィンの間に隙間を有することが好ましい。 It is preferable that the cooling device has a gap between the plasma actuator and the fins of the heat sink, as shown in Figure 3.
 上記誘起流によって境界層を薄くするためには、プラズマアクチュエータとヒートシンクとを近接させ、フィンの主面近傍に強い誘起流を流すことが有利である。 In order to thin the boundary layer using the induced flow, it is advantageous to place the plasma actuator close to the heat sink and to create a strong induced flow near the main surface of the fin.
 しかし、ヒートシンクは熱伝導率が高いアルミニウムなどの金属で形成されることが多く、プラズマアクチュエータとヒートシンクとが近接しているとプラズマアクチュエータの電極ヒートシンクとの間で不所望な放電が生じることがある。 However, heat sinks are often made of metals such as aluminum that have high thermal conductivity, and if the plasma actuator and heat sink are in close proximity, undesirable discharges can occur between the plasma actuator's electrode and the heat sink.
 プラズマアクチュエータとヒートシンクとの間に隙間があると、その隙間に誘電体よりも誘電率が小さい空気が存在するようになるので、ヒートシンク方向への不所望な放電が防止される。 If there is a gap between the plasma actuator and the heat sink, air, which has a smaller dielectric constant than the dielectric, will be present in that gap, preventing undesired discharge in the direction of the heat sink.
 加えて、隙間によってヒートシンクからプラズマアクチュエータへの伝熱パスが分断され、ヒートシンクからの熱がプラズマアクチュエータに伝わりにくくなるので、プラズマアクチュエータの温度が高くなることが抑制されて、プラズマアクチュエータの耐久性・信頼性が向上する。 In addition, the gap cuts off the heat transfer path from the heat sink to the plasma actuator, making it difficult for heat to be transferred from the heat sink to the plasma actuator, preventing the temperature of the plasma actuator from becoming too high, improving the durability and reliability of the plasma actuator.
 プラズマアクチュエータとヒートシンクとの間隔dは、フィンの厚さtの3倍以下であることが好ましい。 The distance d between the plasma actuator and the heat sink is preferably less than three times the thickness t of the fins.
 プラズマアクチュエータとヒートシンクとの間に隙間を設けると、誘電体表面を流れる誘起流によって、上記隙間部分が誘電体表面よりも負圧になり、誘起流が隙間のフィンの厚さ方向内側に引っ張られて流れが乱れる。そして、フィンの端部に誘起流がぶつかり、流路の中央方向に張り出して流れるようになるので、境界層を薄くすることができず、冷却効率が低下してしまう。 If a gap is provided between the plasma actuator and the heat sink, the induced flow flowing over the dielectric surface creates a negative pressure in the gap compared to the dielectric surface, and the induced flow is pulled inward in the thickness direction of the fin in the gap, disrupting the flow. The induced flow then collides with the edge of the fin and flows out toward the center of the flow path, making it impossible to thin the boundary layer and reducing cooling efficiency.
 プラズマアクチュエータとヒートシンクとの間隔dを、フィンの厚さtの3倍以下にすることで、上記隙間による誘起流の乱れが抑制され、隙間がない場合と同様に誘起流が直線的に流れるようになるので、冷却効率の低下を防止できる。
 なお、本発明において、「誘起流が直線的に流れる」とは、誘起流がフィンの端部に当たって生じる渦が発生しない状態をいう。
By setting the distance d between the plasma actuator and the heat sink to less than three times the thickness t of the fin, disturbance of the induced flow caused by the gap is suppressed, and the induced flow flows in a straight line, just as if there was no gap, thereby preventing a decrease in cooling efficiency.
In the present invention, the phrase "the induced flow flows linearly" refers to a state in which the induced flow does not generate vortexes caused by hitting the ends of the fins.
 さらに、プラズマアクチュエータとヒートシンクとの間隔dが、上記フィンの間に形成された流路幅wの0.75倍以下であることが好ましい。
 これにより、誘起流の乱れをさらに抑制することができる。
Furthermore, it is preferable that the distance d between the plasma actuator and the heat sink is 0.75 times or less the width w of the flow passage formed between the fins.
This makes it possible to further suppress turbulence of the induced flow.
 上記プラズマアクチュエータは、板状の誘電体で隔てられた電極が、その表面が露出した露出電極と、その全体が誘電体に覆われた被覆電極との組み合わせであり、上記露出電極の電位がグランド電位であり、上記被覆電極の電位が高電位であることが好ましい。 The plasma actuator is preferably a combination of electrodes separated by a plate-shaped dielectric, the electrodes being an exposed electrode with its surface exposed, and a covered electrode entirely covered by a dielectric, the exposed electrode having a ground potential and the covered electrode having a high potential.
 これらの電極は、主気流流れ方向で露出電極が上流側、被覆電極が下流側、すなわち、上記被覆電極は、上記露出電極よりもヒートシンク側にオフセットして配置される。 These electrodes are arranged so that the exposed electrode is on the upstream side and the covered electrode is on the downstream side in the main airflow direction, i.e., the covered electrode is offset toward the heat sink from the exposed electrode.
 上記露出電極の電位が低く、高電位電極が被覆電極であることで、高電位電極からヒートシンクへの放電が防止され、プラズマアクチュエータとヒートシンクとを近接させて冷却効率を向上できると共に、冷却装置の小型化が可能である。 The exposed electrode has a low potential, and the high potential electrode is a covered electrode, which prevents discharge from the high potential electrode to the heat sink. This allows the plasma actuator and the heat sink to be placed close to each other, improving cooling efficiency and enabling the cooling device to be made smaller.
 上記露出電極は、誘電体の表面に露出している部分があればよく、一部が誘電体に埋まり、誘電体の表面と露出電極の表面とが面一になっていてもよい。 The exposed electrode may have a portion exposed on the surface of the dielectric, or may be partially buried in the dielectric so that the surface of the dielectric and the surface of the exposed electrode are flush with each other.
 上記露出電極と上記被覆電極とは、それらの間隔が被覆電極とフィンとの間隔よりも狭くなるように配置されていることが好ましい。 It is preferable that the exposed electrode and the covered electrode are arranged so that the distance between them is narrower than the distance between the covered electrode and the fin.
 このように配置されていることで、高電位電極である被覆電極とフィンとの間での放電を抑制することができる。仮に、被覆電極とフィンとの間で不所望の放電が生じたとしても、露出電極と被覆電極との間の放電が強く、所望の誘起流の流れが強く生じるので、誘起流全体としての流れが、ヒートシンクの方向に向うようになる。 By arranging them in this way, it is possible to suppress discharge between the covered electrode, which is a high-potential electrode, and the fins. Even if an undesired discharge occurs between the covered electrode and the fins, the discharge between the exposed electrode and the covered electrode is strong, and the desired induced flow is strong, so that the overall flow of the induced flow is directed toward the heat sink.
 本発明において、「露出電極と被覆電極との間隔」とは、図4に示すように、露出電極と被覆電極とが最も近接している箇所の間隔をいうが、図5に示すように、流路方向の成分のみの間隔で代用してもよい。 In the present invention, the "distance between the exposed electrode and the covered electrode" refers to the distance between the exposed electrode and the covered electrode at their closest points, as shown in Figure 4, but it may also be substituted with the distance component only in the flow path direction, as shown in Figure 5.
 また、プラズマアクチュエータは、上記露出電極を2つ有することができ、これらの露出電極は、図6に示すように、誘電体を挟んだ対向位置に配置することができる。 The plasma actuator can also have two of the above-mentioned exposed electrodes, which can be arranged in opposing positions with a dielectric between them, as shown in Figure 6.
 プラズマアクチュエータが同電位の露出電極を2つ有することで、プラズマアクチュエータの両側の主面でバリア放電が生じ、プラズマアクチュエータの両側の主面で誘起流が生じるので、1つのプラズマアクチュエータで隣接する2つの流路に誘起流を流すことができる。 Since the plasma actuator has two exposed electrodes of the same potential, a barrier discharge occurs on both main surfaces of the plasma actuator, and an induced flow occurs on both main surfaces of the plasma actuator, making it possible for a single plasma actuator to generate an induced flow in two adjacent flow paths.
 したがって、プラズマアクチュエータをフィンに対して1つおきに配置すればよいので、プラズマアクチュエータの数を減らすことができ、コストを低減することができる。 Therefore, it is only necessary to place plasma actuators on every other fin, which reduces the number of plasma actuators and reduces costs.
 このとき、上記プラズマアクチュエータと付加フィンとを交互に設けることが好ましい。上記付加フィンは、図7に示すように、ヒートシンクのフィンに当接し、該ヒートシンクのフィンから主気流の流れ方向上流側に延びる板状の形状をしており、流路を挟んでプラズマアクチュエータの露出電極と対向する位置に配置される。 In this case, it is preferable to alternately provide the plasma actuators and the additional fins. As shown in FIG. 7, the additional fins are in contact with the fins of the heat sink and have a plate shape extending from the fins of the heat sink to the upstream side in the flow direction of the main airflow, and are positioned opposite the exposed electrode of the plasma actuator across the flow path.
 上記プラズマアクチュエータは、高電位電極が誘電体で被覆されており、露出電極がグランド電位であるので、露出電極と対向する位置に金属製の付加フィンを設けても、この付加フィンに向けて放電することがない。 In the above plasma actuator, the high-potential electrode is covered with a dielectric and the exposed electrode is at ground potential, so even if an additional metal fin is provided opposite the exposed electrode, no discharge will occur toward this additional fin.
 そして、上記付加フィンはヒートシンクのフィンに当接しているので、ヒートシンクから伝わった熱を放熱することができ、冷却装置の体積当たりのフィンの表面積が広がって、冷却製法を向上させることができる。 The additional fins are in contact with the fins of the heat sink, so they can dissipate heat transferred from the heat sink, increasing the surface area of the fins per unit volume of the cooling device and improving the cooling process.
 上記プラズマアクチュエータは、バースト駆動することが好ましい。バースト駆動は、電極間に印加する交流電圧のOnとOffを周期的に切り替える駆動方法である。 The plasma actuator is preferably burst driven. Burst driving is a driving method in which the AC voltage applied between the electrodes is periodically switched on and off.
 電極間に印加する電圧を周期的にOn・Offすることで、Onのときに誘起流が発生しOffのときに止まるので、誘起流の流れ方向で圧力差が生じ、誘起流とは逆向きの流れが生じて渦が発生する。 By periodically turning the voltage applied between the electrodes on and off, an induced flow occurs when the voltage is on and stops when the voltage is off, creating a pressure difference in the direction of the induced flow, which creates a flow in the opposite direction to the induced flow and generates a vortex.
 この渦の発生により、主気流が流路を形成する両側のフィンに当たりながらY軸方向に揺動して流れ、フィンの近傍に生じる流路両側の境界層を薄くして、冷却性能を向上させることができる。 The generation of these vortices causes the main airflow to oscillate in the Y-axis direction as it hits the fins on both sides that form the flow path, thinning the boundary layers on both sides of the flow path that form near the fins, improving cooling performance.
 また、電極間に印加する電圧がOffのときには電力を消費しないので、省電力化できる。 In addition, no power is consumed when the voltage applied between the electrodes is off, which helps save energy.
 上記ヒートシンクは、ベースプレートに立設するフィンがストレートフィンであることが好ましい。フィンが平板状であると、誘起流がフィンに沿って流れるので、圧力損失が低減し、プラズマアクチュエータから離れた境界層をも薄くすることができ、冷却性能を向上させることができる。 The heat sink preferably has straight fins that are erected on the base plate. If the fins are flat, the induced flow flows along the fins, reducing pressure loss and thinning the boundary layer away from the plasma actuator, improving cooling performance.
 また、上記ヒートシンクは、フィンのベースプレートとは反対側(頂部)に蓋を備えることが好ましい。フィンの頂部に蓋が設けられていることで、流路を流れる主気流の漏れを防ぎ、流路内を流れる主気流が流路の出口まで流れるようになるので、冷却性能が向上する。 The heat sink preferably also has a lid on the side (top) of the fin opposite the base plate. Providing a lid on the top of the fin prevents leakage of the main airflow through the flow path, and allows the main airflow through the flow path to flow to the outlet of the flow path, improving cooling performance.
 さらに、上記蓋を、プラズマアクチュエータの主気流の流れ方向上流端まで延ばすと共に、上記蓋の反対側に、ヒートシンクのベースプレートと面一になるように、プラズマアクチュエータが立設した支持部材を設けることで、プラズマアクチュエータを設けた箇所からの主気流の漏れを防ぐことができる。 Furthermore, by extending the lid to the upstream end of the plasma actuator in the direction of the main airflow, and providing a support member on which the plasma actuator is erected so that it is flush with the base plate of the heat sink on the opposite side of the lid, it is possible to prevent leakage of the main airflow from the location where the plasma actuator is installed.
 上記冷却装置は、プラズマアクチュエータと上記ヒートシンクとの組合わせを、流路方向に複数有することができる。流路が長くなると、下流側で境界層が発達し易くなるが、流路の途中にプラズマアクチュエータを有することで、下流側で発達する境界層を薄くすることができ、流路が長くても冷却効率を向上させることができる。 The cooling device can have multiple combinations of plasma actuators and heat sinks in the flow path direction. As the flow path becomes longer, a boundary layer is more likely to develop downstream, but by having a plasma actuator in the middle of the flow path, the boundary layer that develops downstream can be made thinner, improving cooling efficiency even if the flow path is long.
 上記ファンは、主気流の流れ方向ヒートシンクの上流側に設けてもよく、また下流側に設けてもよく、冷却装置の設置個所に応じて選択できる。 The fan may be installed either upstream or downstream of the heat sink in the direction of the main airflow, depending on where the cooling device is installed.
 ファンをヒートシンクの上流側に設ける場合は、主気流を流路内に押し込むので流路内の圧力が高くなり、流路内に粉塵や埃が入り難くなる。 If the fan is placed upstream of the heat sink, the main airflow is pushed into the flow path, increasing the pressure inside the flow path and making it difficult for dust and dirt to get into the flow path.
 また、ファンをヒートシンクの下流側に設ける場合は、周囲の空気を流路内に引き込むことで主気流が生じるので、ファンが上流側にある場合に比べて主気流の流れを乱れ難く、流路の入り口近傍から主気流を整流することができる。 In addition, when the fan is installed downstream of the heat sink, the main airflow is generated by drawing in the surrounding air into the flow path, so the flow of the main airflow is less likely to be disturbed than when the fan is located upstream, and the main airflow can be straightened from near the entrance of the flow path.
 上記ファンは、軸流ファンであってもよいが、ブロアファン(遠心ファン)であることが好ましい。 The fan may be an axial fan, but is preferably a blower fan (centrifugal fan).
 軸流ファンは、ファンの回転軸方向と吐出し方向とが同方向で、吐き出される主気流の形状が略円筒形であり、ヒートシンクの流路入口面の形状と異なるので、ノズルなどによって整流し、主気流の形状を流路入口面の形状に合わせて長方形にする必要がある。 In an axial fan, the direction of the fan's rotation axis and the direction of discharge are the same, and the shape of the main airflow that is discharged is roughly cylindrical, which differs from the shape of the heat sink's flow path inlet surface. Therefore, it is necessary to straighten the airflow using a nozzle or other device, and make the shape of the main airflow rectangular to match the shape of the flow path inlet surface.
 これに対し、ブロアファンは、軸流ファンと異なり、図8に示すように、ファンの回転軸方向、すなわち空気の吸込み方向と吐出し方向とが直交している。したがって、ブロアファンの高さをヒートシンクの高さに揃えることで、ノズルを用いなくても吐き出される主気流の形状を流路入口面の形状に合わせることができると共に、冷却装置の高さを抑えて小型化することが可能である。 In contrast, unlike axial fans, blower fans have a rotational axis direction, i.e., the air intake and exhaust directions, that are perpendicular to each other, as shown in Figure 8. Therefore, by aligning the height of the blower fan with the height of the heat sink, it is possible to match the shape of the main airflow discharged to the shape of the flow path inlet face without using a nozzle, and it is possible to reduce the height of the cooling device and make it more compact.
 上記ファンとしてブロアファンを用いる場合は、図9に示すように、複数のプラズマアクチュエータを、それらの主気流上流側の先端がブロアファンの回転翼が描く円弧に沿うように配置することが好ましい。これによりブロアファンから発生する主気流を周りに拡散させることなくフィン間の流路に主気流を流すことができる。 When using a blower fan as the fan, it is preferable to arrange multiple plasma actuators so that their tips on the upstream side of the main airflow follow the arc described by the rotor blades of the blower fan, as shown in Figure 9. This allows the main airflow generated by the blower fan to flow through the flow path between the fins without diffusing to the surrounding area.
 また、上記ブロアファンの回転翼が描く円弧に沿うように配置されたプラズマアクチュエータとヒートシンクのフィンとの間に、上記フィンに当接し、このフィンから主気流上流側に延びる付加フィンを設けることができる。 Furthermore, an additional fin can be provided between the plasma actuator, which is arranged along the arc of the blower fan's rotor blades, and the heat sink fin, which abuts against the fin and extends from the fin upstream of the main airflow.
 プラズマアクチュエータをブロアファンの回転翼が描く円弧に沿って配置すると、ヒートシンクの幅方向両端のプラズマアクチュエータは、ヒートシンクから遠くなるので境界層を薄くし難くなる。 If the plasma actuators are arranged along the arc described by the blower fan's rotor blades, the plasma actuators at both ends of the heat sink's width will be farther away from the heat sink, making it more difficult to thin the boundary layer.
 プラズマアクチュエータとフィンとの間に、フィンに当接する付加フィンを設けることで、ヒートシンクの熱が付加フィンに伝わるので、プラズマアクチュエータによる境界層を薄くする効果が維持され、付加フィンによる放熱面積の増大と相俟って冷却効率を向上させることができる。 By providing an additional fin between the plasma actuator and the fin that comes into contact with the fin, the heat from the heat sink is transferred to the additional fin, maintaining the effect of thinning the boundary layer provided by the plasma actuator, and coupled with the increased heat dissipation area provided by the additional fin, the cooling efficiency can be improved.
 以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples.
[実施例1]
 フィン及びプラズマアクチュエータの厚さを0.5mm~3.0mmの範囲で変化させて流路幅(Y軸方向)が5mmの流路を形成し、体積力3700N/mでプラズマアクチュエータから誘起流を発生させ、プラズマアクチュエータとフィンとの間の隙間と、フィンの厚さとを変えて誘起流の流れ方を調べた。
[Example 1]
The thickness of the fin and plasma actuator was changed in the range of 0.5 mm to 3.0 mm to form a flow path with a flow path width (Y-axis direction) of 5 mm, and an induced flow was generated from the plasma actuator with a volume force of 3,700 N/ m3 . The flow pattern of the induced flow was investigated by changing the gap between the plasma actuator and the fin and the thickness of the fin.
 フィンの厚さが1mmで隙間が4mmの場合を図10に、また、フィンの厚さが1mmで隙間が3mの場合を図11に示す。
 図10では誘起流の流れが変化し、流路の中央に向かって張り出して流れており、図11では誘起流が直線的に流れていることが分かる。
FIG. 10 shows the case where the fin thickness is 1 mm and the gap is 4 mm, and FIG. 11 shows the case where the fin thickness is 1 mm and the gap is 3 mm.
In FIG. 10, the flow of the induced flow changes and flows toward the center of the flow channel, whereas in FIG. 11, the induced flow flows linearly.
 表1に隙間がない場合と同様に誘起流が直線的に流れた場合を○、誘起流がフィンの端部にぶつかり流れが乱れた場合を×で示した。 As in Table 1, when there is no gap, the induced flow flows in a straight line, and when the induced flow hits the edge of the fin and becomes turbulent, it is indicated with an "O" and an "X."
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ヒートシンクのフィンとの間隔が3.0mm、フィンの厚さが1.0mmであり、プラズマアクチュエータとヒートシンクのフィンとの間隔が、フィンの厚さの3倍である場合は、誘起流の流れが変わらず直線的に流れる。 As shown in Table 1, if the distance between the heat sink fins is 3.0 mm, the thickness of the fins is 1.0 mm, and the distance between the plasma actuator and the heat sink fins is three times the thickness of the fins, the induced flow remains unchanged and flows in a straight line.
 また、ヒートシンクのフィンとの間隔が4.0mm、フィンの厚さが1.0mmの場合、及びヒートシンクのフィンとの間隔が2.0mm、フィンの厚さが0.5mmの場合は、誘起流の流れが変わり、フィンから離れた流れとなった。 In addition, when the distance between the heat sink and the fins was 4.0 mm and the fin thickness was 1.0 mm, and when the distance between the heat sink and the fins was 2.0 mm and the fin thickness was 0.5 mm, the induced flow changed and flowed away from the fins.
 これらの結果から、プラズマアクチュエータ上記ヒートシンクのフィンとの間隔が、フィンの厚さの3倍以下であれば、誘起流が直線的に流れ、フィン表面近傍の境界層を薄くでき、不所望の放電防止と冷却効率の向上とを両立できることが分かる。 These results show that if the distance between the plasma actuator and the heat sink fins is three times the thickness of the fins or less, the induced flow will flow linearly and the boundary layer near the fin surface will be thin, making it possible to prevent undesired discharges while improving cooling efficiency.
[実施例2]
 厚さが1mmのフィン及びプラズマアクチュエータを用いて、流路幅(Y軸方向)を2mm~5mmの範囲で変化させて流路を形成し、体積力3700N/mでプラズマアクチュエータから誘起流を発生させ、プラズマアクチュエータとフィンとの間の隙間と、流路幅(Y軸方向)とを変えて誘起流の流れ方を調べた。結果を表2に示す。
 なお、流路幅1mm以下ではプラズマアクチュエータによる効果が得られなかった。
[Example 2]
Using a fin and plasma actuator with a thickness of 1 mm, a flow path was formed by changing the flow path width (Y-axis direction) in the range of 2 mm to 5 mm, and an induced flow was generated from the plasma actuator with a volume force of 3700 N/ m3 . The flow pattern of the induced flow was investigated by changing the gap between the plasma actuator and the fin and the flow path width (Y-axis direction). The results are shown in Table 2.
It should be noted that no effect was obtained from the plasma actuator when the flow path width was 1 mm or less.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ヒートシンクのフィンとの間隔が3.0mm、流路幅が4mmであり、プラズマアクチュエータとヒートシンクのフィンとの間隔が、流路幅の0.75倍である場合は、誘起流の流れが変わらず直線的に流れる。 As shown in Table 2, when the distance between the heat sink fins is 3.0 mm, the flow path width is 4 mm, and the distance between the plasma actuator and the heat sink fins is 0.75 times the flow path width, the induced flow remains unchanged and flows linearly.
 また、ヒートシンクのフィンとの間隔が4.0mm、流路幅が5mmである場合は、誘起流の流れが変わり、フィンから離れた流れとなった。 In addition, when the distance between the heat sink fins was 4.0 mm and the flow path width was 5 mm, the induced flow changed and flowed away from the fins.
 これらの結果から、プラズマアクチュエータ上記ヒートシンクのフィンとの間隔が、流路幅の0.75倍以下であれば、誘起流が直線的に流れ、フィン表面近傍の境界層を薄くでき、不所望の放電防止と冷却効率の向上とを両立できることが分かる。 These results show that if the distance between the plasma actuator and the fins of the heat sink is 0.75 times or less than the flow path width, the induced flow will flow linearly, making the boundary layer near the fin surface thinner, and preventing undesired discharges while improving cooling efficiency.
  1  プラズマアクチュエータ
 11  露出電極
 12  被覆電極
 13  誘電体
 14  交流電源
 15  誘起流
  2  ヒートシンク
 21  フィン
 22  ベースプレート
 23  蓋
  3  ファン
 31  主気流
 32  回転翼
 33  空気の吸込み方向
 34  空気の吐出し方向
  4  付加フィン
  5  発熱体
REFERENCE SIGNS LIST 1 plasma actuator 11 exposed electrode 12 covered electrode 13 dielectric 14 AC power supply 15 induced flow 2 heat sink 21 fin 22 base plate 23 lid 3 fan 31 main air flow 32 rotor 33 air intake direction 34 air discharge direction 4 additional fin 5 heating element

Claims (18)

  1.  ベースプレートに複数のフィンが立設し、上記フィンの間に流路が形成されたヒートシンクと、
     上記流路内に主気流を流すファンと、
     板状の誘電体で隔てられた電極間で放電し、誘起流を発生させるプラズマアクチュエータと、を備える冷却装置であって、
     上記プラズマアクチュエータが、上記ヒートシンクよりも上記主気流の流れ方向上流側に、上記誘電体の主面と上記フィンの主面とが平行に配置され、
     上記誘起流の流れ方向が、上記主気流の流れ方向と同じであることを特徴とする冷却装置。
    a heat sink having a plurality of fins standing on a base plate and a flow path formed between the fins;
    A fan for blowing a main airflow through the flow path;
    A cooling device comprising: a plasma actuator that generates an induced flow by discharging between electrodes separated by a plate-shaped dielectric,
    the plasma actuator is disposed upstream of the heat sink in the flow direction of the main airflow, with a main surface of the dielectric body and a main surface of the fin being parallel to each other;
    A cooling device characterized in that the flow direction of the induced flow is the same as the flow direction of the main air flow.
  2.  上記誘電体の厚さと上記フィンの厚さとが同じであり、
     上記誘電体の主面と上記フィンの主面とが同一平面上にあることを特徴とする請求項1に記載の冷却装置。
    the thickness of the dielectric and the thickness of the fin are the same;
    2. The cooling device according to claim 1, wherein a main surface of the dielectric body and a main surface of the fin are on the same plane.
  3.  上記プラズマアクチュエータと上記ヒートシンクのフィンとの間に隙間を有することを特徴とする請求項2に記載の冷却装置。 The cooling device according to claim 2, characterized in that there is a gap between the plasma actuator and the fins of the heat sink.
  4.  上記プラズマアクチュエータと上記ヒートシンクのフィンとの間隔が、フィンの厚さの3倍以下であることを特徴とする請求項3に記載の冷却装置。 The cooling device according to claim 3, characterized in that the distance between the plasma actuator and the fins of the heat sink is less than three times the thickness of the fins.
  5.  上記プラズマアクチュエータと上記ヒートシンクのフィンとの間隔が、上記フィンの間に形成された流路幅の0.75倍以下であることを特徴とする請求項4に記載の冷却装置。 The cooling device according to claim 4, characterized in that the distance between the plasma actuator and the fins of the heat sink is 0.75 times or less the width of the flow path formed between the fins.
  6.  上記プラズマアクチュエータの電極が、少なくとも表面が露出した露出電極と、上記誘電体に覆われた被覆電極と、の組み合わせであり、
     上記露出電極の電位がグランド電位であり、上記被覆電極の電位が高電位であることを特徴とする請求項1に記載の冷却装置
    the electrodes of the plasma actuator are a combination of an exposed electrode having at least a surface exposed, and a covered electrode covered with the dielectric,
    2. The cooling device according to claim 1, wherein the exposed electrode has a ground potential and the covered electrode has a high potential.
  7.  上記露出電極と上記被覆電極とは、それらの間隔が上記被覆電極と上記フィンとの間隔より狭く配置されていることを特徴とする請求項6に記載の冷却装置。 The cooling device according to claim 6, characterized in that the gap between the exposed electrode and the covered electrode is narrower than the gap between the covered electrode and the fin.
  8.  上記プラズマアクチュエータが露出電極を2つ有し、
     上記2つの露出電極が、上記誘電体を挟んで対向する位置に配置されていることを特徴とする請求項1に記載の冷却装置。
    The plasma actuator has two exposed electrodes,
    2. The cooling device according to claim 1, wherein the two exposed electrodes are disposed at positions facing each other with the dielectric interposed therebetween.
  9.  上記ヒートシンクのフィンに当接し、該ヒートシンクのフィンから延びる付加フィンを有し、
     上記付加フィンと上記プラズマアクチュエータとが交互に配置されていることを特徴とする請求項1に記載の冷却装置。
    an additional fin abutting the fin of the heat sink and extending from the fin of the heat sink;
    The cooling device according to claim 1 , wherein the additional fins and the plasma actuators are arranged alternately.
  10.  上記ファンが、上記プラズマアクチュエータの流路方向上流側に配置されていることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, characterized in that the fan is disposed upstream of the plasma actuator in the flow path direction.
  11.  上記ファンが、ブロアファンであることを特徴とする請求項10に記載の冷却装置。 The cooling device according to claim 10, characterized in that the fan is a blower fan.
  12.  複数のプラズマアクチュエータが、それらの主気流上流側の先端が上記ブロアファンの回転翼が描く円弧に沿って配置されていることを特徴とする請求項11に記載の冷却装置。 The cooling device according to claim 11, characterized in that the tips of the plasma actuators on the upstream side of the main airflow are arranged along the arc described by the rotor blades of the blower fan.
  13.  少なくともヒートシンクの幅方向両端のプラズマアクチュエータとフィンとの間に、上記フィンに当接し、このフィンから主気流上流側に延びる付加フィンを有することを特徴とする請求項11に記載の冷却装置。 The cooling device according to claim 11, characterized in that it has additional fins at least between the plasma actuator and the fins at both ends of the width of the heat sink, which abut the fins and extend from the fins upstream of the main airflow.
  14.  上記ファンが、上記プラズマアクチュエータの流路方向下流側に配置されていることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, characterized in that the fan is disposed downstream of the plasma actuator in the flow path direction.
  15.  上記ヒートシンクのフィンが、ストレートフィンであることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, characterized in that the fins of the heat sink are straight fins.
  16.  上記プラズマアクチュエータと上記ヒートシンクとの組合わせを、流路方向に複数有することを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, characterized in that it has multiple combinations of the plasma actuator and the heat sink in the flow path direction.
  17.  上記ヒートシンクは、上記フィンを挟んで上記ベースプレートの反対側が蓋で覆われていることを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, characterized in that the heat sink is covered with a lid on the opposite side of the base plate, sandwiching the fins.
  18.  上記プラズマアクチュエータをバースト駆動することを特徴とする請求項1に記載の冷却装置。 The cooling device according to claim 1, characterized in that the plasma actuator is burst driven.
PCT/IB2022/000568 2022-09-29 2022-09-29 Cooling device WO2024069203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2022/000568 WO2024069203A1 (en) 2022-09-29 2022-09-29 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2022/000568 WO2024069203A1 (en) 2022-09-29 2022-09-29 Cooling device

Publications (1)

Publication Number Publication Date
WO2024069203A1 true WO2024069203A1 (en) 2024-04-04

Family

ID=90476473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/000568 WO2024069203A1 (en) 2022-09-29 2022-09-29 Cooling device

Country Status (1)

Country Link
WO (1) WO2024069203A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113406A (en) * 2017-01-13 2018-07-19 アルパイン株式会社 Electronic device
JP2020057720A (en) * 2018-10-03 2020-04-09 日産自動車株式会社 Cooling device
JP2021106140A (en) * 2019-12-27 2021-07-26 日産自動車株式会社 Power converter
JP2022118894A (en) * 2021-02-03 2022-08-16 国立研究開発法人産業技術総合研究所 plasma actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113406A (en) * 2017-01-13 2018-07-19 アルパイン株式会社 Electronic device
JP2020057720A (en) * 2018-10-03 2020-04-09 日産自動車株式会社 Cooling device
JP2021106140A (en) * 2019-12-27 2021-07-26 日産自動車株式会社 Power converter
JP2022118894A (en) * 2021-02-03 2022-08-16 国立研究開発法人産業技術総合研究所 plasma actuator

Similar Documents

Publication Publication Date Title
CA2507651C (en) Method, system and apparatus for cooling high power density devices
US8881794B2 (en) Cooling device
US8342234B2 (en) Plasma-driven cooling heat sink
US20080066888A1 (en) Heat sink
US5304845A (en) Apparatus for an air impingement heat sink using secondary flow generators
US20030063439A1 (en) Radial base heatsink
US20110261499A1 (en) Collector electrode for an ion wind fan
WO2024069203A1 (en) Cooling device
JP6054423B2 (en) Channel member, heat exchanger using the same, and semiconductor device
JP2014045134A (en) Flow passage member, heat exchanger using the same, and semiconductor device
US10921062B2 (en) Cooling fan and heat dissipating module including the same
JP2012028361A (en) Heat sink
WO2023156804A1 (en) Cooling device
JP2024004666A (en) Cooling device
JP4135904B2 (en) Heat sink cooling device and power electronics device having the same
EP1579155B1 (en) Method and system for cooling high power density devices
JP6222938B2 (en) Heat dissipation device
JPH11135694A (en) Apparatus for cooling electronic apparatus
US20240147677A1 (en) Lower module of power electronic device
JP2002368470A (en) Heat generating body cooler
JP2003023283A (en) Cooling device for electronic component
TWI300692B (en) Heat dissipation apparatus
JPH11145349A (en) Heat sink for forced cooling
TWI322922B (en) Projector having mechanism for lowering its surface temperature and method using the same
JP3917411B2 (en) Heat sink and cooling device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959709

Country of ref document: EP

Kind code of ref document: A1