WO2024067831A1 - 控制车门开关的方法、装置、车辆以及计算机存储介质 - Google Patents
控制车门开关的方法、装置、车辆以及计算机存储介质 Download PDFInfo
- Publication number
- WO2024067831A1 WO2024067831A1 PCT/CN2023/122751 CN2023122751W WO2024067831A1 WO 2024067831 A1 WO2024067831 A1 WO 2024067831A1 CN 2023122751 W CN2023122751 W CN 2023122751W WO 2024067831 A1 WO2024067831 A1 WO 2024067831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitive sensing
- touch
- door
- vehicle
- touch sliding
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 99
- 230000001681 protective effect Effects 0.000 claims description 22
- 238000012790 confirmation Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 6
- 230000001960 triggered effect Effects 0.000 description 6
- 238000004590 computer program Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05F—DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
- E05F15/00—Power-operated mechanisms for wings
- E05F15/70—Power-operated mechanisms for wings with automatic actuation
- E05F15/73—Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects
- E05F15/75—Power-operated mechanisms for wings with automatic actuation responsive to movement or presence of persons or objects responsive to the weight or other physical contact of a person or object
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/10—Electronic control
- E05Y2400/52—Safety arrangements associated with the wing motor
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2400/00—Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
- E05Y2400/80—User interfaces
- E05Y2400/85—User input means
- E05Y2400/856—Actuation thereof
- E05Y2400/858—Actuation thereof by body parts, e.g. by feet
- E05Y2400/86—Actuation thereof by body parts, e.g. by feet by hand
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
- E05Y2900/00—Application of doors, windows, wings or fittings thereof
- E05Y2900/50—Application of doors, windows, wings or fittings thereof for vehicles
- E05Y2900/53—Type of wing
- E05Y2900/531—Doors
Definitions
- the present application relates to the field of vehicle technology, and in particular to a method, device, vehicle and computer storage medium for controlling a door switch.
- a capacitive sensor is used for the user to touch and click to electrically open and close the door, but there is a technical problem that the door switch may be triggered by mistake.
- the main purpose of the present application is to provide a method, device, vehicle and computer storage medium for controlling a door switch, aiming to control the electric door switch by a door switch triggering method combining multi-point capacitance with algorithm timing, thereby effectively reducing the probability of capacitor false triggering the door switch, so as to solve the technical problem that the traditional electric door switch method is easily triggered by error.
- the present application provides a method for controlling a door switch, the method for controlling a door switch being applied to a vehicle equipped with a capacitive sensing area, the capacitive sensing area including a plurality of capacitive sensing points;
- the method for controlling a door switch comprises:
- the door is opened or closed according to a triggering sequence of the touch sliding operation for the plurality of capacitive sensing points.
- the method before the step of determining whether the touch sliding operation is a false touch operation according to the trigger state information of the touch sliding operation on the plurality of capacitive sensing points, the method further includes:
- the touch dwell time, the touch sliding speed and the touch sliding time are determined as trigger state information of the touch sliding operation for the plurality of capacitive sensing points.
- the step of determining whether the touch sliding operation is a false touch operation according to the trigger state information of the touch sliding operation on the plurality of capacitive sensing points includes:
- the touch sliding speed is greater than the speed threshold, and the touch sliding time belongs to the sliding completion time range, it is determined that the touch sliding operation is not an accidental touch operation.
- the number of the plurality of capacitive sensing points is greater than or equal to three;
- the step of controlling the opening or closing of the door according to the triggering sequence of the plurality of capacitive sensing points according to the touch sliding operation comprises:
- the door is controlled to be opened, or, if the trigger sequence corresponds to the door closing direction, the door is controlled to be closed.
- the method further includes:
- a preset door opening and closing instruction prompt is output to control the door to be opened or closed based on a confirmation operation of the door opening and closing instruction prompt.
- the method further comprises:
- the door is controlled to be opened or closed.
- the vehicle is further configured with a protective electrode area, and the protective electrode area is configured at a peripheral position of the capacitive sensing area.
- the method further includes:
- the sensing signal collected by the capacitive sensing area is shielded.
- the present application also provides a device for controlling a door switch, wherein the device for controlling a door switch is applied to a vehicle equipped with a capacitive sensing area, wherein the capacitive sensing area includes a plurality of capacitive sensing points;
- the device for controlling the door switch comprises:
- a collection module used for collecting a touch sliding operation performed by a vehicle user through the capacitive sensing area
- a false touch judgment module configured to determine whether the touch sliding operation is a false touch operation according to trigger state information of the touch sliding operation on the plurality of capacitive sensing points;
- the control module is used to control the opening or closing of the vehicle door according to the triggering sequence of the touch sliding operation for the plurality of the capacitive sensing points when it is determined that the touch sliding operation is not an accidental touch operation.
- each functional module of the device for controlling a vehicle door switch can implement the steps of any of the above-mentioned methods for controlling a vehicle door switch when running.
- the present application also provides a vehicle, which includes: a memory, a processor, and a program of the method for controlling a door switch stored in the memory and executable on the processor.
- a vehicle which includes: a memory, a processor, and a program of the method for controlling a door switch stored in the memory and executable on the processor.
- the present application also provides a computer storage medium, on which is stored a program for implementing the above-mentioned method for controlling a vehicle door switch.
- a program for implementing the above-mentioned method for controlling a vehicle door switch When the program for the method for controlling a vehicle door switch is executed by a processor, the steps of the above-mentioned method for controlling a vehicle door switch are implemented.
- the present application also provides a computer program product, including a computer program, which implements the steps of the above-mentioned method for controlling a vehicle door switch when executed by a processor.
- the present application provides a method, device, vehicle and computer storage medium for controlling a door switch.
- the method comprises: using a vehicle equipped with a capacitive sensing area including a plurality of capacitive sensing points, collecting a touch sliding operation performed by a vehicle user through the capacitive sensing area; then determining whether the touch sliding operation is a false touch operation based on trigger state information of the touch sliding operation for the plurality of capacitive sensing points; and finally, when it is determined that the touch sliding operation is not a false touch operation, immediately controlling the opening or closing of the door based on the triggering sequence of the touch sliding operation for the plurality of capacitive sensing points.
- the present application forms a capacitive sensing area by combining multiple capacitive sensing points, thereby collecting the touch sliding operation of the vehicle user to control the door opening and closing based on the capacitive sensing area, and judging the collected touch sliding operation in combination with the algorithm to determine whether the touch sliding operation is a false trigger. That is, the present application realizes the control of the electric door opening and closing through the door opening and closing triggering method of multi-point capacitance combined with algorithm timing, which can effectively reduce the probability of capacitor false triggering the door opening and closing, thereby solving the technical problem that the traditional electric door opening and closing method is easily falsely triggered.
- FIG1 is a flow chart of a method for controlling a door switch according to an embodiment of the present invention
- FIG2 is a schematic diagram of the structure of a capacitive sensing area and a protective electrode area involved in an embodiment of a method for controlling a door switch of the present application;
- FIG3 is a schematic diagram of the structure of the functional modules involved in an embodiment of the device for controlling a door switch of the present application
- FIG4 is a schematic diagram of the device structure of the hardware operating environment involved in the vehicle in the embodiment of the present application.
- the existing method of using a capacitive sensor for the user to touch and click to electrically open and close the door has a technical problem of the door switch being triggered by mistake.
- an embodiment of the present application provides a method for controlling a door switch, by configuring a vehicle with a capacitive sensing area including multiple capacitive sensing points, and collecting a touch sliding operation performed by a vehicle user through the capacitive sensing area; then, based on the triggering state information of the touch sliding operation for the multiple capacitive sensing points, determining whether the touch sliding operation is a false touch operation; finally, when it is determined that the touch sliding operation is not a false touch operation, immediately controlling the opening or closing of the door according to the triggering sequence of the touch sliding operation for the multiple capacitive sensing points.
- the present application forms a capacitive sensing area by combining multiple capacitive sensing points, thereby collecting the touch sliding operation of the vehicle user to control the door opening and closing based on the capacitive sensing area, and judging the collected touch sliding operation in combination with an algorithm to determine whether the touch sliding operation is an erroneous trigger.
- the present application realizes the control of the electric door opening and closing by combining the door opening and closing triggering method of multi-point capacitance combined with algorithm timing, which can effectively reduce the probability of the capacitor erroneously triggering the door opening and closing, thereby solving the technical problem that the traditional electric door opening and closing method is easily triggered by error.
- Figure 1 is a flowchart of a first embodiment of a method for controlling a door switch of the present application. It should be noted that although a logical sequence is shown in the flowchart, in some cases, the steps shown or described may be performed in a different order than that shown here.
- the execution subject of the method for controlling the door switch of the present application can be the vehicle itself.
- the following text uses the vehicle as the execution subject to explain the first embodiment of the method for controlling the door switch of the present application.
- the method for controlling a door switch of the present application specifically includes the following steps:
- Step S10 collecting a touch sliding operation performed by a vehicle user through the capacitive sensing area
- the vehicle configures a capacitive sensing area formed by a combination of multiple capacitive sensing points at a position on the outside and/or inside of the door that is suitable for the vehicle driver or passenger to operate.
- the vehicle can collect touch sliding operations performed in the capacitive sensing area by vehicle users including the vehicle driver, passengers or other personnel in order to control the opening or closing of the door by touch through the capacitive sensing area.
- the positions on the outside of the above-mentioned door suitable for the vehicle driver or passenger to operate include but are not limited to: around the vehicle windows, the edge of the door close to the B-pillar of the vehicle body, and the position of the vehicle rearview mirror.
- the capacitive sensing area formed by the combination of multiple capacitive sensing points can be specifically shown as "1 sensing area" in Figure 2, that is, multiple capacitive sensing points (key1 to key4 in the figure) are arranged horizontally in sequence to form the entire capacitive sensing area.
- multiple capacitive sensing points can of course be arranged in other combinations different from those listed here to form a capacitive sensing area, such as, multiple capacitive sensing points are arranged vertically in sequence, multiple capacitive sensing points are arranged side by side horizontally or vertically, and multiple capacitive sensing points are arranged in regular lines (such as arcs) or irregular lines (such as wavy lines) in sequence, etc. That is, the method of controlling the door switch of the present application is not limited to the position combination relationship of multiple capacitive sensing points, as long as a complete capacitive sensing area is formed by combining multiple capacitive sensing points to collect the touch sliding operation performed by the vehicle user.
- Step S20 determining whether the touch sliding operation is an accidental touch operation according to the trigger state information of the touch sliding operation on the plurality of capacitive sensing points;
- the vehicle while the vehicle is collecting the touch sliding operation performed by the vehicle user through the above-mentioned capacitive sensing area, the vehicle also obtains the trigger state information of the touch sliding operation for multiple capacitive sensing points based on one or more capacitive sensing points in the capacitive sensing area. Therefore, the vehicle can determine whether the currently collected touch sliding operation is an accidental touch operation performed by the vehicle user or other objects in the capacitive sensing area based on the trigger state information in combination with the algorithm.
- the trigger state information of the touch sliding operation for multiple capacitive sensing points includes but is not limited to: touch dwell time, touch sliding speed and touch sliding time. Based on this, before the above step S20, the method of controlling the door switch of the present application may also include:
- Step a obtaining the touch dwell time of the touch sliding operation on a first sensing point among the plurality of capacitive sensing points, wherein the first sensing point is the first capacitive sensing point arranged in a direction corresponding to the door opening and closing of the plurality of capacitive sensing points;
- the vehicle when the vehicle passes through the entire capacitive sensing area - 1 sensing area as shown in Figure 2, and collects the touch sliding operation performed by the vehicle user, it first uses the first sensing point in the capacitive sensing area - key1 or key4 to obtain the touch residence time when the vehicle user starts to perform the touch sliding operation and stays at the first sensing point to perform the touch operation on the first sensing point.
- the arrangement order of the points from key1 to key4 corresponds to the door opening direction
- the arrangement order from key4 to key1 corresponds to the door closing direction. Then, when the vehicle user performs a touch sliding operation in the order from key1 to key4 to control the door opening, the above-mentioned first sensing point is key1; or, when the vehicle user performs a touch sliding operation in the order from key4 to key1 to control the door opening, the above-mentioned first sensing point is key4.
- Step b obtaining the touch sliding speed of the touch sliding operation on two adjacent sensing points among the plurality of capacitive sensing points;
- Step c obtaining the touch sliding time for the touch sliding operation to complete touching the plurality of capacitive sensing points
- Step d determining the touch dwell time, the touch sliding speed and the touch sliding time as trigger state information of the touch sliding operation for the plurality of capacitive sensing points.
- the vehicle synchronously or asynchronously obtains the touch sliding operation performed by the vehicle user based on one or more capacitive sensing points in the above-mentioned capacitive sensing area, and after the touch dwell time of the first sensing point among the multiple capacitive sensing points, the touch sliding speed of any two adjacent capacitive sensing points among the multiple capacitive sensing points, and the touch sliding time for all the capacitive sensing points, the touch dwell time, the touch sliding speed, and the touch sliding time can be further used as trigger state information of the touch sliding operation for the multiple capacitive sensing points.
- the above step S20 determining whether the touch sliding operation is a false touch operation according to the trigger state information of the touch sliding operation on the plurality of capacitive sensing points, may include:
- Step S201 detecting whether the touch dwell time is greater than a preset dwell time threshold, detecting whether the touch sliding speed is greater than a preset speed threshold, and detecting whether the touch sliding time belongs to a preset sliding completion time range;
- the vehicle after the vehicle obtains the trigger state information of the touch sliding operation for multiple capacitive sensing points based on one or more capacitive sensing points in the above-mentioned capacitive sensing area, it immediately combines the algorithm strategy to detect each trigger state information, that is, first detect whether the touch residence time is greater than the preset residence time threshold, then detect whether the touch sliding speed is greater than the preset speed threshold, and finally, detect whether the touch sliding time falls within the preset sliding completion time range.
- the dwell time threshold can be specifically set to 200ms, and the speed threshold is set based on the distance between two adjacent capacitive sensing points: the time taken by the user to touch and slide from the previous capacitive sensing point to the next capacitive sensing point shall not be less than 10ms, and considering the possible time taken by a human hand to normally perform a complete touch sliding operation, the algorithm strategy can directly set the sliding completion time range to: 50ms to 1500ms.
- Step S202 if the touch dwell time is greater than the dwell time threshold, the touch sliding speed is greater than the speed threshold, and the touch sliding time belongs to the sliding completion time range, it is determined that the touch sliding operation is not an accidental touch operation.
- the vehicle when the vehicle detects each trigger status information in sequence, if it is detected that the touch dwell time is greater than or equal to the dwell time threshold, the touch sliding speed is greater than the speed threshold, and the touch sliding time belongs to the sliding completion time range, then the vehicle determines that the touch sliding operation currently performed by the vehicle user is not an accidental touch operation.
- the vehicle determines that the touch sliding operation currently performed by the vehicle user is an incorrect touch operation.
- Step S30 When it is determined that the touch sliding operation is not an accidental touch operation, the vehicle door is controlled to be opened or closed according to the triggering sequence of the touch sliding operation for the plurality of capacitive sensing points.
- the vehicle determines based on the above-mentioned trigger status information combined with the algorithm that the currently collected touch sliding operation is not an accidental touch operation performed by the vehicle user or other objects in the capacitive sensing area
- the vehicle controls the opening or closing of the door according to the trigger sequence of touching multiple capacitive sensing points in sequence according to the touch sliding operation.
- the number of the capacitive sensing points in the capacitive sensing area is greater than or equal to three. Based on this, the above step S40 may include:
- Step S301 determining a triggering order of the touch sliding operation on at least three capacitive sensing points among the plurality of capacitive sensing points;
- Step S302 if the trigger sequence corresponds to the door opening direction, the door is controlled to be opened; or, if the trigger sequence corresponds to the door closing direction, the door is controlled to be closed.
- the vehicle when the vehicle controls the door to open and close according to the touch sliding operation performed by the vehicle user, the vehicle first determines the triggering sequence of the touch sliding operation for the three capacitive sensing points based on at least three consecutive capacitive sensing points in the capacitive sensing area where the touch sliding operation is collected. After that, the vehicle further corresponds the triggering sequence to the preset door opening direction, so that when the triggering sequence corresponds to the preset door opening direction, the vehicle immediately controls the door to open, and when the triggering sequence corresponds to the preset door closing direction, the vehicle immediately controls the door to close.
- the triggering sequence from key1 to key4 in the vehicle's pre-set sensing area corresponds to the door opening direction
- the triggering sequence from key4 to key1 corresponds to the door closing direction.
- the vehicle determines that the triggering sequence of the touch sliding operation currently performed by the vehicle user for the three keys among all the capacitive sensing points is key4, key3 to key2 based on key1 to key4, then the vehicle determines that the triggering sequence of the touch sliding operation at this time corresponds to the door closing direction.
- the vehicle can control the drive motor configured corresponding to the door to open or close the door, thereby realizing electric opening and closing of the door.
- the method for controlling the door switch provided by the present application is that the vehicle configures a capacitive sensing area formed by a combination of multiple capacitive sensing points at a position on the outside and/or inside of the door that is suitable for the vehicle driver or passenger to operate.
- the vehicle can collect the touch sliding operations performed in the capacitive sensing area by vehicle users including the vehicle driver, passengers or other personnel in order to control the opening or closing of the door by touch through the capacitive sensing area.
- the vehicle While the vehicle is collecting the touch sliding operation performed by the vehicle user through the above-mentioned capacitive sensing area, the vehicle also obtains trigger state information of the touch sliding operation for multiple capacitive sensing points based on one or more capacitive sensing points in the capacitive sensing area. Therefore, the vehicle can determine whether the currently collected touch sliding operation is an accidental touch operation performed by the vehicle user or other objects in the capacitive sensing area based on the trigger state information combined with the algorithm.
- the vehicle determines, based on the above-mentioned trigger status information and the algorithm, that the currently collected touch sliding operation is not an accidental touch operation performed by the vehicle user or other objects in the capacitive sensing area, the vehicle controls the opening or closing of the door according to the trigger sequence of touching multiple capacitive sensing points in sequence according to the touch sliding operation.
- the present application forms a capacitive sensing area by combining multiple capacitive sensing points, thereby collecting the touch sliding operation of the vehicle user to control the door opening and closing based on the capacitive sensing area, and judging the collected touch sliding operation in combination with the algorithm to determine whether the touch sliding operation is a false trigger. That is, the present application realizes the control of the electric door opening and closing through the door opening and closing triggering method of multi-point capacitance combined with algorithm timing, which can effectively reduce the probability of capacitor false triggering the door opening and closing, thereby solving the technical problem that the traditional electric door opening and closing method is easily falsely triggered.
- the method for controlling the door switch of the present application may further include:
- Step S303 obtaining the real-time opening and closing status of the door
- the vehicle when the vehicle collects the touch sliding operation performed by the vehicle user through the above-mentioned capacitive sensing area, the vehicle also synchronously or asynchronously obtains the real-time opening and closing status of the door.
- the vehicle may obtain a bus signal transmitted by a door controller through a CAN (Controller Area Network) network to obtain the real-time opening and closing status of one or more doors.
- CAN Controller Area Network
- Step S304 controlling the door to be opened or closed according to the real-time opening and closing state and the corresponding relationship between the trigger sequence and the door opening and closing direction;
- the vehicle determines that the operation is not an accidental touch operation through the above-mentioned touch sliding operation, and determines the triggering sequence of the operation for at least three of the multiple capacitive sensing points according to the touch sliding operation, and the corresponding relationship between the triggering sequence and the door opening direction is that the triggering sequence corresponds to the door opening direction or the triggering sequence corresponds to the door closing direction
- the vehicle further controls the door to be opened or closed based on the real-time opening and closing state of the door and the corresponding relationship.
- the vehicle immediately controls the door to be opened; or, if the current real-time opening and closing state of the door is open, and the triggering sequence of the touch sliding operation for at least three consecutive capacitive sensing points determined by the vehicle corresponds to the door closing direction, the vehicle immediately controls the door to be closed.
- Step S305 according to the real-time opening and closing state and the corresponding relationship between the trigger sequence and the door opening and closing direction, output a preset door opening and closing instruction prompt to control the door to be opened or closed based on the confirmation operation of the door opening and closing instruction prompt.
- the vehicle will immediately output a pre-set door switch instruction prompt of "The current door is closed, please confirm whether to open the door” to the vehicle user through a speaker configured on the outside and/or inside of the vehicle.
- the vehicle user can feedback the confirmation operation based on the prompt through voice or by re-performing a new touch sliding operation in the capacitive sensing area, so that the vehicle can control the opening of the door based on the confirmation operation.
- the vehicle will immediately output a pre-set door switch instruction prompt of "The current door is open, please confirm whether to close the door” to the vehicle user through the speakers configured on the outside and/or inside of the vehicle.
- the vehicle user can feedback the confirmation operation based on the prompt through voice or by re-performing a new touch sliding operation in the capacitive sensing area, so that the vehicle can control the closing of the door based on the confirmation operation.
- the vehicle can also provide a door password setting function to the vehicle user through multiple capacitive sensing points in the capacitive sensing area.
- the method of controlling the door switch of the present application can also include:
- Step A collecting the door password configuration operation performed by the vehicle user through the capacitive sensing area
- Step B configuring the triggering sequence of the door password configuration operation for the plurality of capacitive sensing points as a door control password
- Step C when the triggering sequence of the touch sliding operation collected by the capacitive sensing area for the plurality of the capacitive sensing points is consistent with the door control password, control the door to be opened or closed.
- the vehicle collects the touch and slide operation performed by the vehicle user through the capacitive sensing area to determine whether the operation is an accidental touch operation, and before controlling the door to open and close when the judgment result is no, the vehicle user can also collect the vehicle user's need to configure the door password through the capacitive sensing area, and perform the door password configuration operation by touching and/or touching and sliding each capacitive sensing point in sequence in the capacitive sensing area. Therefore, the vehicle can directly configure the door control password set by the vehicle user by sequentially touching and/or touching and sliding the triggering sequence of the door password configuration operation on multiple capacitive sensing points.
- the vehicle user when the vehicle user needs to control the opening and closing of the door directly through the door control password set by himself in the future when approaching the vehicle without carrying the vehicle key, he can perform the touch sliding operation according to the door control password based on the capacitive sensing area configured for the vehicle.
- the vehicle collects the touch sliding operation performed by the user based on the capacitive sensing area, it analyzes and determines whether the triggering sequence of the touch sliding operation on multiple capacitive sensing points in the capacitive sensing area is consistent with the door control password set by the vehicle user before.
- a prompt of successful unlocking is output to the user, and the door is opened directly or after further waiting for the vehicle user to perform a new touch sliding operation, the door is controlled to be opened according to the process described in steps S10 to S30 above.
- the method for controlling the door switch of the present application is that when the vehicle collects the touch sliding operation performed by the vehicle user through the above-mentioned capacitive sensing area, it also synchronously or asynchronously obtains the real-time opening and closing state of the door.
- the vehicle determines that the operation is not an accidental touch operation through the above-mentioned touch sliding operation, and determines the triggering sequence of the operation for at least three capacitive sensing points among the multiple capacitive sensing points according to the touch sliding operation, and the corresponding relationship between the triggering sequence and the door switch direction is that the triggering sequence corresponds to the door opening direction or the triggering sequence corresponds to the door closing direction, based on the real-time opening and closing state of the door and the corresponding relationship, the door is controlled to be opened or closed.
- the vehicle immediately controls the door to be opened; or, if the real-time opening and closing state of the current door is open, and the triggering sequence of the touch sliding operation for at least three consecutive capacitive sensing points determined by the vehicle corresponds to the door closing direction, the vehicle immediately controls the door to be closed. In this way, the intelligence of controlling the door switches is further improved, and the user experience is better.
- the method of controlling the door switch of the present application also provides the vehicle user with a door password setting function through multiple capacitive sensing points in the capacitive sensing area, so that the vehicle user can independently set a functional password for controlling the door based on the capacitive sensing area, and then, when approaching the vehicle without carrying the vehicle key, the vehicle user can directly control the opening and closing of the door through the self-set door control password, further greatly improving the intelligence of the vehicle and the user experience.
- a third embodiment of the method for controlling a vehicle door switch of the present application is proposed.
- the vehicle in order to further prevent rain from causing accidental touch operation in the capacitive sensing area, the vehicle further configures a protective electrode area around the capacitive sensing area.
- a protective electrode area around the capacitive sensing area.
- the vehicle is configured with protective electrode areas, i.e., protective areas, in front and behind the sensing area.
- the vehicle is also configured with corresponding algorithm strategies based on the protective electrode area to further reduce the probability of the door being opened or closed due to accidental touch.
- the method for controlling the door switch of the present application may further include:
- Step I collecting a protection capacitance value around the capacitive sensing area through the protection electrode area, and detecting whether the protection capacitance value exceeds a preset protection capacitance threshold;
- Step II if the protection capacitance value exceeds the protection capacitance threshold, shielding the sensing signal collected by the capacitive sensing area.
- the vehicle in addition to collecting the touch sliding operation performed by the vehicle user through the above-mentioned capacitive sensing area, the vehicle also continuously detects the capacitance value of the peripheral position of the capacitive sensing area based on the protective electrode area to obtain the protective capacitance value. Then, the vehicle detects the protective capacitance value in combination with the pre-configured algorithm strategy, that is, detects whether the protective capacitance value exceeds the preset protective capacitance threshold. Therefore, if it is detected that the capacitance value collected based on the protective electrode area exceeds the protective capacitance threshold, the vehicle determines that the current capacitance value is caused by other conductive media such as rainwater.
- the vehicle since the vehicle collects the induction signal of the trigger capacitor through the capacitive sensing area at this time, the vehicle will also believe that the capacitor trigger does not belong to the touch sliding operation performed by the vehicle user on the capacitive sensing area. Therefore, the vehicle directly shields the induction signal.
- the vehicle can respond to the touch sliding operation collected simultaneously in the capacitive sensing area to control the opening or closing of the door according to the process described in the first embodiment and/or the second embodiment above.
- the above protection capacitor threshold can be specifically set to 140. It should be understood that based on different design requirements of actual applications, in different feasible embodiments, the vehicle can of course be configured with protection capacitor thresholds of other sizes, and the method for controlling the door switch of the present application is not limited to the specific size of the protection capacitor threshold.
- the method of controlling the door switch of the present application configures a protective electrode area of the vehicle at a peripheral position of the above-mentioned capacitive sensing area, and sets a corresponding algorithm strategy, so as to perform false touch judgment based on the size of the capacitance value collected by the protective electrode area, thereby further preventing conductive media such as rainwater from forming false touch operations in the capacitive sensing area, thereby further reducing the probability of the door being opened or closed due to false touch.
- the present application also provides a device for controlling a door switch of a vehicle.
- the device for controlling a door switch of the present application is applied to a vehicle equipped with a capacitive sensing area, wherein the capacitive sensing area includes a plurality of capacitive sensing points.
- the device for controlling the door switch of the present application includes:
- a collection module 10 used for collecting a touch sliding operation performed by a vehicle user through the capacitive sensing area
- the false touch judgment module 20 is used to determine whether the touch sliding operation is a false touch operation according to the trigger state information of the touch sliding operation on the plurality of the capacitive sensing points;
- the control module 30 is used to control the opening or closing of the vehicle door according to the triggering sequence of the touch sliding operation on the plurality of capacitive sensing points when it is determined that the touch sliding operation is not an accidental touch operation.
- the device for controlling the door switch of the present application further includes:
- An information acquisition module is used to obtain the touch dwell time of the touch sliding operation on a first sensing point among the multiple capacitive sensing points, wherein the first sensing point is the first capacitive sensing point arranged in the direction of the door switch among the multiple capacitive sensing points; obtain the touch sliding speed of the touch sliding operation on two adjacent sensing points among the multiple capacitive sensing points; obtain the touch sliding time for the touch sliding operation to complete the touch on all the multiple capacitive sensing points; and determine the touch dwell time, the touch sliding speed and the touch sliding time as trigger state information of the touch sliding operation on the multiple capacitive sensing points.
- the false touch determination module 20 includes:
- an algorithm detection unit configured to detect whether the touch dwell time is greater than a preset dwell time threshold, detect whether the touch sliding speed is greater than a preset speed threshold, and detect whether the touch sliding time falls within a preset sliding completion time range;
- the false touch judgment unit is used to determine that the touch sliding operation is not a false touch operation if the touch dwell time is greater than the dwell time threshold, the touch sliding speed is greater than the speed threshold, and the touch sliding time belongs to the sliding completion time range.
- control module 30 comprises:
- a determining unit configured to determine a triggering order of the touch sliding operation on at least three capacitive sensing points among the plurality of capacitive sensing points;
- a control unit is used for controlling the door to be opened if the trigger sequence corresponds to the direction in which the door is opened, or for controlling the door to be closed if the trigger sequence corresponds to the direction in which the door is closed.
- control module 30 is also used to obtain the real-time opening and closing status of the door; control the opening or closing of the door according to the real-time opening and closing status and the correspondence between the trigger sequence and the door switch direction; or, according to the real-time opening and closing status and the correspondence between the trigger sequence and the door switch direction, output a preset door switch command prompt to control the opening or closing of the door based on a confirmation operation of the door switch command prompt.
- the device for controlling the door switch of the present application further includes:
- a password configuration module used to collect the door password configuration operation performed by the vehicle user through the capacitive sensing area; and configure the triggering sequence of the door password configuration operation for the plurality of capacitive sensing points as a door control password;
- the control module 30 of the device for controlling the door switch of the present application is also used to control the opening or closing of the door when the triggering sequence of the touch sliding operation collected by the capacitive sensing area for multiple capacitive sensing points is consistent with the door control password.
- the vehicle is further configured with a protective electrode area, and the protective electrode area is configured at a peripheral position of the capacitive sensing area;
- the false touch judgment module 20 of the device for controlling the door switch of the present application is also used to collect the protection capacitance value around the capacitive sensing area through the protection electrode area, and detect whether the protection capacitance value exceeds the preset protection capacitance threshold; and, if the protection capacitance value exceeds the protection capacitance threshold, shield the sensing signal collected by the capacitive sensing area.
- the specific implementation of the device for controlling a door switch of the present application is basically the same as the various embodiments of the method for controlling a door switch described above, and will not be described in detail here.
- an embodiment of the present application also provides a vehicle as mentioned in any of the above embodiments.
- FIG 4 is a schematic diagram of the device structure of the hardware operating environment involved in the vehicle mentioned in the embodiment of the present application.
- the vehicle mentioned in the embodiment of the present application is equipped with a capacitive sensing area, and the capacitive sensing area includes a plurality of capacitive sensing points.
- the vehicle may include: a processor 1001, such as a CPU, a memory 1005, and a communication bus 1002.
- the communication bus 1002 is used to realize the connection and communication between the processor 1001 and the memory 1005.
- the memory 1005 may be a high-speed RAM memory or a stable memory (non-volatile memory), such as a disk memory.
- the memory 1005 may optionally be a storage device independent of the aforementioned processor 1001.
- the vehicle further includes a methanol range extender, a vehicle control unit (VCU), a battery management system (BMS), an engine management system (EMS) and a generator control unit (GCU).
- VCU vehicle control unit
- BMS battery management system
- EMS engine management system
- GCU generator control unit
- the vehicle control unit (VCU) communicates with the battery management system (BMS) and the like through an external public CAN, and communicates with the engine management system (EMS) and the generator control unit (GCU) through an internal CAN.
- the vehicle may also include a body controller BCM, an ECU and a rectangular user interface, a network interface, a camera, an RF (Radio Frequency) circuit, a sensor, an audio circuit, a WiFi module, and the like.
- RF Radio Frequency
- the rectangular user interface may include a display screen (Display), an input submodule such as a keyboard (Keyboard), and the optional rectangular user interface may also include a standard wired interface and a wireless interface.
- the network interface may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
- the vehicle is also connected to the remote service platform TSP through a T-BOX for communication.
- FIG. 4 does not constitute a limitation on the vehicle. Based on different design requirements of actual applications, in different feasible implementations, the vehicle may of course include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components.
- the memory 1005 as a storage medium may include an operating system, a network communication module, and a program for controlling the door switch.
- the operating system is a program for managing and controlling vehicle hardware and software resources, and supports the operation of the program for controlling the door switch and other software and/or programs.
- the network communication module is used to realize the communication between the components inside the memory 1005, and the communication with other hardware and software in the device for controlling the door switch.
- the processor 1001 is used to execute the program for controlling the door switch stored in the memory 1005 , and implement the steps of the method for controlling the door switch described in any of the above embodiments.
- an embodiment of the present application also provides a computer storage medium, and the computer storage medium stores one or more programs, and the one or more programs can also be executed by one or more processors to implement the steps of any of the above-mentioned methods for controlling the vehicle door switch.
- the present application also provides a computer program product, including a computer program, which implements the steps of the above-mentioned method for controlling a vehicle door switch when executed by a processor.
Landscapes
- Power-Operated Mechanisms For Wings (AREA)
Abstract
本申请公开了一种控制车门开关的方法、装置、车辆以及计算机存储介质,通过配置有包括多个电容感应点的电容感应区域的车辆,通过该电容感应区域采集车辆用户执行的触摸滑移操作;然后根据该触摸滑移操作针对多个电容感应点的触发状态信息,确定该触摸滑移操作是否为误触操作;最后,在确定该触摸滑移操作不是误触操作时,立即根据该触摸滑移操作针对多个电容感应点的触发顺序,来控制开启车门或者关闭车门。
Description
本申请要求于2022年9月30日申请的、申请号为202211216842.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及车辆技术领域,尤其涉及一种控制车门开关的方法、装置、车辆以及计算机存储介质。
现如今,电动开关车门的应用已经在行业内受到越来越多的重视。然而,现有通过电容传感器采集用户执行的触按点击动作以控制车门进行开关,非常容易出现因为降雨导致错误触发开关车门的现象,尤其是在降雨量较大的时候,误触发车门开关的情况更为频繁。
综上,相关技术中采用电容传感器供用户触按点击动作以电动开关车门的方式,存在车门开关被误触发的技术问题。
本申请的主要目的在于提供一种控制车门开关的方法、装置、车辆以及计算机存储介质,旨在通过多点电容结合算法时序的车门开关触发方式控制电动开关车门,从而有效地降低电容误触发开关车门的几率,以解决传统电动开关车门方式容易被误触发的技术问题。
为实现上述目的,本申请提供一种控制车门开关的方法,所述控制车门开关的方法应用于配置有电容感应区域的车辆,所述电容感应区域包括多个电容感应点;
所述控制车门开关的方法包括:
通过所述电容感应区域采集车辆用户执行的触摸滑移操作;
根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作;
在确定所述触摸滑移操作不是误触操作时,根据所述触摸滑移操作针对多个所述电容感应点的触发顺序控制开启车门或者关闭车门。
在一实施例中,在所述根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作的步骤之前,所述方法还包括:
获取所述触摸滑移操作针对多个所述电容感应点中第一感应点的触摸停留时间,其中,所述第一感应点为多个所述电容感应点中对应车门开关方向排列在第一个的电容感应点;
获取所述触摸滑移操作针对多个所述电容感应点中相邻两个感应点的触摸滑移速度;
获取所述触摸滑移操作针对多个所述电容感应点均完成触摸的触摸滑移时间;
将所述触摸停留时间、所述触摸滑移速度和所述触摸滑移时间,确定为所述触摸滑移操作针对多个所述电容感应点的触发状态信息。
在一实施例中,所述根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作的步骤,包括:
检测所述触摸停留时间是否大于预设的停留时间阈值,检测所述触摸滑移速度是否大于预设的速度阈值,和,检测所述触摸滑移时间是否属于预设的滑移完成时间范围;
若所述触摸停留时间大于所述停留时间阈值,所述触摸滑移速度大于所述速度阈值,且所述触摸滑移时间属于所述滑移完成时间范围,则确定所述触摸滑移操作不是误触操作。
在一实施例中,多个所述电容感应点的数量大于或者等于三;
所述根据所述触摸滑移操作针对多个所述电容感应点的触发顺序控制开启车门或者关闭车门的步骤,包括:
确定所述触摸滑移操作针对多个所述电容感应点中至少三个电容感应点的触发顺序;
若所述触发顺序对应车门开启方向,则控制开启车门,或者,若所述触发顺序对应车门关闭方向,则控制关闭车门。
在一实施例中,在所述确定所述触摸滑移操作针对多个所述电容感应点的触发顺序与车门开关方向之间的对应关系的步骤之后,所述方法还包括:
获取车门的实时开闭状态;
根据所述实时开闭状态和所述触发顺序与车门开关方向之间的对应关系控制开启车门或者关闭车门;
或者,
根据所述实时开闭状态和所述触发顺序与车门开关方向之间的对应关系,输出预设的车门开关指令提示以基于针对所述车门开关指令提示的确认操作控制开启车门或者关闭车门。
在一实施例中,所述方法还包括:
通过所述电容感应区域采集车辆用户执行的车门密码配置操作;
将所述车门密码配置操作针对多个所述电容感应点的触发顺序配置为车门控制密码;
在通过所述电容感应区域采集的触摸滑移操作针对多个所述电容感应点的触发顺序与所述车门控制密码一致时,控制开启车门或者关闭车门。
在一实施例中,所述车辆还配置有保护电极区域,所述保护电极区域配置在所述电容感应区域的周边位置,所述方法还包括:
通过所述保护电极区域采集所述电容感应区域周边的保护电容值,并检测所述保护电容值是否超过预设的保护电容阈值;
若所述保护电容值超过所述保护电容阈值,则屏蔽所述电容感应区域采集到的感应信号。
此外,为实现上述目的,本申请还提供一种控制车门开关的装置,所述控制车门开关的装置应用于配置有电容感应区域的车辆,所述电容感应区域包括多个电容感应点;
所述控制车门开关的装置包括:
采集模块,用于通过所述电容感应区域采集车辆用户执行的触摸滑移操作;
误触判断模块,用于根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作;
控制模块,用于在确定所述触摸滑移操作不是误触操作时,根据所述触摸滑移操作针对多个所述电容感应点的触发顺序控制开启车门或者关闭车门。
其中,所述控制车门开关的装置的各个功能模块各自在运行时可实现如上述任一项的控制车门开关的方法的步骤。
此外,为实现上述目的,本申请还提供一种车辆,所述车辆包括:存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的所述控制车门开关的方法的程序,所述控制车门开关的方法的程序被处理器执行时可实现如上述的控制车门开关的方法的步骤。
本申请还提供一种计算机存储介质,所述计算机存储介质上存储有实现上述控制车门开关的方法的程序,所述控制车门开关的方法的程序被处理器执行时实现如上述的控制车门开关的方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机程序产品、包括计算机程序,该计算机程序被处理器执行时实现上述的控制车门开关的方法的步骤。
本申请提供的一种控制车门开关的方法、装置、车辆以及计算机存储介质,通过配置有包括多个电容感应点的电容感应区域的车辆,通过该电容感应区域采集车辆用户执行的触摸滑移操作;然后根据该触摸滑移操作针对多个电容感应点的触发状态信息,确定该触摸滑移操作是否为误触操作;最后,在确定该触摸滑移操作不是误触操作时,立即根据该触摸滑移操作针对多个电容感应点的触发顺序,来控制开启车门或者关闭车门。
如此,本申请通过组合多个电容感应点形成电容感应区域,从而基于该电容感应区域来采集车辆用户控制车门开闭的触摸滑移操作,并结合算法对采集得到的触摸滑移操作进行判断,以确定该触摸滑移操作是否属于错误触发。即,本申请实现了通过多点电容结合算法时序的车门开关触发方式来控制电动开关车门,能够有效地降低电容误触发开关车门的几率,从而解决了传统电动开关车门方式容易被误触发的技术问题。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请控制车门开关的方法一实施例的流程示意图;
图2为本申请控制车门开关的方法一实施例涉及的电容感应区域和保护电极区域的结构示意图;
图3为本申请控制车门开关的装置一实施例涉及的功能模块的结构示意图;
图4为本申请实施例方案中车辆涉及的硬件运行环境的设备结构示意图。
本申请目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,现如今,电动开关车门的应用已经在行业内受到越来越多的重视。然而,现有通过电容传感器采集用户执行的触按点击动作以控制车门进行开关,非常容易出现因为降雨导致错误触发开关车门的现象,尤其是在降雨量较大的时候,误触发车门开关的情况更为频繁。
综上,现有采用电容传感器供用户触按点击动作以电动开关车门的方式,存在车门开关被误触发的技术问题。
基于上述现象,本申请实施例提供一种控制车门开关的方法,通过配置有包括多个电容感应点的电容感应区域的车辆,通过该电容感应区域采集车辆用户执行的触摸滑移操作;然后根据该触摸滑移操作针对多个电容感应点的触发状态信息,确定该触摸滑移操作是否为误触操作;最后,在确定该触摸滑移操作不是误触操作时,立即根据该触摸滑移操作针对多个电容感应点的触发顺序,来控制开启车门或者关闭车门。
在本申请控制车门开关的方法的一实施例中本申请通过组合多个电容感应点形成电容感应区域,从而基于该电容感应区域来采集车辆用户控制车门开闭的触摸滑移操作,并结合算法对采集得到的触摸滑移操作进行判断,以确定该触摸滑移操作是否属于错误触发。如此,本申请实现了通过多点电容结合算法时序的车门开关触发方式来控制电动开关车门,能够有效地降低电容误触发开关车门的几率,从而解决了传统电动开关车门方式容易被误触发的技术问题。
基于上述本申请控制车门开关的方法的整体构思,提出本申请控制车门开关的方法的第一实施例。
请参照图1,图1为本申请控制车门开关的方法第一实施例的流程示意图。需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
此外,在本实施例中,本申请控制车门开关的方法的执行主体可以是车辆本身。为方便阐述和阅读理解,后文均以车辆作为执行主体来阐述本申请控制车门开关的方法的第一实施例。
如图1所示,在本申请控制车门开关的方法的第一实施例中,本申请控制车门开关的方法具体包括如下步骤:
步骤S10,通过所述电容感应区域采集车辆用户执行的触摸滑移操作;
在本实施例中,车辆通过在车门外侧和/或者内侧适宜车辆驾驶员或者乘客进行操作的位置,配置由多个电容感应点组合形成的电容感应区域,如此,车辆即可通过该电容感应区域来采集包括车辆驾驶员、乘客或者其它人员在内的车辆用户,为了通过触摸方式控制车门开启或者关闭,而在该电容感应区域执行的触摸滑移操作。
需要说明的是,作为一种可行的实施例,上述车门外侧适宜车辆驾驶员或者乘客进行操作的位置包括但不限于:车辆车窗的四周、车门靠近车辆车身B柱的边缘位置,和,车辆后视镜位置。
此外,由多个电容感应点组合形成的电容感应区域具体可以如图2中的“1感应区域”所示,即,将多个电容感应点(图示key1至key4)依次横向进行排布形成整个电容感应区域。而应当理解的是,基于实际应用的不同设计需要,多个电容感应点当然也可以采用其它不同于此处所列举的组合方式来进行排布以形成电容感应区域,如,多个电容感应点依次竖向进行排布、多个电容感应点横向或者竖向并排设置,以及,多个电容感应点呈规则线形(如弧线形)或者不规则线形(如波浪线形)依次进行排布等等。即,本申请控制车门开关的方法并不针对多个电容感应点的位置组合关系进行限定,只要通过多个电容感应点组合形成一个完整的电容感应区域以用于采集车辆用户执行的触摸滑移操作即可。
步骤S20,根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作;
在本实施例中,车辆在通过上述的电容感应区域采集车辆用户所执行的触摸滑移操作的过程中,同时基于该电容感应区域当中的一个或者多个电容感应点,来获取该触摸滑移操作针对多个电容感应点的触发状态信息,从而,车辆即可基于该触发状态信息以结合算法来判断当前采集到的该触摸滑移操作,是否属于车辆用户或者其它事物在该电容感应区域执行的误触操作。
在一实施例中,上述触摸滑移操作针对多个电容感应点的触发状态信息包括但不限于:触摸停留时间、触摸滑移速度和触摸滑移时间。基于此,在上述的步骤S20之前,本申请控制车门开关的方法,还可以包括:
步骤a,获取所述触摸滑移操作针对多个所述电容感应点中第一感应点的触摸停留时间,其中,所述第一感应点为多个所述电容感应点中对应车门开关方向排列在第一个的电容感应点;
在本实施例中,车辆在通过如图2所示的整个电容感应区域——1感应区域,采集车辆用户执行的触摸滑移操作时,首先通过该电容感应区域中的第一感应点——key1或者key4,来获取车辆用户开始执行触摸滑移操作时,停留在该第一感应点以针对该第一感应点进行触摸操作的触摸停留时间。
需要说明的是,如图2所示,若车辆预先配置感应区域中的多个电容感应,点自key1至key4的排列顺序对应的是车门开启方向,而自key4至key1的排列顺序则对应的是车门关闭方向,则,车辆用户在为了控制车门开启而按照自key1至key4的排列顺序执行触摸滑移操作时,上述的第一感应点即为key1;或者,车辆用户在为了控制车门开启而按照自key4至key1的排列顺序执行触摸滑移操作时,上述的第一感应点即为key4。
步骤b,获取所述触摸滑移操作针对多个所述电容感应点中相邻两个感应点的触摸滑移速度;
在本实施例中,车辆在通过如图2所示的整个电容感应区域——1感应区域,采集车辆用户执行的触摸滑移操作时,还通过该电容感应区域中相邻的两个感应点——key1和key2、key2和key3,或者key3和key4,来获取车辆用户执行的触摸滑移操作,在该两个感应点之间触摸滑移速度。
步骤c,获取所述触摸滑移操作针对多个所述电容感应点均完成触摸的触摸滑移时间;
在本实施例中,车辆在通过如图2所示的整个电容感应区域——1感应区域,采集车辆用户执行的触摸滑移操作时,还通过该电容感应区域中全部的感应点——key1至key4,来获取车辆用户执行的触摸滑移操作,在从开始触摸key1之后,依次触摸key2、key3和key4以完成针对全部的感应点均完成了触摸所耗费的触摸滑移时间。
步骤d,将所述触摸停留时间、所述触摸滑移速度和所述触摸滑移时间,确定为所述触摸滑移操作针对多个所述电容感应点的触发状态信息。
在本实施例中,车辆在基于上述电容感应区域当中的一个或者多个电容感应点,来同步或者异步获取得到车辆用户所执行的触摸滑移操作,针对该多个电容感应点中第一感应点的触摸停留时间、针对该多个电容感应点中任意相邻的两个电容感应点的触摸滑移速度和针对全部电容感应点的触摸滑移时间之后,即可进一步将该触摸停留时间、触摸滑移速度和触摸滑移时间均作为该触摸滑移操作针对多个电容感应点的触发状态信息。
在一实施例中,上述的步骤S20,根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作,可以包括:
步骤S201,检测所述触摸停留时间是否大于预设的停留时间阈值,检测所述触摸滑移速度是否大于预设的速度阈值,和,检测所述触摸滑移时间是否属于预设的滑移完成时间范围;
在本实施例中,车辆在基于上述电容感应区域当中的一个或者多个电容感应点,获取得到触摸滑移操作针对多个电容感应点的触发状态信息之后,立即结合算法策略针对各个触发状态信息进行检测,即,首先检测触摸停留时间是否大于预设的停留时间阈值,然后检测触摸滑移速度是否大于预设的速度阈值,最后,检测触摸滑移时间是否属于预设的滑移完成时间范围。
需要说明的是,在一种可行的实施例中,上述的算法策略当中,停留时间阈值具体可以设置为200ms,速度阈值则基于相邻两个电容感应点之间距离设置为:用户自前一个电容感应点触摸滑移到后一个电容感应点的用时,不得少于10ms,而考虑到人手正常执行一个完整的触摸滑移操作可能的用时,该算法策略中可直接将滑移完成时间范围具体设置为:50ms至1500ms。
步骤S202,若所述触摸停留时间大于所述停留时间阈值,所述触摸滑移速度大于所述速度阈值,且所述触摸滑移时间属于所述滑移完成时间范围,则确定所述触摸滑移操作不是误触操作。
在本实施例中,车辆在针对各个触发状态信息依次进行检测时,若检测到触摸停留时间大于或者等于停留时间阈值,触摸滑移速度大于速度阈值,且触摸滑移时间属于滑移完成时间范围,则车辆即判断确定车辆用户当前执行的触摸滑移操作不是误触操作。
示例性地,如图2所示,车辆在结合上述的算法策略针对各个触发状态信息依次进行检测时,若触摸对应车门开关方向的第一个感应点key1或者key4时停留了200ms或者200ms以上,且从任意相邻的两个感应点来看,触摸前一个key之后再滑移到后一个key的用时高于10ms,以及,对四个key均执行完成触摸的用时处于时间50ms-1500ms(实验表明人手针对图示key1至key4全部正常执行完触摸滑移操作的用时在500ms左右),则车辆即判定当前通过感应区域采集得到车辆用户执行的触摸滑移操作,并不是对该感应区域的误触操作。
需要说明的是,在本实施例中,若车辆结合上述的算法策略检测到任意一个触发状态信息不符合对应的策略条件,如,触摸停留时间小于停留时间阈值,触摸滑移速度小于速度阈值,且触摸滑移时间不属于滑移完成时间范围,则车辆即判断确定车辆用户当前执行的触摸滑移操作是误触操作。
步骤S30,在确定所述触摸滑移操作不是误触操作时,根据所述触摸滑移操作针对多个所述电容感应点的触发顺序控制开启车门或者关闭车门。
在本实施例中,车辆在基于上述的该触发状态信息结合算法判断到,当前采集到的触摸滑移操作,不属于车辆用户或者其它事物在电容感应区域执行的误触操作时,车辆即根据该触摸滑移操作针对多个电容感应点依次进行触摸的触发顺序,控制开启车门或者控制关闭车门。
在一实施例中,上述电容感应区域内的电容感应点的数量大于或者等于三。基于此,上述的步骤S40,可以包括:
步骤S301,确定所述触摸滑移操作针对多个所述电容感应点中至少三个电容感应点的触发顺序;
步骤S302,若所述触发顺序对应车门开启方向,则控制开启车门,或者,若所述触发顺序对应车门关闭方向,则控制关闭车门。
在本实施例中,车辆在按照车辆用户所执行的触摸滑移操作控制车门进行开闭时,首先基于采集该触摸滑移操作的电容感应区域中连续的至少三个电容感应点,确定该触摸滑移操作针对该三个电容感应点的触发顺序。之后,车辆即进一步将该触发顺序与预先设定的车门开关方向之间的对应关系,从而,在该触发顺序对应的是预先设定的车门开启方向时,车辆即立即控制开启车门,和,在该触发顺序对应的是预先设定的车门关闭方向时,车辆即立即控制关闭车门。
示例性地,如图2所示,假定车辆预先设定感应区域中自key1至key4的触发顺序对应的是车门开启方向,而自key4至key1的触发顺序则对应的是车门关闭方向。那么在本实施例中,车辆若基于key1至key4,确定车辆用户当前执行的触摸滑移操作针对全部电容感应点中的三个key——的触发顺序为:key1、key2至key3,则车辆即确定此时触摸滑移操作的触发顺序对应车门开启方向。同理,车辆在基于key1至key4,确定车辆用户当前执行的触摸滑移操作针对全部电容感应点中的三个key——的触发顺序为key4、key3至key2,则车辆即确定此时触摸滑移操作的触发顺序对应车门关闭方向。
需要说明的是,在一种可行的实施例中,车辆可通过针对车门对应配置的驱动电机,来控制该驱动电机针对车门进行开启或者关闭,从而实现对车门的电动开闭。
在本申请实施例中,本申请提供的控制车门开关的方法,由车辆通过在车门外侧和/或者内侧适宜车辆驾驶员或者乘客进行操作的位置,配置由多个电容感应点组合形成的电容感应区域,如此,车辆即可通过该电容感应区域来采集包括车辆驾驶员、乘客或者其它人员在内的车辆用户,为了通过触摸方式控制车门开启或者关闭,而在该电容感应区域执行的触摸滑移操作。
而车辆在通过上述的电容感应区域采集车辆用户所执行的触摸滑移操作的过程中,同时基于该电容感应区域当中的一个或者多个电容感应点,来获取该触摸滑移操作针对多个电容感应点的触发状态信息,从而,车辆即可基于该触发状态信息以结合算法来判断当前采集到的该触摸滑移操作,是否属于车辆用户或者其它事物在该电容感应区域执行的误触操作。
进而,车辆在基于上述的该触发状态信息结合算法判断到,当前采集到的触摸滑移操作,不属于车辆用户或者其它事物在电容感应区域执行的误触操作时,车辆即根据该触摸滑移操作针对多个电容感应点依次进行触摸的触发顺序,控制开启车门或者控制关闭车门。
如此,本申请通过组合多个电容感应点形成电容感应区域,从而基于该电容感应区域来采集车辆用户控制车门开闭的触摸滑移操作,并结合算法对采集得到的触摸滑移操作进行判断,以确定该触摸滑移操作是否属于错误触发。即,本申请实现了通过多点电容结合算法时序的车门开关触发方式来控制电动开关车门,能够有效地降低电容误触发开关车门的几率,从而解决了传统电动开关车门方式容易被误触发的技术问题。
进一步地,基于上述本申请控制车门开关的方法的第一实施例,提出本申请控制车门开关的方法的第二实施例。
在本实施例中,在上述的步骤S301,确定所述触摸滑移操作针对多个所述电容感应点中至少三个电容感应点的触发顺序之后,本申请控制车门开关的方法还可以包括:
步骤S303,获取车门的实时开闭状态;
在本实施例中,车辆在通过上述的电容感应区域采集车辆用户执行的触摸滑移操作时,还同步或者异步的获取车门的实时开闭状态。
示例性地,车辆具体可以通过CAN(Controller Area Network,控制器域网)网络,获取车门控制器传递的总线信号以获取得到一个或者多个车门的实时开闭状态。
步骤S304,根据所述实时开闭状态和所述触发顺序与车门开关方向之间的对应关系控制开启车门或者关闭车门;
在本实施例中,车辆在通过上述的触摸滑移操作确定该操作不属于误触操作,且根据该触摸滑移操作确定了该操作针对多个电容感应点中至少三个电容感应点的触发顺序,与车门开关方向之间的对应关系是该触发顺序对应车门开启方向或者是该触发顺序对应车门关闭方向之后,进一步基于车门的实时开闭状态和该对应关系,控制开启车门或者控制关闭车门。即,若当前车门的实时开闭状态为关闭,且车辆确定的触摸滑移操作针对连续的至少三个电容感应点的触发顺序对应车门开启方向,则车辆即立即控制开启车门;或者,若当前车门的实时开闭状态为开启,且车辆确定的触摸滑移操作针对连续的至少三个电容感应点的触发顺序对应车门关闭方向,则车辆即立即控制关闭车门。
步骤S305,根据所述实时开闭状态和所述触发顺序与车门开关方向之间的对应关系,输出预设的车门开关指令提示以基于针对所述车门开关指令提示的确认操作控制开启车门或者关闭车门。
在本实施例中,若当前车门的实时开闭状态为关闭,但是,车辆确定的触摸滑移操作针对连续的至少三个电容感应点的触发顺序对应车门关闭方向,则车辆即立即通过配置在车辆外侧和/或者内侧的扬声器,向车辆用户输出预先设定的“当前车门已关闭,请确认是否开启车门”的车门开关指令提示,如此,车辆用户即可基于该提示通过语音或者重新在电容感应区域执行新的触摸滑移操作来反馈确认操作,从而,车辆即可基于该确认操作控制开启车门。
同理,若当前车门的实时开闭状态为开启,但是,车辆确定的触摸滑移操作针对连续的至少三个电容感应点的触发顺序对应车门开启方向,则车辆即立即通过配置在车辆外侧和/或者内侧的扬声器,向车辆用户输出预先设定的“当前车门已开启,请确认是否关闭车门”的车门开关指令提示,如此,车辆用户即可基于该提示通过语音或者重新在电容感应区域执行新的触摸滑移操作来反馈确认操作,从而,车辆即可基于该确认操作控制关闭车门。
在一实施例中,车辆还可以将电容感应区域中的多个电容感应点向车辆用户提供车门密码设置功能。基于此,本申请控制车门开关的方法,还可以包括:
步骤A,通过所述电容感应区域采集车辆用户执行的车门密码配置操作;
步骤B,将所述车门密码配置操作针对多个所述电容感应点的触发顺序配置为车门控制密码;
步骤C,在通过所述电容感应区域采集的触摸滑移操作针对多个所述电容感应点的触发顺序与所述车门控制密码一致时,控制开启车门或者关闭车门。
在本实施例中,车辆在通过电容感应区域采集车辆用户执行的触摸滑移操作,以判断该操作是否为误触操作,并在判定结果为否时控制车门进行开闭之前,还可以通过该电容感应区域采集车辆用户基于配置车门密码的需要,而在该电容感应区域当中,依次针对各个电容感应点进行触摸和/或者触摸滑移而执行的车门密码配置操作。从而,车辆即可将该车门密码配置操作针对多个电容感应点依次进行触摸和/或者触摸滑移的触发顺序,直接配置作为车辆用户设置的车门控制密码。
如此,车辆用户在后续需要在未携带车辆钥匙靠近车辆等情形下,直接通过自主设置的车门控制密码来控制车门开闭时,即可基于车辆配置的电容感应区域,按照车门控制密码执行触摸滑移操作,而车辆在基于该电容感应区域采集到用户执行的该触摸滑移操作之后,即分析判断该触摸滑移操作针对该电容感应区域中的多个电容感应点的触发顺序,是否与之前车辆用户自主设置的车门控制密码一致,进而在判定一致时向用户输出解锁成功的提示,并直接开启车门或者进一步等待车辆用户执行新的触摸滑移操作之后,按照上述步骤S10至步骤S30所阐述的过程控制开启车门。
在本申请实施例中,本申请控制车门开关的方法由车辆在通过上述的电容感应区域采集车辆用户执行的触摸滑移操作时,还同步或者异步的获取车门的实时开闭状态。从而,车辆在通过上述的触摸滑移操作确定该操作不属于误触操作,且根据该触摸滑移操作确定了该操作针对多个电容感应点中至少三个电容感应点的触发顺序,与车门开关方向之间的对应关系是该触发顺序对应车门开启方向或者是该触发顺序对应车门关闭方向之后,基于车门的实时开闭状态和该对应关系,控制开启车门或者控制关闭车门。即,若当前车门的实时开闭状态为关闭,且车辆确定的触摸滑移操作针对连续的至少三个电容感应点的触发顺序对应车门开启方向,则车辆即立即控制开启车门;或者,若当前车门的实时开闭状态为开启,且车辆确定的触摸滑移操作针对连续的至少三个电容感应点的触发顺序对应车门关闭方向,则车辆即立即控制关闭车门。如此,进一步提升了控制车门开关的智能性,用户使用体验更高。
此外,本申请控制车门开关的方法还将电容感应区域中的多个电容感应点向车辆用户提供车门密码设置功能,从而车辆用户可基于该电容感应区域自主设置针对车门进行控制的功能密码,进而在未携带车辆钥匙靠近车辆等情形下,可直接通过自主设置的车门控制密码来控制车门开闭,进一步在极大程度上提高了车辆的智能性和用户使用体验。
进一步地,基于上述本申请控制车门开关的方法的第一实施例和/或者第二实施例,提出本申请控制车门开关的方法的第三实施例。
在本实施例中,为了进一步防止因降雨导致雨水在上述电容感应区域形成误触操作,车辆还进一步在该电容感应区域的周边位置配置保护电极区域,示例性地,如图2所示,车辆在感应区域的前后均配置有保护电极区域——保护区域。并且,车辆还基于该保护电极区域设置有相应的算法策略,以此进一步降低车门因误触被开启或者关闭的几率。
基于此,在本实施例中,本申请控制车门开关的方法还可以包括:
步骤I,通过所述保护电极区域采集所述电容感应区域周边的保护电容值,并检测所述保护电容值是否超过预设的保护电容阈值;
步骤II,若所述保护电容值超过所述保护电容阈值,则屏蔽所述电容感应区域采集到的感应信号。
在本实施例中,车辆在通过上述的电容感应区域来采集车辆用户执行的触摸滑移操作之外,还基于保护电极区域,持续的对电容感应区域的周边位置进行电容值探测以获取得到保护电容值。然后,车辆即结合预先配置的算法策略中来对该保护电容值进行检测,即,检测该保护电容值是否超过预设的保护电容阈值。从而,若检测到基于保护电极区域采集得到的电容值超过了保护电容阈值,则车辆即判定当前电容值的产生是因为雨水等其它导电介质引起的,因此,即使车辆此时通过电容感应区域采集到了触发电容的感应信号,车辆也将认为该电容触发并不属于车辆用户对电容感应区域执行的触摸滑移操作,因此,车辆即直接对该感应信号进行屏蔽。
此外,若车辆检测到基于保护电极区域采集得到的电容值没有超过保护电容阈值,则车辆即可针对同时于电容感应区域采集到的触摸滑移操作进行响应,以按照如上述第一实施例和/或者第二实施例中阐述的过程,来控制车门开启或者关闭。
需要说明的是,在一种可行的实施例中,上述保护电容阈值具体可以被设置为140。应当理解的是,基于实际应用的不同设计需要,在不同可行的实施例中,车辆当然可以配置其它大小的保护电容阈值,本申请控制车门开关的方法,并不针对该保护电容阈值的具体大小进行限定。
在本申请实施例中,本申请控制车门开关的方法通过车辆在上述电容感应区域的周边位置配置保护电极区域,并设置有相应的算法策略,从而通过该保护电极区域采集的电容值的大小来进行误触判断,从而进一步防止雨水等导电介质在电容感应区域形成误触操作,进而进一步降低了车门因误触被开启或者关闭的几率。
此外,本申请还提供一种控制车门开关的装置。本申请控制车门开关的装置应用于配置有电容感应区域的车辆,所述电容感应区域包括多个电容感应点。
如图3所示,本申请控制车门开关的装置包括:
采集模块10,用于通过所述电容感应区域采集车辆用户执行的触摸滑移操作;
误触判断模块20,用于根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作;
控制模块30,用于在确定所述触摸滑移操作不是误触操作时,根据所述触摸滑移操作针对多个所述电容感应点的触发顺序控制开启车门或者关闭车门。
在一实施例中,本申请控制车门开关的装置还包括:
信息获取模块,用于获取所述触摸滑移操作针对多个所述电容感应点中第一感应点的触摸停留时间,其中,所述第一感应点为多个所述电容感应点中对应车门开关方向排列在第一个的电容感应点;获取所述触摸滑移操作针对多个所述电容感应点中相邻两个感应点的触摸滑移速度;获取所述触摸滑移操作针对多个所述电容感应点均完成触摸的触摸滑移时间;以及,将所述触摸停留时间、所述触摸滑移速度和所述触摸滑移时间,确定为所述触摸滑移操作针对多个所述电容感应点的触发状态信息。
在一实施例中,误触判断模块20,包括:
算法检测单元,用于检测所述触摸停留时间是否大于预设的停留时间阈值,检测所述触摸滑移速度是否大于预设的速度阈值,和,检测所述触摸滑移时间是否属于预设的滑移完成时间范围;
误触判断单元,用于若所述触摸停留时间大于所述停留时间阈值,所述触摸滑移速度大于所述速度阈值,且所述触摸滑移时间属于所述滑移完成时间范围,则确定所述触摸滑移操作不是误触操作。
在一实施例中,多个所述电容感应点的数量大于或者等于三;控制模块30,包括:
确定单元,用于确定所述触摸滑移操作针对多个所述电容感应点中至少三个电容感应点的触发顺序;
控制单元,用于若所述触发顺序对应车门开启方向,则控制开启车门,或者,若所述触发顺序对应车门关闭方向,则控制关闭车门。
在一实施例中,控制模块30,还用于获取车门的实时开闭状态;根据所述实时开闭状态和所述触发顺序与车门开关方向之间的对应关系控制开启车门或者关闭车门;或者,根据所述实时开闭状态和所述触发顺序与车门开关方向之间的对应关系,输出预设的车门开关指令提示以基于针对所述车门开关指令提示的确认操作控制开启车门或者关闭车门。
在一实施例中,本申请控制车门开关的装置还包括:
密码配置模块,用于通过所述电容感应区域采集车辆用户执行的车门密码配置操作;和,将所述车门密码配置操作针对多个所述电容感应点的触发顺序配置为车门控制密码;
本申请控制车门开关的装置的控制模块30,还用于在通过所述电容感应区域采集的触摸滑移操作针对多个所述电容感应点的触发顺序与所述车门控制密码一致时,控制开启车门或者关闭车门。
在一实施例中,所述车辆还配置有保护电极区域,所述保护电极区域配置在所述电容感应区域的周边位置;
本申请控制车门开关的装置的误触判断模块20,还用于通过所述保护电极区域采集所述电容感应区域周边的保护电容值,并检测所述保护电容值是否超过预设的保护电容阈值;和,若所述保护电容值超过所述保护电容阈值,则屏蔽所述电容感应区域采集到的感应信号。
本申请控制车门开关的装置的具体实施方式与上述控制车门开关的方法各实施例基本相同,在此不再赘述。
此外,本申请实施例还提供一种如上述任一实施例中所提及的车辆。
参照图4,图4是本申请实施例方案所提及车辆涉及的硬件运行环境的设备结构示意图。本申请实施例方案所提及车辆配置有电容感应区域的车辆,所述电容感应区域包括多个电容感应点。
如图4所示,该车辆可以包括:处理器1001,例如CPU,存储器1005,通信总线1002。其中,通信总线1002用于实现处理器1001和存储器1005之间的连接通信。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储设备。
在一实施例中,该车辆还包括甲醇增程器、整车控制器(VCU)、电池管理系统(BMS)、发动机管理系统(EMS)和发电机控制器(GCU)。其中,整车控制器(VCU)通过外部公共CAN与电池管理系统(BMS)等通信、通过内部CAN与发动机管理系统(EMS)和发电机控制器(GCU)通信。此外,该车辆还可以包括车身控制器BCM、ECU和矩形用户接口、网络接口、摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。矩形用户接口可以包括显示屏(Display)、输入子模块比如键盘(Keyboard),可选矩形用户接口还可以包括标准的有线接口、无线接口。网络接口可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。车辆还通过T-BOX与远程服务平台TSP进行通信连接。
本领域技术人员可以理解,图4中示出的结构并不构成对车辆的限定,基于实际应用的不同设计需要,在不同可行的实施方式当中,车辆当然还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图4所示,作为一种存储介质的存储器1005中可以包括操作系统、网络通信模块以及控制车门开关的程序。操作系统是管理和控制基于车辆硬件和软件资源的程序,支持控制车门开关的程序以及其它软件和/或程序的运行。网络通信模块用于实现存储器1005内部各组件之间的通信,以及与控制车门开关的装置中其它硬件和软件之间通信。
在图4所示的车辆中,处理器1001用于执行存储器1005中存储的控制车门开关的程序,实现上述任一实施例所述的控制车门开关的方法的步骤。
本申请车辆的具体实施方式与上述控制车门开关的方法各实施例基本相同,在此不再赘述。
此外,本申请实施例还提供了一种计算机存储介质,且所述计算机存储介质存储有一个或者一个以上程序,所述一个或者一个以上程序还可被一个或者一个以上的处理器执行以用于实现上述任一项所述的控制车门开关的方法的步骤。
本申请计算机存储介质的具体实施方式与上述控制车门开关的方法各实施例基本相同,在此不再赘述。
此外,本申请还提供一种计算机程序产品、包括计算机程序,该计算机程序被处理器执行时实现上述的控制车门开关的方法的步骤。
本申请计算机程序产品的具体实施方式与上述控制车门开关的方法各实施例基本相同,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是车载电脑,智能手机,计算机,或者服务器等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。
Claims (10)
- 一种控制车门开关的方法,其中,所述控制车门开关的方法应用于配置有电容感应区域的车辆,所述电容感应区域包括多个电容感应点;所述控制车门开关的方法包括:通过所述电容感应区域采集车辆用户执行的触摸滑移操作;根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作;在确定所述触摸滑移操作不是误触操作时,根据所述触摸滑移操作针对多个所述电容感应点的触发顺序控制开启车门或者关闭车门。
- 如权利要求1所述的控制车门开关的方法,其中,在所述根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作的步骤之前,所述方法还包括:获取所述触摸滑移操作针对多个所述电容感应点中第一感应点的触摸停留时间,其中,所述第一感应点为多个所述电容感应点中对应车门开关方向排列在第一个的电容感应点;获取所述触摸滑移操作针对多个所述电容感应点中相邻两个感应点的触摸滑移速度;获取所述触摸滑移操作针对多个所述电容感应点均完成触摸的触摸滑移时间;将所述触摸停留时间、所述触摸滑移速度和所述触摸滑移时间,确定为所述触摸滑移操作针对多个所述电容感应点的触发状态信息。
- 如权利要求2所述的控制车门开关的方法,其中,所述根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作的步骤,包括:检测所述触摸停留时间是否大于预设的停留时间阈值,检测所述触摸滑移速度是否大于预设的速度阈值,和,检测所述触摸滑移时间是否属于预设的滑移完成时间范围;若所述触摸停留时间大于所述停留时间阈值,所述触摸滑移速度大于所述速度阈值,且所述触摸滑移时间属于所述滑移完成时间范围,则确定所述触摸滑移操作不是误触操作。
- 如权利要求1所述的控制车门开关的方法,其中,多个所述电容感应点的数量大于或者等于三;所述根据所述触摸滑移操作针对多个所述电容感应点的触发顺序控制开启车门或者关闭车门的步骤,包括:确定所述触摸滑移操作针对多个所述电容感应点中至少三个电容感应点的触发顺序;若所述触发顺序对应车门开启方向,则控制开启车门,或者,若所述触发顺序对应车门关闭方向,则控制关闭车门。
- 如权利要求4所述的控制车门开关的方法,其中,在所述确定所述触摸滑移操作针对多个所述电容感应点中至少三个电容感应点的触发顺序的步骤之后,所述方法还包括:获取车门的实时开闭状态;根据所述实时开闭状态和所述触发顺序与车门开关方向之间的对应关系控制开启车门或者关闭车门;或者,根据所述实时开闭状态和所述触发顺序与车门开关方向之间的对应关系,输出预设的车门开关指令提示以基于针对所述车门开关指令提示的确认操作控制开启车门或者关闭车门。
- 如权利要求1所述的控制车门开关的方法,其中,所述方法还包括:通过所述电容感应区域采集车辆用户执行的车门密码配置操作;将所述车门密码配置操作针对多个所述电容感应点的触发顺序配置为车门控制密码;在通过所述电容感应区域采集的触摸滑移操作针对多个所述电容感应点的触发顺序与所述车门控制密码一致时,控制开启车门或者关闭车门。
- 如权利要求1至6任一项所述的控制车门开关的方法,其中,所述车辆还配置有保护电极区域,所述保护电极区域配置在所述电容感应区域的周边位置,所述方法还包括:通过所述保护电极区域采集所述电容感应区域周边的保护电容值,并检测所述保护电容值是否超过预设的保护电容阈值;若所述保护电容值超过所述保护电容阈值,则屏蔽所述电容感应区域采集到的感应信号。
- 一种控制车门开关的装置,其中,所述控制车门开关的装置应用于配置有电容感应区域的车辆,所述电容感应区域包括多个电容感应点;所述控制车门开关的装置包括:采集模块,用于通过所述电容感应区域采集车辆用户执行的触摸滑移操作;误触判断模块,用于根据所述触摸滑移操作针对多个所述电容感应点的触发状态信息,确定所述触摸滑移操作是否为误触操作;控制模块,用于在确定所述触摸滑移操作不是误触操作时,根据所述触摸滑移操作针对多个所述电容感应点的触发顺序控制开启车门或者关闭车门。
- 一种车辆,其中,所述车辆包括:存储器、处理器以及存储在存储器上的用于实现所述控制车门开关的方法的程序,所述存储器用于存储实现控制车门开关的方法的程序;所述处理器用于执行实现所述控制车门开关的方法的程序,以实现如权利要求1至7中任一项所述控制车门开关的方法的步骤。
- 一种计算机存储介质,其中,所述计算机存储介质上存储有实现控制车门开关的方法的程序,所述实现控制车门开关的方法的程序被处理器执行以实现如权利要求1至7中任一项所述控制车门开关的方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211216842.1 | 2022-09-30 | ||
CN202211216842.1A CN115434603A (zh) | 2022-09-30 | 2022-09-30 | 控制车门开关的方法、装置、车辆以及计算机存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024067831A1 true WO2024067831A1 (zh) | 2024-04-04 |
Family
ID=84250381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/122751 WO2024067831A1 (zh) | 2022-09-30 | 2023-09-28 | 控制车门开关的方法、装置、车辆以及计算机存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115434603A (zh) |
WO (1) | WO2024067831A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115434603A (zh) * | 2022-09-30 | 2022-12-06 | 浙江极氪智能科技有限公司 | 控制车门开关的方法、装置、车辆以及计算机存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018107897A1 (zh) * | 2016-12-16 | 2018-06-21 | 广东欧珀移动通信有限公司 | 一种触摸屏控制方法、装置、移动终端及存储介质 |
CN110725633A (zh) * | 2018-06-28 | 2020-01-24 | 比亚迪股份有限公司 | 解锁车门的方法和装置、存储介质和车辆 |
CN110853187A (zh) * | 2018-07-27 | 2020-02-28 | 比亚迪股份有限公司 | 解锁车门的方法和装置、存储介质和车辆 |
CN111619499A (zh) * | 2019-02-28 | 2020-09-04 | 北京新能源汽车股份有限公司 | 一种车门控制方法、装置、设备及汽车 |
CN114263402A (zh) * | 2021-11-08 | 2022-04-01 | 浙江零跑科技股份有限公司 | 一种基于多触点式电容电动开门控制系统及方法 |
CN115434603A (zh) * | 2022-09-30 | 2022-12-06 | 浙江极氪智能科技有限公司 | 控制车门开关的方法、装置、车辆以及计算机存储介质 |
-
2022
- 2022-09-30 CN CN202211216842.1A patent/CN115434603A/zh active Pending
-
2023
- 2023-09-28 WO PCT/CN2023/122751 patent/WO2024067831A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018107897A1 (zh) * | 2016-12-16 | 2018-06-21 | 广东欧珀移动通信有限公司 | 一种触摸屏控制方法、装置、移动终端及存储介质 |
CN110725633A (zh) * | 2018-06-28 | 2020-01-24 | 比亚迪股份有限公司 | 解锁车门的方法和装置、存储介质和车辆 |
CN110853187A (zh) * | 2018-07-27 | 2020-02-28 | 比亚迪股份有限公司 | 解锁车门的方法和装置、存储介质和车辆 |
CN111619499A (zh) * | 2019-02-28 | 2020-09-04 | 北京新能源汽车股份有限公司 | 一种车门控制方法、装置、设备及汽车 |
CN114263402A (zh) * | 2021-11-08 | 2022-04-01 | 浙江零跑科技股份有限公司 | 一种基于多触点式电容电动开门控制系统及方法 |
CN115434603A (zh) * | 2022-09-30 | 2022-12-06 | 浙江极氪智能科技有限公司 | 控制车门开关的方法、装置、车辆以及计算机存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN115434603A (zh) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024067831A1 (zh) | 控制车门开关的方法、装置、车辆以及计算机存储介质 | |
KR20160132761A (ko) | 풀 스크린 지문인식 방법 및 구조 | |
CN108804010A (zh) | 终端控制方法、装置及计算机可读存储介质 | |
EP3444752B1 (en) | Fingerprint recognition process | |
CN104571921A (zh) | 解锁方法、装置及终端 | |
CN106227520A (zh) | 一种应用界面切换方法及装置 | |
CN104951682A (zh) | 隐私保护方法及装置 | |
CN102981622A (zh) | 一种移动终端的外部控制方法及系统 | |
CN102043584A (zh) | 一种应用于数字终端的输入方法及装置 | |
CN106815546A (zh) | 指纹识别方法及装置 | |
US20180059893A1 (en) | Operation Method Applied to Terminal Device and Terminal Device | |
CN103927119A (zh) | 切换至账户界面的方法和系统 | |
CN106161811A (zh) | 一种提示方法及移动终端 | |
CN107562289A (zh) | 充电抗干扰方法及装置 | |
CN111078108A (zh) | 一种屏幕显示方法、装置、存储介质及移动终端 | |
CN111722780B (zh) | 显示快速操作栏的方法、装置、车机设备及存储介质 | |
CN109886178A (zh) | 指纹录入方法及相关产品 | |
CN104898839A (zh) | 一种终端设备及其控制方法 | |
EP3182258B1 (en) | Terminal, terminal control device and method | |
CN106778169B (zh) | 指纹解锁方法及装置 | |
CN106101427A (zh) | 一种移动终端及其通话的误操作防止方法 | |
CN105488372A (zh) | 验证方法及装置 | |
CN113920539A (zh) | 一种车载按键的防误触方法、装置、汽车及存储介质 | |
CN106650569A (zh) | 指纹录入方法及装置 | |
CN105447372A (zh) | 一种智能安防预警系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23871055 Country of ref document: EP Kind code of ref document: A1 |