WO2024067595A1 - 一种信号发射方法、装置及终端设备 - Google Patents

一种信号发射方法、装置及终端设备 Download PDF

Info

Publication number
WO2024067595A1
WO2024067595A1 PCT/CN2023/121593 CN2023121593W WO2024067595A1 WO 2024067595 A1 WO2024067595 A1 WO 2024067595A1 CN 2023121593 W CN2023121593 W CN 2023121593W WO 2024067595 A1 WO2024067595 A1 WO 2024067595A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical resource
resource block
resource blocks
allocated
value
Prior art date
Application number
PCT/CN2023/121593
Other languages
English (en)
French (fr)
Inventor
曹佳仪
渠文宽
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024067595A1 publication Critical patent/WO2024067595A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a signal transmission method, device and terminal equipment.
  • the definition of resource block region division is an integral part of the Maximum Power Reduction (MPR) metric.
  • MPR Maximum Power Reduction
  • UE User Equipment
  • FDSS Frequency Domain Spectrum Shaping
  • extension PRB Extension Physical Resource Block
  • the resource blocks that need to be scheduled are extended from the allocated Physical Resource Block (allocated PRB) for data transmission to the reserved extension PRBs.
  • the embodiments of the present application provide a signal transmission method, apparatus and terminal device, which can reasonably divide the resource block area of the MPR indicator in the scenario where the UE transmits signals based on extension PRB, thereby ensuring that the UE's uplink transmission signal has a more appropriate power under different modulations or channel bandwidths, which is beneficial to improving the performance of the uplink transmission signal.
  • a signal transmission method comprising:
  • the terminal device divides the resource block area of the maximum power backoff indicator based on the first parameter, wherein the resource block area includes an allocated physical resource block and an extended physical resource block;
  • the terminal device resets the maximum power backoff value of the uplink transmission signal according to the divided resource block area
  • the terminal device transmits the uplink transmission signal based on the reset maximum power backoff value
  • the first parameter includes any one of the following:
  • the configuration information of the physical resource blocks and the configuration information of the extended physical resource blocks are allocated.
  • a signal transmitting device comprising:
  • a partitioning module configured to partition a resource block region of a maximum power backoff indicator based on a first parameter, wherein the resource block region includes an allocated physical resource block and an extended physical resource block;
  • a setting module used to reset the maximum power backoff value of the uplink transmission signal according to the divided resource block area
  • a transmitting module configured to transmit the uplink transmission signal based on the reset maximum power backoff value
  • the first parameter includes any one of the following:
  • the configuration information of the physical resource blocks and the configuration information of the extended physical resource blocks are allocated.
  • a terminal device which includes a processor and a memory, wherein the memory stores programs or instructions that can be executed on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the first aspect are implemented.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium and is executed by at least one processor to implement the steps of the method described in the first aspect.
  • the signal transmission method provided in the embodiment of the present application redefines the resource block area division of the MPR indicator based on the configuration information of the allocated physical resource blocks, or the configuration information of the allocated physical resource blocks and the configuration information of the extended physical resource blocks; the terminal device can reset the MPR of the uplink transmission signal according to the re-divided resource block area, and then transmit the uplink transmission signal based on the reset MPR, thereby achieving a reasonable division of the resource block area of the MPR indicator in the scenario where the UE transmits signals based on extension PRB, which can ensure that the uplink transmission signal of the UE has a more appropriate power under different modulations or channel bandwidths, which is beneficial to improving the performance of the uplink transmission signal.
  • FIG1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG2 is a schematic diagram of spectrum shaping based on reserving idle PRBs in an embodiment of the present application
  • FIG3 is a schematic diagram of spectrum shaping based on repeated PRB in an embodiment of the present application.
  • FIG4 is a flow chart of a signal transmission method in an embodiment of the present application.
  • FIG5 is a schematic diagram of the division of a resource block region of an MPR indicator in an embodiment of the present application.
  • FIG6 is a schematic diagram of the division of resource block regions of another MPR indicator in an embodiment of the present application.
  • FIG7 is a schematic diagram of the division of resource block regions of another MPR indicator in an embodiment of the present application.
  • FIG8 is a schematic diagram of the division of a resource block region of an MPR indicator in an embodiment of the present application.
  • FIG9 is a schematic diagram of the division of resource block regions of another MPR indicator in an embodiment of the present application.
  • FIG10 is a schematic diagram of the division of resource block regions of another MPR indicator in an embodiment of the present application.
  • FIG11 is a schematic diagram of interaction between a terminal device and a network side device in an embodiment of the present application.
  • FIG12 is a structural block diagram of a signal transmitting device in an embodiment of the present application.
  • FIG13 is a structural block diagram of a communication device in an embodiment of the present application.
  • FIG14 is a structural block diagram of a terminal device in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal device 11 and a network side device 12 .
  • the terminal device 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), an ATM or a self-service machine and other terminal side devices, and
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be referred to as a wireless access network device, a wireless access network (Radio Access Network, RAN), a wireless access network function or a wireless access network unit.
  • the access network device may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service set (Basic Service Set, BSS), an extended service set (Extended Service Set, ESS), a home B node, a home evolved B node, a transmission reception point (Transmission Reception Point, TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery ...
  • MME mobility management entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • Policy Control Function Policy Control Function
  • PCRF Policy and Charging Rules Function
  • edge application service discovery function Edge Application Server Discovery ...
  • the signal transmission method provided in the embodiment of the present application can redefine the resource block area division of the MPR indicator in the scenario where the UE transmits signals based on the extension PRB, and the terminal device can reset the MPR of the uplink transmission signal according to the re-divided resource block area, and then transmit the uplink transmission signal based on the reset MPR.
  • the terminal device transmits the uplink transmission signal based on the reset MPR, after selecting parameters such as waveform, channel bandwidth, modulation order, etc., it can use certain technologies such as FDSS technology to reset the MPR of the uplink transmission signal based on the reset MPR.
  • the performance of the uplink transmission signal such as the peak-to-average power ratio (PAPR), is improved.
  • the terminal device can enhance the uplink transmission power of the uplink transmission signal by using the FDSS technology of the extension PRB.
  • FDSS is a frequency domain shaping technology used by RAN4, which can effectively reduce PAPR and obtain performance gains.
  • DAC digital analog converter
  • the peak-to-average ratio of the analog signal output has a certain relationship with the correlation between the set of discrete time domain data. Assume that a set of discrete time domain data signals y(n) is convolved with a set of time domain discrete data d(n) in the time domain to obtain yd(n):
  • PAPR1 and PAPR2 the peak-to-average ratios of the output signals of y(n) and yd(n) after passing through the DAC are PAPR1 and PAPR2 respectively. If d(n) is a set of designed weight coefficients, the correlation between adjacent data of yd(n) will be better than the correlation between adjacent data of y(n). The higher the correlation, the lower the PAPR, so PAPR2 will be smaller than PAPR1. After a set of discrete time domain data is convolved with a set of designed discrete data, PAPR can be effectively reduced.
  • the convolution operation of two time domain signals is equivalent to the dot product operation of the two time domain signals in the frequency domain. Therefore, a set of discrete time domain data is transformed into discrete frequency domain data after discrete Fourier transform (DFT), and then dot-multiplied with the designed spectrum shaping sequence, and then the time domain signal after inverse discrete Fourier transform (IDFT) can effectively reduce PAPR. Since the dot product operation is less complex than the convolution operation, this PAPR reduction technology operates better in the frequency domain, so this technology is called FDSS technology.
  • DFT discrete Fourier transform
  • IDFT inverse discrete Fourier transform
  • the terminal device When the terminal device uses the FDSS technology to modulate the uplink transmission signal, it can reserve the PRB adjacent to the allocated PRB as the extension PRB to adjust the frequency domain waveform of the uplink transmission signal, obtain a smoother waveform, optimize the d(n) coefficient, and reduce the PAPR.
  • extension PRBs There are two main ways to reserve extension PRBs: reserving space PRBs and reserving repeated PRBs.
  • FIG. 2 a schematic diagram of spectrum shaping based on reserving idle PRBs provided by an embodiment of the present application is shown.
  • some idle PRBs namely extension PRBs
  • extension PRBs are reserved for it for it to place the filter roll-off sidelobes therein.
  • reserving some idle PRBs can reduce the roll-off amplitude requirement and cut-off frequency requirement of UE windowing, achieve a smoother descent at the roll-off, reduce sharper jitter, obtain a higher actual transmission power, and obtain better performance improvement.
  • FIG3 a schematic diagram of spectrum shaping based on repeated PRBs provided in an embodiment of the present application is shown.
  • the content of the first PRB of the transmission data PRB that is, the allocated PRB
  • the content of the last PRB in the transmission data PRB is repeated and appended before the transmission PRB, forming the PRB bandwidth type shown in FIG3 .
  • the reserved repeated PRBs have better correlation than the reserved idle PRBs, and therefore may have better performance improvement.
  • the terminal device uses the FDSS technology to exemplarily illustrate the modulation process of the uplink transmission signal based on the extension PRB.
  • the terminal device After the terminal device resets the uplink transmission signal, it can also perform other processing on the uplink transmission signal based on the configuration information of the extension PRB and the reset MPR, which is not specifically limited in the embodiments of the present application.
  • FIG4 a flow chart of a signal transmission method provided by an embodiment of the present application is shown.
  • the method is applied to a terminal device, as shown in FIG4, and the method may specifically include:
  • Step 401 The terminal device divides the resource block area of the maximum power backoff indicator based on the first parameter.
  • the source block area includes allocated physical resource blocks and extended physical resource blocks;
  • Step 402 The terminal device resets the maximum power backoff value of the uplink transmission signal according to the divided resource block area
  • Step 403 The terminal device transmits the uplink transmission signal based on the reset maximum power backoff value
  • the first parameter includes any one of the following:
  • terminal device may be the terminal device 11 in FIG. 1 , and the embodiments of the present application will not be described in detail herein.
  • the terminal device when dividing the resource block area of the MPR indicator, may only consider the configuration information of the allocated PRB, or may consider the configuration information of the allocated PRB and the configuration information of the extension PRB at the same time.
  • the configuration information of the allocated physical resource blocks includes a starting position of the allocated physical resource blocks and the number of the allocated physical resource blocks.
  • the configuration information of the extended physical resource block includes:
  • the allocated PRB is in resource blocks (RBs). When an allocated PRB contains multiple RBs, these RBs are continuous.
  • the starting position of an allocated PRB is the position of the first RB in the allocated PRB, and the number of allocated PRBs is the number of continuous RBs contained in the allocated PRB.
  • extension PRB is based on RB.
  • these RBs may be continuous, that is, continuously distributed on one side of allocated PRB; or, these RBs may be discontinuous, distributed on both sides of allocated PRB.
  • extension PRB is distributed adjacent to allocated PRB, and the RBs contained in extension PRB on either side of allocated PRB are continuous.
  • the starting position of extension PRB is the position of the first RB in extension PRB, and extension PRB is the sum of the number of RBs contained in extension PRBs adjacent to allocated PRB.
  • x1 and x2 can both be greater than 0, or one of x1 and x2 can be greater than 0 and the other is equal to 0.
  • the terminal device divides the resource block area of the MPR indicator according to any one of the above-mentioned first parameters A1 and A2.
  • the resource block area of the re-divided MPR indicator includes allocated PRBs and extension PRBs.
  • the MPR is only set for the allocated PRBs. Therefore, after the present application re-divides the resource block area of the MPR indicator, it is necessary to reset the MPR value of the uplink transmission signal for the allocated PRBs and extension PRBs in the resource block area of the MPR indicator.
  • the terminal device transmits the uplink transmission signal according to the reset MPR value, so that the uplink transmission signal of the terminal device has a more appropriate power under different modulations or channel bandwidths, which is beneficial to improving the performance of the uplink transmission signal.
  • the first parameter includes configuration information for allocating physical resource blocks and configuration information for extending physical resource blocks, and the terminal device divides the resource block area of the maximum power backoff indicator based on the first parameter, including: when the first condition is met, the terminal device divides the resource block area of the maximum power backoff indicator based on the first parameter.
  • the first condition includes at least one of the following:
  • the number of extended physical resource blocks is greater than a first threshold
  • the ratio of the number of extended physical resource blocks to N RB is greater than a second threshold, where N RB is the number of extended physical resource blocks for a given signal band. Maximum number of resource blocks under width and subcarrier spacing;
  • the ratio of the number of extended physical resource blocks to the number of allocated physical resource blocks is greater than a third threshold
  • the ratio of the number of extended physical resource blocks to the sum of the number of allocated physical resource blocks and the number of extended physical resource blocks is greater than a fourth threshold
  • the modulation order (Modulation order) or the modulation and coding scheme (MCS) index of the uplink transmission signal of the terminal device is less than a fifth threshold;
  • the uplink transmission signal of the terminal device adopts a spread spectrum orthogonal frequency division multiplexing (Discrete Fourier Transmission-Single Carrier-Orthogonal Frequency Division, DFT-S-OFDM) waveform based on discrete Fourier transform;
  • Discrete Fourier Transmission-Single Carrier-Orthogonal Frequency Division, DFT-S-OFDM Discrete Fourier Transmission-Single Carrier-Orthogonal Frequency Division, DFT-S-OFDM
  • the terminal device adopts a low Peak Average Power Ratio (low PAPR) sequence as a demodulation reference signal (Demodulation Reference Signal, DMRS) sequence.
  • low PAPR Peak Average Power Ratio
  • DMRS Demodulation Reference Signal
  • the terminal device when dividing the resource block area of the MPR indicator, may not consider other prerequisites and directly divide the resource block area based on A1 or A2; or when the first condition is met, that is, when at least one of the above B1 to B7 is met, the resource block area of the MPR indicator is divided based on the configuration information of the allocated PRB and the configuration information of the extension PRB.
  • first threshold, the second threshold, the third threshold, the fourth threshold and the fifth threshold may all be configured by a network-side device or specified by a protocol.
  • the resource block area of the MPR indicator can be divided into three types of areas according to the configuration type, namely the inner area (Inner), the edge area (Edge) and the outer area (Outer).
  • the configuration type of the resource block area of the MPR indicator is different depending on the first parameter.
  • the first parameter includes configuration information for allocating physical resource blocks and configuration information for extending physical resource blocks. If the first parameter satisfies a second condition, the resource block area belongs to an internal area, and the second condition includes: L ERB +L CRB ⁇ a first value, and a second value ⁇ min(RB start , RB Estart ) ⁇ a third value.
  • LERB is the number of extended physical resource blocks
  • LCRB is the number of allocated physical resource blocks
  • RB start is the starting position of the allocated physical resource blocks
  • RB Estart is the starting position of the extended physical resource blocks
  • min(RB start , RB Estart ) means taking the minimum value of RB start and RB Estart .
  • the resource block area belongs to an edge area, and the third condition includes:
  • RB end is the end position of the allocated physical resource block
  • RB Eend is the end position of the extended physical resource block
  • max(RB end , RB Eend ) indicates taking the maximum value of RB end and RB Eend .
  • the resource block area belongs to the external area.
  • the region to which the resource block region of the MPR indicator belongs in the channel can be determined according to the second condition and the third condition mentioned above. Specifically, if the sum of the number of allocated PRBs and extension PRBs, that is, the sum of the number of RBs contained in the allocated PRBs and the extension PRBs, is less than or equal to the first value, and the minimum value of the starting position of the allocated PRB and the starting position of the extension PRB, that is, the starting position of the resource block region of the MPR indicator, is greater than or equal to the second value and less than or equal to the third value, it means that the configuration information of the allocated PRB and the configuration information of the extension PRB meet the second condition, and the resource block region of the MPR indicator belongs to the internal region.
  • the sum of the number of allocated PRBs and extension PRBs is less than or equal to the fourth value, and the minimum value of the starting position of the allocated PRB and the starting position of the extension PRB, that is, the starting position of the resource block area of the MPR indicator, is at the leftmost end of the channel bandwidth; or, the number of allocated PRBs and extension PRBs is less than or equal to the fourth value, and the minimum value of the starting position of the allocated PRB and the starting position of the extension PRB, that is, the starting position of the resource block area of the MPR indicator, is at the leftmost end of the channel bandwidth;
  • the sum is less than or equal to the fourth value, and the maximum value of the end position of the allocated PRB and the end position of the extension PRB, that is, the end position of the resource block area of the MPR indicator, is at the rightmost end of the channel bandwidth, then it means that the configuration information of the allocated PRB and the configuration information of the extension PRB meet the third condition, and the resource block area of the MPR indicator belongs to
  • the first value, the second value, the third value and the fourth value may be fixed values or specified by a protocol.
  • N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing
  • ceil(N RB /2) is the smallest integer greater than or equal to N RB /2
  • floor(L CRB /2) is the largest integer less than or equal to L CRB /2
  • max(1,floor(L CRB /2)) means taking the maximum value between 1 and floor(L CRB /2).
  • the first value, the second value, the third value, and the fourth value are all specified by a protocol.
  • the first parameter includes configuration information for allocating physical resource blocks. If the first parameter satisfies a fourth condition, then the resource block area belongs to an internal area, and the fourth condition includes:
  • L CRB is the number of allocated physical resource blocks
  • N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing
  • ceil(N RB /2) is the smallest integer greater than or equal to N RB /2
  • floor(L CRB /2) is the largest integer less than or equal to L CRB /2
  • max(1,floor(L CRB /2)) means taking the maximum value between 1 and floor(L CRB /2)
  • RB start is the starting position of the allocated physical resource block.
  • the resource block region belongs to an edge region, and the fifth condition includes: L CRB ⁇ 2, and the resource block region is located at the leftmost end or the rightmost end of a channel bandwidth.
  • the resource block area belongs to the external area.
  • the region to which the resource block region of the MPR indicator belongs in the channel can be determined according to the fourth condition and the fifth condition. Specifically, if the number of allocated PRBs, that is, the number of RBs included in the allocated PRB is less than or equal to ceil(N RB /2), and the starting position of the allocated PRB is greater than or equal to the maximum value of 1 and floor(L CRB /2), and less than or equal to N RB –max(1,floor(L CRB /2))–L CRB , it means that the configuration information of the allocated PRB satisfies the fourth condition, and the resource block region of the MPR indicator belongs to the internal region.
  • the resource block area of the MPR indicator is located at the leftmost or rightmost end of the channel bandwidth, it means that the configuration information of the allocated PRBs meets the fifth condition, and the resource block area of the MPR indicator belongs to the edge area.
  • the configuration information of the allocated PRB satisfies neither the fourth condition nor the fifth condition, it can be determined that the resource block area of the MPR indicator belongs to the external area.
  • the channel bandwidth includes at least one of the system bandwidth and the partial system bandwidth.
  • the number of the extended physical resource blocks satisfies any of the following conditions:
  • the number of the extended physical resource blocks is a fixed value, and the number of the extended physical resource blocks is independent of the number of allocated physical resource blocks;
  • the number of the extended physical resource blocks is not fixed, and the number of the extended physical resource blocks is related to the number of allocated physical resource blocks.
  • the number of extension PRBs in the resource block area of the MPR indicator can be fixed. value, and there is no correlation between the number of extension PRBs and the number of allocated PRBs.
  • the number of extension PRBs is not fixed and can be adaptively adjusted, but there is a correlation between the number of extension PRBs and the number of allocated PRBs, for example, the number of extension PRBs is linearly correlated with the number of allocated PRBs, or other functional relationships are satisfied.
  • the location of the extended physical resource block satisfies any of the following conditions:
  • the position of the extended physical resource block is fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is symmetrically distributed on both sides of the allocated physical resource block;
  • the position of the extended physical resource block is not fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is asymmetrically distributed on both sides of the allocated physical resource block, and the number of extended physical resource blocks on each side of the allocated physical resource block is greater than or equal to 1;
  • the position of the extended physical resource block is not fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is asymmetrically distributed on both sides of the allocated physical resource block, and the number of extended physical resource blocks on one side of the allocated physical resource block is equal to 0.
  • the position of the extension PRB can be fixed, and the extension PRB is symmetrically distributed on both sides of the allocated PRB.
  • the position of the extension PRB is not fixed, and the position of the extension PRB can be adaptively adjusted according to the position of the allocated PRB, and the extension PRB is asymmetrically distributed on both sides of the allocated PRB.
  • the number of extension PRBs on each side of the allocated PRB that is, the number of RBs included in the extension PRB, is greater than or equal to 1; or, the number of extension PRBs on one side of the allocated PRB is equal to 0, and the number of extension PRBs on the other side is greater than or equal to 1.
  • the division method of the resource block area of the MPR indicator in the present application can be as shown in Figures 5 to 7.
  • FIG5 a schematic diagram of the division of a resource block area of an MPR indicator provided in an embodiment of the present application is shown.
  • the number of extension PRBs L ERB x
  • the number of allocated PRBs L CRB y
  • the starting position of extension PRB RB Estart a
  • the starting position of allocated PRB RB start b
  • the end position of extension PRB RB Eend c
  • the end position of allocated PRB RB end d
  • x+y ⁇ the first value
  • min(RB start , RB Estart ) a, the second value ⁇ a ⁇ the third value.
  • the configuration information of the allocated PRB and the configuration information of the extension PRB meet the second condition
  • the resource block area of the MPR indicator shown in FIG5 belongs to the internal area.
  • FIG6 a schematic diagram of the division of resource block areas of another MPR indicator provided in an embodiment of the present application is shown.
  • the number of extension PRBs L ERB x
  • the number of allocated PRBs L CRB y
  • the starting position of extension PRB RB Estart a
  • the starting position of allocated PRB RB start b
  • the end position of allocated PRB RB end c
  • the end position of extension PRB RB Eend d
  • min(RB start , RB Estart ) RB Estart
  • RB Estart is at the leftmost end of the channel bandwidth.
  • the configuration information of the allocated PRB and the configuration information of the extension PRB meet the third condition, and the resource block area of the MPR indicator shown in FIG6 belongs to the edge area.
  • FIG7 a schematic diagram of the division of resource block areas of another MPR indicator provided in an embodiment of the present application is shown.
  • the configuration information of allocated PRB and the configuration information of extension PRB neither meet the second condition nor the third condition, and the resource block area of the MPR indicator shown in FIG7 belongs to the external area.
  • the extension PRB is adjacent to the allocated PRB, and the extension PRB can be distributed symmetrically on both sides of the allocated PRB, or can be distributed asymmetrically on both sides of the allocated PRB.
  • the division method of the resource block area of the MPR indicator in the present application can be as shown in Figures 8 to 10.
  • FIG8 a schematic diagram of the division of a resource block area of an MPR indicator provided in an embodiment of the present application is shown.
  • the number of extension PRBs L ERB x
  • the end position of the allocated PRB is also the starting position of the extension PRB
  • the end position of the extension PRB RB Eend c, x+y ⁇ the first value
  • min(RB start , RB Estart ) a, the second value ⁇ a ⁇ the third value.
  • the configuration information of the allocated PRB and the configuration information of the extension PRB meet the second condition, and the resource block area of the MPR indicator shown in FIG8 belongs to the internal area.
  • FIG9 a schematic diagram of the division of resource block areas of another MPR indicator provided in an embodiment of the present application is shown.
  • the number of extension PRBs L ERB x
  • the number of allocated PRBs L CRB y
  • the starting position of allocated PRBs RB start a
  • the end position of allocated PRBs is also the starting position of extension PRBs
  • the end position of extension PRBs RB Eend c, x+y ⁇ the fourth value
  • max(RB end , RB Eend ) RB Eend
  • RB Eend is located at the rightmost end of the channel bandwidth.
  • the configuration information of allocated PRBs and the configuration information of extension PRBs meet the third condition, and the resource block area of the MPR indicator shown in FIG9 belongs to the edge area.
  • FIG10 a schematic diagram of the division of resource block areas of another MPR indicator provided in an embodiment of the present application is shown.
  • the number of extension PRBs L ERB x
  • the number of allocated PRBs L CRB y
  • the starting position of allocated PRBs RB start a
  • the end position of allocated PRBs is also the starting position of extension PRBs
  • the end position of extension PRBs RB Eend c, x+y> the first value, and x+y> the fourth value.
  • the configuration information of the allocated PRBs and the configuration information of the extension PRBs neither meet the second condition nor the third condition, and the resource block area of the MPR indicator shown in FIG10 belongs to the external area.
  • the configuration information of the extension PRB can be set by the terminal device itself, by the network side device, or by the protocol.
  • the method before the terminal device divides the resource block area of the maximum power backoff indicator based on the first parameter, the method further includes:
  • Step S11 The terminal device receives an extended physical resource block configuration signaling sent by a network side device, where the extended physical resource block configuration signaling includes configuration information of the extended physical resource block;
  • Step S12 The terminal device configures an extended physical resource block according to the configuration information of the extended physical resource block.
  • the configuration information of the extension PRB is set by a network side device, such as the network side device in Figure 1, or a network element such as a base station.
  • a network side device such as the network side device in Figure 1, or a network element such as a base station.
  • the network side device generates an extended physical resource block configuration signaling according to the configuration information of the allocated PRB of the terminal device, and sends the extended physical resource block configuration signaling to the terminal device.
  • the extended physical resource block configuration signaling carries the configuration information of the extension PRB of the terminal device, which may specifically include the number and position of the extension PRB.
  • the terminal device receives the extended physical resource block configuration signaling, and configures the extension PRB according to the configuration information of the extension PRB carried in the extended physical resource block configuration signaling.
  • the method before the terminal device divides the resource block area of the maximum power backoff indicator based on the first parameter, the method also includes: the terminal device locally determines configuration information of the extended physical resource block according to the second parameter.
  • the second parameter includes at least one of the following:
  • the terminal device locally determines the configuration information of the extension PRB according to the second parameter.
  • the second parameter may include at least one of the above E1 to E4. It is understandable that the modulation order, waveform, signal power, transmission rate and other signal parameters of the uplink transmission signal are different, and the performance of the uplink transmission signal is different.
  • the performance of the uplink transmission signal includes transmission power, PAPR, etc.
  • the terminal device can adaptively adjust the configuration information of the extension PRB.
  • the method further comprises:
  • the terminal device reports the ratio of the total number of the extended physical resource blocks to the reference value to the network side device
  • the reference value includes any of the following:
  • the terminal device needs to report the ratio of the number of extension PRBs to the parameter value to the network side device so that the network side device can obtain the configuration status of the extension PRB.
  • the ratio reported by the terminal device to the network side device can be the ratio of the number of extension PRBs to the number of allocated PRBs; or, the ratio reported by the terminal device to the network side device can be the ratio of the number of extension PRBs to N RB , where N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing; or, the ratio reported by the terminal device to the network side device can be the ratio of the number of extension PRBs to the sum of the number of allocated PRBs and extension PRBs.
  • the signal transmission method provided in the embodiment of the present application redefines the resource block area division of the MPR indicator based on the configuration information of the allocated physical resource blocks, or the configuration information of the allocated physical resource blocks and the configuration information of the extended physical resource blocks; the terminal device can reset the MPR of the uplink transmission signal according to the re-divided resource block area, and then transmit the uplink transmission signal based on the reset MPR, thereby achieving a reasonable division of the resource block area of the MPR indicator in the scenario where the UE transmits signals based on extension PRB, which can ensure that the uplink transmission signal of the UE has a more appropriate power under different modulations or channel bandwidths, which is beneficial to improving the performance of the uplink transmission signal.
  • the signal transmission method provided in the embodiment of the present application can be executed by a signal transmission device.
  • the signal transmission device provided in the embodiment of the present application is described by taking the signal transmission method executed by the signal transmission device as an example.
  • an embodiment of the present application provides a signal transmitting device, which can be applied to a terminal device.
  • a signal transmitting device which can be applied to a terminal device.
  • FIG. 12 a structural block diagram of a signal transmitting device provided by an embodiment of the present application is shown.
  • the device 120 may specifically include:
  • a partitioning module 1201 is configured to partition a resource block region of a maximum power backoff indicator based on a first parameter, wherein the resource block region includes an allocated physical resource block and an extended physical resource block;
  • the setting module 1202 is used to reset the maximum power backoff value of the uplink transmission signal according to the divided resource block area
  • the transmitting module 1203 is configured to transmit the uplink transmission signal based on the reset maximum power backoff value
  • the first parameter includes any one of the following:
  • the configuration information of the physical resource blocks and the configuration information of the extended physical resource blocks are allocated.
  • the first parameter includes configuration information for allocating physical resource blocks and configuration information for extending physical resource blocks.
  • Information the division module comprises:
  • a division submodule configured to divide the resource block area of the maximum power backoff indicator based on the first parameter when the first condition is met
  • the first condition includes at least one of the following:
  • the number of extended physical resource blocks is greater than a first threshold
  • a ratio of the number of extended physical resource blocks to N RB is greater than a second threshold, where N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing;
  • a ratio of the number of extended physical resource blocks to the number of allocated physical resource blocks is greater than a third threshold
  • the ratio of the number of extended physical resource blocks to the sum of the number of allocated physical resource blocks and the number of extended physical resource blocks is greater than a fourth threshold
  • the modulation order or modulation and coding strategy index of the uplink transmission signal of the terminal device is less than a fifth threshold
  • the uplink transmission signal of the terminal device adopts a spread spectrum orthogonal frequency division multiplexing waveform based on discrete Fourier transform
  • the terminal device uses a low peak-to-average ratio sequence as a demodulation reference signal sequence.
  • the first threshold, the second threshold, the third threshold, the fourth threshold and the fifth threshold are configured by a network-side device or specified by a protocol.
  • the configuration information of the allocated physical resource blocks includes the starting position of the allocated physical resource blocks and the number of allocated physical resource blocks; the configuration information of the extended physical resource blocks includes the number of extended physical resource blocks and the positions of the extended physical resource blocks, or the configuration information of the extended physical resource blocks includes the number of extended physical resource blocks.
  • the first parameter includes configuration information of allocating physical resource blocks and configuration information of extending physical resource blocks. If the first parameter satisfies a second condition, the resource block area belongs to an internal area, and the second condition includes:
  • the L ERB is the number of extended physical resource blocks
  • the L CRB is the number of allocated physical resource blocks
  • the RB start is the starting position of the allocated physical resource block
  • the RB Estart is the starting position of the extended physical resource block
  • the min (RB start , RB Estart ) means taking the minimum value between the RB start and the RB Estart .
  • the resource block area belongs to an edge area, and the third condition includes:
  • the RB end is the end position of the allocated physical resource block, and the RB Eend is the end position of the extended physical resource block; and the max (RB end , RB Eend ) indicates taking the maximum value of the RB end and the RB Eend .
  • the resource block area belongs to the external area.
  • the N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing
  • the ceil(N RB /2) is the minimum integer greater than or equal to N RB /2
  • the floor(L CRB /2) is the maximum integer less than or equal to L CRB /2
  • the max(1,floor(L CRB /2)) means taking the maximum value between 1 and the floor(L CRB /2).
  • the first value, the second value, the third value and the fourth value are all specified by a protocol.
  • the first parameter includes configuration information for allocating a physical resource block. If the first parameter satisfies a fourth condition, the resource block area belongs to an internal area, and the fourth condition includes:
  • the L CRB is the number of allocated physical resource blocks
  • the N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing
  • the ceil(N RB /2) is the minimum integer greater than or equal to N RB /2
  • the floor(L CRB /2) is the maximum integer less than or equal to L CRB /2
  • the max(1,floor(L CRB /2)) means taking the maximum value between 1 and the floor(L CRB /2)
  • the RB start is the starting position of the allocated physical resource block.
  • the resource block area belongs to an edge area, and the fifth condition includes:
  • the resource block region is located at the leftmost end or the rightmost end of the channel bandwidth.
  • the resource block area belongs to the external area.
  • the channel bandwidth includes at least one of a system bandwidth and a partial system bandwidth.
  • the number of the extended physical resource blocks satisfies any of the following conditions:
  • the number of the extended physical resource blocks is a fixed value, and the number of the extended physical resource blocks is independent of the number of allocated physical resource blocks;
  • the number of the extended physical resource blocks is not fixed, and the number of the extended physical resource blocks is related to the number of allocated physical resource blocks.
  • the location of the extended physical resource block satisfies any of the following conditions:
  • the position of the extended physical resource block is fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is symmetrically distributed on both sides of the allocated physical resource block;
  • the position of the extended physical resource block is not fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is asymmetrically distributed on both sides of the allocated physical resource block, and the number of extended physical resource blocks on each side of the allocated physical resource block is greater than or equal to 1;
  • the position of the extended physical resource block is not fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is asymmetrically distributed on both sides of the allocated physical resource block, and the number of extended physical resource blocks on one side of the allocated physical resource block is equal to 0.
  • the device further comprises:
  • a receiving module configured to receive an extended physical resource block configuration signaling sent by a network side device, wherein the extended physical resource block configuration signaling includes configuration information of the extended physical resource block;
  • the first configuration module is used to configure the extended physical resource block according to the configuration information of the extended physical resource block.
  • the configuration information of the extended physical resource block is specified by a protocol.
  • the device further comprises:
  • a second configuration module configured to locally determine configuration information of the extended physical resource block according to the second parameter
  • the second parameter includes at least one of the following:
  • Modulation order and modulation and coding strategy index of the uplink transmission signal
  • the waveform used by the uplink transmission signal is the waveform used by the uplink transmission signal
  • the transmission rate and Doppler frequency deviation of the terminal device or network side device are the transmission rate and Doppler frequency deviation of the terminal device or network side device.
  • the device further comprises:
  • a reporting module used for reporting the ratio of the total number of extended physical resource blocks to a reference value to a network side device
  • the reference value includes any of the following:
  • the signal transmitting device in the embodiment of the present application may be an electronic device, such as an electronic device having an operating system. It may also be a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal device. Exemplarily, the terminal device may include but is not limited to the types of terminal devices 11 listed above.
  • the signal transmitting device provided in the embodiment of the present application can implement each process implemented by the method embodiment shown in Figure 4 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application further provides a communication device 1300, including a processor 1301 and a memory 1302, wherein the memory 1302 stores a program or instruction that can be run on the processor 1301.
  • the communication device 1300 is a network side device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the signal transmission method embodiment described in the first aspect above, and can achieve the same technical effect.
  • the communication device 1300 is a terminal device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the signal transmission method embodiment described in the first aspect above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • FIG14 it is a schematic diagram of the hardware structure of a terminal device implementing an embodiment of the present application.
  • the terminal device 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409 and at least some of the components of the processor 1410.
  • the terminal device 1400 can also include a power supply (such as a battery) for supplying power to each component, and the power supply can be logically connected to the processor 1410 through a power management system, so as to implement functions such as charging, discharging, and power consumption management through the power management system.
  • a power supply such as a battery
  • the terminal device structure shown in FIG14 does not constitute a limitation on the terminal device, and the terminal device may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1404 may include a graphics processing unit (GPU) 14041 and a microphone 14042, and the graphics processor 14041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1406 may include a display panel 14061, and the display panel 14061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1407 includes a touch panel 14071 and at least one of other input devices 14072.
  • the touch panel 14071 is also called a touch screen.
  • the touch panel 14071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 14072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1401 can transmit the data to the processor 1410 for processing; in addition, the RF unit 1401 can send uplink data to the network side device.
  • the RF unit 1401 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1409 can be used to store software programs or instructions and various data.
  • the memory 1409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1409 may include a volatile memory or a non-volatile memory, or the memory 1409 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • Volatile memory can be random access memory (RAM), static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access memory (DDRSDRAM), incremental Enhanced SDRAM (ESDRAM), Synch link DRAM (SLDRAM) and Direct Rambus RAM (DRRAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM incremental Enhanced SDRAM
  • SLDRAM Synch link DRAM
  • DRRAM Direct Rambus RAM
  • the memory 1409 in the embodiment of the present application includes but is not limited to these and any other
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1410.
  • the processor 1410 is configured to divide a resource block region of a maximum power backoff indicator based on a first parameter, wherein the resource block region includes an allocated physical resource block and an extended physical resource block;
  • the processor 1410 is further configured to reset a maximum power backoff value of an uplink transmission signal according to the divided resource block area;
  • the radio frequency unit 1401 is configured to transmit the uplink transmission signal based on the reset maximum power backoff value
  • the first parameter includes any one of the following:
  • the configuration information of the physical resource blocks and the configuration information of the extended physical resource blocks are allocated.
  • the first parameter includes configuration information of allocating physical resource blocks and configuration information of extending physical resource blocks.
  • the processor 1410 is specifically configured to divide the resource block area of the maximum power backoff indicator based on the first parameter;
  • the first condition includes at least one of the following:
  • the number of extended physical resource blocks is greater than a first threshold
  • a ratio of the number of extended physical resource blocks to N RB is greater than a second threshold, where N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing;
  • a ratio of the number of extended physical resource blocks to the number of allocated physical resource blocks is greater than a third threshold
  • the ratio of the number of extended physical resource blocks to the sum of the number of allocated physical resource blocks and the number of extended physical resource blocks is greater than a fourth threshold
  • the modulation order or modulation and coding strategy index of the uplink transmission signal of the terminal device is less than a fifth threshold
  • the uplink transmission signal of the terminal device adopts a spread spectrum orthogonal frequency division multiplexing waveform based on discrete Fourier transform
  • the terminal device uses a low peak-to-average ratio sequence as a demodulation reference signal sequence.
  • the first threshold, the second threshold, the third threshold, the fourth threshold and the fifth threshold are configured by a network-side device or specified by a protocol.
  • the configuration information of the allocated physical resource blocks includes the starting position of the allocated physical resource blocks and the number of allocated physical resource blocks; the configuration information of the extended physical resource blocks includes the number of extended physical resource blocks and the positions of the extended physical resource blocks, or the configuration information of the extended physical resource blocks includes the number of extended physical resource blocks.
  • the first parameter includes configuration information of allocating physical resource blocks and configuration information of extending physical resource blocks. If the first parameter satisfies a second condition, the resource block area belongs to an internal area, and the second condition includes:
  • the L ERB is the number of extended physical resource blocks
  • the L CRB is the number of allocated physical resource blocks
  • the RB start is the starting position of the allocated physical resource block
  • the RB Estart is the starting position of the extended physical resource block
  • the min (RB start , RB Estart ) means taking the minimum value between the RB start and the RB Estart .
  • the resource block area belongs to an edge area, and the third condition includes:
  • the RB end is the end position of the allocated physical resource block, and the RB Eend is the end position of the extended physical resource block; and the max (RB end , RB Eend ) indicates taking the maximum value of the RB end and the RB Eend .
  • the resource block area belongs to the external area.
  • the N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing
  • the ceil(N RB /2) is the minimum integer greater than or equal to N RB /2
  • the floor(L CRB /2) is the maximum integer less than or equal to L CRB /2
  • the max(1,floor(L CRB /2)) means taking the maximum value between 1 and the floor(L CRB /2).
  • the first value, the second value, the third value and the fourth value are all specified by a protocol.
  • the first parameter includes configuration information for allocating a physical resource block. If the first parameter satisfies a fourth condition, the resource block area belongs to an internal area, and the fourth condition includes:
  • the L CRB is the number of allocated physical resource blocks
  • the N RB is the maximum number of resource blocks under a given signal bandwidth and subcarrier spacing
  • the ceil(N RB /2) is the minimum integer greater than or equal to N RB /2
  • the floor(L CRB /2) is the maximum integer less than or equal to L CRB /2
  • the max(1,floor(L CRB /2)) means taking the maximum value between 1 and the floor(L CRB /2)
  • the RB start is the starting position of the allocated physical resource block.
  • the resource block area belongs to an edge area, and the fifth condition includes:
  • the resource block region is located at the leftmost end or the rightmost end of the channel bandwidth.
  • the resource block area belongs to the external area.
  • the channel bandwidth includes at least one of a system bandwidth and a partial system bandwidth.
  • the number of the extended physical resource blocks satisfies any of the following conditions:
  • the number of the extended physical resource blocks is a fixed value, and the number of the extended physical resource blocks is independent of the number of allocated physical resource blocks;
  • the number of the extended physical resource blocks is not fixed, and the number of the extended physical resource blocks is related to the number of allocated physical resource blocks.
  • the location of the extended physical resource block satisfies any of the following conditions:
  • the position of the extended physical resource block is fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is symmetrically distributed on both sides of the allocated physical resource block;
  • the position of the extended physical resource block is not fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is asymmetrically distributed on both sides of the allocated physical resource block, and the number of extended physical resource blocks on each side of the allocated physical resource block is greater than or equal to 1;
  • the position of the extended physical resource block is not fixed, and the extended physical resource block is adjacent to the allocated physical resource block and is asymmetrically distributed on both sides of the allocated physical resource block, and the number of extended physical resource blocks on one side of the allocated physical resource block is equal to 0.
  • the radio frequency unit 1401 is further used to receive an extended physical resource block configuration signaling sent by a network side device, where the extended physical resource block configuration signaling includes configuration information of the extended physical resource block;
  • the processor 1410 is further configured to configure an extended physical resource block according to the configuration information of the extended physical resource block.
  • the configuration information of the extended physical resource block is specified by a protocol.
  • the method before the terminal device divides the resource block area of the maximum power backoff indicator based on the first parameter, the method further includes:
  • the terminal device locally determines configuration information of the extended physical resource block according to the second parameter
  • the second parameter includes at least one of the following:
  • Modulation order and modulation and coding strategy index of the uplink transmission signal
  • the waveform used by the uplink transmission signal is the waveform used by the uplink transmission signal
  • the transmission rate and Doppler frequency deviation of the terminal device or network side device are the transmission rate and Doppler frequency deviation of the terminal device or network side device.
  • the radio frequency unit 1401 is further used to report the ratio of the total number of extended physical resource blocks to a reference value to a network side device;
  • the reference value includes any of the following:
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the program or instruction is executed by a processor, each process of the above-mentioned signal transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned signal transmission method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned signal transmission method embodiment and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the above embodiment method can be implemented by means of software plus a necessary general hardware platform, or by hardware, but in many cases the former is a better implementation method.
  • the part that makes technical contribution can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, disk, CD-ROM), and includes a number of instructions for enabling a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号发射方法、装置及终端设备,属于通信技术领域,本申请实施例的信号发射方法包括:终端设备基于第一参数划分最大功率回退指标的资源块区域,所述资源块区域中包含分配物理资源块和扩展物理资源块;根据划分的资源块区域,重新设定上行发射信号的最大功率回退值;基于重新设定的最大功率回退值发射所述上行发射信号;所述第一参数包括以下任一项:分配物理资源块的配置信息;分配物理资源块的配置信息和扩展物理资源块的配置信息。本申请实施例能够在UE基于extension PRB进行信号发射的场景下,对MPR指标的资源块区域进行合理划分,可以确保UE的上行发射信号在不同调制或信道带宽下具备较合适的功率,有利于提升上行发射信号的性能。

Description

一种信号发射方法、装置及终端设备
相关申请的交叉引用
本申请主张在2022年09月30日在中国提交的申请号为202211220407.6的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信号发射方法、装置及终端设备。
背景技术
对资源块区域划分的定义是最大功率回退(Maximum Power Reduction,MPR)指标不可或缺的一部分。例如,在用户设备(User Equipment,UE)通过扩展物理资源块(extension Physical Resource Block,extension PRB)的频域赋形(Frequency Domain Spectrum Shaping,FDSS)技术进行上行发射功率增强的场景下,为FDSS预留一些extension PRB,可以在调制中获取更好的增益效果,同时预留的频域资源的大小和位置也会对其他的RAN4射频指标造成影响。具体地,需要调度的资源块从用于数据传输的分配物理资源块(allocated Physical Resource Block,allocated PRB)扩展到了预留的extension PRB。
在需要调度的资源块从allocated PRB扩展到预留的extension PRB的情况下,如何对MPR指标的资源块区域进行合理划分,以确保UE在不同调制或信道带宽下具备较合适的功率,是UE基于extension PRB进行信号发射的场景下亟需解决的问题。
发明内容
本申请实施例提供一种信号发射方法、装置及终端设备,能够UE基于extension PRB进行信号发射的场景下,对MPR指标的资源块区域进行合理划分,可以确保UE的上行发射信号在不同调制或信道带宽下具备较合适的功率,有利于提升上行发射信号的性能。
第一方面,提供了一种信号发射方法,包括:
终端设备基于第一参数划分最大功率回退指标的资源块区域,所述资源块区域中包含分配物理资源块和扩展物理资源块;
所述终端设备根据划分的资源块区域,重新设定上行发射信号的最大功率回退值;
所述终端设备基于重新设定的最大功率回退值发射所述上行发射信号;
其中,所述第一参数包括以下任一项:
分配物理资源块的配置信息;
分配物理资源块的配置信息和扩展物理资源块的配置信息。
第二方面,提供了一种信号发射装置,包括:
划分模块,用于基于第一参数划分最大功率回退指标的资源块区域,所述资源块区域中包含分配物理资源块和扩展物理资源块;
设定模块,用于根据划分的资源块区域,重新设定上行发射信号的最大功率回退值;
发射模块,用于基于重新设定的最大功率回退值发射所述上行发射信号;
其中,所述第一参数包括以下任一项:
分配物理资源块的配置信息;
分配物理资源块的配置信息和扩展物理资源块的配置信息。
第三方面,提供了一种终端设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第六方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
本申请实施例提供的信号发射方法,基于分配物理资源块的配置信息,或者分配物理资源块的配置信息和扩展物理资源块的配置信息,对MPR指标的资源块区域划分进行重新定义;终端设备可以根据重新划分的资源块区域对上行发射信号的MPR进行重新设定,进而基于重新设定的MPR发射上行发射信号,从而实现了在UE基于extension PRB进行信号发射的场景下,对MPR指标的资源块区域的合理划分,可以确保UE的上行发射信号在不同调制或信道带宽下具备较合适的功率,有利于提升上行发射信号的性能。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例中的一种基于预留空闲PRB的频谱成型示意图;
图3是本申请实施例中的一种基于重复PRB的频谱成型示意图;
图4是本申请实施例中的一种信号发射方法的流程图;
图5是本申请实施例中的一种MPR指标的资源块区域的划分示意图;
图6是本申请实施例中的另一种MPR指标的资源块区域的划分示意图;
图7是本申请实施例中的又一种MPR指标的资源块区域的划分示意图;
图8是本申请实施例中的一种MPR指标的资源块区域的划分示意图;
图9是本申请实施例中的另一种MPR指标的资源块区域的划分示意图;
图10是本申请实施例中的又一种MPR指标的资源块区域的划分示意图;
图11是本申请实施例中的一种终端设备与网络侧设备的交互示意图;
图12是本申请实施例中的一种信号发射装置的结构框图;
图13是本申请实施例中的一种通信设备的结构框图;
图14是本申请实施例中的一种终端设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、 单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端设备11和网络侧设备12。其中,终端设备11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端设备11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission Reception Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
本申请实施例提供的信号发射方法,可以在UE基于extension PRB进行信号发射的场景下,对MPR指标的资源块区域划分进行重新定义,终端设备可以根据重新划分的资源块区域对上行发射信号的MPR进行重新设定,进而基于重新设定的MPR发射上行发射信号。可以理解的是,终端设备基于重新设定的MPR发射上行发射信号时,可以在选定了波形、信道带宽、调制阶数等参数后,通过某些技术如FDSS技术,对 上行发射信号的性能,如峰均比(Peak Average Power Ratio,PAPR)等进行改善。示例性地,终端设备可以通过extension PRB的FDSS技术对上行发射信号进行上行发射功率增强。
FDSS是一种RAN4使用的频域赋形技术,可以有效降低PAPR,获得性能上的增益。一组离散时域信号经过数模转换器(Digital Analog Converter,DAC)后,其输出的模拟信号的峰均比与该组离散时域数据之间的相关性具有一定的关系。假设一组离散时域数据信号y(n)与一组时域离散数据d(n)进行时域卷积,获得yd(n):
设y(n)与yd(n)经过DAC后输出信号的峰均比分别为PAPR1和PAPR2,如果d(n)为一组设计好的权重系数的话,则yd(n)的相邻数据之间相关性会比y(n)的相邻数据之间相关性要好。相关性越高,PAPR越低,因此PAPR2会小于PAPR1,一组离散的时域数据与一组设计好的离散数据卷积后,能够有效降低PAPR。
根据卷积定理,两个时域信号的卷积操作可以等效于该两个时域信号在频域里的点乘操作。因此将一组离散时域数据经过离散傅里叶变换(Discrete Fourier Transform,DFT)之后变换成离散频域数据,然后点乘设计好的频谱成型序列,再经过离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT)之后的时域信号就可以有效地降低PAPR。由于点乘操作比卷积操作复杂度低,这种降PAPR的技术在频域中操作更好,因此称这种技术为FDSS技术。
终端设备在利用FDSS技术对上行发射信号进行调制时,可以预留allocated PRB临近的PRB作为extension PRB,以调整上行发射信号的频域波形,获得较为平滑的波形,优化d(n)系数,降低PAPR。预留extension PRB主要有预留空间PRB和预留重复PRB这两种方式。
参照图2,示出了本申请实施例提供的一种基于预留空闲PRB的频谱成型示意图。如图2所示,在调度UE数据后,为其预留一些空闲PRB,也即extension PRB,供其将滤波器滚降旁瓣放入其中。相比于UE之间紧挨的方式,预留一些空闲PRB可以降低UE加窗的滚降幅度要求和截止频率要求,在滚降处实现更加平滑的下降,减少较为尖锐的抖动,可以获得更高的实际发送功率,获取更好的性能提升。
参照图3,示出了本申请实施例提供的一种基于重复PRB的频谱成型示意图。如图3所示,将传输数据PRB,也即allocated PRB的第一个PRB的内容进行重复并附加到传输数据PRB的最后,将传输数据PRB中的最后一个PRB的内容进行重复并附加到传输PRB之前,形成如图3所示的PRB带宽类型。这种方式相比于图2所示的方式,预留重复PRB在相关性上比预留空闲PRB的相关性更好,因此可能能够具有更好的性能提升。
需要说明的是,上述示例仅对UE基于extension PRB进行信号发射的场景下,对MPR指标的资源块区域划分进行重新定义,以及对上行发射信号的MPR进行重新设定之后,终端设备基于extension PRB,利用FDSS技术对上行发射信号的调制过程进行示例性说明。终端设备对上行发射信号进行重新设定之后,也可以基于extension PRB的配置信息以及重新设定的MPR,对上行发射信号进行其他处理,本申请实施例在此不做具体限定。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号发射方法进行详细地说明。
第一方面,参照图4,示出了本申请实施例提供的一种信号发射方法的流程图。该方法应用于终端设备,如图4所示,该方法具体可以包括:
步骤401、终端设备基于第一参数划分最大功率回退指标的资源块区域,所述资 源块区域中包含分配物理资源块和扩展物理资源块;
步骤402、所述终端设备根据划分的资源块区域,重新设定上行发射信号的最大功率回退值;
步骤403、所述终端设备基于重新设定的最大功率回退值发射所述上行发射信号;
其中,所述第一参数包括以下任一项:
A1、分配物理资源块的配置信息;
A2、分配物理资源块的配置信息和扩展物理资源块的配置信息。
需要说明的是,所述终端设备可以是图1中的终端设备11,本申请实施例在此不再赘述。
在本申请实施例中,终端设备在划分MPR指标的资源块区域时,可以仅考虑allocated PRB的配置信息,也可以同时考虑allocated PRB的配置信息和extension PRB的配置信息。
可选地,所述分配物理资源块的配置信息包括分配物理资源块的起始位置和分配物理资源块的数目。
所述扩展物理资源块的配置信息包括:
扩展物理资源块的数目;或者,
扩展物理资源块的数目和扩展物理资源块的位置。
allocated PRB以资源块(Resource Block,RB)为单位,当allocated PRB包含多个RB时,这些RB是连续的。allocated PRB的起始位置为allocated PRB中的第一个RB的位置,allocated PRB的数目为allocated PRB中包含的连续RB的数目。
同样地,extension PRB以RB为单元,当extension PRB包含多个RB时,这些RB可以是连续的,也即连续分布在allocated PRB的一侧;或者,这些RB可以不连续,分布在allocated PRB的两侧。需要说明的是,extension PRB紧邻allocated PRB分布,且allocated PRB的任一侧的extension PRB中包含的RB是连续的。extension PRB的起始位置为extension PRB中的第一个RB的位置,extension PRB为紧邻allocated PRB的extension PRB中包含的RB的数目之和。示例性地,如果allocated PRB左侧的extension PRB中包含的RB的数目为x1,allocated PRB右侧的extension PRB中包含的RB的数目为x2,则extension PRB中包含的RB的数目,也即本申请中extension PRB的数目x=x1+x2。其中,x1和x2可以均大于0,或者,x1和x2中有一项大于0,另一项等于0。
终端设备根据上述第一参数A1和A2中的任一项划分MPR指标的资源块区域。在本申请中,重新划分后的MPR指标的资源块区域中包含allocated PRB和extension PRB。相关技术中仅针对allocated PRB设定了MPR。因此,本申请在重新划分MPR指标的资源块区域之后,需要针对MPR指标的资源块区域中allocated PRB和extension PRB,重新设定上行发射信号的MPR值。进一步地,终端设备根据重新设定的MPR值发射上行发射信号,可以使得终端设备的上行发射信号在不同调制或信道带宽下具备较合适的功率,有利于提升上行发射信号的性能。
可选地,所述第一参数包括分配物理资源块的配置信息和扩展物理资源块的配置信息,所述终端设备基于第一参数划分最大功率回退指标的资源块区域,包括:在满足第一条件的情况下,所述终端设备基于第一参数划分最大功率回退指标的资源块区域。
其中,所述第一条件包括以下至少一项:
B1、扩展物理资源块的数目大于第一阈值;
B2、扩展物理资源块的数目与NRB的比值大于第二阈值,所述NRB是给定信号带 宽和子载波间距下的最大资源块数目;
B3、扩展物理资源块的数目与分配物理资源块的数目的比值大于第三阈值;
B4、扩展物理资源块的数目与分配物理资源块、扩展物理资源块的数目之和的比值大于第四阈值;
B5、所述终端设备的上行发射信号的调制阶数(Modulation order)或调制与编码策略(Modulation and Coding Scheme,MCS)指数小于第五阈值;
B6、所述终端设备的上行发射信号采用基于离散傅里叶变换的扩频正交频分复用(Discrete Fourier Transmission-Single Carrier-Orthogonal Frequency Division,DFT-S-OFDM)波形;
B7、所述终端设备采用低峰均比(low Peak Average Power Ratio,low PAPR)序列作为解调参考信号(Demodulation Reference Signal,DMRS)序列。
在本申请中,终端设备在划分MPR指标的资源块区域时,可以不考虑其他前提条件,直接基于A1或A2进行资源块区域划分;也可以在满足第一条件的情况下,也即满足上述B1至B7中的至少一项时,同时基于allocated PRB的配置信息和extension PRB的配置信息划分MPR指标的资源块区域。
需要说明的是,上述第一阈值、第二阈值、第三阈值、第四阈值和第五阈值,均可以由网络侧设备配置,或者,由协议规定。
MPR指标的资源块区域按照配置类型可以被划分三类区域,分别为内部区域(Inner)、边缘区域(Edge)和外部区域(Outer)。第一参数不同,MPR指标的资源块区域的配置类型也不同。
在本申请的一种可选实施例中,所述第一参数包括分配物理资源块的配置信息和扩展物理资源块的配置信息。若所述第一参数满足第二条件,则所述资源块区域属于内部区域,所述第二条件包括:LERB+LCRB≤第一数值,且第二数值≤min(RBstart,RBEstart)≤第三数值。
其中,LERB为扩展物理资源块的数目,LCRB为分配物理资源块的数目,RBstart为分配物理资源块的起始位置,RBEstart为扩展物理资源块的起始位置;min(RBstart,RBEstart)表示取RBstart与RBEstart中的最小值。
若所述第一参数满足第三条件,则所述资源块区域属于边缘区域,所述第三条件包括:
LERB+LCRB≤第四数值,且min(RBstart,RBEstart)处于信道带宽的最左端;或者,
LERB+LCRB≤第四数值,且max(RBend,RBEend)处于信道带宽的最右端;
其中,RBend为分配物理资源块的末端位置,RBEend为扩展物理资源块的末端位置;max(RBend,RBEend)表示取RBend与RBEend中的最大值。
若所述第一参数不满足第二条件和第三条件,则所述资源块区域属于外部区域。
在同时考虑allocated PRB的配置信息和extension PRB的配置信息的情况下,可以按照上述第二条件、第三条件,确定MPR指标的资源块区域在信道中所属的区域。具体地,如果allocated PRB与extension PRB的数目之和,也即allocated PRB与extension PRB中包含的RB的数目之和,小于或等于第一数值,且allocated PRB的起始位置与extension PRB的起始位置中的最小值,也即MPR指标的资源块区域的起始位置,大于或等于第二数值、小于或等于第三数值,则说明allocated PRB的配置信息和extension PRB的配置信息满足第二条件,MPR指标的资源块区域属于内部区域。
如果allocated PRB与extension PRB的数目之和小于或等于第四数值,且allocated PRB的起始位置与extension PRB的起始位置中的最小值,也即MPR指标的资源块区域的起始位置,处于信道带宽的最左端;或者,allocated PRB与extension PRB的数目 之和小于或等于第四数值,且allocated PRB的末端位置与extension PRB的末端位置中的最大值,也即MPR指标的资源块区域的末端位置,处于信道带宽的最右端,则说明allocated PRB的配置信息和extension PRB的配置信息满足第三条件,MPR指标的资源块区域属于边缘区域。
如果allocated PRB的配置信息和extension PRB的配置信息既不满足上述第二条件,也不满足上述第三条件,则说明MPR指标的资源块区域属于外部区域。
其中,第一数值、第二数值、第三数值和第四数值可以是固定值,也可以由协议规定。
作为一种示例,第一数值=ceil(NRB/2),第二数值=max(1,floor(LCRB/2)),第三数值=NRB–max(1,floor(LCRB/2))–LCRB;第四数值=2,或者,所述第四数值由协议规定;
其中,NRB是给定信号带宽和子载波间距下的最大资源块数目,ceil(NRB/2)为大于或等于NRB/2的最小整数,floor(LCRB/2)为小于或等于LCRB/2的最大整数,max(1,floor(LCRB/2))表示取1和floor(LCRB/2)中的最大值。
作为另一种示例,所述第一数值、所述第二数值、所述第三数值和所述第四数值均由协议规定。
在本申请的另一种可选实施例中,所述第一参数包括分配物理资源块的配置信息。若所述第一参数满足第四条件,则所述资源块区域属于内部区域,所述第四条件包括:
LCRB≤ceil(NRB/2),且max(1,floor(LCRB/2))≤RBstart≤NRB–max(1,floor(LCRB/2))–LCRB
其中,LCRB为分配物理资源块的数目,NRB是给定信号带宽和子载波间距下的最大资源块数目,ceil(NRB/2)为大于或等于NRB/2的最小整数,floor(LCRB/2)为小于或等于LCRB/2的最大整数,max(1,floor(LCRB/2))表示取1和floor(LCRB/2)中的最大值,RBstart为分配物理资源块的起始位置。
若所述第一参数满足第五条件,则所述资源块区域属于边缘区域,所述第五条件包括:LCRB≤2,且所述资源块区域位于信道带宽的最左端或最右端。
若所述第一参数不满足第四条件和第五条件,则所述资源块区域属于外部区域。
在仅考虑allocated PRB的配置信息的情况下,可以按照上述第四条件、第五条件确定MPR指标的资源块区域在信道中所属的区域。具体地,如果allocated PRB的数目,也即allocated PRB中包含的RB的数目小于或等于ceil(NRB/2),且allocated PRB的起始位置大于或等于1和floor(LCRB/2)中的最大值、小于或等于NRB–max(1,floor(LCRB/2))–LCRB,则说明allocated PRB的配置信息满足第四条件,MPR指标的资源块区域属于内部区域。
如果allocated PRB的数目小于等于2,且MPR指标的资源块区域位于信道带宽的最左端或最右端,则说明allocated PRB的配置信息满足第五条件,MPR指标的资源块区域属于边缘区域。
如果allocated PRB的配置信息既不满足第四条件,也不满足第五条件,则可以确定MPR指标的资源块区域属于外部区域。
需要说明的是,本申请实施例中,所述信道带宽包括系统带宽、部分系统带宽中的至少一项。
可选地,所述扩展物理资源块的数目满足以下任一项条件:
C1、所述扩展物理资源块的数目为固定值,且所述扩展物理资源块的数目与分配物理资源块的数目无关;
C2、所述扩展物理资源块的数目不固定,且所述扩展物理资源块的数目与分配物理资源块的数目相关。
在本申请实施例中,MPR指标的资源块区域中,extension PRB的数目可以为固定 值,且extension PRB的数目与allocated PRB的数目之间不存在关联关系。或者,extension PRB的数目不固定,可以自适应调节,但是extension PRB的数目与allocated PRB的数目之间存在关联关系,例如,extension PRB的数目与allocated PRB的数目线性相关,或者满足其他函数关系。
可选地,所述扩展物理资源块的位置满足以下任一项条件:
D1、所述扩展物理资源块的位置固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈对称式分布;
D2、所述扩展物理资源块的位置不固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈非对称式分布,分配物理资源块的每一侧的扩展物理资源块数目均大于或等于1;
D3、所述扩展物理资源块的位置不固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈非对称式分布,分配物理资源块其中一侧的扩展物理资源块数目等于0。
在本申请实施例中,extension PRB的位置可以是固定的,extension PRB在allocated PRB的两侧呈对称式分布。
或者,extension PRB的位置不固定,可以根据allocated PRB的位置对extension PRB的位置进行自适应调节,extension PRB在allocated PRB的两侧呈非对称式分布。在这种情况下,allocated PRB的每一侧的extension PRB的数目,也即extension PRB中包含的RB的数目,均大于或等于1;或者,allocated PRB的某一侧的extension PRB的数目等于0,另一侧的extension PRB的数目大于或等于1。
需要说明的是,无论extension PRB的位置满足D1至D3中的哪一项条件,extension PRB都需要紧邻allocated PRB。
作为一种示例,在同时考虑allocated PRB的配置信息和extension PRB的配置信息的情况下,假设allocated PRB的每一侧的extension PRB的数目都大于0,本申请对于MPR指标的资源块区域的划分方式可以如图5至图7所示。
参照图5,示出了本申请实施例提供的一种MPR指标的资源块区域的划分示意图。如图5所示,假设extension PRB的数目LERB=x,allocated PRB的数目LCRB=y,extension PRB的起始位置RBEstart=a,allocated PRB的起始位置RBstart=b,extension PRB的末端位置RBEend=c,allocated PRB的末端位置RBend=d,x+y≤第一数值,且min(RBstart,RBEstart)=a,第二数值≤a≤第三数值。这种情况下,allocated PRB的配置信息和extension PRB的配置信息满足第二条件,图5所示的MPR指标的资源块区域属于内部区域。
参照图6,示出了本申请实施例提供的另一种MPR指标的资源块区域的划分示意图。如图6所示,假设extension PRB的数目LERB=x,allocated PRB的数目LCRB=y,extension PRB的起始位置RBEstart=a,allocated PRB的起始位置RBstart=b,allocated PRB的末端位置RBend=c,extension PRB的末端位置RBEend=d,x+y≤第四数值,且min(RBstart,RBEstart)=RBEstart,RBEstart处于信道带宽的最左端。此时,allocated PRB的配置信息和extension PRB的配置信息满足第三条件,图6所示的MPR指标的资源块区域属于边缘区域。
参照图7,示出了本申请实施例提供的又一种MPR指标的资源块区域的划分示意图。如图7所示,假设extension PRB的数目LERB=x,allocated PRB的数目LCRB=y,extension PRB的起始位置RBEstart=a,allocated PRB的起始位置RBstart=b,allocated PRB的末端位置RBend=c,extension PRB的末端位置RBEend=d,x+y>第一数值,且x+y>第四数值。此时,allocated PRB的配置信息和extension PRB的配置信息既不满足第二条件,也不满足第三条件,图7所示的MPR指标的资源块区域属于外部区域。
需要说明的是,在图5至图7所示的MPR指标的资源块区域的划分方式中,extension PRB紧邻allocated PRB,extension PRB可以在allocated PRB的两侧呈对称式分布,也可以在allocated PRB的两侧呈非对称式分布。
作为另一种示例,在同时考虑allocated PRB的配置信息和extension PRB的配置信息的情况下,假设allocated PRB的某一侧的extension PRB的数目等于0,本申请对于MPR指标的资源块区域的划分方式可以如图8至图10所示。
参照图8,示出了本申请实施例提供的一种MPR指标的资源块区域的划分示意图。如图8所示,假设extension PRB的数目LERB=x,allocated PRB的数目LCRB=y,allocated PRB的起始位置RBstart=a,allocated PRB的末端位置也为extension PRB的起始位置,RBend=RBEstart=b,extension PRB的末端位置RBEend=c,x+y≤第一数值,且min(RBstart,RBEstart)=a,第二数值≤a≤第三数值。此时,allocated PRB的配置信息和extension PRB的配置信息满足第二条件,图8所示的MPR指标的资源块区域属于内部区域。
参照图9,示出了本申请实施例提供的另一种MPR指标的资源块区域的划分示意图。如图9所示,假设extension PRB的数目LERB=x,allocated PRB的数目LCRB=y,allocated PRB的起始位置RBstart=a,allocated PRB的末端位置也为extension PRB的起始位置,RBend=RBEstart=b,extension PRB的末端位置RBEend=c,x+y≤第四数值,且max(RBend,RBEend)=RBEend,RBEend位于信道带宽的最右端。此时,allocated PRB的配置信息和extension PRB的配置信息满足第三条件,图9所示的MPR指标的资源块区域属于边缘区域。
参照图10,示出了本申请实施例提供的又一种MPR指标的资源块区域的划分示意图。如图10所示,假设extension PRB的数目LERB=x,allocated PRB的数目LCRB=y,allocated PRB的起始位置RBstart=a,allocated PRB的末端位置也为extension PRB的起始位置,RBend=RBEstart=b,extension PRB的末端位置RBEend=c,x+y>第一数值,且x+y>第四数值。此时,allocated PRB的配置信息和extension PRB的配置信息既不满足第二条件,也不满足第三条件,图10所示的MPR指标的资源块区域属于外部区域。
在本申请实施例中,extension PRB的配置信息可以由终端设备自行设定,也可以由网络侧设备设定,还可以由协议规定。
可选地,所述终端设备基于第一参数划分最大功率回退指标的资源块区域之前,所述方法还包括:
步骤S11、所述终端设备接收网络侧设备发送的扩展物理资源块配置信令,所述扩展物理资源块配置信令包含扩展物理资源块的配置信息;
步骤S12、所述终端设备根据所述扩展物理资源块的配置信息配置扩展物理资源块。
在一种可能的应用场景下,由网络侧设备,如图1中的网络侧设备,或者基站等网元,设定extension PRB的配置信息。参照图11,示出了本申请实施例提供的一种终端设备与网络侧设备的交互示意图。如图11所示,网络侧设备根据该终端设备的allocated PRB的配置信息生成扩展物理资源块配置信令,并将扩展物理资源块配置信令发送给终端设备,该扩展物理资源块配置信令中携带该终端设备的extension PRB的配置信息,具体可以包括extension PRB的数目和位置。终端设备接收扩展物理资源块配置信令,并根据扩展物理资源块配置信令中携带的extension PRB的配置信息配置extension PRB。
可选地,所述终端设备基于第一参数划分最大功率回退指标的资源块区域之前,所述方法还包括:所述终端设备根据第二参数本地确定扩展物理资源块的配置信息。
其中,所述第二参数包括以下至少一项:
E1、上行发射信号的调制阶数和调制与编码策略指数;
E2、上行发射信号采用的波形;
E3、下行测量信号质量或功率;
E4、所述终端设备或网络侧设备的传输速率和多普勒频偏。
在另一种可能的应用场景下,终端设备根据第二参数本地确定extension PRB的配置信息。其中,所述第二参数可以包括上述E1至E4中的至少一项。可以理解的是,上行发射信号的调制阶数、波形、信号功率、传输速率等信号参数不同,上行发射信号的性能不同,所述上行发射信号的性能包括发射功率、PAPR等。针对不同的信号参数,终端设备可以自适应调整extension PRB的配置信息。
可选地,所述方法还包括:
所述终端设备向网络侧设备上报所述扩展物理资源块的总数目与参考值的比值;
其中,所述参考值包括以下任一项:
分配物理资源块的数目;
给定信号带宽和子载波间距下的最大资源块数目;
分配物理资源块与扩展物理资源块的数目之和。
在终端设备自行确定extension PRB的配置信息的场景下,终端设备需要向网络侧设备上报extension PRB的数目与参数值的比值,以便网络侧设备获取extension PRB的配置情况。其中,终端设备向网络侧设备上报的比值可以为extension PRB的数目与allocated PRB的数目的比值;或者,终端设备向网络侧设备上报的比值可以为extension PRB的数目与NRB的比值,NRB是给定信号带宽和子载波间距下的最大资源块数目;或者,终端设备向网络侧设备上报的比值可以为extension PRB的数目与allocated PRB、extension PRB的数目之和的比值。
本申请实施例提供的信号发射方法,基于分配物理资源块的配置信息,或者分配物理资源块的配置信息和扩展物理资源块的配置信息,对MPR指标的资源块区域划分进行重新定义;终端设备可以根据重新划分的资源块区域对上行发射信号的MPR进行重新设定,进而基于重新设定的MPR发射上行发射信号,从而实现了在UE基于extension PRB进行信号发射的场景下,对MPR指标的资源块区域的合理划分,可以确保UE的上行发射信号在不同调制或信道带宽下具备较合适的功率,有利于提升上行发射信号的性能。
本申请实施例提供的信号发射方法,执行主体可以为信号发射装置。本申请实施例中以信号发射装置执行信号发射方法为例,说明本申请实施例提供的信号发射装置。
第二方面,本申请实施例提供了一种信号发射装置,该装置可以应用于终端设备。参照图12,示出了本申请实施例提供的一种信号发射装置的结构框图。如图12所示,该装置120具体可以包括:
划分模块1201,用于基于第一参数划分最大功率回退指标的资源块区域,所述资源块区域中包含分配物理资源块和扩展物理资源块;
设定模块1202,用于根据划分的资源块区域,重新设定上行发射信号的最大功率回退值;
发射模块1203,用于基于重新设定的最大功率回退值发射所述上行发射信号;
其中,所述第一参数包括以下任一项:
分配物理资源块的配置信息;
分配物理资源块的配置信息和扩展物理资源块的配置信息。
可选地,所述第一参数包括分配物理资源块的配置信息和扩展物理资源块的配置 信息,所述划分模块,包括:
划分子模块,用于在满足第一条件的情况下,基于所述第一参数划分最大功率回退指标的资源块区域;
其中,所述第一条件包括以下至少一项:
扩展物理资源块的数目大于第一阈值;
扩展物理资源块的数目与NRB的比值大于第二阈值,所述NRB是给定信号带宽和子载波间距下的最大资源块数目;
扩展物理资源块的数目与分配物理资源块的数目的比值大于第三阈值;
扩展物理资源块的数目与分配物理资源块、扩展物理资源块的数目之和的比值大于第四阈值;
所述终端设备的上行发射信号的调制阶数或调制与编码策略指数小于第五阈值;
所述终端设备的上行发射信号采用基于离散傅里叶变换的扩频正交频分复用波形;
所述终端设备采用低峰均比序列作为解调参考信号序列。
可选地,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值和所述第五阈值由网络侧设备配置或协议规定。
可选地,所述分配物理资源块的配置信息包括分配物理资源块的起始位置和分配物理资源块的数目;所述扩展物理资源块的配置信息包括扩展物理资源块的数目和扩展物理资源块的位置,或者,所述扩展物理资源块的配置信息包括扩展物理资源块的数目。
可选地,所述第一参数包括分配物理资源块的配置信息和扩展物理资源块的配置信息,若所述第一参数满足第二条件,则所述资源块区域属于内部区域,所述第二条件包括:
LERB+LCRB≤第一数值,且第二数值≤min(RBstart,RBEstart)≤第三数值;
其中,所述LERB为扩展物理资源块的数目,所述LCRB为分配物理资源块的数目,所述RBstart为分配物理资源块的起始位置,所述RBEstart为扩展物理资源块的起始位置;所述min(RBstart,RBEstart)表示取所述RBstart与所述RBEstart中的最小值。
可选地,若所述第一参数满足第三条件,则所述资源块区域属于边缘区域,所述第三条件包括:
LERB+LCRB≤第四数值,且min(RBstart,RBEstart)处于信道带宽的最左端;或者,
LERB+LCRB≤第四数值,且max(RBend,RBEend)处于信道带宽的最右端;
其中,所述RBend为分配物理资源块的末端位置,所述RBEend为扩展物理资源块的末端位置;所述max(RBend,RBEend)表示取所述RBend与所述RBEend中的最大值。
可选地,若所述第一参数不满足所述第二条件和所述第三条件,则所述资源块区域属于外部区域。
可选地,所述第一数值=ceil(NRB/2),所述第二数值=max(1,floor(LCRB/2)),所述第三数值=NRB–max(1,floor(LCRB/2))–LCRB;所述第四数值=2,或者,所述第四数值由协议规定;
其中,所述NRB是给定信号带宽和子载波间距下的最大资源块数目,所述ceil(NRB/2)为大于或等于NRB/2的最小整数,所述floor(LCRB/2)为小于或等于LCRB/2的最大整数,所述max(1,floor(LCRB/2))表示取1和所述floor(LCRB/2)中的最大值。
可选地,所述第一数值、所述第二数值、所述第三数值和所述第四数值均由协议规定。
可选地,所述第一参数包括分配物理资源块的配置信息,若所述第一参数满足第四条件,则所述资源块区域属于内部区域,所述第四条件包括:
LCRB≤ceil(NRB/2),且max(1,floor(LCRB/2))≤RBstart≤NRB–max(1,floor(LCRB/2))–LCRB
其中,所述LCRB为分配物理资源块的数目,所述NRB是给定信号带宽和子载波间距下的最大资源块数目,所述ceil(NRB/2)为大于或等于NRB/2的最小整数,所述floor(LCRB/2)为小于或等于LCRB/2的最大整数,所述max(1,floor(LCRB/2))表示取1和所述floor(LCRB/2)中的最大值,所述RBstart为分配物理资源块的起始位置。
可选地,若所述第一参数满足第五条件,则所述资源块区域属于边缘区域,所述第五条件包括:
LCRB≤2,且所述资源块区域位于信道带宽的最左端或最右端。
可选地,若所述第一参数不满足所述第四条件和所述第五条件,则所述资源块区域属于外部区域。
可选地,所述信道带宽包括系统带宽、部分系统带宽中的至少一项。
可选地,所述扩展物理资源块的数目满足以下任一项条件:
所述扩展物理资源块的数目为固定值,且所述扩展物理资源块的数目与分配物理资源块的数目无关;
所述扩展物理资源块的数目不固定,且所述扩展物理资源块的数目与分配物理资源块的数目相关。
可选地,所述扩展物理资源块的位置满足以下任一项条件:
所述扩展物理资源块的位置固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈对称式分布;
所述扩展物理资源块的位置不固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈非对称式分布,分配物理资源块的每一侧的扩展物理资源块数目均大于或等于1;
所述扩展物理资源块的位置不固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈非对称式分布,分配物理资源块其中一侧的扩展物理资源块数目等于0。
可选地,所述装置还包括:
接收模块,用于接收网络侧设备发送的扩展物理资源块配置信令,所述扩展物理资源块配置信令包含扩展物理资源块的配置信息;
第一配置模块,用于根据所述扩展物理资源块的配置信息配置扩展物理资源块。
可选地,所述扩展物理资源块的配置信息由协议规定。
可选地,所述装置还包括:
第二配置模块,用于根据第二参数本地确定扩展物理资源块的配置信息;
其中,所述第二参数包括以下至少一项:
上行发射信号的调制阶数和调制与编码策略指数;
上行发射信号采用的波形;
下行测量信号质量或功率;
所述终端设备或网络侧设备的传输速率和多普勒频偏。
可选地,所述装置还包括:
上报模块,用于向网络侧设备上报所述扩展物理资源块的总数目与参考值的比值;
其中,所述参考值包括以下任一项:
分配物理资源块的数目;
给定信号带宽和子载波间距下的最大资源块数目;
分配物理资源块与扩展物理资源块的数目之和。
本申请实施例中的信号发射装置可以是电子设备,例如具有操作系统的电子设备, 也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端设备。示例性的,终端设备可以包括但不限于上述所列举的终端设备11的类型。
本申请实施例提供的信号发射装置能够实现图4所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述第一方面所述的信号发射方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为终端设备时,该程序或指令被处理器1301执行时实现上述第一方面所述的信号发射方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
如图14所示,为实现本申请实施例的一种终端设备的硬件结构示意图。
该终端设备1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端设备1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理单元(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072中的至少一种。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401接收来自网络侧设备的下行数据后,可以传输给处理器1410进行处理;另外,射频单元1401可以向网络侧设备发送上行数据。通常,射频单元1401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括易失性存储器或非易失性存储器,或者,存储器1409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增 强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1409包括但不限于这些和任意其它适合类型的存储器。
处理器1410可包括一个或多个处理单元;可选的,处理器1410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,处理器1410用于基于第一参数划分最大功率回退指标的资源块区域,所述资源块区域中包含分配物理资源块和扩展物理资源块;
处理器1410还用于根据划分的资源块区域,重新设定上行发射信号的最大功率回退值;
射频单元1401用于基于重新设定的最大功率回退值发射所述上行发射信号;
其中,所述第一参数包括以下任一项:
分配物理资源块的配置信息;
分配物理资源块的配置信息和扩展物理资源块的配置信息。
可选地,所述第一参数包括分配物理资源块的配置信息和扩展物理资源块的配置信息,在满足第一条件的情况下,处理器1410具体用于基于所述第一参数划分最大功率回退指标的资源块区域;
其中,所述第一条件包括以下至少一项:
扩展物理资源块的数目大于第一阈值;
扩展物理资源块的数目与NRB的比值大于第二阈值,所述NRB是给定信号带宽和子载波间距下的最大资源块数目;
扩展物理资源块的数目与分配物理资源块的数目的比值大于第三阈值;
扩展物理资源块的数目与分配物理资源块、扩展物理资源块的数目之和的比值大于第四阈值;
所述终端设备的上行发射信号的调制阶数或调制与编码策略指数小于第五阈值;
所述终端设备的上行发射信号采用基于离散傅里叶变换的扩频正交频分复用波形;
所述终端设备采用低峰均比序列作为解调参考信号序列。
可选地,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值和所述第五阈值由网络侧设备配置或协议规定。
可选地,所述分配物理资源块的配置信息包括分配物理资源块的起始位置和分配物理资源块的数目;所述扩展物理资源块的配置信息包括扩展物理资源块的数目和扩展物理资源块的位置,或者,所述扩展物理资源块的配置信息包括扩展物理资源块的数目。
可选地,所述第一参数包括分配物理资源块的配置信息和扩展物理资源块的配置信息,若所述第一参数满足第二条件,则所述资源块区域属于内部区域,所述第二条件包括:
LERB+LCRB≤第一数值,且第二数值≤min(RBstart,RBEstart)≤第三数值;
其中,所述LERB为扩展物理资源块的数目,所述LCRB为分配物理资源块的数目,所述RBstart为分配物理资源块的起始位置,所述RBEstart为扩展物理资源块的起始位置;所述min(RBstart,RBEstart)表示取所述RBstart与所述RBEstart中的最小值。
可选地,若所述第一参数满足第三条件,则所述资源块区域属于边缘区域,所述第三条件包括:
LERB+LCRB≤第四数值,且min(RBstart,RBEstart)处于信道带宽的最左端;或者,
LERB+LCRB≤第四数值,且max(RBend,RBEend)处于信道带宽的最右端;
其中,所述RBend为分配物理资源块的末端位置,所述RBEend为扩展物理资源块的末端位置;所述max(RBend,RBEend)表示取所述RBend与所述RBEend中的最大值。
可选地,若所述第一参数不满足所述第二条件和所述第三条件,则所述资源块区域属于外部区域。
可选地,所述第一数值=ceil(NRB/2),所述第二数值=max(1,floor(LCRB/2)),所述第三数值=NRB–max(1,floor(LCRB/2))–LCRB;所述第四数值=2,或者,所述第四数值由协议规定;
其中,所述NRB是给定信号带宽和子载波间距下的最大资源块数目,所述ceil(NRB/2)为大于或等于NRB/2的最小整数,所述floor(LCRB/2)为小于或等于LCRB/2的最大整数,所述max(1,floor(LCRB/2))表示取1和所述floor(LCRB/2)中的最大值。
可选地,所述第一数值、所述第二数值、所述第三数值和所述第四数值均由协议规定。
可选地,所述第一参数包括分配物理资源块的配置信息,若所述第一参数满足第四条件,则所述资源块区域属于内部区域,所述第四条件包括:
LCRB≤ceil(NRB/2),且max(1,floor(LCRB/2))≤RBstart≤NRB–max(1,floor(LCRB/2))–LCRB
其中,所述LCRB为分配物理资源块的数目,所述NRB是给定信号带宽和子载波间距下的最大资源块数目,所述ceil(NRB/2)为大于或等于NRB/2的最小整数,所述floor(LCRB/2)为小于或等于LCRB/2的最大整数,所述max(1,floor(LCRB/2))表示取1和所述floor(LCRB/2)中的最大值,所述RBstart为分配物理资源块的起始位置。
可选地,若所述第一参数满足第五条件,则所述资源块区域属于边缘区域,所述第五条件包括:
LCRB≤2,且所述资源块区域位于信道带宽的最左端或最右端。
可选地,若所述第一参数不满足所述第四条件和所述第五条件,则所述资源块区域属于外部区域。
可选地,所述信道带宽包括系统带宽、部分系统带宽中的至少一项。
可选地,所述扩展物理资源块的数目满足以下任一项条件:
所述扩展物理资源块的数目为固定值,且所述扩展物理资源块的数目与分配物理资源块的数目无关;
所述扩展物理资源块的数目不固定,且所述扩展物理资源块的数目与分配物理资源块的数目相关。
可选地,所述扩展物理资源块的位置满足以下任一项条件:
所述扩展物理资源块的位置固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈对称式分布;
所述扩展物理资源块的位置不固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈非对称式分布,分配物理资源块的每一侧的扩展物理资源块数目均大于或等于1;
所述扩展物理资源块的位置不固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈非对称式分布,分配物理资源块其中一侧的扩展物理资源块数目等于0。
可选地,所述处理器1410基于第一参数划分最大功率回退指标的资源块区域之前,所述射频单元1401还用于接收网络侧设备发送的扩展物理资源块配置信令,所述扩展物理资源块配置信令包含扩展物理资源块的配置信息;
所述处理器1410还用于根据所述扩展物理资源块的配置信息配置扩展物理资源块。
可选地,所述扩展物理资源块的配置信息由协议规定。
可选地,所述终端设备基于第一参数划分最大功率回退指标的资源块区域之前,所述方法还包括:
所述终端设备根据第二参数本地确定扩展物理资源块的配置信息;
其中,所述第二参数包括以下至少一项:
上行发射信号的调制阶数和调制与编码策略指数;
上行发射信号采用的波形;
下行测量信号质量或功率;
所述终端设备或网络侧设备的传输速率和多普勒频偏。
可选地,所述射频单元1401还用于向网络侧设备上报所述扩展物理资源块的总数目与参考值的比值;
其中,所述参考值包括以下任一项:
分配物理资源块的数目;
给定信号带宽和子载波间距下的最大资源块数目;
分配物理资源块与扩展物理资源块的数目之和。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信号发射方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信号发射方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信号发射方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (24)

  1. 一种信号发射方法,所述方法包括:
    终端设备基于第一参数划分最大功率回退指标的资源块区域,所述资源块区域中包含分配物理资源块和扩展物理资源块;
    所述终端设备根据划分的资源块区域,重新设定上行发射信号的最大功率回退值;
    所述终端设备基于重新设定的最大功率回退值发射所述上行发射信号;
    其中,所述第一参数包括以下任一项:
    分配物理资源块的配置信息;
    分配物理资源块的配置信息和扩展物理资源块的配置信息。
  2. 根据权利要求1所述的方法,其中,所述分配物理资源块的配置信息包括分配物理资源块的起始位置和分配物理资源块的数目;所述扩展物理资源块的配置信息包括:扩展物理资源块的数目和扩展物理资源块的位置,或者,所述扩展物理资源块的配置信息包括扩展物理资源块的数目。
  3. 根据权利要求2所述的方法,其中,所述第一参数包括分配物理资源块的配置信息和扩展物理资源块的配置信息,若所述第一参数满足第二条件,则所述资源块区域属于内部区域,所述第二条件包括:
    LERB+LCRB≤第一数值,且第二数值≤min(RBstart,RBEstart)≤第三数值;
    其中,所述LERB为扩展物理资源块的数目,所述LCRB为分配物理资源块的数目,所述RBstart为分配物理资源块的起始位置,所述RBEstart为扩展物理资源块的起始位置;所述min(RBstart,RBEstart)表示取所述RBstart与所述RBEstart中的最小值。
  4. 根据权利要求3所述的方法,其中,若所述第一参数满足第三条件,则所述资源块区域属于边缘区域,所述第三条件包括:
    LERB+LCRB≤第四数值,且min(RBstart,RBEstart)处于信道带宽的最左端;或者,
    LERB+LCRB≤第四数值,且max(RBend,RBEend)处于信道带宽的最右端;
    其中,所述RBend为分配物理资源块的末端位置,所述RBEend为扩展物理资源块的末端位置;所述max(RBend,RBEend)表示取所述RBend与所述RBEend中的最大值。
  5. 根据权利要求4所述的方法,其中,若所述第一参数不满足所述第二条件和所述第三条件,则所述资源块区域属于外部区域。
  6. 根据权利要求4所述的方法,其中,所述第一数值=ceil(NRB/2),所述第二数值=max(1,floor(LCRB/2)),所述第三数值=NRB–max(1,floor(LCRB/2))–LCRB;所述第四数值=2,或者,所述第四数值由协议规定;
    其中,所述NRB是给定信号带宽和子载波间距下的最大资源块数目,所述ceil(NRB/2)为大于或等于NRB/2的最小整数,所述floor(LCRB/2)为小于或等于LCRB/2的最大整数,所述max(1,floor(LCRB/2))表示取1和所述floor(LCRB/2)中的最大值。
  7. 根据权利要求4所述的方法,其中,所述第一数值、所述第二数值、所述第三数值和所述第四数值均由协议规定。
  8. 根据权利要求1所述的方法,其中,所述第一参数包括分配物理资源块的配置信息和扩展物理资源块的配置信息,所述终端设备基于第一参数划分最大功率回退指标的资源块区域,包括:
    在满足第一条件的情况下,所述终端设备基于所述第一参数划分最大功率回退指标的资源块区域;
    其中,所述第一条件包括以下至少一项:
    扩展物理资源块的数目大于第一阈值;
    扩展物理资源块的数目与NRB的比值大于第二阈值,所述NRB是给定信号带宽和子载波间距下的最大资源块数目;
    扩展物理资源块的数目与分配物理资源块的数目的比值大于第三阈值;
    扩展物理资源块的数目与分配物理资源块、扩展物理资源块的数目之和的比值大于第四阈值;
    所述终端设备的上行发射信号的调制阶数或调制与编码策略指数小于第五阈值;
    所述终端设备的上行发射信号采用基于离散傅里叶变换的扩频正交频分复用波形;
    所述终端设备采用低峰均比序列作为解调参考信号序列。
  9. 根据权利要求8所述的方法,其中,所述第一阈值、所述第二阈值、所述第三阈值、所述第四阈值和所述第五阈值由网络侧设备配置或协议规定。
  10. 根据权利要求2所述的方法,其中,所述第一参数包括分配物理资源块的配置信息,若所述第一参数满足第四条件,则所述资源块区域属于内部区域,所述第四条件包括:
    LCRB≤ceil(NRB/2),且max(1,floor(LCRB/2))≤RBstart≤NRB–max(1,floor(LCRB/2))–LCRB
    其中,所述LCRB为分配物理资源块的数目,所述NRB是给定信号带宽和子载波间距下的最大资源块数目,所述ceil(NRB/2)为大于或等于NRB/2的最小整数,所述floor(LCRB/2)为小于或等于LCRB/2的最大整数,所述max(1,floor(LCRB/2))表示取1和所述floor(LCRB/2)中的最大值,所述RBstart为分配物理资源块的起始位置。
  11. 根据权利要求10所述的方法,其中,若所述第一参数满足第五条件,则所述资源块区域属于边缘区域,所述第五条件包括:
    LCRB≤2,且所述资源块区域位于信道带宽的最左端或最右端。
  12. 根据权利要求11所述的方法,其中,若所述第一参数不满足所述第四条件和所述第五条件,则所述资源块区域属于外部区域。
  13. 根据权利要求4或11所述的方法,其中,所述信道带宽包括系统带宽、部分系统带宽中的至少一项。
  14. 根据权利要求2所述的方法,其中,所述扩展物理资源块的数目满足以下任一项条件:
    所述扩展物理资源块的数目为固定值,且所述扩展物理资源块的数目与分配物理资源块的数目无关;
    所述扩展物理资源块的数目不固定,且所述扩展物理资源块的数目与分配物理资源块的数目相关。
  15. 根据权利要求2所述的方法,其中,所述扩展物理资源块的位置满足以下任一项条件:
    所述扩展物理资源块的位置固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈对称式分布;
    所述扩展物理资源块的位置不固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈非对称式分布,分配物理资源块的每一侧的扩展物理资源块数目均大于或等于1;
    所述扩展物理资源块的位置不固定,且所述扩展物理资源块紧邻分配物理资源块,并在分配物理资源块的两侧呈非对称式分布,分配物理资源块其中一侧的扩展物理资源块数目等于0。
  16. 根据权利要求1至15任一项所述的方法,其中,所述终端设备基于第一参数划分最大功率回退指标的资源块区域之前,所述方法还包括:
    所述终端设备接收网络侧设备发送的扩展物理资源块配置信令,所述扩展物理资 源块配置信令包含扩展物理资源块的配置信息;
    所述终端设备根据所述扩展物理资源块的配置信息配置扩展物理资源块。
  17. 根据权利要求1至15任一项所述的方法,其中,所述扩展物理资源块的配置信息由协议规定。
  18. 根据权利要求1至15任一项所述的方法,其中,所述终端设备基于第一参数划分最大功率回退指标的资源块区域之前,所述方法还包括:
    所述终端设备根据第二参数本地确定扩展物理资源块的配置信息;
    其中,所述第二参数包括以下至少一项:
    上行发射信号的调制阶数和调制与编码策略指数;
    上行发射信号采用的波形;
    下行测量信号质量或功率;
    所述终端设备或网络侧设备的传输速率和多普勒频偏。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述终端设备向网络侧设备上报所述扩展物理资源块的总数目与参考值的比值;
    其中,所述参考值包括以下任一项:
    分配物理资源块的数目;
    给定信号带宽和子载波间距下的最大资源块数目;
    分配物理资源块与扩展物理资源块的数目之和。
  20. 一种信号发射装置,所述装置包括:
    划分模块,用于基于第一参数划分最大功率回退指标的资源块区域,所述资源块区域中包含分配物理资源块和扩展物理资源块;
    设定模块,用于根据划分的资源块区域,重新设定上行发射信号的最大功率回退值;
    发射模块,用于基于重新设定的最大功率回退值发射所述上行发射信号;
    其中,所述第一参数包括以下任一项:
    分配物理资源块的配置信息;
    分配物理资源块的配置信息和扩展物理资源块的配置信息。
  21. 一种终端设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19任一项所述的信号发射方法的步骤。
  22. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19任一项所述的信号发射方法的步骤。
  23. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至19中任一项所述的信号发射方法的步骤。
  24. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至19中任一项所述的信号发射方法的步骤。
PCT/CN2023/121593 2022-09-30 2023-09-26 一种信号发射方法、装置及终端设备 WO2024067595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211220407.6 2022-09-30
CN202211220407.6A CN117880949A (zh) 2022-09-30 2022-09-30 一种信号发射方法、装置及终端设备

Publications (1)

Publication Number Publication Date
WO2024067595A1 true WO2024067595A1 (zh) 2024-04-04

Family

ID=90476358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121593 WO2024067595A1 (zh) 2022-09-30 2023-09-26 一种信号发射方法、装置及终端设备

Country Status (2)

Country Link
CN (1) CN117880949A (zh)
WO (1) WO2024067595A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831138A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 功率确定方法和装置
CN111345077A (zh) * 2017-11-16 2020-06-26 诺基亚技术有限公司 用于无线网络的上行链路带宽部分的最大功率降低
CN111602434A (zh) * 2018-01-22 2020-08-28 联想(新加坡)私人有限公司 确定用于非连续资源分配的最大功率降低的方法和装置
CN111955032A (zh) * 2018-04-05 2020-11-17 诺基亚技术有限公司 用于无线网络的上行链路传输的附加最大功率降低
CN114726695A (zh) * 2021-01-04 2022-07-08 诺基亚技术有限公司 参考信号布置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111345077A (zh) * 2017-11-16 2020-06-26 诺基亚技术有限公司 用于无线网络的上行链路带宽部分的最大功率降低
CN111602434A (zh) * 2018-01-22 2020-08-28 联想(新加坡)私人有限公司 确定用于非连续资源分配的最大功率降低的方法和装置
CN111955032A (zh) * 2018-04-05 2020-11-17 诺基亚技术有限公司 用于无线网络的上行链路传输的附加最大功率降低
CN110831138A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 功率确定方法和装置
CN114726695A (zh) * 2021-01-04 2022-07-08 诺基亚技术有限公司 参考信号布置

Also Published As

Publication number Publication date
CN117880949A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US11973627B2 (en) Maximum power reduction for non-contiguous allocation
US10554353B2 (en) Pulse shaping method, transmitter, receiver, and system
US11882595B2 (en) Method, system and apparatus for new radio bandwidth part operations
WO2012097738A1 (zh) 一种调整频域资源分布位置的方法及装置
WO2019214523A1 (zh) 一种通信方法及装置
JP7450752B2 (ja) ランダムアクセス信号を送信するための方法および装置
WO2024067595A1 (zh) 一种信号发射方法、装置及终端设备
JP2024510589A (ja) 上りリンク伝送方法、装置及び端末
CN116367312A (zh) 传输确定方法、装置、终端、网络侧设备和存储介质
CN115915397A (zh) 旁链路资源确定方法、装置、终端及存储介质
WO2023025226A1 (zh) 传输方法、装置、终端及网络设备
WO2024088220A1 (zh) 发送信号方法、装置、终端及网络侧设备
WO2024032786A1 (zh) 侧链路的功率控制方法及终端
CN112423398B (zh) 无线资源管理的方法、装置、电子设备及介质
WO2024067571A1 (zh) 灵活双工sbfd信息指示方法、终端及网络侧设备
CN117596655A (zh) 侧链路的功率控制方法及终端
WO2024099157A1 (zh) 上行子带处理方法、配置方法、装置、终端及网络侧设备
WO2024017197A1 (zh) 传输处理方法、装置及设备
WO2023207785A1 (zh) 终端操作方法、装置、终端及网络侧设备
WO2023198026A1 (zh) 发射功率确定方法、装置、终端、网络侧设备及存储介质
WO2024104151A1 (zh) 预编码资源块组prg的确定、指示方法、装置和终端
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
CN117527161A (zh) 物理侧链路反馈信道psfch发送方法及终端
CN117134868A (zh) Harq-ack反馈方法、终端及网络侧设备
CN117527162A (zh) 物理侧链路反馈信道psfch发送方法及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870823

Country of ref document: EP

Kind code of ref document: A1