WO2024067594A1 - 资源配置方法及相关装置 - Google Patents

资源配置方法及相关装置 Download PDF

Info

Publication number
WO2024067594A1
WO2024067594A1 PCT/CN2023/121586 CN2023121586W WO2024067594A1 WO 2024067594 A1 WO2024067594 A1 WO 2024067594A1 CN 2023121586 W CN2023121586 W CN 2023121586W WO 2024067594 A1 WO2024067594 A1 WO 2024067594A1
Authority
WO
WIPO (PCT)
Prior art keywords
trp
random access
configuration information
type
preambles
Prior art date
Application number
PCT/CN2023/121586
Other languages
English (en)
French (fr)
Inventor
王化磊
雷珍珠
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2024067594A1 publication Critical patent/WO2024067594A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a resource configuration method and related devices.
  • TRP transmission and reception points
  • PRACH Physical Random Access Channel
  • the embodiment of the present application provides a resource configuration method and related devices, in order to configure random access related resources for at least one TPR among multiple TRPs, so as to effectively support the TA of each TRP and improve the random access efficiency and quality of the terminal device.
  • an embodiment of the present application provides a resource configuration method, the method comprising:
  • Acquire configuration information where the configuration information is used to indicate a random access resource of at least one TRP among a plurality of transmission reception points TRPs;
  • an embodiment of the present application provides a resource configuration method, the method comprising:
  • Send configuration information where the configuration information is used to indicate the random access resources of at least one TRP among multiple transmission receiving points TRP.
  • an embodiment of the present community provides a resource configuration device, the device comprising:
  • An acquisition unit configured to acquire configuration information, wherein the configuration information is used to indicate a random access resource of at least one TRP among a plurality of transmission reception points TRPs;
  • a random access unit is used to perform random access according to the configuration information.
  • an embodiment of the present application provides a resource configuration device, the device comprising:
  • a sending unit is used to send configuration information, where the configuration information is used to indicate the random access resources of at least one TRP among multiple transmission receiving points TRP.
  • an embodiment of the present application provides a terminal device, comprising a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the processor, and the program includes instructions for executing the steps of any method in the first aspect of the embodiment of the present application.
  • an embodiment of the present application provides a network device, comprising a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the processor, and the program includes instructions for executing the steps of any method in the second aspect of the embodiment of the present application.
  • an embodiment of the present application provides a chip, comprising: a processor, for calling and running a computer program from a memory, so that a device equipped with the chip executes part or all of the steps described in any method of the first aspect or the second aspect of the embodiment of the present application.
  • an embodiment of the present application provides a chip module, comprising the chip described in an seventh aspect of the embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program enables a computer to execute part or all of the steps described in any method of the first aspect or the second aspect of the embodiment of the present application.
  • an embodiment of the present application provides a computer program, wherein the computer program is operable to cause a computer to execute some or all of the steps described in any method of the first aspect or the second aspect of the embodiment of the present application.
  • the computer program can be a software installation package.
  • the configuration information used for random access of the terminal device includes random access resources configured for at least one TRP among multiple TRPs, so that each TRP has corresponding random access resources, which can effectively support the TA of each TRP and improve the random access efficiency and quality of the terminal device.
  • FIG. 1a is a diagram of a network system architecture provided by an embodiment of the present application.
  • FIG1b is a schematic diagram of the structure of a terminal device provided in an embodiment of the present application.
  • FIG1c is a schematic diagram of the structure of a network device provided in an embodiment of the present application.
  • FIG2a is a schematic diagram of a flow chart of a resource configuration method provided in an embodiment of the present application.
  • FIG2b is a schematic diagram of a preamble configuration provided in an embodiment of the present application.
  • FIG2c is a schematic diagram of another preamble configuration provided in an embodiment of the present application.
  • FIG2d is a schematic diagram of another preamble configuration provided in an embodiment of the present application.
  • FIG3 is a block diagram of functional units of a resource configuration device provided in an embodiment of the present application.
  • FIG4 is a block diagram of functional units of another resource configuration device provided in an embodiment of the present application.
  • FIG5 is a block diagram of functional units of another resource configuration device provided in an embodiment of the present application.
  • FIG6 is a block diagram of the functional units of another resource configuration device provided in an embodiment of the present application.
  • the random access process refers to the process from when the terminal device sends a random access preamble to try to access the network to when the basic signaling connection is established between the terminal device and the network device.
  • the types of random access can be divided into two-step random access and four-step random access.
  • the whole process includes four steps: transmission of random access request message, transmission of random access response (RAR) message, transmission of message 3 (Msg3) and transmission of message 4 (Msg4).
  • RAR random access response
  • Msg3 message 3
  • Msg4 message 4
  • Step 1 Transmission of a random access request message, that is, the terminal device sends a random access request message to the network device.
  • the random access request message may also be referred to as message 1 (Msg1).
  • the random access request message may include a random access preamble (RA preamble).
  • the main function of the RA preamble may be to request access to the network device, so that the network device can estimate the transmission delay between the network device and the terminal device based on the RA preamble and calibrate the uplink timing, and indicate it to the terminal device through the RAR message.
  • Step 2 Transmission of the RAR message: The network device receives the random access request message and sends the RAR message to the terminal device.
  • the RAR message may also be referred to as message 2 (Msg2).
  • Step 3 Transmission of message 3: The terminal device receives the RAR message and sends Msg3 to the network device.
  • Step 4 Transmission of message 4: The network device receives Msg3 and sends message 4 to the terminal device. Message 4 may also be referred to as Msg4.
  • the network device carries the flag used to uniquely identify the terminal device in Msg4 to indicate the winning terminal device, and other terminal devices that have not won in the conflict resolution will re-initiate random access.
  • the two-step random access process helps to reduce the access delay of the terminal device.
  • the two-step random access process may include the following two steps:
  • Step 1 Transmission of message A (i.e. MsgA).
  • the terminal device sends MsgA to the network device, wherein MsgA may include a random access request message, and the random access request message here may be Msg1 in the above four-step random access process.
  • MsgA can include two parts: Random Access Preamble and PUSCH payload.
  • Step 2 Transmission of message B (ie MsgB).
  • the network device receives MsgA and sends MsgB to the terminal device, wherein MsgB may include RAR.
  • Random Access Channel Occasion In the downlink communication of the wireless communication system, the system periodically sends the synchronization signal and broadcast channel to the terminal device through the synchronization signal block (SSB). At the same time, the base station will configure a physical random access channel (PRACH) configuration period. A certain number of RACH transmission opportunities, namely RO, are configured in this PRACH configuration period.
  • PRACH physical random access channel
  • the number of ROs that can be configured in the frequency domain can be ⁇ 1, 2, 4, 8 ⁇ , which is configured by the high-level parameter msg1-FDM.
  • the mapping period of SSB and RO refers to the RO period required for at least a complete mapping of one round of SSB index. Starting from frame 0, one mapping period can be one PRACH period or multiple PRACH periods, depending on the configuration of RO time domain resources and frequency domain resources.
  • the number of available preambles can be divided into N parts, and the index of the first competing preamble that each SSB can take is (n refers to the SSB index). It can be indicated by the higher layer parameter totalNumberOfRA-Preambles or msgA-TotalNumberOfRA-Preambles.
  • the second type of random access and the first type of random access use a common RO configuration, if one SSB can be mapped to multiple ROs (N ⁇ 1), among the preambles available (or associated) on each RO, among the preambles available (or associated) for each SSB, the P preambles that can be used for the second type of random access start from index Q;
  • Q represents the number of preambles per SSB association per RO association for the first type of random access
  • P represents the number of preambles per SSB association per RO association for the second type of random access.
  • Figure 1a is a network system architecture diagram provided by an embodiment of the present application.
  • the network system includes multiple network devices 120 and terminal devices 110, and the network device 120 can be regarded as any TRP in this solution.
  • the network device 120 can send configuration information to the terminal device 110, and then the terminal device 110 can perform random access according to the configuration information.
  • the terminal device 110 is a device with wireless transceiver functions, which can be either an electronic device or a server. It can be called user equipment (UE), terminal equipment, terminal equipment, mobile station (MS), mobile terminal equipment (MT), access terminal equipment, vehicle-mounted terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the user equipment can be fixed or mobile.
  • the terminal equipment can support at least one wireless communication technology, such as LTE, new radio (NR), wide band code division multiple access (WCDMA), etc.
  • the electronic device may be a mobile phone, a tablet computer, a desktop computer, a laptop computer, an all-in-one computer, a vehicle-mounted terminal device, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in self-driving, a wireless terminal device in remote medical surgery, a wireless terminal device in smart grid, a wireless terminal device in transportation safety, etc.
  • VR virtual reality
  • AR augmented reality
  • the present invention relates to a wireless terminal device in a smart city, a wireless terminal device in a smart home, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a handheld device with a wireless communication function, a computing device or other processing device connected to a wireless modem, a wearable device, a terminal device in a future mobile communication network, or a terminal device in a future evolved public mobile land network (PLMN), etc.
  • the terminal device may also be a device with a transceiver function, such as a chip system.
  • the chip system may include a chip and may also include other discrete devices.
  • the network device is a device that provides wireless communication functions for user equipment, and can also be referred to as access network equipment, access network element, radio access network (RAN) equipment, etc.
  • the network device can support at least one wireless communication technology, such as LTE, NR, WCDMA, etc.
  • the access network equipment includes but is not limited to: the next generation base station (generation node B, gNB) in the fifth generation mobile communication system (5th-generation, 5G), evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), base band unit (base band unit, BBU), transmission and reception point (Transmission and Reception Point, TRP), transmitting point (transmitting point, TP), mobile switching center, etc.
  • generation node B generation node B, gNB
  • 5G fifth generation mobile communication system
  • 5G fifth generation mobile communication system
  • evolved node B evolved node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario, or the network device may be a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, and an access network device in future mobile communications or an access network device in a future evolved PLMN.
  • the network device may also be a device that provides wireless communication functions for user equipment, such as a chip system.
  • the chip system may include a chip and may also include other discrete devices.
  • the network device may be any one of the multiple sites that perform coherent joint transmission (CJT) with the terminal device, or other sites outside the multiple sites, or other network devices that perform network communication with the terminal device, and there is no specific limitation on this.
  • CJT coherent joint transmission
  • multi-site coherent joint transmission may be multiple sites coherent transmission, or different data belonging to the same physical downlink shared channel (PDSCH) are sent from different sites to the terminal device, or multiple sites are virtualized into one site for transmission. Names with the same meaning specified in other standards also apply to this application, that is, this application does not limit the names of these parameters.
  • the sites in multi-site coherent joint transmission may be remote radio heads (RRH), TRP, etc., and there is no specific limitation on this.
  • the network device may be any one of the multiple sites that perform incoherent joint transmission with the terminal device, or other sites outside the multiple sites, or other network devices that perform network communication with the terminal device, and there is no specific limitation on this.
  • the multi-site incoherent joint transmission may be multiple sites joint incoherent transmission, or different data belonging to the same PDSCH is sent from different sites to the terminal device, and the names with the same meaning specified in other standards are also applicable to this application, that is, this application does not limit the names of these parameters.
  • the sites in the multi-site incoherent joint transmission may be RRH, TRP, etc., and there is no specific limitation on this.
  • TRP of the present application is not limited to coherent joint transmission or incoherent joint transmission scenarios, but can also be applied to other scenarios without specific restrictions.
  • the terminal device 110 includes a processor 210, a memory 210, and a 20, a communication interface 230, and one or more programs 221, wherein the one or more programs 221 are stored in the memory 220 and are configured to be executed by the processor 210, and the program 221 includes a program for executing the operations performed by the device on the terminal device side in the method described in the method embodiment of the present application.
  • the network device 120 includes a processor 310, a memory 320, a communication interface 330, and one or more programs 321.
  • the one or more programs 321 are stored in the memory 320 and are configured to be executed by the processor 310.
  • the program 321 includes operations performed by the network-side device in the method described in the method embodiment of the present application.
  • Figure 2a is a schematic diagram of a process flow of a resource configuration method provided in an embodiment of the present application.
  • the resource configuration method includes the following steps:
  • Step 201 The network device sends configuration information to the terminal device.
  • the terminal device obtains the configuration information from the network device.
  • the configuration information is used to indicate the random access resources of at least one TRP among multiple transmission receiving points TRP.
  • the configuration information may be a random access resource configured for each TRP in a plurality of TRPs, or may be a random access resource configured for only some of the TRPs in a plurality of TRPs, and the random access resources of other TRPs in the plurality of TRPs may be derived by inference.
  • a network device may configure a plurality of TRPs to a terminal device.
  • TRP can be represented by transmission configuration indication state (TCI state), channel sounding reference signal (SRS) resources, SRS resource set or spatial information, etc.
  • TCI state transmission configuration indication state
  • SRS channel sounding reference signal
  • SRS resource set or spatial information etc.
  • TCI state, SRS resources, SRS resource set or spatial information, etc. can also be regarded as the concept of TRP.
  • the TRP in this application can be associated with spatial information or a vacancy direction (e.g., one or a group of beams); or, the TRP can be characterized by spatial information or a vacancy direction (e.g., one or a group of beams); or, the TRP can be characterized by a power control parameter.
  • the TRP in this application can be a functional module (e.g., implemented by software functions) or can be implemented by hardware. This application does not specifically limit the implementation method of the TRP.
  • the random access resource may include a common random access configuration information element (RACH-ConfigCommon information element) and/or RACH-ConfigCommonTwoStepRA and/or RACH-ConfigDedicated and/or RACH-ConfigGeneric and/or RACH-ConfigGenericTwoStepRA.
  • the configured random access resources include time domain resources for random access, and/or frequency domain resources and/or random access preambles, and/or a mapping relationship between a physical broadcast synchronization signal block (Synchronization Signal and PBCH block, SSB) and random access resources for configuration.
  • the terminal device may determine its corresponding random resource subset based on the mapping relationship between the SSB and the random access resource, or based on the SSB that meets the conditions in the measurement results.
  • Step 202 The terminal device performs random access according to the configuration information.
  • the random access resources corresponding to at least one TRP may include two-step random access and/or four-step random access resources configured for the terminal device.
  • the random access process can be divided into a contention-based random access process and a non-contention-based random access process.
  • Contention-based random access means that the access resources are randomly acquired by the terminal device itself, and non-contention-based random access means that the access resources of the terminal device are allocated by the base station. The essential difference between the two lies in whether the terminal device receives a dedicated random access resource allocated by the network before initiating random access.
  • the random access resources configured by the network device for the terminal device include at least one of the multiple TRPs.
  • a TRP is configured with random access resources so that each TRP has corresponding random access resources, which can effectively support the TA of each TRP and improve the random access efficiency and quality of terminal devices.
  • each of the multiple TRPs corresponds to a set of random access resources.
  • the configuration information may include configuring a set of random access resources for each TRP, that is, a set of random access common configuration information (RACH-ConfigCommon) and/or two-step random access common configuration information (RACH-ConfigCommonTwoStepRA) and/or RACH-ConfigDedicated and/or RACH-ConfigGeneric and/or RACH-ConfigGenericTwoStepRA is associated with one TRP, and another set of RACH-ConfigCommon and/or RACH-ConfigCommonTwoStepRA) and/or RACH-ConfigDedicated and/or RACH-ConfigGeneric and/or RACH-ConfigGenericTwoStepRA is associated with another TRP.
  • RACH-ConfigCommon random access common configuration information
  • RACH-ConfigCommonTwoStepRA two-step random access common configuration information
  • a set of random access resources can be configured for each TRP in the configuration information, so that each TRP has corresponding random access resources, which can effectively support the TA of each TRP and improve the random access efficiency and quality of the terminal equipment.
  • the multiple TRPs include a first TRP and a second TRP
  • the configuration information includes: a first random access resource of the first TRP and/or a second random access resource of the second TRP.
  • the random access resources of the other TRP can be derived by inference.
  • the first random access resource is a resource corresponding to a first physical cell identifier PCI
  • the second random access resource is a resource corresponding to a second PCI
  • the first PCI is the PCI of a serving cell
  • the second PCI is the PCI of any one of one or more non-serving cells.
  • random access resources can be configured for each second service cell, that is, non-service cell.
  • the physical cell identifier Physical Cell Identifier, PCI
  • PCI Physical Cell Identifier
  • the association relationship between the SSB and PCI of the non-service cell can be configured through SSB-MTC-Additional PCI.
  • PCI can be used to distinguish different cells or signals of different cells, that is, PCI can be associated with cells. Therefore, the present application can associate parameters with PCI so as to realize parameter-associated cells, that is, to distinguish different cells or signals of different cells by parameters.
  • the random access resources of one TRP are resources corresponding to the PCI of the service cell, and the random access resources of the other TRP can be resources corresponding to the PCI of any non-service cell in the non-service cell.
  • the random access resources of the two TRPs are the resources corresponding to the PCI of the service cell and the non-service cell, respectively, which can effectively support the TA of each TRP and improve the random access efficiency and quality of the terminal equipment.
  • the second PCI is a PCI of a non-serving cell associated with an active transmission configuration indication TCI state for a physical downlink shared channel PDSCH
  • the second random access resource is available.
  • the second random access resource being available means that the terminal device can perform random access according to the random access resource configured for the second TRP.
  • the TCI of the transmission service cell is usually configured for the terminal device, that is, the beam configuration of the service cell is performed for the terminal device.
  • the multiple TRPs correspond to a set of random access resources.
  • the multiple TRPs corresponding to a set of random access resources may be that some of the multiple TRPs correspond to the same set of random access resources, and the other TRPs correspond to another set of random access resources. Alternatively, each TRP in the multiple TRPs corresponds to the same set of random access resources.
  • a set of random access resources corresponding to the multiple TRPs includes Preamble information associated with at least one TRP in a random access channel opportunity RO.
  • the preamble is the actual content sent by the terminal device in the PRACH, and is composed of a cyclic prefix CP with a length of Tcp and a sequence Sequence with a length of Tseq.
  • the preamble information included in a set of random access resources includes the number of preambles associated with each TRP in the same RO and/or the index of the preamble.
  • the random resource configuration of each TRP is achieved by associating different preamble codes with different TRPs of the same RO, which can effectively support the TA of each TRP and improve the random access efficiency and quality of the terminal device.
  • a set of random access resources corresponding to the multiple TRPs includes configuring a first type of random access for the terminal device, and the number of preamble codes associated with each SSB associated with each RO related to the first type of random access is X1, where X1 is an integer.
  • the number of available (or associated) preambles for each SSB can be indicated by the high-level parameters CB-PreamblesPerSSB or ssb-perRACH-OccasionAndCB-PreamblesPerSSB or msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB or msgA-CB-PreamblesPerSSB-PerSharedRO, and the number of SSBs mapped to each RO can also be known according to the mapping relationship between RO and SSB.
  • the X1 can be indicated by the preamble information included in a set of random access resources corresponding to the first TPR and the second TRP, that is, among the preambles available for an RO related to the first type of random access, there are X1 preambles that are available for an SSB mapped by the RO.
  • the random access type corresponding to the first type of random access may be the four-step random access mentioned above.
  • the number X1 can be understood as the number of preamble codes associated with one RO for competitive access, or the number of preamble codes associated with one RO for non-competitive access.
  • the at least one TRP includes a first TRP and a second TRP, and among the X1 preamble codes associated with each SSB, the first X1-L1 preamble codes are associated with the first TRP, and the last L1 preamble codes are associated with the second TRP, and L1 is an integer.
  • each SSB described in this scheme refers to each SSB associated with each RO.
  • the X1 and/or L1 and/or X1-L1 can be indicated by the preamble information included in a set of random access resources corresponding to the first TPR and the second TRP, that is, among the preambles available for an RO related to the first type of random access, there are X1 preambles that are available preambles for an SSB mapped by the RO, and among the X1 preambles, L1 preambles are related to the first TRP, and X1-L1 preambles are related to the second TRP.
  • (a) in Figure 2b shows the number of preambles associated with each TRP associated with an SSB when the mapping relationship between SSB and RO is the first type of mapping relationship. That is, at this time, among the X1 preambles, the first X1-L1 preambles are associated with the first TRP, and the last L1 preambles are associated with the second TRP. (b) in Figure 2b shows the number of preambles associated with each TRP associated with an SSB when the mapping relationship between SSB and RO is the second type of mapping relationship.
  • the X1 preambles associated with an SSB are only a part of all the preambles associated with the RO.
  • the first X1-L1 preambles are associated with the first TRP, and the last L1 preambles are associated with the second TRP.
  • the X1 preambles associated with the nth SSB start from the preamble indexed (n-1)*X1.
  • the X1 preambles of the first SSB start from the preamble indexed 0
  • the X1 preambles of the second SSB start from the preamble indexed X1. Code starts.
  • the at least one TRP includes a first TRP and a second TRP, and among the X1 preambles associated with each SSB, the number of preambles associated with the first TRP is K, and the number of preambles associated with the second TRP is inferred based on the number of preambles associated with the first TRP, and K is an integer.
  • the K may be indicated by the preamble information included in a set of random access resources corresponding to the first TRP and the second TRP, that is, among the preambles available for an RO related to the first type of random access, there are X1 preambles that are available for an SSB mapped by the RO, and among the X1 preambles, K preambles are related to the first TRP.
  • the at least one TRP includes a first TRP and a second TRP, and among the X1 preambles associated with each SSB, the first TRP is associated with X preambles, and the second TRP is associated with Y preambles, wherein X and/or Y are network configuration information or protocol predefined information, and X and Y are integers.
  • the number of preambles corresponding to the first TRP and/or the second TRP can be obtained directly or indirectly in a manner predetermined by the protocol.
  • the at least one TRP includes a first TRP and a second TRP, and among the X1 preamble codes associated with each SSB, the proportional factor of the first TRP is ⁇ , and the proportional factor of the second TRP is (1- ⁇ ), and the proportional factor is used to indicate the number of preamble codes associated with the first TRP and/or the number of preamble codes associated with the second TRP. That is, at this time, the number of preamble codes associated with the first TRP is X1* ⁇ , and the number of preamble codes associated with the second TRP is X1*(1- ⁇ ).
  • the network can configure the proportional factor for the first TRP and/or the second TRP.
  • the network only configures the proportional factor for the first TRP, then the number of preamble codes associated with the second TRP at this time is derived.
  • the value of X1* ⁇ is not an integer, it is necessary to round the value, and the rounding method can be rounding up or rounding down or taking the integer part of the value.
  • the network can configure the proportional factor for the first TRP and/or the second TRP.
  • a set of random access resources corresponding to the multiple TRPs also includes a second type of random access configured for the terminal device, the first type of random access and the second type of random access respectively correspond to a set of physical random access channel PRACH configurations, and the preamble code information associated with at least one TRP in an RO is associated with the first type of random access and/or associated with the second type of random access.
  • the random access type corresponding to the second type of random access can be the two-step random access mentioned above.
  • the first type of random access and the second type of random access are configured at the same time, but the first type of random access process and the second type of random access process use separate physical random access channels (PRACH) configurations, then the number of preambles associated with each SSB associated with each RO related to the second type of random access is X2, and X2 is an integer.
  • PRACH physical random access channels
  • the at least one TRP includes a first TRP and a second TRP, and among the X2 preambles associated with each SSB, the first X2-L4 preambles are associated with the first TRP, and the last L4 preambles are associated with the second TRP, and L4 is an integer.
  • the X2 and/or L4 and/or X2-L4 may be indicated by the preamble information included in a set of random access resources corresponding to the first TPR and the second TRP, that is, among the preambles available for an RO related to the second type of random access, there are X2 preambles that are preambles available for an SSB mapped by the RO, and among the X2 preambles, L4 preambles are related to the first TRP, and X2-L4 preambles are related to the second TRP.
  • the configuration method of the preamble associated with each SSB in the RO associated with the first type of random access and the RO associated with the second type of random access is the same, and the configuration method of the preamble associated with each SSB TRP is also the same. It should be noted that although the configuration method is the same, the number of configured preambles may be different.
  • TRPs are associated with different preamble codes for the same RO to achieve each
  • the random resource configuration of TRP can effectively support the TA of each TRP and improve the random access efficiency and quality of terminal devices.
  • a set of random access resources corresponding to the multiple TRPs includes configuring a first type of random access and a second type of random access for the terminal device, the first type of random access and the second type of random access share the same set of PRACH configurations, the number of preamble codes associated with each SSB associated with each RO related to the first type of random access is Q, and the number of preamble codes associated with each SSB associated with each RO related to the second type of random access is P, and Q and P are integers.
  • the random access type corresponding to the first type of random access may be the four-step random access mentioned above, and the second type of random access may be the two-step random access mentioned above.
  • the first type of mapping relationship i.e., the case where N ⁇ 1 in the mapping relationship between SSB and RO mentioned above
  • the number Q can be understood as the number of preamble codes associated with an RO for competitive access in a four-step random access process, or the number of preamble codes associated with an RO for non-competitive access in a four-step random access process.
  • the number P can be understood as the number of preamble codes associated with an RO for competitive access in a two-step random access process, or the number of preamble codes associated with an RO for non-competitive access in a two-step random access process.
  • the Q and/or P may be indicated by the preamble code information included in a set of random access resources corresponding to the first TPR and the second TRP.
  • the number of preamble codes associated with the first type of random access for each SSB is Q, and the number of preamble codes associated with the second type of random access for each SSB is P
  • the number of preamble codes associated with one RO for contention access of the second type of random access process, or the number of preamble codes associated with one RO for non-contention access of the second type of random access process is N*P.
  • the at least one TRP includes a first TRP and a second TRP, and among the Q preamble codes, the first Q-L2 preamble codes are associated with the first TRP, and the last L2 preamble codes are associated with the second TRP, and L2 is an integer.
  • the Q and/or L2 and/or Q-L2 can be indicated by the preamble information included in a set of random access resources corresponding to the first TPR and the second TRP, that is, among the preambles available for an RO related to the first type of random access, there are Q preambles that are available preambles for an SSB mapped by the RO, and among the Q preambles, L2 preambles are related to the first TRP, and Q-L2 preambles are related to the second TRP.
  • FIG. 2c shows the number of preambles associated with each TRP among the Q preambles related to the first type of random access when the mapping relationship between SSB and RO is the first type of mapping relationship, and an SSB associated with an RO is associated with the Q preambles. That is, at this time, among the Q preambles, the first Q-L2 preambles are associated with the first TRP, and the last L2 preambles are associated with the second TRP.
  • the Q preambles associated with the nth SSB among the N SSBs are indexed from For example, the Q preambles of the first SSB start with the preamble with index 0, and the Q preambles of the second SSB start with the preamble with index 1. It should be noted that if If the value of is not an integer, you need to The value is rounded, which can be rounded up or down or the The integer part of the value, etc. It can be indicated by the higher layer parameter totalNumberOfRA-Preambles or msgA-TotalNumberOfRA-Preambles.
  • the at least one TRP includes a first TRP and a second TRP, and among the Q preambles, the number of preambles associated with the first TRP is K, and the number of preambles associated with the second TRP is inferred based on the number of preambles associated with the first TRP, and K is an integer.
  • the network may configure preamble information for only one of the two TRPs, and the preamble information of the other TRP is obtained by deduction.
  • the K may be indicated by the preamble information included in a set of random access resources corresponding to the first TRP and the second TRP, that is, among the preambles available for an RO related to the first type of random access, there are Q preambles that are available preambles for an SSB mapped by the RO, and among the Q preambles, K preambles are related to the first TRP.
  • the at least one TRP includes a first TRP and a second TRP, among the Q preambles, the first TRP is associated with X preambles, the second TRP is associated with Y preambles, the X and/or the Y are network configuration information or protocol predefined information, and the X and Y are integers.
  • the number of preambles corresponding to the first TRP and/or the second TRP can be obtained directly or indirectly in a manner predetermined by the protocol.
  • the at least one TRP includes a first TRP and a second TRP, and among the Q preambles, the proportional factor of the first TRP is ⁇ , and the proportional factor of the second TRP is (1- ⁇ ), and the proportional factor is used to indicate the number of preambles associated with the first TRP and/or the number of preambles associated with the second TRP. That is, at this time, the number of preambles associated with the first TRP is Q* ⁇ , and the number of preambles associated with the second TRP is Q*(1- ⁇ ).
  • the network can configure the proportional factor for the first TRP and/or the second TRP.
  • the network only configures the proportional factor for the first TRP, then the number of preambles associated with the second TRP at this time is derived.
  • the value of Q* ⁇ is not an integer, it is necessary to round the value, and the rounding method can be rounding up or rounding down or taking the integer part of the value.
  • the network can also configure the proportional factor for the first TRP and/or the second TRP.
  • the at least one TRP includes a first TRP and a second TRP, and among the P preamble codes, the first P-L3 preamble codes are associated with the first TRP, and the last L3 preamble codes are associated with the second TRP, and L3 is an integer.
  • the P and/or L3 and/or P-L3 can be indicated by the preamble information included in a set of random access resources corresponding to the first TPR and the second TRP, that is, among the preambles available for an RO related to the second type of random access, there are P preambles available for an SSB mapped by the RO, and among the P preambles, L3 preambles are related to the first TRP, and P-L3 preambles are related to the second TRP.
  • FIG. 2d shows the number of preambles associated with each TRP among the P preambles related to the second type of random access when the mapping relationship between SSB and RO is the first type of mapping relationship, and an SSB associated with an RO is associated with the P preambles. That is, at this time, among the P preambles, the first P-L3 preambles are associated with the first TRP, and the last L3 preambles are associated with the second TRP.
  • FIG. 2d shows the number of preambles associated with each TRP among the P preambles related to the second type of random access for any one of the multiple SSBs associated with an RO when the mapping relationship between the SSB and the RO is the second type of mapping relationship.
  • the P preambles associated with an SSB are only a part of all the preambles associated with the RO, in which the first P-L3 preambles are associated with the first TRP, and the last L3 preambles are associated with the second TRP.
  • the at least one TRP includes a first TRP and a second TRP.
  • the number of preambles associated with the first TRP is K
  • the number of preambles associated with the second TRP is K according to the number of preambles associated with the first TRP.
  • the number of preambles associated with the first TRP is inferred, and K is an integer.
  • the network can configure preamble information for only one of the two TRPs, and the preamble information of the other TRP is obtained by deduction.
  • the K is indicated by the preamble information included in a set of random access resources corresponding to the first TPR and the second TRP, that is, among the preambles available for an RO related to the second type of random access, there are P preambles that are available for an SSB mapped by the RO, and among the P preambles, K preambles are related to the first TRP.
  • the at least one TRP includes a first TRP and a second TRP, among the P preambles, the first TRP is associated with X preambles, the second TRP is associated with Y preambles, the X and/or the Y are network configuration information or protocol predefined information, and the X and Y are integers.
  • the number of preambles corresponding to the first TRP and/or the second TRP can be obtained directly or indirectly in a manner predetermined by the protocol.
  • the at least one TRP includes a first TRP and a second TRP, and among the P preambles, the proportional factor of the first TRP is ⁇ , and the proportional factor of the second TRP is (1- ⁇ ), and the proportional factor is used to indicate the number of preambles associated with the first TRP and/or the number of preambles associated with the second TRP. That is, at this time, the number of preambles associated with the first TRP is P* ⁇ , and the number of preambles associated with the second TRP is P*(1- ⁇ ).
  • the network can configure the proportional factor for the first TRP and/or the second TRP.
  • the network only configures the proportional factor for the first TRP, then the number of preambles associated with the second TRP at this time is derived.
  • the value of P* ⁇ is not an integer, it is necessary to round the value, and the rounding method can be rounding up or rounding down or taking the integer part of the value.
  • the network can also configure the proportional factor for the first TRP and/or the second TRP.
  • a set of random access resources corresponding to the multiple TRPs includes information of a RO associated with at least one TRP among the multiple TRPs.
  • TRPs When multiple TRPs share the same random access resources, different TRPs may be associated with different ROs.
  • the at least one TRP includes a first TRP and a second TRP, the first TRP is associated with T ROs, the second TRP is associated with M-T ROs, M is the number of ROs mapped to an SSB, and T is an integer.
  • the M and/or M-T can be indicated by the preamble information included in a set of random access resources corresponding to the first TPR and the second TRP. That is, among the preambles available for an RO, there are M preambles that are available for an SSB mapped by the RO, and among the M preambles, T preambles are related to the first TRP, and M-T preambles are related to the second TRP.
  • the at least one TRP includes a first TRP and a second TRP
  • the first TRP is associated with T ROs
  • the number of ROs associated with the second TRP is inferred based on the number of ROs associated with the first TRP.
  • the network may configure RO information for only one of the two TRPs, and the information of the RO of the other TRP is obtained by deduction.
  • the at least one TRP includes a first TRP and a second TRP, and among the M preambles, the number of ROs associated with the first TRP is F, the number of ROs associated with the second TRP is J, and the F and/or J are network configuration information or protocol predefined information, and F and J are integers.
  • the number of ROs associated with the first TRP and/or the second TRP can be obtained directly or indirectly in a manner predetermined by the protocol.
  • the at least one TRP includes a first TRP and a second TRP, and among the M preambles, the proportional factor of the first TRP is ⁇ , and the proportional factor of the second TRP is (1- ⁇ ), and the proportional factor is used to indicate the number of ROs associated with the first TRP and/or the number of ROs associated with the second TRP. That is, at this time, the number of ROs associated with the first TRP is M* ⁇ , and the number of preambles associated with the second TRP is M*(1- ⁇ ).
  • the network can configure the proportional factor for the first TRP and/or the second TRP.
  • the network only configures the proportional factor for the first TRP, then the number of preambles associated with the second TRP at this time is derived.
  • the value of M* ⁇ is not an integer, it is necessary to round the value, and the rounding method can be rounding up or rounding down or taking the integer part of the value.
  • the network can also configure the proportional factor for the first TRP and/or the second TRP.
  • the indexes of the T ROs in the M ROs are continuous, or the indexes of the T ROs in the M ROs are discontinuous.
  • the M ROs are divided into two parts according to the index, one part is associated with the first TRP, and the other part is associated with the second TRP.
  • the M ROs can be associated with the first TRP and the second TRP in an alternating manner.
  • the alternating method can be alternating with one RO, that is, the index of each RO in the M ROs is not continuous, or it can be alternating with multiple ROs, that is, the indexes of some ROs in the M ROs are continuous.
  • the embodiment of the present application provides a resource configuration device, which can be used to execute the steps executed by the terminal device in the above method.
  • the resource configuration device may include units corresponding to the corresponding steps.
  • the embodiment of the present application can divide the functional modules of the resource configuration device according to the above method.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • Figure 3 is a functional unit composition block diagram of a resource configuration device provided in an embodiment of the present application.
  • the resource configuration device 3 includes: an acquisition unit 301, used to acquire configuration information, the configuration information is used to indicate the random access resource of at least one TRP among multiple transmission reception points TRP; a random access unit 302, used to perform random access according to the configuration information.
  • each of the multiple TRPs corresponds to a set of random access resources.
  • the multiple TRPs include a first TRP and a second TRP
  • the configuration information includes: a first random access resource of the first TRP and/or a second random access resource of the second TRP.
  • the first random access resource is a resource corresponding to a first physical cell identifier PCI
  • the second random access resource is a resource corresponding to a second PCI
  • the first PCI is the PCI of a serving cell
  • the second PCI is the PCI of any one of one or more non-serving cells.
  • the second PCI is a PCI of a non-serving cell associated with an active transmission configuration indication TCI state for a physical downlink shared channel PDSCH
  • the second random access resource is available.
  • the multiple TRPs correspond to a set of random access resources.
  • a set of random access resources corresponding to the multiple TRPs includes preamble code information associated with at least one TRP among the multiple TRPs in a random access channel opportunity RO.
  • a set of random access resources corresponding to the multiple TRPs includes configuring a first type of random access for the terminal device, and the number of preamble codes associated with each SSB associated with each RO related to the first type of random access is X1, where X1 is an integer.
  • the at least one TRP includes a first TRP and a second TRP, and among the X1 preamble codes associated with each SSB, the first X1-L1 preamble codes are associated with the first TRP, and the last L1 preamble codes are associated with the second TRP, and L1 is an integer.
  • a set of random access resources corresponding to the multiple TRPs also includes a second type of random access configured for the terminal device, the first type of random access and the second type of random access respectively correspond to a set of physical random access channel PRACH configurations, and the preamble code information associated with at least one TRP in an RO is associated with the first type of random access and/or associated with the second type of random access.
  • a set of random access resources corresponding to the multiple TRPs includes configuring a first type of random access and a second type of random access for the terminal device, the first type of random access and the second type of random access share the same set of PRACH configurations, the number of preamble codes associated with each SSB associated with each RO related to the first type of random access is Q, and the number of preamble codes associated with each SSB associated with each RO related to the second type of random access is P, and Q and P are integers.
  • the at least one TRP includes a first TRP and a second TRP, and among the Q preamble codes, the first Q-L2 preamble codes are associated with the first TRP, and the last L2 preamble codes are associated with the second TRP, and L2 is an integer.
  • the at least one TRP includes a first TRP and a second TRP, and among the P preamble codes, the first P-L3 preamble codes are associated with the first TRP, and the last L3 preamble codes are associated with the second TRP, and L3 is an integer.
  • a set of random access resources corresponding to the multiple TRPs includes information of a RO associated with at least one TRP among the multiple TRPs.
  • the at least one TRP includes a first TRP and a second TRP, the first TRP is associated with T ROs, the second TRP is associated with M-T ROs, M is the number of ROs mapped to an SSB, and T is an integer.
  • the indexes of the T ROs in the M ROs are continuous, or the indexes of the T ROs in the M ROs are discontinuous.
  • the resource configuration device provided in the embodiment of the present application includes but is not limited to the above units, for example: the resource configuration device may also include a storage unit.
  • the storage unit can be used to store the program code and data of the resource configuration device.
  • the resource configuration device 4 includes: a processing module 40 and a communication module 41.
  • the processing module 40 is used to control and manage the actions of the resource configuration device, for example, the steps performed by the acquisition unit 301 and the random access unit 302, and/or other processes for performing the technology described herein.
  • the communication module 41 is used to support the interaction between the resource configuration device and other devices.
  • the resource configuration device may also include a storage module 42, which is used to store resource The program code and data of the configuration device, for example, store the contents stored in the above-mentioned storage unit.
  • the processing module 40 can be a processor or a controller, for example, it can be a central processing unit (CPU), a general processor, a digital signal processor (DSP), an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component or any combination thereof. It can implement or execute various exemplary logic boxes, modules and circuits described in conjunction with the disclosure of this application.
  • the processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of DSP and microprocessor, etc.
  • the communication module 41 can be a transceiver, an RF circuit or a communication interface, etc.
  • the storage module 42 can be a memory.
  • the above resource configuration device 3 and resource configuration device 4 can both execute the steps executed by the terminal device in the resource configuration method shown in Figure 2a.
  • the embodiment of the present application provides a resource configuration device, which can be used to execute the steps executed by the network device in the above method.
  • the resource configuration device can include units corresponding to the corresponding steps.
  • the embodiment of the present application can divide the functional modules of the resource configuration device according to the above method.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • Figure 5 is a functional unit composition block diagram of another resource configuration device provided by an embodiment of the present application.
  • the resource configuration device 5 includes: a sending unit 501, which is used to send configuration information, and the configuration information is used to indicate the random access resource of at least one TRP among multiple transmission reception points TRP.
  • each of the multiple TRPs corresponds to a set of random access resources.
  • the multiple TRPs include a first TRP and a second TRP
  • the configuration information includes: a first random access resource for the first TRP and a second random access resource for the second TRP.
  • the first random access resource is a resource corresponding to a first physical cell identifier PCI
  • the second random access resource is a resource corresponding to a second PCI
  • the first PCI is the PCI of a serving cell
  • the second PCI is the PCI of any one of a plurality of non-serving cells.
  • the second PCI is a PCI of a non-serving cell associated with an active transmission configuration indication TCI state for a physical downlink shared channel PDSCH
  • the second random access resource is available.
  • the multiple TRPs correspond to a set of random access resources.
  • a set of random access resources corresponding to the multiple TRPs includes preamble code information associated with at least one TRP among the multiple TRPs in a random access channel opportunity RO.
  • a set of random access resources corresponding to the multiple TRPs includes configuring a first type of random access for the terminal device, and the number of preamble codes associated with each SSB associated with each RO related to the first type of random access is X1, where X1 is an integer.
  • the at least one TRP includes a first TRP and a second TRP, and among the X1 preamble codes associated with each SSB, the first X1-L1 preamble codes are associated with the first TRP, and the last L1 preamble codes are associated with the second TRP, and L1 is an integer.
  • the set of random access resources corresponding to the multiple TRPs also includes a random access resource for the terminal device.
  • a second type of random access is configured, wherein the first type of random access and the second type of random access respectively correspond to a set of physical random access channel PRACH configurations, and the preamble code information associated with at least one TRP in an RO is associated with the first type of random access and/or associated with the second type of random access.
  • a set of random access resources corresponding to the multiple TRPs includes configuring a first type of random access and a second type of random access for the terminal device, the first type of random access and the second type of random access share the same set of PRACH configurations, the number of preamble codes associated with each SSB associated with each RO related to the first type of random access is Q, and the number of preamble codes associated with each SSB associated with each RO related to the second type of random access is P, and Q and P are integers.
  • the at least one TRP includes a first TRP and a second TRP, and among the Q preamble codes, the first Q-L2 preamble codes are associated with the first TRP, and the last L2 preamble codes are associated with the second TRP, and L2 is an integer.
  • the at least one TRP includes a first TRP and a second TRP, and among the P preamble codes, the first P-L3 preamble codes are associated with the first TRP, and the last L3 preamble codes are associated with the second TRP, and L3 is an integer.
  • a set of random access resources corresponding to the multiple TRPs includes information of a RO associated with at least one TRP among the multiple TRPs.
  • the at least one TRP includes a first TRP and a second TRP, the first TRP is associated with T ROs, the second TRP is associated with M-T ROs, M is the number of ROs mapped to an SSB, and T is an integer.
  • the indexes of the T ROs in the M ROs are continuous, or the indexes of the T ROs in the M ROs are discontinuous.
  • the resource configuration device provided in the embodiment of the present application includes but is not limited to the above units, for example: the resource configuration device may also include a storage unit.
  • the storage unit can be used to store the program code and data of the resource configuration device.
  • the resource configuration device 6 includes: a processing module 60 and a communication module 61.
  • the processing module 60 is used to control and manage the actions of the resource configuration device, for example, the steps performed by the sending unit 501, and/or other processes for executing the technology described herein.
  • the communication module 61 is used to support the interaction between the resource configuration device and other devices.
  • the resource configuration device may also include a storage module 62, which is used to store program codes and data of the resource configuration device, such as storing the content stored in the above-mentioned storage unit.
  • the processing module 60 can be a processor or a controller, for example, it can be a central processing unit (CPU), a general processor, a digital signal processor (DSP), an ASIC, an FPGA or other programmable logic device, a transistor logic device, a hardware component or any combination thereof. It can implement or execute various exemplary logic boxes, modules and circuits described in conjunction with the disclosure of this application.
  • the processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of DSP and microprocessors, and the like.
  • the communication module 61 can be a transceiver, an RF circuit or a communication interface, and the like.
  • the storage module 62 can be a memory.
  • the above resource configuration device 5 and the resource configuration device 6 can both execute the resource configuration shown in FIG. 2a. The steps performed by a network device in a configuration method.
  • An embodiment of the present application also provides a chip, wherein the chip includes a processor for calling and running a computer program from a memory, so that a device equipped with the chip executes some or all of the steps described by the terminal device in the above method embodiment.
  • An embodiment of the present application also provides a chip module, including a transceiver component and a chip, wherein the chip includes a processor for calling and running a computer program from a memory, so that a device equipped with the chip executes some or all of the steps described by the terminal device in the above method embodiment.
  • An embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program enables a computer to execute part or all of the steps described by the network-side device in the above method embodiment.
  • the present application also provides a computer program product, wherein the computer program product includes a computer program, and the computer program is operable to cause a computer to execute some or all of the steps described by the terminal device in the above method embodiment.
  • the computer program product can be a software installation package.
  • the steps of the method or algorithm described in the embodiment of the present application can be implemented in hardware or by executing software instructions by a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disks, mobile hard disks, read-only compact disks (CD-ROMs) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to a processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in an access network device, a target network device, or a core network device.
  • the processor and the storage medium can also exist as discrete components in an access network device, a target network device, or a core network device.
  • the functions described in the embodiments of the present application can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源配置方法及相关装置,所述方法包括:获取配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源;根据所述配置信息进行随机接入。这样可以使得每个TRP都有对应的随机接入资源,能有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。

Description

资源配置方法及相关装置 技术领域
本申请属于通信技术领域,具体涉及一种资源配置方法及相关装置。
背景技术
在新一代无线网络系统(如5G系统)的网络架构中,多个传输接收点(Transmission and Reception Point,TRP)可以同时为终端设备服务,进行数据传输。由于目前没有针对多个TRP的物理随机接入信道(Physical Random Access Channel,PRACH)资源配置方案,使得无法有效支持每个TRP的定时提前(Timing Advance,TA)。
发明内容
本申请实施例提供了一种资源配置方法及相关装置,以期为多个TRP中的至少一个TPR配置随机接入相关资源,使得能有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
第一方面,本申请实施例提供了一种资源配置方法,所述方法包括:
获取配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源;
根据所述配置信息进行随机接入。
第二方面,本申请实施例提供了一种资源配置方法,所述方法包括:
发送配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源。
第三方面,本社区内实施例提供了一种资源配置装置,所述装置包括:
获取单元,用于获取配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源;
随机接入单元,用于根据所述配置信息进行随机接入。
第四方面,本申请实施例提供了一种资源配置装置,所述装置包括:
发送单元,用于发送配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源。
第五方面,本申请实施例提供了一种终端设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第六方面,本申请实施例提供了一种网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第七方面,本申请实施例提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第八方面,本申请实施例提供了一种芯片模组,包括本申请实施例第七方面中所描述的芯片。
第九方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。
第十方面,本申请实施例提供了一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面或第二方面任一方法中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
可以看出,本申请实施例中,用于终端设备进行随机接入的配置信息中包括为多个TRP中的至少一个TRP配置的随机接入资源,这样可以使得每个TRP都有对应的随机接入资源,能有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是本申请实施例提供的一种网络系统架构图;
图1b是本申请实施例提供的一种终端设备的结构示意图;
图1c是本申请实施例提供的一种网络设备的结构示意图;
图2a是本申请实施例提供的一种资源配置方法的流程示意图;
图2b是本申请实施例提供的一种前导码配置示意图;
图2c是本申请实施例提供的另一种前导码配置示意图;
图2d是本申请实施例提供的另一种前导码配置示意图;
图3是本申请实施例提供的一种资源配置装置的功能单元组成框图;
图4是本申请实施例提供的另一种资源配置装置的功能单元组成框图;
图5是本申请实施例提供的另一种资源配置装置的功能单元组成框图;
图6是本申请实施例提供的另一种资源配置装置的功能单元组成框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。本申请实施例中,术语“系统”和“网络”经常被可互换地使用,但本领域技术人员可理解其含义。
首先,对本申请实施例中涉及的部分名词进行解释,以便于本领域技术人员理解。
随机接入(Random Access):随机接入过程是指从终端设备发送随机接入前导码开始尝试接入网络到与网络设备间建立起基本的信令连接之前的过程。随机接入的类型可以划分为两步随机接入和四步随机接入。
对于四步随机接入,整个过程包含4个步骤:随机接入请求消息的传输、随机接入响应(random access response,RAR)消息的传输、消息3(Msg3)的传输和消息4(Msg4)的传输。
步骤一、随机接入请求消息的传输,即终端设备向网络设备发送随机接入请求消息。其中,随机接入请求消息,又可以称之为消息1(Msg1)。
具体地,随机接入请求消息可以包括随机接入前导码(random access preamble,RA preamble)。其中,RA preamble的主要作用可以是向网络设备请求接入,使网络设备能基于RA preamble估计与终端设备之间的传输时延并以此校准上行定时,并通过RAR消息指示给终端设备。
步骤二、RAR消息的传输,网络设备接收到随机接入请求消息,向终端设备发送RAR消息。其中,RAR消息又可以称之为消息2(Msg2)。
步骤三、消息3的传输,终端设备接收到RAR消息,向网络设备发送Msg3。
步骤四、消息4的传输,网络设备接收到Msg3,向终端设备发送消息4。其中,消息4又可以称之为Msg4。
网络设备在冲突解决机制中,在Msg4中携带该用于唯一标识终端设备的标志以指示胜出的终端设备,而其它没有在冲突解决中胜出的终端设备将重新发起随机接入。
与四步随机接入过程相比,两步随机接入过程有助于降低终端设备的接入时延。其中,两步随机接入过程可以包括如下两个步骤:
步骤1、消息A(即MsgA)的传输,
需要说明的是,终端设备向网络设备发送MsgA。其中,MsgA可以包括随机接入请求消息,这里的随机接入请求消息可以是上述4步随机接入过程中的Msg1。
另外,MsgA可以包括Random Access Preamble和PUSCH payload两部分。
步骤2:消息B(即MsgB)的传输。
需要说明的是,网络设备接收MsgA,并向终端设备发送MsgB。其中,MsgB可以包括RAR。
随机接入信道机会(Random Access Channel Occasion或者Physical Random Access Channel Occasion,RO):在无线通信系统的下行通信中,系统通过同步信号块(Synchronization Signal and PBCH block,SSB)将同步信号和广播信道周期性地发送给终端设备。同时,基站会配置一个物理随机接入信道(Physical random access channel,PRACH)配置周期(configuration period)。在此PRACH配置周期内配置一定数量的RACH传输机会,即RO。
SSB与RO的关联关系可以通过高层参数ssb-per-rach-occasion(N)或者ssb-perRACH-OccasionAndCB-PreamblesPerSSB或者msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB指示,N的取值可以是{1/8,1/4,1/2,1,2,4,8,16}。如果N<1,代表1个SSB可以映射到多个RO中;如果N=1,代表1个SSB映射到1个RO中;如果N>1,代表1个RO内可以映射多个SSB。对于频域可以配置的RO数目,也就是在一个时域资源上,频域上RO的数目可以取值为{1,2,4,8},由高层参数msg1-FDM配置。SSB跟RO的映射周期是指至少完整的映射1轮SSB索引(index)所需要的RO周期,从帧0开始,1个映射周期可以是1个PRACH周期,或者是多个PRACH周期,取决于RO时域资源和频域资源的配置情况。
对于第一类随机接入,或者第二类随机接入(且其RO的配置和第一类随机接入的RO配置是分离的),每个RO上可用的(或者关联的)前导码中,如果1个RO上映射了N个SSB(N>1),那么可用的前导码的个数可以分成N份,每一个SSB可取的第一个竞争的前导码的index就是(n指的是SSB index)。其中可通过高层参数totalNumberOfRA-Preambles或者msgA-TotalNumberOfRA-Preambles指示。
如果第二类随机接入和第一类随机接入,采用共同的(common)RO配置,如果1个SSB可以映射到多个RO中(N<1),每个RO上可用的(或者关联的)前导码中,每个SSB可用的(或者关联的)前导码中,可以用于第二类的随机接入的P个前导码从索引Q开始;
如果1个RO上映射了N个SSB(N>=1),每个RO上可用的(或者关联的)前导码中,每个SSB可用的(或者关联的)前导码中,可以用于第二类的随机接入的P个前导码从索引开始。其中可通过高层参数totalNumberOfRA-Preambles或者msgA-TotalNumberOfRA-Preambles指示。Q表示用于第一类随机接入的每个RO关联的每个SSB关联的前导码个数,P表示用于第二类随机接入的每个RO关联的每个SSB关联的前导码个数。
下面结合附图对本申请实施例中的一种资源配置方法及相关装置的技术方案进行描述。
请参阅图1a,图1a是本申请实施例提供的一种网络系统架构图。如图所示,该网络系统中包括有多个网络设备120和终端设备110,该网络设备120可以看作是本方案中的任意一个TRP。网络设备120可以向终端设备110发送配置信息,然后终端设备110可以根据该配置信息进行随机接入。
本申请实施例中终端设备110是一种具有无线收发功能的设备,既可以是电子设备也可以是服务器。可以称为用户设备(user equipment,UE)、终端设备、终端设备、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。用户设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如LTE、新空口(new radio,NR)、宽带码分多址(wide band code division multiple access,WCDMA)等。例如,电子设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(trans  portation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端设备还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
本申请实施例中网络设备是一种为用户设备提供无线通信功能的设备,也可称之为接入网设备、接入网网元、无线接入网(radio access network,RAN)设备等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR、WCDMA等。示例的,接入网设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(base band unit,BBU)、传输接收点(Transmission and Reception Point,TRP)、发射点(transmitting point,TP)、移动交换中心等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的接入网设备或者未来演进的PLMN中的接入网设备等。在一些实施例中,网络备还可以为具有为用户设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
在一些可能的实现中,网络设备可以是与终端设备进行相干联合传输(coherent joint transmission,CJT)的多站点中的任一站点,或者是该多站点外的其他站点,或者是其他与终端设备进行网络通信的网络设备,对此不作具体限制。其中,多站点相干联合传输可以为多个站点联合相干传输,或者属于同一个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的不同数据从不同的站点发送到终端设备,或者多个站点虚拟成一个站点进行传输,其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。多站点相干联合传输中的站点可以为射频拉远头(Remote Radio Head,RRH)、TRP等,对此不作具体限定。
在一些可能的实现中,网络设备可以是与终端设备进行非相干联合传输的多站点中的任一站点,或者是该多站点外的其他站点,或者是其他与终端设备进行网络通信的网络设备,对此不作具体限制。其中,多站点非相干联合传输可以为多个站点联合非相干传输,或者属于同一个PDSCH的不同数据从不同的站点发送到终端设备,其他标准中规定相同含义的名称也同样适用于本申请,即本申请并不限制这些参数的名称。多站点非相干联合传输中的站点可以为RRH、TRP等,对此不作具体限定。
需要说明的是,本申请的TRP并不仅限于相干联合传输或者非相干联合传输场景,还可以适用于其他场景,对此不作具体限制。
如图1b所示的终端设备110的结构示意图,该终端设备110包括处理器210、存储器2 20、通信接口230,以及一个或多个程序221,所述一个或多个程序221被存储在所述存储器220中,并且被配置由所述处理器210执行,所述程序221包括用于执行如本申请方法实施例所描述的方法中终端设备侧的设备所执行的操作。
如图1c所示的网络设备120的结构示意图,该网络设备120包括处理器310、存储器320、通信接口330,以及一个或多个程序321,所述一个或多个程序321被存储在所述存储器320中,并且被配置由所述处理器310执行,所述程序321包括用于执行如本申请方法实施例所描述的方法中网络侧的设备所执行的操作。
请参阅图2a,图2a是本申请实施例提供的一种资源配置方法的流程示意图。如图所示,所述资源配置方法包括如下步骤:
步骤201,网络设备向终端设备发送配置信息。
相应地,所述终端设备获取来自所述网络设备的所述配置信息。
其中,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源。
该配置信息可以是为多个TRP中的每个TRP配置的随机接入资源,也可以是仅为多个TRP中的部分TRP配置的随机接入资源,该多个TRP中的其他TRP的随机接入资源则可以通过推理得出。在本申请实施例中,网络设备可以向终端设备配置多个TRP。
需要说明的是,TRP,可以用传输配置指示状态(transmission configuration indication state,TCI state)、信道探测参考信号(Sounding Reference Signal,SRS)资源、SRS资源集或者空域信息(spatial information)等进行表征。也就是说,TCI状态、SRS资源、SRS资源集或者空域信息等也可以看作是TRP的概念。
另外,本申请中的TRP可以与空域信息或空位方向(例如一个或一组波束)关联;或者,TRP可以通过空域信息或空位方向(例如一个或一组波束)表征;或者,TRP可以通过功控参数表征。此外,本申请中的TRP可以是一个功能模块(例如:采用软件功能实现),也可以通过硬件实现,本申请并不对TRP的实现方式进行具体限制。
在NR系统中,该随机接入资源可以包括公共随机接入配置信息元素(RACH-ConfigCommon information element)和/或RACH-ConfigCommonTwoStepRA和/或RACH-ConfigDedicated和/或RACH-ConfigGeneric和/或RACH-ConfigGenericTwoStepRA。该配置的随机接入资源中包括用于进行随机接入的时域资源、和/或频域资源和/或随机接入前导码,和/或用于配置物理广播同步广播信号块(Synchronization Signal and PBCH block,SSB)与随机接入资源的映射关系。终端设备可以根据SSB与随机接入资源的映射关系,或者也可以根据测量结果中满足条件的SSB确定其对应的随机资源子集。
步骤202,所述终端设备根据所述配置信息进行随机接入。
其中,终端设备在进行随机接入时,会根据配置的随机接入资源向网络发送随机接入请求信息,然后网络在接收到该随机接入请求信息后,向终端设备发送响应信息。至少一个TRP对应的随机接入资源中可以包括为终端设备配置的两步随机接入和/或四步随机接入资源。随机接入过程可分为基于竞争的随机接入过程和基于非竞争的随机接入过程,基于竞争随机接入是指接入资源由终端设备自行随机获取,基于非竞争随机接入是指终端设备的接入资源由基站分配,二者的本质区别在于发起随机接入前终端设备是否收到来自网络分配的专用随机接入资源。
可见,本实例中,网络设备为终端设备配置的随机接入资源中包括为多个TRP中的至少 一个TRP配置的随机接入资源,这样可以使得每个TRP都有对应的随机接入资源,能有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,所述多个TRP中每个TRP分别对应一套随机接入资源。
其中,该配置信息中可以包括为每个TRP分别配置一套随机接入资源,即一套随机接入通用配置信息(RACH-ConfigCommon)和/或2步随机接入通用配置信息(RACH-ConfigCommonTwoStepRA)和/或RACH-ConfigDedicated和/或RACH-ConfigGeneric和/或RACH-ConfigGenericTwoStepRA关联于一个TRP,另一套RACH-ConfigCommon和/或RACH-ConfigCommonTwoStepRA)和/或RACH-ConfigDedicated和/或RACH-ConfigGeneric和/或RACH-ConfigGenericTwoStepRA关联另一个TRP。
可见,本实例中,可以在配置信息中为每个TRP分别配置一套随机接入资源,这样可以使得每个TRP都有对应的随机接入资源,能有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,所述多个TRP中包括第一TRP和第二TRP,所述配置信息包括:所述第一TRP的第一随机接入资源和/或所述第二TRP的第二随机接入资源。
其中,当仅为第一TRP和第二TRP中的其中一个TRP配置随机接入资源时,另一个TRP的随机接入资源可以通过推理得出。
在一个可能的实例中,所述第一随机接入资源为相应于第一物理小区标识PCI的资源,所述第二随机接入资源为相应于第二PCI的资源,所述第一PCI为服务小区的PCI,所述第二PCI为1个或多个非服务小区中的任意一个非服务小区的PCI。
其中,小区间多传输接收点(inter-cell M-TRP)场景中,可以为每个第二服务小区,即非服务小区,分别配置随机接入资源。服务小区的SSB关联的物理小区标识(Physical Cell Identifier,PCI)和非服务小区的SSB关联的PCI不同,非服务小区的SSB与PCI的关联关系可以是通过SSB-MTC-Additional PCI配置。需要说明的是,PCI可以用于区分不同小区或不同小区的信号,即PCI可以关联小区。因此,本申请可以使得参数关联PCI,以便实现参数关联小区,即实现通过参数来区分不同小区或不同小区的信号。当为两个TRP进行随机接入资源配置,一个TRP的随机接入资源是相应于服务小区的PCI的资源,另一个TRP的随机接入资源可以是相应于非服务小区中的任意一个非服务小区的PCI的资源。
可见,本实例中,两个TRP的随机接入资源分别是相应于服务小区和非服务小区的PCI的资源,可以有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,当所述第二PCI为用于物理下行共享信道PDSCH的活跃的传输配置指示TCI状态所关联的非服务小区的PCI,所述第二随机接入资源可用。
其中,所述第二随机接入资源可用是指所述终端设备可以根据为第二TRP配置的随机接入资源进行随机接入。终端设备与网络设备基于波束进行数据传输时,通常为终端设备配置传输服务小区的TCI,即为终端设备进行服务小区的波束配置。
在一个可能的实例中,所述多个TRP对应一套随机接入资源。
其中,该多个TRP对应一套随机接入资源可以是所述多个TRP中的部分TRP对应同一套随机接入资源,其他部分TRP对应另一套随机接入资源。也可以是多个TRP中的每个TRP都对应同一套随机接入资源。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括所述多个TRP中 至少一个TRP在一个随机接入信道机会RO中关联的前导码信息。
其中,当多个TRP都配置的是同一套随机接入资源,对于同一个RO,不同的TRP关联不同的前导码,前导码是终端设备在PRACH中发送的实际内容,由长度为Tcp的循环前缀CP和长度为Tseq的序列Sequence组成。一套随机接入资源包括的前导码信息中包括每个TRP在同一个RO中关联的前导码的数量和/或前导码的索引。
可见,本实例中,多个TRP共享同样的随机接入资源配置时,通过对于同一个RO不同的TRP关联不同的前导码的方式实现每个TRP的随机资源配置,可以有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括为所述终端设备配置第一类随机接入,与所述第一类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为X1个,所述X1为整数。
其中,每个SSB可用的(或者关联的)前导码个数可以由高层参数CB-PreamblesPerSSB或者ssb-perRACH-OccasionAndCB-PreamblesPerSSB或者msgA-SSB-PerRACH-OccasionAndCB-PreamblesPerSSB或msgA-CB-PreamblesPerSSB-PerSharedRO指示,根据RO和SSB的映射关系还可以知道每个RO映射的SSB的数量。该X1可以是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的,即与第一类随机接入有关的一个RO可用的前导码中,有X1个前导码为该一个RO映射的一个SSB可用的前导码。所述第一类随机接入对应的随机接入类型可以是上述所说的四步随机接入。对于第一类映射关系(即上述所述的SSB与RO的映射关系中N<1的情况)来说,由于是一个SSB对应多个RO,因此所述数量X1可以理解为是一个RO关联的用于竞争接入的前导码的数量,或者一个RO所关联的用于非竞争接入的前导码的数量。对于第二类映射关系(即上述所述的SSB与RO的映射关系中N=1或N>1的情况)来说,由于是一个RO关联多个SSB,因此若每个SSB关联的前导码数量都为X1,当一个RO关联N个SSB时,一个RO关联的用于竞争接入的前导码的数量,或者一个RO所关联的用于非竞争接入的前导码的数量为N*X1。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述每个SSB关联的X1个前导码中,前X1-L1个前导码与所述第一TRP关联,后L1个前导码与所述第二TRP关联,所述L1为整数。
其中,本方案中描述的每个SSB指的是每个RO关联的每个SSB。该X1和/或L1和/或X1-L1可以是第一TPR和第二TRP对应的一套随机接入资源中包括前导码信息指示的,即与第一类随机接入有关的一个RO可用的前导码中,有X1个前导码为该一个RO映射的一个SSB可用的前导码,而该X1个前导码中,有L1个前导码与第一TRP有关,有X1-L1个前导码与第二TRP有关。如图2b所示,图2b中的(a)中所示的为SSB与RO的映射关系为第一类映射关系时,一个SSB关联的每个TRP关联的前导码的数量。即此时X1个前导码中,前X1-L1个前导码与第一TRP关联,后L1个前导码与第二TRP关联。图2b中的(b)所示的为SSB与RO的映射关系为第二类映射关系时,一个SSB关联的每个TRP关联的前导码的数量。一个SSB关联的X1个前导码仅为该RO关联的所有前导码中的的一部分,在这一部分中,前X1-L1个前导码与第一TRP关联,后L1个前导码与第二TRP关联。特别地,第n个SSB关联的X1个前导码从索引为(n-1)*X1的前导码开始。例如第1个SSB的X1个前导码就从索引为0的前导码开始,例如第2个SSB的X1个前导码就从索引为X1的前导 码开始。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述每个SSB关联的X1个前导码中,所述第一TRP关联的前导码的数量为K个,所述第二TRP关联的前导码的数量根据对所述第一TRP关联的前导码的数量推理得到,所述K为整数。该K可以是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的,即与第一类随机接入有关的一个RO可用的前导码中,有X1个前导码为该一个RO映射的一个SSB可用的前导码,而该X1个前导码中,有K个前导码与第一TRP有关。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述每个SSB关联的X1个前导码中,所述第一TRP关联X个前导码,所述第二TRP关联Y个前导码,所述X和/或所述Y为网络配置信息或协议预定义信息,所述X和Y为整数。可以通过协议预定的方式,直接或者间接获得第一TRP和/或第二TRP对应的前导码数量。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述每个SSB关联的X1个前导码中,所述第一TRP的比例因子为α,所述第二TRP的比例因子为(1-α),所述比例因子用于指示所述第一TRP关联的前导码数量和/或所述第二TRP关联的前导码数量。也就是说,此时第一TRP关联的前导码的数量为X1*α,第二TRP关联的前导码的数量为X1*(1-α)。网络可以为第一TRP和/或第二TRP配置比例因子,若网络仅为第一TRP配置比例因子,则此时第二TRP关联的前导码的数量为通过推导得出。特别地,当X1*α的值不为整数时,需要对该值进行取整计算,该取整方式可以是向上取整或向下取整或者取该值中的整数部分等方式。当然,网络可以为第一TRP和/或第二TRP配置比例因子。
可见,本实例中,通过对于同一个RO,不同的TRP关联不同的前导码的方式实现每个TRP的随机资源配置,可以有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中还包括为所述终端设备配置第二类随机接入,所述第一类随机接入与所述第二类随机接入分别对应一套物理随机接入信道PRACH配置,所述至少一个TRP在一个RO中关联的前导码信息与所述第一类随机接入关联和/或与所述第二类随机接入关联。
其中,所述第二类随机接入对应的随机接入类型可以是上述所说的两步随机接入。当同时配置了第一类随机接入和第二类随机接入,但第一类随机接入进程和第二类随机接入进程采用分开的物理随机接入信道(Physical Random Access Channel,PRACH)配置,则与所述第二类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为X2个,所述X2为整数。所述至少一个TRP包括第一TRP和第二TRP,所述每个SSB关联的X2个前导码中,前X2-L4个前导码与所述第一TRP关联,后L4个前导码与所述第二TRP关联,所述L4为整数。该X2和/或L4和/或X2-L4可以是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的,即与第二类随机接入有关的一个RO可用的前导码中,有X2个前导码为该一个RO映射的一个SSB可用的前导码,而该X2个前导码中,有L4个前导码与第一TRP有关,有X2-L4个前导码与第二TRP有关。可以理解的是,第一类随机接入关联的RO和第二类随机接入关联的RO中每个SSB关联的前导码的配置方式相同,每个SSB关联的TRP的前导码的配置方式也相同。需要说明的是,虽然配置方式相同,但配置的前导码的数量可以不同。
可见,本实例中,通过对于同一个RO,不同的TRP关联不同的前导码的方式实现每个 TRP的随机资源配置,可以有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括为所述终端设备配置第一类随机接入和第二类随机接入,所述第一类随机接入与所述第二类随机接入共享同一套PRACH配置,与所述第一类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为Q个,与所述第二类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为P个,所述Q和所述P为整数。
其中,所述第一类随机接入对应的随机接入类型可以是上述所说的四步随机接入,第二类随机接入可以是上述所说的两步随机接入。对于第一类映射关系(即上述所述的SSB与RO的映射关系中N<1的情况)来说,由于是一个SSB对应多个RO,因此所述数量Q可以理解为是一个RO关联的用于四步随机接入进程的竞争接入的前导码的数量,或者一个RO所关联的用于四步随机接入进程的非竞争接入的前导码的数量。数量P可以理解为是一个RO关联的用于两步随机接入进程的竞争接入的前导码的数量,或者一个RO所关联的用于两步随机接入进程的非竞争接入的前导码的数量。该Q和/或P可以是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的。
对于第二类映射关系(即上述所述的SSB与RO的映射关系中N=1或N>1的情况)来说,由于是一个RO关联多个SSB,因此若每个SSB关联与第一类随机接入有关的前导码数量都为Q,每个SSB关联与第二类随机接入有关的前导码数量都为P,当一个RO关联N个SSB时,一个RO关联的用于第一类随机接入进程的竞争接入的前导码的数量,或者一个RO所关联的用于第一类随机接入进程的非竞争接入的前导码的数量为N*Q。同理,一个RO关联的用于第二类随机接入进程的竞争接入的前导码的数量,或者一个RO所关联的用于第二类随机接入进程的非竞争接入的前导码的数量为N*P。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述Q个前导码中,前Q-L2个前导码与所述第一TRP关联,后L2个前导码与所述第二TRP关联,所述L2为整数。
其中,该Q和/或L2和/或Q-L2可以是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的,即与第一类随机接入有关的一个RO可用的前导码中,有Q个前导码为该一个RO映射的一个SSB可用的前导码,而该Q个前导码中,有L2个前导码与第一TRP有关,有Q-L2个前导码与第二TRP有关。如图2c所示,图2c中的(a)中所示的为SSB与RO的映射关系为第一类映射关系时,一个RO关联的一个SSB与第一类随机接入有关的Q个前导码中,每个TRP关联的前导码的数量。即此时Q个前导码中,前Q-L2个前导码与第一TRP关联,后L2个前导码与第二TRP关联。
图2c中的(b)所示的为SSB与RO的映射关系为第二类映射关系时,一个RO关联的多个SSB中任意一个SSB与第一类随机接入有关的Q个前导码中,每个TRP关联的前导码的数量。一个SSB关联的Q个前导码仅为该RO关联的所有前导码中的一部分,在这一部分中,前Q-L2个前导码与第一TRP关联,后L2个前导码与第二TRP关联。特别地,N个SSB中的第n个SSB关联的Q个前导码从索引为的前导码开始。例如第1个SSB的Q个前导码就从索引为0的前导码开始,例如第2个SSB的Q个前导码就从索引为的前导码开始。需要说明的是,若的值不是整数,则需要对的值进行取整计算,该取整方式可以是向上取整或向下取整或者取该 值中的整数部分等方式。其中可通过高层参数totalNumberOfRA-Preambles或者msgA-TotalNumberOfRA-Preambles指示。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述Q个前导码中,所述第一TRP关联的前导码的数量为K个,所述第二TRP关联的前导码的数量根据对所述第一TRP关联的前导码的数量推理得到,所述K为整数。网络可以仅为两个TRP中的一个TRP配置前导码信息,此时另一个TRP的前导码信息通过推导的方式获取。该K可以是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的,即与第一类随机接入有关的一个RO可用的前导码中,有Q个前导码为该一个RO映射的一个SSB可用的前导码,而该Q个前导码中,有K个前导码与第一TRP有关。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述Q个前导码中,所述第一TRP关联X个前导码,所述第二TRP关联Y个前导码,所述X和/或所述Y为网络配置信息或协议预定义信息,所述X和Y为整数。可以通过协议预定的方式,直接或者间接获得第一TRP和/或第二TRP对应的前导码数量。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述Q个前导码中,所述第一TRP的比例因子为α,所述第二TRP的比例因子为(1-α),所述比例因子用于指示所述第一TRP关联的前导码数量和/或所述第二TRP关联的前导码数量。也就是说,此时第一TRP关联的前导码的数量为Q*α,第二TRP关联的前导码的数量为Q*(1-α)。网络可以为第一TRP和/或第二TRP配置比例因子,若网络仅为第一TRP配置比例因子,则此时第二TRP关联的前导码的数量为通过推导得出。特别地,当Q*α的值不为整数时,需要对该值进行取整计算,该取整方式可以是向上取整或向下取整或者取该值中的整数部分等方式。当然,网络还可以为第一TRP和/或第二TRP配置比例因子。
可见,本实例中,通过对于同一个RO,不同的TRP关联不同的前导码的方式实现每个TRP的随机资源配置,可以有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述P个前导码中,前P-L3个前导码与所述第一TRP关联,后L3个前导码与所述第二TRP关联,所述L3为整数。
其中,该P和/或L3和/或P-L3可以是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的,即与第二类随机接入有关的一个RO可用的前导码中,有P个前导码为该一个RO映射的一个SSB可用的前导码,而该P个前导码中,有L3个前导码与第一TRP有关,有P-L3个前导码与第二TRP有关。如图2d所示,图2d中的(a)中所示的为SSB与RO的映射关系为第一类映射关系时,一个RO关联的一个SSB与第二类随机接入有关的P个前导码中,每个TRP关联的前导码的数量。即此时P个前导码中,前P-L3个前导码与第一TRP关联,后L3个前导码与第二TRP关联。
图2d中的(b)所示的为SSB与RO的映射关系为第二类映射关系时,一个RO关联的多个SSB中任意一个SSB与第二类随机接入有关的P个前导码中,每个TRP关联的前导码的数量。一个SSB关联的P个前导码仅为该RO关联的所有前导码中的一部分,在这一部分中,前P-L3个前导码与第一TRP关联,后L3个前导码与第二TRP关联。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述P个前导码中,所述第一TRP关联的前导码的数量为K个,所述第二TRP关联的前导码的数量根据对 所述第一TRP关联的前导码的数量推理得到,所述K为整数。网络可以仅为两个TRP中的一个TRP配置前导码信息,此时另一个TRP的前导码信息通过推导的方式获取。该K是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的,即与第二类随机接入有关的一个RO可用的前导码中,有P个前导码为该一个RO映射的一个SSB可用的前导码,而该P个前导码中,有K个前导码与第一TRP有关。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述P个前导码中,所述第一TRP关联X个前导码,所述第二TRP关联Y个前导码,所述X和/或所述Y为网络配置信息或协议预定义信息,所述X和Y为整数。可以通过协议预定的方式,直接或者间接获得第一TRP和/或第二TRP对应的前导码数量。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述P个前导码中,所述第一TRP的比例因子为α,所述第二TRP的比例因子为(1-α),所述比例因子用于指示所述第一TRP关联的前导码数量和/或所述第二TRP关联的前导码数量。也就是说,此时第一TRP关联的前导码的数量为P*α,第二TRP关联的前导码的数量为P*(1-α)。网络可以为第一TRP和/或第二TRP配置比例因子,若网络仅为第一TRP配置比例因子,则此时第二TRP关联的前导码的数量为通过推导得出。特别地,当P*α的值不为整数时,需要对该值进行取整计算,该取整方式可以是向上取整或向下取整或者取该值中的整数部分等方式。当然,网络还可以为第一TRP和/或第二TRP配置比例因子。
可见,本实例中,通过对于同一个RO,不同的TRP关联不同的前导码的方式实现每个TRP的随机资源配置,可以有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括所述多个TRP中至少一个TRP关联的RO的信息。
其中,当多个TRP共享同样的随机接入资源时,不同的TRP可以是关联不同的RO。
可见,本实例中,通过对于不同的TRP关联不同的RO的方式实现每个TRP的随机资源配置,可以有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述第一TRP关联T个RO,所述第二TRP关联M-T个RO,所述M为一个SSB映射的RO的数量,所述T为整数。
其中,该M和/或M-T可以是第一TPR和第二TRP对应的一套随机接入资源中包括的前导码信息指示的。即一个RO可用的前导码中,有M个前导码为该一个RO映射的一个SSB可用的前导码,而该M个前导码中,有T个前导码与第一TRP有关,有M-T个前导码与第二TRP有关。当有两个TRP时,在第一类映射关系(即上述所述的SSB与RO的映射关系中N<1的情况)来说,由于是一个SSB对应多个RO,因此当一个SSB映射M个RO,则这M个RO中,可以有一部分与第一TRP关联,另一部分与第二TRP关联。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述第一TRP关联T个RO,所述第二TRP关联的RO的数量根据对所述第一TRP关联RO的数量推理得到。网络可以仅为两个TRP中的一个TRP配置RO信息,此时另一个TRP的RO的信息通过推导的方式获取。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述M个前导码中,所述第一TRP关联的RO的数量为F个,所述第二TRP关联的RO的数量为J个,所述 F和/或所述J为网络配置信息或协议预定义信息,所述F和J为整数。可以通过协议预定的方式,直接或者间接获得第一TRP和/或第二TRP关联的RO的数量。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述M个前导码中,所述第一TRP的比例因子为α,所述第二TRP的比例因子为(1-α),所述比例因子用于指示所述第一TRP关联的RO的数量和/或所述第二TRP关联的RO的数量。也就是说,此时第一TRP关联的RO的数量为M*α,第二TRP关联的前导码的数量为M*(1-α)。网络可以为第一TRP和/或第二TRP配置比例因子,若网络仅为第一TRP配置比例因子,则此时第二TRP关联的前导码的数量为通过推导得出。特别地,当M*α的值不为整数时,需要对该值进行取整计算,该取整方式可以是向上取整或向下取整或者取该值中的整数部分等方式。当然,网络还可以为第一TRP和/或第二TRP配置比例因子。
在一个可能的实例中,所述T个RO在所述M个RO中的索引连续,或者所述T个RO在所述M个RO中的索引不连续。
其中,当T个RO的索引是连续的时候,则可以理解为将M个RO按照索引分成两部分,一部分与第一TRP关联,另一部分与第二TRP关联。当T个RO的索引不是连续的时候,则可以是将M个RO以交替的形似分别与第一TRP和第二TRP关联。该交替的方式可以是以一个RO进行交替,即该M个RO中每个RO的索引都不连续,也可以是以多个RO进行交替,即该M个RO中存在部分RO的索引连续。
可见,本实例中,通过对于不同的TRP关联不同的RO的方式实现每个TRP的随机资源配置,可以有效支持每个TRP的TA,提高终端设备的随机接入效率和质量。
本申请实施例提供了一种资源配置装置,该资源配置装置可以用于执行上述方法中终端设备执行的步骤。该资源配置装置可以包括相应步骤对应的单元。
本申请实施例可以根据上述方法示例性对资源配置装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,如图3所示,图3是本申请实施例提供的一种资源配置装置的功能单元组成框图。所述资源配置装置3包括:获取单元301,用于获取配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源;随机接入单元302,用于根据所述配置信息进行随机接入。
在一个可能的实例中,所述多个TRP中每个TRP分别对应一套随机接入资源。
在一个可能的实例中,所述多个TRP中包括第一TRP和第二TRP,所述配置信息包括:所述第一TRP的第一随机接入资源和/或所述第二TRP的第二随机接入资源。
在一个可能的实例中,所述第一随机接入资源为相应于第一物理小区标识PCI的资源,所述第二随机接入资源为相应于第二PCI的资源,所述第一PCI为服务小区的PCI,所述第二PCI为1个或多个非服务小区中的任意一个非服务小区的PCI。
在一个可能的实例中,当所述第二PCI为用于物理下行共享信道PDSCH的活跃的传输配置指示TCI状态所关联的非服务小区的PCI,所述第二随机接入资源可用。
在一个可能的实例中,所述多个TRP对应一套随机接入资源。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括所述多个TRP中至少一个TRP在一个随机接入信道机会RO中关联的前导码信息。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括为所述终端设备配置第一类随机接入,与所述第一类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为X1个,所述X1为整数。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述每个SSB关联的X1个前导码中,前X1-L1个前导码与所述第一TRP关联,后L1个前导码与所述第二TRP关联,所述L1为整数。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中还包括为所述终端设备配置第二类随机接入,所述第一类随机接入与所述第二类随机接入分别对应一套物理随机接入信道PRACH配置,所述至少一个TRP在一个RO中关联的前导码信息与所述第一类随机接入关联和/或与所述第二类随机接入关联。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括为所述终端设备配置第一类随机接入和第二类随机接入,所述第一类随机接入与所述第二类随机接入共享同一套PRACH配置,与所述第一类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为Q个,与所述第二类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为P个,所述Q和所述P为整数。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述Q个前导码中,前Q-L2个前导码与所述第一TRP关联,后L2个前导码与所述第二TRP关联,所述L2为整数。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述P个前导码中,前P-L3个前导码与所述第一TRP关联,后L3个前导码与所述第二TRP关联,所述L3为整数。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括所述多个TRP中至少一个TRP关联的RO的信息。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述第一TRP关联T个RO,所述第二TRP关联M-T个RO,所述M为一个SSB映射的RO的数量,所述T为整数。
在一个可能的实例中,所述T个RO在所述M个RO中的索引连续,或者所述T个RO在所述M个RO中的索引不连续。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能单元的功能描述,在此不再赘述。当然,本申请实施例提供资源配置装置包括但不限于上述单元,例如:资源配置装置还可以包括存储单元。存储单元可以用于存储该资源配置装置的程序代码和数据。
在采用集成的单元的情况下,本申请实施例提供的资源配置装置的结构示意图如图4所示。在图4中,资源配置装置4包括:处理模块40和通信模块41。处理模块40用于对资源配置装置的动作进行控制管理,例如,获取单元301和随机接入单元302所执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块41用于支持资源配置装置与其他设备之间的交互。如图4所示,资源配置装置还可以包括存储模块42,存储模块42用于存储资源 配置装置的程序代码和数据,例如存储上述存储单元所保存的内容。
其中,处理模块40可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块41可以是收发器、RF电路或通信接口等。存储模块42可以是存储器。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。上述资源配置装置3和资源配置装置4均可执行上述图2a所示的资源配置方法中终端设备所执行的步骤。
本申请实施例提供了一种资源配置装置,该资源配置装置可以用于执行上述方法中网络设备执行的步骤。该资源配置装置可以包括相应步骤对应的单元。
本申请实施例可以根据上述方法示例性对资源配置装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,如图5所示,图5是本申请实施例提供的另一种资源配置装置的功能单元组成框图。所述资源配置装置5包括:发送单元501,用于发送配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源。
在一个可能的实例中,所述多个TRP中每个TRP分别对应一套随机接入资源。
在一个可能的实例中,所述多个TRP中包括第一TRP和第二TRP,所述配置信息包括:针对所述第一TRP的第一随机接入资源和针对所述第二TRP的第二随机接入资源。
在一个可能的实例中,所述第一随机接入资源为相应于第一物理小区标识PCI的资源,所述第二随机接入资源为相应于第二PCI的资源,所述第一PCI为服务小区的PCI,所述第二PCI为多个非服务小区中的任意一个非服务小区的PCI。
在一个可能的实例中,在所述第二PCI为用于物理下行共享信道PDSCH的活跃的传输配置指示TCI状态所关联的非服务小区的PCI时,所述第二随机接入资源可用。
在一个可能的实例中,所述多个TRP对应一套随机接入资源。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括所述多个TRP中至少一个TRP在一个随机接入信道机会RO中关联的前导码信息。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括为所述终端设备配置第一类随机接入,与所述第一类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为X1个,所述X1为整数。
在一个可能的实例中,所述至少一个TRP包括第一TRP和第二TRP,所述每个SSB关联的X1个前导码中,前X1-L1个前导码与所述第一TRP关联,后L1个前导码与所述第二TRP关联,所述L1为整数。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中还包括为所述终端设备 配置第二类随机接入,所述第一类随机接入与所述第二类随机接入分别对应一套物理随机接入信道PRACH配置,所述至少一个TRP在一个RO中关联的前导码信息与所述第一类随机接入关联和/或与所述第二类随机接入关联。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括为所述终端设备配置第一类随机接入和第二类随机接入,所述第一类随机接入与所述第二类随机接入共享同一套PRACH配置,与所述第一类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为Q个,与所述第二类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为P个,所述Q和所述P为整数。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述Q个前导码中,前Q-L2个前导码与所述第一TRP关联,后L2个前导码与所述第二TRP关联,所述L2为整数。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述P个前导码中,前P-L3个前导码与所述第一TRP关联,后L3个前导码与所述第二TRP关联,所述L3为整数。
在一个可能的实例中,所述多个TRP对应的一套随机接入资源中包括所述多个TRP中至少一个TRP关联的RO的信息。
在一个可能的实例中,所述至少一个TRP中包括第一TRP和第二TRP,所述第一TRP关联T个RO,所述第二TRP关联M-T个RO,所述M为一个SSB映射的RO的数量,所述T为整数。
在一个可能的实例中,所述T个RO在所述M个RO中的索引连续,或者所述T个RO在所述M个RO中的索引不连续。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能单元的功能描述,在此不再赘述。当然,本申请实施例提供资源配置装置包括但不限于上述单元,例如:资源配置装置还可以包括存储单元。存储单元可以用于存储该资源配置装置的程序代码和数据。
在采用集成的单元的情况下,本申请实施例提供的资源配置装置的结构示意图如图6所示。在图6中,资源配置装置6包括:处理模块60和通信模块61。处理模块60用于对资源配置装置的动作进行控制管理,例如,发送单元501所执行的步骤,和/或用于执行本文所描述的技术的其它过程。通信模块61用于支持资源配置装置与其他设备之间的交互。如图6所示,资源配置装置还可以包括存储模块62,存储模块62用于存储资源配置装置的程序代码和数据,例如存储上述存储单元所保存的内容。
其中,处理模块60可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块61可以是收发器、RF电路或通信接口等。存储模块62可以是存储器。
其中,上述方法实施例涉及的各场景的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。上述资源配置装置5和资源配置装置6均可执行上述图2a所示的资源 配置方法中网络设备所执行的步骤。
本申请实施例还提供了一种芯片,其中,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述方法实施例中终端设备所描述的部分或全部步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,其中,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述方法实施例中终端设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络侧设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序可操作来使计算机执行如上述方法实施例中终端设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等 同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (26)

  1. 一种资源配置方法,其特征在于,所述方法包括:
    获取配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源;
    根据所述配置信息进行随机接入。
  2. 根据权利要求1所述的方法,其特征在于,所述多个TRP中每个TRP分别对应一套随机接入资源。
  3. 根据权利要求2所述的方法,其特征在于,所述多个TRP中包括第一TRP和第二TRP,所述配置信息包括:所述第一TRP的第一随机接入资源和/或所述第二TRP的第二随机接入资源。
  4. 根据权利要求3所述的方法,其特征在于,所述第一随机接入资源为相应于第一物理小区标识PCI的资源,所述第二随机接入资源为相应于第二PCI的资源,所述第一PCI为服务小区的PCI,所述第二PCI为1个或多个非服务小区中的任意一个非服务小区的PCI。
  5. 根据权利要求4所述的方法,其特征在于,当所述第二PCI为用于物理下行共享信道PDSCH的活跃的传输配置指示TCI状态所关联的非服务小区的PCI,所述第二随机接入资源可用。
  6. 根据权利要求1所述的方法,其特征在于,所述多个TRP对应一套随机接入资源。
  7. 根据权利要求6所述的方法,其特征在于,所述多个TRP对应的一套随机接入资源中包括所述多个TRP中至少一个TRP在一个随机接入信道机会RO中关联的前导码信息。
  8. 根据权利要求6所述的方法,其特征在于,所述多个TRP对应的一套随机接入资源中包括为所述终端设备配置第一类随机接入,与所述第一类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为X1个,所述X1为整数。
  9. 根据权利要求8所述的方法,其特征在于,所述至少一个TRP包括第一TRP和第二TRP,所述每个SSB关联的X1个前导码中,前X1-L1个前导码与所述第一TRP关联,后L1个前导码与所述第二TRP关联,所述L1为整数。
  10. 根据权利要求8或9所述的方法,其特征在于,所述多个TRP对应的一套随机接入资源中还包括为所述终端设备配置第二类随机接入,所述第一类随机接入与所述第二类随机接入分别对应一套物理随机接入信道PRACH配置,所述至少一个TRP在一个RO中关联的前导码信息与所述第一类随机接入关联和/或与所述第二类随机接入关联。
  11. 根据权利要求7所述的方法,其特征在于,所述多个TRP对应的一套随机接入资源中包括为所述终端设备配置第一类随机接入和第二类随机接入,所述第一类随机接入与所述第二类随机接入共享同一套PRACH配置,与所述第一类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为Q个,与所述第二类随机接入有关的每个RO关联的每个SSB关联的前导码的数量为P个,所述Q和所述P为整数。
  12. 根据权利要求11所述的方法,其特征在于,所述至少一个TRP中包括第一TRP和第二TRP,所述Q个前导码中,前Q-L2个前导码与所述第一TRP关联,后L2个前导码与所述第二TRP关联,所述L2为整数。
  13. 根据权利要求11或12所述的方法,其特征在于,所述至少一个TRP中包括第一TRP和第二TRP,所述P个前导码中,前P-L3个前导码与所述第一TRP关联,后L3个前导码与所述第二TRP关联,所述L3为整数。
  14. 根据权利要求6所述的方法,其特征在于,所述多个TRP对应的一套随机接入资源中包括所述多个TRP中至少一个TRP关联的RO的信息。
  15. 根据权利要求14所述的方法,其特征在于,所述至少一个TRP中包括第一TRP和第二TRP,所述第一TRP关联T个RO,所述第二TRP关联M-T个RO,所述M为一个SSB映射的RO的数量,所述T为整数。
  16. 根据权利要求15所述的方法,其特征在于,所述T个RO在所述M个RO中的索引连续,或者所述T个RO在所述M个RO中的索引不连续。
  17. 一种资源配置方法,其特征在于,所述方法包括:
    发送配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源。
  18. 一种资源配置装置,其特征在于,所述装置包括:
    获取单元,用于获取配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源;
    随机接入单元,用于根据所述配置信息进行随机接入。
  19. 一种资源配置装置,其特征在于,所述装置包括:
    发送单元,用于发送配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源。
  20. 一种终端设备,其特征在于,包括处理器、存储器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-16任一项所述的方法中的步骤的指令。
  21. 一种网络设备,其特征在于,包括处理器、存储器,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求17所述的方法中的步骤的指令。
  22. 一种计算机可读存储介质,其特征在于,存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-16任一项或权利要求17所述的方法。
  23. 一种芯片,其特征在于,
    所述芯片,用于获取配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源;以及用于根据所述配置信息进行随机接入。
  24. 一种芯片模组,其特征在于,包括收发组件和芯片,
    所述芯片,用于获取配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源;以及用于根据所述配置信息进行随机接入。
  25. 一种芯片,其特征在于,
    所述芯片,用于发送配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源。
  26. 一种芯片模组,其特征在于,包括收发组件和芯片,
    所述芯片,用于发送配置信息,所述配置信息用于指示多个传输接收点TRP中至少一个TRP的随机接入资源。
PCT/CN2023/121586 2022-09-30 2023-09-26 资源配置方法及相关装置 WO2024067594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211215291.7 2022-09-30
CN202211215291.7A CN117880839A (zh) 2022-09-30 2022-09-30 资源配置方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024067594A1 true WO2024067594A1 (zh) 2024-04-04

Family

ID=90476354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121586 WO2024067594A1 (zh) 2022-09-30 2023-09-26 资源配置方法及相关装置

Country Status (2)

Country Link
CN (1) CN117880839A (zh)
WO (1) WO2024067594A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734632A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 一种随机接入的方法、网络侧设备及终端
CN107734600A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 一种终端初始接入网络的方法及相关设备
WO2022088009A1 (en) * 2020-10-30 2022-05-05 Qualcomm Incorporated Beam recovery during multi-transmission-reception point (trp) operation
CN114830554A (zh) * 2019-12-20 2022-07-29 高通股份有限公司 基于波束扫描的随机接入Msg 1和Msg 2

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734632A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 一种随机接入的方法、网络侧设备及终端
CN107734600A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 一种终端初始接入网络的方法及相关设备
CN114830554A (zh) * 2019-12-20 2022-07-29 高通股份有限公司 基于波束扫描的随机接入Msg 1和Msg 2
WO2022088009A1 (en) * 2020-10-30 2022-05-05 Qualcomm Incorporated Beam recovery during multi-transmission-reception point (trp) operation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "RACH Procedure Considering Multi-TRP Operation", 3GPP DRAFT; R1-1611795 RACH PROCEDURE FOR MULTIPLE TRP OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20161114 - 20161118, 13 November 2016 (2016-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051175764 *

Also Published As

Publication number Publication date
CN117880839A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US11979916B2 (en) Method and apparatus for determining RA-RNTI
EP3606266B1 (en) Method and device for random access and instruction after random access rollback
WO2016127392A1 (en) Methods and devices for random access
US20220256615A1 (en) Resource Configuration Method and Apparatus
US11178703B2 (en) Communication method and communications device
WO2019219003A1 (zh) 随机接入方法及装置、存储介质、电子装置
WO2020224648A1 (zh) 一种分配资源的方法、基站及终端
EP3930368A1 (en) Communication method and device
WO2023198022A1 (zh) 随机接入方法及设备
WO2024067594A1 (zh) 资源配置方法及相关装置
WO2023071843A1 (zh) 资源映射方法与装置、终端和网络设备
WO2019178728A1 (zh) 一种随机接入方法及装置
CN113573401B (zh) 通信方法、装置及系统
WO2022141559A1 (zh) 功率确定方法、装置及系统
CN116569647A (zh) 通信连接控制方法及装置、电子设备及存储介质
WO2019141013A1 (zh) 随机接入方法、装置、设备、芯片、存储介质及程序产品
US10624123B2 (en) PRACH access control method, and access method and device
US20230171806A1 (en) Backoff Counter Handling for TXOP Sharing
CN116782414A (zh) 一种随机接入方法及其装置
CN118019138A (zh) 一种通信方法及装置
CN118057897A (zh) 一种通信方法及其装置
CN114073162A (zh) 用于随机接入过程的方法和装置
CN116347640A (zh) Prach传输方法、装置、终端及网络侧设备
CN116709564A (zh) 一种通信方法及其装置
CN114982300A (zh) 传输随机接入前导的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870822

Country of ref document: EP

Kind code of ref document: A1