WO2024067420A1 - 电子设备、电子设备的辅料及电子设备的壳体组件 - Google Patents
电子设备、电子设备的辅料及电子设备的壳体组件 Download PDFInfo
- Publication number
- WO2024067420A1 WO2024067420A1 PCT/CN2023/120850 CN2023120850W WO2024067420A1 WO 2024067420 A1 WO2024067420 A1 WO 2024067420A1 CN 2023120850 W CN2023120850 W CN 2023120850W WO 2024067420 A1 WO2024067420 A1 WO 2024067420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- shell
- damping
- elastic
- electronic device
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 268
- 238000013016 damping Methods 0.000 claims abstract description 175
- 239000013013 elastic material Substances 0.000 claims description 42
- 239000002131 composite material Substances 0.000 claims description 38
- 238000009434 installation Methods 0.000 claims description 34
- 239000000956 alloy Substances 0.000 claims description 24
- 229910045601 alloy Inorganic materials 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 22
- 239000006260 foam Substances 0.000 claims description 20
- 239000000696 magnetic material Substances 0.000 claims description 19
- 230000009467 reduction Effects 0.000 claims description 18
- 239000003292 glue Substances 0.000 claims description 10
- 239000011345 viscous material Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims 4
- 239000000741 silica gel Substances 0.000 claims 4
- 229910002027 silica gel Inorganic materials 0.000 claims 4
- 231100000862 numbness Toxicity 0.000 abstract description 6
- 230000002441 reversible effect Effects 0.000 description 51
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 41
- 230000006835 compression Effects 0.000 description 22
- 238000007906 compression Methods 0.000 description 22
- 239000011159 matrix material Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 14
- 238000002156 mixing Methods 0.000 description 13
- 230000000452 restraining effect Effects 0.000 description 13
- 229920001296 polysiloxane Polymers 0.000 description 12
- 230000005489 elastic deformation Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 239000012779 reinforcing material Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000001052 transient effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000036316 preload Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000003014 reinforcing effect Effects 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000005226 mechanical processes and functions Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/03—Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
- H04M1/035—Improving the acoustic characteristics by means of constructional features of the housing, e.g. ribs, walls, resonating chambers or cavities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/03—Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/02—Casings; Cabinets ; Supports therefor; Mountings therein
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/06—Loudspeakers
Definitions
- the present application relates to the field of terminal device manufacturing, and in particular to an electronic device, an auxiliary material for the electronic device, and a housing assembly for the electronic device.
- the volume of the rear sound cavity of the speaker module determines its external sound effect.
- the rear sound cavity of the speaker module will be connected to the inner cavity of the mobile phone, so that the inner cavity of the mobile phone also serves as the rear sound cavity of the speaker module.
- the vibrating diaphragm will drive the air in the inner cavity of the mobile phone to vibrate, causing the airflow to impact the back shell of the mobile phone, causing the back shell to vibrate. Users can clearly feel the shell vibration when touching the back shell, especially when the speaker module works in the low frequency band, users can even feel numbness in their hands, which affects the user experience.
- the present application provides an electronic device, an auxiliary material for the electronic device, and a shell assembly for the electronic device, which can suppress shell vibration caused by the operation of a speaker module and optimize user experience.
- the present application provides an electronic device, including a first housing, a functional component, a speaker module, a structural layer, and a second housing.
- the second housing is covered on the first housing and forms an installation cavity with the first housing.
- the functional component, the speaker module, and the structural layer are all arranged in the installation cavity.
- the functional component is adjacent to the speaker module, and the rear sound cavity of the speaker module is connected to the installation cavity.
- the structural layer connects the functional component and the second housing.
- the structural layer includes a damping structure, and the material of the damping structure is a damping material.
- Functional components refer to components installed in the installation cavity other than the speaker module.
- Functional components may have certain mechanical functions (including but not limited to support, limit, containment, connection, matching), electrical functions (including but not limited to electrical connection, charging and discharging, signal radiation, electromagnetic shielding, signal processing, filtering, image acquisition, fingerprint information acquisition, audio acquisition), and/or other functions (such as heat dissipation and other thermodynamic functions).
- the speaker module may include a module housing and a speaker unit.
- the speaker unit is installed in the inner cavity and divides the inner cavity into a front sound cavity and a rear sound cavity that are isolated from each other.
- the rear sound cavity of the speaker module is connected to the installation cavity of the electronic device, which is an open rear sound cavity design. This open rear sound cavity design expands the installation cavity into the sound cavity of the speaker module, which can achieve loud volume, stereo and other sound effects, and enhance the sound quality performance of the speaker module.
- the structural layer can be in the form of a sheet, and its surface can be completely closed without openings, or through holes can be provided as needed.
- the shape of the structural layer can be adapted to the shape of the functional component to ensure a reasonable bonding strength to the functional component.
- the structural layer contains damping material, which can absorb and dissipate the impact vibration energy emitted by the speaker module, reduce or suppress the shell vibration caused by the operation of the speaker module, thereby optimizing the user experience and improving the phenomenon of numbness in the user's hands caused by shell vibration.
- the structural layer includes a first material, the first material includes an elastic material and/or a connecting material, and the first material is mixed with a damping material.
- the elastic material has elastic deformation properties, and can be used to buffer transient impacts by relying on its own elastic properties and impact compression rate, and provide a compression rebound force for the second shell.
- the compression rebound force can be used as a preload force applied by the structural layer to the second shell to suppress the vibration of the second shell.
- the elastic deformation characteristics of the elastic material can adapt to the gap tolerance between the functional component and the second shell, ensuring the reliable assembly of the functional component and the second shell.
- the connecting material has a connecting function, and when the second shell vibrates, the second shell will leave the equilibrium position and vibrate.
- the connecting material will provide a reverse restraining force opposite to the movement direction of the second shell to suppress the vibration of the second shell.
- the first material is mixed with the damping material to form a new composite layer.
- the composite layer has the advantages of the first material and the damping material: high elasticity, high damping factor, moderate restraint, and better mechanical properties. It can effectively absorb vibration and optimize user experience. This solution can meet the assembly requirements of different products and improve the mass production of products.
- the structural layer includes a substrate layer, the material of the substrate layer is one of the elastic material and the connecting material, and the first material is the other of the elastic material and the connecting material.
- the damping material and the first material are mixed to form a composite layer, and the composite layer and the substrate layer are stacked.
- the first material and the damping material are mixed to form a new composite layer.
- the composite layer has the advantages of both the first material and the damping material: a large damping factor, moderate constraint force, and a certain degree of elasticity, showing better mechanical properties, and can form a structural layer with the substrate layer.
- the structural layer of this solution can effectively absorb vibrations and optimize user experience. This solution can meet the assembly requirements of different products and improve product Manufacturability.
- the damping structure forms a damping layer.
- the structural layer includes a first layer, the first layer includes an elastic layer and/or a connecting layer, the material of the elastic layer is an elastic material, and the material of the connecting layer is a connecting material.
- the first layer and the damping layer are stacked.
- the elastic layer and the connecting layer are stacked and bonded.
- the construction method of the structural layer under this embodiment is simple, which is conducive to improving production efficiency.
- the structural layer of this solution has the advantages of high elasticity, large damping factor, moderate constraint force, etc., and exhibits excellent mechanical properties, can effectively absorb vibration, and optimize user experience. This solution can meet the assembly requirements of different products and improve the mass producibility of products.
- the structural layer includes an elastic layer and a connecting layer which are stacked, the material of the elastic layer is an elastic material, and the material of the connecting layer is a connecting material.
- the damping structure includes a plurality of damping elastic parts, each of which is supported between the elastic layer and the connecting layer.
- the elastic layer and one of the connecting layers are connected to a functional component, and the elastic layer and another of the connecting layers are connected to a second shell.
- the construction method of the structural layer under this embodiment is simple, which is conducive to improving production efficiency.
- the structural layer of this scheme has the advantages of combining damping materials and damping structures, and has the advantages of high elasticity, large damping factor, moderate constraint force, etc. It exhibits excellent mechanical properties, can improve the efficiency of consuming impact energy, more effectively absorb vibrations, and optimize user experience. This scheme can meet the assembly requirements of different products and improve the mass producibility of products.
- the connecting material includes a viscous material or a magnetic material.
- the elastic material includes silicone, foam or foam glue.
- the elastic material has elastic deformation properties and can be used to buffer transient impacts by relying on its own elastic properties and impact compression rate.
- Materials such as silicone, foam or foam glue have excellent elastic deformation properties and can provide a compression rebound force for the second shell.
- the compression rebound force can be used as a preload force applied by the structural layer to the second shell to suppress the vibration of the second shell.
- a plurality of grooves are formed on the surface of the structural layer, and the second shell has a plurality of protrusions, one protrusion cooperates with one groove.
- the structural layer of this solution cooperates with the second shell, which can not only provide damping against compression deformation in the thickness direction of the electronic device, but also provide damping against shear deformation of the electronic device in a direction perpendicular to the thickness direction.
- the cooperation between the protrusion of the second shell and the groove of the structural layer can consume the vibration energy in this direction, thereby improving the vibration reduction performance of the electronic device.
- the structural layer has a first surface and a second surface relative to each other, the first surface is connected to the functional component, and the second surface is connected to the second shell.
- the bonding force between the first surface and the functional component is less than the bonding force between the second surface and the second shell.
- the advantage of setting a strong and weak connection method on both sides of the structural layer is that during the disassembly operation, the functional component is not easily pulled or damaged, and it is not easy to leave residual glue, which not only reduces the difficulty of disassembly, but also helps to ensure the life and reliability of the functional component.
- the structural layer includes a connecting layer, and the material of the connecting layer is a connecting material.
- the first surface is a surface of the connecting layer.
- the connecting material has a weak connecting force due to its material properties, so it is suitable to arrange the connecting layer on a side of the structural layer close to the functional component, and rely on the characteristics of the connecting material to achieve the requirement of a weak bonding force between the first surface and the functional component.
- the speaker module includes a module housing and a speaker unit installed in the module housing, and the material of the module housing includes a damping material. Due to its own characteristics, the damping material can convert solid mechanical vibration energy into heat energy for dissipation, and the module housing made of the damping material can directly absorb and consume the energy brought by transient impact from the vibration source, thereby playing a role in vibration reduction.
- the module shell includes a first module shell, a second module shell and a front cavity cover plate.
- the first module shell and the second module shell form a receiving cavity
- the first module shell has a mounting through hole and a sound outlet hole
- the mounting through hole is connected to the receiving cavity.
- the front cavity cover plate covers the mounting through hole
- the material of the front cavity cover plate is a damping material.
- the speaker unit is installed in the receiving cavity and divides the receiving cavity into two cavities, wherein the speaker unit, the first module shell and the front cavity cover plate form a front sound cavity, the sound outlet hole is connected to the front sound cavity, and the speaker unit and the second module shell form a rear sound cavity.
- the front cavity cover plate made of damping material has damping performance and can consume mechanical vibration energy. When the airflow caused by the sound wave flows in the front sound cavity, it will impact the front cavity cover plate made of damping material. Due to the damping characteristics of the damping material, the front cavity cover plate can dissipate the impact energy, thereby reducing the vibration of the speaker module.
- the speaker module is connected to the first housing via a connector, and the material of the connector is a damping material.
- the connector made of the damping material has a damping property and can consume mechanical vibration energy. When the speaker module vibrates, the connector can dissipate the impact energy and reduce or mitigate the vibration of the speaker module.
- the second shell has a vibration reduction portion on one side facing the installation cavity, and the vibration reduction portion is made of a damping material.
- the vibration reduction portion made of the damping material has a damping property, and can dissipate impact energy when impacted, thereby reducing vibration of the second shell.
- the damping material includes damping silicone or damping alloy. Due to its physical properties, the solid mechanical vibration energy can be converted into heat energy and dissipated. Therefore, damping materials can be used to absorb and consume the energy caused by transient impact, thereby playing a role in vibration reduction.
- the functional component includes a battery.
- the battery has a large available connection area, which facilitates reliable connection with the structural layer.
- the present application provides an auxiliary material for an electronic device, the auxiliary material connecting a functional component and a second housing, and comprising a damping structure, the material of the damping structure being a damping material.
- the auxiliary material can be in the form of a sheet, and its surface can be completely closed without openings, or can be provided with through holes as required.
- the shape of the auxiliary material can be adapted to the shape of the functional component to ensure a reasonable bonding strength to the functional component.
- the auxiliary material contains damping material, which can absorb and dissipate the impact vibration energy emitted by the speaker module, reduce or suppress the shell vibration caused by the operation of the speaker module, thereby optimizing the user experience and improving the phenomenon of numbness in the user's hands caused by shell vibration.
- the auxiliary material includes a first material, the first material includes an elastic material and/or a connecting material, and the first material is mixed with a damping material.
- the elastic material has elastic deformation properties, and can be used to buffer transient impacts by relying on its own elastic properties and impact compression rate, and provide a compression rebound force for the second shell.
- the compression rebound force can be used as a preload force applied by the auxiliary material to the second shell to suppress the vibration of the second shell.
- the elastic deformation characteristics of the elastic material can adapt to the gap tolerance between the functional component and the second shell, ensuring the reliable assembly of the functional component and the second shell.
- the connecting material has a connecting function, and when the second shell vibrates, the second shell will move away from the equilibrium position and vibrate.
- the connecting material will provide a reverse restraining force opposite to the movement direction of the second shell to suppress the vibration of the second shell.
- the first material is mixed with the damping material to form a new composite layer.
- the composite layer has the advantages of the first material and the damping material: high elasticity, high damping factor, moderate restraint, and better mechanical properties. It can effectively absorb vibration and optimize user experience. This solution can meet the assembly requirements of different products and improve the mass production of products.
- the auxiliary material includes a substrate layer, the material of the substrate layer is one of the elastic material and the connecting material, and the first material is the other of the elastic material and the connecting material.
- the damping material is mixed with the first material to form a composite layer, and the composite layer and the substrate layer are stacked.
- the first material is mixed with the damping material to form a new composite layer.
- the composite layer has the advantages of both the first material and the damping material: a large damping factor, moderate constraint force and a certain elasticity, showing better mechanical properties, and can constitute an auxiliary material with the substrate layer.
- the auxiliary material of this solution can effectively absorb vibration and optimize user experience. This solution can meet the assembly requirements of different products and improve the mass manufacturability of products.
- the connecting material includes a viscous material or a magnetic material.
- the elastic material includes silicone, foam or foam glue.
- the elastic material has elastic deformation properties and can be used to buffer transient impacts by relying on its own elastic properties and impact compression rate.
- Materials such as silicone, foam or foam glue have excellent elastic deformation properties and can provide a compression rebound force for the second shell.
- the compression rebound force can be used as a pre-tightening force applied to the second shell by an auxiliary material to suppress the vibration of the second shell.
- the damping structure forms a damping layer.
- the auxiliary material includes a first layer, the first layer includes an elastic layer and/or a connecting layer, the material of the elastic layer is an elastic material, and the material of the connecting layer is a connecting material.
- the first layer and the damping layer are stacked. Wherein, when the first layer includes an elastic layer and a connecting layer, the elastic layer and the connecting layer are stacked and bonded.
- the construction method of the auxiliary material under this embodiment is simple, which is conducive to improving production efficiency.
- the auxiliary material of this solution has the advantages of high elasticity, large damping factor, moderate constraint force, etc., and exhibits excellent mechanical properties, can effectively absorb vibration, and optimize user experience. This solution can meet the assembly requirements of different products and improve the mass producibility of products.
- the auxiliary material includes an elastic layer and a connecting layer that are stacked, the material of the elastic layer is an elastic material, and the material of the connecting layer is a connecting material.
- the damping structure includes a plurality of damping elastic parts, each of which is supported between the elastic layer and the connecting layer.
- the elastic layer and one of the connecting layers are connected to a functional component, and the elastic layer and another of the connecting layers are connected to a second shell.
- the construction of the auxiliary material under this embodiment is simple, which is conducive to improving production efficiency.
- the auxiliary material of this solution has the advantages of combining damping materials and damping structures, and has the advantages of high elasticity, large damping factor, moderate constraint force, etc. It exhibits excellent mechanical properties, can improve the efficiency of consuming impact energy, more effectively absorb vibrations, and optimize user experience. This solution can meet the assembly requirements of different products and improve the mass producibility of products.
- a plurality of grooves are formed on the surface of the auxiliary material, and the second shell has a plurality of protrusions, one protrusion cooperates with one groove.
- the auxiliary material of this solution cooperates with the second shell, which can not only provide damping against compression deformation in the thickness direction of the electronic device, but also provide damping against shear deformation in a direction perpendicular to the thickness direction of the electronic device.
- the cooperation between the protrusion of the second shell and the groove of the auxiliary material can consume the vibration energy in this direction, thereby improving the vibration reduction performance of the electronic device.
- the damping material includes damping silicone or damping alloy. Due to their own characteristics, damping silicone or damping alloy can convert solid mechanical vibration energy into heat energy for dissipation, so the damping material can be used to absorb and consume the energy brought by transient impact, thereby playing a role in vibration reduction.
- the auxiliary material has a first surface and a second surface relative to each other, the first surface is connected to the functional component, and the second surface is connected to the second shell.
- the bonding force between the first surface and the functional component is less than the bonding force between the second surface and the second shell.
- the advantage of setting a strong and weak connection method on both sides of the auxiliary material is that during the disassembly operation, the functional component is not easily pulled or damaged, and it is not easy to leave residual glue, which not only reduces the difficulty of disassembly, but also helps to ensure the life and reliability of the functional component.
- the auxiliary material includes a connecting layer, and the material of the connecting layer is a connecting material.
- the first surface is a surface of the connecting layer.
- the connecting material has a weak connecting force due to its material properties, so it is suitable to arrange the connecting layer on a side of the auxiliary material close to the functional component, and rely on the properties of the connecting material to achieve the requirement of a weak bonding force between the first surface and the functional component.
- the present application provides a housing assembly of an electronic device, the electronic device comprising a first housing and a functional component, the housing assembly comprising a second housing and any one of the auxiliary materials of the second aspect, the second housing being covered on the first housing and forming an installation cavity with the first housing, and the functional component being installed in the installation cavity.
- the auxiliary material can be pre-assembled with the second housing to form a housing assembly, thereby improving the assembly production efficiency of the electronic device.
- FIG1 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
- FIG2 is a schematic diagram of the structure of some components of an electronic device according to an embodiment of the present application.
- FIG3 is a partial enlarged schematic diagram of point A in FIG2;
- FIG4 is a schematic diagram of the exploded structure of a speaker module in an embodiment of the present application.
- FIG5 is a schematic structural diagram of a structural layer in an embodiment of the present application.
- FIG6 is a schematic structural diagram of a structural layer in an embodiment of the present application.
- FIG7 is a schematic structural diagram of a structural layer in an embodiment of the present application.
- FIG8 is a schematic structural diagram of a structural layer in an embodiment of the present application.
- FIG9 is a schematic structural diagram of a structural layer in an embodiment of the present application.
- FIG10 is a schematic structural diagram of a structural layer in an embodiment of the present application.
- FIG11 is a schematic structural diagram of a structural layer in an embodiment of the present application.
- FIG12 is a schematic diagram of a structure of a structural layer in an embodiment of the present application.
- FIG13 is a schematic diagram of a structure of a structural layer in an embodiment of the present application.
- FIG14 is a schematic diagram of a structure of a structural layer in an embodiment of the present application.
- FIG15 is a schematic structural diagram of a housing assembly in an embodiment of the present application.
- FIG. 16 is a schematic structural diagram of a shell assembly in an embodiment of the present application.
- the following embodiments of the present application provide an electronic device, which includes but is not limited to a mobile phone, a tablet computer, a laptop computer, an e-reader, a large-screen device, a speaker, a mobile Wi-Fi, a wearable device (such as a smart watch), etc.
- the electronic device to be described below may be a mobile phone.
- the electronic device 10 may include a middle frame 1 , a display screen 6 , a speaker module 3 , a battery 4 , a structural layer 5 and a rear shell 2 .
- the middle frame 1 serves as the main structural support of the electronic device 10, and is used to carry the other components except the middle frame 1 mentioned above.
- the display screen 6 can be installed on one side of the middle frame 1, and the speaker module 3, the battery 4 and the structural layer 5 can be installed on the other side of the middle frame 1.
- the back shell 2 covers the middle frame 1 and is located on the side of the middle frame 1 away from the display screen 6.
- the display screen 6, the middle frame 1 and the back shell 2 can be installed to form an installation cavity 10a, and the speaker module 3, the battery 4 and the structural layer 5 are all located in the installation cavity 10a.
- the side wall of the middle frame 1 can form a sound outlet 1a for the whole machine, and the sound outlet 1a for the whole machine passes through the side wall. In other embodiments, the sound outlet of the whole machine can also be opened on the back shell.
- the specific structures of the middle frame 1 and the rear shell 2 can be designed according to product requirements, and this embodiment does not limit them.
- the middle frame 1 and the rear shell 2 are both shells of electronic devices.
- the middle frame 1 can be called the first shell
- the rear shell 2 can be called the second shell.
- the electronic device 10 shown in Figure 1 can be a non-foldable straight-bar mobile phone. It can be understood that this is just an example. In fact, the electronic device of the embodiment of the present application can also be a foldable mobile phone. Alternatively, the electronic device of the embodiment of the present application can be an electronic product without a display screen.
- the battery 4 is a functional component.
- the functional component refers to a component other than the speaker module 3 installed in the installation cavity 10a.
- the functional component can have certain mechanical functions (including but not limited to support, limit, containment, connection, and coordination), electrical functions (including but not limited to electrical connection, charging and discharging, signal radiation, electromagnetic shielding, signal processing, filtering, image acquisition, fingerprint information acquisition, audio acquisition), And/or other functions (such as heat dissipation and other thermodynamic functions).
- the functional components may also include, for example, a camera module, a fingerprint module, a vibration motor, an antenna radiator, a shielding cover/shielding frame, a circuit board, etc. The following description will continue with the battery 4 as a functional component, but in fact, the following description is applicable to any functional component.
- the speaker module 3 may be adjacent to the battery 4.
- the speaker module 3 may include a module shell and a speaker unit 33.
- the module shell may include a first module shell 31, a second module shell 32 and a front cavity cover plate 34.
- the first module shell 31 and the second module shell 32 surround and form a receiving cavity 3c.
- the first module shell 31 has a mounting through hole 31a and a module sound outlet 3d.
- the module sound outlet 3d is aligned with the whole machine sound outlet 1a of the electronic device.
- the mounting through hole 31a is connected to the receiving cavity 3c, and the front cavity cover plate 34 covers the mounting through hole 31a.
- the speaker unit 33 is installed in the receiving cavity 3c, and the receiving cavity 3c is divided into two cavities, the front sound cavity 3a and the rear sound cavity 3b.
- the front sound cavity 3a is surrounded by the first module shell 31, the front cavity cover plate 34 and the speaker unit 33, and the front sound cavity 3a is connected to the mounting through hole 31a and the module sound outlet 3d.
- the rear sound cavity 3b is surrounded by the second module shell 32 and the speaker unit 33, and the rear sound cavity 3b of the speaker module 3 is connected to the installation cavity 10a of the electronic device 10.
- the speaker unit 33 includes a diaphragm, and the speaker unit 33 is used to realize electroacoustic conversion to emit sound.
- the sound waves generated by the speaker unit 33 are transmitted to the outside of the electronic device 10 through the front sound cavity 3a, the module sound outlet 3d and the whole machine sound outlet 1a to be received by the human ear to form hearing.
- This open rear sound cavity 3b design expands the installation cavity into the rear sound cavity 3b of the speaker module 3, which can achieve loud volume, stereo and other sound effects, and enhance the sound quality performance of the speaker module 3.
- the specific structure of the speaker module 3 can be designed according to product needs, and this is not limited in the embodiments of the present application.
- the speaker module 3 of the electronic device 10 Since the speaker module 3 of the electronic device 10 has an open rear cavity design, when the speaker module 3 is working, the strong airflow caused by the sound waves will impact the back shell 2. The user can obviously feel the shell vibration when touching the back shell 2. Long-term use may cause numbness in the user's hands, affecting the user's hand-held experience in scenarios such as playing music and making calls.
- the electronic device 10 provided in the embodiment of the present application can reduce or suppress the vibration of the electronic device 10 from two aspects, and the vibration reduction designs of the two aspects are relatively independent and can also be used in combination.
- the vibration problem can be improved from the perspective of suppressing the vibration of the vibration source (ie, the speaker module 3 mentioned above) and the vibration body (including the rear shell 2 mentioned above).
- the front cavity cover plate 34 of the speaker module 3 can be made of a damping material, and the damping material can be, for example, damping silicone or a damping alloy.
- the damping alloy for example, it can be a high manganese-based damping alloy, a Mg-based damping alloy, a Mn-Cu damping alloy (or a Mn-based damping alloy), etc.
- the damping material has damping properties and can consume mechanical vibration energy. When the airflow caused by the sound wave flows in the front sound cavity 3a, it will impact the front cavity cover plate 34 made of the damping material. Due to the damping characteristics of the damping material, the front cavity cover plate 34 can dissipate the impact energy, thereby reducing the vibration of the speaker module 3.
- the speaker module 3 can be fixed to the middle frame 1 by a connector 35.
- the connector 35 can be a fastener made of a damping material, and the damping material can be, for example, the damping silicone or damping alloy mentioned above.
- the connector 35 can be, for example, a damping alloy screw. When the speaker module 3 vibrates, the connector 35 can dissipate the impact energy and reduce the vibration of the speaker module 3.
- the side of the rear shell 2 close to the installation cavity 10a may have a vibration-damping part, and the structure of the vibration-damping part may be designed as needed, for example, it may be block-shaped, column-shaped, rib-shaped, etc.
- the vibration-damping part may be made of a damping material, such as the damping silicone or damping alloy mentioned above. The vibration-damping part can dissipate the impact energy when impacted, thereby reducing the vibration of the rear shell 2.
- the structural layer 5 disposed between the rear shell 2 and the functional component.
- the structural layer 5 can also be referred to as an auxiliary material, and the auxiliary material can be pre-assembled with the second shell to form a shell assembly.
- the structural layer 5 may be in the form of a sheet, and the structural layer 5 is located between the battery 4 and the rear shell 2.
- the structural layer 5 has a first surface and a second surface opposite to each other, the first surface of the structural layer 5 is connected to the battery 4, and the second surface of the structural layer 5 is connected to the inner surface of the rear shell 2 near the mounting cavity 10a.
- the shape of the structural layer 5 may be designed according to the following principle: the overlapping area of the structural layer 5 and the battery 4 is as large as possible to ensure the bonding strength to the area where the battery 4 is located.
- the shape of the structural layer 5 may be substantially the same as that of the battery 4, and the structural layer 5 is approximately in the form of a rectangular sheet.
- the boundary contour of the structural layer 5 may not exceed the boundary contour of the battery 4, for example, the boundary of the structural layer 5 is completely retracted within the boundary of the battery 4, at which time the structural layer 5 may be approximately concentric with the battery 4, and the spacing between each side of the structural layer 5 and each corresponding side of the battery 4 may be approximately equal; or the boundary of the structural layer 5 may substantially coincide with the boundary of the battery 4.
- the shape of the structural layer 5 may be designed according to product requirements so that the shape of the structural layer 5 matches the functional component to which the structural layer 5 is bonded, not limited to the above.
- the bonding force between the first surface of the structural layer 5 and the battery 4 may be relatively small, and the bonding force between the second surface of the structural layer 5 and the rear shell 2 may be relatively large. Therefore, the first surface of the structural layer 5 may be referred to as the weak connection side, and the second surface of the structural layer 5 may be referred to as the strong connection side. It should be noted that the descriptions of "strong” and “weak” in all embodiments of the present application are only for the comparison of the bonding force between the structural layer 5 and the battery 4 and between the structural layer 5 and the rear shell 2, which is a relative comparison between the two, and is not a definition of strength compared with a specific value. Schematically, the bonding force F1 on the strong connection side may range from F1 ⁇ 1 N/cm, and the bonding force F2 on the weak connection side may range from 0.01 N/cm ⁇ F2 ⁇ 1 N/cm.
- the structural layer 5, the battery 4 and the rear shell 2 can be connected by magnetic attraction or adhesive.
- the second side of the structural layer 5 bonded to the rear shell 2 can have a stronger adhesiveness, while the first side of the structural layer 5 bonded to the battery 4 can have a weaker adhesiveness.
- the bonding method is simple and efficient, and can improve the detachable maintainability of the product.
- a magnetic attraction film can be set on the battery 4 and the rear shell 2 to be magnetically attracted to the two sides of the structural layer 5, wherein the structural layer 5 can be magnetic by itself, or the structural layer 5 can be attached with a magnetic attraction film.
- this design can facilitate the separation of the weak connection side from the battery 4, while the strong connection side is still bonded to the rear case 2, so that the entire structural layer 5 can be removed together with the rear case 2.
- the advantage of setting strong and weak connection modes on both sides of the structural layer 5 is that during the disassembly operation, the battery 4 is not easily pulled or damaged, and it is not easy to leave residual glue, which not only reduces the difficulty of disassembly, but also helps to ensure the life and reliability of the battery 4.
- the structural layer 5 may include at least one of the three structures of energy dissipation structure, elastic buffer structure and reverse constraint force structure, that is, the structural layer 5 may include any one, any two, or all of the above three structures, which will be described below.
- the material of the elastic buffer structure is an elastic material, which includes but is not limited to silicone, foam or foam glue.
- the elastic buffer structure has elastic deformation performance, and can be used to buffer transient impacts by relying on its own elastic performance and impact compression rate, and provide compression rebound force for the rear shell 2.
- the compression rebound force can be used as a pre-tightening force applied by the structural layer 5 to the rear shell 2 to suppress the vibration of the rear shell 2.
- the elastic deformation characteristics of the elastic buffer structure can adapt to the gap tolerance between the battery 4 and the rear shell 2, ensuring the reliable assembly of the battery 4 and the rear shell 2.
- the compression rebound force of the elastic buffer structure may range from 5kpa to 50kpa.
- the compression rebound force is moderate in size and can prevent the elastic buffer structure from stretching between the rear shell 2 and the battery 4 and lifting up the rear shell 2, causing the shell to become debonded and ineffective.
- the energy dissipation structure can be formed by damping materials, so the energy dissipation structure can also be called a damping structure.
- the damping material constituting the damping structure can be, for example, damping silicone or a damping alloy.
- the damping alloy for example, it can be a high manganese-based damping alloy, a Mg-based damping alloy, a Mn-Cu damping alloy (or a Mn-based damping alloy), etc. Due to its own characteristics, the damping material can convert the solid mechanical vibration energy into heat energy and dissipate it. Therefore, the damping material can be used to absorb and consume the energy brought by transient impact, thereby playing a role in vibration reduction.
- the energy dissipation structure may have any suitable structural form.
- the energy dissipation structure may be a damping elastic member made of a damping material.
- the damping elastic member itself may be elastically deformable.
- the damping elastic member may be, for example, a microspring structure.
- the microspring not only has the properties of a damping material and can dissipate energy, but also has a mechanical structure that can undergo elastic expansion and contraction deformation when impacted.
- the reverse restraining force structure may be composed of a connecting material, and the connecting material has a connecting function, and it may be, for example, a viscous material or a magnetic material.
- the reverse restraining force structure may provide a reverse restraining force to the back shell 2 during the vibration of the back shell 2.
- the reverse restraining force structure is composed of viscose
- the viscous force provided by the viscose is the reverse restraining force
- the reverse restraining force structure is composed of a magnetic material, such as a weak magnetic material such as a magnetic film
- the weak magnetic force provided by the magnetic material is the reverse restraining force.
- the back shell 2 vibrates, the back shell 2 will move away from the equilibrium position and vibrate.
- the reverse restraining force structure will provide a reverse restraining force in the opposite direction of the movement of the back shell 2 to suppress the vibration of the back shell 2.
- any one of the three structures can constitute the structural layer alone, thereby achieving the function of vibration reduction.
- the three structures can also cooperate with each other to achieve the vibration reduction function.
- two structures can be selected to constitute the structural layer, or the three structures can be used together to constitute the structural layer 5.
- the method of selecting one or two structures to constitute the structural layer 5 can be arbitrarily designed according to needs. This article will not go into too much detail. The following will describe the implementation method of the three structures being combined to constitute the structural layer 5.
- the elastic buffer structure, the energy dissipation structure and the reverse constraint force structure can be three independent layers of structures, which are stacked and connected to form the structural layer 5, and the stacking order can be set arbitrarily as needed. Adjacent layer structures are fixedly connected, for example, by bonding.
- the thickness range of the elastic buffer structure 52 and the energy dissipation structure 53 can be between 0.1mm-1mm, and the thickness range of the reverse constraint force structure 51 can be between 0.5mm-1mm.
- the energy dissipation structure 53 forms a damping layer
- the elastic buffer structure 52 forms an elastic layer
- the reverse constraint structure 51 forms a connecting layer
- the structure composed of the elastic layer and the connecting layer can be referred to as the first layer.
- the first layer is stacked with the damping layer.
- the reverse constraint structure 51 (the hatched filling structure facing the lower left in Figure 5 represents the reverse constraint structure 51, and all embodiments hereinafter are represented by this filling structure) can be close to the battery 4, the reverse constraint structure 51 is connected to the battery 4, and the surface where the reverse constraint structure 51 is connected to the battery 4 is the first surface.
- the elastic buffer structure 52 (the hatched filling structure facing the lower right in Figure 5 represents the elastic buffer structure 52, and all embodiments hereinafter are represented by this filling structure) is stacked and fitted with the reverse constraint structure 51.
- One side of the energy dissipation structure 53 (the lattice filling structure in Figure 5 represents the energy dissipation structure 53, and most embodiments hereinafter are represented by this filling structure) is fitted with the elastic buffer structure 52, and the other side of the energy dissipation structure 53 is connected to the rear shell 2.
- the surface where the energy dissipation structure 53 is connected to the rear housing 2 is the second surface.
- the stacking order of the structural layer 5 can be arbitrarily changed, for example, the elastic buffer structure 52 can be made close to the rear shell 2, which is not limited to the above-mentioned embodiments.
- the first layer can only include the elastic layer or the connecting layer.
- the structural layer 5 of this embodiment also includes a stacked elastic layer, a connecting layer and a damping structure
- the elastic buffer structure 52 forms an elastic layer
- the reverse constraint force structure 51 forms a connecting layer
- the energy dissipation structure 53 forms a damping structure.
- the damping structure may include a plurality of damping elastic members
- the damping elastic member may be, for example, a microspring structure made of a damping alloy
- the height of the microspring may be 0.1 mm-1 mm
- the microspring is supported between the reverse constraint force structure 51 and the elastic buffer structure 52.
- the elastic layer and one of the connecting layers are connected to the battery 4, and the elastic layer and the other of the connecting layers are connected to the rear shell 2.
- the reverse constraint force structure 51 may be close to the battery 4, and the surface connected to the battery 4 is the first surface.
- the elastic buffer structure 52 is connected to the rear shell 2, and the surface connected to the rear shell 2 is the second surface.
- This structural layer 5 can combine the advantages of the damping material and the damping structure to improve the efficiency of consuming impact energy.
- the elastic buffer structure 52, energy dissipation structure 53 and reverse restraint structure 51 are all material layers, and three material layers are stacked to form the structural layer 5.
- the following describes an embodiment in which the elastic buffer structure 52, energy dissipation structure 53 and reverse restraint structure 51 are stacked into two layers.
- the structural layer 5 may be two material layers, any two of the elastic buffer structure 52, the energy dissipation structure 53, and the reverse constraint force structure 51 are respectively used as matrix layers, and the two matrix layer structures are stacked and connected; another structure may be mixed into the matrix layer, and the mixing method may be: mixing into any one of the matrix layers, or mixing into two matrix layers.
- the mixing method may be, for example, blending (uniform mixing, materials are uniformly doped with each other) or non-uniform mixing.
- the mixing method may be uniform blending.
- the elastic buffer structure 52 is layered separately as a matrix layer, and the energy dissipation structure 53 is uniformly mixed into the reverse restraining force structure 51 to form a composite layer, and the composite layer is laminated and bonded with the elastic buffer structure 52.
- the elastic buffer structure 52 may be close to the battery 4, and the surface connected to the battery 4 is the first surface.
- the composite layer formed by the energy dissipation structure 53 and the reverse restraining force structure 51 is connected to the rear shell 2, and the surface connected to the rear shell 2 is the second surface.
- the energy dissipation structure 53 is layered separately as a matrix layer, the elastic buffer structure 52 and the reverse restraint force structure 51 are uniformly blended to form a composite layer, and the composite layer is laminated and bonded with the energy dissipation structure 53.
- the energy dissipation structure 53 can be close to the battery 4, and its surface connected to the battery 4 is the first surface, and the composite layer composed of the elastic buffer structure 52 and the reverse restraint force structure 51 is connected to the rear shell 2, and its surface connected to the rear shell 2 is the second surface.
- the two structures can be mixed in such a way that one structure is selected as a matrix and the other structure is selected as a reinforcing material, and the reinforcing material is mixed into the matrix to form a composite layer.
- the reinforcing material is an energy dissipating structure 53
- the energy dissipating structure 53 is granular.
- the energy dissipating structure 53 is mixed with other matrix layers, but in this embodiment, the particle size of the granular energy dissipating structure 53 is larger than the particle size of the energy dissipating structure 53 in the above-mentioned embodiment.
- the reinforcing material is an energy dissipating structure 53
- the energy dissipating structure 53 is a fibrous structure.
- the fibrous energy dissipating structure 53 is mixed with the matrix.
- different blending structures can also be used, not limited to the above-mentioned exemplified embodiments.
- one of the elastic material or the connecting material can be selected as the substrate layer, the other of the elastic material or the connecting material can be selected as the first material, and the first material and the damping material are mixed into a composite layer.
- the elastic buffer structure 52 can be used as the substrate layer, and the energy dissipation structure 53 and the reverse constraint force structure 51 can be mixed to form a composite layer.
- the mixing method can refer to the embodiments listed above.
- the energy dissipation structure 53 is a granular reinforcement material distributed in the matrix formed by the reverse constraint force structure 51, and the two are mixed into a composite layer.
- the composite layer and the substrate layer are stacked and bonded.
- the elastic buffer structure 52 can be close to the battery 4, and the surface connected to the battery 4 is the first surface.
- the composite layer formed by the energy dissipation structure 53 and the reverse constraint force structure 51 is connected to the rear shell 2, and the surface connected to the rear shell 2 is the second surface.
- the elastic buffer structure 52 can also be used as a matrix and the energy dissipation structure 53 as a reinforcement material. The specific design can be flexibly based on needs.
- any two of the damping material, the elastic material and the connecting material can be used as a matrix, and the remaining one can be used as a reinforcing material.
- the reverse constraint force structure 51 and the elastic buffer structure 52 first form two matrix layers, and the energy dissipation structure 53 is mixed with the two matrices as a reinforcing material to form two composite layers.
- the two composite layers are stacked.
- the composite layer formed by the elastic buffer structure 52 and the energy dissipation structure 53 can be close to the battery 4, and its surface connected to the battery 4 is the first surface.
- the composite layer formed by the energy dissipation structure 53 and the reverse constraint force structure 51 is connected to the rear shell 2, and its surface connected to the rear shell 2 is the second surface.
- one of the elastic materials or the connecting materials can be selected as the substrate layer, the other of the elastic materials or the connecting materials can be selected as the first material, and the first material is mixed with the damping material.
- the reverse constraint force structure 51 can be used as the substrate layer, and the energy dissipation structure 53 and the elastic buffer structure 52 can be mixed as a composite layer.
- the mixing method can refer to the embodiment exemplified above, and the composite layer and the substrate layer are stacked.
- the substrate layer formed by the reverse constraint force structure 51 can be close to the battery 4, and its surface connected to the battery 4 is the first surface.
- the composite layer formed by the energy dissipation structure 53 and the elastic buffer structure 52 is connected to the rear shell 2, and its surface connected to the rear shell 2 is the second surface.
- the matrix of the composite layer can be a foam substrate, and the reinforcing material can be a fiber made of a damping alloy. A plurality of fibers are evenly distributed in the foam substrate to form a composite layer.
- the damping alloy fiber acts as the energy dissipation structure 53 to absorb vibration and release energy to achieve the damping material. Vibration reduction; and when the damping alloy fiber is in the foam substrate to absorb vibration, it will also rub against the foam substrate, which can achieve friction vibration reduction, thereby further enhancing the vibration reduction effect.
- the energy dissipation structure 53 and the elastic buffer structure 52 are both independent two-layer structures, and the two are stacked.
- the reverse constraint force structure 51 can be a magnetic material, and the magnetic material can be evenly mixed in the energy dissipation structure 53 and the elastic buffer structure 52.
- the different magnetic forces on both sides of the structural layer 5 can be set by adjusting the concentration of the magnetic material in the energy dissipation structure 53 and the elastic buffer structure 52 respectively.
- the side with a large concentration of magnetic material has a stronger magnetic force and can be connected to the back shell 2 as a strong connection side.
- the side with a small concentration of magnetic material has a weaker magnetic force and can be connected to the battery 4 as a weak connection side.
- the above describes an implementation method in which the elastic buffer structure 52, the energy dissipation structure 53 and the reverse constraint force structure 51 are mixed and stacked into two layers to form the structural layer 5.
- the following will describe an implementation method in which the elastic buffer structure 52, the energy dissipation structure 53 and the reverse constraint force structure 51 are mixed into one layer to form the structural layer 5.
- the elastic buffer structure 52, the energy dissipation structure 53 and the reverse constraint force structure 51 can be mixed into a structural layer 5.
- the structural layer 5 can include a damping structure and a first material.
- the material composed of an elastic material and a connecting material can be referred to as a first material.
- the first material is mixed with the damping material, and there are many ways to blend the two.
- the first material can include only the elastic material or the connecting material.
- the first material is only one of the connecting material and the elastic material
- the first material and the damping material are mixed together to form a structural layer.
- the case where the first material includes the connecting material and the elastic material will be described in detail below.
- the first material and the damping material are mixed in such a manner that the elastic buffer structure 52 , the energy dissipation structure 53 and the reverse restraint force structure 51 are mixed together to form a structural layer 5 , as shown in FIG. 12 .
- the first material and the damping material can be blended in such a way that one of them is selected as a matrix and the other material is selected as a reinforcing material, as shown in Figures 13 and 14.
- the first material is composed of an elastic material and a connecting material, and the elastic material and the connecting material are mixed into the first material, and the first material serves as a matrix.
- the damping material constitutes reinforcing particles, and the doped particles are mixed with the matrix, and the two constitute a structural layer 5.
- the energy dissipation structure 53 serves as a matrix
- the elastic buffer structure 52 and the reverse constraint force structure 51 serve as two reinforcing particles respectively, and both reinforcing particles are mixed with the energy dissipation structure 53 to form a structural layer 5.
- different mixing methods can also be used; the form of the reinforcing material is not limited to the above-mentioned embodiments, and different forms of reinforcing materials can be set as needed.
- the above mainly exemplifies the structural design of some types of structural layers 5.
- the hierarchical structure combination and material selection can be arbitrarily designed as needed.
- the back shell 2 can be made into a special convex structure to counteract shear damping. Next, the structure of the back shell 2 will continue to be introduced.
- a protrusion is provided in the thickness direction of the rear shell 2, and the shape of the protrusion can be arbitrarily set as needed, for example, it can be a cylindrical, grid-shaped, wavy protrusion, etc.
- the area where the protrusion is provided on the rear shell 2 can be provided in the projection area of the battery 4 at the rear shell 2.
- a groove is provided on the structural layer 5, and the protrusion cooperates with the groove so that the protrusion of the rear shell 2 is embedded in the structural layer 5.
- the rear shell 2 provided with a protrusion can cooperate with any structural layer 5 provided with a groove structure.
- the structural layer 5 in FIGS. 15 and 16 can be the structural layer 5 in any of the above-mentioned embodiments.
- the structural layer 5 of this embodiment cooperates with the rear shell 2 to provide not only damping against compression deformation in the thickness direction of the electronic device, but also damping against shear deformation in the left-right direction of the electronic device.
- the cooperation between the protrusion of the rear shell 2 and the groove of the structural layer 5 can consume the vibration energy in the left-right direction.
- the strong connection side of the structural layer 5 can be pre-adhered to the rear shell 2, and then the rear shell 2 assembly is assembled with the middle frame of the electronic device, so that the weak connection side of the structural layer 5 is connected to the battery 4.
- the elastic buffer structure 52 in the structural layer 5 can generate a compression rebound force during compression deformation, so that the structural layer 5 applies a preload force to the rear shell 2. Under the action of the preload force, the rear shell 2 is supported and is not easy to vibrate under the impact of the airflow. Therefore, under the joint action of the integrated connection and the preload force, the vibration of the rear shell 2 can be better suppressed.
- the structural layer 5 Since the elastic buffer structure 52 is easy to deform elastically, the structural layer 5 also has elastic deformation performance. When the manufacturing error causes the gap tolerance between the battery 4 and the rear shell 2 to exceed the design range, the structural layer 5 can adaptively deform to fill the gap between the battery 4 and the rear shell 2 to ensure that the battery 4 and the rear shell 2 can be reliably assembled, that is, the structural layer 5 can play a role in adapting the gap tolerance between the battery 4 and the rear shell 2.
- the structural layer 5 can be compressed to provide the structural space required for the battery 4 to expand, so as to avoid the battery 4 from lifting the rear shell 2 after expansion, resulting in excessive gap between the rear shell 2 and the shell and causing defects in the appearance of the whole machine.
- the conventional solution is to only stick foam on the back shell to suppress the shell vibration, but the effect of suppressing the shell vibration is poor.
- the whole machine using ordinary foam is compared with the electronic device of the embodiment of the present application.
- the amplitude of the rear shell in the conventional solution is obviously larger, and the amplitude can reach about 8um-12um, indicating that the vibration of the rear shell is relatively strong.
- the amplitude of the rear shell 2 of the electronic device of the embodiment of the present application can reach a minimum of about 2um-4um, and the improved amplitude is only about half of that of the conventional solution, indicating that the amplitude of the rear shell 2 is significantly suppressed, and the user experience is manifested from obvious numbness to almost no vibration.
- the structural layer 5 of the embodiment of the present application is a composite structure, which can provide not only elastic force but also anti-constraint force, and is provided with an energy dissipation structure 53 to absorb and consume energy. Therefore, the structural layer 5 provided in the embodiment of the present application has high elasticity, high damping factor, and moderate constraint force, and can effectively absorb vibration. After the various structural components are semi-constrained, the rigidity of the system can be further improved, and the reliability of the product can be improved.
- the actual force provided by the connection between the structural layer 5 and the battery 4 must be easy to peel off to ensure that the performance of the battery 4 is not affected. Therefore, by setting different connection strengths on both sides of the structural layer 5, the disassembly and maintainability of the product can be improved.
- the embodiments of the present application can not only suppress the vibration of the rear housing 2, but also meet the product assembly requirements and improve the mass manufacturability and disassembly and maintainability of the product.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Manufacturing & Machinery (AREA)
- Casings For Electric Apparatus (AREA)
- Telephone Set Structure (AREA)
Abstract
本申请提供了一种电子设备、电子设备的辅料及电子设备的壳体组件,电子设备包括第一壳体、功能部件、扬声器模组、结构层和第二壳体。第二壳体盖合在第一壳体上并与第一壳体围成安装腔,功能部件、扬声器模组及结构层均设于安装腔内,功能部件与扬声器模组相邻,扬声器模组的后音腔与安装腔连通,结构层连接功能部件与第二壳体。结构层包括阻尼结构,阻尼结构的材料为阻尼材料。本申请提供的电子设备能够吸收并耗散扬声器模组发出的冲击振动能量,减轻或者抑制扬声器模组工作引起的壳振,从而优化用户体验,改善壳振引起用户手麻的现象。
Description
本申请要求于2022年09月30日提交中国专利局、申请号为202211214492.5、申请名称为“电子设备、电子设备的辅料及电子设备的壳体组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及终端设备制造领域,尤其涉及一种电子设备、电子设备的辅料及电子设备的壳体组件。
扬声器模组的后音腔的体积决定了其外放音效。为了获得大音量、立体声等音效,扬声器模组的后音腔会与手机的内腔连通,使手机的内腔也作为扬声器模组的后音腔。但是采用此种开放式后音腔的设计,扬声器模组在工作时,振动的振膜会驱使手机内腔的空气振动,造成气流冲击手机的后壳,导致后壳振动。用户触摸后壳时能明显感受到壳振,尤其当扬声器模组工作在低频段时,用户甚至能感觉到手麻,这影响了用户体验。
发明内容
本申请提供了一种电子设备、电子设备的辅料及电子设备的壳体组件,能够抑制扬声器模组工作引起的壳振,优化用户体验。
第一方面,本申请提供了一种电子设备,包括第一壳体、功能部件、扬声器模组、结构层和第二壳体。第二壳体盖合在第一壳体上并与第一壳体围成安装腔,功能部件、扬声器模组及结构层均设于安装腔内,功能部件与扬声器模组相邻,扬声器模组的后音腔与安装腔连通。结构层连接功能部件与第二壳体。结构层包括阻尼结构,阻尼结构的材料为阻尼材料。
功能部件指安装在安装腔中的除扬声器模组以外的部件。功能部件可以具有一定机械功能(包括但不限于支撑、限位、收容、连接、配合)、电气功能(包括但不限于电连接、充放电、信号辐射、电磁屏蔽、信号处理、滤波、图像采集、指纹信息采集、音频采集),和/或其他功能(如散热等热力学功能)。
扬声器模组可以包括模组壳体和扬声器单元,扬声器单元安装在内腔中,并将内腔分割为相互隔绝的前音腔和后音腔。扬声器模组的后音腔与电子设备的安装腔连通,这就是开放式后音腔设计。此种开放式后音腔设计将安装腔扩展为扬声器模组的音腔,能够实现大音量、立体声等音效,增强扬声器模组的音质表现。
结构层可以呈片状,其表面可以是闭合完整的、不设开孔,也可以根据需要开设通孔。结构层的外形可以与功能部件的外形相适配,以保证对功能部件的合理粘接强度。结构层包含阻尼材料,阻尼材料能够吸收并耗散扬声器模组发出的冲击振动能量,减轻或者抑制扬声器模组工作引起的壳振,从而优化用户体验,改善壳振引起用户手麻的现象。
在第一方面的一种实现方式中,结构层包括第一材料,第一材料包括弹性材料和/或连接材料,第一材料与阻尼材料相混合。弹性材料具有弹性形变的性能,可以依靠其自身的弹性性能和冲击压缩率可以用来缓冲瞬态冲击,为第二壳体提供压缩反弹力,该压缩反弹力可以作为结构层向第二壳体施加的预紧力,起到抑制第二壳体振动的作用。同时,弹性材料的弹性形变特性能够适配功能部件与第二壳体的间隙公差,保证功能部件与第二壳体的可靠组装。
连接材料具有连接作用,连接材料可以在第二壳体振动的过程中,第二壳体会离开平衡位置起振。连接材料会提供与第二壳体运动方向相反的反向约束力以抑制第二壳体振动。
第一材料与阻尼材料相混合,可以形成新的复合层。该复合层兼具第一材料和阻尼材料的优点:弹性大、阻尼因子大、约束力适中,表现出更加优秀的力学性能,可以有效地吸收振动,优化用户体验,本方案能够满足不同产品的组装需求、提升产品的可量产性。
在第一方面的一种实现方式中,结构层包括基材层,基材层的材料为弹性材料与连接材料中的一个,第一材料为弹性材料与连接材料中的另外一个。阻尼材料与第一材料混合形成复合层,复合层与基材层层叠设置。第一材料与阻尼材料相混合,可以形成新的复合层。该复合层兼具第一材料和阻尼材料的优点:阻尼因子大、约束力适中并且兼具一定的弹性,表现出更加优秀的力学性能,可以与基材层构成结构层,本方案的结构层可以有效地吸收振动,优化用户体验,本方案能够满足不同产品的组装需求、提升产品的
可量产性。
在第一方面的一种实现方式中,阻尼结构形成阻尼层。结构层包括第一层,第一层包括弹性层和/或连接层,弹性层的材料为弹性材料,连接层的材料为连接材料。第一层与阻尼层层叠设置。其中,在第一层包括弹性层与连接层的情况下,弹性层与连接层层叠贴合。本实施方式下的结构层的构成方式简单,有利于提升生产效率。并且本方案的结构层具有弹性大、阻尼因子大、约束力适中等优点,表现出优秀的力学性能,可以有效地吸收振动,优化用户体验,本方案能够满足不同产品的组装需求、提升产品的可量产性。
在第一方面的一种实现方式中,结构层包括层叠设置的弹性层与连接层,弹性层的材料为弹性材料,连接层的材料为连接材料。阻尼结构包括多个阻尼弹性件,每个阻尼弹性件均支撑于弹性层与连接层之间。弹性层与连接层中的一个连接功能部件,弹性层与连接层中的另一个连接第二壳体。本实施方式下的结构层的构成方式简单,有利于提升生产效率。并且本方案的结构层兼具结合阻尼材料和阻尼结构的优点,具有弹性大、阻尼因子大、约束力适中等优点,表现出优秀的力学性能,可以提高消耗冲击能量的效率,更加有效地吸收振动,优化用户体验,本方案能够满足不同产品的组装需求、提升产品的可量产性。
在第一方面的一种实现方式中,连接材料包括粘性材料或者磁性材料。和/或,弹性材料包括硅胶、泡棉或者泡沫胶。当第二壳体振动时,第二壳体会离开平衡位置运动起振,连接材料依靠其材料特性会提供与第二壳体运动方向相反的反向约束力以抑制第二壳体振动。连接材料由粘性材料构成时,粘性材料提供的粘性力即为反向约束力。当反向约束力结构由磁性材料构成时,例如磁吸膜等弱磁性材料,磁性材料提供的弱磁力即为反向约束力。弹性材料具有弹性形变性能,可以依靠其自身的弹性性能和冲击压缩率可以用来缓冲瞬态冲击,硅胶、泡棉或者泡沫胶等材料均具有优秀的弹性形变性能,可以为第二壳体提供压缩反弹力,该压缩反弹力可以作为结构层向第二壳体施加的预紧力,起到抑制第二壳体振动的作用。
在第一方面的一种实现方式中,结构层的表面形成多个凹槽,第二壳体具有多个凸起,一个凸起与一个凹槽配合。本方案的结构层与第二壳体配合,不仅可以提供对抗电子设备的厚度方向上的压缩变形的阻尼,还可以提供对抗电子设备的垂直于厚度方向上的方向的剪切变形的阻尼。当电子设备存在沿垂直于厚度方向上的方向振动时,第二壳体的凸起与结构层的凹槽的配合可以消耗该方向的振动能量,从而提升电子设备的减振性能。
在第一方面的一种实现方式中,结构层具有相对的第一面和第二面,第一面连接功能部件,第二面连接第二壳体。第一面与功能部件的结合力小于第二面与第二壳体的结合力。当拆卸第二壳体对电子设备进行维修时,此方案可以便于结构层与功能部件分离,而结构层仍然与第二壳体粘接,使得整个结构层连同第二壳体一并被拆卸下来。结构层两侧设置强弱连接方式的好处在于,在拆卸作业中,功能部件不易被拉扯、损坏,也不易残留余胶,这不仅减小了拆卸难度,还有利于保证功能部件的寿命与可靠性。
在第一方面的一种实现方式中,结构层包括连接层,连接层的材料为连接材料。第一面为连接层的表面。连接材料由于其材料特性,连接力较弱,因此适合将连接层设于结构层靠近功能部件的一侧,依靠连接材料的特性,实现第一面与功能部件结合力较弱的需求。
在第一方面的一种实现方式中,扬声器模组包括模组壳体以及安装在模组壳体内的扬声器单元,模组壳体的材料包括阻尼材料。阻尼材料由于自身的特性,可以将固体机械振动能转变为热能而耗散,由阻尼材料制成的模组壳体可以自振动源处直接吸收并且消耗瞬态冲击带来的能量,从而起到减振的作用。
在第一方面的一种实现方式中,模组壳体包括第一模组壳体、第二模组壳体和前腔盖板。第一模组壳体与第二模组壳体围成收容腔,第一模组壳体具有安装通孔与出音孔,安装通孔连通收容腔。前腔盖板封盖安装通孔,前腔盖板的材料为阻尼材料。扬声器单元安装在收容腔内,并将收容腔分隔为两个腔体,其中,扬声器单元与第一模组壳体及前腔盖板围成前音腔,出音孔与前音腔连通,扬声器单元与第二模组壳体围成后音腔。阻尼材料制成的前腔盖板具有阻尼性能,能够消耗机械振动能。当声波造成的气流在前音腔内流动时,会冲击由阻尼材料制成的前腔盖板,由于阻尼材料的阻尼特性,前腔盖板可以耗散冲击能量,从而减轻扬声器模组的振动。
在第一方面的一种实现方式中,扬声器模组通过连接件连接至第一壳体,连接件的材料为阻尼材料。阻尼材料制成的连接件具有阻尼性能,能够消耗机械振动能。当扬声器模组振动时,连接件可耗散冲击能量,降低或减轻扬声器模组的振动。
在第一方面的一种实现方式中,第二壳体朝向安装腔的一侧具有减振部,减振部的材料为阻尼材料。阻尼材料制成的减震部具有阻尼性能,可以在受到冲击时能够耗散冲击能量,减少第二壳体的振动。
在第一方面的一种实现方式中,阻尼材料包括阻尼硅胶或者阻尼合金。阻尼硅胶或者阻尼合金由于自
身的特性,可以将固体机械振动能转变为热能而耗散,因此阻尼材料可以用来吸收并且消耗瞬态冲击带来的能量,从而起到减振的作用。
在第一方面的一种实现方式中,功能部件包括电池。电池作为功能部件,其可用的连接面积较大,便于与结构层实现可靠的连接。
第二方面,本申请提供了一种电子设备的辅料,辅料连接功能部件与第二壳体。辅料包括阻尼结构,阻尼结构的材料为阻尼材料。
辅料可以呈片状,其表面可以是闭合完整的、不设开孔,也可以根据需要开设通孔。辅料的外形可以与功能部件的外形相适配,以保证对功能部件的合理粘接强度。辅料包含阻尼材料,阻尼材料能够吸收并耗散扬声器模组发出的冲击振动能量,减轻或者抑制扬声器模组工作引起的壳振,从而优化用户体验,改善壳振引起用户手麻的现象。
在第二方面的一种实现方式中,辅料包括第一材料,第一材料包括弹性材料和/或连接材料,第一材料与阻尼材料相混合。弹性材料具有弹性形变的性能,可以依靠其自身的弹性性能和冲击压缩率可以用来缓冲瞬态冲击,为第二壳体提供压缩反弹力,该压缩反弹力可以作为辅料向第二壳体施加的预紧力,起到抑制第二壳体振动的作用。同时,弹性材料的弹性形变特性能够适配功能部件与第二壳体的间隙公差,保证功能部件与第二壳体的可靠组装。
连接材料具有连接作用,连接材料可以在第二壳体振动的过程中,第二壳体会离开平衡位置运动起振。连接材料会提供与第二壳体运动方向相反的反向约束力以抑制第二壳体振动。
第一材料与阻尼材料相混合,可以形成新的复合层。该复合层兼具第一材料和阻尼材料的优点:弹性大、阻尼因子大、约束力适中,表现出更加优秀的力学性能,可以有效地吸收振动,优化用户体验,本方案能够满足不同产品的组装需求、提升产品的可量产性。
在第二方面的一种实现方式中,辅料包括基材层,基材层的材料为弹性材料与连接材料中的一个,第一材料为弹性材料与连接材料中的另外一个。阻尼材料与第一材料混合形成复合层,复合层与基材层层叠设置。第一材料与阻尼材料相混合,可以形成新的复合层。该复合层兼具第一材料和阻尼材料的优点:阻尼因子大、约束力适中并且兼具一定的弹性,表现出更加优秀的力学性能,可以与基材层构成辅料,本方案的辅料可以有效地吸收振动,优化用户体验,本方案能够满足不同产品的组装需求、提升产品的可量产性。
在第二方面的一种实现方式中,连接材料包括粘性材料或者磁性材料。和/或,弹性材料包括硅胶、泡棉或者泡沫胶。当第二壳体振动时,第二壳体会离开平衡位置运动起振,连接材料依靠其材料特性会提供与第二壳体运动方向相反的反向约束力以抑制第二壳体振动。连接材料由粘性材料构成时,粘性材料提供的粘性力即为反向约束力。当反向约束力结构由磁性材料构成时,例如磁吸膜等弱磁性材料,磁性材料提供的弱磁力即为反向约束力。弹性材料具有弹性形变性能,可以依靠其自身的弹性性能和冲击压缩率可以用来缓冲瞬态冲击,硅胶、泡棉或者泡沫胶等材料均具有优秀的弹性形变性能,可以为第二壳体提供压缩反弹力,该压缩反弹力可以作为辅料向第二壳体施加的预紧力,起到抑制第二壳体振动的作用。
在第二方面的一种实现方式中,阻尼结构形成阻尼层。辅料包括第一层,第一层包括弹性层和/或连接层,弹性层的材料为弹性材料,连接层的材料为连接材料。第一层与阻尼层层叠设置。其中,在第一层包括弹性层与连接层的情况下,弹性层与连接层层叠贴合。本实施方式下的辅料的构成方式简单,有利于提升生产效率。并且本方案的辅料具有弹性大、阻尼因子大、约束力适中等优点,表现出优秀的力学性能,可以有效地吸收振动,优化用户体验,本方案能够满足不同产品的组装需求、提升产品的可量产性。
在第二方面的一种实现方式中,辅料包括层叠设置的弹性层与连接层,弹性层的材料为弹性材料,连接层的材料为连接材料。阻尼结构包括多个阻尼弹性件,每个阻尼弹性件均支撑于弹性层与连接层之间。弹性层与连接层中的一个连接功能部件,弹性层与连接层中的另一个连接第二壳体。本实施方式下的辅料的构成方式简单,有利于提升生产效率。并且本方案的辅料兼具结合阻尼材料和阻尼结构的优点,具有弹性大、阻尼因子大、约束力适中等优点,表现出优秀的力学性能,可以提高消耗冲击能量的效率,更加有效地吸收振动,优化用户体验,本方案能够满足不同产品的组装需求、提升产品的可量产性。
在第二方面的一种实现方式中,辅料的表面形成多个凹槽,第二壳体具有多个凸起,一个凸起与一个凹槽配合。本方案的辅料与第二壳体配合,不仅可以提供对抗电子设备的厚度方向上的压缩变形的阻尼,还可以提供对抗电子设备的垂直于厚度方向上的方向的剪切变形的阻尼。当电子设备存在沿垂直于厚度方向上的方向振动时,第二壳体的凸起与辅料的凹槽的配合可以消耗该方向的振动能量,从而提升电子设备的减振性能。
在第二方面的一种实现方式中,阻尼材料包括阻尼硅胶或者阻尼合金。阻尼硅胶或者阻尼合金由于自身的特性,可以将固体机械振动能转变为热能而耗散,因此阻尼材料可以用来吸收并且消耗瞬态冲击带来的能量,从而起到减振的作用。
在第二方面的一种实现方式中,辅料具有相对的第一面和第二面,第一面连接功能部件,第二面连接第二壳体。第一面与功能部件的结合力小于第二面与第二壳体的结合力。当拆卸第二壳体对电子设备进行维修时,此方案可以便于辅料与功能部件分离,而辅料仍然与第二壳体粘接,使得整个辅料连同第二壳体一并被拆卸下来。辅料两侧设置强弱连接方式的好处在于,在拆卸作业中,功能部件不易被拉扯、损坏,也不易残留余胶,这不仅减小了拆卸难度,还有利于保证功能部件的寿命与可靠性。
在第二方面的一种实现方式中,辅料包括连接层,连接层的材料为连接材料。第一面为连接层的表面。连接材料由于其材料特性,连接力较弱,因此适合将连接层设于辅料靠近功能部件的一侧,依靠连接材料的特性,实现第一面与功能部件结合力较弱的需求。
第三方面,本申请提供了一种电子设备的壳体组件,电子设备包括第一壳体及功能部件,壳体组件包括第二壳体及第二方面任一种的辅料,第二壳体盖合在第一壳体上并与第一壳体围成安装腔,功能部件安装在安装腔内。辅料可以与第二壳体预先组装形成壳体组件,提升电子设备的组装生产效率。
图1是本申请实施方式的电子设备的结构示意图;
图2是本申请实施方式的电子设备的部分组件的结构示意图;
图3是图2中A处的局部放大示意图;
图4是本申请实施方式中的扬声器模组的分解结构示意图;
图5是本申请实施方式中的结构层的一种结构示意图;
图6是本申请实施方式中的结构层的一种结构示意图;
图7是本申请实施方式中的结构层的一种结构示意图;
图8是本申请实施方式中的结构层的一种结构示意图;
图9是本申请实施方式中的结构层的一种结构示意图;
图10是本申请实施方式中的结构层的一种结构示意图;
图11是本申请实施方式中的结构层的一种结构示意图;
图12是本申请实施方式中结构层的一种结构示意图;
图13是本申请实施方式中的结构层的一种结构示意图;
图14是本申请实施方式中的结构层的一种结构示意图;
图15是本申请实施方式中的壳体组件的一种结构示意图;
图16是本申请实施方式中的壳体组件的一种结构示意图。
本申请以下实施例提供了一种电子设备,该电子设备包括但不限于手机、平板电脑、笔记本电脑、电子阅读器、大屏设备、音箱、移动Wi-Fi、可穿戴设备(例如智能手表)等。下文将要描述的该电子设备可以是手机。
如图1所示,电子设备10可以包括中框1、显示屏6、扬声器模组3、电池4、结构层5和后壳2。
其中,中框1作为电子设备10的主要结构承载件,用于承载上述除中框1之外的其他部件。显示屏6可以安装在中框1的一侧,扬声器模组3、电池4和结构层5可以安装在中框1的另一侧。后壳2盖合在中框1上,并位于中框1背离显示屏6的一侧。显示屏6、中框1和后壳2可以安装围成安装腔10a,扬声器模组3、电池4和结构层5均位于安装腔10a内。如图1所示,中框1的侧壁可形成整机出音孔1a,整机出音孔1a贯通该侧壁。在其他实施例中,整机出音孔也可以开设在后壳上。
中框1与后壳2的具体结构可以根据产品需要设计,本实施例不做限定。中框1与后壳2均属于电子设备的壳体,为了区分,可以将中框1称为第一壳体,将后壳2称为第二壳体。
图1所示的电子设备10可以是不能折叠的直板手机,可以理解的,这仅仅是一种举例。实际上,本申请实施例的电子设备还可以是可折叠手机。或者,本申请实施例的电子设备可以是没有显示屏的电子产品。本实施例中,电池4属于一种功能部件。功能部件指安装在安装腔10a中的除扬声器模组3以外的部件。功能部件可以具有一定机械功能(包括但不限于支撑、限位、收容、连接、配合)、电气功能(包括但不限于电连接、充放电、信号辐射、电磁屏蔽、信号处理、滤波、图像采集、指纹信息采集、音频采集),
和/或其他功能(如散热等热力学功能)。除电池4以外,功能部件例如还可以包括摄像头模组、指纹模组、振动马达、天线辐射体、屏蔽罩/屏蔽框、电路板等。下文将针对电池4这个功能部件继续描述,但实际上下文所述适用于任意的功能部件。
如图1、图2、图3和图4所示,扬声器模组3可以与电池4相邻。扬声器模组3可以包括模组壳体和扬声器单元33。模组壳体可以包括第一模组壳体31、第二模组壳体32和前腔盖板34。第一模组壳体31与第二模组壳体32包围形成收容腔3c,第一模组壳体31具有安装通孔31a与模组出音孔3d,模组出音孔3d与电子设备的整机出音孔1a对准,安装通孔31a与收容腔3c连通,前腔盖板34封盖安装通孔31a。扬声器单元33安装在收容腔3c内,并将收容腔3c分隔为前音腔3a和后音腔3b两个腔体。其中,前音腔3a由第一模组壳体31、前腔盖板34和扬声器单元33围成,前音腔3a与安装通孔31a和模组出音孔3d连通。后音腔3b由第二模组壳体32和扬声器单元33围成,扬声器模组3的后音腔3b与电子设备10的安装腔10a连通。扬声器单元33包括振膜,扬声器单元33用于实现电声转换以发出声音。扬声器单元33产生的声波通过前音腔3a、模组出音孔3d和整机出音孔1a传播到电子设备10外部,以被人耳接收形成听觉。此种开放式后音腔3b设计将安装腔扩展为扬声器模组3的后音腔3b,能够实现大音量、立体声等音效,增强扬声器模组3的音质表现。可以根据产品需要设计扬声器模组3的具体结构,本申请实施例中对此不做限定。
由于电子设备10的扬声器模组3具有开放后腔设计,在扬声器模组3工作时,声波造成的强气流会冲击后壳2,用户触摸后壳2时能明显感受到壳振,长时间使用可能会导致用户手麻,影响用户外放音乐及外放通话等场景下的手持体验。
本申请实施例提供的电子设备10可以从两个方面减轻或抑制电子设备10的振动,两方面的减振设计相对独立,也可以组合使用。接下来将详细描述。
一方面,可以从抑制振动源(即上文提到的扬声器模组3)和振动体(包括上文提到的后壳2)振动的角度改善振动问题。
如图4所示,示意性的,扬声器模组3的前腔盖板34可以采用阻尼材料制成,该阻尼材料例如可以是阻尼硅胶或者阻尼合金等。对于阻尼合金,例如可以是高锰基阻尼合金、Mg系阻尼合金、Mn-Cu阻尼合金(或称Mn系阻尼合金)等。该阻尼材料具有阻尼性能,能够消耗机械振动能。当声波造成的气流在前音腔3a内流动时,会冲击由阻尼材料制成的前腔盖板34,由于阻尼材料的阻尼特性,前腔盖板34可以耗散冲击能量,从而减轻扬声器模组3的振动。
如图3所示,示意性的,可以通过连接件35将扬声器模组3与中框1固定。连接件35可以为阻尼材料制成的紧固件,阻尼材料例如可以为上述的阻尼硅胶或者阻尼合金。连接件35例如可以是阻尼合金螺钉。当扬声器模组3振动时,连接件35可耗散冲击能量,降低扬声器模组3的振动。
示意性的,如图1所示,后壳2靠近安装腔10a的一侧可以具有减振部,减振部的结构可以根据需要设计,例如可以为块状、柱状、筋状等。减振部可以用阻尼材料制成,例如上述的阻尼硅胶或者阻尼合金。减振部在受到冲击时能够耗散冲击能量,减少后壳2的振动。
另一方面,可以通过设在后壳2和功能部件之间的结构层5实现减振。在本申请实施方式中,结构层5也可以称为辅料,辅料可以与第二壳体预先组装形成壳体组件。
如图1所示,一种实施方式中,结构层5可以呈片状,结构层5位于电池4与后壳2之间。结构层5具有相对的第一面和第二面,结构层5的第一面与电池4连接,结构层5的第二面与后壳2靠近安装腔10a的内表面连接。结构层5的外形可以按照如下原则进行设计:使结构层5与电池4重叠的面积尽量大,以保证对电池4所在区域的粘接力度。例如,结构层5的外形可以与电池4基本相同,结构层5近似呈矩形片状。结构层5的边界轮廓可以不超出电池4的边界轮廓,例如结构层5的边界完全内缩于电池4的边界之内,此时结构层5可以与电池4近似共中心,结构层5的各边与电池4的各条对应边的间距可以近似相等;或者结构层5的边界与电池4的边界基本重合。在其他实施例中,可以根据产品需要设计结构层5的外形,使结构层5的外形与结构层5所粘接的功能部件匹配,不限于上文所述。
示意性的,结构层5的第一面与电池4的结合力可以较小,结构层5的第二面与后壳2的结合力可以较大。因此,可以将结构层5的第一面称为弱连接侧,将结构层5的第二面称为强连接侧。需要说明的是,本申请所有实施例中的“强”与“弱”的描述仅仅针对结构层5与电池4和结构层5与后壳2的结合力的大小对比,属于二者之间的相对比较,并非为与特定数值相比较下的强弱定义。示意性的,强连接侧的结合力F1的取值范围可以为F1≥1N/cm,弱连接侧的结合力F2的取值范围可以为0.01N/cm≤F2≤1N/cm。
在本申请实施方式中,可以通过磁吸或者粘胶的方式,连接结构层5和电池4以及后壳2。当结构层
5的两侧通过粘接的方式实现连接时,可以使结构层5粘接后壳2的第二面粘性较强,而粘接电池4的第一面粘性较弱。粘接方式简单高效,能够提升产品的可拆卸维护性。当结构层5的两侧通过磁吸实现连接时,可以在电池4和后壳2上设置磁吸膜以与结构层5两侧磁吸,其中,结构层5可以自带磁性,或者结构层5可以贴附磁吸膜。
当拆卸后壳2对电子设备进行维修时,此种设计可以便于弱连接侧与电池4分离,而强连接侧仍然与后壳2粘接,使得整个结构层5连同后壳2一并被拆卸下来。结构层5两侧设置强弱连接方式的好处在于,在拆卸作业中,电池4不易被拉扯、损坏,也不易残留余胶,这不仅减小了拆卸难度,还有利于保证电池4的寿命与可靠性。
结构层5可以至少包括能量耗散结构、弹性缓冲结构和反向约束力结构这三种结构中的一种,也即结构层5可以包括上述三种结构中的任意一种、任意两种,或者全部。下面分别进行说明。
弹性缓冲结构的材料为弹性材料,该弹性材料包括但不限于硅胶、泡棉或者泡沫胶等。弹性缓冲结构具有弹性形变性能,可以依靠其自身的弹性性能和冲击压缩率可以用来缓冲瞬态冲击,为后壳2提供压缩反弹力,该压缩反弹力可以作为结构层5向后壳2施加的预紧力,起到抑制后壳2振动的作用。同时,弹性缓冲结构的弹性形变特性能够适配电池4与后壳2的间隙公差,保证电池4与后壳2的可靠组装。
示意性的,弹性缓冲结构的压缩反弹力的取值范围可以在5kpa-50kpa之间,该压缩反弹力大小适中,可以防止因为弹性缓冲结构在后壳2和电池4之间伸展顶起后壳2使得壳体开胶失效。
能量耗散结构可以采用阻尼材料构成,因此能量耗散结构也可以称为阻尼结构。构成阻尼结构的阻尼材料例如可以是阻尼硅胶或者阻尼合金等。对于阻尼合金,例如可以是高锰基阻尼合金、Mg系阻尼合金、Mn-Cu阻尼合金(或称Mn系阻尼合金)等。阻尼材料由于自身的特性,可以将固体机械振动能转变为热能而耗散,因此阻尼材料可以用来吸收并且消耗瞬态冲击带来的能量,从而起到减振的作用。
能量耗散结构可以具有任意合适的结构形态。例如,能量耗散结构可以是由阻尼材料制成的阻尼弹性件。阻尼弹性件自身可弹性形变。阻尼弹性件例如可以是微弹簧结构,微弹簧不仅具有阻尼材料的性能可以起到耗散能量的作用,微弹簧的机械结构在受到冲击时也会发生弹性伸缩形变。
反向约束力结构可以由连接材料构成,连接材料具有连接作用,其例如可以为粘性材料或者磁性材料。反向约束力结构可以在后壳2振动的过程中,向后壳2提供反向的约束力。当反向约束力结构由粘胶构成时,粘胶提供的粘性力即为反向约束力;当反向约束力结构由磁性材料构成时,例如磁吸膜等弱磁性材料,磁性材料提供的弱磁力即为反向约束力。当后壳2振动时,后壳2会离开平衡位置运动起振。结合图1,当后壳2向远离或者靠近电池4的方向运动时,反向约束力结构均会提供与后壳2运动方向相反的反向约束力以抑制后壳2振动。
上文说明了用于构成结构层5的三种组分。在一种实施方式中,三者中的任意一种结构均可以单独构成结构层,从而实现减振的功能。在其他实施方式中,三种结构也可以相互配合以实现减振功能。例如可以任选两种结构以构成结构层,也可以使三种结构共同参与构成结构层5。任选一种或两种结构构成结构层5的方式可以根据需要任意搭配设计,本文不做过多的展开描述,下文将描述三种结构共同组合构成结构层5的实施方式。
在一些实施方式中,弹性缓冲结构、能量耗散结构和反向约束力结构可以为三层各自独立的结构,三者层叠连接构成结构层5,层叠的顺序可以根据需要任意设置。相邻层结构之间固定连接,例如可以是粘结。其中,弹性缓冲结构52和能量耗散结构53的厚度取值范围均可以在0.1mm-1mm之间,反向约束力结构51的厚度取值范围可以在0.5mm-1mm之间。
如图1和图5所示,在一种实施方式中,能量耗散结构53形成阻尼层,弹性缓冲结构52形成弹性层,反向约束力结构51形成连接层,可以将弹性层和连接层构成的结构称为第一层。在本实施方式中,第一层与阻尼层层叠设置。其中,反向约束力结构51(图5中方向朝向左下的阴影线填充结构代表反向约束力结构51,且后文所有实施方式均以此填充结构表示)可以靠近电池4,反向约束力结构51与电池4连接,反向约束力结构51与电池4连接的表面为第一面。弹性缓冲结构52(图5中方向朝向右下的阴影线填充结构代表弹性缓冲结构52,且后文所有实施方式均以此填充结构表示)与反向约束力结构51层叠贴合设置。能量耗散结构53(图5中点阵填充结构代表能量耗散结构53,且后文大部分实施方式均以此填充结构表示)的一侧与弹性缓冲结构52贴合,能量耗散结构53的另一侧与后壳2连接。能量耗散结构53与后壳2连接的表面为第二面。
在其他实施方式中,也可以任意调换结构层5的叠层顺序,例如可以使得弹性缓冲结构52靠近后壳2,不仅限于上述例举的实施方式。在其他实施方式中,该第一层可以仅包括该弹性层或者该连接层。
如图1和图6所示,在一种实施方式中,与上述实施方式相似,本实施方式的结构层5同样包括层叠设置的弹性层、连接层和阻尼结构,弹性缓冲结构52形成弹性层,反向约束力结构51形成连接层,能量耗散结构53形成阻尼结构。与上述实施方式不同的是,阻尼结构可以包括多个阻尼弹性件,阻尼弹性件例如可以是由阻尼合金制成的微弹簧的结构,微弹簧的高度可以是0.1mm-1mm,微弹簧支撑于反向约束力结构51与弹性缓冲结构52之间。弹性层与连接层中的一个连接电池4,弹性层与连接层中的另一个连接后壳2。例如可以是反向约束力结构51可以靠近电池4,其与电池4连接的面为第一面。弹性缓冲结构52连接后壳2,其与后壳2连接的面为第二面。此种结构层5能够结合阻尼材料和阻尼结构的优点,提高消耗冲击能量的效率。
上文描述了弹性缓冲结构52、能量耗散结构53和反向约束力结构51均为材料层,三个材料层层叠构成结构层5的实施方式。下面将描述弹性缓冲结构52、能量耗散结构53和反向约束力结构51层叠为两层的实施方式。
在一些实施方式中,结构层5可以为两层材料层,弹性缓冲结构52、能量耗散结构53和反向约束力结构51中的任意两个结构分别作为基质层,两个基质层结构层叠连接;另一个结构可以混入基质层中,混合方式可以是:混入其中任意一个基质层中,或者混入两个基质层中。混合的方式例如可以共混(均匀混合,材料相互均匀掺杂),或者不均匀混合。
在一种实施方式中,如图1、图7和图8所示,混合的方式可以为均匀的共混,例如在图7中,弹性缓冲结构52作为基质层单独成层,能量耗散结构53均匀混入反向约束力结构51中形成复合层,该复合层与弹性缓冲结构52层叠贴合。弹性缓冲结构52可以靠近电池4,其与电池4连接的面为第一面,能量耗散结构53与反向约束力结构51构成的复合层连接后壳2,其与后壳2连接的面为第二面。
或者在图8中,能量耗散结构53作为基质层单独成层,弹性缓冲结构52与反向约束力结构51均匀共混形成复合层,复合层与能量耗散结构53层叠贴合。能量耗散结构53可以靠近电池4,其与电池4连接的面为第一面,弹性缓冲结构52与反向约束力结构51构成的复合层连接后壳2,其与后壳2连接的面为第二面。
在另一种实施方式中,两结构混合的方式可以为:择其一结构作为基质,另一结构作为增强材料,增强材料混入基质中形成复合层。如图9和图10所示,增强材料为能量耗散结构53,能量耗散结构53呈颗粒状。与上述实施方式相比,能量耗散结构53均与其他基质层混合,但是本实施方式中,颗粒型的能量耗散结构53的粒径大于上述实施方式能量耗散结构53的粒径。如图11所示,增强材料为能量耗散结构53,能量耗散结构53呈纤维状结构。纤维状的能量耗散结构53与基质混合。在其他实施方式中,也可以使用不同的共混结构,不仅限于上述例举的实施方式。
在一种实施方式中,可以选用弹性材料或者连接材料中的一种作为基材层,弹性材料或者连接材料中的另一种作为第一材料,第一材料与阻尼材料混合为复合层。如图1和图9所示,例如可以使弹性缓冲结构52为基材层,能量耗散结构53和反向约束力结构51混合形成复合层,混合的方式可以参考上文例举的实施方式。图9所示的实施方式中,能量耗散结构53为颗粒状增强材料分布在反向约束力结构51构成的基质之内,二者混合为复合层。复合层与基材层层叠贴合设置。弹性缓冲结构52可以靠近电池4,其与电池4连接的面为第一面,能量耗散结构53与反向约束力结构51构成的复合层连接后壳2,其与后壳2连接的面为第二面。在其他实施方式中,也可以使得弹性缓冲结构52作为基质,能量耗散结构53作为增强材料,具体可以根据需要灵活设计。
在一种实施方式中,可以使得阻尼材料、弹性材料和连接材料中的任意两种作为基质,剩余一种作为增强材料。如图1和图10所示,反向约束力结构51和弹性缓冲结构52先构成两层基质层,能量耗散结构53作为增强材料与两个基质混合后形成两层复合层。两层复合层层叠设置。弹性缓冲结构52与能量耗散结构53构成的复合层可以靠近电池4,其与电池4连接的面为第一面,能量耗散结构53与反向约束力结构51构成的复合层连接后壳2,其与后壳2连接的面为第二面。
在一种实施方式中,可以选用弹性材料或者连接材料中的一种作为基材层,弹性材料或者连接材料中的另一种作为第一材料,第一材料与阻尼材料混合。如图1和图11所示,例如可以使反向约束力结构51为基材层,能量耗散结构53和弹性缓冲结构52混合作为复合层,混合的方式可以参考上文例举的实施方式,复合层与基材层层叠设置。反向约束力结构51构成的基材层可以靠近电池4,其与电池4连接的面为第一面,能量耗散结构53与弹性缓冲结构52构成的复合层连接后壳2,其与后壳2连接的面为第二面。复合层的基质可以是泡棉基材,增强材料可以是阻尼合金制成的纤维,多个纤维均匀的在泡棉基材中分布,以构成复合层。当外壳振动时,阻尼合金纤维作为能量耗散结构53吸收振动,释放能量,实现阻尼材料
减振;并且阻尼合金纤维处于泡棉基材中吸收振动时会与泡棉基材也发生摩擦,可以实现摩擦减振,从而进一步加强减振效果。
在一种实施方式中,能量耗散结构53和弹性缓冲结构52均为独立的两层结构,二者层叠设置。反向约束力结构51可以为磁性材料,磁性材料可以在能量耗散结构53和弹性缓冲结构52中均匀混合。可以通过分别调节磁性材料在能量耗散结构53和弹性缓冲结构52的浓度来设置结构层5两侧不同的磁力大小,磁性材料浓度大的一侧磁力较强,可以作为强连接侧与后壳2连接,反之磁性材料浓度小的一侧磁力较弱,可以作为弱连接侧与电池4连接。
上文描述了弹性缓冲结构52、能量耗散结构53和反向约束力结构51混合、层叠为两层构成结构层5的实施方式,下面将描述弹性缓冲结构52、能量耗散结构53和反向约束力结构51混合为一层以构成结构层5的实施方式。
在一些实施方式中,弹性缓冲结构52、能量耗散结构53和反向约束力结构51可以混合为一层结构层5。结构层5可以包括阻尼结构和第一材料。可以将弹性材料和连接材料构成的材料称为第一材料。第一材料与阻尼材料相混合,二者共混的方式有多种。在其他实施方式中,该第一材料可以仅包括该弹性材料或者该连接材料。
第一材料仅为连接材料或者弹性材料中的一种时,第一材料与阻尼材料混合在一起构成结构层。下面将详细说明第一材料包括连接材料和弹性材料的情况。
在一种实施方式中,第一材料与阻尼材料混合的方式为:弹性缓冲结构52、能量耗散结构53和反向约束力结构51相互混合构成结构层5,如图12所示。
在另一种实施方式中,第一材料与阻尼材料共混的方式可以为:择其一作为基质,另一材料作为增强材料,如图13和图14所示。图13所示的实施方式中,第一材料由弹性材料和连接材料构成,弹性材料与连接材料混合为第一材料,第一材料作为基质。阻尼材料构成增强颗粒,掺杂颗粒与基质混合,二者构建成结构层5。图14所示的实施方式中,能量耗散结构53作为基质,弹性缓冲结构52和反向约束力结构51分别作为两种增强颗粒,两种增强颗粒均与能量耗散结构53形成混合以构成结构层5。在其他实施方式中,也可以使用不同的混合方式;增强材料的形式也不仅限于上述例举的实施方式,可以根据需要设置不同的增强材料形态。
上文主要例举了部分类型结构层5的结构设计,实际应用中可以不仅限于上述例举的实施方式,可以根据需要任意设计层级结构组合和材料选型。在其他实施方式中,后壳2可以做特殊的凸起结构以对抗剪切阻尼。接下来将继续介绍后壳2的结构。
如图15和图16所示,后壳2的厚度方向上设置凸起,凸起的形状可以根据需要任意设置,例如可以为柱形、网格形、波浪形凸起等。凸起在后壳2设置的区域可以设在电池4在后壳2处的投影区域。结构层5上设置凹槽,该凸起与该凹槽配合,以使后壳2的凸起嵌入结构层5。本实施方式中,设有凸起的后壳2可以与任意设有凹槽结构的结构层5相配合,示意性的,图15与图16中的结构层5可以是上述任一实施方式中的结构层5。
如图15与图16所示,本实施方式的结构层5与后壳2配合,不仅可以提供对抗电子设备的厚度方向上的压缩变形的阻尼,还可以提供对抗电子设备的左右方向上的剪切变形的阻尼。当电子设备存在沿着图15所示的左右方向振动时,后壳2的凸起与结构层5的凹槽的配合可以消耗左右方向的振动能量。
在电子设备的组装过程中,可将结构层5的强连接侧预先粘贴至后壳2,再将该后壳2组件与电子设备的中框装配,使结构层5的弱连接侧与电池4连接。
由于通过结构层5将后壳2与电池4连接为一体,增大了后壳2的等效质量与刚性,改变了后壳2的谐振频率,因此扬声器模组3工作引发的气流冲击后壳2时,后壳2不容易振动。一种实施方式中,结构层5中的弹性缓冲结构52能够在压缩形变时产生压缩反弹力,使得结构层5向后壳2施加一个预紧力。在该预紧力的作用下,后壳2被支撑,因而不易在气流冲击下振动。因此在一体式连接和预紧力的共同作用下,后壳2的振动能被较好地抑制。
由于弹性缓冲结构52容易弹性形变,因此结构层5也具有弹性形变性能。当制造误差导致电池4与后壳2的间隙公差超过设计范围时,结构层5能够自适应形变以填充电池4与后壳2的间隙,保证电池4与后壳2能够可靠组装,即结构层5能起到适配电池4与后壳2的间隙公差的作用。特别的,当电池4为可以膨胀的软包电池4时,结构层5能够压缩以提供电池4膨胀所需的结构空间,避免电池4膨胀后将后壳2顶起,导致后壳2与壳体的间隙过大而造成整机外观缺陷。
常规方案是仅通过在后壳上仅粘贴泡棉来抑制壳振,但是抑制壳振的效果较差。在相同测试音源条件
下,使用普通泡棉的整机与本申请实施方式的电子设备对比。常规方案中后壳的振幅明显偏大,振幅可达8um-12um左右,表明后壳的振动较为强烈。相反,本申请实施方式的电子设备的后壳2的振幅最小可达2um-4um左右,改进后的振幅仅有常规方案的一半左右,表明后壳2的振幅得到明显抑制,用户体验表现为由明显麻手到几乎无振感。
一种实施方式中,本申请实施方式的结构层5为复合结构,不仅可以提供弹力还可以提供反约束力,并且设有能量耗散结构53来吸收消耗能量,因此本申请实施方式提供的结构层5的弹性大、阻尼因子大、约束力适中,可以有效地吸收振动。将各个结构组件做半约束处理以后,可以进一步的提升系统的刚度,提高产品的可靠性。
另外,出于电池4的安全、整机可靠性考虑,对结构层5与电池4连接提供的实际的力,要做到易剥离,保证电池4性能不受影响,因此通过设置结构层5两侧不同的连接强度,能够提升产品的可拆卸维护性。
综上所述,本申请实施方式既能够抑制后壳2振动,又能够满足产品组装需求、提升产品的可量产性及可拆卸维护性。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (26)
- 一种电子设备,其特征在于,包括第一壳体、功能部件、扬声器模组、结构层和第二壳体;所述第二壳体盖合在所述第一壳体上并与所述第一壳体围成安装腔,所述功能部件、所述扬声器模组及所述结构层均设于所述安装腔内,所述功能部件与所述扬声器模组相邻,所述扬声器模组的后音腔与所述安装腔连通;所述结构层连接所述功能部件与所述第二壳体;所述结构层包括阻尼结构,所述阻尼结构的材料为阻尼材料。
- 根据权利要求1所述的电子设备,其特征在于,所述结构层包括第一材料,所述第一材料包括弹性材料和/或连接材料,所述第一材料与所述阻尼材料相混合。
- 根据权利要求2所述的电子设备,其特征在于,所述结构层包括基材层,所述基材层的材料为所述弹性材料与所述连接材料中的一个,所述第一材料为所述弹性材料与所述连接材料中的另外一个;所述阻尼材料与所述第一材料混合形成复合层,所述复合层与所述基材层层叠设置。
- 根据权利要求1所述的电子设备,其特征在于,所述阻尼结构形成阻尼层;所述结构层包括第一层,所述第一层包括弹性层和/或连接层,所述弹性层的材料为弹性材料,所述连接层的材料为连接材料;所述第一层与所述阻尼层层叠设置;其中,在所述第一层包括所述弹性层与所述连接层的情况下,所述弹性层与所述连接层层叠贴合。
- 根据权利要求1所述的电子设备,其特征在于,所述结构层包括层叠设置的弹性层与连接层,所述弹性层的材料为弹性材料,所述连接层的材料为连接材料;所述阻尼结构包括多个阻尼弹性件,每个所述阻尼弹性件均支撑于所述弹性层与所述连接层之间;所述弹性层与所述连接层中的一个连接所述功能部件,所述弹性层与所述连接层中的另一个连接所述第二壳体。
- 根据权利要求2-5任一项所述的电子设备,其特征在于,所述连接材料包括粘性材料或者磁性材料;和/或,所述弹性材料包括硅胶、泡棉或者泡沫胶。
- 根据权利要求1-6任一项所述的电子设备,其特征在于,所述结构层的表面形成多个凹槽,所述第二壳体具有多个凸起,一个所述凸起与一个所述凹槽配合。
- 根据权利要求1-7任一项所述的电子设备,其特征在于,所述结构层具有相对的第一面和第二面,所述第一面连接所述功能部件,所述第二面连接所述第二壳体;所述第一面与所述功能部件的结合力小于所述第二面与所述第二壳体的结合力。
- 根据权利要求8所述的电子设备,其特征在于,所述结构层包括连接层,所述连接层的材料为连接材料;所述第一面为所述连接层的表面。
- 根据权利要求1-9任一项所述的电子设备,其特征在于,所述扬声器模组包括模组壳体以及安装在所述模组壳体内的扬声器单元,所述模组壳体的材料包括阻尼材料。
- 根据权利要求10所述的电子设备,其特征在于,所述模组壳体包括第一模组壳体、第二模组壳体和前腔盖板;所述第一模组壳体与所述第二模组壳体围成收容腔,所述第一模组壳体具有安装通孔与出音孔,所述安装通孔连通所述收容腔;所述前腔盖板封盖所述安装通孔,所述前腔盖板的材料为阻尼材料;所述扬声器单元安装在所述收容腔内,并将所述收容腔分隔为两个腔体,其中,所述扬声器单元与所述第一模组壳体及所述前腔盖板围成前音腔,所述出音孔与所述前音腔连通,所述扬声器单元与所述第二模组壳体围成所述后音腔。
- 根据权利要求1-11任一项所述的电子设备,其特征在于,所述扬声器模组通过连接件连接至所述第一壳体,所述连接件的材料为阻尼材料。
- 根据权利要求1-12任一项所述的电子设备,其特征在于,所述第二壳体朝向所述安装腔的一侧具有减振部,所述减振部的材料为阻尼材料。
- 根据权利要求1-13任一项所述的电子设备,其特征在于,所述阻尼材料包括阻尼硅胶或者阻尼合金。
- 根据权利要求1-14任一项所述的电子设备,其特征在于,所述功能部件包括电池。
- 一种电子设备的辅料,所述电子设备包括后壳、中框及功能部件,所述后壳盖合在所述中框上并与所述中框围成安装腔,所述功能部件安装在所述安装腔内,其特征在于,所述辅料连接所述功能部件与所述第二壳体;所述辅料包括阻尼结构,所述阻尼结构的材料为阻尼材料。
- 根据权利要求16所述的辅料,其特征在于,所述辅料包括第一材料,所述第一材料包括弹性材料和/或连接材料,所述第一材料与所述阻尼材料相混合。
- 根据权利要求17所述的辅料,其特征在于,所述辅料包括基材层,所述基材层的材料为所述弹性材料与所述连接材料中的一个,所述第一材料为所述弹性材料与所述连接材料中的另外一个;所述阻尼材料与所述第一材料混合形成复合层,所述复合层与所述基材层层叠设置。
- 根据权利要求17或18所述的辅料,其特征在于,所述连接材料包括粘性材料或者磁性材料;和/或,所述弹性材料包括硅胶、泡棉或者泡沫胶。
- 根据权利要求16所述的辅料,其特征在于,所述阻尼结构形成阻尼层;所述辅料包括第一层,所述第一层包括弹性层和/或连接层,所述弹性层的材料为弹性材料,所述连接层的材料为连接材料;所述第一层与所述阻尼层层叠设置;其中,在所述第一层包括所述弹性层与所述连接层的情况下,所述弹性层与所述连接层层叠贴合。
- 根据权利要求16所述的辅料,其特征在于,所述辅料包括层叠设置的弹性层与连接层,所述弹性层的材料为弹性材料,所述连接层的材料为连接材料;所述阻尼结构包括多个阻尼弹性件,每个所述阻尼弹性件均支撑于所述弹性层与所述连接层之间;所述弹性层与所述连接层中的一个连接所述功能部件,所述弹性层与所述连接层中的另一个连接所述第二壳体。
- 根据权利要求16-21任一项所述的辅料,其特征在于,所述辅料的表面形成多个凹槽,所述第二壳体具有多个凸起,一个所述凸起与一个所述凹槽配合。
- 根据权利要求16-22任一项所述的辅料,其特征在于,所述阻尼材料包括阻尼硅胶或者阻尼合金。
- 根据权利要求16-23任一项所述的辅料,其特征在于,所述辅料具有相对的第一面和第二面,所述第一面连接所述功能部件,所述第二面连接所述第二壳体;所述第一面与所述功能部件的结合力小于所述第二面与所述第二壳体的结合力。
- 根据权利要求24所述的辅料,其特征在于,所述辅料包括连接层,所述连接层的材料为连接材料;所述第一面为所述连接层的表面。
- 一种电子设备的壳体组件,所述电子设备包括第一壳体及功能部件,其特征在于,所述壳体组件包括第二壳体及权利要求16-25任一项所述的辅料,所述第二壳体盖合在所述第一壳体上并与所述第一壳体围成安装腔,所述功能部件安装在所述安装腔内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211214492.5A CN117857676A (zh) | 2022-09-30 | 2022-09-30 | 电子设备、电子设备的辅料及电子设备的壳体组件 |
CN202211214492.5 | 2022-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024067420A1 true WO2024067420A1 (zh) | 2024-04-04 |
Family
ID=90476143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/120850 WO2024067420A1 (zh) | 2022-09-30 | 2023-09-22 | 电子设备、电子设备的辅料及电子设备的壳体组件 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117857676A (zh) |
WO (1) | WO2024067420A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109803215A (zh) * | 2018-12-18 | 2019-05-24 | 歌尔股份有限公司 | 声学装置及电子设备 |
US20210051395A1 (en) * | 2018-02-12 | 2021-02-18 | Goertek Inc. | Loudspeaker module |
CN112533114A (zh) * | 2019-09-18 | 2021-03-19 | 华为技术有限公司 | 一种发声器件和电子设备 |
CN113364898A (zh) * | 2020-03-05 | 2021-09-07 | 华为技术有限公司 | 电子设备、电子设备的辅料及电子设备的后壳组件 |
CN113471592A (zh) * | 2021-05-27 | 2021-10-01 | 荣耀终端有限公司 | 一种电子设备及电池盖 |
CN115118799A (zh) * | 2021-03-23 | 2022-09-27 | 华为技术有限公司 | 一种电子设备 |
-
2022
- 2022-09-30 CN CN202211214492.5A patent/CN117857676A/zh active Pending
-
2023
- 2023-09-22 WO PCT/CN2023/120850 patent/WO2024067420A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210051395A1 (en) * | 2018-02-12 | 2021-02-18 | Goertek Inc. | Loudspeaker module |
CN109803215A (zh) * | 2018-12-18 | 2019-05-24 | 歌尔股份有限公司 | 声学装置及电子设备 |
CN112533114A (zh) * | 2019-09-18 | 2021-03-19 | 华为技术有限公司 | 一种发声器件和电子设备 |
CN113364898A (zh) * | 2020-03-05 | 2021-09-07 | 华为技术有限公司 | 电子设备、电子设备的辅料及电子设备的后壳组件 |
CN115118799A (zh) * | 2021-03-23 | 2022-09-27 | 华为技术有限公司 | 一种电子设备 |
CN113471592A (zh) * | 2021-05-27 | 2021-10-01 | 荣耀终端有限公司 | 一种电子设备及电池盖 |
Also Published As
Publication number | Publication date |
---|---|
CN117857676A (zh) | 2024-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10225646B2 (en) | Speaker box | |
US10469953B2 (en) | Speaker box | |
JP3542136B2 (ja) | 慣性振動トランスジューサ | |
AU703198B2 (en) | Inertial vibration transducers | |
CN103079162B (zh) | 集成化扬声器,音箱及其制造方法 | |
JP6092526B2 (ja) | 電子機器 | |
WO2013164906A1 (ja) | 電子機器 | |
KR19990044171A (ko) | 패널형 음향 방사소자를 구비하는 라우드스피커 | |
WO2006011604A1 (ja) | スピーカシステム、携帯端末装置および電子機器 | |
WO2020192457A1 (zh) | 一种屏幕发声设备 | |
US20230078037A1 (en) | Electronic device, auxiliary material of electronic device, and rear housing assembly of electronic device | |
CN106453759B (zh) | 移动设备 | |
CN109495832A (zh) | 表面发声装置以及电子设备 | |
US20110158448A1 (en) | Speakerbox | |
CN202121773U (zh) | 一种与电子产品外壳集成的压电发声系统 | |
WO2024067420A1 (zh) | 电子设备、电子设备的辅料及电子设备的壳体组件 | |
CN208940210U (zh) | 按键发声装置以及电子设备 | |
CN207665191U (zh) | 一种扬声器模组 | |
CN115002603A (zh) | 一种扬声器模组和电子设备 | |
WO2015033548A1 (ja) | 電子機器 | |
CN111131575B (zh) | 一种发声装置模组和电子产品 | |
CN109361992B (zh) | 按键发声装置以及电子设备 | |
CN220067693U (zh) | 发声结构和电子设备 | |
CN212572952U (zh) | 一种防摔受话器 | |
CN114979890A (zh) | 音频单元的减振装置及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23870651 Country of ref document: EP Kind code of ref document: A1 |