WO2024067185A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2024067185A1
WO2024067185A1 PCT/CN2023/119292 CN2023119292W WO2024067185A1 WO 2024067185 A1 WO2024067185 A1 WO 2024067185A1 CN 2023119292 W CN2023119292 W CN 2023119292W WO 2024067185 A1 WO2024067185 A1 WO 2024067185A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
unicast connection
sidelink unicast
feedback
indication information
Prior art date
Application number
PCT/CN2023/119292
Other languages
English (en)
French (fr)
Inventor
邝奕如
徐海博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202310754561.XA external-priority patent/CN118283855A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067185A1 publication Critical patent/WO2024067185A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • the user equipment (UE) when using unlicensed spectrum for air interface communication, the user equipment (UE) needs to perform listen before talk (LBT) before uplink (UL) transmission, and then perform the transmission process when LBT succeeds.
  • LBT listen before talk
  • the media access control (MAC) entity of the UE receives an LBT failure indication from the lower layer (such as the physical (PHY) layer) of the UE, it will start or restart the LBT failure detection timer and increase the number of LBT failures by 1; before the LBT failure detection timer times out, if the MAC entity of the UE does not receive an LBT failure indication from the lower layer of the UE, the LBT failure detection timer will time out, and the MAC layer of the UE can clear the number of LBT failures to zero.
  • the lower layer such as the physical (PHY) layer
  • the continuous LBT failure detection process of the UE is performed on the UL bandwidth part (bandwidth part, BWP). If the number of LBT failures of the UE on a UL BWP is greater than or equal to the configured maximum number of failures, it is considered that the UL BWP has detected (or, occurred) continuous LBT failures, and the UL BWP is unavailable.
  • BWP bandwidth part
  • SL communication can also use unlicensed spectrum, so it is possible to consider introducing the LBT mechanism in SL communication.
  • the SL carrier has only a single BWP, which can include up to 8 resource pools (pools of resources, or resource pools, RP) of mode 1 or mode 2.
  • the UE performs the continuous LBT failure detection process with BWP as the granularity, then when continuous LBT failures occur in the UE, continuous LBT failures may only occur in part of the resource pools included in the BWP, and the remaining resource pools included in the BWP are still available.
  • the UE will consider the BWP as a whole unavailable, which leads to a waste of SL resources and affects the transmission of SL data.
  • the embodiments of the present application provide a communication method and apparatus for saving SL resources.
  • a first communication method is provided, which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional modules, which can implement the functions of the terminal device, and the chip system or functional module is, for example, arranged in the terminal device.
  • the terminal device is, for example, a first terminal device.
  • the method includes: a first terminal device detects continuous LBT failures in all resource pools of the first terminal device, wherein all resource pools include one or more resource pools, each of which is used for the first terminal device to communicate with other terminal devices; the first terminal device performs one or more of the following actions: releasing all sidelink unicast connections of the first terminal device, releasing DRBs of all sidelink unicast connections of the first terminal device, releasing SRBs of all sidelink unicast connections of the first terminal device, or releasing DRBs of broadcast and/or multicast communications of the first terminal device.
  • the first terminal device can perform operations such as releasing the SL unicast connection of the first terminal device. Conversely, if the first terminal device successfully performs LBT on transmission in part of the resource pools of the first terminal device, the first terminal device does not need to perform operations such as releasing the SL unicast connection of the first terminal device. For example, the first terminal device can continue to use this part of the resource pool for communication, thereby reducing the waste of SL resources and improving The utilization of SL resources.
  • the first terminal device detects continuous LBT failures in all resource pools of the first terminal device, including: the MAC layer of the first terminal device detects continuous LBT failures in all resource pools of the first terminal device.
  • the first terminal device performs one or more of the following actions, including: the RRC layer of the first terminal device performs one or more of the following actions: releasing all sidelink unicast connections of the first terminal device, indicating to the upper layer of the first terminal device that all sidelink unicast connections of the first terminal device have been released, releasing the DRBs of all sidelink unicast connections of the first terminal device, releasing the SRBs of all sidelink unicast connections of the first terminal device, or releasing the DRBs of broadcast and/or multicast communications of the first terminal device.
  • the continuous LBT failure may be detected by the MAC layer of the first terminal device, and the corresponding actions may be performed by the RRC layer of the first terminal device.
  • other protocol layers such as the physical layer, may detect the continuous LBT failure; other protocol layers may also perform the corresponding actions, without specific limitation.
  • the method further includes: the MAC layer sending first indication information to the RRC layer, the first indication information being used to indicate that continuous LBT failures have been detected, or indicating that radio link failures have occurred in all sidelink unicast connections of the first terminal device. If the MAC layer detects that all resource pools of the first terminal device have continuous LBT failures, the MAC layer may send first indication information to the RRC layer, so that the RRC layer may perform the corresponding actions as described above.
  • the method further includes: the first terminal device sends a second indication message to the access network device, the second indication message is used to indicate that continuous LBT failures are detected, or indicates that all sidelink unicast connections of the first terminal device have radio link failures; the first terminal device receives a third indication message from the access network device, the third indication message is used to instruct the first terminal device to perform one or more of the following actions: release all sidelink unicast connections of the first terminal device, release the DRBs of all sidelink unicast connections of the first terminal device, release the SRBs of all sidelink unicast connections of the first terminal device, or release the DRBs of the broadcast and/or multicast communications of the first terminal device.
  • the actions performed by the first terminal device can be decided by the first terminal device itself, for example, by the MAC layer and/or RRC layer of the first terminal device, which can reduce the interaction between the first terminal device and other devices and improve the execution efficiency; or, the actions performed by the first terminal device can also be indicated by other devices, for example, by the access network device, which can reduce the decision-making process of the first terminal device and simplify the implementation of the first terminal device.
  • the method further includes: when the first terminal device detects that at least one of the one or more resource pools has a continuous LBT failure, the first terminal device uses a first multicast layer 2 identifier to multicast the first information, and the first multicast layer 2 identifier is allocated to the second terminal device when a side link unicast connection is established with the second terminal device; or, when the first terminal device detects that at least one of the one or more resource pools has a continuous LBT failure, the first terminal device uses a first broadcast layer 2 identifier to broadcast the first information, and the first broadcast layer 2 identifier is allocated to the second terminal device when a side link unicast connection is established with the second terminal device.
  • the first multicast layer 2 identifier is used to indicate that the corresponding multicast message is the first information
  • the first broadcast layer 2 identifier is used to indicate that the corresponding broadcast message is the first information
  • the first information is used to indicate that a continuous LBT failure has occurred in at least one resource pool.
  • the first terminal device can notify other terminal devices of the resource pools that have experienced continuous LBT failures, so that other terminal devices can no longer use these resource pools to communicate with the first terminal device, thereby reducing the probability of communication failure.
  • the first terminal device allocates the broadcast layer 2 identifier or the multicast layer 2 identifier, and the high layer of each terminal device does not need to configure the broadcast layer 2 identifier or the multicast layer 2 identifier, which can make the broadcast layer 2 identifier or the multicast layer 2 identifier more flexible.
  • a second communication method which can be executed by an access network device, or by other devices including the functions of the access network device, or by a chip system (or, chip) or other functional modules, which can realize the functions of the access network device, and the chip system or functional module is, for example, arranged in the access network device.
  • the access network device is, for example, a base station, etc.
  • the method includes: the access network device receives a second indication information from a first terminal device, the second indication information is used to indicate that the first terminal device has detected a continuous LBT failure, or indicates that all sidelink unicast connections of the first terminal device have a radio link failure; the access network device sends a third indication information to the first terminal device, the third indication information is used to indicate that the first terminal device performs one or more of the following actions: release all sidelink unicast connections of the first terminal device, release the DRBs of all sidelink unicast connections of the first terminal device, release the SRBs of all sidelink unicast connections of the first terminal device, or release the DRBs of the broadcast and/or multicast communication of the first terminal device.
  • a third communication method is provided, which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional module, which can implement the functions of the terminal device, and the chip system or functional module is, for example, set in the terminal device.
  • the terminal device is, for example, a first terminal device.
  • the method includes: the first terminal device detects continuous LBT failures in all first-class resource pools of the first terminal device, wherein all the first-class resource pools It includes one or more first-class resource pools, each of which is used for the first terminal device to communicate with other terminal devices, and each of the first-class resource pools includes physical sidelink feedback channel resources.
  • the first terminal device For the first sidelink unicast connection, the first terminal device performs one or more of the following actions: releasing the first sidelink unicast connection, releasing the DRB of the first sidelink unicast connection, or releasing the SRB of the first sidelink unicast connection; or, for the first sidelink unicast connection, the first terminal device performs one or more of the following actions: releasing or suspending the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, or clearing the cached transmission block of the feedback-enabled LCH of the first sidelink unicast connection, and setting the sidelink process corresponding to the transmission block to be unoccupied.
  • all LCHs configured for the first sidelink unicast connection are feedback-enabled LCHs, or the LCHs configured for the first sidelink unicast connection include feedback-enabled LCHs and feedback-unenabled LCHs.
  • the first terminal device if the first terminal device detects continuous LBT failures in all first-class resource pools of the first terminal device, the first terminal device can perform a second operation. Conversely, if the first terminal device successfully performs LBT on resources of some first-class resource pools of the first terminal device, the first terminal device does not need to perform the second operation.
  • the first terminal device can continue to use this part of the first-class resource pool for communication, thereby reducing the waste of SL resources and improving the utilization rate of SL resources. Moreover, when the first terminal device detects continuous LBT failures, the first terminal device can reasonably handle the current sidelink unicast connection and try to avoid the problem that the upper layer of the first terminal device continues to submit SL information to the lower layer, but the SL information cannot be sent.
  • the first terminal device detects continuous LBT failures in all first-category resource pools of the first terminal device, including: the MAC layer of the first terminal device detects continuous LBT failures in all first-category resource pools of the first terminal device.
  • the first terminal device performs one or more of the following actions, including: for the first sidelink unicast connection, the RRC layer of the first terminal device performs one or more of the following actions: releasing the first sidelink unicast connection, indicating to the upper layer of the first terminal device that the first sidelink unicast connection has been released, releasing the DRB of the first sidelink unicast connection, or releasing the SRB of the first sidelink unicast connection; or, for the first sidelink unicast connection, the first terminal device performs one or more of the following actions, including: for the first sidelink unicast connection, the RRC layer of the first terminal device performs one or more of the following actions: releasing or suspending the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, indicating to the upper layer of the first terminal device that the QoS flow corresponding to the DRB of the feedback-enabled LCH of the first sidelink unicast connection is released or suspended
  • the continuous LBT failure may be detected by the MAC layer of the first terminal device, and the RRC layer of the first terminal device may perform corresponding actions.
  • the continuous LBT failure may be detected by other protocol layers, such as the physical layer; the corresponding actions may also be performed by other protocol layers, without specific limitation.
  • the method further includes: the MAC layer determines that a sidelink unicast connection in which all configured LCHs are feedback-enabled LCHs is the first sidelink unicast connection, or determines that a sidelink unicast connection in which the configured LCHs include feedback-enabled LCHs and feedback-unenabled LCHs is the first sidelink unicast connection; and the MAC layer sends first indication information to the RRC layer, wherein the first indication information is used to indicate that a radio link failure has occurred in the first sidelink unicast connection.
  • the MAC layer can detect continuous LBT failures, and the MAC layer can determine the first sidelink unicast connection accordingly, so that the RRC layer does not have to perform the operation of determining the first sidelink unicast connection.
  • the method further includes: the MAC layer sends first indication information to the RRC layer, the first indication information is used to indicate that continuous LBT failures of all first-category resource pools are detected; the RRC layer determines that the sidelink unicast connection of all configured LCHs as feedback-enabled LCHs is the first sidelink unicast connection, or determines that the configured LCHs include feedback-enabled LCHs and feedback-unenabled LCHs as the first sidelink unicast connection.
  • the MAC layer can indicate to the RRC layer that continuous LBT failures of all first-category resource pools are detected, and the first sidelink unicast connection is determined by the RRC layer. That is, the embodiment of the present application can determine the first sidelink unicast connection through different protocol layers, which is more flexible.
  • the method further includes: the first terminal device sends a second indication message to the access network device, the second indication message is used to indicate that a radio link failure occurs in the first sidelink unicast connection of the first terminal device; and the first terminal device receives a third indication message from the access network device.
  • the third indication message is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release the first sidelink unicast connection, release the DRB of the first sidelink unicast connection, or release the SRB of the first sidelink unicast connection; or, the third indication message is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release or suspend the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, or clear the cached transmission block of the feedback-enabled LCH of the first sidelink unicast connection.
  • the first terminal device After the first terminal device determines the first sidelink unicast connection, it can indicate it to the access network device, and the access network device indicates to the first terminal device which actions should be performed.
  • the access network device indicates the corresponding actions to the first terminal device, and it is not necessary for the first terminal device to indicate the corresponding actions to the first terminal device.
  • the first terminal device makes decisions on its own, which can simplify the implementation of the first terminal device.
  • the method further includes: the first terminal device sends a second indication message to the access network device, the second indication message is used to indicate that continuous LBT failures of all the first-type resource pools of the first terminal device are detected; the first terminal device receives a third indication message from the access network device.
  • the third indication message is used to instruct the first terminal device to perform one or more of the following for the first sidelink unicast connection: release the first sidelink unicast connection, release the DRB of the first sidelink unicast connection, or release the SRB of the first sidelink unicast connection; or, the third indication message is used to instruct the first terminal device to perform one or more of the following for the first sidelink unicast connection: release or suspend the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, or clear the cached transmission block of the feedback-enabled LCH of the first sidelink unicast connection.
  • the first sidelink unicast connection and the actions performed by the first terminal device can be decided by the access network device, which further simplifies the implementation of the first terminal device, so that the technical solution provided in the embodiment of the present application can be applied to more terminal devices.
  • the method further includes: the first terminal device rebuilds or modifies the DRB of the first LCH; or, the first terminal device rebuilds or modifies the QoS flow corresponding to the DRB of the first LCH; wherein the first LCH is a feedback-disabled LCH. If the first terminal device wants to rebuild or modify the DRB, it may rebuild or modify the DRB of the feedback-disabled LCH, and will not rebuild or modify the DRB of the feedback-enabled LCH of the first terminal device.
  • the first terminal device may rebuild or modify the QoS flow corresponding to the DRB, and will not rebuild or modify the QoS flow corresponding to the DRB of the feedback-enabled LCH of the first terminal device.
  • the method further includes: the first terminal device receives fourth indication information from the access network device, and the fourth indication information is used to instruct the first terminal device to rebuild or modify the DRB of the first LCH, or to instruct the first terminal device to rebuild or modify the QoS flow corresponding to the DRB of the first LCH.
  • the first terminal device can decide on its own to rebuild or modify the DRB or QoS flow, or it can also rebuild or modify the DRB or QoS flow under the instruction of the access network device.
  • the method further includes: the first terminal device detects LBT success in M first-class resource pools among the one or more first-class resource pools, where M is a positive integer; the first terminal device restores the DRB of the feedback-enabled LCH of the first side link unicast connection, and/or restores the QoS flow corresponding to the DRB of the feedback-enabled LCH of the first side link unicast connection. If a resource pool has continuous LBT failures, the resource pool is unavailable. Optionally, an unavailable resource pool can also be restored, that is, it becomes an available resource pool again. For example, after a resource pool detects continuous LBT failures, the first terminal device can continue to perform LBT on the resources in the resource pool or the transmission in the resource pool.
  • the first terminal device detects LBT success on the resources or transmission in M first-class resource pools among all resource pools of the first terminal device, it can be considered that the M first-class resource pools have been restored as available resource pools.
  • the SL resources in the resource pool can be utilized, reducing resource waste.
  • the scope of the terminal device to select SL resources can be expanded, and the success rate of information transmission can be improved.
  • the method further includes: when the first terminal device detects that at least one of the one or more first-class resource pools has a continuous LBT failure, the first terminal device uses a first multicast layer 2 identifier to multicast the first information, and the first multicast layer 2 identifier is allocated to the second terminal device when establishing a sidelink unicast connection with the second terminal device; or, when the first terminal device detects that at least one of the one or more first-class resource pools has a continuous LBT failure, the first terminal device uses a first broadcast layer 2 identifier to broadcast the first information, and the first broadcast layer 2 identifier is allocated to the second terminal device when establishing a sidelink unicast connection with the second terminal device; wherein the first multicast layer 2 identifier is used to indicate that the corresponding multicast message is the first information, the first broadcast layer 2 identifier is used to indicate that the corresponding broadcast message is the first information, and the first information is used to indicate that the at least one first-class resource pool has a continuous LBT failure.
  • the first terminal device can notify other terminal devices of the first-class resource pool that has a continuous LBT failure, so that other terminal devices can no longer use these resource pools to communicate with the first terminal device, thereby reducing the probability of communication failure.
  • the first terminal device allocates the broadcast layer 2 identifier or the multicast layer 2 identifier, and the high layer of each terminal device does not need to configure the broadcast layer 2 identifier or the multicast layer 2 identifier, which can make the broadcast layer 2 identifier or the multicast layer 2 identifier more flexible.
  • a fourth communication method may be executed by an access network device, or by other devices including the functions of an access network device, or by a chip system (or, chip) or other functional modules, which can implement the functions of the access network device, and which are, for example, arranged in the access network device.
  • the access network device is, for example, a base station, etc.
  • the method comprises: the access network device receives second indication information from a first terminal device, the second indication information being used to indicate that a radio link failure occurs in a first sidelink unicast connection of the first terminal device; and the access network device sends third indication information to the first terminal device.
  • the third indication information is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release;
  • the first sidelink unicast connection releases the DRB of the first sidelink unicast connection, or releases the SRB of the first sidelink unicast connection; or, the third indication information is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release or suspend the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, or clear the cached transmission block of the feedback-enabled LCH of the first sidelink unicast connection.
  • the method also includes: the access network device sends a fourth indication information to the first terminal device, and the fourth indication information is used to instruct the first terminal device to rebuild or modify the DRB of the first LCH, or to instruct the first terminal device to rebuild or modify the QoS flow corresponding to the DRB of the first LCH, wherein the first LCH is a feedback-unenabled LCH.
  • a fifth communication method is provided, which can be executed by an access network device, or by other devices including the functions of an access network device, or by a chip system (or, chip) or other functional modules, which can realize the functions of the access network device, and the chip system or functional module is, for example, arranged in the access network device.
  • the access network device is, for example, a base station, etc.
  • the method includes: the access network device receives a second indication information from a first terminal device, the second indication information is used to indicate that continuous LBT failures of all first-class resource pools of the first terminal device are detected, each of which includes a physical sidelink feedback channel resource; the access network device determines the first sidelink unicast connection of the first terminal device according to the second indication information, wherein all LCHs of the first sidelink unicast connection are feedback-enabled LCHs, or the LCHs of the first sidelink unicast connection include feedback-enabled LCHs and feedback-unenabled LCHs; the access network device sends a third indication information to the first terminal device.
  • the third indication information is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release the first sidelink unicast connection, release the DRB of the first sidelink unicast connection, or release the SRB of the first sidelink unicast connection; or, the third indication information is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release or suspend the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, or clear the cached transmission block of the feedback-enabled LCH of the first sidelink unicast connection.
  • the method also includes: the access network device sends a fourth indication information to the first terminal device, and the fourth indication information is used to instruct the first terminal device to rebuild or modify the DRB of the first LCH, or to instruct the first terminal device to rebuild or modify the QoS flow corresponding to the DRB of the first LCH, wherein the first LCH is a feedback-disabled LCH of the first terminal device.
  • a sixth communication method which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional module, which can realize the functions of the terminal device, and the chip system or functional module is, for example, set in the terminal device.
  • the terminal device is, for example, a first terminal device.
  • the method includes: when the first terminal device detects that at least one resource pool has failed to LBT continuously, the first terminal device uses a first multicast layer 2 identifier to multicast first information, and the first multicast layer 2 identifier is allocated to the second terminal device when a side link unicast connection is established with the second terminal device; or, when the first terminal device detects that at least one resource pool has failed to LBT continuously, the first terminal device uses a first broadcast layer 2 identifier to broadcast first information, and the first broadcast layer 2 identifier is allocated to the second terminal device when a side link unicast connection is established with the second terminal device; wherein the first multicast layer 2 identifier is used to indicate that the corresponding multicast message is the first information, and the first broadcast layer 2 identifier is used to indicate that the corresponding broadcast message is the first information, and the first information is used to indicate that the at least one resource pool has failed to LBT continuously.
  • a seventh communication method which can be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional modules, which can realize the functions of the terminal device, and the chip system or functional module is, for example, arranged in the terminal device.
  • the terminal device is, for example, a first terminal device.
  • the method includes: a first terminal device detects continuous LBT failures in a first resource pool of the first terminal device; if a side link resource has been selected in the first resource pool, the first terminal device does not use the side link resource, wherein the side link resource includes one or more of a PSCCH resource, a PSSCH resource or a PSFCH resource.
  • the first terminal device may not use the first SL resource in the first resource pool, thereby reducing the probability of transmission failure.
  • the first terminal device may also re-determine the SL resource to send SL information to reduce the transmission delay of the SL information.
  • the side link resource includes one or more of the following: an access network device is provided for the first terminal sidelink data scheduling of the first terminal; resources selected by the first terminal device in the first resource pool for sending sidelink information; or resources for sending feedback information of sidelink data.
  • the first terminal device does not use the side link resource, including: the MAC layer of the first terminal device instructs the physical layer of the first terminal device to clear the information of the side link resource; or, the MAC layer of the first terminal device does not deliver the side link information to be sent to the physical layer of the first terminal device; or, the MAC layer of the first terminal device does not instruct the physical layer of the first terminal device to generate a side link transmission.
  • the first terminal device does not use the side link resource, which can be achieved in a variety of ways. For example, the MAC layer of the first terminal device instructs the physical layer of the first terminal device to clear the information of the side link resource, and after clearing the information, the physical layer will no longer use the side link resource.
  • the MAC layer may not deliver the SL information to be sent to the physical layer, or the MAC layer does not instruct the physical layer to generate a SL transmission, so that the physical layer does not obtain the SL information to be sent and will not use the side link resource.
  • an eighth communication method is provided, which may be executed by a terminal device, or by other devices including terminal device functions, or by a chip system (or, chip) or other functional modules, which can realize the functions of the terminal device, and which are, for example, arranged in the terminal device.
  • the terminal device is, for example, a first terminal device.
  • the method includes: a first terminal device determines that a first resource pool is unavailable; the first terminal device performs LBT on the first resource pool; if the first terminal device detects at least one successful LBT in the first resource pool, it determines that the first resource pool is available.
  • the resource pool can be restored in time, thereby expanding the range of SL resource selection and reducing the situation of insufficient SL resources.
  • the number of at least one time is 1, or greater than 1.
  • the number of at least one times is greater than 1, and if the first terminal device detects at least one LBT success in the first resource pool, determining that the first resource pool is available includes: if the first terminal device detects at least one LBT success in succession in the first resource pool, determining that the first resource pool is available. Determining whether a resource pool is available by continuous LBT success can make the determination result more accurate.
  • a communication device may be the first terminal device described in any one of the first to eighth aspects.
  • the communication device has the function of the first terminal device.
  • the communication device is, for example, a first terminal device, or a larger device including the first terminal device, or a functional module in the first terminal device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • the transceiver unit can implement a sending function and a receiving function.
  • the transceiver unit When the transceiver unit implements the sending function, it can be referred to as a sending unit (sometimes also referred to as a sending module), and when the transceiver unit implements the receiving function, it can be referred to as a receiving unit (sometimes also referred to as a receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called a transceiver unit, and the functional module can implement a sending function and a receiving function; or, the sending unit and the receiving unit can be different functional modules, and the transceiver unit is a general term for these functional modules.
  • the processing unit is used to detect a continuous listen-before-talk (LBT) failure in all resource pools of the first terminal device, wherein all resource pools include one or more resource pools, each of which is used for the first terminal device to communicate with other terminal devices; the processing unit is also used to perform one or more of the following actions: releasing all side link unicast connections of the first terminal device, releasing the DRBs of all side link unicast connections of the first terminal device, releasing the SRBs of all side link unicast connections of the first terminal device, or releasing the DRBs of broadcast and/or multicast communications of the first terminal device.
  • LBT listen-before-talk
  • the processing unit is used to detect continuous LBT failures in all first-class resource pools of the first terminal device, wherein all the first-class resource pools include one or more first-class resource pools, each of which is used for the first terminal device to communicate with other terminal devices, and each of the first-class resource pools includes physical sidelink feedback channel resources.
  • the processing unit is also used to perform one or more of the following actions: release the first sidelink unicast connection, release the DRB of the first sidelink unicast connection, or release the SRB of the first sidelink unicast connection; or, for the first sidelink unicast connection, the processing unit is also used to perform one or more of the following actions: release or suspend the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, or clear the cached transmission block of the feedback-enabled LCH of the first sidelink unicast connection, and set the sidelink process corresponding to the transmission block to be unoccupied.
  • all LCHs configured for the first sidelink unicast connection are feedback-enabled LCHs
  • the LCHs configured for the first sidelink unicast connection include feedback-enabled LCHs and feedback-disabled LCHs.
  • the processing unit is used to detect that at least one resource pool has a continuous LBT failure, the transceiver unit (or the sending unit) is used to multicast the first information using the first multicast layer 2 identifier, and the first multicast layer 2 identifier is allocated to the second terminal device when establishing a sidelink unicast connection with the second terminal device; or the processing unit is used to detect that At least one resource pool has a continuous LBT failure, and the transceiver unit (or, the sending unit) is used to broadcast the first information using the first broadcast layer 2 identifier, and the first broadcast layer 2 identifier is allocated to the second terminal device when establishing a sidelink unicast connection with the second terminal device.
  • the first multicast layer 2 identifier is used to indicate that the corresponding multicast message is the first information
  • the first broadcast layer 2 identifier is used to indicate that the corresponding broadcast message is the first information
  • the first information is used to indicate that the continuous LBT failure occurs in at least one resource pool.
  • the processing unit is used to detect continuous LBT failures in the first resource pool of the first terminal device; the processing unit is also used to not use the side link resources if there are side link resources selected in the first resource pool, wherein the side link resources include one or more of PSCCH resources, PSSCH resources or PSFCH resources.
  • the processing unit is used to determine that the first resource pool is unavailable; the processing unit is also used to perform LBT on the first resource pool; the processing unit is also used to determine that the first resource pool is available if at least one LBT success is detected in the first resource pool.
  • the communication device also includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instructions in the storage unit, so that the communication device can perform the function of the first terminal device described in any one of the first to eighth aspects above.
  • a storage unit sometimes also referred to as a storage module
  • a communication device is provided.
  • the communication device may be the access network device described in any one of the first to eighth aspects.
  • the communication device has the functions of the above-mentioned access network device.
  • the communication device is, for example, an access network device, or a larger device including an access network device, or a functional module in an access network device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also referred to as a processing module) and a transceiver unit (sometimes also referred to as a transceiver module).
  • a processing unit sometimes also referred to as a processing module
  • a transceiver unit sometimes also referred to as a transceiver module
  • the transceiver unit (or, the receiving unit) is used to receive second indication information from the first terminal device, the second indication information is used to indicate that the first terminal device has detected continuous LBT failures, or indicates that all sidelink unicast connections of the first terminal device have radio link failures; the transceiver unit (or, the sending unit) is used to send third indication information to the first terminal device, the third indication information is used to instruct the first terminal device to perform one or more of the following actions: release all sidelink unicast connections of the first terminal device, release the DRB of all sidelink unicast connections of the first terminal device, release the SRB of all sidelink unicast connections of the first terminal device, or release the DRB of the broadcast and/or multicast communication of the first terminal device.
  • the transceiver unit (or, the receiving unit) is used to receive second indication information from the first terminal device, and the second indication information is used to indicate that a radio link failure occurs in the first sidelink unicast connection of the first terminal device; the transceiver unit (or, the sending unit) is used to send third indication information to the first terminal device.
  • the third indication information is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release the first sidelink unicast connection, release the DRB of the first sidelink unicast connection, or release the SRB of the first sidelink unicast connection; or, the third indication information is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release or suspend the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, or clear the cached transmission block of the feedback-enabled LCH of the first sidelink unicast connection.
  • the transceiver unit (or, the receiving unit) is used to receive second indication information from the first terminal device, the second indication information is used to indicate that continuous LBT failures of all first-type resource pools of the first terminal device are detected, and each of the first-type resource pools includes physical sidelink feedback channel resources; the processing unit is used to determine the first sidelink unicast connection of the first terminal device according to the second indication information, wherein all LCHs of the first sidelink unicast connection are feedback-enabled LCHs, or the LCHs of the first sidelink unicast connection include feedback-enabled LCHs and feedback-unenabled LCHs; the transceiver unit (or, the sending unit) is used to send third indication information to the first terminal device.
  • the third indication information is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release the first sidelink unicast connection, release the DRB of the first sidelink unicast connection, or release the SRB of the first sidelink unicast connection; or, the third indication information is used to instruct the first terminal device to perform one or more of the following on the first sidelink unicast connection: release or suspend the DRB and/or SRB of the feedback-enabled LCH of the first sidelink unicast connection, or clear the cached transmission block of the feedback-enabled LCH of the first sidelink unicast connection.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), and the processing unit is used to couple with the storage unit and execute the program or instruction in the storage unit, so that the communication device can perform the first aspect above.
  • a storage unit sometimes also referred to as a storage module
  • the processing unit is used to couple with the storage unit and execute the program or instruction in the storage unit, so that the communication device can perform the first aspect above.
  • a communication device which may be a first terminal device, or a chip or chip system used in the first terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the first terminal device in the above aspects.
  • a communication device which may be an access network device, or a chip or chip system used in an access network device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store a computer program, and the processor is coupled to the memory and the communication interface.
  • the processor reads the computer program or instruction, the communication device executes the method executed by the access network device in the above aspects.
  • a communication system comprising a first terminal device and an access network device, wherein the first terminal device is used to execute the method executed by the access network device as described in any one of the first to eighth aspects, and the access network device is used to execute the method executed by the access network device as described in any one of the first to eighth aspects.
  • the first terminal device may be implemented by the communication device described in the ninth or eleventh aspect; and the access network device may be implemented by the communication device described in the tenth or twelfth aspect.
  • a computer-readable storage medium is provided, wherein the computer-readable storage medium is used to store a computer program or instruction, and when the computer-readable storage medium is executed, the method executed by the first terminal device or the access network device in the above aspects is implemented.
  • a computer program product comprising instructions, which, when executed on a computer, enables the methods described in the above aspects to be implemented.
  • a chip system including a processor and an interface, wherein the processor is used to call and execute instructions from the interface so that the chip system implements the above-mentioned methods.
  • FIG1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG7 is a schematic diagram of a device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of another device provided in an embodiment of the present application.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • A/B means: A or B.
  • “At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • At least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • S201 may occur before S202, or may occur after S202, or may also occur at the same time as S202.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device (such as a communication module, a modem, or a chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, such as but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), V2X, machine-to-machine/machine-type communication (machine-to-machine/machine-type communications, M2M/MTC), Internet of Things (IoT), virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control (industrial control), self-driving, remote medical, smart grid, smart furniture, smart office, smart
  • the terminal device can be used in scenarios such as wearables, smart transportation, smart cities, drones, robots, etc.
  • the terminal device may sometimes be referred to as UE, terminal, access station, UE station, remote station, wireless communication device, or user device, etc.
  • the terminal device is described by taking UE as an example in the embodiments of the present application.
  • the network equipment in the embodiments of the present application includes access network equipment and/or core network equipment.
  • the access network equipment is a device with wireless transceiver function, which is used to communicate with the terminal equipment.
  • the access network equipment includes but is not limited to base stations (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transmission reception points (TRP), base stations subsequently evolved from the third generation partnership project (3GPP), access nodes in wireless fidelity (Wi-Fi) systems, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc.
  • the access network device can include one or more co-sited or non-co-sited transmission reception points.
  • the access network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the access network device may also be a server, etc.
  • the network device in the vehicle to everything (V2X) technology may be a road side unit (RSU).
  • the base station can communicate with a terminal device, or it can communicate with the terminal device through a relay station.
  • the terminal device can communicate with multiple base stations in different access technologies.
  • the core network device is used to implement functions such as mobility management, data processing, session management, policy and billing.
  • functions such as mobility management, data processing, session management, policy and billing.
  • the names of the devices that implement the core network functions in systems with different access technologies may be different, and the embodiments of the present application do not limit this.
  • the core network equipment includes: access and mobility management function (AMF), session management function (SMF), policy control function (PCF) or user plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • PCF policy control function
  • UPF user plane function
  • the communication device for realizing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, which may be installed in the network device.
  • the technical solution provided in the embodiment of the present application is described by taking the device for realizing the function of the network device as an example that the network device is used as the device.
  • Resource pools can be divided into two categories: one is a resource pool with physical sidelink feedback channel (PSFCH) resources, that is, a resource pool configured with PSFCH resources (pool of resources configured with PSFCH resources), and the other is a resource pool without PSFCH resources.
  • PSFCH physical sidelink feedback channel
  • UE can be configured with one or more logical channels (logical channels, LCHs), where LCHs can be divided into two categories, one is LCHs with sidelink feedback enabled, and the other is LCHs without sidelink feedback enabled.
  • enabling sidelink feedback can also be called sidelink hybrid automatic repeat request feedback enabled (sl-HARQ-FeedbackEnabled), or simply feedback enabled.
  • the SL information on the feedback-enabled LCH can only select SL resources for transmission from the resource pool with PSFCH resources, that is, the SL resources in the resource pool without PSFCH resources cannot be used to transmit the SL information on the feedback-enabled LCH; the SL information on the feedback-unenabled LCH can select SL resources for transmission from the resource pool with PSFCH resources or from the resource pool without PSFCH resources.
  • the spectrum resources used are divided into licensed spectrum and unlicensed spectrum.
  • Licensed spectrum can only be used by certain organizations or operators, while unlicensed spectrum is shared spectrum and can be used by different operators/organizations.
  • LBT process channel access process
  • LBT is performed at the granularity of a channel (e.g., a bandwidth of 20 MHz). It is understandable that a channel can be equivalently replaced by a resource block set (RB set), that is, the frequency domain bandwidth of a channel and an RB set is 20 MHz.
  • a communication device e.g., UE
  • a signal e.g., a data signal
  • a certain channel e.g., recorded as the first channel
  • This detection process can be called a clear channel assessment (CCA), or a channel access process.
  • CCA clear channel assessment
  • one difference from traditional Uu communication is that in a scenario based on licensed spectrum, after the base station schedules uplink resources for the UE, the UE can directly use the uplink resources for uplink transmission; while in a scenario based on unlicensed spectrum, after the base station schedules uplink resources for the UE for uplink transmission, the UE still needs to perform LBT on the uplink transmission. Only after the LBT is successful can the uplink resource be used for uplink transmission. In other words, if LBT fails, the UE cannot use the scheduled uplink resources for uplink transmission.
  • the base station when using unlicensed spectrum for Uu interface communication, the base station will configure the LBT failure recovery configuration for the UE.
  • the LBT failure recovery configuration may include the maximum number of failures and the duration of the LBT failure detection timer.
  • the LBT failure recovery configuration is based on each For each UL BWP, the maximum number of failures configured for different UL BWPs is the same or different, and the duration of the LBT failure detection timer configured for different UL BWPs is the same or different. For example, if a UL carrier has multiple UL BWPs, the UE executes the LBT failure number and LBT failure detection timer according to the granularity of the UL BWP.
  • the LBT failure number corresponding to the UL BWP can be increased by 1, and the LBT failure detection timer corresponding to the UL BWP can be started or restarted; or, when LBT is successful on a UL BWP, the LBT failure number corresponding to the UL BWP can be cleared, and the state of the LBT failure detection timer corresponding to the UL BWP is kept unchanged, and the LBT failure detection timer corresponding to the UL BWP will time out. If the LBT failure number of a UL BWP is greater than or equal to the maximum number of failures configured for the UL BWP, it is considered that the UL BWP has detected continuous LBT failures.
  • the MAC entity maintains the number of LBT failures (the initial value of the number of failures is 0) and the LBT failure detection timer inside the UE. If the MAC entity receives an LBT failure indication of a UL BWP from the lower layer of the UE (such as the physical layer), it will start or restart the LBT failure detection timer corresponding to the UL BWP, and increase the number of LBT failures corresponding to the UL BWP by 1; before the LBT failure detection timer times out, if the MAC entity of the UE does not receive an LBT failure indication of the UL BWP from the lower layer of the UE, the LBT failure detection timer will time out, and the MAC layer of the UE can clear the number of LBT failures corresponding to the UL BWP.
  • the number of LBT failures of the UE on a UL BWP is greater than or equal to the configured maximum number of failures, it is considered that the UL BWP has suffered continuous LBT failures, and the UL BWP is unavailable at this time.
  • the UE can autonomously transfer to the UL BWP for random access; and if all UL BWPs configured with PRACH in the cell have continuous LBT failure, the MAC entity of the UE can send indication information to the upper layer of the UE (such as the radio resource control (RRC) layer).
  • RRC radio resource control
  • the UE can trigger the RRC re-establishment process; or, if the cell is the secondary cell of the UE, the UE will send a MAC control element (CE) to the base station for indicating continuous LBT failure, and the MAC CE may include the index of the secondary cell where the continuous LBT failure occurs.
  • CE MAC control element
  • the SL carrier has only a single BWP, and the single BWP can include up to 8 mode1 or mode2 resource pools.
  • the UE performs continuous LBT failure detection with BWP as the granularity, then when continuous LBT failures occur in the UE, continuous LBT failures may only occur in part of the resource pools included in the BWP, and the remaining resource pools included in the BWP are still available.
  • the UE will consider the BWP as a whole to be unavailable, which leads to a waste of SL resources.
  • the first UE if the first UE detects continuous LBT failures in all resource pools of the first UE, the first UE can perform operations such as releasing the SL unicast connection of the first UE. Conversely, if the first UE successfully performs LBT on the transmission in part of the resource pools of the first UE, the first UE does not need to perform operations such as releasing the SL unicast connection of the first UE. For example, the first UE can continue to use this part of the resource pool for communication, thereby reducing the waste of SL resources and improving the utilization rate of SL resources.
  • performing LBT on the transmission in the resource pool can be understood as scheduling or selecting the resources of the resource pool for SL transmission, and performing LBT on the SL transmission.
  • the technical solution provided in the embodiments of the present application can be applied to the 4th generation (4G) system, such as the long term evolution (LTE) system, or can be applied to the 5G system, such as the NR system, or can also be applied to the next generation mobile communication system or other similar communication systems, such as the 6th generation (6G) system, etc., without specific limitation.
  • the technical solution provided in the embodiments of the present application can be applied to the device-to-device (D2D) scenario, such as the NR-D2D scenario, etc., or can be applied to the vehicle-to-everything (V2X) scenario, such as the NR-V2X scenario, etc.
  • D2D device-to-device
  • V2X vehicle-to-everything
  • it can be applied to the Internet of Vehicles, such as V2X, etc., or can be used in the fields of intelligent driving, assisted driving, or intelligent networked vehicles.
  • Figure 1 is a communication network architecture applicable to an embodiment of the present application.
  • Figure 1 includes a first UE and a second UE.
  • SL communication can be performed between the first UE and one or more UEs.
  • Figure 1 takes the example that the first UE can perform SL communication with the second UE, and the number of second UEs is 1.
  • the first UE and the second UE can perform SL communication using unlicensed spectrum.
  • the first UE Before the first UE sends SL information to the second UE, the first UE can perform the LBT process; similarly, before the second UE sends SL information to the first UE, the second UE can also perform the LBT process.
  • Figure 1 also includes an access network device.
  • the behavior of the first UE can be decided by the first UE itself, or it can also be instructed by the access network device.
  • Figure 1 does not show the communication between the second UE and the access network device. Communication is possible, for example, the second UE is also within the coverage of the access network device or the coverage of other access network devices; or, the second UE and the access network device may not be able to communicate, for example, the second UE is outside the coverage of the access network device.
  • Figure 1 takes the first UE being within the coverage of the access network device (for example, the access network device shown in Figure 1) as an example; there may also be a scenario where the first UE is outside the coverage of any access network device.
  • the methods provided by the embodiments of the present application are introduced below in conjunction with the accompanying drawings.
  • the methods provided by the various embodiments of the present application can be applied to the network architecture shown in Figure 1.
  • the first UE involved in the methods provided by the various embodiments of the present application can be the first UE in Figure 1
  • the access network device involved in the methods provided by the various embodiments of the present application can be the access network device in Figure 1.
  • the resource pool involved in the various embodiments of the present application can be an SL resource pool.
  • “layer” can also be understood as "entity”.
  • MAC layer can also be replaced with “MAC entity”
  • physical layer can also be replaced with “physical entity”
  • RRC layer” can also be replaced with "RRC entity”
  • the UE performs continuous LBT detection, which may be based on the granularity of frequency domain units.
  • the frequency domain unit is a resource pool, that is, the UE can perform continuous LBT detection on the resource pool; or the frequency domain unit is a resource block set (RB set) included in the BWP, that is, the UE can perform continuous LBT detection on the RB set, wherein the "RB set" described in various embodiments of the present application is the RB set in the resource pool, or the RB set described in various embodiments of the present application is located in the resource pool; or the frequency domain unit is the LBT subband included in the BWP, that is, the UE can perform continuous LBT detection on the LBT subband.
  • RB set resource block set
  • the frequency domain unit is taken as an example of a resource pool. It is understandable that the detection or occurrence of continuous LBT failure in a "resource pool” described below can also be replaced by determining that continuous LBT failure is detected or occurred in a "resource pool” through continuous LBT failure of "RB set” or continuous LBT failure of "LBT subband", or replaced by determining that continuous LBT failure is detected or occurred in a "resource pool” by detecting that continuous LBT failure occurs in "RB set” or continuous LBT failure occurs in "LBT subband”.
  • the UE generally only performs LBT on SL data transmission, so optionally, the "resource pool" in each embodiment of the present application can be understood as a "SL transmission resource pool”.
  • the first UE detects continuous LBT failures in all resource pools of the first UE. Alternatively, the first UE determines that continuous LBT failures occur in all resource pools of the first UE.
  • S201 may be replaced by: the first UE detects continuous LBT failures in all RB sets of the first UE or all RB sets in all resource pools.
  • the first UE determines that continuous LBT failures occur in all RB sets of the first UE or all RB sets in all resource pools.
  • the all RB sets may include one or more RB set(s).
  • All resource pools of the first UE are, for example, all resource pools configured for the first UE, or all resource pools supported by the first UE.
  • the first UE may be configured with one or more resource pools (or, the number of all resource pools may be one or more), and the one or more resource pools may be configured by an access network device (e.g., configured by a broadcast message or a dedicated message), or may be pre-configured in the first UE (e.g., configured when the first UE leaves the factory), or may be configured by a higher layer of the first UE (e.g., an upper layer).
  • the first UE may perform LBT on transmissions in multiple resource pools simultaneously, or may perform LBT on transmissions in one resource pool before performing LBT on transmissions in the next resource pool, without limiting the order of execution.
  • all resource pools of the first UE may be, for example, resource pools corresponding to mode1 or resource pools corresponding to mode2, but do not include exceptional resource pools.
  • all resource pools of the first UE may include resource pools corresponding to mode1, but do not include exceptional pools; if the UE is configured with mode2 or the UE uses mode2, all resource pools of the first UE may include resource pools corresponding to mode2, but do not include exceptional resource pools.
  • the resource pool corresponding to mode1 is the resource pool for normal SL transmission configured by the UE under mode1 (for example, the resource pool configured by the sidelink transmission resource pool scheduling (sl-TxPoolScheduling) field);
  • the resource pool corresponding to mode2 is the resource pool for normal SL transmission configured by the UE under mode2 (for example, the resource pool configured by the sidelink transmission resource pool selection normal (sl-TxPoolSelectedNormal) field);
  • exceptional pool is the resource pool for SL transmission under special circumstances configured by the UE under mode1 or mode2 (for example, the resource pool configured by the sidelink transmission resource pool special (sl-TxPoolExceptional) field).
  • Special situations in mode 1 include, for example: the first UE detects a physical layer problem in the wireless link between the first UE and the access network device (i.e., during the operation of the T310 timer), or the first UE initializes the RRC reestablishment (i.e., during the operation of the T311 timer), or the first UE sends an RRC connection reestablishment request message (i.e., during the operation of the T301 timer), or the first UE performs a cell handover (i.e., during the operation of the T304 timer). (while the timer is running).
  • Special situations under mode2 include, for example: the SL resource set selected by the first UE is unavailable.
  • all resource pools of the first UE also do not include discovery-related dedicated resource pools, for example, do not include the resource pool configured by the sidelink discovery transmission resource pool scheduling (sl-DiscTxPoolScheduling) field or the sidelink discovery transmission resource pool selection (sl-DiscTxPoolSelected) field.
  • sidelink discovery transmission resource pool scheduling sl-DiscTxPoolScheduling
  • sidelink discovery transmission resource pool selection sl-DiscTxPoolSelected
  • all the above-mentioned resource pools can be understood as all resource pools where all RB sets are located.
  • S201 may be performed by the MAC layer of the first UE.
  • the physical layer of the first UE may perform LBT on transmissions in resource pools. If LBT failure is detected in transmissions in one resource pool, the physical layer may send an LBT failure indication to the MAC layer of the first UE to indicate that an LBT failure is detected in the resource pool, or to indicate that an LBT failure has occurred (or occurred) in the resource pool.
  • the physical layer may indicate the resource pool in which the LBT failure occurred (e.g., through a resource pool identifier or a resource pool index) when sending the LBT failure indication to the MAC layer of the first UE.
  • the MAC layer of the first UE may determine whether a continuous LBT failure has occurred in a certain resource pool through the LBT failure indication sent by the physical layer. If the MAC layer determines that a continuous LBT failure indication has occurred in each of all resource pools corresponding to the first UE, the MAC layer may determine that continuous LBT failures have been detected in all resource pools of the first UE.
  • the above-mentioned "resource pool" can be replaced by "RB set". That is, the physical layer of the first UE can perform LBT on the transmission in the RB set. If the LBT failure is detected in the transmission in one RB set, the physical layer can send an LBT failure indication to the MAC layer of the first UE to indicate that the LBT failure is detected in the RB set, or to indicate that the LBT failure has occurred (or occurred) in the RB set.
  • the physical layer can indicate the RB set in which the LBT failed (for example, through the RB set identifier or the RB set index) when sending the LBT failure indication to the MAC layer of the first UE.
  • the MAC layer of the first UE can determine whether a continuous LBT failure has occurred in a certain RB set through the LBT failure indication from the physical layer. If the MAC layer determines that a continuous LBT failure indication has occurred in each RB set in all resource pools corresponding to the first UE, the MAC layer can determine that a continuous LBT failure has been detected in all RB sets of the first UE or all RB sets in all resource pools.
  • each resource pool among all resource pools of the first UE may be configured with a maximum number of failures (the maximum number of failures may be configured together with the resource pool), and the MAC layer increases the number of failures corresponding to the resource pool by 1 each time it receives an LBT failure indication of a resource pool.
  • each resource pool among all resource pools of the first UE may also be configured with a timer (the timer may be configured together with the resource pool). For example, if the MAC layer receives an LBT failure indication of a resource pool from the physical layer, the timer corresponding to the resource pool may be started or restarted, and the number of failures corresponding to the resource pool may be increased by 1.
  • the MAC layer may increase the number of failures corresponding to the resource pool by 1 and restart the timer; or, before the timer times out, if the MAC layer does not receive an LBT failure indication of the resource pool from the physical layer of the UE, the MAC layer may clear the number of failures corresponding to the resource pool to zero, and the MAC layer may keep the state of the timer unchanged, and the timer may time out. Then, if the number of failures of a resource pool is greater than or equal to the maximum number of failures corresponding to the resource pool, the MAC layer can determine that the resource pool has continuous LBT failures.
  • the maximum number of failures configured for different resource pools can be the same or different; the timers configured for different resource pools can be the same or different in duration.
  • the above-mentioned “resource pool” can be replaced by "RB set”.
  • the first UE when it detects that at least one resource pool among all resource pools has continuous LBT failures, it may multicast the first information.
  • the first information may indicate that continuous LBT failures have occurred in at least one resource pool, so that the UE receiving the first information may no longer use at least one resource pool to communicate with the first UE.
  • the first UE may multicast the first information each time it detects that continuous LBT failures have occurred in a resource pool; or, the first UE may multicast the first information again when it detects that continuous LBT failures have occurred in multiple resource pools.
  • the first UE may use a first multicast layer 2 identifier to multicast the first information, and the first multicast layer 2 identifier may be pre-assigned to the second UE, and the second UE may include one or more UEs.
  • the first UE may allocate a first multicast layer 2 identifier to the second UE.
  • the second UE includes multiple UEs, the first multicast layer 2 identifier allocated by the first UE to the multiple UEs may be the same identifier.
  • the first UE allocates the first multicast layer 2 identifier, and the high-level configuration of each UE does not need to be performed, so that the multicast layer 2 identifier can be made more flexible.
  • the first UE can flexibly update the multicast layer 2 identifier, or different multicast layer 2 identifiers can be allocated to UEs of different groups, etc., thereby improving the flexibility of communication.
  • the first multicast layer 2 identifier can indicate that the corresponding multicast message is the first information, or indicate that the corresponding multicast message is used to indicate the continuous LBT failure of the resource pool.
  • the message is regarded as the multicast message corresponding to the first multicast layer 2 identifier.
  • the UE receiving the multicast message can determine that the multicast message is the first information, or determine that a continuous LBT failure has occurred in a resource pool.
  • the first information may include the identifier of the at least one resource pool, so that the UE receiving the first information The UE can determine the at least one resource pool, wherein the identifier of a resource pool is, for example, an index of the resource pool.
  • the above-mentioned “resource pool” can be replaced by "RB set”.
  • the first UE may also broadcast the first information when detecting that at least one resource pool among all resource pools has a continuous LBT failure.
  • the first information may indicate that a continuous LBT failure has occurred in at least one resource pool, so that the UE receiving the first information may no longer use at least one resource pool to communicate with the first UE.
  • the first UE may broadcast the first information each time it detects that a continuous LBT failure has occurred in a resource pool; or, the first UE may broadcast the first information again when it detects that a continuous LBT failure has occurred in multiple resource pools.
  • the first UE may use a first broadcast layer 2 identifier to broadcast the first information, and the first broadcast layer 2 identifier may be pre-assigned to the second UE, and the second UE may include one or more UEs.
  • the first broadcast layer 2 identifier may be allocated to the second UE (for example, when the first UE establishes an SL unicast connection with one or more UEs, the first multicast layer 2 identifier and/or the first broadcast layer 2 identifier may be allocated to the one or more UEs).
  • the first broadcast layer 2 identifier allocated by the first UE to the multiple UEs may be the same identifier.
  • the first broadcast layer 2 identifier is allocated by the first UE, and the broadcast layer 2 identifier does not need to be configured by the high-level layer of each UE, which can make the broadcast layer 2 identifier more flexible.
  • the first UE can flexibly update the broadcast layer 2 identifier, or different broadcast layer 2 identifiers can be allocated to UEs in different groups or different cells, etc., thereby improving communication flexibility.
  • the first broadcast layer 2 identifier can indicate that the corresponding broadcast message is the first information, or indicate that the corresponding broadcast message is used to indicate continuous LBT failures of a resource pool. Among them, if the first UE broadcasts a message using the first broadcast layer 2 identifier, the message is regarded as a broadcast message corresponding to the first broadcast layer 2 identifier. If the first UE uses the first broadcast layer 2 identifier to broadcast, the UE receiving the broadcast message can determine that the broadcast message is the first information, or determine that a continuous LBT failure has occurred in a resource pool.
  • the first information may include the identifier of the at least one resource pool, so that the UE receiving the first information can determine the at least one resource pool.
  • the above-mentioned “resource pool” can be replaced by "RB set”.
  • the first UE performs a first operation.
  • the first operation may also be referred to as a first behavior.
  • the first operation may include one or more of the following: releasing all SL unicast connections of the first UE, releasing the bearers of all SL unicast connections of the first UE, or releasing the DRBs of the broadcast and/or multicast communications of the first UE.
  • S202 may be performed by the RRC layer of the first UE.
  • the first operation may include one or more of the following: releasing all SL unicast connections of the first UE, indicating to the upper layer of the first UE that all SL unicast connections of the first UE have been released, releasing the bearers of all SL unicast connections of the first UE, or releasing the DRB of the broadcast and/or multicast communication of the first UE.
  • the SL unicast connection may be a PC5-RRC connection.
  • the bearer of a SL unicast connection may include a data radio bearer (DRB) and/or a signaling radio bearer (SRB) of the SL unicast connection.
  • DRB data radio bearer
  • SRB signaling radio bearer
  • Releasing the bearers of all SL unicast connections of the first UE may include releasing the configuration of the bearers of all SL unicast connections of the first UE and/or the bearer entity.
  • the first UE wants to use the SL unicast connection to transmit SL information, it must select resources in the resource pool. If the first UE detects continuous LBT failures in all resource pools of the first UE, it indicates that all resource pools of the first UE are unavailable. In this case, all SL unicast connections of the first UE cannot work, so the first UE can release all SL unicast connections of the first UE.
  • "all resource pools of the first UE are unavailable" can be replaced with "all resource pools of the first UE are unavailable for a subsequent period of time", that is, after a period of time, the resource pool of the first UE may become available again, and the length of the period of time may be predetermined by the protocol or configured by the network device.
  • the upper layer of the first UE can use the SL unicast connection of the first UE to transmit SL information, so the first UE can indicate to the upper layer of the first UE that all SL unicast connections of the first UE have been released, so that the upper layer no longer uses these SL unicast connections, for example, no longer delivers the data of these SL unicast connections.
  • the first UE may release the SL unicast connection, and/or may release the bearer of the SL unicast connection. If a SL unicast connection is released but the bearer of the SL unicast connection is not released, the first UE may also rebuild the SL unicast connection according to the bearer configuration and/or entity without having to re-obtain the bearer configuration and/or entity of the SL unicast connection. Alternatively, if the bearer configuration of a SL unicast connection is released but the SL unicast connection is not released, the SL unicast connection cannot work according to the bearer configuration, for example, the SL unicast connection cannot work, or the SL unicast connection may also work according to the default bearer configuration.
  • a SL unicast connection is released and the bearer of the SL unicast connection is released, the SL unicast connection and the bearer configuration and/or entity no longer exist, and if the UE wants to rebuild the SL unicast connection, it may re-obtain the corresponding bearer configuration and/or entity.
  • the first UE needs to perform multicast or broadcast and also needs to select SL resources in the resource pool. If the first UE detects continuous LBT failures in all resource pools of the first UE, the first UE will also be unable to perform multicast or broadcast. Therefore, the first UE can release the DRB of the first UE's broadcast and/or multicast communication.
  • the MAC layer may also send first indication information to the RRC layer, for example, the first indication information may occupy one or more bits.
  • the first indication information may indicate that a continuous LBT failure has been detected (or occurred), or indicate that a radio link failure (RLF) has occurred in all SL unicast connections of the first UE.
  • RLF radio link failure
  • the MAC layer detects that all resource pools of the first UE have continuous LBT failures, the first indication information may be sent to the RRC layer, and as long as at least one resource pool of the first UE has a successful LBT, the MAC layer may not send the first indication information to the RRC layer.
  • the first indication information indicates that a continuous LBT failure has been detected, it can also be considered that the first indication information actually indicates that a continuous LBT failure has been detected in all resource pools of the first UE; or, the first indication information indicates that a continuous LBT failure has been detected, but the RRC layer can determine that all resource pools of the first UE have continuous LBT failures based on the first indication information.
  • the success of LBT of the resource pool can be understood as scheduling or selecting resources in the resource pool for SL transmission, successfully performing LBT on the SL transmission, or the state of continuous LBT failure of the resource pool is cancelled.
  • the first UE may decide to execute S202 on its own.
  • the RRC layer receives the first indication information and then executes S202.
  • the first operation may include the above operations, which may also be decided by the RRC layer itself (or may be decided by the MAC layer and instruct the RRC layer, for example, the MAC layer indicates through the first indication information).
  • the first UE has a stronger decision-making ability, and since it does not need to interact too much with other devices, the processing delay can be reduced.
  • the first UE may also execute S202 according to the instructions of other devices, for example, the other devices are access network devices, or other UEs, etc. Taking the case where the other devices are access network devices as an example, the first UE may send a second indication message to the access network device, and the second indication message may indicate that a continuous LBT failure has been detected (or has occurred), or indicate that RLF has occurred in all SL unicast connections of the first UE.
  • the second indication message may be sent to the access network device, and as long as at least one resource pool of the first UE has a successful LBT, the first UE may not send the second indication message to the access network device. Therefore, if the second indication message indicates that a continuous LBT failure has been detected, it can also be considered that the second indication message actually indicates that a continuous LBT failure has been detected in all resource pools of the first UE; or, the second indication message indicates that a continuous LBT failure has been detected, but the access network device can determine that all resource pools of the first UE have continuous LBT failures based on the second indication message.
  • the access network device may send a third indication information to the first UE, and the third indication information may indicate one or more of the following: releasing all SL unicast connections of the first UE, releasing the DRBs of all SL unicast connections of the first UE, releasing the SRBs of all SL unicast connections of the first UE, or releasing the DRBs of the broadcast and/or multicast communications of the first UE.
  • the second indication information may be sent to the access network device by the RRC layer of the first UE, and the access network device may also send the third indication information to the RRC layer of the first UE.
  • S202 may be executed according to the third indication information. For example, if the third indication information indicates the release of all SL unicast connections of the first UE, the first operation may include releasing all SL unicast connections of the first UE.
  • the first operation may also include indicating to the upper layer of the first UE that all SL unicast connections of the first UE have been released; if the third indication information indicates the release of DRBs of all SL unicast connections of the first UE, the first operation may include releasing DRBs of all SL unicast connections of the first UE; if the third indication information indicates the release of SRBs of all SL unicast connections of the first UE, the first operation may include releasing SRBs of all SL unicast connections of the first UE; if the third indication information indicates the release of DRBs of broadcast and/or multicast communications of the first UE, the first operation may include releasing DRBs of broadcast and/or multicast communications of the first UE.
  • the first UE can perform corresponding operations according to the instructions of other devices (such as access network devices), and the first UE does not have to perform too many decision-making behaviors.
  • the capability requirements for the first UE are relatively low, so that the technical solutions of the embodiments of the present application can be applied to both high-capability UEs and low-capability UEs.
  • the RRC layer of the first UE may not have to perform the first operation. For example, if the first UE successfully performs LBT on the transmission in some resource pools of the first UE, the MAC layer of the first UE may not have to send the first indication information to the RRC layer of the first UE, so the RRC layer may not have to perform the first operation, for example, the first UE can continue to communicate with other UEs using the resource pools that successfully perform LBT.
  • all or part of all resource pools of the first UE are located on a BWP, then even if continuous LBT failures are detected in some resource pools of the BWP, if there are still resource pools with successful LBT on the BWP, the first UE can communicate using the resource pools with successful LBT, which will not cause all resource pools of the BWP to be unavailable, thereby reducing the waste of SL resources and improving the utilization rate of SL resources.
  • the first UE after S201, for some or all of the SL unicast connections of the first UE, the first UE considers that a SL radio link failure (RLF) is detected.
  • RLF SL radio link failure
  • Each SL unicast connection of the first UE has a corresponding destination address, and the SL unicast connection of the first UE can be understood as the destination address of establishing a SL unicast connection with the first UE. If the first UE detects a SL radio link failure for a certain SL unicast connection of the first UE, it can be understood that the first UE detects a SL radio link failure for the destination address of the SL unicast connection.
  • the first UE detects continuous LBT failures in all resource pools of the first UE, or the first UE determines that continuous LBT failures have occurred in all resource pools of the first UE, then for some of the SL unicast connections of the first UE, (for example, the number is one or more), the first UE believes that an SL wireless link failure is detected; or, in S201, the first UE detects continuous LBT failures in all resource pools of the first UE, or the first UE determines that continuous LBT failures have occurred in all resource pools of the first UE, then for all SL unicast connections of the first UE, the first UE believes that an SL wireless link failure is detected.
  • the first UE may also execute S202, for example, when or after the first UE believes that an SL wireless link failure is detected for some or all of the SL unicast connections of the first UE, S202 may be executed.
  • all resource pools of the first UE are, for example, resource pools corresponding to mode1 or resource pools corresponding to mode2, but do not include exceptional pools.
  • the "resource pool” in the above description of performing LBT on a certain resource pool or part of the resource pools or detecting continuous LBT failure, the "resource pool” can be replaced by "RB set”; in the above description of detecting continuous LBT failure for all resource pools, the "continuous LBT failure of all resource pools” can be replaced by "continuous LBT failure of all RB sets” or “continuous LBT failure of all RB sets in all resource pools”.
  • the first UE may perform the first operation. Conversely, if the first UE successfully performs LBT on transmission in part of the resource pools of the first UE, the first UE may not have to perform the first operation, for example, the first UE may continue to use this part of the resource pool for communication, thereby reducing the waste of SL resources and improving the utilization rate of SL resources.
  • the embodiment shown in FIG2 introduces a situation in which the first UE detects continuous LBT failures in all resource pools.
  • the first UE may be configured with two resource pools, one of which is a resource pool with (or including) PSFCH resources, and the other is a resource pool without (or not including) PSFCH resources. So, if the first UE detects continuous LBT failures in all configured resource pools with PSFCH resources, or if the first UE detects continuous LBT failures in all RB sets in all configured resource pools with PSFCH resources, how will the first UE handle it? This is also a problem that needs to be solved. In view of this, an embodiment of the present application provides a second communication method to solve this problem. Please refer to FIG3 for a flow chart of the method.
  • a first UE detects continuous LBT failures in all first-type resource pools of the first UE. Alternatively, the first UE determines that continuous LBT failures occur in all first-type resource pools of the first UE.
  • S301 may be replaced by: the first UE detects continuous LBT failures in all RB sets in all first-category resource pools of the first UE.
  • the first UE determines that continuous LBT failures occur in all RB sets in all first-category resource pools of the first UE.
  • all RB sets may be one or more RB set(s).
  • All first-class resource pools of the first UE are, for example, all first-class resource pools configured for the first UE, or all first-class resource pools supported by the first UE.
  • the first UE may be configured with one or more first-class resource pools, which may be configured by an access network device (e.g., configured by a broadcast message or a dedicated message), or may be pre-configured in the first UE (e.g., configured when the first UE leaves the factory), or may be configured by a higher layer of the first UE (e.g., an upper layer).
  • the first UE may also be configured with (or support) one or more second-class resource pools, and the number of first-class resource pools and the number of second-class resource pools configured for the first UE may be equal or unequal, without limitation.
  • the first UE may perform LBT on transmissions in multiple resource pools simultaneously, or may perform LBT on transmissions in one resource pool before performing LBT on transmissions in the next resource pool, without limitation on the order of execution.
  • the first type of resource pool is, for example, a resource pool that is configured with (or includes) PSFCH resources, or in other words, the first type of resource pool includes PSFCH resources;
  • the second type of resource pool is, for example, a resource pool that is not configured with (or does not include) PSFCH resources, or in other words, the second type of resource pool does not include PSFCH resources.
  • all first-class resource pools of the first UE are, for example, the first-class resource pool corresponding to mode1 or the first-class resource pool corresponding to mode2, but do not include the exceptional pool (or do not include the first-class exceptional pool).
  • all first-class resource pools of the first UE only include the first-class resource pool corresponding to mode1, but do not include the exceptional pool (or do not include the first-class exceptional pool); if the UE is configured with mode2 or the UE uses mode2, all first-class resource pools of the first UE only include the first-class resource pool corresponding to mode2, but do not include the exceptional pool (or do not include the first-class exceptional pool).
  • the first type of resource pool corresponding to mode1 is the first type of resource pool for normal SL transmission configured by the UE under mode1 (for example, the configured resource pool is indicated by the sl-TxPoolScheduling-r16 field, and PSFCH resources are configured (or included);
  • the first type of resource pool corresponding to mode2 is the first type of resource pool for normal SL transmission configured by the UE under mode2 (for example, the configured resource pool is indicated by the sl-TxPoolSelectedNormal-r16 field, and PSFCH resources are configured (or included);
  • the exceptional pool is the resource pool for SL transmission under special circumstances configured by the UE under mode1 or mode2 (for example, the resource pool configured by the sidelink transmission resource pool special (sl-TxPoolExceptional) field);
  • the first type of exceptional pool is the first type of resource pool for SL transmission under special circumstances configured by the UE under mode1 or mode2 (for example, the resource pool configured by the sidelink transmission resource pool
  • Special situations under mode 1 include, for example: the first UE detects a physical layer problem in the wireless link between the first UE and the access network device (i.e., during the operation of the T310 timer), or the first UE initializes the RRC reconstruction (i.e., during the operation of the T311 timer), or the first UE sends an RRC connection reconstruction request message (i.e., during the operation of the T301 timer), or the first UE performs a cell switch (i.e., during the operation of the T304 timer).
  • Special situations under mode2 include, for example: the SL resource set selected by the first UE is unavailable.
  • all first-class resource pools of the first UE also do not include discovery-related dedicated resource pools, for example, do not include the resource pool configured by the sidelink discovery transmission resource pool scheduling (sl-DiscTxPoolScheduling) field or the sidelink discovery transmission resource pool selection (sl-DiscTxPoolSelected) field.
  • sidelink discovery transmission resource pool scheduling sl-DiscTxPoolScheduling
  • sidelink discovery transmission resource pool selection sl-DiscTxPoolSelected
  • S301 may be performed by the MAC layer of the first UE.
  • the physical layer of the first UE may perform LBT on transmissions in the first and second resource pools. If LBT failure is detected in transmissions in one resource pool, the physical layer may send an LBT failure indication to the MAC layer of the first UE to indicate that an LBT failure is detected in the resource pool, or to indicate that an LBT failure has occurred (or occurred) in the resource pool.
  • the physical layer may indicate the resource pool in which the LBT failure occurred (e.g., through a resource pool identifier or a resource pool index) when sending the LBT failure indication to the MAC layer of the first UE.
  • the MAC layer of the first UE may determine whether a continuous LBT failure has occurred in a certain resource pool through the LBT failure indication sent by the physical layer. For more information about the process, please refer to the introduction of S201 of the embodiment shown in FIG. 2. If the MAC layer determines that a continuous LBT failure indication has occurred in each of all first-class resource pools corresponding to the first UE, the MAC layer may determine that a continuous LBT failure has been detected in all first-class resource pools of the first UE.
  • the above-mentioned "resource pool” can be replaced by "RB set”
  • the above-mentioned “first type of resource pool” can be replaced by “RB set in the first type of resource pool”
  • the above-mentioned “second type of resource pool” can be replaced by "RB set in the second type of resource pool”. That is, the physical layer of the first UE can perform LBT on the transmission in the RB set in the first type of resource pool and the RB set in the second type of resource pool.
  • the physical layer can send an LBT failure indication to the MAC layer of the first UE to indicate that LBT failure is detected in the RB set, or indicate that LBT failure occurs (or occurs) in the RB set.
  • the physical layer can indicate the RB set with LBT failure when sending the LBT failure indication to the MAC layer of the first UE (for example, through the RB set identifier or RB set index).
  • the MAC layer of the first UE can determine whether a certain RB set has continuous LBT failure through the LBT failure indication from the physical layer. For more information about this process, please refer to the introduction of S201 of the embodiment shown in Figure 2.
  • the MAC layer determines that continuous LBT failure indication occurs in all RB sets in all first-class resource pools corresponding to the first UE, the MAC layer can determine that continuous LBT failure is detected in all RB sets in all first-class resource pools of the first UE.
  • the first UE may multicast the first information.
  • the first information may indicate that at least one of the first-class resource pools has a continuous LBT failure, so that the UE receiving the first information may no longer use the at least one first-class resource pool to communicate with the first UE.
  • the first UE may use the first multicast layer 2 identifier to multicast the first information. For more information on this, please refer to S201 of the embodiment shown in Figure 2.
  • the first UE may multicast the first information when detecting that at least one RB set in all the first-category resource pools of the first UE has continuous LBT failure.
  • the first information may indicate that the RB set in at least one first-category resource pool has continuous LBT failure, so that the UE receiving the first information may no longer use the RB set in at least one first-category resource pool to communicate with the first UE.
  • the first UE may broadcast the first information when detecting that at least one of all the first-class resource pools of the first UE has a continuous LBT failure.
  • the first information may indicate that at least one of the first-class resource pools has a continuous LBT failure, so that the UE receiving the first information may no longer communicate with the first UE using at least one of the first-class resource pools.
  • the first UE may use the first broadcast layer 2 identifier to multicast the first information. For more information on this, please refer to S201 of the embodiment shown in Figure 2.
  • the first UE may multicast the first information when detecting that at least one RB set in all the first-category resource pools of the first UE has continuous LBT failure.
  • the first information may indicate that the RB set in at least one first-category resource pool has continuous LBT failure, so that the UE receiving the first information may no longer use the RB set in at least one first-category resource pool to communicate with the first UE.
  • the first UE For the first SL unicast connection, the first UE performs a second operation, which may also be referred to as a second behavior.
  • the SL information on the feedback-enabled LCH can only be transmitted by selecting SL resources from the resource pool with PSFCH resources.
  • the SL resources in the resource pool without PSFCH resources cannot be used to transmit the SL information on the feedback-enabled LCH.
  • the SL information on the feedback-disabled LCH can be transmitted by selecting SL resources from the resource pool with PSFCH resources or from the resource pool without PSFCH resources. Select SL resource transmission in the pool.
  • the first UE can process the SL unicast connection including the feedback-enabled LCH.
  • the first SL unicast connection is an SL unicast connection in which all configured LCHs are feedback-enabled LCHs, or in other words, all LCHs configured for the first SL unicast connection are feedback-enabled LCHs; or, the first SL unicast connection is, for example, an SL unicast connection in which the configured LCHs include feedback-enabled LCHs and feedback-disabled LCHs, or in other words, the LCHs configured for the first SL unicast connection include feedback-enabled LCHs and feedback-disabled LCHs.
  • the first UE can perform the second operation, and the first SL unicast connection is any one of the one or more SL unicast connections, that is, S302 takes the first UE performing the second operation on any one of the SL unicast connections as an example.
  • the first UE can perform the second operation, and the first SL unicast connection is any one of the one or more SL unicast connections, that is, S302 takes the first UE performing the second operation on any one of the SL unicast connections as an example.
  • the second operation may be performed with the SL unicast connection as the granularity.
  • the second operation includes one or more of the following: considering that the first SL unicast detects or a radio link failure occurs, releasing the first SL unicast connection, or releasing the bearer of the first SL unicast connection.
  • S302 may be performed by the RRC layer of the first UE.
  • the second operation may include one or more of the following: considering that the first SL unicast detects or a radio link failure occurs, releasing the first SL unicast connection, indicating to the upper layer of the first UE that the first SL unicast connection has been released, or releasing the bearer of the first SL unicast connection.
  • the bearer of the first SL unicast connection includes the DRB and/or SRB of the first SL unicast connection.
  • the second operation as above can be understood as the operation performed by the first UE on the SL unicast connection. Processing with the SL unicast connection as the granularity can reduce the processing complexity of the first UE. For example, if all LCHs configured for the first SL unicast connection are feedback-enabled LCHs, indicating that the first SL unicast connection has no available LCHs, the second operation can be performed with the first SL unicast connection as the granularity.
  • the first SL unicast connection has no feedback-disabled LCHs, and therefore will not affect the information transmission of the feedback-disabled LCHs. Therefore, if all LCHs configured for the first SL unicast connection are feedback-enabled LCHs, it is preferred to use the second operation performed with the first SL unicast connection as the granularity. Alternatively, even if the LCHs configured for the first SL unicast connection include both feedback-enabled LCHs and feedback-disabled LCHs, the second operation can also be performed with the first SL unicast connection as the granularity.
  • the first UE needs to use the first SL unicast connection to transmit SL information on the feedback-enabled LCHs, and then select resources in the first resource pool. If the first UE has continuous LBT failures in all first resource pools of the first UE, or if all RB sets in all first resource pools of the first UE have continuous LBT failures, it indicates that all first resource pools of the first UE are unavailable, that is, all resources in all first resource pools of the first UE are unavailable.
  • the SL information on the feedback-enabled LCHs of the first SL unicast connection cannot be transmitted, so the first UE can release the first SL unicast connection.
  • the LCHs of the first SL unicast connection also include feedback-disabled LCHs, the SL information on the feedback-disabled LCHs is no longer transmitted.
  • all first-class resource pools of the first UE are unavailable can be replaced by "all first-class resource pools of the first UE are unavailable for a subsequent period of time", that is, after a subsequent period of time, the first-class resource pool of the first UE may become available again, or "all RB sets in all first-class resource pools of the first UE are unavailable” can be replaced by "all RB sets in all first-class resource pools of the first UE are unavailable for a subsequent period of time", that is, after a subsequent period of time, some or all of the RB sets in the first-class resource pool of the first UE may become available again, and the length of the period of time may be predetermined by the protocol or configured by the network device.
  • the upper layer of the first UE can use the first SL unicast connection to transmit SL information, so the RRC layer of the first UE can indicate to the upper layer of the first UE that the first SL unicast connection has been released, so that the upper layer no longer uses the first SL unicast connection, for example, no longer delivers the data of these SL unicast connections.
  • the first UE may release the first SL unicast connection and/or may release the bearer of the first SL unicast connection. For this part, reference may be made to S202 of the embodiment shown in FIG. 2 .
  • the first UE can process the feedback-enabled LCH but not the feedback-disabled LCH, so that the communication of the feedback-disabled LCH is not affected.
  • the second operation may be performed with the feedback-enabled LCH of the SL unicast connection as the granularity.
  • the second operation may include one or more of the following: operation 1, operation 2, or operation 3.
  • Operation 1 includes releasing the bearer of the feedback-enabled LCH of the first SL unicast connection;
  • operation 2 includes suspending the bearer of the feedback-enabled LCH of the first SL unicast connection;
  • operation 3 includes flushing the cached transport block (TB) of the feedback-enabled LCH of the first SL unicast connection, and setting the SL process (sidelink process) corresponding to the TB to unoccupied.
  • S302 may be performed by the RRC layer of the first UE, and the second operation may include one or more of the following: operation 1, operation 2, operation 3, or operation 4.
  • operation 1 includes releasing the bearer of the feedback-enabled LCH of the first SL unicast connection;
  • operation 2 includes suspending the bearer of the feedback-enabled LCH of the first SL unicast connection;
  • operation 4 includes instructing the upper layer of the first UE to release or suspend the quality of service (QoS) flow corresponding to the DRB of the feedback-enabled LCH of the first SL unicast connection;
  • operation 3 includes clearing the cached TB of the feedback-enabled LCH of the first SL unicast connection, and setting the SL process corresponding to the TB to be unoccupied.
  • QoS quality of service
  • clearing the cached TB of the feedback-enabled LCH of the first SL unicast connection can also be described as clearing the cache (soft buffer) of the TB of the feedback-enabled LCH of the first SL unicast connection.
  • the second operation can be performed with the feedback-enabled LCH of the first SL unicast connection as the granularity, and will not affect the information transmission of the feedback-disabled LCH of the first SL unicast connection.
  • the second operation can also be performed with the first SL unicast connection as the granularity.
  • the second operation includes releasing or suspending the bearer of the feedback-enabled LCH of the first SL unicast connection
  • the first UE may release or suspend the bearer of all LCHs of the first SL unicast connection; or, if the LCHs of the first SL unicast connection include feedback-enabled LCHs and feedback-disabled LCHs, the first UE may release or suspend the bearer of the feedback-enabled LCH of the first SL unicast connection, while the SL information on the feedback-disabled LCH of the first SL unicast connection may continue to be transmitted.
  • Suspending the bearer of all SL unicast connections of the first UE may include suspending the configuration of the bearer of the feedback-enabled LCH of the first SL unicast connection and/or the bearer entity.
  • the bearer can be reacquired; and if the first UE suspends the bearer of the feedback-enabled LCH of the first SL unicast connection, if the first UE subsequently wants to use the bearer to transmit the data of the feedback-enabled LCH, the suspended bearer can be directly restored without having to reacquire it.
  • the upper layer of the first UE can use the first SL unicast connection to transmit SL information, so the RRC layer of the first UE can indicate to the upper layer of the first UE to release or suspend the QoS flow of the DRB of the feedback-enabled LCH of the first SL unicast connection, so that the upper layer releases or suspends the QoS flow of the DRB of the feedback-enabled LCH of the first SL unicast connection.
  • the second operation includes releasing or suspending the DRB of the feedback-enabled LCH of the first SL unicast connection
  • the first UE can indicate to the upper layer to release or suspend the QoS flow of the DRB of the feedback-enabled LCH of the first SL unicast connection.
  • the first UE may have cached one or more TBs of the feedback-enabled LCH of the first SL unicast connection. Since all the first-category resource pools of the first UE are no longer available, that is, the resources in all the first-category resource pools of the first UE are no longer available, these one or more TBs cannot be transmitted. The first UE may clear the cached one or more TBs. In addition, one TB can be transmitted using an SL process. If an SL process is occupied by a certain TB, other TBs cannot occupy the SL process.
  • the SL process corresponding to the one or more TBs may be set to unoccupied, so that other TBs can occupy the SL process, reducing the waste of the SL process and reducing the transmission delay of other TBs.
  • the MAC layer of the first UE may also send first indication information to the RRC layer of the first UE. For example, if the MAC layer detects that all first-category resource pools of the first UE have continuous LBT failures (or if the MAC layer detects that all RB sets in all first-category resource pools of the first UE have continuous LBT failures), the MAC layer may determine a first SL unicast connection, for example, the MAC layer determines that a SL unicast connection in which all configured LCHs are feedback-enabled LCHs is a first SL unicast connection, or determines that a SL unicast connection in which the configured LCHs include feedback-enabled LCHs and feedback-unenabled LCHs is a first SL unicast connection.
  • the MAC layer may send first indication information to the RRC layer, and the first indication information may indicate a first SL unicast connection, or indicate that an RLF occurs in the first SL unicast connection.
  • the RRC layer can determine all feedback-enabled LCHs of the first SL unicast connection, for example, all LCHs of the first SL unicast connection are feedback-enabled LCHs, or some LCHs of the first SL unicast connection are feedback-enabled LCHs. In this way, The MAC layer determines the first SL unicast connection, and the RRC layer determines all feedback-enabled LCHs of the first SL unicast connection.
  • the MAC layer may determine the first SL unicast connection, for example, the MAC layer determines that the SL unicast connection in which all configured LCHs are feedback-enabled LCHs is the first SL unicast connection, or determines that the SL unicast connection in which the configured LCHs include feedback-enabled LCHs and feedback-unenabled LCHs is the first SL unicast connection.
  • the MAC layer may also determine all feedback-enabled LCHs of the first SL unicast connection.
  • the MAC layer may send a first indication message to the RRC layer, and the first indication message may indicate all feedback-enabled LCHs of the first SL unicast connection. In this manner, the MAC layer determines the first SL unicast connection, and determines all feedback-enabled LCHs of the first SL unicast connection.
  • the MAC layer may send a first indication message to the RRC layer, and the first indication message may indicate that all first-class resource pools have detected continuous LBT failures (or if the first indication message may indicate that all RB sets in all first-class resource pools have detected continuous LBT failures).
  • the RRC layer may determine the first SL unicast connection.
  • the RRC layer determines that the SL unicast connection in which all configured LCHs are feedback-enabled LCHs is the first SL unicast connection, or determines that the SL unicast connection in which the configured LCHs include feedback-enabled LCHs and feedback-unenabled LCHs is the first SL unicast connection.
  • the RRC layer may also determine all feedback-enabled LCHs of the first SL unicast connection. In this way, the RRC layer determines the first SL unicast connection, and determines all feedback-enabled LCHs of the first SL unicast connection.
  • the first UE may decide to execute S302 on its own. For example, if the first indication information indicates the first SL unicast connection, the RRC layer receives the first indication information and may execute S302 for the first SL unicast connection, or the RRC layer may determine all feedback-enabled LCHs of the first SL unicast connection and execute S302 for all feedback-enabled LCHs of the first SL unicast connection; or, if the first indication information indicates all feedback-enabled LCHs of the first SL unicast connection, the RRC layer receives the first indication information and may execute S302 for the first SL unicast connection, or the RRC layer may determine all feedback-enabled LCHs of the first SL unicast connection and execute S302 for all feedback-enabled LCHs of the first SL unicast connection.
  • the H executes S302; or, the first indication information indicates that continuous LBT failures are detected in all first-category resource pools (or the first indication information may indicate that continuous LBT failures are detected in all RB sets in all first-category resource pools), the RRC receives the first indication information, may determine the first SL unicast connection according to the first indication information, and execute S302 for the first SL unicast connection, or the RRC layer may determine the first SL unicast connection according to the first indication information, and then determine all feedback-enabled LCHs of the first SL unicast connection, and execute S302 for all feedback-enabled LCHs of the first SL unicast connection.
  • Which operations the second operation includes may also be decided by the RRC layer itself (or may also be indicated by the MAC layer, for example, the MAC layer indicates through the first indication information). In this way, the first UE has a stronger decision-making ability, and since it does not have to interact too much with other devices, the processing delay can be reduced.
  • the first UE may also execute S302 according to the instructions of other devices, for example, the other devices are access network devices, or other UEs, etc. Taking the case where the other devices are access network devices as an example, the first UE may send a second indication message to the access network device, for example, the second indication message is sent by the MAC layer or RRC layer of the first UE to the access network device.
  • the second indication message may indicate that continuous LBT failures have occurred in all first-class resource pools of the first UE (or the second indication message may indicate that continuous LBT failures have occurred in all RB sets in all first-class resource pools of the first UE), or indicate that the first UE has detected continuous LBT failures in all first-class resource pools of the first UE (or indicate that the first UE has detected continuous LBT failures in all RB sets in all first-class resource pools of the first UE).
  • the first UE may not need to determine the first SL unicast connection, for example, neither the MAC layer nor the RRC layer of the first UE needs to determine the first SL unicast connection.
  • the access network device can determine the first SL unicast connection, for example, the access network device determines that the SL unicast connection of all configured LCHs as feedback-enabled LCHs is the first SL unicast connection, or determines that the configured LCHs include feedback-enabled LCHs and feedback-unenabled LCHs as the first SL unicast connection.
  • the access network device can send the third indication information to the first UE, and optionally, the access network device can send the third indication information to the MAC layer or RRC layer of the first UE.
  • the third indication information may instruct the first UE to perform one or more of the following actions on the first SL unicast connection: deeming that a radio link failure has been detected or occurred in the first SL unicast, releasing the first SL unicast connection, releasing the DRB of the first SL unicast connection, or releasing the SRB of the first SL unicast connection; or, the third indication information may instruct the first UE to perform one or more of the following actions on the first SL unicast connection: releasing the DRB and/or SRB of the feedback-enabled LCH of the first SL unicast connection, suspending the DRB and/or SRB of the feedback-enabled LCH of the first SL unicast connection, or clearing the cached transmission blocks of the feedback-enabled LCH of the first SL unicast connection.
  • the third indication information may instruct the first UE to perform one or more of the following actions on the first SL unicast connection: release the DRB of the feedback-enabled LCH of the first SL unicast connection; and/or SRB, suspends the DRB and/or SRB of the feedback-enabled LCH of the first SL unicast connection, or clears the cached transmission block of the feedback-enabled LCH of the first SL unicast connection
  • the third indication information may indicate the feedback-enabled LCH of the first SL unicast connection.
  • the access network device may determine all feedback-enabled LCHs of the first SL unicast connection and indicate them in the third indication information; or, the third indication information indicates the first SL unicast connection, but does not indicate the feedback-enabled LCH.
  • the first UE can determine the feedback-enabled LCH of the first SL unicast connection, and then perform corresponding operations according to the third indication information.
  • the first UE may send second indication information to the access network device, for example, the MAC layer or RRC layer of the first UE sends the second indication information to the access network device.
  • the second indication information may indicate that RLF occurs in the first SL unicast connection.
  • the first UE can determine the first SL unicast connection, for example, the MAC layer or RRC layer of the first UE can determine the first SL unicast connection.
  • the access network device may send third indication information to the first UE, and the content indicated by the third indication information may refer to the previous text.
  • the access network device may send third indication information to the MAC layer or RRC layer of the first UE.
  • the third indication information can indicate the feedback-enabled LCH of the first SL unicast connection.
  • the access network device can determine all feedback-enabled LCHs of the first SL unicast connection and indicate them in the third indication information; or, the second indication information sent by the first UE can indicate all feedback-enabled LCHs of the first SL unicast connection, then the access network device can indicate the feedback-enabled LCH of the first SL unicast connection in the third indication information; or, the third indication information indicates the first SL unicast connection, but does not indicate the feedback-enabled LCH of the first SL unicast connection.
  • the first UE can determine the feedback-enabled LCH of the first SL unicast connection, and then perform corresponding operations according to the third indication information.
  • S302 may be executed according to the third indication information.
  • the second operation may include releasing the first SL unicast connection.
  • the second operation may also include indicating to the upper layer of the first UE that the first SL unicast connection has been released; if the third indication information indicates to suspend the DRB of the feedback-enabled LCH of the first SL unicast connection, the second operation may include suspending the DRB of the feedback-enabled LCH of the first SL unicast connection, and so on.
  • the first UE can perform corresponding operations according to the instructions of other devices (such as access network devices), and the first UE does not have to perform too many decision-making behaviors.
  • the capability requirements for the first UE are relatively low, so that the technical solution of the embodiment of the present application can be applied to both high-capability UEs and low-capability UEs.
  • the RRC layer of the first UE may not need to perform the second operation.
  • the MAC layer of the first UE may not need to send the first indication information to the RRC layer of the first UE, so the RRC layer may not need to perform the second operation; or, if the first UE successfully performs LBT on the transmission in part of the first class resource pool (or part of the RB set of the first class resource pool) of the first UE, the first UE may not need to send the second indication information to the access network device, and the access network device will not send the third indication information to the first UE, so the RRC layer may not need to perform the second operation according to the third indication information.
  • the first UE can continue to communicate with other UEs using the first class resource pool (or RB set of the first class resource pool) that successfully performs LBT.
  • the first UE can use the resource pools (or RB sets) with successful LBT to communicate, which will not cause all resource pools (or all RB sets) of the BWP to be unavailable, thereby reducing the waste of SL resources and improving the utilization of SL resources.
  • the first UE may also have a need to rebuild or modify the DRB of the corresponding LCH, and/or, have a need to rebuild or modify the QoS flow corresponding to the DRB of the corresponding LCH.
  • the first UE wants to rebuild or modify the DRB, it can rebuild or modify the DRB of the LCH that is not feedback enabled, and no reconstruction or modification is performed for the DRB of the LCH that is feedback enabled for the first UE.
  • the first UE can rebuild or modify the DRB of the first LCH, and the first LCH may be a LCH that is not feedback enabled.
  • the first UE can decide on its own to rebuild or modify the DRB of the LCH, or it may be instructed by the access network device.
  • the access network device sends a fourth indication message to the first UE, and the fourth indication message may instruct the first UE to rebuild or modify the DRB of the first LCH.
  • the first UE can then rebuild or modify the DRB of the first LCH according to the fourth indication message.
  • the DRB of the first LCH may be rebuilt or modified by the RRC layer of the first UE.
  • the first UE wants to rebuild or modify the QoS flow corresponding to the DRB, it can rebuild or modify the QoS flow corresponding to the DRB of the LCH that is not enabled for feedback.
  • the QoS flow corresponding to the DRB of the LCH that is enabled for feedback of the first UE no reconstruction or modification is performed.
  • the first UE can rebuild or modify the QoS flow corresponding to the DRB of the first LCH, and the first LCH may be a LCH that is not enabled for feedback.
  • the first UE can decide on its own to rebuild or modify the QoS flow corresponding to the DRB of the LCH, or it can be instructed by the access network device.
  • the access network device sends a fourth indication message to the first UE, and the fourth indication message may instruct the first UE to rebuild or modify the QoS flow corresponding to the DRB of the first LCH. Then the first UE can rebuild or modify the QoS flow corresponding to the DRB of the first LCH according to the fourth indication message.
  • the QoS flow corresponding to the DRB of the first LCH may be rebuilt or modified by the upper layer of the first UE.
  • a resource pool will be unavailable, or will be unavailable for a subsequent period of time.
  • an unavailable resource pool can also be restored, that is, it can become an available resource pool again.
  • the first UE can continue to perform LBT on the resources in the resource pool or the transmission in the resource pool.
  • the first UE can trigger or periodically perform LBT on the resources or transmission in the first-class resource pool. If the first UE detects LBT success on the resources or transmission in M resource pools among all the resource pools of the first UE, it can be considered that the M resource pools have been restored to available resource pools.
  • the first UE detects LBT success in M first-class resource pools, it can be considered that the M first-class resource pools have been restored to available resource pools, the SL information on the feedback-enabled LCH of the first SL unicast connection can be transmitted using the SL resources in the M first-class resource pools, and the first UE can perform the third operation.
  • the third operation includes, for example: restoring the DRBs of some or all feedback-enabled LCHs of the first SL unicast connection, and/or restoring the QoS flows corresponding to the DRBs of some or all feedback-enabled LCHs of the first SL unicast connection.
  • restoring the DRBs of some or all feedback-enabled LCHs of the first SL unicast connection may be performed by the RRC layer of the first UE; restoring the QoS flows corresponding to the DRBs of some or all feedback-enabled LCHs of the first SL unicast connection may be performed by the upper layer of the first UE, for example, the RRC layer of the first UE may send an indication to the upper layer to instruct the upper layer to restore the QoS flows corresponding to the DRBs of some or all feedback-enabled LCHs of the first SL unicast connection, and the upper layer may restore the QoS flows corresponding to the DRBs of some or all feedback-enabled LCHs of the first SL unicast connection according to the indication of the RRC layer.
  • the DRBs of some or all feedback-enabled LCHs of the first SL unicast connection may be restored, so that the SL information on these feedback-enabled LCHs of the first SL unicast connection can be transmitted, thereby reducing the information transmission delay.
  • the above-mentioned "resource pool" can be understood as "RB set”.
  • the first UE may perform the second operation.
  • the first UE may not have to perform the second operation. For example, the first UE may continue to use this part of the first-class resource pool (or RB sets in some first-class resource pools) for communication, thereby reducing the waste of SL resources and improving the utilization rate of SL resources.
  • the first UE when the first UE detects continuous LBT failures, the first UE can reasonably handle the current SL unicast connection and try to avoid the problem that the upper layer of the first UE continues to submit SL information to the lower layer, but the SL information cannot be sent. In addition, since the first UE can clear the cache, storage space can be saved. The first UE can also set the SL process corresponding to the TB of the feedback-enabled LCH to be unoccupied, so that the SL process can be used for other TBs, reducing the transmission delay of other TBs.
  • the embodiment shown in FIG2 can be applied in combination with the embodiment shown in FIG3. For example, if the first UE detects that all resource pools of the first UE have continuous LBT failures, the solution provided by the embodiment shown in FIG2 can be used for processing; if the first UE detects that all first-type resource pools of the first UE have continuous LBT failures, the solution provided by the embodiment shown in FIG3 can be used for processing.
  • the embodiment shown in FIG2 and the embodiment shown in FIG3 may not be combined, but may be applied separately, and there is no limitation on this.
  • Figure 4 is a flowchart of a third communication method provided in an embodiment of the present application.
  • S401 When the first UE detects that at least one of all resource pools of the first UE fails in continuous LBT, the first UE uses the first multicast layer 2 identifier to multicast the first information, or uses the first broadcast layer 2 identifier to broadcast the first information.
  • S401 includes two steps, wherein the first step is that the first UE detects that at least one resource pool fails in continuous LBT; wherein the second step is that the first UE uses the first multicast layer 2 identifier to multicast the first information, or uses the first broadcast layer 2 identifier to broadcast the first information.
  • the UE receiving the first information is, for example, the second UE, which may include one or more UEs, and FIG4 takes one of the second UEs receiving the first information as an example.
  • the first multicast layer 2 identifier or the first broadcast layer 2 identifier may be pre-allocated by the first UE to the second UE, and the second UE may include one or more UEs. For example, when the first UE establishes an SL unicast connection with the second UE, the first multicast layer 2 identifier or the first broadcast layer 2 identifier may be allocated to the second UE. If the second UE includes multiple UEs, the first multicast layer 2 identifier allocated by the first UE to the multiple UEs may be the same identifier, or the first broadcast layer 2 identifier allocated by the first UE to the multiple UEs may be the same identifier.
  • At least one resource pool includes a first type of resource pool and/or a second type of resource pool.
  • first type of resource pool and the second type of resource pool For concepts such as the first type of resource pool and the second type of resource pool, reference may be made to the introduction of the embodiment shown in FIG3 .
  • the first UE can execute S401.
  • at least one resource pool is, for example, a first type of resource pool. It can be understood that, if continuous LBT failures occur in the first type of resource pool, the first UE can execute S401, and if continuous LBT failures occur in the second type of resource pool, the first UE may not have to execute S401.
  • the above-mentioned LBT detection on a certain resource pool or part of the resource pool may be performed.
  • source pool can be replaced by "RB set”; in the above description of detecting continuous LBT failures for all resource pools, “continuous LBT failures of all resource pools” can be replaced by "continuous LBT failures of all RB sets” or “continuous LBT failures of all RB sets in all resource pools”.
  • the embodiments of the present application can be applied in combination with any of the aforementioned embodiments, and the combination method can refer to the introduction of the embodiment shown in FIG2 or the embodiment shown in FIG3; or, the embodiments of the present application are not combined with any of the aforementioned embodiments, but are applied separately (for example, the embodiments shown in FIG2 and the embodiments shown in FIG3 may not include the contents of the embodiments of the present application).
  • the first UE can notify other UEs of the resource pool where continuous LBT failures occur, so that other UEs can no longer use these resource pools to communicate with the first UE, thereby reducing the probability of communication failure.
  • the first UE allocates the broadcast layer 2 identifier or the multicast layer 2 identifier, without the need for the high-level configuration of each UE to allocate the broadcast layer 2 identifier or the multicast layer 2 identifier, which can make the broadcast layer 2 identifier or the multicast layer 2 identifier more flexible.
  • the first UE can flexibly update the broadcast layer 2 identifier or the multicast layer 2 identifier, or can allocate different broadcast layer 2 identifiers or multicast layer 2 identifiers to different groups of UEs, etc., thereby improving communication flexibility.
  • Mode1 is the way in which the access network device selects SL resources for the transmitting UE in the resource pool.
  • the access network device can select one or more SL resources (for example, up to 3 SL resources) at a time, and one scheduling process can indicate one or more SL resources (for example, up to 3 SL resources) to the transmitting UE.
  • Mode2 is the way in which the transmitting UE selects SL resources in the resource pool by itself.
  • the transmitting UE can select one or more SL resources (for example, up to 3 SL resources) at a time.
  • One SL resource can be used for one transmission of the transmitting UE.
  • the transmitting UE Before executing each transmission process, the transmitting UE can perform LBT on the transmission, and the result may be LBT success or failure. If the transmitting UE detects continuous LBT failures in the resource pool where the SL resources used for transmission are located before a transmission process, the transmission process cannot be executed, and the SL resources of the transmission process (SL resources scheduled by the access network device or SL resources selected by the transmitting UE itself) cannot be used.
  • the transmitting UE If the transmitting UE has determined multiple SL resources (the access network device has scheduled multiple SL resources for the transmitting UE, or the transmitting UE has selected multiple SL resources by itself), the transmitting UE detects continuous LBT failures in a resource pool before a transmission, and the resource pool includes the SL resources used for this transmission, and the SL resources of this transmission process cannot be used, and in addition to the SL resources, the transmitting UE has determined SL resources that have not been used, then how to deal with these unused SL resources is a problem that needs to be solved.
  • an embodiment of the present application provides a fourth communication method that can be used to solve this problem. Please refer to Figure 5, which is a flow chart of this method.
  • a first UE detects continuous LBT failures in a first resource pool of the first UE.
  • the first resource pool is, for example, one of all resource pools of the first UE, and the first resource pool is, for example, a first-type resource pool or a second-type resource pool.
  • first-type resource pool or a second-type resource pool.
  • S501 may be performed by the MAC layer of the first UE.
  • the physical layer of the first UE may perform LBT on resources in the resource pool of the first UE. If continuous LBT failures are detected in resources in a resource pool, the physical layer may send an LBT failure indication to the MAC layer of the first UE to indicate that an LBT failure is detected in the resource pool, or to indicate that an LBT failure has occurred (or occurred) in the resource pool.
  • the physical layer may indicate the resource pool where the LBT failure occurred (e.g., through a resource pool identifier or a resource pool index) when sending the LBT failure indication to the MAC layer of the first UE.
  • the MAC layer of the first UE may determine whether continuous LBT failures have occurred in a resource pool through the LBT failure indication sent by the physical layer. For more information about the process, please refer to the introduction of S201 of the embodiment shown in FIG. 2 .
  • the access network device schedules one or more SL resources in the first resource pool for the first UE, and/or the first UE selects one or more SL resources in the first resource pool by itself.
  • Each SL resource is used for one transmission.
  • the first UE uses the SL resources in the first resource pool to perform a transmission, it can perform LBT. If LBT succeeds, the SL resource can be used for transmission; if LBT fails, the SL resource cannot be used for transmission.
  • the first UE does not use the SL resource.
  • the SL resource is referred to as a first SL resource, and the first SL resource may include at least one SL resource.
  • the SL resource selected (or determined) by the first UE can be understood as a SL resource selected by the MAC layer of the first UE and notified to the physical layer of the first UE.
  • the first UE originally determined one or more SL resources in the first resource pool.
  • the first UE may have used some of the one or more SL resources, and there are remaining SL resources in the one or more SL resources that have not been used, then the first SL resources include the remaining SL resources; or, when executing S501 or S502, the first UE has not used any of the one or more SL resources, then the first SL resources include the one or more SL resources.
  • the first SL resources may include retransmission resources and/or initial transmission resources, and there is no limitation on this.
  • the one or more SL resources determined by the first UE may include SL resources scheduled by the access network device for the first UE, and/or include SL resources determined by a UE in a first resource pool; therefore, the first SL resources may include SL resources scheduled by the access network device for the first UE, and/or include SL resources determined by the first UE in the first resource pool.
  • the first SL resources include N 1 SL resources scheduled by the access network device for the first UE, and/or include N 2 SL resources selected by the first UE in the first resource pool.
  • N 1 is an integer greater than or equal to 0, and N 2 is a positive integer; or, N 2 is an integer greater than or equal to 0, and N 1 is a positive integer.
  • the first SL resources may include one or more of the following: physical sidelink control channel (PSCCH) resources, physical sidelink shared channel (PSSCH) resources, or PSFCH resources.
  • the PSFCH resources may be associated with SL data, and the SL data is SL data received by the first UE.
  • the PSFCH resource can be used to transmit feedback information of the SL data, and the feedback information is, for example, a SL hybrid automatic repeat request (HARQ)-acknowledgement (ACK).
  • HARQ SL hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • the first UE has determined the first SL resource in the first resource pool and will use the first SL resource to send SL information. However, if the first UE detects that the first resource pool fails to transmit LBT continuously, indicating that the first resource pool is unavailable, or the first resource pool is unavailable for a period of time, then the SL resources in the first resource pool are also unavailable. Therefore, in this case, the first UE may not use the first SL resource, thereby reducing the probability of transmission failure.
  • S502 may be executed by the MAC layer of the first UE.
  • the first UE may not use the first SL resource in different ways, as described below by way of example.
  • the MAC layer instructs the physical layer of the first UE to clear information about the first SL resources.
  • the MAC layer may indicate the first resource pool to the physical layer.
  • the MAC layer may send the index of the first resource pool to the physical layer to indicate the first resource pool.
  • the physical layer may clear the information of the SL resources in the determined first resource pool that have not been used. For example, if the physical layer receives the indication from the MAC layer, the physical layer may determine that the first SL resource in the first resource pool is a determined SL resource and the first SL resource has not been used. Therefore, the physical layer may clear the information of the first SL resource, so that the physical layer will no longer use the SL resource corresponding to the information of the first SL resource (i.e., the first SL resource). In this way, the MAC layer indicates the first resource pool, and the physical layer may determine the first SL resource based on the first resource pool.
  • the MAC layer may also indicate the first SL resource in the first resource pool, and the physical layer may directly determine the first SL resource according to the indication of the MAC layer, and the physical layer may clear the information of the first SL resource.
  • the MAC layer may indicate the first SL resource, so that the physical layer does not need to determine the first SL resource, but only needs to clear the information of the first SL resource, and the implementation of the physical layer is relatively simple.
  • the MAC layer does not submit the SL information to be sent to the physical layer, or in other words, the MAC layer does not instruct the physical layer to generate SL transmission.
  • the first SL resource is used to transmit SL information, or in other words, for SL transmission, and the SL information is submitted by the MAC layer to the physical layer, and the physical layer performs SL transmission. If the MAC layer does not submit the SL information to the physical layer, or does not instruct the physical layer to generate SL transmission, the physical layer has no SL information that can be transmitted, and will not perform SL transmission, so the first SL resource will not be used.
  • the SL information may include one or more of SL transmission information or SL data packets (MAC protocol data units).
  • the MAC layer determines that there are no available SL resources, wherein the absence of available SL resources includes that there are no determined SL resources, or although there are determined SL resources (e.g., the first SL resources), the determined SL resources are SL resources within a resource pool (e.g., the first resource pool) in which continuous LBT failures are detected (or occurred), then the MAC layer may not instruct the physical layer to generate a SL transmission, or the MAC layer may not submit the SL information to be transmitted to the physical layer.
  • a resource pool e.g., the first resource pool
  • the MAC layer may instruct the physical layer to generate an SL transmission, or the MAC layer may submit the SL information to be transmitted to the physical layer, and the physical layer may perform SL transmission using the available SL resources.
  • the first UE may also achieve not using the first SL resources in other ways, and there is no restriction on this.
  • the first UE may stop SL transmission; or, if the first SL resource is unavailable, the first UE may also re-determine the SL resource. For example, in mode 1, the first UE may indicate to the access network device that the first SL resource is unavailable, or indicate that continuous LBT failures of the first resource pool have been detected, and the access network device may re-schedule SL resources for the first UE. For example, the access network device may re-schedule SL resources for the first UE in other resource pools configured for the first UE; or in mode 2, the first UE may reselect SL resources in other resource pools configured for the first UE, thereby reducing the transmission delay of SL information.
  • an unavailable resource pool can also be restored, that is, become an available resource pool again.
  • the first UE can continue to perform LBT on the resources in the resource pool or the transmission in the resource pool.
  • the first UE can periodically perform LBT on the resources in the resource pool or the transmission in the resource pool. For example, if the first UE detects LBT successfully in the first resource pool, it can be considered that the first resource pool has been restored to an available resource pool.
  • the first UE can send an indication message to the access network device to indicate that the first resource pool is available, and the access network device can schedule SL resources for the first UE in the first resource pool; if it is mode2, the first UE can select in the first resource pool when selecting SL resources. In this way, the utilization rate of the resource pool can be improved.
  • the first UE may not use the first SL resource in the first resource pool, thereby reducing the probability of transmission failure.
  • the first UE may also re-determine the SL resource to send SL information to reduce the transmission delay of the SL information.
  • the above-mentioned “resource pool” can be understood as “RB set”.
  • the above S502 can be replaced by: if there is a SL resource selected (or determined) in the first RB set, the first UE does not use the SL resource.
  • the SL resource is referred to as the first SL resource, and the first SL resource may include at least one SL resource.
  • the SL resource selected (or determined) by the first UE can be understood as the SL resource selected by the MAC layer of the first UE and notified to the physical layer of the first UE.
  • the first UE originally determines one or more SL resources in the first RB set.
  • the first UE may have used some of the one or more SL resources, and there are still remaining SL resources in the one or more SL resources that have not been used, then the first SL resources include the remaining SL resources; or, when executing S501 or S502, the first UE has not used any of the one or more SL resources, then the first SL resources include the one or more SL resources.
  • the first SL resources may include retransmission resources and/or initial transmission resources, which is not limited.
  • the one or more SL resources determined by the first UE may include SL resources scheduled by the access network device for the first UE, and/or include SL resources determined by the first UE in the first RB set. Therefore, the first SL resources may include SL resources scheduled by the access network device for the first UE, and/or include SL resources determined by the first UE in the first RB set.
  • the first SL resources include N1 SL resources scheduled by the access network device for the first UE, and/or include N2 SL resources selected by the first UE in the first RB set.
  • N1 is an integer greater than or equal to 0, and N2 is a positive integer; or, N2 is an integer greater than or equal to 0, and N1 is a positive integer.
  • the first SL resources may include one or more of the following: physical sidelink control channel (PSCCH) resources, physical sidelink shared channel (PSSCH) resources, or PSFCH resources.
  • the PSFCH resources can be associated with SL data, and the SL data is SL data received by the first UE.
  • the PSFCH resource can be used to transmit feedback information of the SL data, and the feedback information is, for example, a SL hybrid automatic repeat request (HARQ)-acknowledgement (ACK).
  • HARQ SL hybrid automatic repeat request
  • ACK acknowledgenowledgement
  • the first UE has determined the first SL resource in the first RB set and will use the first SL resource to send SL information. However, if the first UE detects that the first RB set has continuous LBT failures, indicating that the first RB set is unavailable, or the first RB set is unavailable for a subsequent period of time, the SL resources in the first RB set are also unavailable. Therefore, in this case, the first UE may not use the first SL resource, thereby reducing the probability of transmission failure.
  • S502 may be executed by the MAC layer of the first UE.
  • the first UE may not use the first SL resource in different ways, as described below by way of example.
  • the MAC layer instructs the physical layer of the first UE to clear information about the first SL resources.
  • the MAC layer may indicate the first RB set to the physical layer.
  • the MAC layer may send the index of the first RB set to the physical layer to indicate the first RB set.
  • the physical layer may clear the information of the SL resources that have been determined and have not been used in the first RB set. For example, if the physical layer receives the indication from the MAC layer, the physical layer may determine that the first SL resource in the first RB set is a determined SL resource and the first SL resource has not been used. Therefore, the physical layer may clear the information of the first SL resource, so that the physical layer will no longer use the SL resource corresponding to the information of the first SL resource (i.e., the first SL resource). In this way, the MAC layer indicates the first RB set, and the physical layer may determine the first SL resource based on the first RB set.
  • the MAC layer may also indicate the first SL resource in the first RB set, and the physical layer may directly determine the first SL resource according to the indication of the MAC layer, and the physical layer may clear the information of the first SL resource.
  • the MAC layer may indicate the first SL resource, so that the physical layer does not need to determine the first SL resource, but only needs to clear the information of the first SL resource.
  • the implementation is relatively simple.
  • the MAC layer does not submit the SL information to be sent to the physical layer, or the MAC layer does not instruct the physical layer to generate SL transmission.
  • the first SL resource is used to transmit SL information or for SL transmission, and the SL information is submitted by the MAC layer to the physical layer, and the physical layer performs SL transmission. If the MAC layer does not submit the SL information to the physical layer, or does not instruct the physical layer to generate SL transmission, the physical layer has no SL information that can be transmitted, and will not perform SL transmission, so the first SL resource will not be used.
  • the SL information may include one or more of SL transmission information or SL data packets (MAC protocol data units).
  • the MAC layer determines that there are no available SL resources, wherein the absence of available SL resources includes no determined SL resources, or although there are determined SL resources (for example, the first SL resources), the determined SL resources are SL resources within an RB set (for example, the first RB set) in which continuous LBT failures are detected (or occur), then the MAC layer may not instruct the physical layer to generate a SL transmission, or the MAC layer may not submit the SL information to be transmitted to the physical layer.
  • the MAC layer may instruct the physical layer to generate a SL transmission, or the MAC layer may submit SL information to be transmitted to the physical layer, and the physical layer may perform SL transmission using the available SL resources.
  • the existence of available SL resources may include that the SL resources have been determined, and the RB set where the determined SL resources are located has not detected (or occurred) continuous LBT failures.
  • the first UE may also achieve not using the first SL resources in other ways, and there is no restriction on this.
  • the first UE may stop SL transmission; or, if the first SL resource is unavailable, the first UE may also re-determine the SL resource. For example, in mode 1, the first UE may indicate to the access network device that the first SL resource is unavailable, or indicate that continuous LBT failures of the first RB set have been detected, and the access network device may re-schedule SL resources for the first UE.
  • the access network device may re-schedule SL resources for the first UE within other RB sets configured for the first UE; or in mode 2, the first UE may reselect SL resources within other RB sets configured for the first UE, thereby reducing the transmission delay of SL information.
  • a RB set has continuous LBT failures
  • the RB set is unavailable, resulting in the unavailability of SL resources in the RB set.
  • an unavailable RB set can also be restored, that is, it becomes an available RB set again.
  • the first UE can continue to perform LBT on the resources in the RB set or the transmission in the RB set, for example, the first UE can periodically perform LBT on the resources in the RB set or the transmission in the RB set. For example, if the first UE detects LBT successfully in the first RB set, it can be considered that the first RB set has been restored to an available RB set.
  • the first UE can send an indication message to the access network device to indicate that the first RB set is available, and the access network device can schedule SL resources for the first UE in the first RB set; if it is mode2, the first UE can select in the first RB set when selecting SL resources. In this way, the utilization rate of SL resources can be improved.
  • the first UE may not use the first SL resource in the first RB set, thereby reducing the probability of transmission failure.
  • the first UE may also re-determine the SL resource to send the SL information to reduce the transmission delay of the SL information.
  • the first UE may detect that the first resource pool fails to perform LBT continuously, and the first resource pool is considered to be unavailable at this time.
  • the embodiment of the present application provides a fifth communication method, by which the resource pool can be restored to expand the range of resource selection. Please refer to Figure 6, which is a flowchart of the method.
  • the first UE determines that the first resource pool is unavailable. For example, if the first UE detects that the first resource pool fails to have continuous LBT, it may determine that the first resource pool is unavailable. Alternatively, the first UE may determine that the first resource pool is unavailable in other ways.
  • the first UE may be configured with one or more resource pools.
  • the first resource pool is, for example, one of the resource pools configured for the first UE.
  • the first UE may determine whether the resource pool can be restored for any configured resource pool according to the solution of the embodiment of the present application.
  • the embodiment of the present application takes the first resource pool as an example.
  • the first resource pool is, for example, a first type resource pool, or a second type resource pool.
  • a first type resource pool for example, a first type resource pool, or a second type resource pool.
  • the first UE performs LBT on the first resource pool.
  • the first UE may continue to perform LBT on the resources in the first resource pool or the transmission in the resource pool. For example, the first UE may perform LBT on the resources or transmission in the first resource pool in a triggered manner, such as when the first UE receives a trigger from an access network device or other UE, performing LBT on the resources or transmission in the first resource pool; or, the first UE may also perform LBT on the resources or transmission in the first resource pool periodically.
  • the resources or transmissions in the first resource pool perform LBT, and in this manner, no triggering of other devices is required.
  • the period may be configured by the first UE, or by the access network device or other UEs, or may be predefined by a protocol.
  • the first resource pool can be considered to have been restored as an available resource pool.
  • the number of times can be configured by the UE, or by the access network device or other UE, or can also be predefined by the protocol.
  • the protocol predefines the number of times as 1, the first UE can determine that the first resource pool is available as long as it detects one LBT success in the first resource pool, and if the first UE does not detect LBT success in the first resource pool, it can be determined that the first resource pool is unavailable, and the detection efficiency of this method is relatively high.
  • the protocol predefines the number of times as P, and P is an integer greater than 1.
  • the first UE detects LBT success in the first resource pool a number greater than or equal to P, it can be determined that the first resource pool is available, and if the first UE does not detect LBT success in the first resource pool, or the number of LBT successes detected in the first resource pool is less than P, it can be determined that the first resource pool is unavailable.
  • the P times can be consecutive P times, that is, if the first UE detects LBT success in the first resource pool a number greater than or equal to P, it can be determined that the first resource pool is available, and if the first UE does not detect LBT success in the first resource pool, or the number of consecutive LBT successes detected in the first resource pool is less than P, it can be determined that the first resource pool is unavailable. Determining whether a resource pool is available by continuous LBT success can make the determination result more accurate.
  • determining that the first resource pool is available or considering that the first resource pool has been restored to an available resource pool may also include canceling the continuous LBT failure triggered by the first resource pool.
  • the first resource pool detects or has a continuous LBT failure, it can be considered that the continuous LBT failure of the first resource pool is triggered.
  • the first UE can maintain a flag bit corresponding to the first resource pool. If the first resource pool detects or has a LBT failure (or a continuous LBT failure), the first UE can set the flag bit so that the flag bit indicates that the continuous LBT failure of the first resource pool is triggered. If the first resource pool detects at least one LBT success, the first UE can cancel the continuous LBT failure triggered by the first resource pool. For example, the first UE can cancel the setting of the flag bit. At this time, the first resource pool is considered to be available, or the first resource pool is considered to have been restored to an available resource pool.
  • the corresponding operation can be performed. For example, if the first UE adopts mode2, the first UE can restore the use of the first resource pool when selecting SL resources, or the first UE can select SL resources in the first resource pool.
  • the first UE can send an indication message to the access network device, and the indication message can indicate that the first resource pool has been restored, or indicates that the first resource pool is available, or indicates that the LBT of the first resource pool is successful.
  • the access network device receives the indication message, when scheduling SL resources for the first UE, the SL resources in the first resource pool can be scheduled for the first UE.
  • the first UE can clear the number of failures corresponding to the first resource pool.
  • the number of failures corresponding to the first resource pool refer to the introduction of the embodiment shown in Figure 2.
  • the first UE can cancel the scheduling request.
  • the scheduling request may request resources for transmitting indication information, and the indication information may indicate that the first resource pool has been restored.
  • the first UE may no longer transmit the indication information, and the first UE may clear the indication information that has been generated.
  • the first UE may also perform other corresponding operations, for which reference may be made to the introduction of any one or more embodiments in the embodiments shown in FIG. 2 to FIG. 5.
  • the "resource pool" described in the embodiment of the present application can be understood as the RB set.
  • the resource pool can be restored in time, thereby expanding the SL resource selection range and reducing the situation of insufficient SL resources.
  • the embodiment shown in FIG6 can be applied in combination with any one or more of the embodiments shown in FIG2 to FIG5 .
  • the embodiment shown in FIG6 can be combined with the embodiment shown in FIG2 , or can be combined with the embodiment shown in FIG3 , etc.
  • the embodiment shown in FIG6 is not combined with any of the above embodiments, but is applied alone.
  • FIG7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the communication device 700 may be an access network device or a circuit system of the access network device as described in any one of the embodiments shown in FIG2 to FIG6, and is used to implement the method corresponding to the access network device in the above method embodiment.
  • the communication device 700 may be a circuit system of the first UE as described in any one of the embodiments shown in FIG2 to FIG6, and is used to implement the method corresponding to the first UE in the above method embodiment.
  • a circuit system is a chip system.
  • the communication device 700 includes at least one processor 701.
  • the processor 701 can be used for internal processing of the device to implement certain control processing functions.
  • the processor 701 includes instructions.
  • the processor 701 can store data.
  • different processors They may be separate devices, located at different physical locations, or located on different integrated circuits. Alternatively, the different processors may be integrated into one or more processors, for example, integrated on one or more integrated circuits.
  • the communication device 700 includes one or more memories 703 for storing instructions.
  • data may also be stored in the memory 703.
  • the processor and the memory may be provided separately or integrated together.
  • the communication device 700 includes a communication line 702 and at least one communication interface 704. Since the memory 703, the communication line 702 and the communication interface 704 are all optional, they are all indicated by dotted lines in FIG. 7 .
  • the communication device 700 may further include a transceiver and/or an antenna.
  • the transceiver may be used to send information to other devices or receive information from other devices.
  • the transceiver may be referred to as a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 700 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter may be used to generate a radio frequency signal from a baseband signal
  • the receiver may be used to convert the radio frequency signal into a baseband signal.
  • Processor 701 may include a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication link 702 may include a pathway to transmit information between the above-mentioned components.
  • the communication interface 704 uses any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), wired access networks, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • wired access networks etc.
  • the memory 703 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 703 may exist independently and be connected to the processor 701 through the communication line 702. Alternatively, the memory 703 may also be integrated with the processor 701.
  • the memory 703 is used to store computer-executable instructions for executing the solution of the present application, and the execution is controlled by the processor 701.
  • the processor 701 is used to execute the computer-executable instructions stored in the memory 703, thereby realizing the communication method provided in the above embodiment of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application code, which is not specifically limited in the embodiments of the present application.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7 .
  • the communication device 700 may include multiple processors, such as the processor 701 and the processor 705 in FIG. 7. Each of these processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the chip When the device shown in FIG. 7 is a chip, such as a chip of an access network device, or a chip of a first UE, the chip includes a processor 701 (may also include a processor 705), a communication line 702, a memory 703, and a communication interface 704.
  • the communication interface 704 may be an input interface, a pin, or a circuit, etc.
  • the memory 703 may be a register, a cache, etc.
  • the processor 701 and the processor 705 may be a general-purpose CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of a program of the communication method of any of the above embodiments.
  • the embodiment of the present application may divide the functional modules of the device according to the above method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated module may be implemented in the form of hardware or in the form of software functional modules.
  • the division of modules in the embodiment of the present application is schematic, which is only a logical function division, and there may be other division methods in actual implementation.
  • Figure 8 shows a schematic diagram of a device, and the device 800 may be the first UE or access network device involved in the above-mentioned various method embodiments, or a chip in the access network device or a chip in the first UE.
  • the device 800 includes a sending unit 801, a processing unit 802 and a receiving unit 803.
  • the apparatus 800 can be used to implement the steps performed by the access network device or the first UE in the method of the embodiment of the present application.
  • the relevant features can be referred to in the above embodiments and will not be described again here.
  • the functions/implementation processes of the sending unit 801, the receiving unit 803, and the processing unit 802 in FIG8 may be implemented by the processor 701 in FIG7 calling the computer execution instructions stored in the memory 703.
  • the functions/implementation processes of the processing unit 802 in FIG8 may be implemented by the processor 701 in FIG7 calling the computer execution instructions stored in the memory 703, and the functions/implementation processes of the sending unit 801 and the receiving unit 803 in FIG8 may be implemented by the communication interface 704 in FIG7.
  • the functions/implementation processes of the sending unit 801 and the receiving unit 803 can also be implemented through pins or circuits.
  • the present application also provides a computer-readable storage medium, which stores a computer program or instruction.
  • the computer program or instruction When the computer program or instruction is executed, the method performed by the access network device or the first UE in the aforementioned method embodiment is implemented.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application can be essentially or in other words, the part that contributes or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • Storage media include: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.
  • the present application also provides a computer program product, which includes: a computer program code, when the computer program code runs on a computer, enables the computer to execute the method executed by the access network device or the first UE in any of the aforementioned method embodiments.
  • An embodiment of the present application also provides a processing device, including a processor and an interface; the processor is used to execute the method executed by the access network device or the first UE involved in any of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state drive (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be implemented or operated by a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above.
  • the general-purpose processor can be a microprocessor, and optionally, the general-purpose processor can also be any conventional processor, controller, microcontroller or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form of storage medium in the art.
  • the storage medium can be connected to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium can also be arranged in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。第一终端设备在第一终端设备的所有资源池检测到连续LBT失败,其中,所有资源池包括一个或多个资源池,其中的每个资源池用于第一终端设备与其他终端设备通信;第一终端设备执行如下行为中的一项或多项:释放第一终端设备的所有侧行链路单播连接,释放第一终端设备的所有侧行链路单播连接的DRB,释放第一终端设备的所有侧行链路单播连接的SRB,或,释放第一终端设备的广播和/或组播通信的DRB。如果第一终端设备在第一终端设备的部分资源池中的传输执行LBT成功,则第一终端设备可以继续利用这部分资源池进行通信,从而减少了SL资源的浪费,提高了SL资源的利用率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年09月27日提交中国专利局、申请号为202211183463.7、申请名称为“一种侧行链路连续先听后说失败的处理方法及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年11月03日提交中国专利局、申请号为202211372748.5、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2022年11月25日提交中国专利局、申请号为202211493043.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2023年06月25日提交中国专利局、申请号为202310754561.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
新空口(new radio,NR)系统中,在使用非授权(unlicensed)频谱进行空口通信时,用户设备(user equipment,UE)在进行上行(uplink,UL)发送前需要执行先听后说(listen before talk,LBT),在LBT成功时再执行发送过程。如果UE的介质接入控制(media access control,MAC)实体从该UE的低层(lower layer,例如物理(PHY)层)收到LBT失败指示,则会启动或重启LBT失败检测定时器,并且将LBT失败次数加1;在LBT失败检测定时器超时前,如果UE的MAC实体未从该UE的低层接收LBT失败指示,则该LBT失败检测定时器会超时,且UE的MAC层可将LBT失败次数清零。目前,UE的连续LBT失败检测过程是针对UL带宽部分(bandwidth part,BWP)执行,如果UE在一个UL BWP上的LBT失败次数大于或等于所配置的最大失败次数,则认为该UL BWP检测到(或,发生了)连续LBT失败,此时该UL BWP不可用。
侧行链路(sidelink,SL)通信也可以使用非授权频谱,因此可以考虑在SL通信中引入LBT机制。在SL通信场景中,SL载波只有单个BWP,该单个BWP最多可以包括8个模式(mode)1或者mode2的资源池(pool of resources,或resource pool,RP)。如果采用类似空口的LBT机制,即,UE以BWP为粒度执行连续LBT失败检测过程,则UE在发生连续LBT失败时,可能只是在该BWP包括的部分资源池内发生了连续LBT失败,该BWP包括的剩余的资源池依然可用。但按照目前的处理方式,只要UE在该BWP发生了连续LBT失败,UE会认为该BWP整体不可用,这导致了SL资源的浪费,且影响SL数据的传输。
发明内容
本申请实施例提供一种通信方法及装置,用于节省SL资源。
第一方面,提供第一种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如为第一终端设备。该方法包括:第一终端设备在所述第一终端设备的所有资源池检测到连续LBT失败,其中,所述所有资源池包括一个或多个资源池,其中的每个资源池用于所述第一终端设备与其他终端设备通信;所述第一终端设备执行如下行为中的一项或多项:释放所述第一终端设备的所有侧行链路单播连接,释放所述第一终端设备的所有侧行链路单播连接的DRB,释放所述第一终端设备的所有侧行链路单播连接的SRB,或,释放所述第一终端设备的广播和/或组播通信的DRB。
本申请实施例中,如果第一终端设备在第一终端设备的所有资源池检测到连续LBT失败,则第一终端设备可以执行释放第一终端设备的SL单播连接等操作。反之,如果第一终端设备在第一终端设备的部分资源池中的传输执行LBT成功,则第一终端设备可以不必执行释放第一终端设备的SL单播连接等操作,例如第一终端设备可以继续利用这部分资源池进行通信,从而减少了SL资源的浪费,提高 了SL资源的利用率。
在一种可选的实施方式中,所述第一终端设备在所述第一终端设备的所有资源池检测到连续LBT失败,包括:所述第一终端设备的MAC层在所述第一终端设备的所有资源池检测到连续LBT失败。所述第一终端设备执行如下行为中的一项或多项,包括:所述第一终端设备的RRC层执行如下行为中的一项或多项:释放所述第一终端设备的所有侧行链路单播连接,向所述第一终端设备的上层指示释放了所述第一终端设备的所有侧行链路单播连接,释放所述第一终端设备的所有侧行链路单播连接的DRB,释放所述第一终端设备的所有侧行链路单播连接的SRB,或,释放所述第一终端设备的广播和/或组播通信的DRB。可由第一终端设备的MAC层检测到连续LBT失败,另外可由第一终端设备的RRC层执行相应的行为。或者,检测到连续LBT失败的也可能是其他协议层,例如物理层;执行相应行为的也可以是其他协议层,具体不做限制。
在一种可选的实施方式中,所述方法还包括:所述MAC层向所述RRC层发送第一指示信息,所述第一指示信息用于指示检测到连续LBT失败,或指示所述第一终端设备的所有侧行链路单播连接均发生无线链路失败。如果MAC层检测到第一终端设备的所有资源池连续LBT失败,则该MAC层可以向RRC层发送第一指示信息,从而该RRC层可以执行如前所述的相应行为。
在一种可选的实施方式中,所述方法还包括:所述第一终端设备向接入网设备发送第二指示信息,所述第二指示信息用于指示检测到连续LBT失败,或指示所述第一终端设备的所有侧行链路单播连接均发生无线链路失败;所述第一终端设备接收来自所述接入网设备的第三指示信息,所述第三指示信息用于指示所述第一终端设备执行如下行为中的一项或多项:释放所述第一终端设备的所有侧行链路单播连接,释放所述第一终端设备的所有侧行链路单播连接的DRB,释放所述第一终端设备的所有侧行链路单播连接的SRB,或,释放所述第一终端设备的广播和/或组播通信的DRB。第一终端设备所执行的行为,可由第一终端设备自行决策,例如由第一终端设备的MAC层和/或RRC层决策,这样可以减少第一终端设备与其他设备的交互,提高执行效率;或者,第一终端设备所执行的行为也可由其他设备指示,例如由接入网设备指示,这样可以减少第一终端设备的决策过程,能够简化第一终端设备的实现。
在一种可选的实施方式中,所述方法还包括:所述第一终端设备在检测到所述一个或多个资源池中的至少一个资源池连续LBT失败时,使用第一组播层2标识组播第一信息,所述第一组播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;或,所述第一终端设备在检测到所述一个或多个资源池中的至少一个资源池连续LBT失败时,使用第一广播层2标识广播第一信息,所述第一广播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的。其中,所述第一组播层2标识用于指示对应的组播消息为所述第一信息,所述第一广播层2标识用于指示对应的广播消息为所述第一信息,所述第一信息用于指示所述至少一个资源池发生连续LBT失败。本申请实施例中,第一终端设备可以将发生连续LBT失败的资源池通知其他终端设备,使得其他终端设备可以不再利用这些资源池与第一终端设备通信,减小了通信失败的概率。另外,由第一终端设备分配广播层2标识或组播层2标识,而不必由各个终端设备的高层配置广播层2标识或组播层2标识,可以使得广播层2标识或组播层2标识更为灵活。
第二方面,提供第二种通信方法,该方法可由接入网设备执行,或由包括接入网设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现接入网设备的功能,该芯片系统或功能模块例如设置在接入网设备中。该接入网设备例如为基站等。该方法包括:接入网设备接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备检测到连续LBT失败,或指示所述第一终端设备的所有侧行链路单播连接均发生无线链路失败;所述接入网设备向所述第一终端设备发送第三指示信息,所述第三指示信息用于指示所述第一终端设备执行如下行为中的一项或多项:释放所述第一终端设备的所有侧行链路单播连接,释放所述第一终端设备的所有侧行链路单播连接的DRB,释放所述第一终端设备的所有侧行链路单播连接的SRB,或,释放所述第一终端设备的广播和/或组播通信的DRB。
关于第二方面所带来的技术效果,可参考对于第一方面或相应实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如为第一终端设备。该方法包括:第一终端设备在所述第一终端设备的所有第一类资源池检测到连续LBT失败,其中,所述所有第一类资源池 包括一个或多个第一类资源池,其中的每个第一类资源池用于所述第一终端设备与其他终端设备通信,且所述每个第一类资源池包括物理侧行链路反馈信道资源。对于第一侧行链路单播连接,所述第一终端设备执行如下行为中的一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,对于第一侧行链路单播连接,所述第一终端设备执行如下行为中的一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块,且设置所述传输块对应的侧行链路进程为未被占用。其中,为所述第一侧行链路单播连接配置的所有LCH为反馈使能的LCH,或为所述第一侧行链路单播连接配置的LCH包括反馈使能的LCH和反馈未使能的LCH。本申请实施例中,如果第一终端设备在第一终端设备的所有第一类资源池检测到连续LBT失败,则第一终端设备可以执行第二操作。反之,如果第一终端设备在第一终端设备的部分第一类资源池的资源执行LBT成功,则第一终端设备可以不必执行第二操作,例如第一终端设备可以继续利用这部分第一类资源池进行通信,从而减少了SL资源的浪费,提高了SL资源的利用率。而且,当第一终端设备检测到连续LBT失败后,第一终端设备能够合理处理当前的侧行链路单播连接,尽量避免出现第一终端设备的高层继续向低层递交SL信息、但该SL信息无法发送的问题。
在一种可选的实施方式中,所述第一终端设备在所述第一终端设备的所有第一类资源池检测到连续LBT失败,包括:所述第一终端设备的MAC层在所述第一终端设备的所有第一类资源池检测到连续LBT失败。对于第一侧行链路单播连接,所述第一终端设备执行如下行为中的一项或多项,包括:对于所述第一侧行链路单播连接,所述第一终端设备的RRC层执行如下行为中的一项或多项:释放所述第一侧行链路单播连接,向所述第一终端设备的上层指示释放了所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,对于第一侧行链路单播连接,所述第一终端设备执行如下行为中的一项或多项,包括:对于所述第一侧行链路单播连接,所述第一终端设备的RRC层执行如下行为中的一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,向所述第一终端设备的上层指示释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB对应的QoS流,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块,且设置所述传输块对应的侧行链路进程为未被占用。可由第一终端设备的MAC层检测到连续LBT失败,另外可由第一终端设备的RRC层执行相应的行为。或者,检测到连续LBT失败的也可能是其他协议层,例如物理层;执行相应行为的也可以是其他协议层,具体不做限制。
在一种可选的实施方式中,所述方法还包括:所述MAC层确定配置的所有LCH为反馈使能的LCH的侧行链路单播连接为所述第一侧行链路单播连接,或确定配置的LCH包括反馈使能的LCH和反馈未使能的LCH的侧行链路单播连接为所述第一侧行链路单播连接;所述MAC层向所述RRC层发送第一指示信息,所述第一指示信息用于指示所述第一侧行链路单播连接发生无线链路失败。例如,MAC层可以检测到连续LBT失败,则该MAC层可一并据此确定第一侧行链路单播连接,从而RRC层不必再执行确定第一侧行链路单播连接的操作。
在一种可选的实施方式中,所述方法还包括:所述MAC层向所述RRC层发送第一指示信息,所述第一指示信息用于指示检测到所述所有第一类资源池连续LBT失败;所述RRC层确定配置的所有LCH为反馈使能的LCH的侧行链路单播连接为所述第一侧行链路单播连接,或确定配置的LCH包括反馈使能的LCH和反馈未使能的LCH的侧行链路单播连接为所述第一侧行链路单播连接。MAC层可以向RRC层指示检测到所有第一类资源池连续LBT失败,由RRC层确定第一侧行链路单播连接。即,本申请实施例可以通过不同的协议层来确定第一侧行链路单播连接,较为灵活。
在一种可选的实施方式中,所述方法还包括:所述第一终端设备向接入网设备发送第二指示信息,所述第二指示信息用于指示所述第一终端设备的所述第一侧行链路单播连接发生无线链路失败;所述第一终端设备接收来自所述接入网设备的第三指示信息。其中,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。第一终端设备确定第一侧行链路单播连接后,可以指示给接入网设备,接入网设备向第一终端设备指示应执行哪些行为。由接入网设备向第一终端设备指示相应的行为,不必由 第一终端设备自行决策,能够简化第一终端设备的实现。
在一种可选的实施方式中,所述方法还包括:所述第一终端设备向接入网设备发送第二指示信息,所述第二指示信息用于指示检测到所述第一终端设备的所有所述第一类资源池连续LBT失败;所述第一终端设备接收来自所述接入网设备的第三指示信息。其中,所述第三指示信息用于指示所述第一终端设备对于所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,所述第三指示信息用于指示所述第一终端设备对于所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。在这种方式中,第一侧行链路单播连接以及第一终端设备所执行的行为均可由接入网设备决策,进一步简化了第一终端设备的实现,使得本申请实施例提供的技术方案能够应用于更多的终端设备。
在一种可选的实施方式中,所述方法还包括:所述第一终端设备重建或修改第一LCH的DRB;或,所述第一终端设备重建或修改第一LCH的DRB对应的QoS流;其中,所述第一LCH为反馈未使能的LCH。如果第一终端设备要重建或修改DRB,则可以重建或修改反馈未使能的LCH的DRB,对于第一终端设备的反馈使能的LCH的DRB,则不进行重建或修改。同理,如果第一终端设备要重建或修改DRB对应的QoS流,则可以重建或修改反馈未使能的LCH的DRB对应的QoS流,对于第一终端设备的反馈使能的LCH的DRB对应的QoS流,则不进行重建或修改。
在一种可选的实施方式中,所述方法还包括:所述第一终端设备接收来自接入网设备的第四指示信息,所述第四指示信息用于指示所述第一终端设备重建或修改所述第一LCH的DRB,或指示所述第一终端设备重建或修改所述第一LCH的DRB对应的QoS流。第一终端设备可以自行决策重建或修改DRB或QoS流,或者也可以在接入网设备的指示下重建或修改DRB或QoS流。
在一种可选的实施方式中,所述方法还包括:所述第一终端设备在所述一个或多个第一类资源池中的M个第一类资源池检测到LBT成功,M为正整数;所述第一终端设备恢复所述第一侧行链路单播连接的反馈使能的LCH的DRB,和/或,恢复所述第一侧行链路单播连接的反馈使能的LCH的DRB对应的QoS流。如果一个资源池发生连续LBT失败,则该资源池不可用。可选的,一个不可用的资源池也可以恢复,即,重新变为可用的资源池。例如,在一个资源池检测到连续LBT失败后,第一终端设备还可以继续对该资源池中的资源或该资源池中的传输执行LBT。如果第一终端设备在第一终端设备的所有资源池中的M个第一类资源池中的资源或传输检测到LBT成功,则可以认为这M个第一类资源池重新恢复为了可用的资源池。通过恢复过程,使得资源池内的SL资源能够得到利用,减少了资源浪费。而且资源池恢复后能够为终端设备提供更多可选的SL资源,能够扩大终端设备选择SL资源的范围,提高信息传输成功率。
在一种可选的实施方式中,所述方法还包括:所述第一终端设备在检测到所述一个或多个第一类资源池中的至少一个第一类资源池连续LBT失败时,使用第一组播层2标识组播第一信息,所述第一组播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;或,所述第一终端设备在检测到所述一个或多个第一类资源池中的至少一个第一类资源池连续LBT失败时,使用第一广播层2标识广播第一信息,所述第一广播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;其中,所述第一组播层2标识用于指示对应的组播消息为所述第一信息,所述第一广播层2标识用于指示对应的广播消息为所述第一信息,所述第一信息用于指示所述至少一个第一类资源池发生连续LBT失败。本申请实施例中,第一终端设备可以将发生连续LBT失败的第一类资源池通知其他终端设备,使得其他终端设备可以不再利用这些资源池与第一终端设备通信,减小了通信失败的概率。另外,由第一终端设备分配广播层2标识或组播层2标识,而不必由各个终端设备的高层配置广播层2标识或组播层2标识,可以使得广播层2标识或组播层2标识更为灵活。
第四方面,提供第四种通信方法,该方法可由接入网设备执行,或由包括接入网设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现接入网设备的功能,该芯片系统或功能模块例如设置在接入网设备中。该接入网设备例如为基站等。该方法包括:接入网设备接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备的第一侧行链路单播连接发生无线链路失败;所述接入网设备向所述第一终端设备发送第三指示信息。其中,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放 所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。
在一种可选的实施方式中,所述方法还包括:所述接入网设备向所述第一终端设备发送第四指示信息,所述第四指示信息用于指示所述第一终端设备重建或修改第一LCH的DRB,或指示所述第一终端设备重建或修改第一LCH的DRB对应的QoS流,其中,所述第一LCH为反馈未使能的LCH。
关于第四方面或各种可选的实施方式所带来的技术效果,可参考对于第三方面或相应实施方式的技术效果的介绍。
第五方面,提供第五种通信方法,该方法可由接入网设备执行,或由包括接入网设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现接入网设备的功能,该芯片系统或功能模块例如设置在接入网设备中。该接入网设备例如为基站等。该方法包括:接入网设备接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示检测到所述第一终端设备的所有第一类资源池连续LBT失败,其中的每个第一类资源池包括物理侧行链路反馈信道资源;所述接入网设备根据所述第二指示信息确定所述第一终端设备的第一侧行链路单播连接,其中,所述第一侧行链路单播连接的所有LCH为反馈使能的LCH,或所述第一侧行链路单播连接的LCH包括反馈使能的LCH和反馈未使能的LCH;所述接入网设备向所述第一终端设备发送第三指示信息。其中,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。
在一种可选的实施方式中,所述方法还包括:所述接入网设备向所述第一终端设备发送第四指示信息,所述第四指示信息用于指示所述第一终端设备重建或修改第一LCH的DRB,或指示所述第一终端设备重建或修改第一LCH的DRB对应的QoS流,其中,所述第一LCH为所述第一终端设备的反馈未使能的LCH。
关于第五方面或各种可选的实施方式所带来的技术效果,可参考对于第三方面或相应实施方式的技术效果的介绍。
第六方面,提供第六种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如为第一终端设备。该方法包括:第一终端设备在检测到至少一个资源池连续LBT失败时,使用第一组播层2标识组播第一信息,所述第一组播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;或,第一终端设备在检测到至少一个资源池连续LBT失败时,使用第一广播层2标识广播第一信息,所述第一广播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;其中,所述第一组播层2标识用于指示对应的组播消息为所述第一信息,所述第一广播层2标识用于指示对应的广播消息为所述第一信息,所述第一信息用于指示所述至少一个资源池发生连续LBT失败。
关于第六方面所带来的技术效果,可参考对于第一方面或第二方面的相应实施方式的技术效果的介绍。
第七方面,提供第七种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如为第一终端设备。该方法包括:第一终端设备在所述第一终端设备的第一资源池检测到连续LBT失败;如果已有在所述第一资源池内选择的侧行链路资源,所述第一终端设备不使用所述侧行链路资源,其中,所述侧行链路资源包括PSCCH资源、PSSCH资源或PSFCH资源中的一个或多个。本申请实施例中,如果第一终端设备检测到第一资源池连续LBT失败,则第一终端设备可以不使用第一资源池内的第一SL资源,从而减小传输失败的概率。另外,第一终端设备还可以重新确定SL资源来发送SL信息,以减小SL信息的传输时延。
在一种可选的实施方式中,所述侧行链路资源包括如下一项或多项:接入网设备为所述第一终端设 备的侧行链路数据调度的侧行链路资源;所述第一终端设备在所述第一资源池中选择的用于发送侧行链路信息的资源;或,用于发送侧行链路数据的反馈信息的资源。
在一种可选的实施方式中,所述第一终端设备不使用所述侧行链路资源,包括:所述第一终端设备的MAC层指示所述第一终端设备的物理层清除所述侧行链路资源的信息;或,所述第一终端设备的MAC层不向所述第一终端设备的物理层递交待发送的侧行链路信息;或,所述第一终端设备的MAC层不向所述第一终端设备的物理层指示生成侧行链路传输。第一终端设备不使用该侧行链路资源,可以通过多种方式实现。例如,第一终端设备的MAC层指示第一终端设备的物理层清除该侧行链路资源的信息,物理层在清除该信息后,也就不会再利用该侧行链路资源。或者,该MAC层可以不向该物理层递交待发送的SL信息,或者该MAC层不向该物理层指示生成SL传输,从而该物理层没有获得待发送的SL信息,也就不会利用该侧行链路资源。
第八方面,提供第八种通信方法,该方法可由终端设备执行,或由包括终端设备功能的其他设备执行,或由芯片系统(或,芯片)或其他功能模块执行,该芯片系统或功能模块能够实现终端设备的功能,该芯片系统或功能模块例如设置在终端设备中。该终端设备例如为第一终端设备。该方法包括:第一终端设备确定第一资源池不可用;所述第一终端设备对所述第一资源池执行LBT;如果所述第一终端设备在所述第一资源池检测到至少一次LBT成功,确定所述第一资源池可用。通过本申请实施例的方案,可以及时恢复资源池,从而扩大SL资源选择范围,减少SL资源不足的情况。
在一种可选的实施方式中,所述至少一次的数量为1,或大于1。
在一种可选的实施方式中,所述至少一次的数量大于1,如果所述第一终端设备在所述第一资源池检测到至少一次LBT成功,确定所述第一资源池可用,包括:如果所述第一终端设备在所述第一资源池检测到连续所述至少一次LBT成功,确定所述第一资源池可用。通过连续LBT成功来确定一个资源池是否可用,可以使得确定结果更为准确。
第九方面,提供一种通信装置。所述通信装置可以为上述第一方面至第八方面中的任一方面所述的第一终端设备。所述通信装置具备上述第一终端设备的功能。所述通信装置例如为第一终端设备,或为包括第一终端设备的较大设备,或为第一终端设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
在一种可选的实施方式中,所述处理单元,用于在所述第一终端设备的所有资源池检测到连续先听后说LBT失败,其中,所述所有资源池包括一个或多个资源池,其中的每个资源池用于所述第一终端设备与其他终端设备通信;所述处理单元,还用于执行如下行为中的一项或多项:释放所述第一终端设备的所有侧行链路单播连接,释放所述第一终端设备的所有侧行链路单播连接的DRB,释放所述第一终端设备的所有侧行链路单播连接的SRB,或,释放所述第一终端设备的广播和/或组播通信的DRB。
在一种可选的实施方式中,所述处理单元,用于在所述第一终端设备的所有第一类资源池检测到连续LBT失败,其中,所述所有第一类资源池包括一个或多个第一类资源池,其中的每个第一类资源池用于所述第一终端设备与其他终端设备通信,且所述每个第一类资源池包括物理侧行链路反馈信道资源。对于第一侧行链路单播连接,所述处理单元还用于执行如下行为中的一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,对于第一侧行链路单播连接,所述处理单元还用于执行如下行为中的一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块,且设置所述传输块对应的侧行链路进程为未被占用。其中,为所述第一侧行链路单播连接配置的所有LCH为反馈使能的LCH,或为所述第一侧行链路单播连接配置的LCH包括反馈使能的LCH和反馈未使能的LCH。
在一种可选的实施方式中,所述处理单元,用于检测到至少一个资源池连续LBT失败,所述收发单元(或,所述发送单元),用于使用第一组播层2标识组播第一信息,所述第一组播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;或,所述处理单元,用于检测到至 少一个资源池连续LBT失败,所述收发单元(或,所述发送单元),用于使用第一广播层2标识广播第一信息,所述第一广播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的。其中,所述第一组播层2标识用于指示对应的组播消息为所述第一信息,所述第一广播层2标识用于指示对应的广播消息为所述第一信息,所述第一信息用于指示所述至少一个资源池发生连续LBT失败。
在一种可选的实施方式中,所述处理单元,用于在所述第一终端设备的第一资源池检测到连续LBT失败;所述处理单元,还用于如果已有在所述第一资源池内选择的侧行链路资源,不使用所述侧行链路资源,其中,所述侧行链路资源包括PSCCH资源、PSSCH资源或PSFCH资源中的一个或多个。
在一种可选的实施方式中,所述处理单元,用于确定第一资源池不可用;所述处理单元,还用于对所述第一资源池执行LBT;所述处理单元,还用于如果在所述第一资源池检测到至少一次LBT成功,确定所述第一资源池可用。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第八方面中的任一方面所述的第一终端设备的功能。
第十方面,提供一种通信装置。所述通信装置可以为上述第一方面至第八方面中的任一方面所述的接入网设备。所述通信装置具备上述接入网设备的功能。所述通信装置例如为接入网设备,或为包括接入网设备的较大设备,或为接入网设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第九方面的介绍。
在一种可选的实施方式中,所述收发单元(或,所述接收单元),用于接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备检测到连续LBT失败,或指示所述第一终端设备的所有侧行链路单播连接均发生无线链路失败;所述收发单元(或,所述发送单元),用于向所述第一终端设备发送第三指示信息,所述第三指示信息用于指示所述第一终端设备执行如下行为中的一项或多项:释放所述第一终端设备的所有侧行链路单播连接,释放所述第一终端设备的所有侧行链路单播连接的DRB,释放所述第一终端设备的所有侧行链路单播连接的SRB,或,释放所述第一终端设备的广播和/或组播通信的DRB。
在一种可选的实施方式中,所述收发单元(或,所述接收单元),用于接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备的第一侧行链路单播连接发生无线链路失败;所述收发单元(或,所述发送单元),用于向所述第一终端设备发送第三指示信息。其中,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。
在一种可选的实施方式中,所述收发单元(或,所述接收单元),用于接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示检测到所述第一终端设备的所有第一类资源池连续LBT失败,其中的每个第一类资源池包括物理侧行链路反馈信道资源;所述处理单元,用于根据所述第二指示信息确定所述第一终端设备的第一侧行链路单播连接,其中,所述第一侧行链路单播连接的所有LCH为反馈使能的LCH,或所述第一侧行链路单播连接的LCH包括反馈使能的LCH和反馈未使能的LCH;所述收发单元(或,所述发送单元),用于向所述第一终端设备发送第三指示信息。其中,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面 至第八方面中的任一方面所述的接入网设备的功能。
第十一方面,提供一种通信装置,该通信装置可以为第一终端设备,或者为用于第一终端设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由第一终端设备所执行的方法。
第十二方面,提供一种通信装置,该通信装置可以为接入网设备,或者为用于接入网设备中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令时,使通信装置执行上述各方面中由接入网设备所执行的方法。
第十三方面,提供一种通信系统,包括第一终端设备以及接入网设备,其中,第一终端设备用于执行如第一方面至第八方面中任一方面所述的由接入网设备执行的方法,接入网设备用于执行如第一方面至第八方面中任一方面所述的由接入网设备执行的方法。例如,第一终端设备可以通过第九方面或第十一方面所述的通信装置实现;接入网设备可以通过第十方面或第十二方面所述的通信装置实现。
第十四方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中第一终端设备或接入网设备所执行的方法被实现。
第十五方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十六方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2~图6为本申请实施例提供的几种通信方法的流程图;
图7为本申请实施例提供的一种装置的示意图;
图8为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于限定步骤之间的先后顺序。例如,S201可以发生在S202之前,或者可能发生在S202之后,或者也可能与S202同时发生。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智 能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为UE、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
(2)本申请实施例中的网络设备,例如包括接入网设备,和/或核心网设备。所述接入网设备为具有无线收发功能的设备,用于与所述终端设备进行通信。所述接入网设备包括但不限于基站(基站收发站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。所述接入网设备还可以是服务器等。例如,车到一切(vehicle to everything,V2X)技术中的网络设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。所述核心网设备用于实现移动管理,数据处理,会话管理,策略和计费等功能。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。以第五代(the 5th generation,5G)移动通信系统为例,所述核心网设备包括:访问和移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)、策略控制功能(policy control function,PCF)或用户面功能(user plane function,UPF)等。
本申请实施例中,用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
(3)资源池可以分为两类,一类为带有物理侧行链路反馈信道(physical sidelink feedback channel,PSFCH)资源的资源池,也即配置了PSFCH资源的资源池(pool of resources configured with PSFCH resources),另一类为不带PSFCH资源的资源池。UE在SL通信中可以被配置一个或多个逻辑信道(logical channel,LCH),其中LCH又可以分为两类,一类为使能了侧行链路反馈的LCH,另一类为未使能侧行链路反馈的LCH。其中,使能了侧行链路反馈,又可以称为侧行链路混合自动重传请求反馈使能(sl-HARQ-FeedbackEnabled),也可以简称为反馈使能。其中,反馈使能的LCH上的SL信息只能从带PSFCH资源的资源池中选择SL资源传输,即,不带PSFCH资源的资源池中的SL资源不能用于传输反馈使能的LCH上的SL信息;反馈未使能的LCH上的SL信息既可以从带PSFCH资源的资源池中选择SL资源传输,也可以从不带PSFCH资源的资源池中选择SL资源传输。
(4)非授权频谱和LBT机制。
在UE与基站通信的场景中,所使用的频谱资源分为授权(licensed)频谱和非授权频谱。授权频谱只能让某一些机构或运营商使用,非授权频谱为共享频谱,不同的运营商/机构都可以使用。为了公平地使用非授权频谱,UE和基站在发送数据之前,需要进行LBT过程(信道接入过程)。
一般地,LBT是以信道(例如带宽为20MHz)的粒度进行的,可以理解的,信道可以等价替换为资源块集合(resource block set,RB set),也就是说,一个信道和一个RB set的频域带宽都是20MHz。通信设备(例如UE)在某个信道(例如记作第一信道)上发送信号(例如,数据信号)之前,可以先检测第一信道是否空闲,例如,检测是否有附近的通信设备正在占用该第一信道发送信号,这一检测过程可以称为空闲信道评估(clear channel assessment,CCA),或者称为信道接入过程。也就是说,与传统Uu通信的一个不同点在于,在基于授权频谱工作的场景中,基站为UE调度上行资源后,UE可以直接使用该上行资源进行上行传输;而在基于非授权频谱工作的场景中,基站为UE调度上行资源用于上行传输之后,UE仍然需要对该上行传输进行LBT,只有在LBT成功之后,才可以使用该上行资源进行上行传输。换言之,如果进行LBT发生失败,则UE无法使用该调度的上行资源进行上行传输。
以下介绍本申请实施例涉及的技术特征。
在NR系统中,在使用非授权频谱进行Uu接口通信时,基站会为UE配置LBT失败恢复配置,该LBT失败恢复配置可包括最大失败次数和LBT失败检测定时器的时长,该LBT失败恢复配置是按照每 个(per)UL BWP配置的,不同的UL BWP被配置的最大失败次数相同或不同,不同的UL BWP被配置的LBT失败检测定时器的时长相同或不同。例如,一个UL载波有多个UL BWP,则UE对于LBT失败次数和LBT失败检测定时器是按照UL BWP的粒度来执行的。例如,当一个UL BWP上出现LBT失败,则可将该UL BWP对应的LBT失败次数加1,且启动或重启该UL BWP对应的LBT失败检测定时器;或者,当一个UL BWP上LBT成功,则可将该UL BWP对应的LBT失败次数清零,且保持该UL BWP对应的LBT失败检测定时器的状态不变,则该UL BWP对应的LBT失败检测定时器会超时。如果一个UL BWP的LBT失败次数大于或等于该UL BWP被配置的最大失败次数,则认为该UL BWP检测到连续LBT失败。
UE内部由MAC实体来维护LBT的失败次数(该失败次数的初始值为0)和LBT失败检测定时器。如果该MAC实体从该UE的低层(例如物理层)收到某个UL BWP的LBT失败指示,则会启动或重启该UL BWP对应的LBT失败检测定时器,并且将该UL BWP对应的LBT失败次数加1;在该LBT失败检测定时器超时前,如果UE的MAC实体未从该UE的低层接收该UL BWP的LBT失败指示,则该LBT失败检测定时器会超时,且UE的MAC层可将该UL BWP对应的LBT失败次数清零。如果UE在一个UL BWP上的LBT失败次数大于或等于所配置的最大失败次数,则认为该UL BWP发生了连续LBT失败,此时该UL BWP不可用。
在一个UL BWP发生连续LBT失败的情况下,如果除了该UL BWP之外,该UE所在的小区还有其他的UL BWP配置有物理随机接入信道(physical random access channel,PRACH),且未发生连续LBT失败,则UE可以自主转移到该UL BWP上进行随机接入;而如果该小区所有配置了PRACH的UL BWP都发生了连续LBT失败,则UE的MAC实体可以向该UE的高层(例如无线资源控制(radio resource control,RRC)层)发送指示信息。该高层收到该指示信息后的行为,取决于该小区的性质。例如,如果该小区是该UE的主小区,则该UE可以触发RRC重建立过程;或者,如果该小区是该UE的辅小区,则该UE会向基站发送用于指示连续LBT失败的MAC控制元素(control element,CE),该MAC CE可包括发生连续LBT失败的辅小区的索引。
SL通信也可以使用非授权频谱,因此可以考虑在SL通信中引入LBT机制。在SL通信场景中,SL载波只有单个BWP,该单个BWP最多可以包括8个mode1或者mode2的资源池。如果采用类似Uu接口的LBT机制,即,UE以BWP为粒度进行连续LBT失败检测,则UE在发生连续LBT失败时,可能只是在该BWP包括的部分资源池内发生了连续LBT失败,该BWP包括的剩余的资源池依然可用。但按照目前的处理方式,只要UE在该BWP发生了连续LBT失败,UE会认为该BWP整体不可用,这导致了SL资源的浪费。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,如果第一UE在第一UE的所有资源池检测到连续LBT失败,则第一UE可以执行释放第一UE的SL单播连接等操作。反之,如果第一UE在第一UE的部分资源池中的传输执行LBT成功,则第一UE可以不必执行释放第一UE的SL单播连接等操作,例如第一UE可以继续利用这部分资源池进行通信,从而减少了SL资源的浪费,提高了SL资源的利用率。其中,对资源池中的传输执行LBT,可以理解为调度或选择了资源池的资源进行SL传输,对该SL传输执行LBT。
本申请实施例提供的技术方案可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如长期演进(long term evolution,LTE)系统,或可以应用于5G系统中,例如NR系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,例如第六代移动通信技术(the 6th generation,6G)系统等,具体的不做限制。本申请实施例提供的技术方案可以应用于设备到设备(device-to-device,D2D)场景,例如NR-D2D场景等,或者可以应用于车到一切(vehicle to everything,V2X)场景,例如NR-V2X场景等。例如可应用于车联网,例如V2X等,或可用于智能驾驶、辅助驾驶、或智能网联车等领域。
可参考图1,为本申请实施例适用的一种通信网络架构。图1包括第一UE和第二UE,第一UE与一个或多个UE之间可以进行SL通信,图1以第一UE能够与第二UE进行SL通信、且第二UE的数量为1为例。例如第一UE与第二UE可利用非授权频谱进行SL通信。在第一UE向第二UE发送SL信息前,第一UE可以执行LBT过程;同理,在第二UE向第一UE发送SL信息前,第二UE也可以执行LBT过程。另外,图1还包括接入网设备,第一UE的行为可由第一UE自行决策,或者也可由接入网设备指示。其中,图1未画出第二UE与接入网设备的通信情况,第二UE与接入网设备之间 可以通信,例如第二UE也处于该接入网设备的覆盖范围内或其他接入网设备的覆盖范围内;或者,第二UE与接入网设备也可以无法通信,例如第二UE处于该接入网设备的覆盖范围外。图1是以第一UE处于接入网设备(例如图1所示的接入网设备)的覆盖范围内为例;还可能有一种场景,第一UE处于任意接入网设备的覆盖范围外。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。本申请的各个实施例所提供的方法均可应用于图1所示的网络架构,例如本申请的各个实施例提供的方法所涉及的第一UE可以是图1中的第一UE,本申请的各个实施例提供的方法所涉及的接入网设备可以是图1中的接入网设备。可选的,后文如无特殊说明,则本申请的各个实施例所涉及的资源池可以是SL资源池。本申请的各个实施例中,“层”也可以理解为“实体”。例如,“MAC层”也可以替换为“MAC实体”,“物理层”也可以替换为“物理实体”,“RRC层”也可以替换为“RRC实体”,等等。
本申请的各个实施例中,UE进行连续LBT检测,可以是以频域单位为粒度。例如该频域单位为资源池,即,UE可以针对资源池进行连续LBT检测;或者该频域单位为BWP所包括的资源块集合(RB set),即,UE可以针对RB set进行连续LBT检测,其中,本申请的各个实施例所述的“RB set”,均为资源池内的RB set,或者,本申请的各个实施例所述的RB set均位于资源池内;或者该频域单位为BWP所包括的LBT子带(subband),即UE可以针对LBT子带进行连续LBT检测。在后文的介绍中,均以该频域单位是资源池为例。可以理解的是,后文所述的在一个“资源池”检测到或发生了连续LBT失败,也可以替换为,通过“RB set”的连续LBT失败或“LBT子带”的连续LBT失败确定在一个“资源池”检测到或发生了连续LBT失败,或者替换为,通过检测到“RB set”发生了连续LBT失败或“LBT子带”发生了连续LBT失败而确定在一个“资源池”检测到或发生了连续LBT失败。例如,若一个“资源池”内的所有“RB set”检测到或发生了连续LBT失败,则认为对应的“资源池”检测到或发生了连续LBT失败;或者,若一个“资源池”内的所有“LBT子带”检测到或发生了连续LBT失败,则认为对应的“资源池”检测到或发生了连续LBT失败。其中,UE一般只会对SL数据发送执行LBT,因此可选的,本申请的各个实施例中的“资源池”都可以理解为“SL发送资源池”。
首先介绍本申请实施例提供的第一种通信方法,请参见图2,为该方法的流程图。
S201、第一UE在第一UE的所有资源池检测到连续LBT失败。或者,第一UE确定第一UE的所有资源池发生了连续LBT失败。
可选的,例如在UE针对RB set进行连续LBT检测的情况下,S201可以替换为:第一UE在第一UE的所有RB set或所有资源池中的所有RB set检测到连续LBT失败。或者,第一UE确定第一UE的所有RB set或所有资源池中的所有RB set发生了连续LBT失败。其中,该所有RB set可以包括一个或多个RB set(s)。
第一UE的所有资源池例如为第一UE被配置的所有资源池,或为第一UE支持的所有资源池。第一UE可以被配置一个或多个资源池(或者说,该所有资源池的数量可以是一个或多个),这一个或多个资源池可由接入网设备配置(例如通过广播消息或专用消息配置),或者也可以预配置在第一UE中(例如第一UE出厂时配置),或者也可由第一UE的高层(例如上层(upper layer))自行配置。第一UE可以同时对多个资源池中的传输执行LBT,或者也可以在一个资源池中的传输执行LBT完毕后再在下一个资源池中的传输执行LBT,对于执行顺序不做限制。
可选的,第一UE的所有资源池例如为mode1对应的资源池或mode2对应的资源池、但不包括特殊资源池(exceptional pool)。例如,若UE被配置了mode1或UE使用mode1,则第一UE的所有资源池可以包括mode1对应的资源池,但不包括exceptional pool;若UE被配置了mode2或UE使用mode2,则第一UE的所有资源池可以包括mode2对应的资源池、但不包括特殊资源池exceptional pool。其中,mode1对应的资源池为mode1下UE被配置的进行普通SL传输的资源池(例如,通过侧行链路发送资源池调度(sl-TxPoolScheduling)字段指示配置的资源池);mode2对应的资源池为mode2下UE被配置的进行普通SL传输的资源池(例如,通过侧行链路发送资源池选择普通(sl-TxPoolSelectedNormal)字段指示配置的资源池);exceptional pool为mode1或mode2下UE被配置的特殊情况下进行SL传输的资源池(例如,通过侧行链路发送资源池特殊(sl-TxPoolExceptional)字段指示配置的资源池)。
mode1下的特殊情况例如包括:第一UE检测到与接入网设备之间的无线链路的物理层问题(即T310定时器运行过程中),或第一UE初始化了RRC重建(即T311定时器运行过程中),或第一UE发送了RRC连接重建请求消息(即T301定时器运行过程中),或第一UE进行了小区切换(即T304 定时器运行过程中)。
mode2下的特殊情况例如包括:第一UE选择的SL资源集合不可用。
可选的,第一UE的所有资源池也不包括发现相关的专用资源池,例如,不包括通过侧行链路发现发送资源池调度(sl-DiscTxPoolScheduling)字段或侧行链路发现发送资源池选择(sl-DiscTxPoolSelected)字段指示配置的资源池。
其中,例如在UE针对RB set进行连续LBT检测的情况下,上述的所有资源池可以理解为所有RB set所在的所有资源池。
可选的,可由第一UE的MAC层执行S201。例如,第一UE的物理层可对资源池中的传输执行LBT,如果在一个资源池中的传输检测到LBT失败,则该物理层可以向第一UE的MAC层发送LBT失败指示,以指示在该资源池检测到LBT失败,或指示该资源池发生(或,出现)了LBT失败,例如,该物理层可以向第一UE的MAC层发送LBT失败指示时指示LBT失败的资源池(例如通过资源池标识或资源池索引)。第一UE的MAC层可以通过物理层发送的LBT失败指示确定某一资源池是否发生连续LBT失败,如果该MAC层确定对应于第一UE的所有资源池中的每个资源池都发生连续LBT失败指示,则该MAC层可以确定在第一UE的所有资源池检测到连续LBT失败。
其中,例如在UE针对RB set进行连续LBT检测的情况下,上述的“资源池”可以替换为“RB set”。也即,第一UE的物理层可对RB set中的传输执行LBT,如果在一个RB set中的传输检测到LBT失败,则该物理层可以向第一UE的MAC层发送LBT失败指示,以指示在该RB set检测到LBT失败,或指示该RB set发生(或,出现)了LBT失败。例如,该物理层可以在向第一UE的MAC层发送LBT失败指示时指示LBT失败的RB set(例如通过RB set标识或RB set索引)。第一UE的MAC层可以通过来自物理层的LBT失败指示确定某一RB set是否发生连续LBT失败,如果该MAC层确定对应于第一UE的所有资源池中的每个RB set都发生连续LBT失败指示,则该MAC层可以确定在第一UE的所有RB set或所有资源池中的所有RB set检测到连续LBT失败。
可选的,第一UE的所有资源池中的每个资源池可以被配置最大失败次数(该最大失败次数可以随资源池一同配置),该MAC层每接收一个资源池的LBT失败指示,就将该资源池对应的失败次数加1。可选的,第一UE的所有资源池中的每个资源池还可以被配置定时器(该定时器可以随资源池一同配置)。例如,如果该MAC层从该物理层收到某个资源池的LBT失败指示,则会启动或重启该资源池对应的定时器,并且将该资源池对应的失败次数加1。在该定时器超时前,如果该MAC层又从该物理层接收了该资源池的LBT失败指示,则该MAC层可将该资源池对应的失败次数加1,并且重启该定时器;或者,在该定时器超时前,如果该MAC层未从该UE的物理层接收该资源池的LBT失败指示,则该MAC层可将该资源池对应的失败次数清零,另外该MAC层可以保持该定时器的状态不变,则该定时器可能超时。那么,如果一个资源池的失败次数大于或等于该资源池对应的最大失败次数,则该MAC层可以确定该资源池发生连续LBT失败。其中,不同的资源池被配置的最大失败次数可以相同或不同;不同的资源池被配置的定时器的时长相同或不同。
其中,例如在UE针对RB set进行连续LBT检测的情况下,上述的“资源池”可以替换为“RB set”。
可选的,第一UE在检测到所有资源池中的至少一个资源池连续LBT失败时,可以组播第一信息。第一信息可指示至少一个资源池发生连续LBT失败,从而接收第一信息的UE可以不再利用至少一个资源池与第一UE通信。例如,第一UE每检测到一个资源池发生连续LBT失败,就可以组播第一信息;或者,第一UE也可以在检测到有多个资源池发生连续LBT失败时再组播第一信息。例如,第一UE可以使用第一组播层2标识来组播第一信息,第一组播层2标识可以预先分配给第二UE,第二UE可以包括一个或多个UE。例如第一UE在与第二UE建立SL单播连接时,可以为第二UE分配第一组播层2标识。其中,如果第二UE包括多个UE,第一UE为这多个UE分配的第一组播层2标识可以是同一标识。本申请实施例由第一UE分配第一组播层2标识,而不必由各个UE的高层配置组播层2标识,可以使得组播层2标识更为灵活,例如第一UE可以灵活更新组播层2标识,或者可以为不同组的UE分配不同的组播层2标识等,提高了通信灵活性。第一组播层2标识可指示对应的组播消息为第一信息,或者指示对应的组播消息用于指示资源池的连续LBT失败。其中,如果第一UE使用第一组播层2标识组播一条消息,则该消息就视为第一组播层2标识对应的组播消息。如果第一UE使用第一组播层2标识来进行组播,则接收该组播消息的UE能够确定该组播消息为第一信息,或者确定有资源池发生连续LBT失败。可选的,第一信息可以包括所述至少一个资源池的标识,从而接收第一信息的 UE能够确定该至少一个资源池。其中,一个资源池的标识例如为该资源池的索引。
其中,例如在UE针对RB set进行连续LBT检测的情况下,上述的“资源池”可以替换为“RB set”。
或者,第一UE在检测到所有资源池中的至少一个资源池连续LBT失败时,也可以广播第一信息。第一信息可指示至少一个资源池发生连续LBT失败,从而接收第一信息的UE可以不再利用至少一个资源池与第一UE通信。例如,第一UE每检测到一个资源池发生连续LBT失败,就可以广播第一信息;或者,第一UE也可以在检测到有多个资源池发生连续LBT失败时再广播第一信息。例如,第一UE可以使用第一广播层2标识来广播第一信息,第一广播层2标识可以预先分配给第二UE,第二UE可包括一个或多个UE。例如第一UE在与第二UE建立SL单播连接时,可以为第二UE分配第一广播层2标识(例如,第一UE在与一个或多个UE建立SL单播连接时,可以为这一个或多个UE分配第一组播层2标识和/或第一广播层2标识)。其中,如果第二UE包括多个UE,第一UE为这多个UE分配的第一广播层2标识可以是同一标识。本申请实施例由第一UE分配第一广播层2标识,而不必由各个UE的高层配置广播层2标识,可以使得广播层2标识更为灵活,例如第一UE可以灵活更新广播层2标识,或者可以为不同组或不同小区的UE分配不同的广播层2标识等,提高了通信灵活性。第一广播层2标识可指示对应的广播消息为第一信息,或者指示对应的广播消息用于指示资源池的连续LBT失败。其中,如果第一UE使用第一广播层2标识广播一条消息,则该消息就视为第一广播层2标识对应的广播消息。如果第一UE使用第一广播层2标识来进行广播,则接收该广播消息的UE能够确定该广播消息为第一信息,或者确定有资源池发生连续LBT失败。可选的,第一信息可以包括所述至少一个资源池的标识,从而接收第一信息的UE能够确定该至少一个资源池。
其中,例如在UE针对RB set进行连续LBT检测的情况下,上述的“资源池”可以替换为“RB set”。
S202、第一UE执行第一操作。第一操作也可以称为第一行为。
第一操作可包括如下一项或多项:释放第一UE的所有SL单播连接,释放第一UE的所有SL单播连接的承载,或,释放第一UE的广播和/或组播通信的DRB。
可选的,可由第一UE的RRC层执行S202。在这种情况下,第一操作可包括如下一项或多项:释放第一UE的所有SL单播连接,向第一UE的上层(upper layer)指示释放了第一UE的所有SL单播连接,释放第一UE的所有SL单播连接的承载,或,释放第一UE的广播和/或组播通信的DRB。
本申请的各个实施例中,SL单播连接可以是PC5-RRC连接。一个SL单播连接的承载,可包括该SL单播连接的数据无线承载(data radio bearer,DRB)和/或信令无线承载(signaling radio bearer,SRB)。释放第一UE的所有SL单播连接的承载,可以包括释放第一UE的所有SL单播连接的承载的配置和/或承载的实体。
第一UE要利用SL单播连接传输SL信息,则要在资源池内选择资源。如果第一UE在第一UE的所有资源池检测到连续LBT失败,表明第一UE的所有资源池均不可用,在这种情况下第一UE的所有SL单播连接无法工作,因此第一UE可以释放第一UE的所有SL单播连接。可选的,“第一UE的所有资源池均不可用”可以替换为“第一UE的所有资源池在后续一段时间内均不可用”,即后续过了一段时间后,该第一UE的资源池又可以变为可用,其中一段时间的时间长度可以是协议预定的、或网络设备配置的。
第一UE的上层可以利用第一UE的SL单播连接传输SL信息,因此第一UE可以向第一UE的上层指示释放了第一UE的所有SL单播连接,使得该上层不再使用这些SL单播连接,例如不再递交这些SL单播连接的数据。
第一UE可以释放SL单播连接,和/或可以释放该SL单播连接的承载。如果释放了一个SL单播连接而并未释放该SL单播连接的承载,则第一UE还可以根据该承载配置和/或实体重建该SL单播连接,而不必重新获得该SL单播连接的承载配置和/或实体。或者,如果释放了一个SL单播连接的承载配置而并未释放该SL单播连接,则该SL单播连接无法按照该承载配置工作,例如该SL单播连接无法工作,或者该SL单播连接也可以按照默认(default)承载配置来工作。如果释放了一个SL单播连接且释放了该SL单播连接的承载,则该SL单播连接以及该承载配置和/或实体不再存在,如果UE要重建SL单播连接,可以重新获得相应的承载配置和/或实体。
第一UE要执行组播或广播,也要在资源池内选择SL资源,如果第一UE在第一UE的所有资源池检测到连续LBT失败,则第一UE也无法进行组播或广播,因此第一UE可以释放第一UE的广播和/或组播通信的DRB。
可选的,在S202之前,或者在S201之后,该MAC层还可以向该RRC层发送第一指示信息,例如第一指示信息可占用一个或多个比特(bit)。第一指示信息可指示检测到(或,发生了)连续LBT失败,或指示第一UE的所有SL单播连接均发生无线链路失败(radio link failure,RLF)。可选的,如果该MAC层检测到第一UE的所有资源池连续LBT失败,则可以向该RRC层发送第一指示信息,而第一UE只要有至少一个资源池LBT成功,该MAC层就可以不向该RRC层发送第一指示信息。因此,如果第一指示信息指示检测到连续LBT失败,也可以认为,第一指示信息实际指示的是检测到第一UE的所有资源池连续LBT失败;或者,第一指示信息指示检测到连续LBT失败,但该RRC层根据第一指示信息可以确定第一UE的所有资源池连续LBT失败。可选的,资源池LBT成功可以理解为调度或选择资源池中的资源进行SL传输,对该SL传输执行LBT成功,或者,资源池连续LBT失败的状态被取消。
可选的,第一UE可以自行决策执行S202。例如,该RRC层接收了第一指示信息,接着可以执行S202,第一操作究竟包括如上哪些操作,也可由该RRC层自行决策(或者也可由MAC层决策并指示RRC层,例如该MAC层通过第一指示信息指示)。在这种方式中,第一UE有较强的决策能力,且由于不必与其他设备进行过多交互,因此能够减小处理时延。
或者,第一UE也可以根据其他设备的指示执行S202,例如其他设备为接入网设备,或为其他UE等。以其他设备是接入网设备为例,第一UE可以向接入网设备发送第二指示信息,第二指示信息可指示检测到(或,发生了)连续LBT失败,或指示第一UE的所有SL单播连接均发生RLF。可选的,如果第一UE检测到第一UE的所有资源池连续LBT失败,则可以向接入网设备发送第二指示信息,而第一UE只要有至少一个资源池LBT成功,第一UE就可以不向接入网设备发送第二指示信息。因此,如果第二指示信息指示检测到连续LBT失败,也可以认为,第二指示信息实际指示的是检测到第一UE的所有资源池连续LBT失败;或者,第二指示信息指示检测到连续LBT失败,但接入网设备根据第二指示信息可以确定第一UE的所有资源池连续LBT失败。接入网设备接收第二指示信息后,可以向第一UE发送第三指示信息,第三指示信息可指示如下一项或多项:释放第一UE的所有SL单播连接,释放第一UE的所有SL单播连接的DRB,释放第一UE的所有SL单播连接的SRB,或,释放第一UE的广播和/或组播通信的DRB。可选的,可由第一UE的RRC层向接入网设备发送第二指示信息,接入网设备也可以向第一UE的RRC层发送第三指示信息。
第一UE接收第三指示信息后,可以根据第三指示信息执行S202。例如,如果第三指示信息指示释放第一UE的所有SL单播连接,则第一操作可包括释放第一UE的所有SL单播连接,可选的,第一操作还可以包括向第一UE的上层指示释放了第一UE的所有SL单播连接;如果第三指示信息指示释放第一UE的所有SL单播连接的DRB,则第一操作可包括释放第一UE的所有SL单播连接的DRB;如果第三指示信息指示释放第一UE的所有SL单播连接的SRB,则第一操作可包括释放第一UE的所有SL单播连接的SRB;如果第三指示信息指示释放第一UE的广播和/或组播通信的DRB,则第一操作可包括释放第一UE的广播和/或组播通信的DRB。在这种方式中,第一UE可根据其他设备(例如接入网设备)的指示执行相应的操作,第一UE不必执行过多的决策行为,对于第一UE的能力要求较低,使得本申请实施例的技术方案既能应用于高能力的UE,也能应用于能力较低的UE。
其中,如果第一UE在第一UE的部分资源池的资源中的传输执行LBT成功,则第一UE的RRC层可以不必执行第一操作。例如,如果第一UE在第一UE的部分资源池中的传输执行LBT成功,则第一UE的MAC层可以不必向第一UE的RRC层发送第一指示信息,因此该RRC层可以不必执行第一操作,例如第一UE可以继续利用执行LBT成功的资源池与其他UE通信。例如第一UE的所有资源池中的全部或部分资源池位于一个BWP上,那么即使在该BWP的部分资源池检测到连续LBT失败,但如果该BWP上还有LBT成功的资源池,第一UE就可以利用LBT成功的资源池进行通信,不会导致该BWP的所有资源池不可用,减少了SL资源的浪费,提高了SL资源的利用率。
又一种可能的实施方式,在S201之后,对于第一UE的部分或全部SL单播连接,第一UE认为检测到SL无线链路失败(radio link failure,RLF)。其中,第一UE的每个SL单播连接有对应的目的地址,第一UE的SL单播连接可以理解为与第一UE建立SL单播连接的目的地址,第一UE对于第一UE的某个SL单播连接检测到SL无线链路失败,可以理解为第一UE对该SL单播连接的目的地址检测到SL无线链路失败。例如,在S201中,第一UE在第一UE的所有资源池检测到连续LBT失败,或者,第一UE确定第一UE的所有资源池发生了连续LBT失败,则对于第一UE的部分SL单播连接 (例如其数量为一个或多个),第一UE认为检测到SL无线链路失败;或者,在S201中,第一UE在第一UE的所有资源池检测到连续LBT失败,或者,第一UE确定第一UE的所有资源池发生了连续LBT失败,则对于第一UE的所有SL单播连接,第一UE认为检测到SL无线链路失败。可选的,如果第一UE对于第一UE的部分或全部SL单播连接检测到SL无线链路失败,第一UE还可以执行S202,例如第一UE认为对于第一UE的部分或全部SL单播连接检测到SL无线链路失败时或者在此之后,可以执行S202。其中,第一UE的所有资源池例如为mode1对应的资源池或mode2对应的资源池、但不包括exceptional pool。
其中,例如在UE针对RB set进行连续LBT检测的情况下,对于上述针对某一资源池或部分资源池执行LBT或检测连续LBT失败的描述中,其中的“资源池”可以替换为“RB set”;对于上述针对所有资源池检测连续LBT失败的描述中,其中的“所有资源池连续LBT失败”可以替换为“所有RB set连续LBT失败”或“所有资源池中的所有RB set连续LBT失败”。
本申请实施例中,如果第一UE在第一UE的所有资源池检测到连续LBT失败,则第一UE可以执行第一操作。反之,如果第一UE在第一UE的部分资源池中的传输执行LBT成功,则第一UE可以不必执行第一操作,例如第一UE可以继续利用这部分资源池进行通信,从而减少了SL资源的浪费,提高了SL资源的利用率。
图2所示的实施例介绍的是第一UE在所有资源池检测到连续LBT失败的情况。而在前文介绍了,第一UE可能被配置两种资源池,其中一种为带有(或者,包括)PSFCH资源的资源池,另一种为不带(或者,不包括)PSFCH资源的资源池。那么,如果第一UE是在被配置的所有带有PSFCH资源的资源池检测到连续LBT失败,或者,如果第一UE是在被配置的所有带有PSFCH资源的资源池中的所有RB set检测到连续LBT失败,第一UE又将如何处理,这也是需要解决的问题。鉴于此,本申请实施例提供第二种通信方法,以解决该问题。请参见图3,为该方法的流程图。
S301、第一UE在第一UE的所有第一类资源池检测到连续LBT失败。或者,第一UE确定第一UE的所有第一类资源池发生连续LBT失败。
可选的,例如在UE针对RB set进行连续LBT检测的情况下,S301可以替换为:第一UE在第一UE的所有第一类资源池中的所有RB set检测到连续LBT失败。或者,第一UE确定第一UE的所有第一类资源池中的所有RB set发生连续LBT失败。其中,所有RB set可以为一个或多个RB set(s)。
第一UE的所有第一类资源池例如为第一UE被配置的所有第一类资源池,或为第一UE支持的所有第一类资源池。第一UE可以被配置一个或多个第一类资源池,这一个或多个第一类资源池可由接入网设备配置(例如通过广播消息或专用消息配置),或者也可以预配置在第一UE中(例如第一UE出厂时配置),或者也可由第一UE的高层(例如上层upper layer)自行配置。可选的,第一UE还可以被配置(或,支持)一个或多个第二类资源池,且第一UE被配置的第一类资源池的数量和第二类资源池的数量可以相等或不等,对此不做限制。第一UE可以同时在多个资源池中的传输执行LBT,或者也可以在一个资源池中的传输执行LBT完毕后再在下一个资源池中的传输执行LBT,对于执行顺序不做限制。第一类资源池例如为配置(或,包括)了PSFCH资源的资源池,或者说,第一类资源池包括PSFCH资源;第二类资源池例如为未配置(或,不包括)PSFCH资源的资源池,或者说,第二类资源池不包括PSFCH资源。
可选的,第一UE的所有第一类资源池例如为mode1对应的第一类资源池或mode2对应的第一类资源池、但不包括exceptional pool(或不包括第一类exceptional pool)。例如,若UE被配置了mode1或UE使用mode1,则第一UE的所有第一类资源池仅包括mode1对应的第一类资源池、但不包括exceptional pool(或不包括第一类exceptional pool);若UE被配置了mode2或UE使用mode2,则第一UE的所有第一类资源池仅包括mode2对应的第一类资源池、但不包括exceptional pool(或不包括第一类exceptional pool)。其中,mode1对应的第一类资源池为mode1下UE被配置的进行普通SL传输的第一类资源池(例如,通过sl-TxPoolScheduling-r16字段指示配置的资源池,且配置(或,包括)了PSFCH资源);mode2对应的第一类资源池为mode2下UE被配置的进行普通SL传输的第一类资源池(例如,通过sl-TxPoolSelectedNormal-r16字段指示配置的资源池,且配置(或,包括)了PSFCH资源);exceptional pool为mode1或mode2下UE被配置的特殊情况下进行SL传输的资源池(例如,通过侧行链路发送资源池特殊(sl-TxPoolExceptional)字段指示配置的资源池);第一类exceptional pool为mode1或mode2下UE被配置的特殊情况下进行SL传输的第一类资源池(例如,通过侧行链路发送资源池特殊 (sl-TxPoolExceptional)字段指示配置的资源池,且配置(或,包括)了PSFCH资源)。
mode1下的特殊情况例如包括:第一UE检测到与接入网设备之间的无线链路的物理层问题(即T310定时器运行过程中),或第一UE初始化了RRC重建(即T311定时器运行过程中),或第一UE发送了RRC连接重建请求消息(即T301定时器运行过程中),或第一UE进行了小区切换(即T304定时器运行过程中)。
mode2下的特殊情况例如包括:第一UE选择的SL资源集合不可用。
可选的,第一UE的所有第一类资源池也不包括发现相关的专用资源池,例如,不包括通过侧行链路发现发送资源池调度(sl-DiscTxPoolScheduling)字段或侧行链路发现发送资源池选择(sl-DiscTxPoolSelected)字段指示配置的资源池。
可选的,可由第一UE的MAC层执行S301。例如,第一UE的物理层对第一类资源池和第二类资源池中的传输都可以执行LBT,如果在一个资源池中的传输检测到LBT失败,则该物理层可以向第一UE的MAC层发送LBT失败指示,以指示在该资源池检测到LBT失败,或指示该资源池发生(或,出现)了LBT失败,例如,该物理层可以向第一UE的MAC层发送LBT失败指示时指示LBT失败的资源池(例如通过资源池标识或资源池索引)。第一UE的MAC层可以通过物理层发送的LBT失败指示确定某一资源池是否发生连续LBT失败,关于该过程的更多内容可参考图2所示的实施例的S201的介绍。如果该MAC层确定对应于第一UE的所有第一类资源池中的每个第一类资源池都发生连续LBT失败指示,则该MAC层可以确定在第一UE的所有第一类资源池检测到连续LBT失败。
其中,例如在UE针对RB set进行连续LBT检测的情况下,上述的“资源池”可以替换为“RB set”,上述的“第一类资源池”可以替换为“第一类资源池中的RB set”,上述的“第二类资源池”可以替换为“第二类资源池中的RB set”。也即,第一UE的物理层对第一类资源池中的RB set和第二类资源池中的RB set中的传输都可以执行LBT,如果在一个RB set中的传输检测到LBT失败,则该物理层可以向第一UE的MAC层发送LBT失败指示,以指示在该RB set检测到LBT失败,或指示该RB set发生(或,出现)了LBT失败。例如,该物理层可以在向第一UE的MAC层发送LBT失败指示时指示LBT失败的RB set(例如通过RB set标识或RB set索引)。第一UE的MAC层可以通过来自物理层的LBT失败指示确定某一RB set是否发生连续LBT失败,关于该过程的更多内容可参考图2所示的实施例的S201的介绍。如果该MAC层确定对应于第一UE的所有第一类资源池中的所有RB set都发生连续LBT失败指示,则该MAC层可以确定在第一UE的所有第一类资源池中的所有RB set检测到连续LBT失败。
可选的,第一UE在检测到第一UE的所有第一类资源池中的至少一个第一类资源池连续LBT失败时,可以组播第一信息。第一信息可指示至少一个第一类资源池发生连续LBT失败,从而接收第一信息的UE可以不再利用至少一个第一类资源池与第一UE通信。例如第一UE可以使用第一组播层2标识来组播第一信息,对此的更多内容可以参考图2所示的实施例的S201。
其中,例如在UE针对RB set进行连续LBT检测的情况下,第一UE在检测到第一UE的所有第一类资源池中的至少一个RB set连续LBT失败时,可以组播第一信息。第一信息可指示至少一个第一类资源池中的RB set发生连续LBT失败,从而接收第一信息的UE可以不再利用至少一个第一类资源池中的RB set与第一UE通信。
或者,第一UE在检测到第一UE的所有第一类资源池中的至少一个第一类资源池连续LBT失败时,可以广播第一信息。第一信息可指示至少一个第一类资源池发生连续LBT失败,从而接收第一信息的UE可以不再利用至少一个第一类资源池与第一UE通信。例如第一UE可以使用第一广播层2标识来组播第一信息,对此的更多内容可以参考图2所示的实施例的S201。
其中,例如在UE针对RB set进行连续LBT检测的情况下,第一UE在检测到第一UE的所有第一类资源池中的至少一个RB set连续LBT失败时,可以组播第一信息。第一信息可指示至少一个第一类资源池中的RB set发生连续LBT失败,从而接收第一信息的UE可以不再利用至少一个第一类资源池中的RB set与第一UE通信。
S302、对于第一SL单播连接,第一UE执行第二操作。第二操作也可以称为第二行为。
在前文介绍了,反馈使能的LCH上的SL信息只能从带PSFCH资源的资源池中选择SL资源传输,不带PSFCH资源的资源池中的SL资源不能用于传输反馈使能的LCH上的SL信息;反馈未使能的LCH上的SL信息既可以从带PSFCH资源的资源池中选择SL资源传输,也可以从不带PSFCH资源的资源 池中选择SL资源传输。可见,如果第一UE的所有第一类资源池发生连续LBT失败,或者如果第一UE的所有第一类资源池中的所有RB set发生连续LBT失败,则会导致反馈使能的LCH上的SL信息无法传输,因此,第一UE可以对包括了反馈使能的LCH的SL单播连接进行处理。例如,第一SL单播连接是被配置的所有LCH均为反馈使能的LCH的SL单播连接,或者说,为第一SL单播连接配置的所有LCH均为反馈使能的LCH;或者,第一SL单播连接例如为被配置的LCH包括反馈使能的LCH和反馈未使能的LCH的SL单播连接,或者说,为第一SL单播连接配置的LCH包括反馈使能的LCH和反馈未使能的LCH。
例如,第一UE的SL单播连接中,可能有一个或多个SL单播连接中的每个SL单播连接被配置的所有LCH均为反馈使能的LCH,则对于这一个或多个SL单播连接中的每个单播连接,第一UE均可执行第二操作,第一SL单播连接为这一个或多个SL单播连接中的任意一个,即,S302以第一UE对其中任一个SL单播连接进行第二操作为例。又例如,第一UE的SL单播连接中,可能有一个或多个SL单播连接中的每个SL单播连接被配置的LCH包括反馈使能的LCH和反馈未使能的LCH,则对于这一个或多个SL单播连接中的每个单播连接,第一UE均可执行第二操作,第一SL单播连接为这一个或多个SL单播连接中的任意一个,即,S302以第一UE对其中任一个SL单播连接进行第二操作为例。
作为一种可选的实施方式,第二操作可以以SL单播连接为粒度执行,例如第二操作包括如下一项或多项:认为第一SL单播检测到或发生无线链路失败,释放第一SL单播连接,或,释放第一SL单播连接的承载。可选的,可由第一UE的RRC层执行S302,在这种情况下,第二操作可包括如下一项或多项:认为第一SL单播检测到或发生无线链路失败,释放第一SL单播连接,向第一UE的上层指示释放了第一SL单播连接,或,释放第一SL单播连接的承载。其中,第一SL单播连接的承载,包括第一SL单播连接的DRB和/或SRB。如上第二操作可理解为第一UE对SL单播连接所执行的操作,以SL单播连接为粒度来处理,能够减小第一UE的处理复杂度。例如,如果为第一SL单播连接配置的所有LCH均为反馈使能的LCH,表明第一SL单播连接已没有可用的LCH,则第二操作可以以第一SL单播连接为粒度执行,此时第一SL单播连接没有反馈未使能的LCH,因此不会影响反馈未使能的LCH的信息传输。因此,如果为第一SL单播连接配置的所有LCH均为反馈使能的LCH,优选使用上述以第一SL单播连接为粒度执行的第二操作。或者,即使为第一SL单播连接配置的LCH既包括反馈使能的LCH也包括反馈未使能的LCH,第二操作也可以以第一SL单播连接为粒度执行。
第一SL单播连接的所有LCH都是反馈使能的LCH,或者第一SL单播连接的LCH包括反馈使能的LCH,则第一UE要利用第一SL单播连接传输反馈使能的LCH上的SL信息,则要在第一类资源池内选择资源。如果第一UE在第一UE的所有第一类资源池内发生连续LBT失败,或者如果第一UE的所有第一类资源池中的所有RB set发生连续LBT失败,表明第一UE的所有第一类资源池均不可用,也即第一UE的所有第一类资源池内的资源均不可用,在这种情况下,第一SL单播连接的反馈使能的LCH上的SL信息无法得到传输,因此第一UE可以释放第一SL单播连接。或者,此时,如果第一SL单播连接的LCH还包括反馈未使能的LCH,则该反馈未使能的LCH上的SL信息也不再传输。可选的,“第一UE的所有第一类资源池均不可用”可以替换为“第一UE的所有第一类资源池在后续一段时间内均不可用”,即后续过了一段时间后,该第一UE的第一类资源池又可以变为可用,或者,“第一UE的所有第一类资源池中的所有RB set均不可用”可以替换为“第一UE的所有第一类资源池中的所有RB set在后续一段时间内均不可用”,即后续过了一段时间后,该第一UE的第一类资源池中的部分或全部RB set又可以变为可用,其中一段时间的时间长度可以是协议预定的、或网络设备配置的。
第一UE的上层可以利用第一SL单播连接传输SL信息,因此第一UE的RRC层可以向第一UE的上层指示释放了第一SL单播连接,使得该上层不再使用第一SL单播连接,例如不再递交这些SL单播连接的数据。
第一UE可以释放第一SL单播连接,和/或可以释放第一SL单播连接的承载。关于这部分内容可以参考图2所示的实施例的S202。
如果第一UE的所有第一类资源池发生连续LBT失败,或者如果第一UE的所有第一类资源池中的所有RB set发生连续LBT失败,则会导致SL单播连接的反馈使能的LCH上的SL信息无法传输,但SL单播连接的反馈未使能的LCH上的SL信息还是可以继续传输,因此第一UE可以对反馈使能的LCH进行处理,而不处理反馈未使能的LCH,使得反馈未使能的LCH的通信不受影响。鉴于此,作为 另一种可选的实施方式,第二操作可以以SL单播连接的反馈使能的LCH为粒度来执行,例如,第二操作可包括如下一项或多项:操作1,操作2,或,操作3。其中,操作1包括释放第一SL单播连接的反馈使能的LCH的承载;操作2包括挂起(suspend)第一SL单播连接的反馈使能的LCH的承载;操作3包括清除(flush)已缓存的第一SL单播连接的反馈使能的LCH的传输块(transport block,TB),且设置该TB对应的SL进程(sidelink process)为未被占用(unoccupied)。可选的,可由第一UE的RRC层执行S302,那么,第二操作可包括如下一项或多项:操作1,操作2,操作3,或,操作4。其中,操作1包括释放第一SL单播连接的反馈使能的LCH的承载;操作2包括挂起第一SL单播连接的反馈使能的LCH的承载;操作4包括向第一UE的上层指示释放或挂起第一SL单播连接的反馈使能的LCH的DRB对应的服务质量(quality of service,QoS)流(flow);操作3包括清除已缓存的第一SL单播连接的反馈使能的LCH的TB,且设置该TB对应的SL进程为未被占用。其中,清除已缓存的第一SL单播连接的反馈使能的LCH的TB,也可以描述为,清理第一SL单播连接的反馈使能的LCH的TB的缓存(soft buffer)。例如,如果为第一SL单播连接配置的所有LCH既包括反馈使能的LCH也包括反馈未使能的LCH,则第二操作可以以第一SL单播连接的反馈使能的LCH为粒度执行,不会影响第一SL单播连接的反馈未使能的LCH的信息传输。因此,如果为第一SL单播连接配置的所有LCH既包括反馈使能的LCH也包括反馈未使能的LCH,优选使用上述以SL单播连接的反馈使能的LCH为粒度执行的第二操作。或者,即使为第一SL单播连接配置的所有LCH均为反馈使能的LCH,第二操作也可以以第一SL单播连接为粒度执行。
如果第二操作包括释放或挂起第一SL单播连接的反馈使能的LCH的承载,那么,如果第一SL单播连接的所有LCH均为反馈使能的LCH,第一UE可以释放或挂起第一SL单播连接的所有LCH的承载;或者,如果第一SL单播连接的LCH包括反馈使能的LCH和反馈未使能的LCH,则第一UE可以释放或挂起第一SL单播连接的反馈使能的LCH的承载,而第一SL单播连接的反馈未使能的LCH上的SL信息可以继续传输。释放第一SL单播连接的反馈使能的LCH的承载,关于这部分内容可以参考图2所示的实施例的S202。挂起第一UE的所有SL单播连接的承载,可以包括挂起第一SL单播连接的反馈使能的LCH的承载的配置和/或承载的实体。其中,如果第一UE释放了第一SL单播连接的反馈使能的LCH的承载,则如果第一UE后续要利用承载来传输该反馈使能的LCH的数据,可以重新获得该承载;而如果第一UE挂起了第一SL单播连接的反馈使能的LCH的承载,则如果第一UE后续要利用承载来传输该反馈使能的LCH的数据,可以直接恢复被挂起的承载,不必重新获取。
第一UE的上层可以利用第一SL单播连接传输SL信息,因此第一UE的RRC层可以向第一UE的上层指示释放或挂起第一SL单播连接的反馈使能的LCH的DRB的QoS流,使得该上层释放或挂起第一SL单播连接的反馈使能的LCH的DRB的QoS流。例如,如果第二操作包括释放或挂起第一SL单播连接的反馈使能的LCH的DRB,则第一UE可以向该上层指示释放或挂起第一SL单播连接的反馈使能的LCH的DRB的QoS流。
第一UE可能已缓存了第一SL单播连接的反馈使能的LCH的一个或多个TB,因第一UE的所有第一类资源池已不可用,也即第一UE的所有第一类资源池内的资源已不可用,因此这一个或多个TB无法传输,则第一UE可以清除已缓存的这一个或多个TB。另外,一个TB可以利用一个SL进程来传输,如果一个SL进程被某个TB占用,则其他TB无法占用该SL进程。本申请实施例中,如果第一UE清除了第一SL单播连接的反馈使能的LCH的一个或多个TB,则可以将这一个或多个TB所对应的SL进程设置为未被占用,使得其他TB能够占用该SL进程,减少了SL进程的浪费,也减小了其他TB的传输时延。
可选的,在S302之前,或者在S301之后,第一UE的MAC层还可以向第一UE的RRC层发送第一指示信息。例如,该MAC层检测到第一UE的所有第一类资源池连续LBT失败(或者该MAC层检测到第一UE的所有第一类资源池中的所有RB set连续LBT失败),则该MAC层可以确定第一SL单播连接,例如该MAC层确定配置的所有LCH为反馈使能的LCH的SL单播连接为第一SL单播连接,或确定配置的LCH包括反馈使能的LCH和反馈未使能的LCH的SL单播连接为第一SL单播连接。该MAC层可以向该RRC层发送第一指示信息,第一指示信息可以指示第一SL单播连接,或者指示第一SL单播连接发生RLF。其中,如果第二操作是针对第一SL单播连接的LCH的操作,则该RRC层接收第一指示信息后,可以确定第一SL单播连接的所有反馈使能的LCH,例如第一SL单播连接的所有LCH均为反馈使能的LCH,或者第一SL单播连接的部分LCH为反馈使能的LCH。在这种方式下, 由该MAC层确定第一SL单播连接,由该RRC层确定第一SL单播连接的所有反馈使能的LCH。
或者,该MAC层检测到第一UE的所有第一类资源池连续LBT失败(或者该MAC层检测到第一UE的所有第一类资源池中的所有RB set连续LBT失败),则该MAC层可以确定第一SL单播连接,例如该MAC层确定配置的所有LCH为反馈使能的LCH的SL单播连接为第一SL单播连接,或确定配置的LCH包括反馈使能的LCH和反馈未使能的LCH的SL单播连接为第一SL单播连接。如果第二操作是针对第一SL单播连接的LCH的操作,则该MAC层还可以确定第一SL单播连接的所有反馈使能的LCH。该MAC层可以向该RRC层发送第一指示信息,第一指示信息可以指示第一SL单播连接的所有反馈使能的LCH。在这种方式下,由该MAC层确定第一SL单播连接,以及确定第一SL单播连接的所有反馈使能的LCH。
或者,该MAC层检测到第一UE的所有第一类资源池连续LBT失败(或者该MAC层检测到第一UE的所有第一类资源池中的所有RB set连续LBT失败),则该MAC层可以向该RRC层发送第一指示信息,第一指示信息可指示检测到所有第一类资源池连续LBT失败(或者第一指示信息可指示检测到所有第一类资源池中的所有RB set连续LBT失败)。该RRC接收第一指示信息后,可以确定第一SL单播连接。例如该RRC层确定配置的所有LCH为反馈使能的LCH的SL单播连接为第一SL单播连接,或确定配置的LCH包括反馈使能的LCH和反馈未使能的LCH的SL单播连接为第一SL单播连接。另外,如果第二操作是针对第一SL单播连接的LCH的操作,则该RRC层还可以确定第一SL单播连接的所有反馈使能的LCH。在这种方式下,由该RRC层确定第一SL单播连接,以及确定第一SL单播连接的所有反馈使能的LCH。
可选的,第一UE可以自行决策执行S302。例如,第一指示信息指示了第一SL单播连接,则该RRC层接收了第一指示信息,可对第一SL单播连接执行S302,或者该RRC层可以确定第一SL单播连接的所有反馈使能的LCH,并对第一SL单播连接的所有反馈使能的LCH执行S302;或者,第一指示信息指示了第一SL单播连接的所有反馈使能的LCH,则该RRC层接收了第一指示信息,可以对第一SL单播连接执行S302,或者该RRC层可以对第一SL单播连接的所有反馈使能的LCH执行S302;或者,第一指示信息指示检测到所有第一类资源池连续LBT失败(或者第一指示信息可指示检测到所有第一类资源池中的所有RB set连续LBT失败),该RRC接收第一指示信息,可根据第一指示信息确定第一SL单播连接,并对第一SL单播连接执行S302,或者该RRC层可以根据第一指示信息确定第一SL单播连接,再确定第一SL单播连接的所有反馈使能的LCH,并对第一SL单播连接的所有反馈使能的LCH执行S302。第二操作究竟包括如上哪些操作,也可由该RRC层自行决策(或者也可由MAC层指示该RRC层,例如该MAC层通过第一指示信息指示)。在这种方式中,第一UE有较强的决策能力,且由于不必与其他设备进行过多交互,因此能够减小处理时延。
或者,第一UE也可以根据其他设备的指示执行S302,例如其他设备为接入网设备,或为其他UE等。以其他设备是接入网设备为例,第一UE可以向接入网设备发送第二指示信息,例如由第一UE的MAC层或RRC层向接入网设备发送第二指示信息。第二指示信息可指示第一UE的所有第一类资源池发生了连续LBT失败(或者第二指示信息可指示第一UE的所有第一类资源池中的所有RB set发生了连续LBT失败),或指示第一UE检测到第一UE的所有第一类资源池连续LBT失败(或者指示第一UE检测到第一UE的所有第一类资源池中的所有RB se连续LBT失败)。在这种方式下,第一UE可以不必确定第一SL单播连接,例如第一UE的MAC层和RRC层都不必确定第一SL单播连接。接入网设备接收第二指示信息后,可以确定第一SL单播连接,例如接入网设备确定配置的所有LCH为反馈使能的LCH的SL单播连接为第一SL单播连接,或确定配置的LCH包括反馈使能的LCH和反馈未使能的LCH的SL单播连接为第一SL单播连接。接入网设备可以向第一UE发送第三指示信息,可选的,接入网设备可以向第一UE的MAC层或RRC层发送第三指示信息。第三指示信息可指示第一UE对第一SL单播连接执行如下行为中的一项或多项:认为第一SL单播检测到或发生无线链路失败,释放第一SL单播连接,释放第一SL单播连接的DRB,或,释放第一SL单播连接的SRB;或者,第三指示信息可指示第一UE对第一SL单播连接执行如下行为中的一项或多项:释放第一SL单播连接的反馈使能的LCH的DRB和/或SRB,挂起第一SL单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的第一SL单播连接的反馈使能的LCH的传输块。
其中,如果第三指示信息指示的内容与反馈使能的LCH有关(例如第三指示信息可指示第一UE对第一SL单播连接执行如下行为中的一项或多项:释放第一SL单播连接的反馈使能的LCH的DRB 和/或SRB,挂起第一SL单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的第一SL单播连接的反馈使能的LCH的传输块),则第三指示信息可以指示第一SL单播连接的反馈使能的LCH,例如接入网设备可以确定第一SL单播连接的所有反馈使能的LCH,并在第三指示信息中进行指示;或者,第三指示信息指示第一SL单播连接,但并不指示反馈使能的LCH,第一UE接收第三指示信息后,可以确定第一SL单播连接的反馈使能的LCH,再根据第三指示信息进行相应的操作。
或者,第一UE可以向接入网设备发送第二指示信息,例如由第一UE的MAC层或RRC层向接入网设备发送第二指示信息。第二指示信息可指示第一SL单播连接发生RLF。在这种方式下,第一UE可以确定第一SL单播连接,例如第一UE的MAC层或RRC层可以确定第一SL单播连接。接入网设备接收第二指示信息后,可以向第一UE发送第三指示信息,第三指示信息指示的内容可参考前文。可选的,接入网设备可以向第一UE的MAC层或RRC层发送第三指示信息。其中,如果第三指示信息指示的内容与反馈使能的LCH有关,则第三指示信息可以指示第一SL单播连接的反馈使能的LCH,例如接入网设备可以确定第一SL单播连接的所有反馈使能的LCH,并在第三指示信息中进行指示;或者,第一UE所发送的第二指示信息可以指示第一SL单播连接的所有反馈使能的LCH,则接入网设备可以在第三指示信息中指示第一SL单播连接的反馈使能的LCH;或者,第三指示信息指示第一SL单播连接,但并不指示第一SL单播连接的反馈使能的LCH,第一UE接收第三指示信息后,可以确定第一SL单播连接的反馈使能的LCH,再根据第三指示信息进行相应的操作。
第一UE接收第三指示信息后,可以根据第三指示信息执行S302。例如,如果第三指示信息指示释放第一SL单播连接,则第二操作可包括释放第一SL单播连接,可选的,第二操作还可以包括向第一UE的上层指示释放了第一SL单播连接;如果第三指示信息指示挂起第一SL单播连接的反馈使能的LCH的DRB,则第二操作可以包括挂起第一SL单播连接的反馈使能的LCH的DRB,等等。在这种方式中,第一UE可根据其他设备(例如接入网设备)的指示执行相应的操作,第一UE不必执行过多的决策行为,对于第一UE的能力要求较低,使得本申请实施例的技术方案既能应用于高能力的UE,也能应用于能力较低的UE。
其中,如果第一UE在第一UE的部分第一类资源池(或部分第一类资源池的RB set)中的传输执行LBT成功,则第一UE的RRC层可以不必执行第二操作。例如,如果第一UE在第一UE的部分第一类资源池(或部分第一类资源池的RB set)中的传输执行LBT成功,则第一UE的MAC层可以不必向第一UE的RRC层发送第一指示信息,因此该RRC层可以不必执行第二操作;或者,如果第一UE在第一UE的部分第一类资源池(或部分第一类资源池的RB set)中的传输执行LBT成功,则第一UE可以不必向接入网设备发送第二指示信息,则接入网设备也不会向第一UE发送第三指示信息,因此该RRC层可以不必根据第三指示信息执行第二操作。例如第一UE可以继续利用执行LBT成功的第一类资源池(或第一类资源池的RB set)与其他UE通信。从而,即使在一个BWP的部分资源池(或部分资源池的RB set)检测到连续LBT失败,但如果该BWP上还有LBT成功的资源池(或RB set),第一UE就可以利用LBT成功的资源池(或RB set)进行通信,不会导致该BWP的所有资源池(或所有RB set)不可用,减少了SL资源的浪费,提高了SL资源的利用率。
可选的,在执行第二操作后,第一UE还可能有重建或修改相应的LCH的DRB的需求,和/或,有重建或修改相应的LCH的DRB对应的QoS流的需求。如果第一UE要重建或修改DRB,则可以重建或修改反馈未使能的LCH的DRB,对于第一UE的反馈使能的LCH的DRB,则不进行重建或修改。例如第一UE可以重建或修改第一LCH的DRB,第一LCH可以是反馈未使能的LCH。可选的,第一UE可以自行决策重建或修改LCH的DRB,或者也可由接入网设备指示。例如接入网设备向第一UE发送第四指示信息,第四指示信息可指示第一UE重建或修改第一LCH的DRB。则第一UE根据第四指示信息可以重建或修改第一LCH的DRB。可选的,可由第一UE的RRC层重建或修改第一LCH的DRB。
如果第一UE要重建或修改DRB对应的QoS流,则可以重建或修改反馈未使能的LCH的DRB对应的QoS流,对于第一UE的反馈使能的LCH的DRB对应的QoS流,则不进行重建或修改。例如第一UE可以重建或修改第一LCH的DRB对应的QoS流,第一LCH可以是反馈未使能的LCH。可选的,第一UE可以自行决策重建或修改LCH的DRB对应的QoS流,或者也可由接入网设备指示。例如接入网设备向第一UE发送第四指示信息,第四指示信息可指示第一UE重建或修改第一LCH的DRB对应的QoS流。则第一UE根据第四指示信息可以重建或修改第一LCH的DRB对应的QoS流。可选的, 可由第一UE的上层重建或修改第一LCH的DRB对应的QoS流。
根据前文可知,如果一个资源池发生连续LBT失败,则该资源池不可用,或在后续一段时间内不可用。可选的,一个不可用的资源池也可以恢复,即,重新变为可用的资源池。例如,在一个资源池检测到连续LBT失败后,第一UE还可以继续对该资源池中的资源或该资源池中的传输执行LBT,例如第一UE可以触发式或周期性对该第一类资源池中的资源或传输执行LBT。如果第一UE在第一UE的所有资源池中的M个资源池中的资源或传输检测到LBT成功,则可以认为这M个资源池重新恢复为了可用的资源池。因此,如果第一UE在M个第一类资源池检测LBT成功,则可以认为这M个第一类资源池重新恢复为了可用的资源池,第一SL单播连接的反馈使能的LCH上的SL信息可以利用M个第一类资源池内的SL资源进行传输,第一UE可以执行第三操作。第三操作例如包括:恢复第一SL单播连接的部分或全部反馈使能的LCH的DRB,和/或,恢复第一SL单播连接的部分或全部反馈使能的LCH的DRB对应的QoS流。可选的,恢复第一SL单播连接的部分或全部反馈使能的LCH的DRB,可由第一UE的RRC层执行;恢复第一SL单播连接的部分或全部反馈使能的LCH的DRB对应的QoS流,可由第一UE的上层执行,例如,第一UE的RRC层可以向该上层发送指示,以指示该上层恢复第一SL单播连接的部分或全部反馈使能的LCH的DRB对应的QoS流,该上层根据该RRC层的指示,可以恢复第一SL单播连接的部分或全部反馈使能的LCH的DRB对应的QoS流。可见,通过第三操作,可以恢复第一SL单播连接的部分或全部反馈使能的LCH的DRB,使得第一SL单播连接的这些反馈使能的LCH上的SL信息能够得到传输,减小了信息传输时延。可选的,例如在UE针对RB set进行连续LBT检测的情况下,上述的“资源池”可以理解为“RB set”。
本申请实施例中,如果第一UE在第一UE的所有第一类资源池(或所有第一类资源池中的所有RB set)检测到连续LBT失败,则第一UE可以执行第二操作。反之,如果第一UE在第一UE的部分第一类资源池(或部分第一类资源池的RB set)中的传输执行LBT成功,则第一UE可以不必执行第二操作,例如第一UE可以继续利用这部分第一类资源池(或部分第一类资源池的RB set)进行通信,从而减少了SL资源的浪费,提高了SL资源的利用率。而且,当第一UE检测到连续LBT失败后,第一UE能够合理处理当前的SL单播连接,尽量避免出现第一UE的高层继续向低层递交SL信息、但该SL信息无法发送的问题。另外,由于第一UE可以清理缓存,可以节省存储空间。第一UE还可以将反馈使能的LCH的TB对应的SL进程设置为未被占用,可以使得SL进程能够用于其他TB,减小了其他TB的传输时延。
图2所示的实施例与图3所示的实施例可以结合应用。例如,如果第一UE检测到第一UE的所有资源池连续LBT失败,则可以采用图2所示的实施例提供的方案处理;如果第一UE检测到第一UE的所有第一类资源池连续LBT失败,则可以采用图3所示的实施例提供的方案处理。或者,图2所示的实施例与图3所示的实施例也可以不结合,而是单独应用,对此不做限制。
接下来请参考图4,为本申请实施例提供的第三种通信方法的流程图。
S401、第一UE检测到第一UE的所有资源池中的至少一个资源池连续LBT失败时,使用第一组播层2标识组播第一信息,或者使用第一广播层2标识广播第一信息。或者,也可以认为S401包括两个步骤,其中第一个步骤为,第一UE检测到至少一个资源池连续LBT失败;其中第二个步骤为,第一UE使用第一组播层2标识组播第一信息,或者使用第一广播层2标识广播第一信息。接收第一信息的UE例如为第二UE,第二UE可以包括一个或多个UE,图4以第二UE中的一个UE接收第一信息为例。
第一组播层2标识或第一广播层2标识可以由第一UE预先分配给第二UE,第二UE可以包括一个或多个UE。例如第一UE在与第二UE建立SL单播连接时,可以为第二UE分配第一组播层2标识或第一广播层2标识。其中,如果第二UE包括多个UE,第一UE为这多个UE分配的第一组播层2标识可以是同一标识,或者,第一UE为这多个UE分配的第一广播层2标识可以是同一标识。
关于第一UE的所有资源池,可参考图2所示的实施例的介绍。至少一个资源池例如包括第一类资源池和/或第二类资源池,关于第一类资源池、第二类资源池等概念,可参考图3所示的实施例的介绍。可理解为,无论何种类型的资源池发生连续LBT失败,第一UE都可以执行S401。或者,至少一个资源池例如均为第一类资源池,可理解为,如果第一类的资源池发生连续LBT失败,第一UE可以执行S401,而如果第二类资源池发生连续LBT失败,第一UE可以不必执行S401。
可选的,例如在UE针对RB set进行连续LBT检测的情况下,对于上述针对某一资源池或部分资 源池执行LBT或检测连续LBT失败的描述中,其中的“资源池”可以替换为“RB set”;对于上述针对所有资源池检测连续LBT失败的描述中,其中的“所有资源池连续LBT失败”可以替换为“所有RB set连续LBT失败”或“所有资源池中的所有RB set连续LBT失败”。
关于本申请实施例的更多内容,可参考图2所示的实施例的S201或图3所示的实施例的S301的相关介绍。本申请实施例可以与前述任一个实施例结合应用,结合方式可参考图2所示的实施例或图3所示的实施例的介绍;或者,本申请实施例与前述实施例均不结合,而是单独应用(例如图2所示的实施例和图3所示的实施例中可以不包括本申请实施例的内容)。
本申请实施例中,第一UE可以将发生连续LBT失败的资源池通知其他UE,使得其他UE可以不再利用这些资源池与第一UE通信,减小了通信失败的概率。另外,由第一UE分配广播层2标识或组播层2标识,而不必由各个UE的高层配置广播层2标识或组播层2标识,可以使得广播层2标识或组播层2标识更为灵活,例如第一UE可以灵活更新广播层2标识或组播层2标识,或者可以为不同组的UE分配不同的广播层2标识或组播层2标识等,提高了通信灵活性。
在NR SL中,存在两种资源选择的模式,分别为mode1和mode2。其中,mode1为接入网设备在资源池中为发送端UE选择SL资源的方式,接入网设备一次可以选择一个或多个SL资源(例如最多3个SL资源),以及一次调度过程可以向发送端UE指示一个或多个SL资源(例如最多3个SL资源)。mode2为发送端UE自己在资源池中选择SL资源的方式,发送端UE一次可以选择一个或多个SL资源(例如最多3个SL资源)。其中,一个SL资源可用于发送端UE的一次传输。发送端UE在执行每次传输过程之前,可以对该次传输执行LBT,结果可能是LBT成功或失败。如果发送端UE在一次传输过程之前,在传输使用的SL资源所在的资源池检测到连续LBT失败,则该次传输过程无法执行,该次传输过程的SL资源(接入网设备调度的SL资源或发送端UE自行选择的SL资源)也无法使用。如果发送端UE已确定了多个SL资源(接入网设备为发送端UE调度了多个SL资源,或发送端UE自行选择了多个SL资源),发送端UE在一次传输之前某一资源池检测到连续LBT失败,该资源池包括了该次传输使用的SL资源,该次传输过程的SL资源无法使用,而除了该SL资源外发送端UE还有已确定的SL资源尚未使用,则对于这些尚未使用的SL资源如何处理,是需要解决的问题。鉴于此,本申请实施例提供第四种通信方法,可用于解决该问题。请参考图5,为该方法的流程图。
S501、第一UE在第一UE的第一资源池检测到连续LBT失败。
第一资源池例如为第一UE的所有资源池中的一个,第一资源池例如为第一类资源池或第二类资源池。关于第一UE的所有资源池,可参考图2所示的实施例的介绍。关于第一类资源池、第二类资源池等概念,可参考图3所示的实施例的介绍。
可选的,可由第一UE的MAC层执行S501。例如,第一UE的物理层可在第一UE的资源池中的资源执行LBT,如果在一个资源池中的资源检测到连续LBT失败,则该物理层可以向第一UE的MAC层发送LBT失败指示,以指示在该资源池检测到LBT失败,或指示该资源池发生(或,出现)了LBT失败,例如,该物理层可以向第一UE的MAC层发送LBT失败指示时指示LBT失败的资源池(例如通过资源池标识或资源池索引)。第一UE的MAC层可以通过物理层发送的LBT失败指示确定某一资源池是否发生连续LBT失败,关于该过程的更多内容可参考图2所示的实施例的S201的介绍。
例如接入网设备为第一UE调度了第一资源池内的一个或多个SL资源,和/或第一UE自行在第一资源池内选择了一个或多个SL资源。其中的每个SL资源用于一次传输。第一UE在利用第一资源池内的SL资源执行一次传输之前,可以执行LBT。如果LBT成功,则可以使用该SL资源进行传输;如果LBT失败,则无法使用该SL资源进行传输。
S502、如果已有在第一资源池内选择(或,确定)的SL资源,第一UE不使用该SL资源。例如将该SL资源称为第一SL资源,第一SL资源可包括至少一个SL资源。例如,第一UE已选择(或,确定)的SL资源可以理解为,第一UE的MAC层已选择的且已通知了第一UE的物理层的SL资源。
例如,第一UE原本共确定了第一资源池内的一个或多个SL资源。在执行S501或S502时,第一UE可能已经使用了这一个或多个SL资源中的部分SL资源,而这一个或多个SL资源中还有剩余SL资源尚未使用,则第一SL资源包括该剩余SL资源;或者,第一UE在执行S501或S502时,对于这一个或多个SL资源均未使用,则第一SL资源包括这一个或多个SL资源。可选的,第一SL资源可以包括重传资源和/或初传资源,对此不做限制。
第一UE确定的一个或多个SL资源,可包括接入网设备为第一UE调度的SL资源,和/或包括第 一UE在第一资源池中自行确定的SL资源;因此,第一SL资源可包括接入网设备为第一UE调度的SL资源,和/或包括第一UE在第一资源池中自行确定的SL资源。例如,第一SL资源包括接入网设备为第一UE调度的N1个SL资源,和/或包括第一UE在第一资源池内自行选择的N2个SL资源。N1为大于或等于0的整数,N2为正整数;或者,N2为大于或等于0的整数,N1为正整数。N1可以大于N2,也可以小于N2。可选的,第一SL资源可包括如下一种或多种:物理侧行链路控制信道(physical sidelink control channel,PSCCH)资源,物理侧行链路共享信道(physical sidelink shared channel,PSSCH)资源,或,PSFCH资源。其中,PSFCH资源可以与SL数据关联,该SL数据是第一UE接收的SL数据。例如一种关联方式为,该PSFCH资源可用于传输该SL数据的反馈信息,该反馈信息例如为SL混合自动重传请求(hybrid automatic repeat request,HARQ)-应答(ACK)。
第一UE已确定了第一资源池内的第一SL资源,要利用第一SL资源发送SL信息。但如果第一UE检测到第一资源池连续LBT失败,表明第一资源池不可用,或在后续一段时间内第一资源池不可用,则第一资源池内的SL资源也就不可用。因此在这种情况下,第一UE可以不使用第一SL资源,从而减小传输失败的概率。
可选的,S502可由第一UE的MAC层执行。第一UE不使用第一SL资源,可以通过不同的方式实现,如下举例介绍。
1、第一种方式,该MAC层指示第一UE的物理层清除第一SL资源的信息。
示例性的,该MAC层可以向该物理层指示第一资源池,例如该MAC层可以向该物理层发送第一资源池的索引,以指示第一资源池。该物理层接收来自该MAC层的指示后,可将已确定的第一资源池内的、且尚未使用的SL资源的信息清除。例如该物理层接收了来自该MAC层的指示,则该物理层可以确定第一资源池内的第一SL资源是已确定的SL资源,且第一SL资源尚未使用。因此该物理层可以清除第一SL资源的信息,从而该物理层不会再使用第一SL资源的信息对应的SL资源(即,第一SL资源)。在这种方式下,该MAC层指示第一资源池,该物理层可以根据第一资源池确定第一SL资源。
或者,该MAC层也可以指示第一资源池内的第一SL资源,该物理层根据该MAC层的指示可以直接确定第一SL资源,则该物理层可以清除第一SL资源的信息。在这种方式下,该MAC层可以指示第一SL资源,从而该物理层不必再确定第一SL资源,而是清除第一SL资源的信息即可,物理层的实现较为简单。
2、第二种方式,该MAC层不向该物理层递交待发送的SL信息,或者说,该MAC层不会向该物理层指示生成SL传输。第一SL资源是为了传输SL信息,或者说是用于SL传输,而该SL信息是由该MAC层递交给该物理层,由该物理层执行SL传输。如果该MAC层不向该物理层递交该SL信息,或者不向该物理层指示生成SL传输,则该物理层没有能够传输的SL信息,也就不会执行SL传输,因此也就不会使用第一SL资源。其中,SL信息可以包括SL传输信息或SL数据包(MAC协议数据单元)中的一个或多个。
示例性的,对于某个SL进程,该MAC层确定不存在可用的SL资源,其中,不存在可用的SL资源包括没有已确定的SL资源,或者虽然有已确定的SL资源(例如第一SL资源),但该已确定的SL资源为检测到(或,发生了)连续LBT失败的资源池(例如第一资源池)内的SL资源,则该MAC层可以不向该物理层指示生成一个SL的传输,或者,该MAC层可以不向该物理层递交待传输的SL信息。
在这种情况下,如果该MAC层确定存在可用的SL资源,其中,存在可用的SL资源包括已确定的SL资源,且已确定的SL资源所在的资源池未检测到(或,发生)连续LBT失败,则该MAC层可以向该物理层指示生成一个SL的传输,或者,该MAC层可以向该物理层递交待传输的SL信息,该物理层可以利用可用的SL资源执行SL传输。
除了如上两种方式外,第一UE还可能通过其他方式实现不使用第一SL资源,对此不做限制。
可选的,如果第一SL资源不可用,则第一UE可以停止SL传输;或者,如果第一SL资源不可用,第一UE也可以重新确定SL资源,例如在mode1下,第一UE可以向接入网设备指示第一SL资源不可用,或指示检测到第一资源池连续LBT失败,接入网设备可以重新为第一UE调度SL资源,例如接入网设备可以在第一UE被配置的其他资源池内为第一UE重新调度SL资源;或者在mode2下,第一UE可以在第一UE被配置的其他资源池内重新选择SL资源,这样可以减小SL信息的传输时延。
根据前文可知,如果一个资源池如果发生了连续LBT失败,则该资源池不可用,导致该资源池内 的SL资源不可用。可选的,一个不可用的资源池也可以恢复,即,重新变为可用的资源池。例如,在一个资源池检测到连续LBT失败后,第一UE还可以继续对该资源池中的资源或该资源池中的传输执行LBT,例如第一UE可以周期性对该资源池中的资源或该资源池中的传输执行LBT。例如,第一UE在第一资源池检测LBT成功,则可以认为第一资源池重新恢复为了可用的资源池。在第一资源池恢复的情况下,如果是mode1,第一UE可以向接入网设备发送指示信息,以指示第一资源池可用,则接入网设备可以在第一资源池内为第一UE调度SL资源;如果是mode2,第一UE在选择SL资源时,可以在第一资源池内选择。通过这种方式可以提高资源池的利用率。
本申请实施例中,如果第一UE检测到第一资源池连续LBT失败,则第一UE可以不使用第一资源池内的第一SL资源,从而减小传输失败的概率。另外,第一UE还可以重新确定SL资源来发送SL信息,以减小SL信息的传输时延。
可选的,例如在UE针对RB set进行连续LBT检测的情况下,上述的“资源池”可以理解为“RB set”。
此时,上述S502可以替换为:如果已有在第一RB set内选择(或,确定)的SL资源,第一UE不使用该SL资源。例如将该SL资源称为第一SL资源,第一SL资源可包括至少一个SL资源。例如,第一UE已选择(或,确定)的SL资源可以理解为,第一UE的MAC层已选择的且已通知了第一UE的物理层的SL资源。
例如,第一UE原本共确定了第一RB set内的一个或多个SL资源。在执行S501或S502时,第一UE可能已经使用了这一个或多个SL资源中的部分SL资源,而这一个或多个SL资源中还有剩余SL资源尚未使用,则第一SL资源包括该剩余SL资源;或者,第一UE在执行S501或S502时,对于这一个或多个SL资源均未使用,则第一SL资源包括这一个或多个SL资源。可选的,第一SL资源可以包括重传资源和/或初传资源,对此不做限制。
第一UE确定的一个或多个SL资源,可包括接入网设备为第一UE调度的SL资源,和/或包括第一UE在第一RB set自行确定的SL资源。因此,第一SL资源可包括接入网设备为第一UE调度的SL资源,和/或包括第一UE在第一RB set自行确定的SL资源。例如,第一SL资源包括接入网设备为第一UE调度的N1个SL资源,和/或包括第一UE在第一RB set内自行选择的N2个SL资源。其中,N1为大于或等于0的整数,N2为正整数;或者,N2为大于或等于0的整数,N1为正整数。N1可以大于N2,也可以小于N2。可选的,第一SL资源可包括如下一种或多种:物理侧行链路控制信道(physical sidelink control channel,PSCCH)资源,物理侧行链路共享信道(physical sidelink shared channel,PSSCH)资源,或,PSFCH资源。其中,PSFCH资源可以与SL数据关联,该SL数据是第一UE接收的SL数据。例如PSFCH资源与SL数据的一种关联方式为,该PSFCH资源可用于传输该SL数据的反馈信息,该反馈信息例如为SL混合自动重传请求(hybrid automatic repeat request,HARQ)-应答(ACK)。
第一UE已确定了第一RB set内的第一SL资源,要利用第一SL资源发送SL信息。但如果第一UE检测到第一RB set连续LBT失败,表明第一RB set不可用,或在后续一段时间内第一RB set不可用,则第一RB set内的SL资源也就不可用。因此在这种情况下,第一UE可以不使用第一SL资源,从而减小传输失败的概率。
可选的,S502可由第一UE的MAC层执行。第一UE不使用第一SL资源,可以通过不同的方式实现,如下举例介绍。
1、第一种方式,该MAC层指示第一UE的物理层清除第一SL资源的信息。
示例性的,该MAC层可以向该物理层指示第一RB set,例如该MAC层可以向该物理层发送第一RB set的索引,以指示第一RB set。该物理层接收来自该MAC层的指示后,可将已确定的第一RB set内的、且尚未使用的SL资源的信息清除。例如该物理层接收了来自该MAC层的指示,则该物理层可以确定第一RB set内的第一SL资源是已确定的SL资源,且第一SL资源尚未使用。因此该物理层可以清除第一SL资源的信息,从而该物理层不会再使用第一SL资源的信息对应的SL资源(即,第一SL资源)。在这种方式下,该MAC层指示第一RB set,该物理层可以根据第一RB set确定第一SL资源。
或者,该MAC层也可以指示第一RB set内的第一SL资源,该物理层根据该MAC层的指示可以直接确定第一SL资源,则该物理层可以清除第一SL资源的信息。在这种方式下,该MAC层可以指示第一SL资源,从而该物理层不必再确定第一SL资源,而是清除第一SL资源的信息即可,物理层的 实现较为简单。
2、第二种方式,该MAC层不向该物理层递交待发送的SL信息,或者,该MAC层不会向该物理层指示生成SL传输。第一SL资源是为了传输SL信息,或者是用于SL传输,而该SL信息是由该MAC层递交给该物理层,由该物理层执行SL传输。如果该MAC层不向该物理层递交该SL信息,或者不向该物理层指示生成SL传输,则该物理层没有能够传输的SL信息,也就不会执行SL传输,因此也就不会使用第一SL资源。其中,SL信息可以包括SL传输信息或SL数据包(MAC协议数据单元)中的一个或多个。
示例性的,对于某个SL进程,该MAC层确定不存在可用的SL资源,其中,不存在可用的SL资源包括没有已确定的SL资源,或者虽然有已确定的SL资源(例如第一SL资源),但该已确定的SL资源为检测到(或,发生了)连续LBT失败的RB set(例如第一RB set)内的SL资源,则该MAC层可以不向该物理层指示生成一个SL的传输,或者,该MAC层可以不向该物理层递交待传输的SL信息。
在这种情况下,如果该MAC层确定存在可用的SL资源,则该MAC层可以向该物理层指示生成一个SL的传输,或者,该MAC层可以向该物理层递交待传输的SL信息,该物理层可以利用可用的SL资源执行SL传输。其中,存在可用的SL资源,可包括,已确定SL资源,且已确定的SL资源所在的RB set未检测到(或,发生)连续LBT失败。
除了如上两种方式外,第一UE还可能通过其他方式实现不使用第一SL资源,对此不做限制。
可选的,如果第一SL资源不可用,则第一UE可以停止SL传输;或者,如果第一SL资源不可用,第一UE也可以重新确定SL资源,例如在mode1下,第一UE可以向接入网设备指示第一SL资源不可用,或指示检测到第一RB set连续LBT失败,接入网设备可以重新为第一UE调度SL资源,例如接入网设备可以在第一UE被配置的其他RB set内为第一UE重新调度SL资源;或者在mode2下,第一UE可以在第一UE被配置的其他RB set内重新选择SL资源,这样可以减小SL信息的传输时延。
根据前文可知,如果一个RB set发生了连续LBT失败,则该RB set不可用,导致该RB set内的SL资源不可用。可选的,一个不可用的RB set也可以恢复,即,重新变为可用的RB set。例如,在一个RB set检测到连续LBT失败后,第一UE还可以继续对该RB set中的资源或该RB set中的传输执行LBT,例如第一UE可以周期性对该RB set中的资源或该RB set中的传输执行LBT。例如,第一UE在第一RB set检测LBT成功,则可以认为第一RB set重新恢复为了可用的RB set。在第一RB set恢复的情况下,如果是mode1,第一UE可以向接入网设备发送指示信息,以指示第一RB set可用,则接入网设备可以在第一RB set内为第一UE调度SL资源;如果是mode2,第一UE在选择SL资源时,可以在第一RB set内选择。通过这种方式可以提高SL资源的利用率。
本申请实施例中,如果第一UE检测到第一RB set连续LBT失败,则第一UE可以不使用第一RB set内的第一SL资源,从而减小传输失败的概率。另外,第一UE还可以重新确定SL资源来发送SL信息,以减小SL信息的传输时延。
在前述实施例中介绍了,第一UE可能检测到第一资源池连续LBT失败,此时认为第一资源池不可用。而不可用的资源池越多,可供选择的SL资源就越少,可能会出现可用资源不足的情况。为此本申请实施例提供第五种通信方法,通过该方法可以恢复资源池,以扩大资源选择范围。请参考图6,为该方法的流程图。
S601、第一UE确定第一资源池不可用。例如第一UE检测到第一资源池连续LBT失败,则可以确定第一资源池不可用。或者第一UE也可能通过其他方式确定第一资源池不可用。
第一UE可以被配置一个或多个资源池,关于配置方式可参考图2所示的实施例的介绍。第一资源池例如为第一UE被配置的其中一个资源池。例如,第一UE对于被配置的任一个资源池均可以按照本申请实施例的方案确定该资源池是否能够恢复,本申请实施例是以第一资源池为例。
第一资源池例如为第一类资源池,或者为第二类资源池,对此的更多介绍可参考图2所示的实施例或图3所示的实施例。
S602、第一UE对第一资源池执行LBT。
例如,在确定第一资源池不可用后,第一UE还可以继续对第一资源池中的资源或该资源池中的传输执行LBT。例如第一UE可以触发式对第一资源池中的资源或传输执行LBT,例如第一UE在收到接入网设备或其他UE的触发时对第一资源池中的资源或传输执行LBT;或者,第一UE也可以周期性对 第一资源池中的资源或传输执行LBT,在这种方式下无需其他设备的触发。该周期可由第一UE配置,或由接入网设备或其他UE配置,或者也可以通过协议预定义。
S603、如果第一UE在第一资源池检测到至少一次LBT成功,确定第一资源池可用。
如果第一UE在第一资源池中的资源或传输检测到至少一次LBT成功,则可以认为第一资源池重新恢复为了可用的资源池。该次数可由UE配置,或由接入网设备或其他UE配置,或者也可以通过协议预定义。
例如协议预定义该次数为1,则第一UE只要在第一资源池检测到一次LBT成功,就确定第一资源池可用,而如果第一UE未在第一资源池检测到LBT成功,就可以确定第一资源池不可用,这种方式的检测效率较高。又例如,协议预定义该次数为P,P为大于1的整数,则,如果第一UE在第一资源池检测到LBT成功的次数大于或等于P,就可以确定第一资源池可用,而如果第一UE未在第一资源池检测到LBT成功,或者在第一资源池检测到LBT成功的次数小于P,就可以确定第一资源池不可用。可选的,该P次可以是连续P次,即,如果第一UE在第一资源池检测到连续LBT成功的次数大于或等于P,就可以确定第一资源池可用,而如果第一UE未在第一资源池检测到LBT成功,或者在第一资源池检测到连续LBT成功的次数小于P,就可以确定第一资源池不可用。通过连续LBT成功来确定一个资源池是否可用,可以使得确定结果更为准确。
可选的,确定第一资源池可用或认为第一资源池重新恢复为了可用的资源池,还可以包括,取消第一资源池被触发的连续LBT失败。其中,若第一资源池检测到或发生了连续LBT失败,则可以认为第一资源池的连续LBT失败被触发。例如第一UE可以维护第一资源池对应的标志位,如果第一资源池检测到或发生了LBT失败(或者连续LBT失败),则第一UE可以设置该标志位,使得该标志位指示第一资源池的连续LBT失败被触发。如果第一资源池检测到至少一个LBT成功,第一UE可以取消第一资源池被触发的连续LBT失败,例如第一UE可以取消对该标志位的设置,此时认为第一资源池可用,或认为第一资源池重新恢复为了可用的资源池。
可选的,如果第一UE确定第一资源池可用,则可以执行相应操作。例如,第一UE采用的是mode2,则第一UE在选择SL资源时,可以恢复第一资源池的使用,或者说,第一UE可以在第一资源池内选择SL资源。或者,第一UE采用的是mode1,则第一UE可以向接入网设备发送指示信息,该指示信息可指示第一资源池已恢复,或指示第一资源池可用,或指示第一资源池LBT成功。接入网设备接收该指示信息后,在为第一UE调度SL资源时,可以为第一UE调度第一资源池内的SL资源。又例如,第一UE可以将该第一资源池对应的失败次数清零,关于第一资源池对应的失败次数可参考图2所示的实施例的介绍。可选的,若当前仅存在第一资源池检测到或发生了LBT失败,也即,仅第一资源池的连续LBT失败被触发,而不存在其他资源池的连续LBT失败被触发,那么,如果当前存在被触发的调度请求,则第一UE可以取消该调度请求。其中,该调度请求可请求用于传输指示信息的资源,该指示信息可指示第一资源池已恢复。可选的,如果该指示信息还未传输,则第一UE可以不再传输该指示信息,且第一UE可以清掉已经生成的该指示信息。除此之外,第一UE还可能执行其他相应操作,对此可参考图2至图5所示的实施例中的任意一个或多个实施例的介绍。
可选的,例如在UE针对RB set进行连续LBT检测的情况下,本申请实施例所述的“资源池”可以理解为RB set。
通过本申请实施例的方案,可以及时恢复资源池,从而扩大SL资源选择范围,减少SL资源不足的情况。
图6所示的实施例与前述图2至图5所示的实施例中的任意一个或多个实施例可以结合应用。例如图6所示的实施例与图2所示的实施例可以结合,或者与图3所示的实施例可以结合等。或者,图6所示的实施例与前述实施例均不结合,而是单独应用。
图7给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置700可以是图2至图6所示的实施例中的任一个实施例所述的接入网设备或该接入网设备的电路系统,用于实现上述方法实施例中对应于接入网设备的方法。或者,所述通信装置700可以是图2所示的实施例至图6所示的实施例中的任一个实施例所述的第一UE的电路系统,用于实现上述方法实施例中对应于第一UE的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置700包括至少一个处理器701。处理器701可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器701包括指令。可选地,处理器701可以存储数据。可选地,不同的处理器 可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置700包括一个或多个存储器703,用以存储指令。可选地,所述存储器703中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置700包括通信线路702,以及至少一个通信接口704。其中,因为存储器703、通信线路702以及通信接口704均为可选项,因此在图7中均以虚线表示。
可选地,通信装置700还可以包括收发器和/或天线。其中,收发器可以用于向其他装置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置700的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器701可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路702可包括一通路,在上述组件之间传送信息。
通信接口704,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器703可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器703可以是独立存在,通过通信线路702与处理器701相连接。或者,存储器703也可以和处理器701集成在一起。
其中,存储器703用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。处理器701用于执行存储器703中存储的计算机执行指令,从而实现本申请上述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置700可以包括多个处理器,例如图7中的处理器701和处理器705。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图7所示的装置为芯片时,例如是接入网设备的芯片,或第一UE的芯片,则该芯片包括处理器701(还可以包括处理器705)、通信线路702、存储器703和通信接口704。具体地,通信接口704可以是输入接口、管脚或电路等。存储器703可以是寄存器、缓存等。处理器701和处理器705可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。其中,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图8示出了一种装置示意图,该装置800可以是上述各个方法实施例中所涉及的第一UE或接入网设备,或者为接入网设备中的芯片或第一UE中的芯片。该装置800包括发送单元801、处理单元802和接收单元803。
应理解,该装置800可以用于实现本申请实施例的方法中由接入网设备或第一UE执行的步骤,相 关特征可以参照上文的各个实施例,此处不再赘述。
可选的,图8中的发送单元801、接收单元803以及处理单元802的功能/实现过程可以通过图7中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图8中的处理单元802的功能/实现过程可以通过图7中的处理器701调用存储器703中存储的计算机执行指令来实现,图8中的发送单元801和接收单元803的功能/实现过程可以通过图7中的通信接口704来实现。
可选的,当该装置800是芯片或电路时,则发送单元801和接收单元803的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由接入网设备或第一UE所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由接入网设备或第一UE所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的接入网设备或第一UE所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图仅仅是所附权利要求所界定 的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (26)

  1. 一种通信方法,其特征在于,所述方法包括:
    第一终端设备在所述第一终端设备的所有资源池检测到连续先听后说LBT失败,其中,所述所有资源池包括一个或多个资源池,其中的每个资源池用于所述第一终端设备与其他终端设备通信;
    所述第一终端设备执行如下行为中的一项或多项:
    释放所述第一终端设备的所有侧行链路单播连接;
    释放所述第一终端设备的所有侧行链路单播连接的数据无线承载DRB;
    释放所述第一终端设备的所有侧行链路单播连接的信令无线承载SRB;或,
    释放所述第一终端设备的广播和/或组播通信的DRB。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一终端设备在所述第一终端设备的所有资源池检测到连续LBT失败,包括:所述第一终端设备的介质接入控制MAC层在所述第一终端设备的所有资源池检测到连续LBT失败;
    所述第一终端设备执行如下行为中的一项或多项,包括:所述第一终端设备的无线资源控制RRC层执行如下行为中的一项或多项:
    释放所述第一终端设备的所有侧行链路单播连接;
    向所述第一终端设备的上层指示释放了所述第一终端设备的所有侧行链路单播连接;
    释放所述第一终端设备的所有侧行链路单播连接的DRB;
    释放所述第一终端设备的所有侧行链路单播连接的SRB;或,
    释放所述第一终端设备的广播和/或组播通信的DRB。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述MAC层向所述RRC层发送第一指示信息,所述第一指示信息用于指示检测到连续LBT失败,或指示所述第一终端设备的所有侧行链路单播连接均发生无线链路失败。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向接入网设备发送第二指示信息,所述第二指示信息用于指示检测到连续LBT失败,或指示所述第一终端设备的所有侧行链路单播连接均发生无线链路失败;
    所述第一终端设备接收来自所述接入网设备的第三指示信息,所述第三指示信息用于指示所述第一终端设备执行如下行为中的一项或多项:
    释放所述第一终端设备的所有侧行链路单播连接;
    释放所述第一终端设备的所有侧行链路单播连接的DRB;
    释放所述第一终端设备的所有侧行链路单播连接的SRB;或,
    释放所述第一终端设备的广播和/或组播通信的DRB。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在检测到所述一个或多个资源池中的至少一个资源池连续LBT失败时,使用第一组播层2标识组播第一信息,所述第一组播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;或,
    所述第一终端设备在检测到所述一个或多个资源池中的至少一个资源池连续LBT失败时,使用第一广播层2标识广播第一信息,所述第一广播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;
    其中,所述第一组播层2标识用于指示对应的组播消息为所述第一信息,所述第一广播层2标识用于指示对应的广播消息为所述第一信息,所述第一信息用于指示所述至少一个资源池发生连续LBT失败。
  6. 一种通信方法,其特征在于,所述方法包括:
    接入网设备接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备检测到连续LBT失败,或指示所述第一终端设备的所有侧行链路单播连接均发生无线链路失败;
    所述接入网设备向所述第一终端设备发送第三指示信息,所述第三指示信息用于指示所述第一终端设备执行如下行为中的一项或多项:
    释放所述第一终端设备的所有侧行链路单播连接;
    释放所述第一终端设备的所有侧行链路单播连接的DRB;
    释放所述第一终端设备的所有侧行链路单播连接的SRB;或,
    释放所述第一终端设备的广播和/或组播通信的DRB。
  7. 一种通信方法,其特征在于,所述方法包括:
    第一终端设备在所述第一终端设备的所有第一类资源池检测到连续LBT失败,其中,所述所有第一类资源池包括一个或多个第一类资源池,其中的每个第一类资源池用于所述第一终端设备与其他终端设备通信,且所述每个第一类资源池包括物理侧行链路反馈信道资源;
    对于第一侧行链路单播连接,所述第一终端设备执行如下行为中的一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,
    对于第一侧行链路单播连接,所述第一终端设备执行如下行为中的一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的逻辑信道LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块,且设置所述传输块对应的侧行链路进程为未被占用;
    其中,为所述第一侧行链路单播连接配置的所有LCH为反馈使能的LCH,或为所述第一侧行链路单播连接配置的LCH包括反馈使能的LCH和反馈未使能的LCH。
  8. 根据权利要求7所述的方法,其特征在于,
    所述第一终端设备在所述第一终端设备的所有第一类资源池检测到连续LBT失败,包括:所述第一终端设备的MAC层在所述第一终端设备的所有第一类资源池检测到连续LBT失败;
    对于第一侧行链路单播连接,所述第一终端设备执行如下行为中的一项或多项,包括:对于所述第一侧行链路单播连接,所述第一终端设备的RRC层执行如下行为中的一项或多项:释放所述第一侧行链路单播连接,向所述第一终端设备的上层指示释放了所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,
    对于第一侧行链路单播连接,所述第一终端设备执行如下行为中的一项或多项,包括:对于所述第一侧行链路单播连接,所述第一终端设备的RRC层执行如下行为中的一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,向所述第一终端设备的上层指示释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB对应的服务质量QoS流,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块,且设置所述传输块对应的侧行链路进程为未被占用。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述MAC层确定配置的所有LCH为反馈使能的LCH的侧行链路单播连接为所述第一侧行链路单播连接,或确定配置的LCH包括反馈使能的LCH和反馈未使能的LCH的侧行链路单播连接为所述第一侧行链路单播连接;
    所述MAC层向所述RRC层发送第一指示信息,所述第一指示信息用于指示所述第一侧行链路单播连接发生无线链路失败。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述MAC层向所述RRC层发送第一指示信息,所述第一指示信息用于指示检测到所述所有第一类资源池连续LBT失败;
    所述RRC层确定配置的所有LCH为反馈使能的LCH的侧行链路单播连接为所述第一侧行链路单播连接,或确定配置的LCH包括反馈使能的LCH和反馈未使能的LCH的侧行链路单播连接为所述第一侧行链路单播连接。
  11. 根据权利要求7~10任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向接入网设备发送第二指示信息,所述第二指示信息用于指示所述第一终端设备的所述第一侧行链路单播连接发生无线链路失败;
    所述第一终端设备接收来自所述接入网设备的第三指示信息;
    其中,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,
    所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项: 释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。
  12. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向接入网设备发送第二指示信息,所述第二指示信息用于指示检测到所述第一终端设备的所有所述第一类资源池连续LBT失败;
    所述第一终端设备接收来自所述接入网设备的第三指示信息;
    其中,所述第三指示信息用于指示所述第一终端设备对于所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,
    所述第三指示信息用于指示所述第一终端设备对于所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。
  13. 根据权利要求7~12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备重建或修改第一LCH的DRB;或,
    所述第一终端设备重建或修改第一LCH的DRB对应的QoS流;
    其中,所述第一LCH为反馈未使能的LCH。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自接入网设备的第四指示信息,所述第四指示信息用于指示所述第一终端设备重建或修改所述第一LCH的DRB,或指示所述第一终端设备重建或修改所述第一LCH的DRB对应的QoS流。
  15. 根据权利要求7~14任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在所述一个或多个第一类资源池中的M个第一类资源池检测到LBT成功,M为正整数;
    所述第一终端设备恢复所述第一侧行链路单播连接的反馈使能的LCH的DRB,和/或,恢复所述第一侧行链路单播连接的反馈使能的LCH的DRB对应的QoS流。
  16. 根据权利要求7~15任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备在检测到所述一个或多个第一类资源池中的至少一个第一类资源池连续LBT失败时,使用第一组播层2标识组播第一信息,所述第一组播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;或,
    所述第一终端设备在检测到所述一个或多个第一类资源池中的至少一个第一类资源池连续LBT失败时,使用第一广播层2标识广播第一信息,所述第一广播层2标识是在与第二终端设备建立侧行链路单播连接时为所述第二终端设备分配的;
    其中,所述第一组播层2标识用于指示对应的组播消息为所述第一信息,所述第一广播层2标识用于指示对应的广播消息为所述第一信息,所述第一信息用于指示所述至少一个第一类资源池发生连续LBT失败。
  17. 一种通信方法,其特征在于,所述方法还包括:
    接入网设备接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备的第一侧行链路单播连接发生无线链路失败;
    所述接入网设备向所述第一终端设备发送第三指示信息;
    其中,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,
    所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述第一终端设备发送第四指示信息,所述第四指示信息用于指示所述第一终端设备重建或修改第一LCH的DRB,或指示所述第一终端设备重建或修改第一LCH的DRB对应的QoS 流,其中,所述第一LCH为反馈未使能的LCH。
  19. 一种通信方法,其特征在于,所述方法还包括:
    接入网设备接收来自第一终端设备的第二指示信息,所述第二指示信息用于指示检测到所述第一终端设备的所有第一类资源池连续LBT失败,其中的每个第一类资源池包括物理侧行链路反馈信道资源;
    所述接入网设备根据所述第二指示信息确定所述第一终端设备的第一侧行链路单播连接,其中,所述第一侧行链路单播连接的所有LCH为反馈使能的LCH,或所述第一侧行链路单播连接的LCH包括反馈使能的LCH和反馈未使能的LCH;
    所述接入网设备向所述第一终端设备发送第三指示信息;
    其中,所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放所述第一侧行链路单播连接,释放所述第一侧行链路单播连接的DRB,或,释放所述第一侧行链路单播连接的SRB;或者,
    所述第三指示信息用于指示所述第一终端设备对所述第一侧行链路单播连接执行如下一项或多项:释放或挂起所述第一侧行链路单播连接的反馈使能的LCH的DRB和/或SRB,或,清除缓存的所述第一侧行链路单播连接的反馈使能的LCH的传输块。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述第一终端设备发送第四指示信息,所述第四指示信息用于指示所述第一终端设备重建或修改第一LCH的DRB,或指示所述第一终端设备重建或修改第一LCH的DRB对应的QoS流,其中,所述第一LCH为所述第一终端设备的反馈未使能的LCH。
  21. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~5任一项所述的方法,或用于执行如权利要求7~16任一项所述的方法。
  22. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求6所述的方法,或用于执行如权利要求17~18任一项所述的方法,或用于执行如权利要求19~20任一项所述的方法。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~5任一项所述的方法,或使得所述计算机执行如权利要求6所述的方法,或使得所述计算机执行如权利要求7~16任一项所述的方法,或使得所述计算机执行如权利要求17~18任一项所述的方法,或使得所述计算机执行如权利要求19~20任一项所述的方法。
  24. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~5任一项所述的方法,或实现如权利要求7~16任一项所述的方法。
  25. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求6所述的方法,或实现如权利要求17~18任一项所述的方法,或实现如权利要求19~20任一项所述的方法。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~5任一项所述的方法,或使得所述计算机执行如权利要求6所述的方法,或使得所述计算机执行如权利要求7~16任一项所述的方法,或使得所述计算机执行如权利要求17~18任一项所述的方法,或使得所述计算机执行如权利要求19~20任一项所述的方法。
PCT/CN2023/119292 2022-09-27 2023-09-18 一种通信方法及装置 WO2024067185A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202211183463.7 2022-09-27
CN202211183463 2022-09-27
CN202211372748 2022-11-03
CN202211372748.5 2022-11-03
CN202211493043.9 2022-11-25
CN202211493043 2022-11-25
CN202310754561.X 2023-06-25
CN202310754561.XA CN118283855A (zh) 2022-09-27 2023-06-25 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024067185A1 true WO2024067185A1 (zh) 2024-04-04

Family

ID=90476134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119292 WO2024067185A1 (zh) 2022-09-27 2023-09-18 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2024067185A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190306923A1 (en) * 2018-06-19 2019-10-03 Intel Corporation Reference signal and control information processing in 5g-nr wireless systems
CN110944306A (zh) * 2018-09-25 2020-03-31 维沃移动通信有限公司 一种旁链路的链路释放方法及终端
WO2022104545A1 (zh) * 2020-11-17 2022-05-27 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2022165851A1 (en) * 2021-02-08 2022-08-11 Lenovo (Beijing) Limited Method for sidelink communication and terminal device
CN114978451A (zh) * 2022-04-07 2022-08-30 南京星思半导体有限公司 Sidelink传输方法、装置及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190306923A1 (en) * 2018-06-19 2019-10-03 Intel Corporation Reference signal and control information processing in 5g-nr wireless systems
CN110944306A (zh) * 2018-09-25 2020-03-31 维沃移动通信有限公司 一种旁链路的链路释放方法及终端
WO2022104545A1 (zh) * 2020-11-17 2022-05-27 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2022165851A1 (en) * 2021-02-08 2022-08-11 Lenovo (Beijing) Limited Method for sidelink communication and terminal device
CN114978451A (zh) * 2022-04-07 2022-08-30 南京星思半导体有限公司 Sidelink传输方法、装置及终端

Similar Documents

Publication Publication Date Title
US20220217575A1 (en) Sidelink communication method and apparatus, and storage medium
US20220386145A1 (en) Base station, virtual cell, user equipment
WO2017133501A1 (zh) 车联网业务拥塞控制的方法及装置
RU2580668C1 (ru) Усовершенствованная локальная связь в широкополосных сетях мобильной связи
WO2018028269A1 (zh) 一种资源调度方法和装置
WO2019063001A1 (zh) 一种半持久调度的方法及装置
JP4877841B2 (ja) 移動通信システムにおける方法及び通信装置
US20230007727A1 (en) Wireless communication method and communication apparatus
EP3565350B1 (en) Method and device for establishing wireless connection
US20210385851A1 (en) Data transmission method of internet of vehicles, sending terminal and network-side device
WO2010111820A1 (zh) 一种随机接入方法、演进基站及终端设备
WO2018028636A1 (zh) Rrc连接控制方法及装置、系统
WO2024119660A1 (zh) 用于通信的方法及装置
CN111294939B (zh) C-rnti的能力上报、分配方法及装置、存储介质、终端、基站
WO2021031035A1 (zh) 一种通信方法及装置
WO2023030088A1 (zh) 旁链路通信方法及设备
WO2024067185A1 (zh) 一种通信方法及装置
JP2023505642A (ja) 情報伝送方法及び関連製品
CN118283855A (zh) 一种通信方法及装置
WO2024120346A1 (zh) 一种通信方法及装置
WO2024139936A1 (zh) 通信方法和相关通信装置
WO2023093868A1 (zh) 一种通信方法及设备
WO2024066982A1 (zh) 一种通信方法及装置
WO2024109556A1 (zh) 一种通信方法及装置
WO2023165387A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870419

Country of ref document: EP

Kind code of ref document: A1