WO2024067112A1 - 一种通信方法、通信设备、介质及程序产品 - Google Patents

一种通信方法、通信设备、介质及程序产品 Download PDF

Info

Publication number
WO2024067112A1
WO2024067112A1 PCT/CN2023/118694 CN2023118694W WO2024067112A1 WO 2024067112 A1 WO2024067112 A1 WO 2024067112A1 CN 2023118694 W CN2023118694 W CN 2023118694W WO 2024067112 A1 WO2024067112 A1 WO 2024067112A1
Authority
WO
WIPO (PCT)
Prior art keywords
host node
node
cell
terminal
information
Prior art date
Application number
PCT/CN2023/118694
Other languages
English (en)
French (fr)
Inventor
朱世超
朱元萍
孙飞
史玉龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067112A1 publication Critical patent/WO2024067112A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure generally relates to the field of communications, and more particularly to a communication method, a communication device, a computer-readable storage medium, and a computer program product.
  • the fifth-generation mobile communication has put forward more stringent requirements for various network performance indicators, such as a 1,000-fold capacity increase, wider coverage requirements, ultra-high reliability and ultra-low latency.
  • various network performance indicators such as a 1,000-fold capacity increase, wider coverage requirements, ultra-high reliability and ultra-low latency.
  • the use of high-frequency small base stations to form a network is becoming more and more popular.
  • the propagation characteristics of high-frequency carriers are poor, and they are severely attenuated by obstruction and have a narrow coverage range, so a large number of small base stations need to be deployed densely.
  • IAB Integrated Access and Backhaul
  • Embodiments of the present disclosure provide a communication method, a communication device, a computer-readable storage medium, and a computer program product.
  • a communication method includes: in the case where a relay node serving a terminal through a source cell migrates from a first host node to a second host node, the relay node sends information to the first host node or the second host node, the information indicating the target cell to which the terminal will be switched, the source cell is a cell under the first distributed unit DU of the relay node, the target cell is a cell under the second DU of the relay node, and the first DU and the second DU have F1 interfaces with the first host node and the second host node respectively; the relay node receives switching information from the first host node, the switching information indicates that the terminal switches to the target cell; and the relay node sends switching information to the terminal through the source cell. In this way, the host node can learn about its target cell without waiting for the terminal to report the measurement.
  • the information sent to the first host node includes: a correspondence between the target cell and the terminal; or a correspondence between the target cell and the source cell.
  • the first host node can accurately know the target cell based on the correspondence.
  • the information sent to the second host node includes: a correspondence relationship between the target cell and the terminal, so that the second host node can accurately know the target cell based on the correspondence relationship.
  • sending information to the first host node includes: the centralized unit CU of the first host node sends a handover request for the mobile terminal MT of the relay node to the CU of the second host node, and before the interface between the second DU of the relay node and the CU of the second host node is established, the first DU or MT of the relay node sends information to the CU of the first host node.
  • the first host node can first determine the target cell based on the received information.
  • sending information to the second host node includes: establishing an interface between the second DU of the relay node and the centralized unit CU of the second host node, and sending information to the CU of the second host node before the CU of the first host node sends a handover request for the mobile terminal MT of the relay node to the CU of the second host node.
  • the second host node can effectively determine the target cell based on the received information.
  • the method further includes: after sending information to the CU of the first host node, the relay node starts the second DU.
  • the relay node starts the second DU.
  • the method further includes: before sending the information to the CU of the second host node, the relay node starts the second DU.
  • the second DU can be started first to prepare for the terminal switching, and then the information is sent to the CU of the second host node.
  • initiating the second DU includes: the relay node configuring resources of the target cell to correspond to resources of the source cell. In this way, by configuring the resources of the source cell and the target cell to correspond to each other, the target cell can be determined based on the corresponding relationship without the need for terminal measurement.
  • configuring the resources of the target cell to correspond to the resources of the source cell includes: configuring the beam direction and/or time domain resources of the target cell to be the same as the beam direction and/or time domain resource configuration of the source cell; and configuring the frequency domain resources of the target cell to not overlap with the frequency domain resources of the source cell.
  • the resources of the source cell and the target cell can be effectively corresponded.
  • sending information to the first host node includes at least one of the following: the first DU of the relay node sends information via an F1 application protocol F1AP message; and the MT of the relay node sends information via a radio resource control RRC message.
  • the information is sent via an interface establishment request message.
  • the information can be sent by being carried in an existing message, avoiding the need to design a new message specifically for sending the information.
  • the method further includes at least one of the following: the first DU of the relay node sends an indication to the centralized unit CU of the first host node that the second DU is ready to provide services to the terminal; or the mobile terminal MT of the relay node sends an indication to the CU of the first host node that the second DU is ready to provide services to the terminal.
  • the first host node can effectively know that the second DU is ready to provide services to the terminal to facilitate the switching process.
  • the method further includes: the second DU of the relay node receives an interface establishment response message from the centralized unit CU of the second host node, the interface establishment response message indicates to the second DU the cell to be activated, and the cell to be activated is determined based on the target cell.
  • the corresponding target cell can be activated for terminal switching.
  • a communication method includes: in the case of migration from a first host node to a second host node through a relay node serving a terminal in a source cell, the first host node receives information from the relay node, the information indicates the target cell to which the terminal will be switched, the source cell is a cell under the first distributed unit DU of the relay node, the target cell is a cell under the second DU of the relay node, the first DU and the second DU have F1 interfaces with the first host node and the second host node respectively; and the first host node sends switching information to the relay node, the switching information indicates that the terminal switches to the target cell. In this way, the first host node can learn about its target cell without waiting for the terminal to report the measurement.
  • the information includes: a correspondence between the target cell and the terminal; or a correspondence between the target cell and the source cell.
  • the first donor node can accurately learn the target cell based on the correspondence.
  • the method further includes: the centralized unit CU of the first host node sends a handover request to the CU of the second host node, the handover request being used for at least one of the following: handover of the terminal, wherein the handover request indicates a target cell; and handover of the mobile terminal MT of the relay node from the CU of the first host node to the CU of the second host node.
  • handover of both the terminal and the MT can be achieved based on one handover request.
  • the method further comprises: indicating the target cell by including an identifier of the target cell and an identifier of the second donor node in the handover request.
  • the target cell can be accurately specified.
  • the handover request further includes the following indication: whether the second host node needs to send the user plane service of the terminal via the path associated with the first host node.
  • the path associated with the first host node can be flexibly established, thereby effectively supporting various migration modes.
  • receiving information from the relay node includes: when the centralized unit CU of the first host node sends a handover request for the mobile terminal MT of the relay node to the CU of the second host node, before the interface between the second DU of the relay node and the CU of the second host node is established, the CU of the first host node receives information from the first DU or MT of the relay node.
  • the first host node can first determine the target cell based on the received information.
  • receiving the information from the first DU includes: the CU of the first host node receives the information from the first DU via an F1 Application Protocol F1AP message.
  • receiving the information from the MT comprises: the CU of the first donor node receives the information from the MT via a radio resource control RRC message.
  • RRC message a radio resource control
  • the method further includes at least one of the following: a centralized unit CU of the first host node receives an indication from the first DU of the relay node that the second DU is ready to provide services to the terminal; or the CU of the first host node receives an indication from the mobile terminal MT of the relay node.
  • a centralized unit CU of the first host node receives an indication from the first DU of the relay node that the second DU is ready to provide services to the terminal; or the CU of the first host node receives an indication from the mobile terminal MT of the relay node.
  • a communication method includes: in the case where a relay node serving a terminal through a source cell migrates from a first host node to a second host node, the first host node receives a notification message related to a target cell to which the terminal will be switched from the second host node, the source cell is a cell under a first distributed unit DU of the relay node, the target cell is a cell under a second DU of the relay node, the first DU and the second DU have F1 interfaces with the first host node and the second host node respectively, and the notification message indicates one of the following: In the handover request for handover, the identification information for indicating the target cell is default or invalid; or the target cell; and based on the notification message, the first host node sends the handover request for the handover of the terminal to the second host node. In this way, the first host node can learn from the second host node whether the handover request needs to indicate the target cell,
  • sending the handover request includes: if it is determined that the notification message indicates that the identification information in the handover request is default or invalid, the first host node sends the handover request with the identification information being default or invalid to the second host node.
  • the handover request can be transmitted without indicating the target cell.
  • sending the handover request includes: if it is determined that the notification message indicates the target cell, the first donor node sends the handover request indicating the target cell to the second donor node.
  • the target cell can be indicated in the handover request, thereby facilitating the handover process of the terminal.
  • the handover request further includes the following indication: whether the second host node needs to send the user plane service of the terminal via the path associated with the first host node.
  • the path associated with the first host node can be flexibly established, thereby effectively supporting various migration modes.
  • a communication method includes: in the case of migration from a first host node to a second host node through a relay node serving a terminal in a source cell, the second host node receives information from the first host node or the relay node, the information indicating the target cell to which the terminal will be switched, the source cell is a cell under the first distributed unit DU of the relay node, the target cell is a cell under the second DU of the relay node, and the first DU and the second DU have F1 interfaces with the first host node and the second host node, respectively.
  • the second host node can learn about its target cell without waiting for the terminal to report the measurement.
  • receiving information from the first host node includes: the centralized unit CU of the second host node receives a switching request including information from the CU of the first host node, the switching request being used for at least one of: switching of the terminal; and switching of the mobile terminal MT of the relay node from the CU of the first host node to the CU of the second host node.
  • the switching of both the terminal and the MT can be achieved based on one switching request.
  • the handover request further includes the following indication: whether the second host node needs to send the user plane service of the terminal via the path associated with the first host node.
  • the path associated with the first host node can be flexibly established, thereby effectively supporting various migration modes.
  • the method further includes: based on the handover request including the indication, the second host node sends a request to the first host node to establish a path.
  • the establishment of the path associated with the first host node can be facilitated, thereby effectively supporting various migration modes.
  • the method further includes: the second host node performs admission decision on the MT and the terminal of the relay node.
  • the load situation can be comprehensively considered to make efficient decisions on the admission of the MT and the terminal.
  • the method further includes: the CU of the second host node determines the cell to be activated by the second DU based on the target cell; and the CU of the second host node sends an interface establishment response message to the second DU of the relay node, and the interface establishment response message indicates the cell to be activated to the second DU.
  • the second host node can efficiently learn the cell indicated by the second DU to be activated based on the target cell in the received information.
  • receiving information from the relay node includes: establishing an interface between the centralized unit CU of the second host node and the second DU of the relay node, and the CU of the second host node receives information from the second DU of the relay node before the CU of the first host node sends a handover request for the mobile terminal MT of the relay node to the CU of the second host node.
  • the second host node can effectively determine the target cell based on the received information.
  • the information is received via an interface establishment request message.
  • designing a new message specifically for sending the information is avoided.
  • the method further includes: the CU of the second host node sends a notification message to the CU of the first host node, the notification message indicating that in the handover request for handover, the identification information used to indicate the target cell is default or invalid; and the CU of the second host node receives the handover request from the CU of the first host node. In this way, the first host node can learn from the second host node whether the handover request needs to indicate the target cell, thereby achieving flexible handover.
  • the method further includes: the CU of the second host node sends a notification message to the CU of the first host node, the notification message indicating the target cell; and the CU of the second host node receives a handover request for handover from the CU of the first host node, the handover request indicating the target cell.
  • the target cell can be indicated in the handover request, thereby facilitating the handover process of the terminal.
  • a communication method includes: in the case where a relay node serving a terminal through a source cell migrates from a first host node to a second host node, the first host node sends a message to the second host node, the message includes the context of the terminal or the target cell to which the terminal will be switched, the source cell is a cell under the first distributed unit DU of the relay node, the target cell is a cell under the second DU of the relay node, the first DU and the second DU have F1 interfaces with the first host node and the second host node, respectively, and the message also includes the following indication: whether the second host node needs to send the user plane service of the terminal via a path associated with the first host node. In this way, the path associated with the first host node can be flexibly established, thereby effectively supporting various migration modes.
  • a communication method includes: in the case of migration from a first host node to a second host node through a relay node serving a terminal in a source cell, the second host node receives a message from the first host node, the message includes the context of the terminal or the target cell to which the terminal will be switched, the source cell is a cell under the first distributed unit DU of the relay node, the target cell is a cell under the second DU of the relay node, the first DU and the second DU have F1 interfaces with the first host node and the second host node, respectively, and the message also includes the following indication: whether the second host node needs to send the user plane service of the terminal via a path associated with the first host node. In this way, a path associated with the first host node can be flexibly established, thereby effectively supporting various migration modes.
  • a communication method includes: when a distributed unit DU of a relay node serving a terminal through a source cell migrates from a first host node to a second host node, an indication message is sent to the terminal, the indication message is used to indicate the target beam to be used by the terminal in the target cell to be switched, the target beam is the same as the source beam used by the terminal in the source cell, the source cell is a cell under the first DU of the relay node, the target cell is a cell under the second DU of the relay node, and the first DU and the second DU have F1 interfaces with the first host node and the second host node, respectively.
  • the beam used by the terminal in the target cell can be determined without the need for beam measurement, thereby reducing signaling overhead and improving transmission efficiency.
  • the indication information indicates at least one of the following: the terminal uses a beam with the same direction or index as the source beam used by the terminal in the source cell; the index of the target beam; or the index of the source beam.
  • the determination of the target beam can be effectively achieved.
  • the method further includes: acquiring beam information from the relay node or the second host node, the beam information being used to determine a target beam to be used by the terminal in the target cell, the beam information indicating at least one of the following: using a beam with the same direction or index as a source beam used in the source cell in the target cell; or a correspondence between the beam in the source cell and the beam in the target cell.
  • the target beam using the same beam as the source beam can be effectively determined.
  • the method further includes: sending beam indication information related to the target beam to the second host node, the beam indication information indicating at least one of the following: using a beam with the same direction or index as the source beam used in the source cell in the target cell, an index of the target beam, or an index of the source beam.
  • the beam indication information indicating at least one of the following: using a beam with the same direction or index as the source beam used in the source cell in the target cell, an index of the target beam, or an index of the source beam.
  • the method further includes: receiving beam confirmation information related to the target beam from the second host node, the beam confirmation indication including at least one of the following: confirmation of using a beam with the same direction or index as the source beam used in the source cell in the target cell, or the index of the target beam.
  • the beam confirmation indication including at least one of the following: confirmation of using a beam with the same direction or index as the source beam used in the source cell in the target cell, or the index of the target beam.
  • a communication method includes: when a distributed unit DU of a relay node serving a terminal through a source cell migrates from a first host node to a second host node, receiving indication information from a first host device or a relay node, the indication information is used to indicate the target beam to be used by the terminal in the target cell to be switched, the target beam is the same as the source beam used by the terminal in the source cell, the source cell is a cell under the first DU of the relay node, the target cell is a cell under the second DU of the relay node, and the first DU and the second DU have F1 interfaces with the first host node and the second host node, respectively.
  • the beam used by the terminal in the target cell can be determined without the need for beam measurement, thereby reducing signaling overhead and improving transmission efficiency.
  • the indication information indicates at least one of the following: the terminal uses a beam with the same direction or index as the source beam used by the terminal in the source cell; the index of the target beam; or the index of the source beam.
  • the determination of the target beam can be effectively achieved.
  • a communication method includes: when the distributed unit DU of the relay node serving the terminal through the source cell migrates from the first host node to the second host node, beam information is sent to the first host node, the beam information is used to determine the target beam to be used by the terminal in the target cell to be switched, the target beam is the same as the source beam used by the terminal in the source cell, the source cell is the cell under the first DU of the relay node, the target cell is the cell under the second DU of the relay node, and the first DU and the second DU have F1 interfaces with the first host node and the second host node, respectively.
  • the beam used by the terminal in the target cell can be determined without the need for beam measurement, thereby reducing signaling overhead and improving transmission efficiency.
  • the beam information indicates at least one of the following: using a beam with the same direction or index as a source beam used in a source cell in the target cell; or a correspondence between a beam in the source cell and a beam in the target cell.
  • a target beam using the same beam as the source beam can be effectively determined.
  • the method further includes: receiving beam information from a relay node.
  • receiving beam information from a relay node can be achieved.
  • the method further includes: receiving beam indication information related to the target beam from the first host node, the beam indication information indicating at least one of the following: using a beam with the same direction or index as the source beam used in the source cell in the target cell; the index of the target beam; or the index of the source beam.
  • the beam indication information indicating at least one of the following: using a beam with the same direction or index as the source beam used in the source cell in the target cell; the index of the target beam; or the index of the source beam.
  • the method further comprises: sending beam confirmation information related to the target beam to the first donor node, the beam confirmation indicating at least one of the following: confirmation of using a beam with the same direction or index as a source beam used in the source cell in the target cell; Or the index of the target beam.
  • the beam confirmation indicating at least one of the following: confirmation of using a beam with the same direction or index as a source beam used in the source cell in the target cell; Or the index of the target beam.
  • a communication method includes: when a distributed unit DU of a relay node serving a terminal through a source cell migrates from a first host node to a second host node, beam information is sent to the first host node or the second host node, the beam information is used to determine the target beam to be used by the terminal in the target cell to be switched, the target beam is the same as the source beam used by the terminal in the source cell, the source cell is a cell under the first DU of the relay node, the target cell is a cell under the second DU of the relay node, and the first DU and the second DU have F1 interfaces with the first host node and the second host node, respectively.
  • the beam used by the terminal in the target cell can be determined without the need for beam measurement, thereby reducing signaling overhead and improving transmission efficiency.
  • the beam information indicates at least one of the following: using a beam with the same direction or index as a source beam used in a source cell in the target cell; or a correspondence between a beam in the source cell and a beam in the target cell.
  • a target beam using the same beam as the source beam can be effectively determined.
  • a communication device in an eleventh aspect of the present disclosure, includes a processor and a memory storing instructions. When the instructions are executed by the processor, the terminal device executes any method according to any one of the first to tenth aspects and their implementations.
  • a computer-readable storage medium stores instructions, which, when executed by an electronic device, causes the electronic device to execute any method of any aspect from the first to the tenth aspect and any implementation thereof.
  • a computer program product which includes instructions, and when the instructions are executed by an electronic device, the electronic device executes any method of any one of the first to tenth aspects and any implementation thereof.
  • FIG. 1A shows a schematic diagram of a communication system in which embodiments of the present disclosure may be implemented.
  • FIG1B shows a schematic diagram of a wireless relay scenario related to an embodiment of the present disclosure.
  • FIG. 1C shows a schematic diagram of an IAB network architecture related to an embodiment of the present disclosure.
  • FIG. 1D shows a schematic diagram of an IAB network user plane protocol stack related to an embodiment of the present disclosure.
  • FIG. 1E shows a schematic diagram of an IAB network control plane protocol stack related to an embodiment of the present disclosure.
  • FIG. 1F shows a schematic diagram of IAB node migration related to an embodiment of the present disclosure.
  • FIG. 1G shows a schematic diagram of a partial migration related to an embodiment of the present disclosure.
  • Figure 1H shows a schematic diagram of the entire migration of the gradual top-down type related to an embodiment of the present disclosure.
  • Figure 1I shows a schematic diagram of the overall migration of the gradual bottom-up type related to an embodiment of the present disclosure.
  • Figure 1J shows a schematic diagram of all migrations of the Full Nested type related to an embodiment of the present disclosure.
  • FIG2 illustrates an interactive signaling diagram of a process of terminal handover in a measurement-free situation according to some embodiments of the present disclosure.
  • FIG3 illustrates an interactive signaling diagram of a terminal handover process in a measurement-free situation according to some other embodiments of the present disclosure.
  • FIG. 4 illustrates a first exemplary process of terminal handover in a measurement-free situation according to an embodiment of the present disclosure.
  • FIG5 illustrates a second example process of terminal switching in a measurement-free case according to an embodiment of the present disclosure.
  • FIG6 illustrates a third example process of terminal handover in a measurement-free situation according to an embodiment of the present disclosure.
  • FIG. 7A illustrates an open RAN (O-RAN) based IAB architecture upon which embodiments of the present disclosure may be implemented.
  • OF-RAN open RAN
  • FIG. 7B illustrates a fourth example process of terminal switching in a measurement-free case according to an embodiment of the present disclosure.
  • FIG8 illustrates a migration process according to an embodiment of the present disclosure.
  • FIG9 shows a schematic flow chart of a method implemented at a relay node according to an embodiment of the present disclosure
  • FIG10 shows a schematic flow chart of a method implemented at a first host node according to some embodiments of the present disclosure
  • FIG11 is a schematic flow chart showing a method implemented at a first host node according to some other embodiments of the present disclosure
  • FIG12 shows a schematic flow chart of a method implemented at a second host node according to an embodiment of the present disclosure
  • FIG13 illustrates an interactive signaling diagram of a terminal switching process in a beam measurement-free case according to an embodiment of the present disclosure.
  • FIG. 14 illustrates an example process of terminal switching in a beam measurement-free case according to an embodiment of the present disclosure.
  • FIG. 15 shows a schematic block diagram of an example communication device that may be used to implement embodiments of the present disclosure.
  • Embodiments of the present disclosure may be implemented according to any appropriate communication protocol, including but not limited to cellular communication protocols such as third generation (3rd Generation, 3G), fourth generation (4G), fifth generation (5G) and future communication protocols (for example, sixth generation (6G)), wireless local area network communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocol currently known or developed in the future.
  • cellular communication protocols such as third generation (3rd Generation, 3G), fourth generation (4G), fifth generation (5G) and future communication protocols (for example, sixth generation (6G)
  • wireless local area network communication protocols such as Institute of Electrical and Electronics Engineers (IEEE) 802.11, and/or any other protocol currently known or developed in the future.
  • IEEE Institute of Electrical and Electronics Engineers
  • GPRS General Packet Radio Service
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data rate for GSM Evolution
  • UMTS Universal Mobile Telecommunications Service
  • LTE Long Term Evolution
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • TD-SCDMA Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G fifth generation
  • NR New Radio
  • 6G sixth generation
  • the embodiments of the present disclosure are described below with the 5G communication system in 3GPP as the background.
  • the embodiments of the present disclosure are not limited to the communication system, but can be applied to any communication system with similar problems, such as wireless local area network (WLAN), wired communication system, or other communication systems developed in the future.
  • WLAN wireless local area network
  • wired communication system or other communication systems developed in the future.
  • terminal refers to any terminal device that can communicate with network devices or with each other by wire or wirelessly.
  • Terminal devices may sometimes be referred to as user equipment (UE).
  • Terminal devices may be any type of mobile terminal, fixed terminal or portable terminal.
  • Terminal devices may be various wireless communication devices with wireless communication capabilities.
  • IOT Internet of Things
  • more and more devices that did not previously have communication capabilities such as but not limited to household appliances, vehicles, tools and equipment, service equipment and service facilities, have begun to obtain wireless communication capabilities by configuring wireless communication units, so that they can access wireless communication networks and accept remote control.
  • Such devices have wireless communication capabilities because they are configured with wireless communication units, and therefore also fall into the category of wireless communication devices.
  • the terminal device may include a mobile cellular phone, a cordless phone, a mobile terminal (MT), a mobile station, a mobile device, a wireless terminal, a handheld device, a client, a subscription station, a portable subscription station, an Internet node, a communicator, a desktop computer, a laptop computer, a notebook computer, a tablet computer, a personal communication system device, a personal navigation device, a personal digital assistant (PDA), a wireless data card, a wireless modem (Modulator demodulator, Modem), a positioning device, a radio broadcast receiver, an e-book device, a gaming device, an Internet of Things (IoT) device, a vehicle-mounted device, an aircraft, a virtual reality (VR) device, an augmented reality (AR) device, a wearable device (e.g., a smart watch, etc.), a terminal device in a 5G network or any terminal device in an evolved public land mobile network (PLMN), other devices that can be used for communication,
  • network node or “network device” used in the present disclosure is an entity or node that can be used to communicate with a terminal device, for example, it can be an access network device.
  • the access network device can be a device deployed in a wireless access network to provide wireless communication functions for mobile terminals, for example, it can be a radio access network (RAN) network device.
  • the access network device may include various types of base stations.
  • the base station is used to provide wireless access services to terminal devices. Specifically, each base station corresponds to a service coverage area, and the terminal device entering the area can communicate with the base station through wireless signals to receive the wireless access service provided by the base station.
  • the access network device may include a macro base station for providing macro cells (Macro cells), a micro base station for providing micro cells (Pico cells), a micro base station for providing micro cells, and a femto cell for providing femto cells.
  • the access network equipment may also include various forms of relay stations, access points, radio units (Radio Unit, RRU), remote radio units (Remote Radio Unit, RRU), radio heads (Radio Head, RH), remote radio heads (Remote Radio Head, RRH), etc.
  • the names of access network equipment may be different, such as evolved NodeB (evolved NodeB, eNB or eNodeB) in the Long Term Evolution (LTE) network, NodeB (NodeB, NB) in the 3G network, gNodeB (gNB) or NR NodeB (NR NB) in the 5G network, and so on.
  • the access network equipment may include a centralized unit (Central Unit, CU) and/or a distributed unit (Distributed Unit, DU).
  • CU and DU can be placed in different places, for example: DU is remote and placed in an area with high traffic volume, and CU is placed in a central computer room.
  • CU and DU can also be placed in the same computer room.
  • CU and DU may also be different components under one rack.
  • CU or CU-control plane (CP) and CU-user plane (UP)
  • DU or RU may also have different names, but those skilled in the art can understand their meanings.
  • O-CU open CU
  • DU may also be called O-DU
  • CU-CP may also be called O-CU-CP
  • CU-UP may also be called O-CU-UP
  • RU may also be called O-RU.
  • CU, CU-CP, CU-UP, DU and RU are described as examples in this application. Any unit of CU (or CU-CP, CU-UP), DU and RU in this application may be implemented by a software module, a hardware module, or a combination of a software module and a hardware module.
  • network devices for providing wireless communication functions for mobile terminals are collectively referred to as network devices, and the embodiments of the present disclosure are no longer specifically limited.
  • a “relay node” or “IAB node” refers to a network device that can provide wireless access services to a terminal.
  • the service data of the terminal is transmitted by the relay node connected to the IAB host (IAB-donor) device, i.e., the host node, through a wireless backhaul link.
  • the relay node consists of a mobile terminal (mobile termination, MT) part and a DU part.
  • the relay node when the relay node faces its parent node, it can act as a terminal device, i.e., the role of MT, and when the relay node faces its child node (the child node may be another relay node, or an ordinary terminal), it is regarded as a network device, i.e., as the role of DU.
  • a “host node” or “IAB host” refers to an access network element having the functions of a complete network device, such as a base station (gNB), including a CU and a DU.
  • the host node is connected to a core network device that provides core network services, such as a 5G core network device.
  • the core network device may correspond to different devices in different systems.
  • the core network device may correspond to a serving GPRS support node (SGSN) of a general packet radio service (GPRS) and/or a gateway GPRS support node (GGSN) of GPRS.
  • the core network device may correspond to a mobility management entity (MME) and/or a serving gateway (S-GW).
  • the core network device may correspond to an access and mobility management function (AMF), a session management function (SMF) or a user plane function (UPF).
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the embodiment of the present disclosure provides a technical solution for improving the communication efficiency and communication process of the IAB communication system.
  • the present application will be further described in detail below with reference to the accompanying drawings.
  • the specific operation method, function description, etc. in the method embodiment can also be applied to the device embodiment or the system embodiment.
  • FIG1A shows a schematic diagram of a communication system 100 in which an embodiment of the present disclosure can be implemented.
  • the communication system 100 may be a 3GPP-related cellular system, such as a 4G, 5G mobile communication system, or a future-oriented evolution system (such as a 6G mobile communication system).
  • the communication system 100 may also be an O-RAN, a cloud radio access network (CRAN), or a wireless fidelity (WiFi) system.
  • the communication system 100 may also be a communication system in which two or more of the above systems are integrated.
  • the system 100 may include a relay node 110, two host nodes 120 and 130, and terminals 140-1 to 140-N (collectively referred to as terminals 140).
  • the terminal 140 may have a wireless transceiver function, which can communicate with one or more network nodes of one or more communication systems (such as wireless communication) and accept network services provided by the network nodes, where the network nodes include but are not limited to the illustrated network nodes.
  • the terminal 140 may be connected to the relay node 110 via an access link.
  • the relay node 110 may communicate with the two host nodes 120 and 130.
  • the relay node 110 may communicate directly with the two host nodes 120 and 130 via a backhaul link.
  • the backhaul link may be a wired backhaul link (such as an optical fiber, a copper cable) or a wireless backhaul link (such as a microwave).
  • the relay node 110 may communicate with the two host nodes 120 and 130 via one or more other relay nodes.
  • the host node 120 and the host node 130 may communicate directly or via other nodes.
  • the host nodes 120 and 130 may include a CU and a DU.
  • the CU implements some functions of the network device, and the DU implements some functions of the network device.
  • the CU is responsible for processing non-real-time protocols and services, and implementing the functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the radio link control (RLC) layer, media access control (MAC) layer, and the MAC layer.
  • RLC radio link control
  • MAC media access control
  • MAC media access control
  • the relay node 110 may include a DU and a mobile terminal MT.
  • the MT functionality may be controlled and/or scheduled by the DU of the coupled donor node or relay node 110.
  • the signal quality of the cell (also referred to as the source cell) under the donor node 120 deteriorates.
  • the relay node 110 may switch to the cell (also referred to as the target cell) under the donor node 130. Accordingly, the terminal 140 connected to the relay node 110 also switches to the target cell under the donor node 130.
  • FIG1A the number of terminals and network nodes shown in FIG1A is only an example. There may be more or fewer terminals and network nodes, and the present disclosure does not impose any limitation on this.
  • the communication system 100 can be applied to various scenarios.
  • the application scenarios of the communication system 100 include but are not limited to existing communication systems such as the fifth generation system (5G) and the new radio (NR) communication system or future evolved communication systems.
  • 5G fifth generation system
  • NR new radio
  • the above communication can follow any appropriate communication technology and corresponding communication standards.
  • FIG1B shows a schematic diagram of a wireless relay scenario related to an embodiment of the present disclosure.
  • IAB nodes may be included on a transmission path between a UE and an IAB host.
  • Each IAB node needs to maintain a wireless backhaul link to a parent node, and also needs to maintain a wireless link with a child node. If the child node of an IAB node is a terminal (e.g., UE), there is a wireless access link between the IAB node and the child node. If the child node of an IAB node is another IAB node, there is a wireless backhaul link between the IAB node and the child node.
  • UE terminal
  • UE1 accesses IAB node 4 via a wireless access link
  • IAB node 4 is connected to IAB node 3 via a wireless backhaul link
  • IAB node 3 is connected to IAB node 1 via a wireless backhaul link
  • IAB node 1 is connected to the IAB host via a wireless backhaul link.
  • FIG. 1C shows a schematic diagram of an IAB network architecture related to an embodiment of the present disclosure.
  • the DU of the IAB node (also referred to as the IAB node DU, or IAB-DU) is logically connected to the CU of the IAB host (also referred to as the IAB host CU, host CU) through the F1 interface.
  • the connection between the IAB-DU and the host CU is realized through the NR Uu interface between the MT of the IAB node (also referred to as the IAB node MT, or IAB-MT) of each hop and the parent node DU.
  • the IAB-DU can communicate with the host CU in the end, it can be considered that the F1 interface exists logically.
  • the F1 interface supports the user plane protocol (F1-U) and the control plane protocol (F1-C), and the user plane protocol includes one or more of the following protocol layers: GPRS channel protocol user plane (General Packet Radio Service tunneling protocol user plane, GTP-U), user datagram protocol (user datagram protocol, UDP), Internet protocol (internet protocol, IP) and other protocol layers.
  • the control plane protocols include one or more of the following: F1 application protocol (F1AP), stream control transport protocol (SCTP), IP and other protocol layers.
  • the user plane and control plane protocol stacks in the IAB network related to the embodiments of the present disclosure are shown in Figures 1D-1E.
  • F1-C the IAB host and the IAB node can perform interface management, manage the IAB-DU, and perform UE context-related configuration.
  • F1-U the IAB host and the IAB node can perform user plane data transmission, downlink transmission status feedback and other functions.
  • the wireless backhaul link in the IAB network introduces a new protocol layer, the Backhaul Adaptation Protocol (BAP) layer, which is located above the RLC layer and can be used to implement the routing of data packets in the wireless backhaul link, as well as bearer mapping and other functions.
  • BAP Backhaul Adaptation Protocol
  • IAB node 1 and IAB node 2 is shown as one entity in Figures 1D-1E, the present invention is not limited to this. In other implementations, the BAP can also be implemented as two separate entities.
  • the starting and ending points of the BAP layer are located at the IAB-DU (access IAB-DU) connected to the UE and the DU of the IAB host (also referred to as IAB host DU, or host DU).
  • the host CU assigns a unique BAP address to each IAB node and IAB host DU it controls, so that each IAB node and IAB host DU in the network can be uniquely identified.
  • each BAP address can be associated with multiple path identifiers (IDs).
  • IDs path identifiers
  • the source node IAB host DU in the downlink DL direction, access IAB node in the uplink UL direction
  • the content of the BAP header includes a 10-bit target BAP address (BAP address) and a 10-bit BAP path ID (BAP path ID).
  • BAP routing ID a total of 20 bits.
  • the BAP routing ID reflects the identification of the target node and the path taken to reach the target node.
  • the host CU configures a routing table for each IAB node.
  • the content in the routing table is the mapping relationship between the BAP routing ID and the next-hop BAP address.
  • the routing table can indicate which child node (if DL) or parent node (if UL) the data packet should be forwarded to.
  • the BAP protocol also performs mapping between the ingress and egress return RLC channels.
  • the mapping rules are also configured by the host CU. Its essence can be understood as a more fine-grained routing.
  • On the basis of determining the next-hop target BAP address i.e. determining the next-hop link
  • an RLC channel is further selected.
  • FIG. 1F shows a schematic diagram of IAB node migration related to an embodiment of the present disclosure.
  • IAB-MT3 In the evolution direction of Release 18 (Rel-18) to be standardized, a consensus has been reached in the IAB standardization work of the Third Generation Partnership Project (3GPP) that the mobile IAB scenario will be considered in Rel-18.
  • 3GPP Third Generation Partnership Project
  • IAB-MT3 initially accesses the cell under IAB-DU1 controlled by IAB host CU1. Since IAB node 3 Due to the movement of the IAB-DU1, the signal quality of the cell under IAB-DU1 becomes poor, so IAB-MT3 switches to the cell under IAB-DU2 controlled by the IAB host CU2.
  • This scenario is called IAB node migration.
  • the IAB node that migrates is called a boundary node.
  • full migration includes three implementation methods: Gradual Top-down, Gradual Bottom-up and Full Nested.
  • Rel-17 generally gives the three implementation methods of full migration, it is considered that these processes are relatively complex and may not be fully discussed in Rel-17. Therefore, Rel-17 first discusses the process of partial migration and gives the signaling level design for partial migration. Based on the understanding and consensus of partial migration, the content of full migration will be further discussed in Rel-18.
  • partial migration MT switches across CUs, but DU still maintains F1 connection with the source CU.
  • full migration DU needs to establish F1 connection with the target CU.
  • Rel-17 is mainly aimed at the migration of IAB nodes based on load balancing, so partial migration can be adopted. Only by switching MT, the F1 interface changes the transmission path, but the anchor point of the F1 interface is not changed.
  • Rel-18 is mainly aimed at the migration caused by the movement of IAB nodes. When the IAB node moves over a large range, it is inappropriate to maintain the F1 connection with the source CU, and the anchor point of the F1 connection also needs to be changed to the target CU. Therefore, full migration is a mandatory feature of Rel-18 mobile IAB. The following will briefly introduce the current status of the discussion on partial migration and full migration in conjunction with Figures 1G to 1J.
  • FIG1G shows a schematic diagram of a partial migration related to an embodiment of the present disclosure.
  • IAB-MT2 before the partial migration, there is an RRC connection between IAB-MT2 and CU1, an F1 interface between IAB-DU2 and CU1, and IAB node 2 communicates with the IAB host through the source path (through IAB node 1 composed of IAB-MT1 and IAB-DU1).
  • IAB-MT2 undergoes a cross-CU cell handover and establishes an RRC connection with CU2.
  • IAB-DU2 still maintains the F1 interface with CU1 and does not establish the F1 interface with CU2.
  • CU1 and CU2 can be referred to as F1-terminating CU and non-F1-terminating CU, respectively. It should be noted that data does not pass through CU2 when transmitted on this path, and CU1 communicates with host DU2 directly through the IP network.
  • the F1 interface between IAB-DU3 and CU1 needs to be migrated to CU2. Since the protocol does not support the simultaneous existence of F1 interfaces between one DU and two CUs, the migration can be achieved by expanding IAB-DU3 into two logical DUs, namely IAB-DU3a and IAB-DU3b.
  • IAB-DU3a always maintains the F1 interface with CU1, while IAB-DU3b is used to establish a new F1 interface with CU2.
  • DU3a and DU3b can be regarded as two DUs, each of which has an F1 interface with the corresponding CU.
  • the UE needs to make a switch from the cell under IAB-DU3a to the cell under IAB-DU3b.
  • the following is a detailed introduction to three implementation methods of all migrations.
  • FIG1H shows a schematic diagram of a full migration of the Gradual Top-down type related to an embodiment of the present disclosure.
  • the first few steps of the Gradual Top-down are similar to partial migration.
  • MT3 is switched to establish cross-topology F1-C and F1-U between DU3a and CU1.
  • CU2 While helping to establish cross-topology F1-C and F1-U between DU3a and CU1, CU2 also establishes F1-C and F1-U between DU3b and CU2.
  • the UE is switched to DU3b, and the UE can communicate with CU2 directly on the target path.
  • step 1 CU1 sends a switching command to MT3 via the source path.
  • step 2 MT3 switches to CU2.
  • step 3 MT3 sends an indication of the completion of the switching to CU2 via the target path.
  • step 4 CU1 sends a switching command to the UE on the target path.
  • step 5 the UE switches to DU3b.
  • step 6 the UE sends an indication of the completion of the switching to CU2 on the target path.
  • DU3b establishes an F1 interface with CU2. Only when DU3b establishes the F1 interface with CU2 and receives the UE context configuration can it enter step 4 and send the switching command to the UE.
  • FIG. 1I shows a schematic diagram of all migrations of the Gradual Bottom-up type related to an embodiment of the present disclosure.
  • the UE in Gradual Bottom-up, first, by establishing cross-topology F1-C and F1-U between DU3b and CU2, the UE can be switched to DU3b.
  • F1-C and F1-U data transmission is established between DU3b and CU2 through the topology on the source path.
  • a switching command or a switching command of the effective MT is sent to the MT.
  • F1-C/U is established on the target path so that the UE's traffic can be migrated to the target path.
  • DU3b establishes an F1 interface on the source path with CU2.
  • CU1 sends a switching command to the UE through the source path.
  • the UE initiates random access to DU3b.
  • the UE sends an indication of the completion of the switch to CU2 through the topology on the source path.
  • CU1 sends a switching command to MT3 through the source path.
  • MT3 switches to CU2.
  • MT3 sends a handover completion indication to CU2 via the target path.
  • FIG1J shows a schematic diagram of all Full Nested migrations related to an embodiment of the present disclosure.
  • the Full Nested situation is similar to the Gradual Bottom-up situation.
  • the UE is allowed to switch to DU3b.
  • a switching command is immediately sent to the MT or the switching of the MT is effective. Switch command.
  • F1-C/U is directly established on the target path so that the UE's traffic can be migrated to the target path.
  • DU3b establishes an F1 interface with CU2 over the source path.
  • CU1 sends a switching command to the UE over the source path.
  • the UE initiates random access to DU3b.
  • CU1 sends a switching command to MT3 over the source path.
  • MT3 switches to CU2.
  • MT3 sends an indication of switching completion to CU2 over the target path.
  • the UE sends an indication of switching completion to CU2 over the target path.
  • IAB-DU3b can be considered to be started and activated in the entire migration process.
  • the process of cell activation is that DU3b reports the resource configuration and NR Cell Global Identifier (NCGI) to be adopted by all cells under DU3b to CU2 in the F1 SETUP REQUEST.
  • NCGI consists of gNB ID and cell ID, where gNB ID is the ID of CU and cell ID is pre-configured to IAB-DU3 by the Operations, Administration and Maintenance system or the Network Management System (OAM) (that is, IAB-DU3 knows which cell IDs will be adopted by the cells under it if a DU3b is to be started).
  • OFAM Network Management System
  • DU3b When DU3b is about to establish the F1 interface with CU2, DU3b knows the gNB ID of CU2. Therefore, the NCGI of each cell can be obtained by merging the gNB ID of CU2 with the pre-configured cell ID.
  • CU2 After receiving the F1 setup request, CU2 selects some cells to activate and carries the NCGI of the activated cells in the F1 setup response (F1 SETUP RESPONSE).
  • F1 SETUP RESPONSE After receiving it, DU3b activates the corresponding cells, and other cells that are not indicated to be activated will be in an inactive state.
  • DU3b activates the cells during the process of establishing the F1 interface with CU2. After that, the UE can measure the signals of the cells under DU3b, and the network can switch the UE to DU3b.
  • CU1 selects the target cell under DU3b according to the UE's measurement report and initiates a switching request to CU2.
  • the entire migration process is slow, the UE service interruption time is long, and the user experience is affected.
  • the entire migration occurs because the MT needs to switch, and the signal quality between the UE and DU3a has not deteriorated.
  • the long service interruption time of the UE is not caused by the UE itself, and the above switching process is not friendly to the UE. Therefore, an effective switching method is needed.
  • an embodiment of the present disclosure provides a communication method.
  • the relay node when a relay node serving a terminal through a source cell migrates from a first host node to a second host node, the relay node sends information to the first host node or the second host node.
  • the information indicates the target cell to which the terminal will be switched.
  • the source cell is a cell under the first distributed unit DU of the relay node
  • the target cell is a cell under the second DU of the relay node.
  • the first DU and the second DU have F1 interfaces with the first host node and the second host node, respectively.
  • the relay node receives switching information from the first host node, and the switching information indicates that the terminal switches to the target cell. Then, the relay node sends switching information to the terminal through the source cell.
  • the host node can directly obtain the target cell to which the terminal is to switch from the information received by the relay node without using the terminal's measurement report, thereby reducing signaling overhead, shortening the execution time of migration, and improving communication efficiency.
  • Figure 2 illustrates an interactive signaling diagram of a process 200 of terminal handover in a measurement-free situation according to some embodiments of the present disclosure.
  • the process 200 will be discussed in conjunction with Figure 1A.
  • the relay node 110 in the case where the relay node 110 serving the terminal 140 through the source cell migrates from the first host node 120 to the second host node 130, the relay node 110 sends (205) information 206 to the first host node 120. Accordingly, the first host node 120 receives (210) information 206 from the relay node 110. The information 206 indicates the target cell to which the terminal 140 will be switched.
  • the source cell is a cell under the first DU of the relay node 110
  • the target cell is a cell under the second DU of the relay node 110.
  • the first DU and the second DU have F1 interfaces with the first host node 120 and the second host node 130, respectively. It should be understood that the first DU and the second DU of the relay node 110 can be logical DUs.
  • the source cell under the first DU and the target cell under the second DU are isolated from each other, that is, they are configured with isolated resources.
  • information 206 may include a correspondence between the target cell and the terminal 140.
  • information 206 may include a correspondence between an identifier of the target cell and an identifier of the terminal 140.
  • the identifier of the terminal 140 may include a cell radio network temporary identifier C-RNTI.
  • information 206 may include a correspondence between the target cell and the source cell.
  • information 206 may include a correspondence between an identifier of the target cell and an identifier of the source cell.
  • the second DU may not have been started at this time, the cell identifier of the cell under it is pre-configured by OAM, so the relay node 110 may know the cell identifier to be adopted by the cell under it after the second DU is started.
  • the relay node The first DU or MT of 110 may send information 206 to the CU of the first host node 120 .
  • the first DU of the relay node 110 may send the information 206 via an F1AP message.
  • the MT of the relay node 110 may send the information via an RRC message.
  • the information 206 may be included in an MT measurement report.
  • the first host node 120 sends ( 215 ) information 216 to the second host node 130 .
  • the information 216 indicates the target cell to which the terminal 140 will be handed over. Accordingly, the second host node 130 receives ( 220 ) the information 216 from the first host node 120 .
  • the first host node 120 may send a handover request to the second host node 130 for at least one of the following: handover of the terminal 140, and handover of the MT of the relay node 110 from the CU of the first host node 120 to the CU of the second host node 130.
  • the second host node 130 may receive a handover request from the first host node 120.
  • the information 216 may be included in the handover request.
  • the first host node 120 may indicate the target cell by including an identifier of the target cell and an identifier of the second host node 130, that is, NCGI, in the handover request.
  • the first host node 120 may indicate the target cell by including other types of identification information, such as a cell identifier (cell ID), a physical cell identifier (PCI), etc., in the handover request.
  • cell ID cell identifier
  • PCI physical cell identifier
  • the switching request may also include an indication of whether the second host node 130 needs to send the user plane service of the terminal 140 via the path associated with the first host node 120. Since the F1-U service is related to the terminal 140, it can be indicated whether the UE service needs to be established on the source path while sending the UE context information.
  • the second host node 130 can perform an admission decision for the MT and the terminal 140 of the relay node 110, and can return a handover response about the MT and the terminal 140 to the first host node 120.
  • the second host node 130 can take into account the load of the terminal under it when selecting a target cell for the MT. Accordingly, the first host node 120 can receive the handover response to continue the handover process.
  • the relay node 110 may start the second DU.
  • the relay node 110 may configure the resources of the target cell to correspond to the resources of the source cell.
  • the relay node 110 may configure the beam direction and/or time domain resources of the target cell to be the same as the beam direction and/or time domain resource configuration of the source cell, and configure the frequency domain resources of the target cell to not overlap with the frequency domain resources of the source cell.
  • the relay node 110 may configure the resources of the target cell to correspond to the resources of the source cell.
  • the relay node 110 may configure the resources of the target cell to correspond to the resources of the source cell in any other way according to practice, and the embodiments of the present disclosure are not limited thereto.
  • the signal quality, data rate and other parameters of the cell under the first DU and the second DU of the terminal 140 can be close, so that the terminal 140 can be directly switched to the target cell corresponding to the second DU without waiting for its measurement and reporting process.
  • resource configuration on the node between the second DU and the CU of the second host node 130 may be performed.
  • the resource configuration here includes resources for transmitting F1-C and resources for transmitting F1-U.
  • the second host node 130 may send a request to the first host node 120 to establish the path.
  • the first host node 120 may establish the path in response to the request for the second host node 130 to transmit part of the user plane service of the terminal 140.
  • the relay node 110 may send an interface establishment request message to the second host node.
  • the second DU of the relay node 130 may initiate an F1 establishment request message to the CU of the second host node 130 to request the establishment of F1-C.
  • the F1 establishment request message may, for example, carry the NCGI of all cells.
  • the CU of the second host node 130 may determine the cell to be activated by the second DU based on the target cell obtained from the information 216.
  • the CU of the second host node 130 may send an interface establishment response message to the second DU of the relay node 110.
  • the interface establishment response message may indicate the cell to be activated to the second DU.
  • the relay node 110 may receive the interface establishment response message from the second host node, and then determine the cell to be activated.
  • the relay node 110 may send an indication to the CU of the first host node 120 that the second DU is ready to provide services to the terminal 140.
  • the first DU of the relay node 110 may send the indication to the CU of the first host node 120.
  • the MT of the relay node 110 may send the indication to the CU of the first host node 120.
  • the first host node 120 sends ( 225 ) a handover signal to the relay node 110 instructing the terminal 140 to switch to the target cell.
  • Message 226 the relay node 110 receives (230) the handover message 226 from the first donor node 120, and sends (235) the handover message 226 to the terminal 140 through the source cell.
  • the terminal 140 receives (240) the handover message 226 from the relay node 110, and then performs the handover.
  • the first host node is indicated to the target cell to which the terminal will be switched through the relay node, so that the first host node can directly learn the target cell of each UE without waiting for the measurement report of each terminal. Therefore, the waiting time for the neighboring area measurement and measurement report of the terminal is eliminated, and the execution time of the entire migration and the service interruption time of the terminal are reduced.
  • the second host node by sending the handover request of the terminal and the MT together, compared with sending them separately, it is beneficial for the second host node to make a better admission decision, so that when the second host node selects the target cell for the MT, it can take into account the load of the terminal under it.
  • Fig. 3 illustrates an interactive signaling diagram of a process 300 of terminal handover in a measurement-free situation according to some other embodiments of the present disclosure.
  • the process 300 will be discussed in conjunction with Fig. 1A.
  • the relay node 110 serving the terminal 140 through the source cell migrates from the first host node 120 to the second host node 130
  • the relay node 110 sends (305) information 306 to the second host node 130.
  • the second host node 130 receives (310) information 306 from the relay node 110.
  • the information 306 indicates the target cell to which the terminal 140 will be switched.
  • the source cell is a cell under the first DU of the relay node 110
  • the target cell is a cell under the second DU of the relay node 110.
  • the first DU and the second DU have F1 interfaces with the first host node 120 and the second host node 130, respectively. It should be understood that the first DU and the second DU of the relay node 110 can be logical DUs.
  • the source cell under the first DU and the target cell under the second DU are isolated from each other, that is, they are configured with isolated resources.
  • the information 306 may include a correspondence between the target cell and the terminal 140.
  • the information 306 may include a correspondence between an identifier of the target cell and an identifier of the terminal 140.
  • the identifier of the terminal 140 may include a cell radio network temporary identifier C-RNTI.
  • the information 306 may include a correspondence between an identifier of the terminal 140 and an NCGI of the target cell.
  • an interface is established between the second DU of the relay node 110 and the CU of the second host node 130, and the second DU of the relay node 110 may send information 306 to the CU of the second host node 130 before the CU of the first host node 120 sends a handover request for the MT of the relay node 110 to the CU of the second host node 130.
  • the relay node 110 may start the second DU before sending the information 306 to the CU of the second host node 130.
  • the relay node 110 may configure the resources of the target cell to correspond to the resources of the source cell.
  • the relay node 110 may configure the beam direction and/or time domain resources of the target cell to be the same as the beam direction and/or time domain resource configuration of the source cell, and configure the frequency domain resources of the target cell to not overlap with the frequency domain resources of the source cell.
  • the relay node 110 may configure the resources of the target cell to correspond to the resources of the source cell. It should be understood that this is only an example, and the relay node 110 can configure the resources of the target cell to correspond to the resources of the source cell in any other way according to practice, and the embodiments of the present disclosure are not limited thereto.
  • the signal quality, data rate and other parameters of the cells under the first DU and the second DU of the terminal 140 can be close, and then the terminal 140 can be directly switched to the target cell corresponding to the second DU without waiting for its measurement and reporting process.
  • information 306 may be sent via an interface establishment request message.
  • the second DU of the relay node 130 may initiate an F1 establishment request message to the CU of the second host node 130 to request the establishment of F1-C.
  • the CU of the second host node 130 may determine the cell to be activated by the second DU based on the target cell obtained from the information 306.
  • the CU of the second host node 130 may send an interface establishment response message to the second DU of the relay node 110.
  • the interface establishment response message may indicate the cell to be activated to the second DU.
  • the relay node 110 may receive the interface establishment response message from the second host node, and then determine the cell to be activated. Subsequently, the relay node 110 may activate the corresponding cell.
  • the first host node 120 sends (315) a notification message 316 related to the target cell to which the terminal 140 will be switched to the second host node 130.
  • the second host node 130 receives (320) the notification message 316 from the first host node 120.
  • the first host node 120 may send the notification message 316 to the second host node 130 via an interface message (e.g., an XN interface message, or an NG interface message).
  • the notification message 316 may indicate that in the handover request 326 for handover, the identification information for indicating the target cell is default or invalid.
  • the notification message 316 may indicate the target cell so that the second host node 130 can correctly fill in the target cell when sending the handover request 326.
  • the first host node 120 sends (325) a handover request 326 for handover of the terminal 140 to the second host node 130. Accordingly, the second host node 130 receives (330) the handover request 326 from the first host node 120.
  • the handover request 326 may be carried in a handover request for the MT of the relay node 130.
  • the first host node 120 may The handover request 326 with the identification information being default or invalid is sent to the second donor node 130.
  • the second donor node 130 may then make a handover decision according to the target cell of the terminal 140 obtained from the information 306.
  • the first host node 120 may send a handover request 326 indicating the target cell to the second host node 130.
  • the handover request 326 may include the NCGI of the target cell.
  • the second host node 130 may then make a handover decision based on the target cell of the terminal 140 obtained in the handover request 326.
  • the switching request 326 may also include an indication of whether the second host node 130 needs to send the user plane service of the terminal 140 via the path associated with the first host node 120.
  • resource configuration on the node between the second DU and the CU of the second host node 130 may be performed.
  • the resource configuration here includes resources for transmitting F1-C and resources for transmitting F1-U.
  • the second host node 130 may send a request to the first host node 120 to establish the path.
  • the first host node 120 may establish the path in response to the request for the second host node 130 to transmit part of the user plane service of the terminal 140.
  • the relay node 110 may send an indication to the CU of the first host node 120 that the second DU is ready to provide services to the terminal 140.
  • the first DU of the relay node 110 may send the indication to the CU of the first host node 120.
  • the MT of the relay node 110 may send the indication to the CU of the first host node 120.
  • the first host node 120 sends (335) a handover message 336 instructing the terminal 140 to switch to the target cell to the relay node 110.
  • the relay node 110 receives (340) the handover message 336 from the first host node 120, and sends (345) the handover message 336 to the terminal 140 through the source cell.
  • the terminal 140 receives (350) the handover message 336 from the relay node 110, and then performs the handover.
  • the relay node indicates to the second host node the target cell to which the terminal will be switched, so that the second host node does not need to obtain the target cell through the switching request from the first host node, and therefore the first host node does not need to select the target cell through the terminal measurement report, eliminating the need to wait for the terminal's measurement and reporting process. Therefore, the waiting time for the terminal's neighboring cell measurement and measurement reporting is eliminated, reducing the execution time of the entire migration and the service interruption time of the terminal.
  • FIG4 illustrates a first example process 400 of terminal switching in a measurement-free situation according to an embodiment of the present disclosure, which can be considered as a specific implementation of the terminal switching process of FIG2 .
  • process 400 will be discussed in conjunction with FIG1A .
  • the relay node 110 is implemented as an IAB node 3 401
  • the first DU of the relay node 110 is implemented as DU3a 403
  • the second DU of the relay node 110 is implemented as DU3b 405
  • the MT of the relay node 110 is implemented as MT3 407
  • the CU of the first host node 120 is implemented as CU1 409
  • the CU of the second host node 130 is implemented as CU2 411
  • the terminal 140 is implemented as UE 413.
  • MT3 407 sends a measurement report to CU1 409.
  • CU1 409 determines that MT3 407 needs to be switched based on the measurement report of MT3 407.
  • step 2 the correspondence between the cell ID of the cell under DU3b 405 and the UE ID or the cell ID of the cell under DU3a 403 is reported through the F1AP of DU3a 403 or the RRC message of MT3 407.
  • the UE ID may include C-RNTI. If this step adopts the RRC message of MT3407, step 2 may also be carried in the MT measurement report in step 1. Step 2 enables CU1 409 to directly or indirectly obtain the target cell ID of each UE.
  • step 2 CU1 409 sends a handover request message about MT3 407 and all UEs to CU2 411, carrying the NCGI of the target cell of the UE.
  • the NCGI is generated by adding the target cell ID obtained by CU1 409 in step 2 to the gNB ID of CU2 411.
  • step 3 can also indicate whether CU2 411 needs to establish the F1-U service on the source path.
  • the F1-U service is related to the UE, it is possible to indicate whether the UE service needs to be established on the source path while sending the UE context information.
  • step 4 CU2 411 makes admission decisions for MT and all UEs, and returns a handover response message for MT and all UEs to CU1 409.
  • step 5 MT3 407 obtains the IP address and BAP configuration on the target path.
  • step 6 DU3b 405 is started, and the resource configuration of the cell under DU3b 405 corresponds to the resource configuration of the cell under DU3a 403.
  • the resource configuration of the cell under DU3b 405 and the cell under DU3a 403 may be the same as that of the cell under DU3a 403, and the frequency points may be staggered.
  • the signal quality, data rate and other parameters of the cell under DU3a 403 and the cell under DU3b 405 of UE 413 can be close, and then the UE 413 can be directly switched to the cell corresponding to DU3b 405 without waiting for its measurement and reporting process.
  • step 7 the resource configuration on the node between DU3b 405 and CU2 411 is completed.
  • the resource configuration here includes resources for transmitting F1-C and resources for transmitting F1-U, wherein whether CU2 411 needs to establish F1-U service on the source path is determined according to the instruction in step 3.
  • step 8 DU3b 405 initiates an F1 setup request message to CU2 411, requesting to establish F1-C, which carries the NCGI of all cells.
  • step 9 CU2 411 instructs DU3b 405 to activate the target cell of UE 413 according to the NCGI of the target cell of UE 413 obtained in step 3 in the F1 setup response message.
  • IAB node 3 401 informs CU1 409 that DU3b 405 is ready through F1AP of DU3a 403 or RRC message of MT3 407.
  • CU1 409 sends a handover command to UE 413.
  • CU1 409 directly selects a target cell for UE 413 according to the correspondence between the old and new cells under DU3b 405 and DU3a 403, which reduces the execution time of the entire migration and the service interruption time of the UE.
  • the combined sending of the handover request of UE 413 and MT3 407 is conducive to CU2 411 making a better admission decision compared to sending them separately. This allows CU2 411 to consider the load of the UE under it when selecting a target cell for MT3 407.
  • FIG5 illustrates a second example process 500 of terminal switching in a measurement-free situation according to an embodiment of the present disclosure, which can be considered as a specific implementation of the terminal switching process of FIG3 .
  • process 500 will be discussed in conjunction with FIG1A .
  • the relay node 110 is implemented as an IAB node 3 501
  • the first DU of the relay node 110 is implemented as DU3a 503
  • the second DU of the relay node 110 is implemented as DU3b 505
  • the MT of the relay node 110 is implemented as MT3 507
  • the CU of the first host node 120 is implemented as CU1 509
  • the CU of the second host node 130 is implemented as CU2 511
  • the terminal 140 is implemented as UE 513.
  • step 1 DU3b 505 is started, and the resource configuration of the cell under DU3b 505 is made corresponding to the resource configuration of the cell under DU3a, such as: the beam direction and/or time slot configuration are the same, and the frequency points are staggered.
  • DU3b 505 initiates an F1 setup request message to CU2 511 to request the establishment of F1-C.
  • the F1 setup request message carries the NCGI of all cells and indicates the target cell of each UE. For example, the correspondence between the UE identifier and the NCGI may be indicated.
  • step 3 CU2 511 instructs DU3b 505 to activate the corresponding cell in the F1 setup response message according to the target cell of each UE obtained in step 2. Then, option 1 or option 2 can be executed.
  • step 4 CU1 509 informs CU1 509 through an interface message (e.g., an XN message) that the target NCGI is allowed to be set as a default or an inactive NCGI in the handover request of these UEs. Then, in step 5, CU1 509 initiates a handover request for the UE to CU2 511 (which may be carried in the handover request for the MT or may be sent separately), in which the target cell NCGI is defaulted or inactive. CU2 511 makes a handover decision directly based on the target cell received in step 2. In addition, the handover request may also carry an indication of whether F1-U needs to be established on the source path.
  • an interface message e.g., an XN message
  • CU1 509 initiates a handover request for the UE to CU2 511 (which may be carried in the handover request for the MT or may be sent separately), in which the target cell NCGI is defaulted or inactive.
  • step 4 CU2 511 informs CU1 509 of the target cell of each UE through an interface message (e.g., an XN message) so that CU1 509 can correctly fill in the target cell when sending a UE handover request. Then, in step 5, CU1 509 initiates a handover request for the UE to CU2 511 (which may be carried in the handover request for the MT or may be sent separately), and the handover request carries the target cell NCGI. In addition, the handover request may also carry an indication of whether F1-U needs to be established on the source path.
  • an interface message e.g., an XN message
  • CU1 509 does not need to select a target cell through UE measurement report and inform CU2 511. Instead, the border node 501 determines the target cell for UE 513 and reports it to CU2 511. The UE measurement process is eliminated, which reduces the execution time of the entire migration and the service interruption time of the UE.
  • FIG6 illustrates a third example process 600 of terminal switching in a measurement-free situation according to an embodiment of the present disclosure.
  • the relay node 110 is implemented as an IAB node 3 601
  • the first DU of the relay node 110 is implemented as DU3a 603
  • the second DU of the relay node 110 is implemented as DU3b 605
  • the MT of the relay node 110 is implemented as MT3 607
  • the CU of the first host node 120 is implemented as CU1 609
  • the CU of the second host node 130 is implemented as CU2 611
  • the terminal 140 is implemented as UE 613.
  • option 1 or option 2 or option 3 is optional.
  • CU2 611 obtains the NCGI of the cell that it wishes to activate under DU3b 605 from CU1 609.
  • the cell ID and UE ID of the cell under DU3b 605 or the cell ID of the cell under DU3a 603 are reported through the F1AP of DU3a 603 or the RRC message of MT3 607.
  • the correspondence between the IDs of the cells under DU3b 605 or the cell ID of the cell that DU3b 605 wishes to activate is reported.
  • the cell that DU3b 605 wishes to activate is the cell corresponding to the activated cell under DU3a 603.
  • CU1 609 carries the NCGI of the cell that DU3b 605 wishes to activate in the interface message (e.g., XN interface message) sent to CU2 611. This information can be placed in the MT switching request or in a separate interface message.
  • DU3b 605 is started, and the resources of the cell under DU3b 605 and the cell under DU3a 603 are configured to correspond. For example, the resources of the cell under DU3b 605 and the cell under DU3a 603 are configured to have the same beam direction and/or time slot configuration, and are staggered by frequency.
  • DU3b 605 initiates an F1 establishment request message to CU2 611 to request the establishment of F1-C.
  • the F1 establishment request message carries the NCGI of all cells.
  • CU2 611 instructs DU3b 605 to activate the corresponding cell according to the NCGI of the cell to be activated obtained in step 3 in the F1 setup response.
  • CU2 611 obtains the NCGI of the cell it wishes to activate from DU3b 605 via the F1 interface.
  • DU3b 605 starts up and configures the resources of the cell under DU3b 605 to correspond to the cell under DU3a 603.
  • the resources of the cell under DU3b 605 and the cell under DU3a 603 are configured to have the same beam direction and/or time slot configuration, and are staggered by frequency.
  • DU3b 605 initiates an F1 establishment request message to CU2 611 to request the establishment of F1-C.
  • the F1 establishment request message carries the NCGI of all cells, and indicates which cells it wishes to activate (i.e., which cells under DU3b 605 correspond to cells that have been activated under DU3a 603).
  • CU2 611 instructs DU3b 605 to activate the corresponding cell in the F1 establishment response according to the NCGI of the cell it wishes to activate obtained in step 2.
  • CU2 611 obtains the NCGI of the cell to be activated through, for example, the XN interface combined with the F1 interface.
  • step 1 the correspondence between the cell ID of the cell under DU3b 605 and the UE ID or the cell ID of the cell under DU3a 603 is reported through the F1AP of DU3a 603 or the RRC message of MT3 607, or the cell ID of the cell to be activated under DU3b 605 is reported.
  • the cell to be activated under DU3b 605 is the cell corresponding to the activated cell under DU3a 603.
  • CU1 609 carries the NCGI of the activated cell under DU3a 603, or the correspondence between the cell under DU3a 603 and the cell under DU3b 605 in the interface message (for example, XN interface message) sent to CU2 611.
  • This information can be placed in the MT HO REQUEST or in a separate interface message.
  • DU3b 605 is started, and the resources of the cells under DU3b 605 and the cells under DU3a 603 are configured to correspond.
  • the resources of the cells under DU3b 605 and the cells under DU3a 603 are configured to have the same beam direction and/or time slot configuration, and are staggered by frequency.
  • step 4 DU3b 605 initiates an F1 establishment request message to CU2 611 to request the establishment of F1-C.
  • the F1 establishment request message carries the NCGI of all cells, and the correspondence between the cells under DU3a 603 and the cells under DU3b 605, or the NCGI of the activated cells under DU3a 603.
  • the information in step 4 is a complementary option to the information in step 2.
  • CU2 611 obtains the NCGI of the cell that DU3b 605 wishes to activate according to steps 2 and 4. These NCGIs are generated according to the correspondence between the activated cells in DU3a 603 obtained in steps 2 and 4 and the NCGIs of the cells under DU3a 603 and the cells under DU3b 605.
  • CU2 611 instructs DU3b 605 to activate the corresponding cell in the F1 setup response.
  • CU2 611 can learn the cell identity that DU3b 605 wants to activate and activate the cell under DU3b 605 accordingly.
  • CU2 611 is still unaware of the target situation of each UE, so CU1 609 needs to inform CU2 611 in the UE handover request.
  • the specific solution is as follows.
  • step 6 the UE's target cell NCGI is notified to CU1 609 through the F1AP of DU3a 603 or the RRC message of MT3 607, or the indication that DU3b 605 is ready is carried. If the previous step adopts the underlined solution in option 1 or option 3, CU1 609 already knows the target cell ID of each UE, so IAB node 3 only needs to inform CU1 609 that DU3b 605 is ready, and CU1 609 can initiate a UE handover request to CU2 611.
  • CU1 609 only knows the cell ID of the activated cell under DU3b 605, and does not know the target cell ID of each UE, and then IAB node 3 needs to inform CU1 609 of the target cell NCGI of each UE.
  • step 7 CU1 609 sends a UE handover request to CU2 611.
  • the UE handover request carries the target cell NCGI of each UE and an indication of whether F1-U needs to be established on the source path.
  • step 8 CU2 611 replies a UE handover response to CU1 609.
  • step 9 CU1 609 sends a handover command to UE 613.
  • CU2 611 obtains the NCGI of the cell under DU3b 605 that it wishes to activate, i.e., which cells under DU3b 605 correspond to cells that have been activated under DU3a 603, through interaction with CU1 609 (e.g., XN interaction) and/or F1 interaction with DU3b 605, and accordingly instructs DU3b 605 to activate the cell.
  • the relay node can directly report the target cell of the UE, eliminating the measurement process of the UE.
  • the border node Since there is no need to wait for the measurement report of each UE, after DU3b 605 is activated, the border node directly reports the target cell of the UE according to the corresponding relationship between the source cell and the target cell under DU3b 605 and DU3a 603, reducing the execution time of the entire migration and the service interruption time of the UE.
  • FIG7A illustrates an O-RAN-based IAB architecture based on which an embodiment of the present disclosure can be implemented.
  • O-RAN emphasizes the further separation of functions between different network elements and the openness of interfaces.
  • O-RAN sets up another layer of controller on top of the host CU 701, namely, the near real-time (near-RT) RAN intelligent controller (RIC) 702.
  • RIC 702 controls other network elements through various interfaces.
  • the core idea of O-RAN is to make the functions of each network element simpler and the processing functions weaker, through The unified interface is used for control, making RAN more open and enabling more equipment vendors to participate.
  • O-RAN is an emerging standard organization independent of 3GPP, and this embodiment is based on the O-RAN architecture that may appear in the future.
  • FIGS. 7B illustrates a third example process 703 of terminal switching in a measurement-free situation according to an embodiment of the present disclosure.
  • the steps illustrated in the third example process 703 are mainly used to determine the corresponding relationship between the source cell and the target cell.
  • process 703 will be discussed in conjunction with FIGS. 1A and 7A.
  • the relay node 110 is implemented as an IAB node 3 704
  • the first DU of the relay node 110 is implemented as DU3a 705
  • the second DU of the relay node 110 is implemented as DU3b 706
  • the CU of the first host node 120 is implemented as CU1 707
  • the CU of the second host node 130 is implemented as CU2 708.
  • Process 703 provides a mechanism for generating the corresponding relationship between DU3b 706 and cells under DU3a 705 under the O-RAN architecture.
  • the processing function of IAB-DU is weakened and is not responsible for generating the corresponding relationship between DU3b 706 and DU3a 705. Therefore, the border node 704 cannot report the corresponding relationship between DU3b 706 and cells under DU3a 705 to CU1 707.
  • DU3a 705 reports the resource configuration of each cell under DU3a 705 and the DU3b 706 to be started to RIC 702 through the E2 interface, so that RIC 702 can determine which cells have corresponding relationships.
  • RIC 702 sends the corresponding relationship of the cells to CU1 707 and/or CU2 708 through the E2 interface.
  • CU1 709 and/or CU2 708 obtains the correspondence between the cells under DU3b 706 and DU3a 705, the target cell of the UE can be obtained accordingly, and the subsequent operations are as described in the process of the previous reference Figures 4 to 6.
  • the target cell of the UE can be known with the help of RIC 702, thus eliminating the measurement process of the UE and reducing the execution time of the entire migration and the service interruption time of the UE.
  • FIG8 illustrates a migration process 800 according to an embodiment of the present disclosure.
  • the process 800 involves a network side (NW) 801 and a mobile IAB-MT 803.
  • NW network side
  • IAB-MT mobile IAB-MT
  • This embodiment provides the restriction conditions for the initial access of the mobile IAB-MT. If the IAB node moves over a large area, the host base station needs to support full migration. Therefore, compared with the Rel-17/Release 16 (Rel-16) host base station, a certain upgrade is required for the Rel-18 host base station that supports full migration.
  • This embodiment provides a solution for the network side to indicate its capabilities to the mobile IAB node by broadcasting the Rel-18 mobile IAB support (mobile IAB-support) or full migration support (full migration-support) information element in the system message.
  • the network side 801 broadcasts its support capability for Rel-18 full migration to all UEs including IAB-MT 803 in a system message.
  • the system message may include system information block 1 (SIB1 message).
  • SIB1 message system information block 1
  • the name of the information element used may include Rel-18 mobile IAB support or full migration support.
  • the information element in step 1 may be ignored.
  • option 1 and option 2 are optional.
  • the mobile IAB-MT 803 may initiate random access only to base stations that support Rel-18 mobile IAB capabilities (e.g., support Rel-18 full migration). Then, in step 3, the network side 801 may perform full migration or partial migration.
  • step 2 the mobile IAB-MT 803 may access a base station that does not support full Rel-18 migration. Then, in step 3, the network side 801 may perform only partial migration on it.
  • the mobile IAB node can choose to access only the base station that supports the full migration of Rel-18, or access the base station that only supports the Rel-16/Rel-17 IAB function and perform only partial migration in the future.
  • this embodiment provides a more flexible option for the migration of the IAB node that moves Rel-18.
  • the network side can broadcast its own capabilities, and then the IAB node can select the network node to access based on its implementation.
  • the method 900 may be implemented by a relay node 110 in a communication system 100. In other possible implementations, the method 900 may also be implemented by other communication devices independent of the communication system 100. As an example, the method 900 will be described below by taking the method 900 implemented by the relay node 110 in the communication system 100 as an example.
  • the relay node 110 in the case where the relay node 110 serving the terminal 140 through the source cell migrates from the first host node 120 to the second host node 130, the relay node 110 sends information to the first host node 120 or the second host node 130, the information indicating the target cell to which the terminal 140 will be handed over, the source cell being a cell under the first DU of the relay node 110, the target cell being a cell under the second DU of the relay node 110, the first DU and the second DU respectively having F1 interfaces with the first host node 120 and the second host node 130.
  • the relay node 110 receives handover information from the first host node 120, the handover information indicating that the terminal 140 is handed over to the target cell.
  • the relay node 110 sends handover information to the terminal 140 through the source cell.
  • the information sent to the first host node 120 includes: a correspondence between the target cell and the terminal 140; or a correspondence between the target cell and the source cell.
  • the information sent to the second host node 130 includes: a correspondence relationship between the target cell and the terminal 140 .
  • sending information to the first host node 120 includes: sending information from the CU of the first host node 120 to the second host node 130
  • the CU of the relay node 110 sends a handover request for the mobile terminal MT of the relay node 110, and the first DU or MT of the relay node 110 sends information to the CU of the first host node 120 before the interface is established between the second DU of the relay node 110 and the CU of the second host node 130.
  • the method 900 also includes: after sending the information to the CU of the first host node 120, the relay node 110 starts the second DU.
  • starting the second DU includes: the relay node 110 configures the resources of the target cell to correspond to the resources of the source cell.
  • configuring the resources of the target cell to correspond to the resources of the source cell includes: configuring the beam direction and/or time domain resources of the target cell to be the same as the beam direction and/or time domain resource configuration of the source cell; and configuring the frequency domain resources of the target cell to not overlap with the frequency domain resources of the source cell.
  • sending information to the first host node 120 includes at least one of the following: the first DU of the relay node 110 sends information via an F1 application protocol F1AP message; and the MT of the relay node 110 sends information via a radio resource control RRC message.
  • sending information to the second host node 130 includes: establishing an interface between the second DU of the relay node 110 and the CU of the second host node 130, and sending information to the CU of the second host node 130 by the second DU of the relay node 110 before the CU of the first host node 120 sends a handover request for the mobile terminal MT of the relay node 110 to the CU of the second host node 130.
  • the method 900 also includes: before sending information to the CU of the second host node 130, the relay node 110 starts the second DU.
  • starting the second DU includes: the relay node 110 configures the resources of the target cell to correspond to the resources of the source cell.
  • configuring the resources of the target cell to correspond to the resources of the source cell includes: configuring the beam direction and/or time domain resources of the target cell to be the same as the beam direction and/or time domain resource configuration of the source cell; and configuring the frequency domain resources of the target cell to not overlap with the frequency domain resources of the source cell.
  • the information is sent via an interface establishment request message.
  • method 900 also includes at least one of the following: the first DU of the relay node 110 sends an indication to the CU of the first host node 120 that the second DU is ready to provide service to the terminal 140; or the mobile terminal MT of the relay node 110 sends an indication to the CU of the first host node 120.
  • the method 900 further includes: the second DU of the relay node 110 receives an interface establishment response message from the CU of the second host node 130, the interface establishment response message indicating to the second DU the cell to be activated, and the cell to be activated is determined based on the target cell.
  • FIG10 shows a schematic flow chart of a method 1000 implemented at a first host node according to some embodiments of the present disclosure.
  • the method 1000 may be implemented by the first host node 120 in the communication system 100.
  • the method 1000 may also be implemented by other communication devices independent of the communication system 100.
  • the method 1000 will be described below by taking the implementation by the first host node 120 in the communication system 100 as an example.
  • the first host node 120 receives information from the relay node 110, the information indicating the target cell to which the terminal 140 will be handed over, the source cell is a cell under the first DU of the relay node 110, the target cell is a cell under the second DU of the relay node 110, and the first DU and the second DU respectively have F1 interfaces with the first host node 120 and the second host node 130.
  • the first host node 120 sends handover information to the relay node 110, the handover information indicating that the terminal 140 is handed over to the target cell.
  • the information includes: a correspondence between the target cell and the terminal 140; or a correspondence between the target cell and the source cell.
  • the method 1000 further includes: the CU of the first host node 120 sends a handover request to the CU of the second host node 130, the handover request being used for at least one of the following two: handover of the terminal 140, wherein the handover request indicates the target cell; and handover of the mobile terminal MT of the relay node 110 from the CU of the first host node 120 to the CU of the second host node 130.
  • the method 1000 further includes: indicating the target cell by including an identifier of the target cell and an identifier of the second host node 130 in the handover request.
  • the handover request further includes the following indication: whether the second host node 130 needs to send the user plane service of the terminal 140 via a path associated with the first host node 120.
  • receiving information from the relay node 110 includes: when the CU of the first host node 120 sends a handover request for the mobile terminal MT of the relay node 110 to the CU of the second host node 130, before the interface is established between the second DU of the relay node 110 and the CU of the second host node 130, the CU of the first host node 120 receives information from the first DU or MT of the relay node 110.
  • receiving information from the first DU includes: the CU of the first host node 120 receives information from the first DU via an F1 application protocol F1AP message.
  • receiving information from the MT includes: the CU of the first host node 120 receives information from the MT via a radio resource control RRC message.
  • method 1000 also includes at least one of the following: the CU of the first host node 120 receives an indication from the first DU of the relay node 110 that the second DU is ready to provide service to the terminal 140; or the CU of the first host node 120 receives an indication from the mobile terminal MT of the relay node 110.
  • FIG11 shows a schematic flow chart of a method 1100 implemented at a first host node according to some embodiments of the present disclosure.
  • the method 1100 may be implemented by the first host node 120 in the communication system 100.
  • the method 1100 may also be implemented by other communication devices independent of the communication system 100.
  • the method 1100 will be described below by taking the implementation by the first host node 120 in the communication system 100 as an example.
  • the first host node 120 receives a notification message related to a target cell to which the terminal 140 will be switched from the second host node 130, the source cell is a cell under the first DU of the relay node 110, the target cell is a cell under the second DU of the relay node 110, the first DU and the second DU have F1 interfaces with the first host node 120 and the second host node 130, respectively, and the notification message indicates one of the following: in the handover request for handover, the identification information used to indicate the target cell is default or invalid; or the target cell.
  • the first host node 120 sends a handover request for handover of the terminal 140 to the second host node 130.
  • sending the switching request includes: if it is determined that the notification message indicates that the identification information in the switching request is default or invalid, the first host node 120 sends the switching request with the identification information being default or invalid to the second host node 130 .
  • sending the handover request includes: if it is determined that the notification message indicates the target cell, the first donor node 120 sends the handover request indicating the target cell to the second donor node 130 .
  • the handover request further includes the following indication: whether the second host node 130 needs to send the user plane traffic of the terminal 140 via the path associated with the first host node 120 .
  • FIG12 shows a schematic flow chart of a method 1200 implemented at a second host node according to an embodiment of the present disclosure.
  • the method 1200 may be implemented by the second host node 130 in the communication system 100.
  • the method 1200 may also be implemented by other communication devices independent of the communication system 100.
  • the method 1200 will be described below by taking the implementation by the second host node 130 in the communication system 100 as an example.
  • the second host node 130 receives information from the first host node 120 or the relay node 110, and the information indicates the target cell to which the terminal 140 will be switched, the source cell is the cell under the first DU of the relay node 110, the target cell is the cell under the second DU of the relay node 110, and the first DU and the second DU have F1 interfaces with the first host node 120 and the second host node 130, respectively.
  • receiving information from the first host node 120 includes: the CU of the second host node 130 receives a handover request including information from the CU of the first host node 120, the handover request being used for at least one of the following: handover of the terminal 140; and handover of the mobile terminal MT of the relay node 110 from the CU of the first host node 120 to the CU of the second host node 130.
  • the handover request also includes the following indication: whether the second host node 130 needs to send the user plane service of the terminal 140 via the path associated with the first host node 120.
  • the method 1200 also includes: based on the handover request including the indication, the second host node 130 sends a request to establish a path to the first host node 120. In some embodiments, the method 1200 also includes: the second host node 130 performs an admission decision for the MT of the relay node 110 and the terminal 140.
  • method 1200 also includes: the CU of the second host node 130 determines the cell to be activated by the second DU based on the target cell; and the CU of the second host node 130 sends an interface establishment response message to the second DU of the relay node 110, and the interface establishment response message indicates the cell to be activated to the second DU.
  • receiving information from the relay node 110 includes: establishing an interface between the CU of the second host node 130 and the second DU of the relay node 110, and the CU of the second host node 130 receives information from the second DU of the relay node 110 before the CU of the first host node 120 sends a handover request for the mobile terminal MT of the relay node 110 to the CU of the second host node 130.
  • the information is received via an interface establishment request message.
  • the method 1200 also includes: the CU of the second host node 130 sends a notification message to the CU of the first host node 120, the notification message indicating that in the handover request for handover, the identification information for indicating the target cell is default or invalid; and the CU of the second host node 130 receives the handover request from the CU of the first host node 120.
  • the method 1200 also includes: the CU of the second host node 130 sends a notification message to the CU of the first host node 120, the notification message indicating the target cell; and the CU of the second host node 130 receives the handover request for handover from the CU of the first host node 120, the handover request indicating the target cell.
  • the donor node can directly obtain the target cell to which the terminal 140 is to be switched from the information received by the relay node without using the measurement report of the terminal 140. This reduces signaling overhead, shortens the execution time of migration, and improves communication efficiency.
  • the UE obtains the timing advance (TA) and beam selection of the target cell through the random access process during the initial network access and handover process.
  • TA reflects the propagation delay of the signal, which is related to the relative position of the UE and the gNB. Since the distance between each UE and the gNB under the gNB is different, its uplink (UL) signal needs to be sent at different times (i.e., different TAs). The RF packets are sent to the gNB to ensure that they arrive at the same time to achieve uplink synchronization.
  • the source CU configures the measurement object to the UE through a radio resource control (RRC) message to trigger the UE to perform neighboring cell measurement.
  • RRC radio resource control
  • the UE sends a measurement report to the source CU through an RRC message, and the measurement report includes the measurement value of the measurement object.
  • the source CU selects the target cell according to the measurement report and sends a handover request message to the target CU, which carries the measurement results of the target cell and the UE on at least one beam in the target cell (for example, represented by a synchronization signal block (SSB) index and/or a channel state information reference signal (CSI-RS) index).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the target CU sends a handover request confirmation to the source CU, which carries the random access channel (RACH resource) corresponding to each beam (SSB index, CSI-RS index, preamble index).
  • the source CU sends the above information to the UE through a handover command message.
  • the UE selects an SSB index with a signal quality higher than the threshold and its corresponding preamble code, and sends the preamble code to the target gNB on the beam corresponding to the SSB index selected by it.
  • This message is called message 1 (msg1).
  • message 1 There is a fixed correspondence between the SSB index, preamble, and beam direction.
  • the target gNB obtains the value of the random access radio network temporary identifier (RA-RNTI) according to the resource (beam) selected by the UE, and sends message 2 (msg2) to the UE on the physical downlink control channel (PDCCH) scrambled by RA-RNTI and on the beam corresponding to the SSB index selected by the UE.
  • RA-RNTI random access radio network temporary identifier
  • msg2 message 2
  • the UE correctly receives msg2 according to the RA-RNTI, and msg2 contains the TA information for uplink synchronization and the initial uplink resource allocation information (UL authorization) of the UE.
  • One of the functions of random access is the acquisition of TA and the selection of beams.
  • the inventors note that in the scenario considered in the present invention, the first DU and the second DU belong to the same entity DU, that is, the relative positions of the source cell, the target cell and the UE are the same, and the TA of the UE has not changed. Therefore, the UE can obtain a new TA without going through the RACH process.
  • the aforementioned embodiment proposes to configure the resources of the target cell to correspond to the resources of the source cell, for example, the beam direction and/or time domain resources of the target cell can be configured to be the same as the beam direction and/or time domain resource configuration of the source cell; and the frequency domain resources of the target cell can be configured to be non-overlapping with the frequency domain resources of the source cell. Since the beam directions of the source cell and the target cell are the same, the selection of the beam does not need to go through the random access process, but the same beam as that in the source cell can be directly selected. That is, the above two functions of random access have been solved under the scheme architecture proposed in the above embodiment. Therefore, considering that the random access process will bring great energy consumption, the inventors consider that random access-free (RACH-less) can be adopted to achieve better energy saving.
  • RACH-less random access-free
  • the source gNB may directly indicate the UE's beam in the target cell using a media access control element (MAC CE) based on the UE's measurement report on the target cell beam.
  • MAC CE media access control element
  • the UE is required to measure the beam of the target cell, and determine the beam used by the UE in the target cell based on the measurement result. Considering that the UE's beam measurement and reporting still brings a large signaling overhead, it is necessary to improve the determination method of the target beam to achieve better energy saving.
  • an embodiment of the present disclosure provides a communication method.
  • a terminal receives indication information from a first host device or a relay node.
  • the indication information is used to indicate a target beam to be used by the terminal in the target cell to be switched, and the target beam is the same as the source beam used by the terminal in the source cell.
  • the indication information may indicate at least one of the following: the terminal uses a beam with the same direction or index as the source beam used by the terminal in the source cell; the index of the target beam; or the index of the source beam.
  • the beam used by the terminal in the target cell can be determined without performing beam measurement, thereby effectively reducing the resource overhead and signaling overhead of random access and improving transmission efficiency.
  • FIG13 illustrates an interactive signaling diagram of a terminal handover process in a beam measurement-free situation according to an embodiment of the present disclosure.
  • process 1300 will be discussed in conjunction with FIG1A .
  • the terminal 140 determines (1305) the target beam to be used in the target cell to be switched to.
  • the target beam may be the same as the source beam used by the terminal 140 in the source cell.
  • the same as the source beam may refer to a beam with the same direction or index as the source beam.
  • the index of the beam may be an SSB index or a CSI-RS index.
  • the source cell is a cell under the first DU of the relay node 110
  • the target cell is a cell under the second DU of the relay node 110.
  • the terminal 140 may use the determined target beam to perform subsequent communication processes.
  • the first DU and the second DU have F1 interfaces with the first host node 120 and the second host node 130, respectively.
  • the first CU may be a CU of the relay node 110
  • the second CU may be a target CU of the relay node 110.
  • the first DU and the second DU of the relay node 110 may be logical DUs.
  • the source cell under the first DU and the target cell under the second DU are isolated from each other, that is, they are configured with isolated resources from each other.
  • the first host device 120 may send ( 1310 ) indication information to the terminal 140, the indication information being used to indicate the target beam that the terminal 140 is to use in the target cell to which it is switched.
  • the indication information may indicate that the terminal 140 uses a beam with the same direction or index as the source beam used by the terminal 140 in the source cell.
  • the indication information may indicate the index of the target beam.
  • the indication information may indicate the index of the source beam. Then, based on the received indication information, the terminal 140 The target beam may be determined.
  • the indication information may be included in a handover command for the terminal 140 .
  • the first host device may obtain beam information for determining the target beam to be used by the terminal 140 in the target cell from the relay node 110 (e.g., the first CU of the relay node 110).
  • the beam information may indicate the use of a beam with the same direction or index as the source beam used in the source cell in the target cell. In this case, it may be considered that the correspondence between the actual physical beam directions and time domain resources of the source cell and the target cell may be exactly the same, in which case the beams of the source cell and the target cell may be considered to be exactly the same.
  • the beam information may indicate the correspondence between the beam in the source cell and the beam in the target cell.
  • the correspondence between the beam index in the source cell e.g., SSB index and/or CSI-RS index
  • the source cell and the target cell may have the same beam direction, but the time at which each beam direction appears may be different (for example, the same beam direction may be represented by different SSB indexes and/or CSI-RS indexes in the source cell and the target cell).
  • a beam correspondence relationship is required to represent the correspondence between the indexes of beams in the same direction (that is, the beams used in the source cell and the target cell). Therefore, the beam information can indicate the correspondence between the SSB index and/or CSI-RS index in the source cell and the target cell.
  • the second host node 130 may send the beam information for determining the target beam to be used by the terminal 140 in the target cell to the first host device.
  • the beam information may indicate the use of a beam with the same direction or index as the source beam used in the source cell in the target cell, and/or the correspondence between the beam in the source cell and the beam in the target cell.
  • the relay node 110 may send a beam indication for determining the target beam to be used by the terminal 140 in the target cell to the second host node 130, for example, via an F1 message (such as an F1 establishment request message for requesting the establishment of an F1 interface), for example, to indicate the use of a beam with the same direction or index as the source beam used in the source cell in the target cell, and/or the correspondence between the beam in the source cell and the beam in the target cell.
  • an F1 message such as an F1 establishment request message for requesting the establishment of an F1 interface
  • the first host node 120 may send beam indication information related to the target beam to the second host node 130, for example, a handover request for the terminal 140.
  • the beam indication information may indicate that a beam with the same direction or index as the source beam used in the source cell is used in the target cell, and/or the index of the target beam, and/or the index of the source beam.
  • the first host device 120 may receive beam confirmation information related to the target beam from the second host node 130, for example, a confirmation of the handover request.
  • the beam confirmation indication may include confirmation that a beam with the same direction or index as the source beam used in the source cell is used in the target cell, and/or the index of the target beam.
  • the relay node 110 may send (1315) to the terminal 140 the indication information for indicating the target beam to be used by the terminal 140 in the target cell to be switched.
  • the indication information may indicate that the terminal 140 uses a beam having the same direction or index as the source beam used by the terminal 140 in the source cell, and/or the index of the target beam, and/or the index of the source beam.
  • the first DU of the relay node 110 may send the indication information to the terminal 140, for example, via a MAC CE or downlink control information (DCI). Then, based on the indication information received from the relay node 110, the terminal 140 may determine the target beam.
  • the beam mapping relationship and the beam reuse indication may be pre-configured on the first DU (e.g., pre-configured via OAM).
  • using the same target beam as the source beam in the target cell may be an implicit indication.
  • the terminal 140 and the network node e.g., the first host device 120 and the second host device 130
  • the terminal 140 may determine to use the same beam as the source cell in the target cell based on confirming that it is under the coverage of the mobile relay node 110 (e.g., in a moving car).
  • the above-mentioned method for determining the target beam proposed in the present disclosure is also applicable to the switching scenario within the UE CU (intra-CU) (for example, due to the cell PCI conflict caused by the movement of the relay node 110, the PCI needs to be replaced, and the CU of the host node (for example, the host node 110) controls the relay node 110 to generate a new cell (that is, the target cell) and adopts the new PCI.
  • the target cell has the same beam direction as the old cell (that is, the source cell), and the terminal 140 can switch from the source cell to the target cell accordingly, which is an intra-CU switching).
  • the host node only needs to send an indication message to the terminal 140, and the indication message is used to indicate the target beam that the terminal 140 is to use in the target cell to which it is switched.
  • the indication message may instruct the terminal 140 to use a beam with the same direction or index as the source beam used by the terminal 140 in the source cell, and/or the index of the target beam, and/or the index of the source beam.
  • the terminal can directly use the target beam that is the same as the source beam to access the target cell. This allows the terminal in the mobile IAB scenario to correctly implement cell switching based on the same beam.
  • the terminal can access the target cell without performing a random access process, reducing the resource overhead and signaling overhead of random access.
  • the above-mentioned determination method of the target beam proposed in the present disclosure is also applicable to the random determination method based on the measurement-free method described in conjunction with FIG. 2 to FIG. 8.
  • the terminal switching mode of access the second host node 130 can directly determine the RACH resources based on the above-mentioned determination method of the target beam (that is, the RACH resources corresponding to the same target beam as the source cell can be used), rather than based on the user's measurement report.
  • the second host node 130 can indicate the RACH resources corresponding to the same target beam as the source cell to the first host node.
  • the second host node 130 can indicate the RACH resources corresponding to the target beam that is the same as the source beam of the terminal 140 in the source cell (for example, the same direction or the same index) in the RRC container (RRC Container) in the handover request confirmation sent to the first host node 120.
  • the first host node 120 receives it and can send the beam indication in the RRC Container to the terminal 140.
  • the handover command for the terminal 140 is sent to the terminal 140.
  • FIG. 14 illustrates an example process of terminal switching in a beam-free measurement case according to an embodiment of the present disclosure, which can be considered as a specific implementation of the terminal switching process of FIG. 13 .
  • process 1400 will be discussed in conjunction with FIG. 1A .
  • the relay node 110 is implemented as an IAB node 1401
  • the first DU of the relay node 110 is implemented as DU3a 1403
  • the second DU of the relay node 110 is implemented as DU3b 1405
  • the CU of the first host node 120 is implemented as CU1 1407
  • the CU of the second host node 130 is implemented as CU2 1409
  • the terminal 140 is implemented as UE 1411.
  • IAB-DU3b 1405 initiates an F1 establishment request message to CU2 1409 to request the establishment of an F1 interface.
  • the F1 establishment request message may carry indication information of a multiplexed beam (or a multiplexed beam direction) (also called a beam multiplexing indication), for example, to indicate the use of a beam with the same direction or index as the source beam used in the source cell as the target beam, and/or beam correspondence information, for example, to indicate the correspondence between the beams in the source cell and the target cell (for example, the correspondence between the SSB index and/or the CSI-RS index).
  • a multiplexed beam or a multiplexed beam direction
  • beam correspondence information for example, to indicate the correspondence between the beams in the source cell and the target cell (for example, the correspondence between the SSB index and/or the CSI-RS index).
  • step 2 CU2 1409 returns an F1 setup response message to IAB-DU3b 1405.
  • steps 3a and 3b are optional.
  • CU2 1409 may inform CU1 1407 of the indication information of the multiplexed beam (or multiplexed beam direction), and/or beam correspondence information.
  • IAB-DU3a 1403 may inform CU1 1407 of the indication information of the multiplexed beam (or multiplexed beam direction), and/or beam correspondence information through an F1 message.
  • CU1 1407 sends a handover request message for UE 1411 to CU2 1409.
  • the handover request carries indication information of a multiplexed beam (or a multiplexed beam direction), and/or target beam information (e.g., SSB index and/or CSI-RS index) of UE 1411.
  • target beam information e.g., SSB index and/or CSI-RS index
  • the beam information of the source beam used in the source cell can be directly carried in the handover request.
  • CU2 1409 returns a handover request response message for UE 1411 to CU1 1407.
  • the handover request response message directly carries confirmation information of the multiplexing beam (or multiplexing beam direction), and/or target beam information (e.g., SSB index and/or CSI-RS index).
  • CU1 1407 sends a handover command to UE 1411.
  • the handover command may carry indication information of a multiplexing beam (or multiplexing beam direction) and/or target beam information (e.g., SSB index and/or CSI-RS index) of UE 1411.
  • This step is used to instruct UE 1411 to use the correct beam to communicate with the target station.
  • FIG15 shows a schematic block diagram of an example communication device 1500 that can be used to implement an embodiment of the present disclosure.
  • the device 1500 can be implemented as or include the relay node 110 or the first host node 120, or the second host node 130 or the terminal 140 of FIG1A.
  • the device 1500 includes one or more processors 1510, one or more memories 1520 coupled to the processor 1510, and a communication module 1540 coupled to the processor 1510.
  • the communication module 1540 may be used for two-way communication.
  • the communication module 1540 may have at least one communication interface for communication.
  • the communication interface may include any interface necessary for communication with other devices.
  • Processor 1510 may be of any type suitable for the local technology network and may include, but is not limited to, at least one of the following: a general purpose computer, a special purpose computer, a microcontroller, a digital signal processor (DSP), or one or more of a controller-based multi-core controller architecture.
  • Device 1500 may have multiple processors, such as application specific integrated circuit chips, which are time-slave to a clock synchronized with a main processor.
  • the memory 1520 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memories include, but are not limited to, at least one of the following: read-only memory (ROM) 1524, erasable programmable read-only memory (EPROM), flash memory, hard disk, compact disc (CD), digital video disc (DVD), or other magnetic storage and/or optical storage.
  • volatile memories include, but are not limited to, at least one of the following: random access memory (RAM) 1522, or other volatile memories that do not persist during the duration of a power outage.
  • Computer program 1530 includes computer executable instructions executed by associated processor 1510.
  • Program 1530 may be stored in ROM 1524.
  • the processor 1510 may perform any suitable actions and processes by loading the program 1530 into the RAM 1522 .
  • the embodiments of the present disclosure may be implemented with the help of program 1530 so that device 1500 may perform any process as discussed with reference to Figures 1A to 12.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • Program 1530 may be tangibly embodied in a computer readable medium that may be included in device 1500 (such as in memory 1520) or other storage device accessible by device 1500. Program 1530 may be loaded from the computer readable medium into RAM 1522 for execution.
  • Computer readable media may include any type of tangible non-volatile memory, such as ROM, EPROM, flash memory, hard disk, CD, DVD, etc.
  • the communication module 1540 in the device 1500 may be implemented as a transmitter and a receiver (or a transceiver).
  • the device 1500 may further include one or more of a scheduler, a controller, and a radio frequency/antenna, which will not be elaborated in detail in this disclosure.
  • the device 1500 in FIG. 15 may be implemented as an electronic device, or may be implemented as a chip or a chip system in an electronic device, which is not limited in the embodiments of the present disclosure.
  • the terminal chip When the communication device 1500 is a chip applied to a terminal, the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information sent by the base station to the terminal through other modules in the terminal (such as a radio frequency module or an antenna); or the terminal chip sends information to other modules in the terminal (such as a radio frequency module or an antenna), and the information is sent by the terminal to the base station.
  • the base station module implements the functions of the base station in the above-mentioned method embodiment.
  • the base station module receives information from other modules in the base station (such as a radio frequency module or an antenna), and the information is sent by the terminal to the base station; or, the base station module sends information to other modules in the base station (such as a radio frequency module or an antenna), and the information is sent by the base station to the terminal.
  • the base station module here can be a baseband chip of a base station, or a CU, DU or other module, or a device under an open radio access network (open radio access network, O-RAN) architecture, such as an open CU, an open DU and other devices.
  • open radio access network open radio access network
  • the embodiment of the present disclosure further provides a chip, which may include an input interface, an output interface and a processing circuit.
  • the input interface and the output interface may complete the interaction of signaling or data
  • the processing circuit may complete the generation and processing of signaling or data information.
  • the embodiments of the present disclosure also provide a chip system, including a processor, for supporting a computing device to implement the functions involved in any of the above embodiments.
  • the chip system may also include a memory for storing necessary program instructions and data, and when the processor runs the program instructions, the device on which the chip system is installed implements the method involved in any of the above embodiments.
  • the chip system may be composed of one or more chips, and may also include chips and other discrete devices.
  • An embodiment of the present disclosure further provides a processor for coupling with a memory, wherein the memory stores instructions.
  • the processor executes the instructions, the processor executes the methods and functions involved in any of the above embodiments.
  • the embodiments of the present disclosure also provide a computer program product including instructions, which, when executed on a computer, enables the computer to execute the methods and functions involved in any of the above embodiments.
  • An embodiment of the present disclosure further provides a computer-readable storage medium on which computer instructions are stored.
  • a processor executes the instructions, the processor executes the methods and functions involved in any of the above embodiments.
  • various embodiments of the present disclosure may be implemented in hardware or dedicated circuits, software, logic, or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be performed by a controller, microprocessor, or other computing device. Although various aspects of the embodiments of the present disclosure are shown and described as block diagrams, flow charts, or using some other graphical representation, it should be understood that the blocks, devices, systems, techniques, or methods described herein may be implemented as, by way of non-limiting example, hardware, software, firmware, dedicated circuits or logic, general purpose hardware or controllers or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product includes computer executable instructions, such as instructions included in a program module, which are executed in a device on a real or virtual processor of the target to perform the process/method as described above with reference to the accompanying drawings.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the functions of program modules can be combined or divided between program modules as needed.
  • Machine executable instructions for program modules can be executed in local or distributed devices. In distributed devices, program modules can be located in local and remote storage media.
  • the computer program code for realizing the method of the present disclosure can be written in one or more programming languages. These computer program codes can be provided to the processor of general-purpose computer, special-purpose computer or other programmable data processing device, so that the program code, when being executed by computer or other programmable data processing device, causes the function/operation specified in flow chart and/or block diagram to be implemented.
  • the program code can be executed completely on computer, partly on computer, as independent software package, partly on computer and partly on remote computer or completely on remote computer or server.
  • computer program codes or related data may be carried by any appropriate carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer readable media, and the like.
  • signals may include electrical, optical, radio, acoustic or other forms of propagation signals, such as carrier waves, infrared signals, and the like.
  • a computer readable medium may be any tangible medium that contains or stores a program for or related to an instruction execution system, apparatus, or device.
  • a computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination thereof. More detailed examples of computer readable storage media include an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical storage device, a magnetic storage device, or any suitable combination thereof.

Abstract

本公开的实施例提供了一种通信方法、通信设备、计算机可读存储介质以及计算机程序产品。该通信方法包括在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,中继节点向第一宿主节点或第二宿主节点发送信息,该信息指示终端将被切换到的目标小区,该源小区为中继节点的第一分布式单元DU下的小区,该目标小区为中继节点的第二DU下的小区,并且该第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口;中继节点接收来自于第一宿主节点的切换信息,该切换信息指示终端切换到目标小区;以及中继节点通过源小区向终端发送切换信息。以此方式,宿主节点可以在无需等待终端测量上报的情况下,获知其目标小区。

Description

一种通信方法、通信设备、介质及程序产品
本申请要求于2022年9月27日提交的申请号为202211185681.4、发明名称为“一种通信方法、通信设备、介质及程序产品”的中国专利申请的优先权和2023年5月10日提交的申请号为202310532622.8、发明名称为“一种通信方法、通信设备、介质及程序产品”的中国专利申请的优先权,其内容通过引用并入本文中。
技术领域
本公开总体上涉及通信领域,并且更具体地涉及一种通信方法、通信设备、计算机可读存储介质以及计算机程序产品。
背景技术
相较于第四代移动通信系统,第五代移动通信(5G)针对网络各项性能指标提出了更严苛的要求,例如,容量提升1000倍、更广的覆盖需求、超高可靠超低时延等。一方面,考虑到高频载波频率资源丰富,在热点区域,为满足5G超高容量需求,利用高频小站组网愈发流行。高频载波传播特性较差,受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署小站。相应地,为这些大量密集部署的小站提供光纤回传的代价很高,施工难度大,因此需要经济便捷的回传方案。另一方面,从广覆盖需求的角度出发,在一些偏远地区提供网络覆盖,光纤的部署难度大,成本高,也需要设计灵活便利的接入和回传方案。
接入回传一体化(Integrated Access and Backhaul,IAB)技术为解决上述两个问题提供了思路。其接入链路(Access Link)和回传链路(Backhaul Link)皆采用无线传输方案,减少了光纤部署。然而,基于接入回传一体化技术的通信系统中在通信效率和通信流程等方面仍然存在一些问题需要解决。
发明内容
本公开的实施例提供了一种通信方法、通信设备、计算机可读存储介质及计算机程序产品。
在本公开的第一方面,提供了一种通信方法。该方法包括:在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,中继节点向第一宿主节点或第二宿主节点发送信息,信息指示终端将被切换到的目标小区,源小区为中继节点的第一分布式单元DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口;中继节点接收来自于第一宿主节点的切换信息,切换信息指示终端切换到目标小区;以及中继节点通过源小区向终端发送切换信息。以此方式,宿主节点可以在无需等待终端测量上报的情况下,获知其目标小区。
在一些实施例中,向第一宿主节点发送的信息包括:目标小区与终端之间的对应关系;或者目标小区与源小区之间的对应关系。由此,第一宿主节点可以基于该对应关系准确地获知目标小区。
在一些实施例中,向第二宿主节点发送的信息包括:目标小区与终端之间的对应关系。由此,第二宿主节点可以基于该对应关系准确地获知目标小区。
在一些实施例中,向第一宿主节点发送信息包括:在第一宿主节点的集中式单元CU向第二宿主节点的CU发送用于中继节点的移动终端MT的切换请求,早于中继节点的第二DU与第二宿主节点的CU之间建立接口的情况下,中继节点的第一DU或MT向第一宿主节点的CU发送信息。由此,中继节点的第二DU与第二宿主节点的CU之间的接口建立之前,第一宿主节点可以基于收到的信息先确定目标小区。
在一些实施例中,向第二宿主节点发送信息包括:在中继节点的第二DU与第二宿主节点的集中式单元CU之间建立接口,早于第一宿主节点的CU向第二宿主节点的CU发送用于中继节点的移动终端MT的切换请求的情况下,中继节点的第二DU向第二宿主节点的CU发送信息。由此,在中继节点的第二DU与第二宿主节点的CU之间的接口建立之后,第二宿主节点可以基于收到的信息有效地确定目标小区。
在一些实施例中,该方法还包括:在向第一宿主节点的CU发送信息之后,中继节点启动第二DU。由此,可以实现在目标小区的确定之后,启动第二CU,实现节能。
在一些实施例中,该方法还包括:在向第二宿主节点的CU发送信息之前,中继节点启动第二DU。由此,可以先启动第二DU以为终端切换做好准备,而后再向第二宿主节点的CU发送该信息。
在一些实施例中,其中启动第二DU包括:中继节点将目标小区的资源配置为与源小区的资源相对应。 以此方式,通过将源小区与目标小区的资源配置为相对应,可以在无需终端测量的情况下基于对应关系来确定目标小区。
在一些实施例中,将目标小区的资源配置为与源小区的资源相对应包括:将目标小区的波束方向和/或时域资源配置为与源小区的波束方向和/或时域资源配置相同;以及将目标小区的频域资源配置为与源小区的频域资源不重叠。由此,可以实现源小区与目标小区的资源有效地对应。
在一些实施例中,向第一宿主节点发送信息包括以下至少一项:中继节点的第一DU经由F1应用协议F1AP消息发送信息;以及中继节点的MT经由无线电资源控制RRC消息发送信息。
在一些实施例中,信息经由接口建立请求消息被发送。由此,信息可以通过承载在已经存在的消息中而被发送,避免了为发送该信息专门设计新消息。
在一些实施例中,该方法还包括以下至少一项:中继节点的第一DU向第一宿主节点的集中式单元CU发送第二DU已准备好向终端提供服务的指示;或者中继节点的移动终端MT向第一宿主节点的CU发送第二DU已准备好向终端提供服务的指示。由此,第一宿主节点可以有效地获知第二DU已准备好向终端提供服务,以促进切换流程。
在一些实施例中,该方法还包括:中继节点的第二DU接收来自第二宿主节点的集中式单元CU的接口建立响应消息,接口建立响应消息向第二DU指示要激活的小区,要激活的小区是基于目标小区被确定的。由此,相应的目标小区可以被激活以供终端切换。
在本公开的第二方面,提供了一种通信方法。该方法包括:在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,第一宿主节点从中继节点接收信息,信息指示终端将被切换到的目标小区,源小区为中继节点的第一分布式单元DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口;以及第一宿主节点向中继节点发送切换信息,切换信息指示终端切换到目标小区。以此方式,第一宿主节点可以在无需等待终端测量上报的情况下,获知其目标小区。
在一些实施例中,信息包括:目标小区与终端之间的对应关系;或者目标小区与源小区之间的对应关系。由此,第一宿主节点可以基于该对应关系准确地获知目标小区。
在一些实施例中,该方法还包括:第一宿主节点的集中式单元CU向第二宿主节点的CU发送切换请求,切换请求用于以下两者中的至少一项:终端的切换,其中切换请求指示目标小区;以及中继节点的移动终端MT从第一宿主节点的CU到第二宿主节点的CU的切换。由此,可以基于一个切换请求实现终端和MT两者的切换。
在一些实施例中,该方法还包括:通过在切换请求中包括目标小区的标识符和第二宿主节点的标识符来指示目标小区。由此,目标小区可以被准确地指定。
在一些实施例中,切换请求还包括以下指示:第二宿主节点是否需要经由与第一宿主节点相关联的路径,来发送终端的用户面业务。由此,可以灵活地建立与第一宿主节点相关联的路径,从而有效地支持各种迁移方式。
在一些实施例中,从中继节点接收信息包括:在第一宿主节点的集中式单元CU向第二宿主节点的CU发送用于中继节点的移动终端MT的切换请求,早于中继节点的第二DU与第二宿主节点的CU之间建立接口的情况下,第一宿主节点的CU从中继节点的第一DU或MT接收信息。由此,中继节点的第二DU与第二宿主节点的CU之间的接口建立之前,第一宿主节点可以基于收到的信息先确定目标小区。
在一些实施例中,从第一DU接收信息包括:第一宿主节点的CU经由F1应用协议F1AP消息从第一DU接收信息。
在一些实施例中,从MT接收信息包括:第一宿主节点的CU经由无线电资源控制RRC消息从MT接收信息。由此,避免了为发送该信息专门设计新消息。
在一些实施例中,该方法还包括以下至少一项:第一宿主节点的集中式单元CU从中继节点的第一DU接收第二DU已准备好向终端提供服务的指示;或者第一宿主节点的CU从中继节点的移动终端MT接收指示。由此,第一宿主节点可以有效地获知第二DU已准备好向终端提供服务,以促进切换流程。
在本公开的第三方面,提供了一种通信方法。该方法包括:在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,第一宿主节点从第二宿主节点接收与终端将被切换到的目标小区有关的通知消息,源小区为中继节点的第一分布式单元DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口,通知消息指示以下之一: 在用于切换的切换请求中,用于指示目标小区的标识信息是缺省的或无效的;或者目标小区;以及基于通知消息,第一宿主节点向第二宿主节点发送用于终端的切换的切换请求。以此方式,第一宿主节点可以从第二宿主节点获知在切换请求是否需要指示目标小区,从而可以实现灵活的切换。
在一些实施例中,发送切换请求包括:如果确定通知消息指示切换请求中标识信息是缺省的或无效的,第一宿主节点向第二宿主节点发送标识信息为缺省或无效的切换请求。由此可以在无需指示目标小区的情况下,传输切换请求。
在一些实施例中,发送切换请求包括:如果确定通知消息指示目标小区,第一宿主节点向第二宿主节点发送指示目标小区的切换请求。由此,可以在切换请求中指示目标小区,从而促进终端的切换过程。
在一些实施例中,切换请求还包括以下指示:第二宿主节点是否需要经由与第一宿主节点相关联的路径,来发送终端的用户面业务。由此,可以灵活地建立与第一宿主节点相关联的路径,从而有效地支持各种迁移方式。
在本公开的第四方面,提供了一种通信方法。该方法包括:在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,第二宿主节点接收来自第一宿主节点或中继节点的信息,信息指示终端将被切换到的目标小区,源小区为中继节点的第一分布式单元DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口。以此方式,第二宿主节点可以在无需等待终端测量上报的情况下,获知其目标小区。
在一些实施例中,从第一宿主节点接收信息包括:第二宿主节点的集中式单元CU从第一宿主节点的CU接收包括信息的切换请求,切换请求用于以下两者中的至少一项:终端的切换;以及中继节点的移动终端MT从第一宿主节点的CU到第二宿主节点的CU的切换。由此,可以基于一个切换请求实现终端和MT两者的切换。
在一些实施例中,切换请求还包括以下指示:第二宿主节点是否需要经由与第一宿主节点相关联的路径,来发送终端的用户面业务。由此,可以灵活地建立与第一宿主节点相关联的路径,从而有效地支持各种迁移方式。
在一些实施例中,该方法还包括:基于切换请求包括指示,第二宿主节点向第一宿主节点发送建立路径的请求。由此,可以促进与第一宿主节点相关联的路径的建立,从而有效地支持各种迁移方式。
在一些实施例中,该方法还包括:第二宿主节点针对中继节点的MT和终端执行准入判决。由此,可以综合地考虑负载情况,对MT和终端的准入做出高效的判决。
在一些实施例中,该方法还包括:第二宿主节点的CU基于目标小区来确定第二DU要激活的小区;以及第二宿主节点的CU向中继节点的第二DU发送接口建立响应消息,接口建立响应消息向第二DU指示要激活的小区。由此,第二宿主节点可以基于接收到的信息中的目标小区来高效地获知第二DU指示要激活的小区。
在一些实施例中,从中继节点接收信息包括:在第二宿主节点的集中式单元CU与中继节点的第二DU之间建立接口,早于第一宿主节点的CU向第二宿主节点的CU发送用于中继节点的移动终端MT的切换请求的情况下,第二宿主节点的CU从中继节点的第二DU接收信息。由此,在中继节点的第二DU与第二宿主节点的CU之间的接口建立之后,第二宿主节点可以基于收到的信息有效地确定目标小区。
在一些实施例中,信息经由接口建立请求消息被接收。由此,避免了为发送该信息专门设计新消息。
在一些实施例中,该方法还包括:第二宿主节点的CU向第一宿主节点的CU发送通知消息,通知消息指示在用于切换的切换请求中,用于指示目标小区的标识信息是缺省的或无效的;以及第二宿主节点的CU从第一宿主节点的CU接收切换请求。以此方式,第一宿主节点可以从第二宿主节点获知在切换请求是否需要指示目标小区,从而可以实现灵活的切换。
在一些实施例中,该方法还包括:第二宿主节点的CU向第一宿主节点的CU发送通知消息,通知消息指示目标小区;以及第二宿主节点的CU从第一宿主节点的CU接收用于切换的切换请求,切换请求指示目标小区。由此,可以在切换请求中指示目标小区,从而促进终端的切换过程。
在本公开的第五方面,提供了一种通信方法。该方法包括:在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,第一宿主节点向第二宿主节点发送消息,消息包括终端的上下文或终端将被切换到的目标小区,源小区为中继节点的第一分布式单元DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口,并且其中消息还包括以下指示:第二宿主节点是否需要经由与第一宿主节点相关联的路径来发送终端的用户面业务。 以此方式,可以灵活地建立与第一宿主节点相关联的路径,从而有效地支持各种迁移方式。
在本公开的第六方面,提供了一种通信方法。该方法包括:在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,第二宿主节点从第一宿主节点接收消息,消息包括终端的上下文或终端将被切换到的目标小区,源小区为中继节点的第一分布式单元DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口,并且其中消息还包括以下指示:第二宿主节点是否需要经由与第一宿主节点相关联的路径来发送终端的用户面业务。以此方式,可以灵活地建立与第一宿主节点相关联的路径,从而有效地支持各种迁移方式。
在本公开的第七方面,提供了一种通信方法。该方法包括:在通过源小区服务于终端的中继节点的分布式单元DU从第一宿主节点向第二宿主节点迁移的情况下,向终端发送指示信息,指示信息用于指示终端要在切换到的目标小区下使用的目标波束,目标波束与终端在源小区下使用的源波束相同,源小区为中继节点的第一DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口。以此方式,可以在无需进行波束测量的情况下,确定终端在目标小区下使用的波束,从而减小信令开销,改进传输效率。
在一些实施例中,指示信息指示以下中的至少一项:终端使用与终端在源小区下使用的源波束的方向或索引相同的波束;目标波束的索引;或源波束的索引。由此,可以有效地实现对目标波束的确定。
在一些实施例中,该方法还包括:从中继节点或第二宿主节点获取波束信息,波束信息用于确定终端要在目标小区下使用的目标波束,波束信息指示以下中的至少一项:在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束;或者源小区下的波束与目标小区下的波束的对应关系。由此,可以有效地确定采用与源波束相同的波束的目标波束。
在一些实施例中,该方法还包括:向第二宿主节点发送与目标波束有关的波束指示信息,波束指示信息指示以下中的至少一项:在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束,目标波束的索引,或者源波束的索引。由此,可以实现对使用与源波束相同的目标波束的有效指示。
在一些实施例中,该方法还包括:从第二宿主节点接收与目标波束有关的波束确认信息,波束确认指示包括以下中的至少一项:对于在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束的确认,或者目标波束的索引。由此,可以有效地实现使用与源波束相同的目标波束。
在本公开的第八方面,提供了一种通信方法。该方法包括:在通过源小区服务于终端的中继节点的分布式单元DU从第一宿主节点向第二宿主节点迁移的情况下,从第一宿主设备或者中继节点接收指示信息,指示信息用于指示终端要在切换到的目标小区下使用的目标波束,目标波束与终端在源小区下使用的源波束相同,源小区为中继节点的第一DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口。以此方式,可以在无需进行波束测量的情况下,确定终端在目标小区下使用的波束,从而减小信令开销,改进传输效率。
在一些实施例中,指示信息指示以下中的至少一项:终端使用与终端在源小区下使用的源波束的方向或索引相同的波束;目标波束的索引;或源波束的索引。由此,可以有效地实现对目标波束的确定。
在本公开的第九方面,提供了一种通信方法。该方法包括:在通过源小区服务于终端的中继节点的分布式单元DU从第一宿主节点向第二宿主节点迁移的情况下,向第一宿主节点发送波束信息,波束信息用于确定终端要在切换到的目标小区下使用的目标波束,目标波束与终端在源小区下使用的源波束相同,源小区为中继节点的第一DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口。以此方式,可以在无需进行波束测量的情况下,确定终端在目标小区下使用的波束,从而减小信令开销,改进传输效率。
在一些实施例中,波束信息指示以下中的至少一项:在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束;或者源小区下的波束与目标小区下的波束的对应关系。由此,可以有效地确定采用与源波束相同的波束的目标波束。
在一些实施例中,该方法还包括:从中继节点接收波束信息。由此,可以实现对波束信息的有效获取。
在一些实施例中,该方法还包括:从第一宿主节点接收与目标波束有关的波束指示信息,波束指示信息指示以下中的至少一项:在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束;目标波束的索引;或者源波束的索引。由此,可以实现对使用与源波束相同的目标波束的有效指示。
在一些实施例中,该方法还包括:向第一宿主节点发送与目标波束有关的波束确认信息,波束确认指示以下中的至少一项:对于在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束的确认; 或者目标波束的索引。由此,可以有效地实现使用与源波束相同的目标波束。
在本公开的第十方面,提供了一种通信方法。该方法包括:在通过源小区服务于终端的中继节点的分布式单元DU从第一宿主节点向第二宿主节点迁移的情况下,向第一宿主节点或第二宿主节点发送波束信息,波束信息用于确定终端要在切换到的目标小区下使用的目标波束,目标波束与终端在源小区下使用的源波束相同,源小区为中继节点的第一DU下的小区,目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口。以此方式,可以在无需进行波束测量的情况下,确定终端在目标小区下使用的波束,从而减小信令开销,改进传输效率。
在一些实施例中,波束信息指示以下中的至少一项:在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束;或者源小区下的波束与目标小区下的波束的对应关系。由此,可以有效地确定采用与源波束相同的波束的目标波束。
在本公开的第十一方面,提供了一种通信设备。通信设备包括处理器以及存储有指令的存储器。指令在被处理器执行时使得终端设备执行根据第一方面至第十方面中任一方面及其实现方式的任一方法。
在本公开的第十二方面,提供了一种计算机可读存储介质。计算机可读存储介质存储有指令,指令在被电子设备执行时使得电子设备执行第一方面至第十方面中任一方面及其实现方式的任一方法。
在本公开的第十三方面,提供了一种计算机程序产品。计算机程序产品包括指令,指令在被电子设备执行时使得电子设备执行第一方面至第十方面中任一方面及其实现方式的任一方法。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的关键或重要特征,亦非用于限制本公开的范围。本公开的其他特征通过以下的描述将变得容易理解。
附图说明
图1A示出了本公开的实施例可以实现于其中的通信系统的示意图。
图1B示出了与本公开的实施例有关的无线中继场景示意图。
图1C示出了与本公开的实施例有关的IAB网络架构示意图。
图1D示出了与本公开的实施例有关的IAB网络用户面协议栈示意图。
图1E示出了与本公开的实施例有关的IAB网络控制面协议栈示意图。
图1F示出了与本公开的实施例有关的IAB节点迁移的示意图。
图1G示出了与本公开的实施例有关的部分迁移的示意图。
图1H示出了与本公开的实施例有关的逐渐由上至下(Gradual Top-down)类型的全部迁移的示意图。
图1I示出了与本公开的实施例有关的逐渐由下至上(Gradual Bottom-up)类型的全部迁移的示意图。
图1J示出了与本公开的实施例有关的完全嵌套(Full Nested)类型的全部迁移的示意图。
图2图示了根据本公开的一些实施例的免测量情况下的终端切换的过程的交互信令图。
图3图示了根据本公开的另一些实施例的免测量情况下的终端切换的过程的交互信令图。
图4图示了根据本公开的实施例的免测量情况下的终端切换的第一示例过程。
图5图示了根据本公开的实施例的免测量情况下的终端切换的第二示例过程。
图6图示了根据本公开的实施例的免测量情况下的终端切换的第三示例过程。
图7A图示了本公开的实施例可以基于其实现的基于开放式RAN(O-RAN)的IAB架构。
图7B图示了根据本公开的实施例的免测量情况下的终端切换的第四示例过程。
图8图示了根据本公开的实施例的迁移过程。
图9示出了根据本公开的实施例的在中继节点处实现的方法的示意流程图;
图10示出了根据本公开的一些实施例的在第一宿主节点处实现的方法的示意流程图;
图11示出了根据本公开的另一些实施例的在第一宿主节点处实现的方法的示意流程图;
图12示出了根据本公开的实施例的在第二宿主节点处实现的方法的示意流程图;
图13图示了根据本公开的实施例的免波束测量情况下的终端切换的过程的交互信令图。
图14图示了根据本公开的实施例的免波束测量情况下的终端切换的示例过程。
以及
图15示出了可以用来实施本公开的实施例的示例通信设备的示意性框图。
贯穿所有附图,相同或者相似的参考标号被用来表示相同或者相似的组件。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
本公开的实施例可以根据任何适当的通信协议来实施,包括但不限于,第三代(3rd Generation,3G)、第四代(4G)、第五代(5G)以及未来的通信协议(例如,第六代(6G))等蜂窝通信协议、诸如电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。
本公开的实施例的技术方案应用于遵循任何适当通信协议的通信系统,例如:通用分组无线业务(General Packet Radio Service,GPRS)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、通用移动通信系统(Universal Mobile Telecommunications Service,UMTS)、长期演进(Long Term Evolution,LTE)系统、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)、频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time Division Duplex,TDD)、第五代(5G)系统(例如,新无线电(New Radio,NR))以及未来的通信系统(例如,第六代(6G)系统),等等。
出于说明的目的,下文中以3GPP中的5G通信系统为背景来描述本公开的实施例。然而,应当理解,本公开的实施例不限于该通信系统,而是可以被应用到任何存在类似问题的通信系统中,例如无线局域网(WLAN)、有线通信系统、或者将来开发的其他通信系统等。
在本公开中使用的术语“终端”或“终端设备”指能够与网络设备之间或者彼此之间进行有线或无线通信的任何终端设备。终端设备有时可以称为用户设备(User Equipment,UE)。终端设备可以是任意类型的移动终端、固定终端或便携式终端。终端设备可以是具备无线通信功能的各种无线通信设备。随着物联网(Internet of Things,IOT)技术的兴起,越来越多之前不具备通信功能的设备,例如但不限于,家用电器、交通工具、工具设备、服务设备和服务设施,开始通过配置无线通信单元来获得无线通信功能,从而可以接入无线通信网络,接受远程控制。此类设备因配置有无线通信单元而具备无线通信功能,因此也属于无线通信设备的范畴。作为示例,终端设备可以包括移动蜂窝电话、无绳电话、移动终端(Mobile Terminal,MT)、移动台、移动设备、无线终端、手持设备、客户端、订阅台、便携式订阅台、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、平板计算机、个人通信系统设备、个人导航设备、个人数字助理(Personal Digital Assistant,PDA)、无线数据卡、无线调制解调器(Modulator demodulator,Modem)、定位设备、无线电广播接收器、电子书设备、游戏设备、物联网(Internet of Things,IoT)设备、车载设备、飞行器、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、可穿戴设备(例如,智能手表等)、5G网络中的终端设备或者演进的公用陆地移动网络(Public Land Mobile Network,PLMN)中的任何终端设备、可用于通信的其他设备、或者上述的任意组合。本公开的实施例对此并不做限定。
在本公开中使用的术语“网络节点”或“网络设备”是可以用于与终端设备通信的实体或节点,例如可以是接入网设备。接入网设备可以是部署在无线接入网中为移动终端提供无线通信功能的装置,例如可以是无线接入网(Radio Access Network,RAN)网络设备。接入网设备可以包括各种类型的基站。基站用于为终端设备提供无线接入服务。具体来说,每个基站都对应一个服务覆盖区域,进入该区域的终端设备可通过无线信号与基站通信,以此来接受基站提供的无线接入服务。基站的服务覆盖区域之间可能存在交叠,处于交叠区域内的终端设备可收到来自多个基站的无线信号,因此可以同时由多个基站为该终端设备提供服务。根据所提供的服务覆盖区域的大小,接入网设备可以包括提供宏蜂窝(Macro cell)的宏基站、用于提供微蜂窝(Pico cell)的微基站、用于提供微微蜂窝的微微基站和用于提供毫微微蜂窝(Femto cell) 的毫微微基站。此外,接入网设备还可以包括各种形式的中继站、接入点、无线电单元(Radio Unit,RRU)、远程无线电单元(Remote Radio Unit,RRU)、射频头(Radio Head,RH)、远程无线电头端(Remote Radio Head,RRH)等等。在采用不同的无线接入技术的系统中,接入网设备的名称可能会有所不同,例如在长期演进系统(Long Term Evolution,LTE)网络中称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G网络中称为节点B(NodeB,NB),在5G网络中可以称为g节点B(gNB)或NR节点B(NR NB),等等。在某些场景下,接入网设备可以包含集中单元(Central Unit,CU)和/或分布单元(Distributed Unit,DU)。CU和DU可以放置在不同的地方,例如:DU拉远,放置于高话务量的区域,CU放置于中心机房。或者,CU和DU也可以放置在同一机房。CU和DU也可以为一个机架下的不同部件。在不同系统中,CU(或CU-控制面(control plane,CP)和CU-用户面(user plane,UP))、DU或RU也可以有不同的名称,但是本领域的技术人员可以理解其含义。例如,在是开放式接入网(open RAN,O-RAN或ORAN)系统中,CU也可以称为O-CU(开放式CU),DU也可以称为O-DU,CU-CP也可以称为O-CU-CP,CU-UP也可以称为O-CU-UP,RU也可以称为O-RU。为描述方便,本申请中以CU,CU-CP,CU-UP、DU和RU为例进行描述。本申请中的CU(或CU-CP、CU-UP)、DU和RU中的任一单元,可以是通过软件模块、硬件模块、或者软件模块与硬件模块结合来实现。为方便描述,本公开后续的实施例中,上述为移动终端提供无线通信功能的装置统称为网络设备,本公开的实施例不再具体限定。
在本公开的一些实施例中,“中继节点”或称为“IAB节点”是指可以为终端提供无线接入服务的网络设备。终端的业务数据由中继节点通过无线回传链路连接到IAB宿主(IAB-donor)设备,即,宿主节点,以进行传输。中继节点由移动终端(mobile termination,MT)部分和DU部分组成。其中,当中继节点面向其父节点时,可以作为终端设备,即MT的角色,当中继节点面向其子节点(子节点可能是另一中继节点,或者普通终端)时,其被视为网络设备,即作为DU的角色。
在本公开的一些实施例中,“宿主节点”或称为“IAB宿主”是指具有完整网络设备,例如基站(gNB),的功能的接入网网元,包括CU和DU。宿主节点连接到提供核心网服务的核心网设备,例如连接到5G核心网设备。核心网设备在不同的系统下可对应不同的设备。比如在3G中核心网设备可以对应通用分组无线服务技术(general packet radio service,GPRS)的服务支持节点(serving GPRS support node,SGSN)和/或GPRS的网关支持节点(gateway GPRS Support Node,GGSN)。在4G中核心网设备可以对应移动管理实体(mobility management entity,MME)和/或服务网关(serving gateway,S-GW)。在5G中核心网设备可以对应接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)或者用户面功能(user plane function,UPF)。
如上文提到的,基于接入回传一体化技术的通信系统中在通信效率和通信流程等方面仍然存在一些问题需要解决,本公开的实施例提供了一种用于改进IAB通信系统的通信效率和通信流程等方面的技术方案。下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法、功能描述等也可以应用于装置实施例或系统实施例中。
图1A示出了本公开实施例可实现于其中的通信系统100的一个示意图。通信系统100可以为3GPP相关的蜂窝系统,例如,4G、5G移动通信系统、或面向未来的演进系统(例如6G移动通信系统)。通信系统100还可以是O-RAN、云无线接入网络(cloud radio access network,CRAN)、或者无线保真(wireless fidelity,WiFi)系统。通信系统100还可以是以上两种或两种以上系统融合的通信系统。如图1A所示,该系统100可以包括中继节点110,两个宿主节点120和130以及终端140-1至140-N(统称为终端140)。
该终端140可以具备无线收发功能,其能够与一个或多个通信系统的一个或多个网络节点进行通信(如无线通信),并接受网络节点提供的网络服务,这里的网络节点包括但不限于图示网络节点。例如,终端140可以通过接入链路连接到中继节点110。中继节点110与两个宿主节点120和130之间可以通信。例如,中继节点110可以通过回传链路直接与两个宿主节点120和130进行通信。该回传链路可以是有线回传链路(例如光纤、铜缆),也可以是无线回传链路(例如微波)。备选地或附加地,中继节点110与两个宿主节点120和130之间可以经由一个或多个其他中继节点实现通信。宿主节点120和宿主节点130之间可以直接或经由其他节点实现通信。
在一些部署中,宿主节点120和130可以包括CU和DU。CU实现网络设备的部分功能,DU实现网络设备的部分功能,例如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control, MAC)层和物理(physical,PHY)层的功能。
在一些部署中,中继节点110可以包括DU和移动终端MT。MT功能性可以由耦接的宿主节点或中继节点110的DU控制和/或调度。
在一些实施例中,例如随着中继节点110的移动,其接入宿主节点120下的小区(也称为源小区)的信号质量变差。中继节点110可以切换至宿主节点130下的小区(也称为目标小区)。相应地,连接到中继节点110的终端140也随着切换到宿主节点130下的目标小区。
应当理解的是,在图1A中所示出的终端和网络节点的数目仅作为示例。可以存在更多或更少的终端和网络节点,本公开对此不做任何限制。
另外,应当理解,通信系统100可以适用于各类场景。例如,通信系统100的应用场景包括但不限于第五代系统(5G)、新无线(new radio,NR)通信系统等已存在的通信系统或未来的演进的通信系统等。此外,也应当理解上述通信可以遵循任意适当通信技术以及相应的通信标准。
图1B示出了与本公开的实施例有关的无线中继场景示意图。在IAB网络中,在UE和IAB宿主之间的一条传输路径上,可以包含一个或多个IAB节点。每个IAB节点需要维护面向父节点的无线回传链路,还需要维护和子节点的无线链路。若IAB节点的子节点是终端(例如,UE),该IAB节点和子节点之间是无线接入链路。若IAB节点的子节点是其他IAB节点,该IAB节点和子节点之间是无线回传链路。如图1B所示,在路径“UE1→IAB节点4→IAB节点3→IAB节点1→IAB宿主”中,UE1通过无线接入链路接入IAB节点4,IAB节点4通过无线回传链路连接到IAB节点3,IAB节点3通过无线回传链路连接到IAB节点1,IAB节点1通过无线回传链路连接到IAB宿主。
图1C示出了与本公开的实施例有关的IAB网络架构示意图。IAB节点的DU(也记为IAB节点DU,或IAB-DU)在逻辑上通过F1接口连接至IAB宿主的CU(也简称为IAB宿主CU,宿主CU)。实际上,IAB-DU与宿主CU的连接是通过每一跳的IAB节点的MT(也简称为IAB节点MT,或IAB-MT)与父节点DU之间的NR Uu接口实现的。但由于最终IAB-DU能够与宿主CU通信,可以认为在逻辑上存在F1接口。F1接口支持用户面协议(F1-U)和控制面协议(F1-C),用户面协议包括以下协议层的一个或多个:GPRS道协议用户面(General Packet Radio Service tunneling protocol user plane,GTP-U),用户数据报协议(user datagram protocol,UDP)、因特网协议(internet protocol,IP)等协议层。控制面协议包括以下中的一个或者多个:F1应用协议(F1application protocol,F1AP)、流控传输协议(stream control transport protocol,SCTP)、IP等协议层。
与本公开的实施例有关的IAB网络中的用户面和控制面协议栈如图1D-1E所示。通过F1-C,IAB宿主和IAB节点之间可以进行接口管理、对IAB-DU进行管理、以及执行UE上下文相关的配置等。通过F1-U,IAB宿主和IAB节点之间可以执行用户面数据的传输,以及下行传输状态反馈等功能。
IAB网络中的无线回传链路引入了一个新的协议层——回传适配协议(Backhaul Adaptation Protocol,BAP)层,该协议层位于RLC层之上,可用于实现数据包在无线回传链路的路由,以及承载映射等功能。应当理解,尽管在图1D-1E中,IAB节点1和IAB节点2中的BAP被示出为一个实体,但本发明不限于此。在其他实现中,BAP也可以被实现为分立的两个实体。如图1D-1E所示,BAP层的起止点位于UE连接的IAB-DU(接入IAB-DU)和IAB宿主的DU(也简称为IAB宿主DU,或宿主DU)。宿主CU为其控制的每个IAB节点以及IAB宿主DU分配唯一的BAP地址,这样可以唯一标识网络中的每个IAB节点和IAB宿主DU。在多条路径的情况下,每个BAP地址可以关联多个路径标识符(ID)。源节点(下行DL方向的IAB宿主DU,上行UL方向的接入IAB节点)在其BAP层将在它们的数据包中添加BAP报头,BAP报头的内容包括10bit的目标BAP地址(BAP address)和10bit的BAP路径ID(BAP path ID),二者合起来称为BAP路由ID(BAP routing ID),共20bit。BAP路由ID反映了目标节点的标识和达到目标节点采用的路径。宿主CU为每一个IAB节点配置了路由表,路由表中的内容为BAP路由ID与下一跳BAP地址的映射关系。通过路由表可以指示数据包应转发到哪个子节点(如果是DL)或父节点(如果是UL)。除了路由功能外,BAP协议还执行入口和出口回传RLC信道之间的映射,映射规则同样由宿主CU配置,其本质可以理解为一种更细粒度的路由,在确定下一跳目标BAP地址的基础上(即确定下一跳链路),进一步选择一个RLC信道。
图1F示出了与本公开的实施例有关的IAB节点迁移的示意图。在即将标准化的版本18(Rel-18)的演进方向中,在第三代合作伙伴计划(3GPP)IAB标准化工作中已达成了共识,将在Rel-18中考虑移动IAB场景。如图1F所示,IAB-MT3初始接入IAB宿主CU1控制的IAB-DU1下的小区。由于IAB节点3 的移动,IAB-DU1下的小区的信号质量变差,因此IAB-MT3切换至IAB宿主CU2控制的IAB-DU2下的小区,这一场景称为IAB节点的迁移。发生迁移的IAB节点称为边界节点(boundary node)。
在当前版本17(Rel-17)的讨论中,将IAB节点跨CU迁移分为全部迁移(Full migration)和部分迁移(Partial migration)两种实现方式,其中,全部迁移又包括Gradual Top-down、Gradual Bottom-up和Full Nested三种实现方式。Rel-17在概括性地给出了全部迁移的三种实现方式后,认为这些流程都比较复杂,可能无法在Rel-17中完全讨论清楚,因此,Rel-17首先讨论了部分迁移的流程,给出了实现部分迁移的信令级别的设计,而基于对部分迁移的理解和共识,全部迁移的内容将在Rel-18中继续讨论。部分迁移中,MT发生了跨CU切换,但DU仍然与源CU保持F1连接。而全部迁移中,DU需要与目标CU建立F1连接。Rel-17主要面向以负载均衡为出发点的IAB节点的迁移,因此可以采用部分迁移。只通过切换MT,使得F1接口换一条路径传输,但不改变F1接口的锚点。而Rel-18中主要面向因IAB节点移动导致的迁移。在IAB节点移动范围较大时,仍然与源CU维持F1连接是不合适的,F1连接的锚点也需要变化到目标CU上。因此,全部迁移是Rel-18移动IAB的必选特性。下面将结合图1G至图1J对部分迁移和全部迁移讨论现状进行简要介绍。
图1G示出了与本公开的实施例有关的部分迁移的示意图。如图1G所示,在部分迁移之前,IAB-MT2与CU1之间存在RRC连接,IAB-DU2与CU1之间存在F1接口,IAB节点2与IAB宿主通过源路径(经过由IAB-MT1和IAB-DU1构成的IAB节点1)进行通信。在部分迁移时,IAB-MT2发生了跨CU的小区切换,与CU2建立了RRC连接,但为了避免引入F1接口的重建立过程,IAB-DU2仍然与CU1保持F1接口,并不会与CU2建立F1接口,因此,CU1与IAB-DU2之间的通信路径变为了跨拓扑的: 在图1G中,CU1和CU2可以分别称为F1终止(F1-terminating)CU和非F1终止(non-F1-terminating)CU。需要注意的是,数据在这条路径上传输时并不经过CU2,CU1与宿主DU2是直接通过IP网络通信的。
在图1H至图1J示出的与本公开的实施例有关的全部迁移中,需要将IAB-DU3与CU1之间的F1接口迁移至CU2。由于协议不支持一个DU与两个CU同时存在F1接口,因此可以通过将IAB-DU3扩展为两个逻辑DU,即IAB-DU3a和IAB-DU3b来实现迁移。IAB-DU3a始终维持与CU1之间的F1接口,而IAB-DU3b用于与CU2建立新的F1接口。DU3a与DU3b可以视为两个DU,各自分别于相应的CU存在F1接口。UE需要做一次切换,由IAB-DU3a下的小区切换至IAB-DU3b的小区之下。如下详细介绍三种全部迁移的实现方式。
图1H示出了与本公开的实施例有关的Gradual Top-down类型的全部迁移的示意图。如图1H所示,Gradual Top-down的前几步与部分迁移类似。首先按照部分迁移的过程,切换MT3,建立DU3a与CU1之间的跨拓扑F1-C和F1-U。CU2在帮助建立DU3a与CU1之间的跨拓扑F1-C和F1-U时,也建立DU3b与CU2之间的F1-C和F1-U。然后将UE切换至DU3b下,UE可直接在目标路径上与CU2通信。具体地,在步骤1,CU1通过源路径向MT3发送切换命令。在步骤2,MT3切换到CU2。在步骤3,MT3通过目标路径向CU2发送切换完成的指示。继而,在步骤4,CU1在目标路径上向UE发送切换命令。在步骤5,UE切换到DU3b。在步骤6,UE在目标路径上向CU2发送切换完成的指示。如图1H所示,在步骤3与步骤4中间,也即,在MT3切换完成后并且在向UE发送切换命令之前,DU3b与CU2建立F1接口,只有当DU3b与CU2建立起F1接口并接收UE上下文配置后,才能进入步骤4,向UE发送切换命令。
图1I示出了与本公开的实施例有关的Gradual Bottom-up类型的全部迁移的示意图。如图1I所示,在Gradual Bottom-up中,首先通过建立DU3b与CU2之间的跨拓扑F1-C和F1-U,使得UE能够切换到DU3b之下。建立DU3b与CU2之间通过源路径上的拓扑的F1-C和F1-U数据传输。在所有UE切换成功后,再向MT发送切换命令或生效MT的切换命令。然后在目标路径上建立F1-C/U,使得UE的流量能够迁移到目标路径。具体地,在步骤0,DU3b建立与CU2之间的通过源路径上的F1接口。在步骤1,CU1通过源路径向UE发送切换命令。在步骤2,UE向DU3b发起随机接入。在步骤3,UE通过源路径上的拓扑向CU2发送切换完成的指示。在步骤4,CU1通过源路径向MT3发送切换命令。在步骤5,MT3切换到CU2。在步骤6,MT3通过目标路径向CU2发送切换完成的指示。
图1J示出了与本公开的实施例有关的Full Nested类型的全部迁移的示意图。如图1J所示,Full Nested情况与Gradual Bottom-up类似,首先通过建立DU3b与CU2之间的跨拓扑F1-C(只建立跨拓扑F1-C,用于CU2做切换判决时允许将UE切到DU3b之下,但不建立跨拓扑F1-U,不进行跨拓扑数据传输),使得UE能够允许切换到DU3b之下。在向所有UE发送切换命令后,马上向MT发送切换命令或生效MT的切 换命令。然后直接在目标路径上建立F1-C/U,使得UE的流量能够迁移到目标路径。具体地,在步骤0,DU3b建立与CU2之间的通过源路径上的F1接口。在步骤1,CU1通过源路径向UE发送切换命令。在步骤2,UE向DU3b发起随机接入。在步骤3,CU1通过源路径向MT3发送切换命令。在步骤4,MT3切换到CU2。在步骤5,MT3通过目标路径向CU2发送切换完成的指示。在步骤6,UE通过目标路径向CU2发送切换完成的指示。
IAB-DU3b可以认为是在全部迁移流程中才开启并进行小区激活的,小区激活的过程为DU3b在F1建立请求(F1 SETUP REQUEST)中向CU2上报DU3b下所有小区拟采用的资源配置和NR小区全球标识(NR Cell Global Identifier,NCGI)。NCGI由gNB ID和小区标识符cell ID组成,其中gNB ID是CU的ID,cell ID是由操作管理维护系统或网管系统(Operations,Administration and Maintenance,OAM)预先配置给的IAB-DU3的(即IAB-DU3已知如果要启动一个DU3b,其下的小区将采用哪些cell ID)。当DU3b将与CU2建立F1接口时,DU3b已知了CU2的gNB ID。因此将CU2的gNB ID与预配的cell ID合并,即可获得每个小区的NCGI。CU2收到F1建立请求后,选择其中的一些小区激活,在F1建立响应(F1 SETUP RESPONSE)中携带激活小区的NCGI,DU3b收到后,激活对应的小区,其他未指示激活的小区将处于未激活状态。综上所述,DU3b是在与CU2建立F1接口的过程中进行小区激活的,此后,UE可以测量DU3b下小区的信号,网络可将UE切换至DU3b下。
可见,在由于IAB节点从CU1到CU2的迁移引起的UE从DU3a下的小区至DU3b下的小区的切换中,需要UE做邻区测量并且进行测量上报,CU1根据UE的测量报告选择DU3b下的目标小区,并且向CU2发起切换请求。
一方面,由于邻区测量需要获得一段时间内的参考信号接收功率RSRP,时间较长,再加上MT的切换原本就需要时间,这使得整个全部迁移流程较慢,UE业务中断时间较长,影响用户体验。另一方面,全部迁移的发生是由于MT需要切换造成的,而UE与DU3a之间的信号质量并未恶化,此时需要尽可能减小IAB节点的迁移对UE的影响,换言之,UE的业务中断时间较长并非UE本身造成的,上述切换流程对UE并不够友好。因此,需要一种有效的切换方式。
鉴于上述分析和研究,本公开的实施例提供了一种通信方法。在该方法中,在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,中继节点向第一宿主节点或第二宿主节点发送信息。该信息指示终端将被切换到的目标小区。该源小区为中继节点的第一分布式单元DU下的小区,该目标小区为中继节点的第二DU下的小区,第一DU和第二DU分别与第一宿主节点和第二宿主节点存在F1接口。中继节点接收来自于第一宿主节点的切换信息,该切换信息指示终端切换到目标小区。继而,中继节点通过源小区向终端发送切换信息。
以此方式,可以实现在无需利用终端的测量报告的情况下,宿主节点可以直接从中继节接收的信息中获知终端要切换到的目标小区。从而减少了信令开销,缩短了迁移的执行时间,提高了通信效率。
图2图示了根据本公开的一些实施例的免测量情况下的终端切换的过程200的交互信令图。为了讨论清楚而不具有任何限制,过程200将结合图1A来进行讨论。
在过程200中,在通过源小区服务终端140的中继节点110从第一宿主节点120向第二宿主节点130迁移的情况下,中继节点110向第一宿主节点120发送(205)信息206。相应地,第一宿主节点120从中继节点110接收(210)信息206。该信息206指示终端140将被切换到的目标小区。该源小区为中继节点110的第一DU下的小区,并且该目标小区为中继节点110的第二DU下的小区。该第一DU和第二DU分别与第一宿主节点120和第二宿主节点130存在F1接口。应当理解,中继节点110的第一DU和第二DU可以为逻辑上的DU。第一DU下的源小区和第二DU下的目标小区是相互隔离的,也即,被配置有相互隔离的资源。
在一些实施例中,信息206可以包括目标小区与终端140之间的对应关系。例如,信息206可以包括目标小区的标识符与终端140的标识符之间的对应关系。例如,终端140的标识符可以包括小区无线网络临时标识C-RNTI。备选地或附加地,信息206可以包括目标小区与源小区之间的对应关系。在另一些实施例中,信息206可以包括目标小区的标识符与源小区的标识符之间的对应关系。应当理解,虽然在一些示例中,第二DU此时可以尚未启动,但其下小区的小区标识符是OAM预配置的,因此中继节点110可以已知第二DU启动后其下小区将要采用的小区标识符。
在一些实施例中,在第一宿主节点120的CU向第二宿主节点130的CU发送用于中继节点110的MT的切换请求,早于中继节点110的第二DU与第二宿主节点130的CU之间建立接口的情况下,中继节点 110的第一DU或MT可以向第一宿主节点120的CU发送信息206。
例如,中继节点110的第一DU可以经由F1AP消息发送信息206。备选地或附加地,中继节点110的MT可以经由RRC消息发送信息。作为示例,信息206可以被包括在MT测量报告中。
如图2所示,第一宿主节点120向第二宿主节点130发送(215)信息216。该信息216指示终端140将被切换到的目标小区。相应地,第二宿主节点130从第一宿主节点120接收(220)信息216。
在一些实施例中,第一宿主节点120可以向第二宿主节点130发送用于以下两者中的至少一项的切换请求:终端140的切换、以及中继节点110的MT从第一宿主节点120的CU到第二宿主节点130的CU的切换。相应地,第二宿主节点130可以从第一宿主节点120接收切换请求。例如,该信息216可以被包括在该切换请求中。作为示例,第一宿主节点120可以通过在切换请求中包括目标小区的标识符和第二宿主节点130的标识符,也即,NCGI,来指示目标小区。作为另一示例,第一宿主节点120可以通过在切换请求中包括其他类型的标识信息,例如小区标识符(cell ID)、物理小区标识符(PCI)等来指示目标小区。从而,第二宿主节点130可以获知终端140要切换到的目标小区。
由于在全部迁移的三种流程中,gradual bottom-up需要第二宿主节点130的CU在与第一宿主节点120相关联的源路径上建立与第二DU之间的跨拓扑F1-U业务作为中间状态,随后才会将F1-U业务迁移到与第二宿主节点130相关联的目标路径上。而其他两种全部迁移的流程中,第二宿主节点130的CU直接在源路径上建立F1-U业务。因此,在一些实施例中,为支持上述三种类型的全部迁移流程,该切换请求还可以包括第二宿主节点130是否需要经由与第一宿主节点120相关联的路径,来发送终端140的用户面业务的指示。由于F1-U业务与终端140相关,因此可以在发送UE上下文信息的同时指示UE业务是否需要在源路径上建立。
在接收到切换请求后,第二宿主节点130可以针对中继节点110的MT和终端140执行准入判决,并且可以向第一宿主节点120返回关于MT和终端140的切换响应。通过把终端140与MT的切换请求合并发送,相比于单独发送,有利于第二宿主节点130更好的做准入判决。进而第二宿主节点130可以在为MT选择目标小区时,考虑到其下终端的负载情况。相应地,第一宿主节点120可以接收到该切换响应,以继续切换流程。
在一些实施例中,在向第一宿主节点120的CU发送信息206之后,中继节点110可以启动第二DU。例如,中继节点110可以将目标小区的资源配置为与源小区的资源相对应。作为示例,中继节点110可以将目标小区的波束方向和/或时域资源配置为与源小区的波束方向和/或时域资源配置相同,并且将目标小区的频域资源配置为与源小区的频域资源不重叠。备选地,中继节点110可以将目标小区的资源配置为与源小区的资源相对应。应当理解,这仅为示例,中继节点110可以根据实践以任何其他方式将目标小区的资源配置为与源小区的资源相对应,本公开的实施例不限于此。通过将第一DU与第二DU下小区的资源配置为相对应,可以使得终端140在第一DU下与第二DU下小区的信号质量、数据速率等参数接近,进而可以支持将终端140直接切换至第二DU对应的目标小区下而免去等待其测量和上报的过程。
在一些实施例中,可以执行第二DU与第二宿主节点130的CU之间的节点上的资源配置。这里的资源配置包括用于传输F1-C的资源和用于传输F1-U的资源。例如,基于切换请求指示第二宿主节点130需要经由与第一宿主节点120相关联的路径来发送终端140的用户面业务,第二宿主节点130可以向第一宿主节点120发送建立该路径的请求。继而,第一宿主节点120可以响应于该请求而建立该路径,以供第二宿主节点130传输终端140的部分用户面业务。
在一些实施例中,中继节点110可以向第二宿主节点发送接口建立请求消息。例如,中继节点130的第二DU可以向第二宿主节点130的CU发起F1建立请求消息,以请求建立F1-C。该F1建立请求消息例如可以携带所有小区的NCGI。而后,第二宿主节点130的CU可以基于从信息216中获取的目标小区来确定第二DU要激活的小区。继而,第二宿主节点130的CU可以向中继节点110的第二DU发送接口建立响应消息。该接口建立响应消息可以向第二DU指示要激活的小区。相应地,中继节点110可以从第二宿主节点接收该接口建立响应消息,并且进而确定要激活的小区。
在一些实施例中,在完成第二DU下的对应的目标小区的激活后,中继节点110可以向第一宿主节点120的CU发送第二DU已准备好向终端140提供服务的指示。例如,中继节点110的第一DU可以向第一宿主节点120的CU发送该指示。作为另一示例,中继节点110的MT可以向第一宿主节点120的CU发送该指示。
如图2所示,第一宿主节点120向中继节点110发送(225)指示终端140切换到目标小区的切换信 息226。相应地,中继节点110接收(230)来自于第一宿主节点120的切换信息226,并且通过源小区向终端140发送(235)该切换信息226。相应地,终端140从中继节点110接收(240)该切换消息226,并且继而执行切换。
以此方式,通过中继节点向第一宿主节点指示终端将被切换到的目标小区,使得无需等待每个终端的测量上报,第一宿主节点能够直接获知每个UE的目标小区。因此,免去了终端的邻区测量与测量上报的等待时间,减小了全部迁移的执行时间和终端的业务中断时间。此外,通过把终端与MT的切换请求合并发送,相比于单独发送,有利于第二宿主节点更好的做准入判决,使得第二宿主节点在为MT选择目标小区时,能够考虑到其下终端的负载情况。
图3图示了根据本公开的另一些实施例的免测量情况下的终端切换的过程300的交互信令图。为了讨论清楚而不具有任何限制,过程300将结合图1A来进行讨论。
在过程300中,在通过源小区服务终端140的中继节点110从第一宿主节点120向第二宿主节点130迁移的情况下,中继节点110向第二宿主节点130发送(305)信息306。相应地,第二宿主节点130从中继节点110接收(310)信息306。该信息306指示终端140将被切换到的目标小区。该源小区为中继节点110的第一DU下的小区,并且该目标小区为中继节点110的第二DU下的小区。该第一DU和第二DU分别与第一宿主节点120和第二宿主节点130存在F1接口。应当理解,中继节点110的第一DU和第二DU可以为逻辑上的DU。第一DU下的源小区和第二DU下的目标小区是相互隔离的,也即,被配置有相互隔离的资源。
在一些实施例中,信息306可以包括目标小区与终端140之间的对应关系。例如,信息306可以包括目标小区的标识符与终端140的标识符之间的对应关系。例如,终端140的标识符可以包括小区无线网络临时标识C-RNTI。作为示例,信息306可以包括可以发送终端140的标识与目标小区的NCGI的对应关系。
在一些实施例中,在中继节点110的第二DU与第二宿主节点130的CU之间建立接口,早于第一宿主节点120的CU向第二宿主节点130的CU发送用于中继节点110的MT的切换请求的情况下,中继节点110的第二DU可以向第二宿主节点130的CU发送信息306。在该实施例中,在向第二宿主节点130的CU发送信息306之前,中继节点110可以启动第二DU。例如,中继节点110可以将目标小区的资源配置为与源小区的资源相对应。作为示例,中继节点110可以将目标小区的波束方向和/或时域资源配置为与源小区的波束方向和/或时域资源配置相同,并且将目标小区的频域资源配置为与源小区的频域资源不重叠。备选地,中继节点110可以将目标小区的资源配置为与源小区的资源相对应。应当理解,这仅为示例,中继节点110可以根据实践以任何其他方式将目标小区的资源配置为与源小区的资源相对应,本公开的实施例不限于此。通过将第一DU与第二DU下小区的资源配置为相对应,可以使得终端140在第一DU下与第二DU下小区的信号质量、数据速率等参数接近,进而可以支持将终端140直接切换至第二DU对应的目标小区下而免去等待其测量和上报过程。
在一些实施例中,信息306可以经由接口建立请求消息被发送。例如,中继节点130的第二DU可以向第二宿主节点130的CU发起F1建立请求消息,以请求建立F1-C。而后,第二宿主节点130的CU可以基于从信息306中获取的目标小区来确定第二DU要激活的小区。继而,第二宿主节点130的CU可以向中继节点110的第二DU发送接口建立响应消息。该接口建立响应消息可以向第二DU指示要激活的小区。相应地,中继节点110可以从第二宿主节点接收该接口建立响应消息,并且进而确定要激活的小区。继而,中继节点110可以激活对应的小区。
如图3所示,第一宿主节点120向第二宿主节点130发送(315)与终端140将被切换到的目标小区有关的通知消息316。相应地,第二宿主节点130从第一宿主节点120接收(320)通知消息316。在一些实施例中,第一宿主节点120可以通过接口消息(例如,XN接口消息,或NG接口消息)向第二宿主节点130发送通知消息316。例如,该通知消息316可以指示在用于切换的切换请求326中,用于指示目标小区的标识信息是缺省的或无效的。作为另一示例,该通知消息316可以指示目标小区,以用于第二宿主节点130发送切换请求326时正确填写目标小区。
继而,基于通知消息316,第一宿主节点120向第二宿主节点130发送(325)用于终端140的切换的切换请求326。相应地,第二宿主节点130从第一宿主节点120接收(330)切换请求326。在一些实施例中,切换请求326可以被携带在针对中继节点130的MT的切换请求中。
例如,如果确定通知消息316指示切换请求326中标识信息是缺省的或无效的,第一宿主节点120可 以向第二宿主节点130发送标识信息为缺省或无效的切换请求326。在这种情况下,第二宿主节点130继而可以根据信息306中获取的终端140的目标小区来进行切换判决。
作为另一示例,如果确定通知消息指示目标小区,第一宿主节点120可以向第二宿主节点130发送指示目标小区的切换请求326。例如,切换请求326可以包括目标小区的NCGI。在这种情况下,第二宿主节点130继而可以根据切换请求326中获取的终端140的目标小区来进行切换判决。
由于在全部迁移的三种流程中,gradual bottom-up需要第二宿主节点130的CU在与第一宿主节点120相关联的源路径上建立与第二DU之间的跨拓扑F1-U业务作为中间状态,随后才会将F1-U业务迁移到与第二宿主节点130相关联的目标路径上。而其他两种全部迁移的流程中,第二宿主节点130的CU直接在源路径上建立F1-U业务。因此,在一些实施例中,为支持上述三种类型的全部迁移流程,该切换请求326还可以包括第二宿主节点130是否需要经由与第一宿主节点120相关联的路径,来发送终端140的用户面业务的指示。
在一些实施例中,可以执行第二DU与第二宿主节点130的CU之间的节点上的资源配置。这里的资源配置包括用于传输F1-C的资源和用于传输F1-U的资源。例如,基于切换请求指示第二宿主节点130需要经由与第一宿主节点120相关联的路径来发送终端140的用户面业务,第二宿主节点130可以向第一宿主节点120发送建立该路径的请求。继而,第一宿主节点120可以响应于该请求而建立该路径,以供第二宿主节点130传输终端140的部分用户面业务。
在一些实施例中,在完成第二DU下的对应的目标小区的激活后,中继节点110可以向第一宿主节点120的CU发送第二DU已准备好向终端140提供服务的指示。例如,中继节点110的第一DU可以向第一宿主节点120的CU发送该指示。作为另一示例,中继节点110的MT可以向第一宿主节点120的CU发送该指示。
如图3所示,第一宿主节点120向中继节点110发送(335)指示终端140切换到目标小区的切换信息336。相应地,中继节点110接收(340)来自于第一宿主节点120的切换信息336,并且通过源小区向终端140发送(345)该切换信息336。相应地,终端140从中继节点110接收(350)该切换消息336,并且继而执行切换。
以此方式,通过中继节点向第二宿主节点指示终端将被切换到的目标小区,使得第二宿主节点不需要通过来自第一宿主节点的切换请求才获取目标小区,因此第一宿主节点不需要通过终端测量报告来选择目标小区,免去等待终端的测量和上报过程。因此,免去了终端的邻区测量与测量上报的等待时间,减小了全部迁移的执行时间和终端的业务中断时间。
图4图示了根据本公开的实施例的免测量情况下的终端切换的第一示例过程400,其可以被认为是图2的终端切换过程的一个具体实现方式。为了讨论清楚而不具有任何限制,过程400将结合图1A来进行讨论。在该实施例中,中继节点110实现为IAB节点3 401,中继节点110的第一DU实现为DU3a 403,中继节点110的第二DU实现为DU3b 405,中继节点110的MT实现为MT3 407,第一宿主节点120的CU实现为CU1 409,第二宿主节点130的CU实现为CU2 411,终端140实现为UE 413。
如图4所示,在步骤1,MT3 407向CU1 409发送测量报告。CU1 409基于MT3 407的测量报告,判断MT3 407需要切换。
继而,在步骤2,通过DU3a 403的F1AP或MT3 407的RRC消息上报DU3b 405下小区的小区ID与UE ID或与DU3a 403下小区的小区ID的对应关系。其中UE ID可以包括C-RNTI。如果此步骤采用MT3407的RRC消息,则步骤2也可以携带在步骤1中的MT测量报告中。步骤2使得CU1 409能够直接或间接的获取每个UE的目标小区ID。
在步骤,CU1 409向CU2 411发送关于MT3 407和所有UE的切换请求消息,携带UE的目标小区的NCGI。该NCGI由步骤2中CU1 409获取的目标小区ID加上CU2 411的gNB ID生成。
此外,在全部迁移的三种流程中,gradual bottom-up需要CU2 411在源路径上建立与DU3b 405之间的跨拓扑F1-U业务作为中间状态,随后才会将F1-U业务迁移到目标路径上,而其他两种流程中,CU2 411直接在目标路径上建立F1-U业务,因此步骤3中还可以指示CU2 411是否需要在源路径上建立F1-U业务。换言之,由于F1-U业务与UE相关,可以在发送UE上下文信息的同时指示UE业务是否需要在源路径上建立。
在步骤4,CU2 411针对MT和所有UE做准入判决,并向CU1 409返回关于MT和所有UE的切换响应消息。在步骤5,MT3 407获取目标路径上的IP地址与BAP配置。
在步骤6,DU3b 405启动,并将DU3b 405下的小区与DU3a 403下的小区的资源配置相对应。例如,可以将DU3b 405下的小区与DU3a 403下的小区的资源配置为波束方向和/或时隙配置相同,通过频点错开。通过将DU3b 405与DU3a 403下小区的资源配置为相对应,可以使得UE 413在DU3a 403下与DU3b405下小区的信号质量、数据速率等参数接近,进而可以实现将UE413直接切换至DU3b 405对应的小区下而免去等待其测量和上报过程。
在步骤7,完成DU3b 405与CU2 411之间的节点上的资源配置。此处的资源配置包括用于传输F1-C的资源和用于传输F1-U的资源,其中CU2 411是否需要在源路径上建立F1-U业务是根据步骤3中的指示决定的。
在步骤8,DU3b 405向CU2 411发起F1建立请求消息,请求建立F1-C,其携带所有小区的NCGI。在步骤9,CU2 411在F1建立响应消息中根据步骤3中获取的UE 413的目标小区的NCGI,指示DU3b 405激活UE 413的目标小区。
在步骤10,IAB节点3 401通过DU3a 403的F1AP或MT3 407的RRC消息告知CU1 409DU3b 405已准备好。在步骤11,CU1 409向UE 413下发切换命令。
由此,不需要等待每个UE的测量上报,CU1 409直接根据DU3b 405与DU3a 403下的新旧小区对应关系为UE 413选择目标小区,减小了全部迁移的执行时间和UE的业务中断时间。除此之外,把UE 413与MT3 407的切换请求合并发送,相比于单独发送,有利于CU2 411更好的做准入判决。使得允许CU2 411在为MT3 407选择目标小区时,考虑到其下UE的负载情况。
图5图示了根据本公开的实施例的免测量情况下的终端切换的第二示例过程500,其可以被认为是图3的终端切换过程的一个具体实现方式。为了讨论清楚而不具有任何限制,过程500将结合图1A来进行讨论。在该实施例中,中继节点110实现为IAB节点3 501,中继节点110的第一DU实现为DU3a 503,中继节点110的第二DU实现为DU3b 505,中继节点110的MT实现为MT3 507,第一宿主节点120的CU实现为CU1 509,第二宿主节点130的CU实现为CU2 511,终端140实现为UE 513。
如图5所示,在步骤1,DU3b 505启动,并将DU3b 505下的小区与DU3a下的小区的资源配置相对应,如:波束方向和/或时隙配置相同,通过频点错开。
在步骤2,DU3b 505向CU2 511发起F1建立请求消息,以请求建立F1-C。该F1建立请求消息携带所有小区的NCGI,并且指示每个UE的目标小区。例如,可以指示UE的标识符与NCGI的对应关系。
在步骤3,CU2 511在F1建立响应消息中根据步骤2中获取的每个UE的目标小区,指示DU3b 505激活对应的小区。继而,可以执行选项1或选项2。
在选项1中,在步骤4。CU1 509通过接口消息(例如,XN消息)告知CU1 509允许在这些UE的切换请求中缺省目标NCGI或设为一个不起作用的NCGI。继而,在步骤5,CU1 509向CU2 511发起关于UE的切换请求(可能携带在针对MT的切换请求中,也可能单独发送),其中的目标小区NCGI缺省或不起作用。CU2 511直接根据步骤2中收到的目标小区进行切换判决。此外,切换请求中还可以携带是否需要在源路径上建立F1-U的指示。
在选项2中,在步骤4,CU2 511通过接口消息(例如,XN消息)告知CU1 509每个UE的目标小区,以用于CU1 509发送UE切换请求时正确填写目标小区。继而,在步骤5,CU1 509向CU2 511发起关于UE的切换请求(可能携带在针对MT的切换请求中,也可能单独发送),该切换请求携带目标小区NCGI。此外,切换请求中还可以携带是否需要在源路径上建立F1-U的指示。
由此,不需要CU1 509通过UE测量报告来选择目标小区并告知CU2 511。而是边界节点501为UE 513确定目标小区后,上报给CU2 511。免去了UE的测量过程,减小了全部迁移的执行时间和UE的业务中断时间。
图6图示了根据本公开的实施例的免测量情况下的终端切换的第三示例过程600。为了讨论清楚而不具有任何限制,过程600将结合图1A来进行讨论。在该实施例中,中继节点110实现为IAB节点3 601,中继节点110的第一DU实现为DU3a 603,中继节点110的第二DU实现为DU3b 605,中继节点110的MT实现为MT3 607,第一宿主节点120的CU实现为CU1 609,第二宿主节点130的CU实现为CU2 611,终端140实现为UE 613。
在过程600中,选项1或选项2或选项3是可选的。
在选项1中,CU2 611从CU1 609获得DU3b 605下希望激活小区的NCGI。在步骤1,通过DU3a 603的F1AP或MT3 607的RRC消息上报DU3b 605下小区的小区ID与UE ID或与DU3a 603下小区的小区 ID的对应关系,或上报DU3b 605下希望激活小区的小区ID。DU3b 605下希望激活的小区为与DU3a 603下已激活小区对应的小区。在步骤2,CU1 609在向CU2 611发送的接口消息(例如,XN接口消息)中携带DU3b 605下希望激活小区的NCGI。该信息可以放在MT切换请求中,也可以是一条单独的接口消息。在步骤3,DU3b 605启动,并将DU3b 605下的小区与DU3a 603下的小区的资源配置为相对应。例如,将DU3b 605下的小区与DU3a 603下的小区的资源配置为波束方向和/或时隙配置相同,通过频点错开。在步骤4,DU3b 605向CU2 611发起F1建立请求消息,以请求建立F1-C。例如,该F1建立请求消息携带所有小区的NCGI。在步骤5,CU2 611在F1建立响应中根据步骤3中获取的希望激活小区的NCGI,指示DU3b 605激活对应的小区。
在选项2中,CU2 611通过F1接口从DU3b 605获得其下希望激活小区的NCGI。在步骤1,DU3b 605启动,并将DU3b 605下的小区与DU3a 603下的小区的资源配置为相对应。例如,将DU3b 605下的小区与DU3a 603下的小区的资源配置为波束方向和/或时隙配置相同,通过频点错开。在步骤2,DU3b 605向CU2 611发起F1建立请求消息,以请求建立F1-C。例如,该F1建立请求消息携带所有小区的NCGI,以及指示希望激活哪些小区(即,哪些DU3b 605下的小区对应的小区已在DU3a 603下激活)。在步骤3,CU2 611在F1建立响应中根据步骤2中获取的希望激活小区的NCGI,指示DU3b 605激活对应的小区。
在选项3中,CU2 611通过例如XN接口结合F1接口获得希望激活小区的NCGI。在步骤1,通过DU3a 603的F1AP或MT3 607的RRC消息上报DU3b 605下小区的小区ID与UE ID或与DU3a 603下小区的小区ID的对应关系,或上报DU3b 605下希望激活小区的小区ID。DU3b 605下希望激活的小区为与DU3a 603下已激活小区对应的小区。在步骤2,CU1 609在向CU2 611发送的接口消息(例如,XN接口消息)中携带DU3a 603下激活小区的NCGI,或DU3a 603下小区与DU3b 605下小区的对应关系。该信息可以放在MT HO REQUEST中,也可以是一条单独的接口消息。在步骤3,DU3b 605启动,并将DU3b 605下的小区与DU3a 603下的小区的资源配置为相对应。例如,将DU3b 605下的小区与DU3a 603下的小区的资源配置为波束方向和/或时隙配置相同,通过频点错开。在步骤4,DU3b 605向CU2 611发起F1建立请求消息,以请求建立F1-C。例如,该F1建立请求消息携带所有小区的NCGI,以及DU3a 603下小区与DU3b605下小区的对应关系,或DU3a 603下激活小区的NCGI。步骤4中的信息为步骤2中信息的互补选项。在步骤5,CU2 611根据步骤2和4获取DU3b 605下希望激活小区的NCGI,这些NCGI为根据步骤2和4中获取的DU3a 603中的已激活小区和DU3a 603下小区与DU3b 605下小区NCGI的对应关系生成的。CU2 611在F1建立响应中指示DU3b 605激活对应的小区。
以此方式,通过执行选项1至3中的任一项,可以使得CU2 611获知DU3b 605下希望激活的小区标识并据此激活DU3b 605下的小区。而CU2 611对每UE的目标情况仍是未知的,因此需要由CU1 609在UE切换请求中告知CU2 611。具体方案如下。
在步骤6,通过DU3a 603的F1AP或MT3 607的RRC消息告知CU1 609UE的目标小区NCGI或携带DU3b 605已准备好的指示。如前序步骤采用了选项1或选项3中下划线的方案,CU1 609已经知道了每UE的目标小区ID,因此IAB节点3只需要向CU1 609告知DU3b 605已准备好,CU1 609即可向CU2 611发起UE切换请求。而如果前序步骤采用了其他方案,则CU1 609只知道DU3b 605下激活小区的小区ID,还不知道每UE的目标小区ID,继而IAB节点3需要告知CU1 609每个UE的目标小区NCGI。
在步骤7,CU1 609向CU2 611发送UE切换请求。该UE切换请求携带每个UE的目标小区NCGI,以及是否需要在源路径上建立F1-U的指示。在步骤8,CU2 611向CU1 609回复UE切换响应。在步骤9,CU1 609向UE 613下发切换命令。
由此,CU2 611通过与CU1 609之间的交互(例如,XN交互)和/或与DU3b 605之间的F1交互,获取了希望激活的DU3b 605下小区的NCGI,即,DU3b 605下的哪些小区对应的小区已在DU3a 603下激活,并据此指示DU3b 605激活小区。DU3b 605下小区激活后,中继节点可以直接上报UE的目标小区,免去了UE的测量过程。由于不需要等待每个UE的测量上报,在DU3b 605激活后,边界节点直接根据DU3b 605与DU3a 603下的源小区与目标小区的对应关系上报UE的目标小区,减小了全部迁移的执行时间和UE的业务中断时间。
图7A图示了本公开的实施例可以基于其实现的基于O-RAN的IAB架构。O-RAN相比于常规的RAN架构,强调了不同网元间功能的进一步分离与接口开放。如图7A所示,O-RAN在宿主CU 701之上再设置了一层控制器,也即,近实时(near real-time,near-RT)的RAN智能控制器(RIC)702。RIC 702通过各个接口控制其他网元。O-RAN的核心思想是使得每个网元的功能更加简单,处理功能更加弱化,通过 统一化的接口来进行控制,使得RAN更加开放,更多设备商能够参与其中。O-RAN是独立于3GPP的新兴标准组织,本实施例基于未来可能出现的O-RAN架构。
图7B图示了根据本公开的实施例的免测量情况下的终端切换的第三示例过程703。第三示例过程703中所图示的步骤主要用于确定源小区和目标小区的对应关系。为了讨论清楚而不具有任何限制,过程703将结合图1A和7A来进行讨论。在该实施例中,中继节点110实现为IAB节点3 704,中继节点110的第一DU实现为DU3a 705,中继节点110的第二DU实现为DU3b 706,第一宿主节点120的CU实现为CU1707,第二宿主节点130的CU实现为CU2 708。
过程703给出了O-RAN架构下的DU3b 706与DU3a 705下小区对应关系生成机制。在O-RAN架构中,IAB-DU的处理功能弱化,不负责生成DU3b 706与DU3a 705的对应关系,因此边界节点704,无法将DU3b 706与DU3a 705下的小区的对应关系报给CU1 707。在DU3b 706启动前,在步骤1,DU3a 705通过E2接口将DU3a 705和将要启动的DU3b 706下每个小区的资源配置报给RIC 702,以由RIC 702判断哪些小区存在对应关系。然后,在步骤2和3,RIC 702通过E2接口将小区的对应关系发送给CU1 707和/或CU2 708。在CU1 709和/或CU2 708获取DU3b 706与DU3a 705下的小区的对应关系后,可以据此获得UE的目标小区,之后的操作如先前参考图4只图6的过程所述。
由此,基于O-RAN架构中的E2接口CU1 707和/或CU2 708能够借助RIC 702获知UE的目标小区,免去了UE的测量过程,减小了全部迁移的执行时间和UE的业务中断时间。
图8图示了根据本公开的实施例的迁移过程800。过程800涉及网络侧(NW)801和移动的IAB-MT 803.
该实施例给出了移动的IAB-MT初始接入时的限制条件。如果IAB节点发生大范围移动,宿主基站需要支持全部迁移。因此相比于Rel-17/版本16(Rel-16)的宿主基站,需要对支持全部迁移的Rel-18宿主基站做一定的升级。该实施例给出了网络侧通过在系统消息中广播Rel-18移动IAB支持(mobile IAB-support)或全部迁移支持(full migration-support)信元,向移动IAB节点指示其能力的方案。
如图8所示,在步骤1,网络侧801(例如,在CU范围下的DU)在系统消息中向包括IAB-MT 803的所有UE广播其对Rel-18全部迁移的支持能力。例如,该系统消息可以包括系统信息块1(SIB1消息)。例如,所使用的信元的名称可以包括Rel-18移动IAB支持或全部迁移支持。例如,对于固定部署的IAB-MT,步骤1中的信元可以被忽略。接下来,选项1和选项2是可选的。
在选项1中,在步骤2,移动的IAB-MT 803可以仅对支持Rel-18移动IAB能力(例如,支持Rel-18全部迁移)的基站发起随机接入。继而,在步骤3,网络侧801可以其执行全部迁移或部分迁移。
在选项2中,在步骤2,移动的IAB-MT 803可以接入不支持Rel-18全部迁移的基站。继而,在步骤3,网络侧801可以仅对其执行部分迁移。
在本实施例中,通过网络侧广播对Rel-18全部迁移的支持能力,移动的IAB节点可以选择仅接入支持Rel-18全部迁移的基站,或接入仅支持Rel-16/Rel-17IAB功能的基站并且在之后的时间里仅执行部分迁移。以此方式,本实施例为Rel-18移动的IAB节点的迁移提供了更加灵活的选择。例如,网络侧可以广播自己的能力,继而IAB节点可以根据其实现选择要接入的网络节点。
图9示出了根据本公开的实施例的在中继节点处实现的方法900的示意流程图。在一种可能的实现方式中,方法900可以由通信系统100中的中继节点110来实现。在其他可能的实现方式中,方法900也可以由独立于通信系统100的其他通信设备来实现。作为示例,在下文中将以由通信系统100中的中继节点110来实现为例来描述方法900。
在框910,在通过源小区服务终端140的中继节点110从第一宿主节点120向第二宿主节点130迁移的情况下,中继节点110向第一宿主节点120或第二宿主节点130发送信息,信息指示终端140将被切换到的目标小区,源小区为中继节点110的第一DU下的小区,目标小区为中继节点110的第二DU下的小区,第一DU和第二DU分别与第一宿主节点120和第二宿主节点130存在F1接口。在框920,中继节点110接收来自于第一宿主节点120的切换信息,切换信息指示终端140切换到目标小区。在框830,中继节点110通过源小区向终端140发送切换信息。
在一些实施例中,向第一宿主节点120发送的信息包括:目标小区与终端140之间的对应关系;或者目标小区与源小区之间的对应关系。
在一些实施例中,向第二宿主节点130发送的信息包括:目标小区与终端140之间的对应关系。
在一些实施例中,向第一宿主节点120发送信息包括:在第一宿主节点120的CU向第二宿主节点130 的CU发送用于中继节点110的移动终端MT的切换请求,早于中继节点110的第二DU与第二宿主节点130的CU之间建立接口的情况下,中继节点110的第一DU或MT向第一宿主节点120的CU发送信息。在一些实施例中,方法900还包括:在向第一宿主节点120的CU发送信息之后,中继节点110启动第二DU。在一些实施例中,启动第二DU包括:中继节点110将目标小区的资源配置为与源小区的资源相对应。在一些实施例中,将目标小区的资源配置为与源小区的资源相对应包括:将目标小区的波束方向和/或时域资源配置为与源小区的波束方向和/或时域资源配置相同;以及将目标小区的频域资源配置为与源小区的频域资源不重叠。在一些实施例中,向第一宿主节点120发送信息包括以下至少一项:中继节点110的第一DU经由F1应用协议F1AP消息发送信息;以及中继节点110的MT经由无线电资源控制RRC消息发送信息。
在一些实施例中,向第二宿主节点130发送信息包括:在中继节点110的第二DU与第二宿主节点130的CU之间建立接口,早于第一宿主节点120的CU向第二宿主节点130的CU发送用于中继节点110的移动终端MT的切换请求的情况下,中继节点110的第二DU向第二宿主节点130的CU发送信息。在一些实施例中,方法900还包括:在向第二宿主节点130的CU发送信息之前,中继节点110启动第二DU。在一些实施例中,启动第二DU包括:中继节点110将目标小区的资源配置为与源小区的资源相对应。在一些实施例中,将目标小区的资源配置为与源小区的资源相对应包括:将目标小区的波束方向和/或时域资源配置为与源小区的波束方向和/或时域资源配置相同;以及将目标小区的频域资源配置为与源小区的频域资源不重叠。在一些实施例中,信息经由接口建立请求消息被发送。
在一些实施例中,方法900还包括以下至少一项:中继节点110的第一DU向第一宿主节点120的CU发送第二DU已准备好向终端140提供服务的指示;或者中继节点110的移动终端MT向第一宿主节点120的CU发送指示。
在一些实施例中,方法900还包括:中继节点110的第二DU从第二宿主节点130的CU接收接口建立响应消息,接口建立响应消息向第二DU指示要激活的小区,要激活的小区是基于目标小区被确定的。
图10示出了根据本公开的一些实施例的在第一宿主节点处实现的方法1000的示意流程图。在一种可能的实现方式中,方法1000可以由通信系统100中的第一宿主节点120来实现。在其他可能的实现方式中,方法1000也可以由独立于通信系统100的其他通信设备来实现。作为示例,在下文中将以由通信系统100中的第一宿主节点120来实现为例来描述方法1000。
在框1010,在通过源小区服务终端140的中继节点110从第一宿主节点120向第二宿主节点130迁移的情况下,第一宿主节点120从中继节点110接收信息,信息指示终端140将被切换到的目标小区,源小区为中继节点110的第一DU下的小区,目标小区为中继节点110的第二DU下的小区,第一DU和第二DU分别与第一宿主节点120和第二宿主节点130存在F1接口。在框1020,第一宿主节点120向中继节点110发送切换信息,切换信息指示终端140切换到目标小区。
在一些实施例中,信息包括:目标小区与终端140之间的对应关系;或者目标小区与源小区之间的对应关系。
在一些实施例中,方法1000还包括:第一宿主节点120的CU向第二宿主节点130的CU发送切换请求,切换请求用于以下两者中的至少一项:终端140的切换,其中切换请求指示目标小区;以及中继节点110的移动终端MT从第一宿主节点120的CU到第二宿主节点130的CU的切换。在一些实施例中,方法1000还包括:通过在切换请求中包括目标小区的标识符和第二宿主节点130的标识符来指示目标小区。在一些实施例中,切换请求还包括以下指示:第二宿主节点130是否需要经由与第一宿主节点120相关联的路径,来发送终端140的用户面业务。
在一些实施例中,从中继节点110接收信息包括:在第一宿主节点120的CU向第二宿主节点130的CU发送用于中继节点110的移动终端MT的切换请求,早于中继节点110的第二DU与第二宿主节点130的CU之间建立接口的情况下,第一宿主节点120的CU从中继节点110的第一DU或MT接收信息。在一些实施例中,从第一DU接收信息包括:第一宿主节点120的CU经由F1应用协议F1AP消息从第一DU接收信息。在一些实施例中,从MT接收信息包括:第一宿主节点120的CU经由无线电资源控制RRC消息从MT接收信息。
在一些实施例中,方法1000还包括以下至少一项:第一宿主节点120的CU从中继节点110的第一DU接收第二DU已准备好向终端140提供服务的指示;或者第一宿主节点120的CU从中继节点110的移动终端MT接收指示。
图11示出了根据本公开的一些实施例的在第一宿主节点处实现的方法1100的示意流程图。在一种可能的实现方式中,方法1100可以由通信系统100中的第一宿主节点120来实现。在其他可能的实现方式中,方法1100也可以由独立于通信系统100的其他通信设备来实现。作为示例,在下文中将以由通信系统100中的第一宿主节点120来实现为例来描述方法1100。
在框1110,在通过源小区服务终端140的中继节点110从第一宿主节点120向第二宿主节点130迁移的情况下,第一宿主节点120从第二宿主节点130接收与终端140将被切换到的目标小区有关的通知消息,源小区为中继节点110的第一DU下的小区,目标小区为中继节点110的第二DU下的小区,第一DU和第二DU分别与第一宿主节点120和第二宿主节点130存在F1接口,通知消息指示以下之一:在用于切换的切换请求中,用于指示目标小区的标识信息是缺省的或无效的;或者目标小区。在框1120,基于通知消息,第一宿主节点120向第二宿主节点130发送用于终端140的切换的切换请求。
在一些实施例中,发送切换请求包括:如果确定通知消息指示切换请求中标识信息是缺省的或无效的,第一宿主节点120向第二宿主节点130发送标识信息为缺省或无效的切换请求。
在一些实施例中,发送切换请求包括:如果确定通知消息指示目标小区,第一宿主节点120向第二宿主节点130发送指示目标小区的切换请求。
在一些实施例中,切换请求还包括以下指示:第二宿主节点130是否需要经由与第一宿主节点120相关联的路径,来发送终端140的用户面业务。
图12示出了根据本公开的实施例的在第二宿主节点处实现的方法1200的示意流程图。在一种可能的实现方式中,方法1200可以由通信系统100中的第二宿主节点130来实现。在其他可能的实现方式中,方法1200也可以由独立于通信系统100的其他通信设备来实现。作为示例,在下文中将以由通信系统100中的第二宿主节点130来实现为例来描述方法1200。
在框1210,在通过源小区服务终端140的中继节点110从第一宿主节点120向第二宿主节点130迁移的情况下,第二宿主节点130从第一宿主节点120或中继节点110接收信息,信息指示终端140将被切换到的目标小区,源小区为中继节点110的第一DU下的小区,目标小区为中继节点110的第二DU下的小区,第一DU和第二DU分别与第一宿主节点120和第二宿主节点130存在F1接口。
在一些实施例中,从第一宿主节点120接收信息包括:第二宿主节点130的CU从第一宿主节点120的CU接收包括信息的切换请求,切换请求用于以下两者中的至少一项:终端140的切换;以及中继节点110的移动终端MT从第一宿主节点120的CU到第二宿主节点130的CU的切换。在一些实施例中,切换请求还包括以下指示:第二宿主节点130是否需要经由与第一宿主节点120相关联的路径,来发送终端140的用户面业务。在一些实施例中,方法1200还包括:基于切换请求包括指示,第二宿主节点130向第一宿主节点120发送建立路径的请求。在一些实施例中,方法1200还包括:第二宿主节点130针对中继节点110的MT和终端140执行准入判决。
在一些实施例中,方法1200还包括:第二宿主节点130的CU基于目标小区来确定第二DU要激活的小区;以及第二宿主节点130的CU向中继节点110的第二DU发送接口建立响应消息,接口建立响应消息向第二DU指示要激活的小区。
在一些实施例中,从中继节点110接收信息包括:在第二宿主节点130的CU与中继节点110的第二DU之间建立接口,早于第一宿主节点120的CU向第二宿主节点130的CU发送用于中继节点110的移动终端MT的切换请求的情况下,第二宿主节点130的CU从中继节点110的第二DU接收信息。在一些实施例中,信息经由接口建立请求消息被接收。在一些实施例中,方法1200还包括:第二宿主节点130的CU向第一宿主节点120的CU发送通知消息,通知消息指示在用于切换的切换请求中,用于指示目标小区的标识信息是缺省的或无效的;以及第二宿主节点130的CU从第一宿主节点120的CU接收切换请求。在一些实施例中,方法1200还包括:第二宿主节点130的CU向第一宿主节点120的CU发送通知消息,通知消息指示目标小区;以及第二宿主节点130的CU从第一宿主节点120的CU接收用于切换的切换请求,切换请求指示目标小区。
以此方式,可以实现在无需利用终端140的测量报告的情况下,宿主节点可以直接从中继节接收的信息中获知终端140要切换到的目标小区。从而减少了信令开销,缩短了迁移的执行时间,提高了通信效率。
另外,根据常规的随机接入技术,UE在初始入网和切换过程中,通过随机接入过程来获取目标小区的时间提前量(TA)和波束选择。TA反映了信号的传播时延,其与UE和gNB的相对位置有关。由于gNB下各个UE与gNB之间的距离不同,需要将其上行链路(UL)信号在不同给的时刻(即,不同的TA)发 送,以保证到达gNB的时刻是相同的,以实现上行同步。
例如,在CU间(inter-CU)切换的随机接入过程中,源CU向UE通过无线电资源控制(RRC)消息配置测量对象,以触发UE进行邻区测量。UE通过RRC消息向源CU发送测量报告,测量报告包括对测量对象的测量值。而后,源CU根据测量报告选择目标小区,向目标CU发送切换请求消息,其中携带了目标小区和UE对目标小区中至少一个波束(例如,用同步信号块(SSB)索引和/或信道状态信息参考信号(CSI-RS)索引表示)的测量结果。继而,目标CU向源CU发送切换请求确认,其中携带各个波束对应的随机接入信道(RACH资源)(SSB索引,CSI-RS索引,前导码索引)。源CU将上述信息通过切换命令消息发送给UE。UE选择一个信号质量高于门限的SSB索引及其对应的前导码码,将前导码在其选择的SSB索引对应的波束上发送给目标gNB,这条消息称为消息1(msg1)。SSB索引,前导码,和波束方向三者是存在固定对应关系的。继而,目标gNB根据UE选择的资源(波束)情况,获得随机接入无线网络临时标识(RA-RNTI)的值,通过在RA-RNTI加扰的物理下行控制信道(PDCCH)上、在UE选择的SSB索引对应的波束上向UE发送消息2(msg2)。UE根据RA-RNTI正确接收msg2,msg2中含有该UE的用于上行同步的TA信息和初始的上行资源分配信息(UL授权)。
随机接入的作用之一是TA的获取和波束的选择。发明人注意到,在本发明考虑的场景中,第一DU与第二DU属于同一个实体DU,也即,源小区与目标小区与UE的相对位置是相同的,UE的TA并没有发生变化,因此,UE可以不通过RACH过程获取新的TA。另一方面,由于前述实施例中提出将目标小区的资源配置为与源小区的资源相对应,例如可以使得将目标小区的波束方向和/或时域资源配置为与源小区的波束方向和/或时域资源配置相同;以及将目标小区的频域资源配置为与源小区的频域资源不重叠。由于源小区与目标小区的波束方向相同,因此,对于波束的选择,也不需要通过随机接入过程,而是可以直接选择与源小区中相同的波束。也即,随机接入的上述两个作用在上述实施例提出的方案架构下已得到解决。因此,考虑到随机接入过程会带来很大的能耗,发明人考虑可以采用免随机接入(RACH-less),以实现更好地节能。
根据另外的常规技术,在层1或层2移动性课题的免随机接入方案中,源gNB可以根据UE对目标小区波束的测量报告,直接用媒体接入控制控制元素(MAC CE)指示UE在目标小区的波束。
然而,在关于免随机接入的当前讨论中,需要UE对目标小区的波束进行测量,并且基于测量结果来实现UE在目标小区下使用的波束的确定。考虑到UE进行波束测量及上报仍然会带来较大的信令开销,因此,需要改进目标波束的确定方式,以实现更好的节能。
鉴于上述分析和研究,本公开的实施例提供了一种通信方法。在该方法中,终端从第一宿主设备或者中继节点接收指示信息。该指示信息用于指示终端要在切换到的目标小区下使用的目标波束,该目标波束与终端在源小区下使用的源波束相同。例如,指示信息可以指示以下中的至少一项:终端使用与终端在源小区下使用的源波束的方向或索引相同的波束;目标波束的索引;或源波束的索引。
以此方式,可以在无需进行波束测量的情况下,确定终端在目标小区下使用的波束。从而有效地减小随机接入的资源开销以及信令开销,改进传输效率。
图13图示了根据本公开的实施例的免波束测量情况下的终端切换的过程的交互信令图。为了讨论清楚而不具有任何限制,过程1300将结合图1A来进行讨论。
在过程1300中,在通过源小区服务于终端140的中继节点110的分布式单元DU从第一宿主节点120向第二宿主节点130迁移的情况下,终端140确定(1305)要在切换到的目标小区下使用的目标波束。例如,该目标波束可以与终端140在源小区下使用的源波束相同。例如,与源波束相同可以是指与源波束的方向或索引相同的波束。例如,波束的索引可以为SSB索引或CSI-RS索引。该源小区为中继节点110的第一DU下的小区,该目标小区为中继节点110的第二DU下的小区。继而,终端140可以使用所确定目标波束来执行后续的通信过程。该第一DU和第二DU分别与第一宿主节点120和第二宿主节点130存在F1接口。该第一CU可以为中继节点110的CU,该第二CU可以为中继节点110的目标CU。应当理解,中继节点110的第一DU和第二DU可以为逻辑上的DU。第一DU下的源小区和第二DU下的目标小区是相互隔离的,也即,被配置有相互隔离的资源。
在一些实施例中,如图13所示,第一宿主设备120可以向终端140发送(1310)指示信息,该指示信息用于指示终端140要在切换到的目标小区下使用的目标波束。例如,指示信息可以指示终端140使用与终端140在源小区下使用的源波束的方向或索引相同的波束。作为另一示例,指示信息可以指示目标波束的索引。作为又一示例,指示信息可以指示源波束的索引。然后,基于所接收到的指示信息,终端140 可以确定目标波束。作为示例,指示信息可以被包括在针对终端140的切换命令中。
作为示例,第一宿主设备可以从中继节点110(例如,中继节点110的第一CU)获取用于确定终端140要在目标小区下使用的目标波束的波束信息。例如,波束信息可以指示在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束。在这种情况下,可以考虑源小区与目标小区实际的物理波束方向和时域资源的对应关系可能完全相同,这时可以认为源小区与目标小区的波束是完全相同的。备选地或附加地,波束信息可以指示源小区下的波束与目标小区下的波束的对应关系。例如,源小区下的波束索引(例如,SSB索引和/或CSI-RS索引)与目标小区下的波束索引的对应关系。在这种情况下,源小区与目标小区可能波束方向相同,但每个波束方向出现的时间可能不同(例如,相同的波束方向可能在源小区与目标小区表示为不同的SSB索引和/或CSI-RS索引),这时需要利用一个波束对应关系来表示相同方向波束的索引(也即,源小区与目标小区下使用的波束)的对应关系。因此,波束信息可以指示源小区与目标小区下SSB索引和/或CSI-RS索引的对应关系。应当理解,上述步骤可以在不执行动作1310的情况下被执行,本公开的保护范围在此不作限制。
作为另一示例,第二宿主节点130可以向第一宿主设备发送用于确定终端140要在目标小区下使用的目标波束的该波束信息。例如,波束信息可以指示在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束,和/或源小区下的波束与目标小区下的波束的对应关系。可选的,中继节点110(例如,中继节点110的第二CU)可以例如通过F1消息(诸如,用以请求建立F1接口的F1建立请求消息)向第二宿主节点130发送用于确定终端140要在目标小区下使用的目标波束的波束指示,例如用以指示在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束,和/或源小区下的波束与目标小区下的波束的对应关系。应当理解,上述步骤可以在不执行动作1310的情况下被执行,本公开的保护范围在此不作限制。
在一些实施例中,在对要使用的目标波束的确定后,第一宿主节点120可以向第二宿主节点130发送与目标波束有关的波束指示信息,例如,针对该终端140的切换请求。在该波束指示信息中可以指示在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束,和/或目标波束的索引,和/或源波束的索引。继而,第一宿主设备120可以从第二宿主节点130接收与目标波束有关的波束确认信息,例如,针对该切换请求的确认。该波束确认指示可以包括对于在目标小区下使用与源小区下使用的源波束的方向或索引相同的波束的确认,和/或目标波束的索引。应当理解,上述步骤可以在不执行动作1310的情况下被执行,本公开的保护范围在此不作限制。
备选地或附加地,如图13所示,中继节点110可以向终端140发送(1315)用于指示终端140要在切换到的目标小区下使用的目标波束的该指示信息。例如,类似地,该指示信息可以指示终端140使用与终端140在源小区下使用的源波束的方向或索引相同的波束,和/或目标波束的索引,和/或源波束的索引。例如,中继节点110的第一DU可以例如通过MAC CE或下行链路控制信息(DCI)来向终端140发送该指示信息。然后,基于从中继节点110接收到的指示信息,终端140可以确定目标波束。在这种情况下,波束映射关系和波束重用指示可以是预配置在第一DU上的(如:通过OAM来预配置)。
备选地或附加地,使用在目标小区下使用与源波束相同的目标波束可以是一种隐式的指示。从而,终端140和网络节点(例如,第一宿主设备120和第二宿主设备130)可以根据对于将目标波束确定为与源波束相同的波束的这一商定来理解其间的交互行为。例如,终端140可以基于确认其处于移动的中继节点110的覆盖下(例如,处于移动的车上)而确定在目标小区下使用与源小区相同的波束。
本公开所提出的上述目标波束的确定方式同样适用于UE CU内(intra-CU)的切换场景(例如,由于中继节点110移动带来的小区PCI冲突,需要更换PCI,宿主节点(例如,宿主节点110)的CU控制中继节点110生成一个新的小区(也即,目标小区),并且采用新的PCI。该目标小区与旧的小区(也即,源小区)的波束方向相同,终端140可以相应地从源小区切换至目标小区,此时属于intra-CU的切换)。在该场景下不需要CU间的交互,仅需要宿主节点向终端140发送指示信息,该指示信息用于指示终端140要在切换到的目标小区下使用的目标波束。例如,该指示信息可以指示终端140使用与终端140在源小区下使用的源波束的方向或索引相同的波束,和/或目标波束的索引,和/或源波束的索引。
以此方式,终端能够直接使用与源波束相同的目标波束来接入目标小区。可以使得移动IAB场景下的终端能够正确进行基于相同波束来实现小区切换。终端无需进行随机接入过程即可接入目标小区,减小了随机接入的资源开销与信令开销。
本公开所提出的上述目标波束的确定方式同样适用于结合图2至图8描述的免测量情况下的基于随机 接入的终端切换方式。在一些实施例中,第二宿主节点130可以基于上述目标波束的确定方式来直接确定RACH资源(即,可以确实使用与源小区相同的目标波束相对应的RACH资源),而非基于用户的测量上报。例如,第二宿主节点130可以向第一宿主节点指示与源小区相同的目标波束相对应的RACH资源。作为示例,第二宿主节点130可以在向第一宿主节点120发送的、针对终端140的切换请求确认中的RRC容器(RRC Container)指示对应于与终端140在源小区中的源波束相同相同(例如,方向相同或索引相同)的目标波束的RACH资源。第一宿主节点120接收到,可以将RRC Container中的波束指示针对终端140的切换命令发送给终端140。
图14图示了根据本公开的实施例的免波束测量情况下的终端切换的示例过程,其可以被认为是图13的终端切换过程的一个具体实现方式。为了讨论清楚而不具有任何限制,过程1400将结合图1A来进行讨论。在该实施例中,中继节点110实现为IAB节点1401,中继节点110的第一DU实现为DU3a 1403,中继节点110的第二DU实现为DU3b 1405,第一宿主节点120的CU实现为CU1 1407,第二宿主节点130的CU实现为CU2 1409,终端140实现为UE 1411。
如图14所示,在步骤1,IAB-DU3b 1405向CU2 1409发起F1建立请求消息,以请求建立F1接口,可选地,F1建立请求消息可以携带复用波束(或称复用波束方向)的指示信息(也称为波束复用指示)例如以指示使用与源小区下使用的源波束相同方向或索引的波束作为目标波束,和/或波束对应信息例如以指示源小区与目标小区下的波束的对应关系(例如,SSB索引和/或CSI-RS索引的对应关系)。
在步骤2,CU2 1409向IAB-DU3b 1405返回F1建立响应消息。接下来,步骤3a和步骤3b是可选地。例如,在F1建立请求消息携带复用波束(或称复用波束方向)的指示信息的实施例中,在步骤3a,CU2 1409可以告知CU1 1407复用波束(或称复用波束方向)的指示信息,和/或波束对应信息。备选地,在步骤3b,IAB-DU3a 1403可以通过F1消息告知CU1 1407复用波束(或称复用波束方向)的指示信息,和/或波束对应信息。
在步骤4,CU1 1407向CU2 1409发送针对UE 1411的切换请求消息。例如,该切换请求携带复用波束(或称复用波束方向)的指示信息,和/或UE 1411的目标波束信息(例如,SSB索引和/或CSI-RS索引)。备选地,由于CU2 1409知晓波束对应信息,因此可以在切换请求中直接携带源小区下使用的源波束的波束信息。
在步骤5,CU2 1409向CU1 1407返回针对UE 1411的切换请求响应消息。例如,该切换请求响应消息直接携带复用波束(或称复用波束方向)的确认信息,和/或目标波束信息(例如:SSB索引和/或CSI-RS索引)。
在步骤6,CU1 1407向UE 1411发送切换命令。例如,该切换命令可以携带复用波束(或称复用波束方向)的指示信息,和/或UE 1411的目标波束信息(例如,SSB索引和/或CSI-RS索引)。此步骤用于指示UE 1411使用正确的波束与目标站通信。
图15示出了可以用来实施本公开的实施例的示例通信设备1500的示意性框图。设备1500可以被实现为或者包括图1A的中继节点110或第一宿主节点120,或第二宿主节点130或终端140。如图所示,设备1500包括一个或多个处理器1510,耦合到处理器1510的一个或多个存储器1520,以及耦合到处理器1510的通信模块1540。
通信模块1540可以用于双向通信。通信模块1540可以具有用于通信的至少一个通信接口。通信接口可以包括与其他设备通信所必需的任何接口。
处理器1510可以是适合于本地技术网络的任何类型,并且可以包括但不限于以下至少一种:通用计算机、专用计算机、微控制器、数字信号处理器(Digital Signal Processor,DSP)、或基于控制器的多核控制器架构中的一个或多个。设备1500可以具有多个处理器,例如专用集成电路芯片,其在时间上从属于与主处理器同步的时钟。
存储器1520可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性存储器的示例包括但不限于以下至少一种:只读存储器(Read-Only Memory,ROM)1524、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、硬盘、光盘(Compact Disc,CD)、数字视频盘(Digital Versatile Disc,DVD)或其他磁存储和/或光存储。易失性存储器的示例包括但不限于以下至少一种:随机存取存储器(Random Access Memory,RAM)1522、或不会在断电持续时间中持续的其他易失性存储器。
计算机程序1530包括由关联处理器1510执行的计算机可执行指令。程序1530可以存储在ROM 1524 中。处理器1510可以通过将程序1530加载到RAM 1522中来执行任何合适的动作和处理。
可以借助于程序1530来实现本公开的实施例,使得设备1500可以执行如参考图1A至图12所讨论的任何过程。本公开的实施例还可以通过硬件或通过软件和硬件的组合来实现。
程序1530可以有形地包含在计算机可读介质中,该计算机可读介质可以包括在设备1500中(诸如在存储器1520中)或者可以由设备1500访问的其他存储设备。可以将程序1530从计算机可读介质加载到RAM 1522以供执行。计算机可读介质可以包括任何类型的有形非易失性存储器,例如ROM、EPROM、闪存、硬盘、CD、DVD等。
在一些实施例中,设备1500中的通信模块1540可以被实现为发送器和接收器(或收发器)。另外,设备1500还可以进一步包括调度器、控制器、射频/天线中的一个或多个,本公开不再详细阐述。
示例性地,图15中的设备1500可以被实现为电子设备,或者可以被实现为电子设备中的芯片或芯片系统,本公开的实施例对此不限定。
当上述通信设备1500为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片通过终端中的其它模块(如射频模块或天线)接收基站发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给基站的。
当上述通信设备1500为应用于基站的模块时,该基站模块实现上述方法实施例中基站的功能。该基站模块从基站中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给基站的;或者,该基站模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是基站发送给终端的。这里的基站模块可以是基站的基带芯片,也可以是CU、DU或其他模块,也可以是开放式无线接入网(open radio access network,O-RAN)架构下的装置,例如开放式CU、开放式DU等装置。
本公开的实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和处理电路。在本公开的实施例中,可以由输入接口和输出接口完成信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。
本公开的实施例还提供了一种芯片系统,包括处理器,用于支持计算设备以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片系统的设备实现上述任一实施例中所涉及的方法。示例性地,该芯片系统可以由一个或多个芯片构成,也可以包含芯片和其他分立器件。
本公开的实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
本公开的实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及的方法和功能。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
通常,本公开的各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他计算设备执行。虽然本公开的实施例的各个方面被示出并描述为框图,流程图或使用一些其他图示表示,但是应当理解,本文描述的框,装置、系统、技术或方法可以实现为,如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某种组合。
本公开还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考附图的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,计算机程序代码或者相关数据可以由任意适当载体承载,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本公开的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本公开的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上已经描述了本公开的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实现方式。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,所述中继节点向所述第一宿主节点或所述第二宿主节点发送信息,所述信息指示所述终端将被切换到的目标小区,所述源小区为所述中继节点的第一分布式单元DU下的小区,所述目标小区为所述中继节点的第二DU下的小区,所述第一DU和所述第二DU分别与所述第一宿主节点和所述第二宿主节点存在F1接口;
    所述中继节点接收来自于所述第一宿主节点的切换信息,所述切换信息指示所述终端切换到所述目标小区;以及
    所述中继节点通过所述源小区向所述终端发送所述切换信息。
  2. 根据权利要求1所述的方法,其中向所述第一宿主节点发送的所述信息包括:
    所述目标小区与所述终端之间的对应关系;或者
    所述目标小区与所述源小区之间的对应关系。
  3. 根据权利要求1所述的方法,其中向所述第二宿主节点发送的所述信息包括:
    所述目标小区与所述终端之间的对应关系。
  4. 根据权利要求1-2中任一项所述的方法,其中向所述第一宿主节点发送所述信息包括:
    在所述第一宿主节点的集中式单元CU向所述第二宿主节点的CU发送用于所述中继节点的移动终端MT的切换请求,早于所述中继节点的所述第二DU与所述第二宿主节点的所述CU之间建立接口的情况下,所述中继节点的所述第一DU或所述MT向所述第一宿主节点的所述CU发送所述信息。
  5. 根据权利要求1或3中任一项所述的方法,其中向所述第二宿主节点发送所述信息包括:
    在所述中继节点的所述第二DU与所述第二宿主节点的集中式单元CU之间建立接口,早于所述第一宿主节点的CU向所述第二宿主节点的所述CU发送用于所述中继节点的移动终端MT的切换请求的情况下,所述中继节点的所述第二DU向所述第二宿主节点的所述CU发送所述信息。
  6. 根据权利要求4所述的方法,还包括:
    在向所述第一宿主节点的所述CU发送所述信息之后,所述中继节点启动所述第二DU。
  7. 根据权利要求5所述的方法,还包括:
    在向所述第二宿主节点的所述CU发送所述信息之前,所述中继节点启动所述第二DU。
  8. 根据权利要求6或7所述的方法,其中启动所述第二DU包括:
    所述中继节点将所述目标小区的资源配置为与所述源小区的资源相对应。
  9. 根据权利要求8所述的方法,其中将所述目标小区的所述资源配置为与所述源小区的所述资源相对应包括:
    将所述目标小区的波束方向和/或时域资源配置为与所述源小区的波束方向和/或时域资源配置相同;以及
    将所述目标小区的频域资源配置为与所述源小区的频域资源不重叠。
  10. 根据权利要求1、2或4中任一项所述的方法,其中向所述第一宿主节点发送所述信息包括以下至少一项:
    所述中继节点的所述第一DU经由F1应用协议F1AP消息发送所述信息;以及
    所述中继节点的移动终端MT经由无线电资源控制RRC消息发送所述信息。
  11. 根据权利要求5所述的方法,其中所述信息经由接口建立请求消息被发送。
  12. 根据权利要求1-11中任一项所述的方法,还包括以下至少一项:
    所述中继节点的所述第一DU向所述第一宿主节点的集中式单元CU发送所述第二DU已准备好向所述终端提供服务的指示;或者
    所述中继节点的移动终端MT向所述第一宿主节点的CU发送所述第二DU已准备好向所述终端提供服务的指示。
  13. 根据权利要求1-12所述的方法,还包括:
    所述中继节点的所述第二DU接收来自所述第二宿主节点的集中式单元CU的接口建立响应消息,所述接口建立响应消息向所述第二DU指示要激活的小区,所述要激活的小区是基于所述目标小区被确定的。
  14. 一种通信方法,其特征在于,包括:
    在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,所述第一宿主节点从所述中继节点接收信息,所述信息指示所述终端将被切换到的目标小区,所述源小区为所述中继节点的第一分布式单元DU下的小区,所述目标小区为所述中继节点的第二DU下的小区,所述第一DU和所述第二DU分别与所述第一宿主节点和所述第二宿主节点存在F1接口;以及
    所述第一宿主节点向所述中继节点发送切换信息,所述切换信息指示所述终端切换到所述目标小区。
  15. 根据权利要求14所述的方法,其中所述信息包括:
    所述目标小区与所述终端之间的对应关系;或者
    所述目标小区与所述源小区之间的对应关系。
  16. 根据权利要求14或15所述的方法,还包括:
    所述第一宿主节点的集中式单元CU向所述第二宿主节点的CU发送切换请求,所述切换请求用于以下两者中的至少一项:
    所述终端的所述切换,其中所述切换请求指示所述目标小区;以及
    所述中继节点的移动终端MT从所述第一宿主节点的所述CU到所述第二宿主节点的所述CU的切换。
  17. 根据权利要求16所述的方法,还包括:
    通过在所述切换请求中包括所述目标小区的标识符和所述第二宿主节点的标识符来指示所述目标小区。
  18. 根据权利要求16或17所述的方法,其中所述切换请求还包括以下指示:所述第二宿主节点是否需要经由与所述第一宿主节点相关联的路径,来发送所述终端的用户面业务。
  19. 根据权利要求14-18中任一项所述的方法,其中从所述中继节点接收所述信息包括:
    在所述第一宿主节点的集中式单元CU向所述第二宿主节点的CU发送用于中继节点的移动终端MT的切换请求,早于所述中继节点的所述第二DU与所述第二宿主节点的所述CU之间建立接口的情况下,所述第一宿主节点的所述CU从所述中继节点的所述第一DU或所述MT接收所述信息。
  20. 根据权利要求19所述的方法,其中从所述第一DU接收所述信息包括:
    所述第一宿主节点的所述CU经由F1应用协议F1AP消息从所述第一DU接收所述信息。
  21. 根据权利要求19所述的方法,其中从所述MT接收所述信息包括:
    所述第一宿主节点的所述CU经由无线电资源控制RRC消息从所述MT接收所述信息。
  22. 根据权利要求14-21中任一项所述的方法,还包括以下至少一项:
    所述第一宿主节点的集中式单元CU从所述中继节点的所述第一DU接收所述第二DU已准备好向所述终端提供服务的指示;或者
    所述第一宿主节点的所述CU从所述中继节点的移动终端MT接收所述指示。
  23. 一种通信方法,其特征在于,包括:
    在通过源小区服务终端的中继节点从第一宿主节点向第二宿主节点迁移的情况下,所述第二宿主节点接收来自所述中继节点的信息,所述信息指示所述终端将被切换到的目标小区,所述源小区为所述中继节点的第一分布式单元DU下的小区,所述目标小区为所述中继节点的第二DU下的小区,所述第一DU和所述第二DU分别与所述第一宿主节点和所述第二宿主节点存在F1接口。
  24. 根据权利要求23所述的方法,还包括:
    所述第二宿主节点针对所述中继节点的移动终端MT和所述终端执行准入判决。
  25. 根据权利要求23或24所述的方法,还包括:
    所述第二宿主节点的所述CU基于所述目标小区来确定所述第二DU要激活的小区;以及
    所述第二宿主节点的所述CU向所述中继节点的所述第二DU发送接口建立响应消息,所述接口建立响应消息向所述第二DU指示所述要激活的小区。
  26. 根据权利要求23-25中任一项所述的方法,其中从所述中继节点接收所述信息包括:
    在所述第二宿主节点的集中式单元CU与所述中继节点的所述第二DU之间建立接口,早于所述第一宿主节点的CU向所述第二宿主节点的所述CU发送用于中继节点的移动终端MT的切换请求的情况下,所述第二宿主节点的所述CU从所述中继节点的所述第二DU接收所述信息。
  27. 根据权利要求23-26中任一项所述的方法,还包括:
    所述第二宿主节点的所述CU向所述第一宿主节点的CU发送通知消息,所述通知消息指示在用于所述切换的切换请求中,用于指示目标小区的标识信息是缺省的或无效的;以及
    所述第二宿主节点的所述CU从所述第一宿主节点的所述CU接收所述切换请求。
  28. 根据权利要求23-26中任一项所述的方法,还包括:
    所述第二宿主节点的所述CU向所述第一宿主节点的CU发送通知消息,所述通知消息指示所述目标小区;以及
    所述第二宿主节点的所述CU从所述第一宿主节点的所述CU接收用于所述切换的切换请求,所述切换请求指示所述目标小区。
  29. 一种通信设备,包括:处理器、以及存储有指令的存储器,所述指令在被所述处理器执行时,使得所述通信设备执行根据权利要求1至13中任一项、根据权利要求14至22中任一项、或者根据权利要求23至28中任一项所述的方法。
  30. 一种计算机可读存储介质,所述计算机可读存储介质存储有指令,所述指令在被通信设备执行时使得所述通信设备执行根据权利要求1至13中任一项、根据权利要求14至22中任一项、或者根据权利要求23至26中任一项所述的方法。
PCT/CN2023/118694 2022-09-27 2023-09-14 一种通信方法、通信设备、介质及程序产品 WO2024067112A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211185681.4 2022-09-27
CN202211185681 2022-09-27
CN202310532622.8A CN117793821A (zh) 2022-09-27 2023-05-10 一种通信方法、通信设备、介质及程序产品
CN202310532622.8 2023-05-10

Publications (1)

Publication Number Publication Date
WO2024067112A1 true WO2024067112A1 (zh) 2024-04-04

Family

ID=90387907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118694 WO2024067112A1 (zh) 2022-09-27 2023-09-14 一种通信方法、通信设备、介质及程序产品

Country Status (2)

Country Link
CN (1) CN117793821A (zh)
WO (1) WO2024067112A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210360491A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Enhanced context transfer of an integrated access and backhaul node
CN114071771A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种逻辑信道lch的配置的方法、通信装置和通信系统
US20220141749A1 (en) * 2019-02-14 2022-05-05 Zte Corporation Iab link control method, communication unit and computer readable storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220141749A1 (en) * 2019-02-14 2022-05-05 Zte Corporation Iab link control method, communication unit and computer readable storage medium
US20210360491A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Enhanced context transfer of an integrated access and backhaul node
CN114071771A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种逻辑信道lch的配置的方法、通信装置和通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on IAB full migration", 3GPP DRAFT; R3-213486, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. electronic; 20210816 - 20210826, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052035300 *

Also Published As

Publication number Publication date
CN117793821A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US10727925B2 (en) Method and apparatus for supporting movement of user equipment in wireless communications
US10425876B2 (en) Data forwarding method, device, and communications system
WO2018029933A1 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
WO2017054538A1 (zh) 建立辅助信令链路的方法及其装置、基站及终端
TWI735064B (zh) 用於切換穩健性之方法及其使用者設備
CN104349419B (zh) 终端多连接的管理方法、装置和系统
US10045266B2 (en) Scheme for transmitting and receiving information in wireless communication system
KR20170128758A (ko) 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
WO2019029703A1 (zh) 数据传输方法和数据传输装置
CN107135674A (zh) 超密集网络中的切换方法及设备
US20240064600A1 (en) Handover processing method, terminal, and storage medium
JP2014516502A (ja) 多重ハンドオーバ準備への拡張
US20230189101A1 (en) Methods and Apparatus for Change of Connection Link Involving Sidelink Relays
EP3459320A1 (en) Path switch method between lte and 5g node
JP6290413B2 (ja) 接続管理方法及びアクセスネットワークエレメント
CN106604335B (zh) 一种小区切换的方法
WO2017204790A1 (en) Connection establishment in a 5g radio access network
CN117480815A (zh) 用于非地面网络卫星切换的方法、终端设备及网络设备
WO2023284642A1 (zh) 条件切换方法和设备
WO2016119407A1 (zh) 通信处理方法及装置
WO2024067112A1 (zh) 一种通信方法、通信设备、介质及程序产品
CN107548166B (zh) 配置多连接信令的方法、主基站、用户设备及通信系统
CN116114304A (zh) 用于小区身份管理的机制
WO2012146132A1 (zh) 一种能力信息发送方法及系统
TW202033047A (zh) 行動性中斷減少之方法及其使用者設備