WO2023000235A1 - 资源处理方法及装置 - Google Patents

资源处理方法及装置 Download PDF

Info

Publication number
WO2023000235A1
WO2023000235A1 PCT/CN2021/107722 CN2021107722W WO2023000235A1 WO 2023000235 A1 WO2023000235 A1 WO 2023000235A1 CN 2021107722 W CN2021107722 W CN 2021107722W WO 2023000235 A1 WO2023000235 A1 WO 2023000235A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resources
information
configuration information
message
Prior art date
Application number
PCT/CN2021/107722
Other languages
English (en)
French (fr)
Inventor
尤心
林雪
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180097248.2A priority Critical patent/CN117204014A/zh
Priority to PCT/CN2021/107722 priority patent/WO2023000235A1/zh
Priority to EP21950491.7A priority patent/EP4340439A1/en
Publication of WO2023000235A1 publication Critical patent/WO2023000235A1/zh
Priority to US18/385,049 priority patent/US20240064584A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • H04W36/00725Random access channel [RACH]-less handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points

Definitions

  • the present application relates to the communication field, and in particular to a resource processing method and device.
  • the handover process of the connected user equipment is supported, that is to say, the UE that is using the network service is moved from the source cell to the target cell.
  • the handover process of the UE can be random access channel-less (RACH-less) handover (handover, HO).
  • RACH-less handover process the UE does not need to perform random
  • the target cell can configure uplink resources for the UE to access the target cell in the handover command, so that the UE can send a handover completion message.
  • the concept of beams is introduced in New Radio (NR).
  • NR New Radio
  • UE usually needs to select beams, and then select resources on beams. Beam information can be obtained during random access.
  • Embodiments of the present application provide a resource processing method and device, so as to solve the problem of resource allocation for communication between a UE and a target network during a RACH-less handover process.
  • the embodiment of the present application provides a resource processing method, including:
  • the first configuration information is used to instruct the terminal device to perform a first type of handover, and the first configuration information includes resource configuration information for performing the first type of handover , the resource configuration information includes an association relationship between at least one uplink resource and at least one beam;
  • a transmission resource is determined according to the resource configuration information, where the transmission resource is used for the terminal device to send uplink data.
  • the embodiment of the present application provides a resource processing method, including:
  • the first configuration information includes resource configuration information for performing the first type of handover, the The resource configuration information includes an association relationship between at least one uplink resource and at least one beam;
  • the embodiment of the present application provides a resource processing device, including:
  • a receiving module configured to receive first configuration information from a network device, wherein the first configuration information is used to instruct the terminal device to perform a first type of handover, and the first configuration information includes a configuration information used to perform the first type of handover Handover resource configuration information, where the resource configuration information includes an association relationship between at least one uplink resource and at least one beam;
  • a determining module configured to determine transmission resources according to the resource configuration information, where the transmission resources are used for the terminal device to send uplink data.
  • the embodiment of the present application provides a resource processing device, including:
  • a sending module configured to send first configuration information to the terminal device, where the first configuration information is used to instruct the terminal device to perform a first type of handover, and the first configuration information includes information for performing the first type of handover Resource configuration information, where the resource configuration information includes an association relationship between at least one uplink resource and at least one beam;
  • the receiving module is configured to receive uplink data sent by the terminal device according to transmission resources, wherein the transmission resources are determined according to the resource configuration information.
  • the embodiment of the present application provides a terminal device, including: a transceiver, a processor, and a memory;
  • the memory stores computer-executable instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the resource processing method as described in the first aspect above.
  • the embodiment of the present application provides a network device, including: a transceiver, a processor, and a memory;
  • the memory stores computer-executable instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the resource processing method as described in the second aspect above.
  • the embodiment of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement the above first aspect or The resource processing method described in the second aspect.
  • an embodiment of the present application provides a computer program product, including a computer program, wherein, when the computer program is executed by a processor, the resource processing method as described in the first aspect or the second aspect is implemented.
  • An embodiment of the present application provides a resource processing method and device, the method including: receiving first configuration information from a network device, wherein the first configuration information is used to instruct the terminal device to perform a first type of handover, and the first configuration information includes Resource configuration information for performing the first type of handover, where the resource configuration information includes an association relationship between at least one uplink resource and at least one beam. According to the resource configuration information, transmission resources are determined, where the transmission resources are used for the terminal equipment to send uplink data.
  • the first configuration information instructs the terminal device to perform the first type of handover, and then determining the transmission resource according to the first configuration information, so that the first type of handover can be performed
  • effective selection and determination based on beam information is used to determine transmission resources, so that effective configuration of resources for communication between the UE and the target network can be achieved.
  • FIG. 1 is a schematic diagram of an uplink provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of UE handover between different cells provided by the embodiment of the present application.
  • Fig. 4 is the schematic flow chart of the 4-step RACH that the embodiment of the present application provides;
  • Fig. 5 is the schematic flow chart of the 2-step RACH that the embodiment of the present application provides;
  • FIG. 6 is a flowchart of a resource processing method provided by an embodiment of the present application.
  • FIG. 7 is a signaling flowchart 1 of the resource processing method provided by the embodiment of the present application.
  • FIG. 8 is a second signaling flow chart of the resource processing method provided by the embodiment of the present application.
  • FIG. 9 is a third signaling flowchart of the resource processing method provided by the embodiment of the present application.
  • FIG. 10 is a signaling flowchart 4 of the resource processing method provided by the embodiment of the present application.
  • FIG. 11 is a signaling flowchart five of the resource processing method provided by the embodiment of the present application.
  • FIG. 12 is the second flow chart of the resource processing method provided by the embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a resource processing device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a resource processing device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Terminal device It can be a device that includes wireless transceiver functions and can cooperate with network devices to provide users with communication services.
  • the terminal equipment may refer to user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, User Agent or User Device.
  • UE User Equipment
  • a terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless Handheld devices with communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or networks after 5G, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Network equipment can be equipment used to communicate with terminal equipment, for example, it can be a global system for mobile communication (Global System for Mobile Communication, GSM) or code division multiple access (Code Division Multiple Access, CDMA) communication system
  • the base station also can be the base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) system
  • WCDMA Wideband Code Division Multiple Access
  • the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network side device in a future 5G network or a network after 5G or a future evolved public land mobile network (Public Land Mobile Network, PLMN) network equipment in the network, etc.
  • PLMN Public Land Mobile Network
  • the network device involved in the embodiment of the present application may also be called a radio access network (Radio Access Network, RAN) device.
  • the RAN device is connected with the terminal device, and is used to receive the data of the terminal device and send it to the core network device.
  • RAN equipment corresponds to different equipment in different communication systems, for example, in the 2G system, it corresponds to the base station and the base station controller, in the 3G system, it corresponds to the base station and the radio network controller (Radio Network Controller, RNC), and in the 4G system, it corresponds to the evolution Evolutionary Node B (eNB), which corresponds to the 5G system in the 5G system, such as the access network equipment (such as gNB, centralized unit CU, distributed unit DU) in New Radio (NR).
  • gNB centralized unit CU
  • DU New Radio
  • the embodiment of the beam in the NR protocol can be a spatial filter, or a spatial filter or spatial parameters.
  • the beam used to transmit signals may be called a transmission beam (transmission beam, Tx beam), may be called a spatial domain transmit filter (spatial domain transmit filter) or a spatial domain transmit parameter (spatial domain transmit parameter);
  • the beam used to receive signals may be called It is a reception beam (Rx beam), which can be called a spatial domain receive filter (spatial domain receive filter) or a spatial domain receive parameter (spatial domain receive parameter).
  • a beam can be understood as a space resource, and can refer to a transmission or reception precoding vector with energy transmission directivity.
  • the sending or receiving precoding vector can be identified by index information, and the index information can correspond to a resource identifier (identity, ID) configured for the terminal, for example, the index information can correspond to a configured synchronization signal block (synchronization signal Block, SSB) identification or resource; also can correspond to the configuration of the channel state information reference signal (channel state information reference signal, CSI-RS) identification or resource; also can be the corresponding configured uplink sounding reference signal (sounding reference signal, SRS) identifier or resource.
  • ID resource identifier
  • SSB synchronization signal Block
  • the index information may also be index information explicitly or implicitly carried by a signal carried by a beam or by a channel.
  • the energy transmission directivity may refer to precoding the signal to be sent through the precoding vector, the precoding signal has a certain spatial directivity, and receiving the precoding vector through the precoding vector The signal has better received power, such as satisfying the receiving demodulation signal-to-noise ratio, etc.; the energy transmission directivity may also mean that the same signal transmitted from different spatial positions received through the precoding vector has different received power.
  • the same communication device (such as a terminal device or network device) may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • a communication device may use one or more of multiple different precoding vectors at the same time, that is, it may form one beam or multiple beams at the same time.
  • beams can be divided into transmit beams and receive beams.
  • the transmitting beam may refer to the distribution of signal strength formed in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the distribution of signal strength in different directions in space of the wireless signal received from the antenna.
  • the beams may be wide beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming technique or other techniques.
  • the beamforming technology may be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, and the like. Different beams can be considered as different resources. The same information or different information can be transmitted through different beams.
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports can be included in one beam, used to transmit data channels, control channels and sounding signals, etc.
  • One or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the uplink (UpLink, UL) refers to the physical channel of the signal from the terminal device to the network device, and the normal uplink is the normal uplink (Normal UpLink, NUL).
  • Supplementary Uplink (Supplementary UpLink, SUL) is a supplementary uplink.
  • the frequency band used by SUL is lower than that used by NUL, and the coverage of SUL is larger than that of NUL.
  • Figure 1 1 is a schematic diagram of the uplink provided by the embodiment of this application.
  • both NUL and SUL are uplinks, and the coverage of SUL is larger than that of NUL. Among them, the frequency of SUL is lower, and the signal loss is smaller, which can ensure the coverage of NUL.
  • FIG. 2 is a schematic diagram of a communication scenario provided by an embodiment of the present application. Please refer to FIG. 2 , including a network device 201 and a terminal device 202, wireless communication can be performed between the network device 201 and the terminal device 202, wherein the terminal device 202 can communicate with at least one core via a radio access network (Radio Access Network, RAN) network for communication.
  • RAN Radio Access Network
  • the communication system can be Global System of Mobile communication (GSM for short) system, Code Division Multiple Access (CDMA for short) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access for short) WCDMA) system, Long Term Evolution (LTE for short) system or 5th-Generation (5G for short) system.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • 5G 5th-Generation
  • the network device can be a base station (Base Transceiver Station, referred to as BTS) in a GSM system or a CDMA system, or a base station (NodeB, referred to as NB) in a WCDMA system, or an evolved base station in an LTE system. (evolved NodeB, eNB for short), access point (access point, AP) or relay station, or a base station in the 5G system, etc., which are not limited here.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • AP access point
  • relay station or a base station in the 5G system, etc., which are not limited here.
  • the 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system and/or a standalone (standalone, SA) 5G mobile communication system.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a PLMN network, a device-to-device (device-to-device, D2D) network, a machine-to-machine (machine to machine, M2M) network, an IoT network, or other networks.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • the cell handover refers to that in a wireless communication system, when the UE moves from one cell to another, in order to maintain the uninterrupted communication of the UE A channel switch is required.
  • the cell refers to a base station or a coverage area of a base station.
  • the NR system supports the handover process of the UE in the connected state, and the handover process of the UE in the connected state will be performed under some conditions, for example, when the UE that is using the network service moves from one cell to another, or due to In order to ensure the continuity of communication and the quality of service due to reasons such as wireless transmission business load adjustment, activation operation and maintenance, and equipment failure, the system needs to transfer the communication link between the UE and the original cell to a new cell, that is, perform a handover process .
  • FIG. 3 is a schematic diagram of UE handover between different cells provided by the embodiment of the present application.
  • the terminal device 301 is in the area covered by three different cells C1, C2, and C3. Assume that the terminal device 301 is currently accessing the cell C1.
  • the terminal device 301 for example, It is possible to handover from cell C1 to cell C2, or from cell C1 to cell C3.
  • the cell C1 is the source cell, that is, the cell before the terminal device is handed over
  • the cell C2 or cell C3 is the target cell, that is, the cell after the terminal device is handed over.
  • the handover process described above may be, for example, an intra-site handover, that is to say, the source cell and the target cell belong to the same network device, wherein the original cell and the target cell may be the same cell or different cells.
  • the above handover process may also be an inter-site handover, that is to say, the source cell and the target cell belong to different network devices, which is not limited in this embodiment.
  • the handover process is introduced by taking the handover process of the Xn interface as an example, where the Xn interface refers to the next generation radio access network (Next Generation Radio Access Network, NG-RAN) node NG-RAN nodes may include, for example, a 5G base station (gNB) and an upgraded 4G base station (ng-eNB) supporting eLTE.
  • gNB 5G base station
  • ng-eNB upgraded 4G base station
  • the whole switching process can be divided into the following three stages:
  • Handover preparation including measurement control and reporting, handover request and confirmation.
  • the source base station can configure the measurement report of the UE, and the UE sends the measurement report to the source base station according to predetermined measurement rules; the source base station determines whether the UE needs to be handed over according to the measurement report and Radio Resource Management (RRM) information.
  • RRM Radio Resource Management
  • the source base station sends a handover request to the target base station; the target base station performs admission control according to the received Quality of Service (QoS) information, and returns a handover confirmation message.
  • QoS Quality of Service
  • the handover confirmation message includes the handover command generated by the target cell, and the source cell does not allow any modification to the handover command generated by the target cell, and directly forwards the handover command to the UE.
  • the source cell corresponds to a source network device (such as a source base station), and the target cell corresponds to a target network device (such as a target base station).
  • Handover execution UE immediately executes the handover process after receiving the handover command, that is, the UE disconnects the source cell and connects with the target cell (such as performing random access, sending a radio resource control (Radio Resource Control, RRC) handover completion message to The target base station, etc. can also include SN state transfer and data forwarding.
  • RRC Radio Resource Control
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • Path Switch Network element path switch
  • the UE needs to send a handover completion message to the target cell, so the UE needs to obtain corresponding uplink resources, so as to send a handover completion message to the target cell based on the uplink resources.
  • the traditional handover process often includes a random access process, that is, after receiving the handover message, the terminal device, according to the relevant information of the target cell contained in the handover message (such as the physical cell identity of the target cell, Frequency information, random access resource information required for handover to the target cell, etc.), perform a random access procedure with the target cell, and then send a handover completion message to the target cell.
  • a random access process that is, after receiving the handover message, the terminal device, according to the relevant information of the target cell contained in the handover message (such as the physical cell identity of the target cell, Frequency information, random access resource information required for handover to the target cell, etc.), perform a random access procedure with the target cell, and then send a handover completion message to the target cell.
  • Random access means that the terminal device starts to send a random access preamble index (preamble index) to the network device that is trying to access, until the connection between the terminal device and the network device is established. process.
  • the random access procedure may occur in procedures such as handover and RRC re-establishment, for example.
  • the random access involved in the embodiment of the present application may include four-step random access (also called a four-step random access channel, or simply called a 4-step RACH) and two-step random access (also called a four-step random access channel). It is a two-step random access channel, or can also be referred to as 2-step RACH for short).
  • 4-step RACH random access channel
  • 2-step RACH two-step random access channel
  • Figure 4 is a schematic flow diagram of the 4-step RACH provided by the embodiment of the present application. As shown in Figure 4, the four-step random access process may specifically include:
  • the terminal device sends a Msg1 to the network device.
  • Msg1 is used to transmit a random access preamble, for example, a terminal device sends a random access preamble (or random access preamble sequence) index to a network device through a physical random access channel (physical random access channel, PRACH).
  • a random access preamble or random access preamble sequence index
  • PRACH physical random access channel
  • the network device sends a Msg2 to the terminal device.
  • Msg2 may include a random access response.
  • the random access response may include a response timing advance (timing advance, TA), an uplink (UpLink, UL) grant (grant) and a temporary cell-radio network temporary identifier (C-RNTI) )Wait.
  • timing advance timing advance
  • UpLink uplink
  • C-RNTI temporary cell-radio network temporary identifier
  • the terminal device sends Msg3 to the network device.
  • Msg3 is the first scheduled transmission in the random access process.
  • the terminal device sends a message/data on the UL grant resources allocated by the network device based on the received random access response. For example, it sends an RRC establishment request message.
  • the RRC The establishment request message may contain the identification information of the terminal device.
  • the identification information may be, for example, the above-mentioned temporary C-RNTI.
  • the network device sends Msg4 to the terminal device.
  • Msg4 is used to indicate whether the terminal device has successfully connected to the network device. For example, after the network device receives the message/data sent by the terminal device on the allocated UL grant resources, if there is no conflict (or no competition), the network device sends a contention resolution message to the terminal device, for example, the network device sends RRC to the terminal device Create a message. Thereafter, the end device can communicate with the network device.
  • Figure 5 is a schematic flow diagram of the 2-step RACH provided by the embodiment of the present application, as shown in Figure 5, the two-step random access process may specifically include:
  • the terminal device sends the MsgA to the network device.
  • MsgA is used to transmit a random access preamble
  • a terminal device sends a random access preamble index (or called a random access preamble sequence) to a network device through a PRACH.
  • the random access preamble index is allocated to the terminal device by the network device in advance. In other words, the random access preamble index is dedicated.
  • the network device sends the MsgB to the terminal device.
  • MsgB is used to indicate whether the terminal device has successfully connected to the network device.
  • the network device sends a random access response to the terminal device.
  • the random access response may include the corresponding TA, UL grant, etc.
  • the UL grant may specifically include at least one of the following: time-frequency resources, modulation and coding scheme (MCS), new data indication (NDI), the moment when uplink transmission is initiated (such as subframe or time slot (slot)) and Uplink scheduling interval, etc.
  • time-frequency resource included in the UL grant may specifically refer to the time-frequency position of the uplink resource scheduled by the UL grant.
  • the uplink resources scheduled by the UL grant may be, for example, PUSCH resources.
  • the UE can obtain uplink resources, thereby sending a handover completion message to the target cell, and by initiating the random access procedure, it can also obtain TA , to achieve synchronization with the target cell.
  • the handover process can also be RACH-less HO, that is to say, the terminal device can perform handover without performing a random access process with the target cell process.
  • the specific scenario currently introduced may be, for example, that the target cell can determine that the TA from the UE to the source cell is the same as the TA to the target cell, or that the TA from the UE to the target cell is 0.
  • the source cell and the target cell may be in different coverage areas under the same network device, or in other words, the source cell and the target cell may be co-sited.
  • the target cell may also be a small cell. In this case, for a certain terminal device, it may be determined that the TA from the UE to the target cell is 0.
  • the terminal device can determine the TA without performing the random access process, so in such a specific scenario, the terminal device can Perform RACH-less HO.
  • the target cell can configure RACH-skip (random access channel skip) information in the handover command, and the RACH-skip information can include the uplink of the UE accessing the target cell. Resources for UE to send handover complete message.
  • the UE needs to monitor the PDCCH of the target cell, wait for the target cell to schedule uplink transmission, and use the scheduled uplink resource to transmit the handover completion message.
  • the uplink resources in the RACH-less HO process are described below.
  • the resources used for the UE to transmit uplink data may be based on dynamic scheduling of the network, such as indicated by downlink control information (Downlink Control Information, DCI); or may also be based on a group of periodically occurring uplink resources pre-configured by the network, that is, pre-configured Configuration resources (Configured Grant, CG), where the uplink CG can be divided into two types: Type1 and Type2.
  • DCI Downlink Control Information
  • DCI Downlink Control Information
  • Configuration resources Configured Grant, CG
  • CG Type 1 is configured by the RRC parameter ConfiguredGrantConfig.
  • the RRC parameter ConfiguredGrantConfig it can include time domain resources, frequency domain resources, demodulation reference signal (Demodulation Reference Signal, DMRS), open-loop power control, modulation and coding scheme (modulation and coding Strategy, MCS), waveform, redundancy version, number of repetitions, frequency modulation, Hybrid Automatic Repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ) process and other parameters.
  • the UE After receiving the high-level configuration, the UE can use the configured CG type1 resources for uplink data transmission without additional activation steps.
  • CG Type2 is also configured through the RRC parameter ConfiguredGrantConfig, but does not contain the information indicated in the rrc-ConfiguredUplinkGrant field in this parameter, and the activation of the configured CG Type2 resource is configured through the configuration of the Scheduled Radio Network Temporary Identifier (Configured Scheduling Radio Network Temporary Identifier, CS-RNTI) scrambled DCI indication, and at the same time configure transmission resources and transmission parameters including time domain resources, frequency domain resources, DMRS, MCS, etc.
  • the UE After receiving the high-level configuration, the UE cannot use CG Type2 resources, and must wait for the corresponding DCI activation command and configuration information before performing uplink data transmission.
  • rrc-ConfiguredUplinkGrant field in ConfiguredGrantConfig is used to distinguish between Type1 and Type1. If this field is configured, it means that the current configuration is CG Type1, otherwise it is CG Type2.
  • the UE determines the HARQ process corresponding to the CG resource according to the network configuration, and starts the CG timer (timer) after the UE uses a certain HARQ to perform the corresponding CG resource to complete the uplink data transmission.
  • the UE cannot use the CG resources with the same HARQ process for new data transmission, so as to avoid the data in the HARQ buffer being overwritten by other data.
  • the CG timer times out, it implicitly indicates that the data transmitted by the corresponding HARQ process has been correctly received by the network.
  • URLLC Ultra-reliable and Low Latency Communications
  • the above describes the RACH-less handover process and the resource configuration in the RACH-less handover process.
  • the above implementation can effectively indicate the implementation of resource allocation.
  • the concept of beams is introduced in NR.
  • the random access process is also used to determine beam configuration information. For example, under normal circumstances, the terminal device can first select the beam, and then implicitly tell the network device which beam it is currently performing data on. transmission, and then network devices also use this beam to be able to communicate correctly.
  • the UE and the network equipment do not actually interact with each other to use the beam information, so it may happen that the UE sends data on one beam, but the network A situation where a device is receiving data on another beam, thus potentially causing the data transmission to fail.
  • the present application proposes the following technical idea: when performing resource configuration for the UE, the resource configuration information also indicates beam-related information, so that when the UE performs resource selection later, it can be based on Beams are selected, and network devices can also receive data on the relevant beams, so that during the RACH-less handover process, the configuration of UE transmission resources can be effectively realized, and data transmission can be correctly realized based on the transmission resources. .
  • FIG. 6 is a flow chart of the resource processing method provided by the embodiment of the present application.
  • the method includes:
  • S601. Receive first configuration information from the network device, where the first configuration information is used to instruct the terminal device to perform the first type of handover, the first configuration information includes resource configuration information for performing the first type of handover, and the resource configuration information includes an association relationship between at least one uplink resource and at least one beam.
  • the terminal device may receive first configuration information from the network device, where the first configuration information is used to instruct the terminal device to perform a first type of handover.
  • the first type of handover For example, it may be RACH-less handover, that is to say, the handover without random access procedure described above.
  • the first configuration information can be, for example, an RRC message, such as an RRC reconfiguration message, etc.
  • the specific implementation method of the first configuration information can be selected according to actual needs, as long as the first configuration information can be used to indicate The terminal device only needs to perform the first type of switching.
  • the first configuration information in this embodiment may also include resource configuration information, where the resource configuration information is resource configuration information for performing the first type of handover introduced above, and the resource configuration information in this embodiment may include at least one An association relationship between uplink resources and at least one beam.
  • the uplink resources and beams in the resource configuration information are all allocated to the UE for selection by the UE, wherein at least one uplink resource is a resource that the UE can select for transmitting uplink data, and at least one beam is also It is also an optional beam allocated to the UE.
  • the association relationship can be, for example, between an uplink resource and a beam.
  • one beam can correspond to at least one uplink resource, or at least one uplink resource can be shared by multiple beams.
  • an example can be introduced, assuming that there are currently beams 1 and 1.
  • Beam 2 and assuming that uplink resource A, uplink resource B, and uplink resource C exist, for example, the following association relationship may exist: there is an association relationship between beam 1 and uplink resource A and uplink resource B, and there is an association relationship between beam 2 and uplink resource C There is an association.
  • the configuration of the at least one uplink resource, the configuration of the at least one beam, and the association relationship between the at least one uplink resource and the at least one beam may be selected according to actual requirements, which is not limited in this embodiment.
  • S602. Determine transmission resources according to the resource configuration information, where the transmission resources are used for the terminal device to send uplink data.
  • the terminal device After receiving the resource configuration information, the terminal device can determine the transmission resource according to the resource configuration information. It can be understood that the currently determined transmission resource can be, for example, a resource in at least one uplink resource introduced above. After the transmission resources are determined, for example, uplink data can be sent based on the determined transmission resources, wherein the sent uplink data can be, for example, the handover completion message introduced above, etc. This embodiment also does not limit the uplink data sent by the terminal device , as long as it is data sent to the network device based on the currently determined transmission resource.
  • beams can be selected. After determining the target beam that satisfies the conditions, for example, the uplink resource associated with the target beam can be selected according to the association relationship in the resource configuration information. , so as to determine the transmission resources.
  • the selection of beams can be effectively realized in the implementation mode of the first type of handover, and then data transmission is performed based on the resources on the selected beams, thereby ensuring that terminal devices and network devices are based on the same
  • the beam transmits data, so as to effectively realize the allocation of UE transmission resources during the RACH-less handover process.
  • the resource processing method provided by the embodiment of the present application includes: receiving first configuration information from a network device, wherein the first configuration information is used to instruct the terminal device to perform the first type of handover, and the first configuration information includes Resource configuration information for type switching, where the resource configuration information includes an association relationship between at least one uplink resource and at least one beam. According to the resource configuration information, transmission resources are determined, where the transmission resources are used for the terminal equipment to send uplink data.
  • the first configuration information instructs the terminal device to perform the first type of handover, and then determining the transmission resource according to the first configuration information, so that the first type of handover can be performed
  • effective selection and determination based on beam information is used to determine transmission resources, so that effective configuration of resources for communication between the UE and the target network can be realized.
  • the uplink resource in this application can be the CG resource introduced above, or the dynamic scheduling resource described above, and the related realization of resource determination corresponding to different uplink resources below Introduce separately.
  • the implementation method of the uplink resources as CG resources is introduced. Based on the content of the above introduction, it can be determined that the CG resources can be the first type of CG resources (Type1 CG resources), or can also be the second type of CG resources (Type2 CG resources). resources), the following describes Type1 CG resources and Type2 CG resources respectively.
  • Fig. 7 is a signaling flow chart 1 of the resource processing method provided by the embodiment of the present application.
  • the method includes:
  • the UE sends a measurement report to the source network device.
  • the UE may, for example, perform a measurement process based on the measurement configuration information configured by the source cell, and send a measurement report to the source network device.
  • the source network device determines to execute the handover.
  • the source cell may, for example, determine to execute the handover process based on the UE's measurement report and RRM information.
  • the source network device sends a switching request to the target network device.
  • the source cell and the target cell may prepare for the handover, for example, may send a handover request to the target device.
  • the target network device sends a switching command to the source network device.
  • the target network device can send a switch command to the source network device according to the switch request sent by the source network device.
  • the source network device sends a handover command to the UE.
  • the source network device may forward the switching command to the terminal device.
  • the switching command in this embodiment may be, for example, an RRC reconfiguration message.
  • the UE context within the source gNB contains information about roaming and access restrictions, which were provided at connection establishment or last TA update.
  • the UE context within the source gNB contains information regarding roaming and access restrictions which were provided either at connection establishment or at the last TA update.
  • the source gNB configures the UE measurement process, and the UE reports according to the measurement configuration.
  • the source gNB configures the UE measurement procedures and the UE reports according to the measurement configuration.
  • the source gNB decides to handover the UE according to the measurement report and RRM information.
  • the source gNB decides to handover the UE, based on MeasurementReport and RRM information.
  • the source gNB sends a handover request message to the target gNB, and the handover request message is used to transfer a transparent RRC container including necessary information, so as to prepare for handover on the target side.
  • the information includes at least the target cell ID, KgNB*, the Cell-Radio Network Temporary Identifier (C-RNTI) of the UE in the source gNB, RRM configuration including UE inactivity time, including antenna information and DL carrier frequency Basic AS configuration of the current QoS flow to the DRB mapping rules applied to the UE, SIB1 from the source gNB, UE capabilities for different RATs, PDU session related information, and may include measurement information reported by the UE, including beam related information (if available ).
  • PDU session-related information includes slice information and QoS flow-level QoS profiles.
  • the source gNB may also request DAPS switching of one or more DRBs.
  • the source gNB issues a Handover Request message to the target gNB passing a transparent RRC container with necessary information to prepare the handover at the target side.
  • the information includes at least the target cell ID, KgNBUEof*, the C in the source gNB, RRM-configuration including UE inactive time, basic AS-configuration including antenna Info and DL Carrier Frequency, the current QoS flow to DRB mapping rules applied to the AT, the SIB1 from source gNB, the UE capabilities for R PDU session related information, and can include the UE reported measurement information including beam-related information if available.
  • the PDU session related information includes the slice information and QoS flow level QoS profile(s).
  • the source also a hover DA re PS one or more DRBs.
  • Admission control can be performed by the target gNB. If slice information is sent to the target gNB, slice-aware admission control should be performed. If a PDU session is associated with an unsupported slice, the target gNB shall reject such PDU session.
  • the target gNB prepares for handover with L1/L2 and sends a handover request acknowledgment to the source gNB, including the transparent container to be sent to the UE as an RRC message to perform the handover.
  • the target gNB also indicates whether to accept DAPS handover.
  • the target gNB prepares the handover with L1/L2 and sends the HANDOVER REQUEST ACKNOWLEDGE to the source gNB, which includes a transparent container to be sent to the UE as an RRC message to perform a DA PS al handover. The target if gindB handover is accepted.
  • the source gNB triggers Uu handover by sending a handover command (RRCReconfiguration) message to the UE, which contains the information required to access the target cell: at least the target cell ID, the new C-RNTI, the target gNB security algorithm identifier, for Selected security algorithm. It may also include a set of dedicated RACH resources, the association between RACH resources and SSB, the association between RACH resources and UE-specific CSI-RS/SSB configurations, common RACH resources, and the target cell's system information etc.
  • RRCReconfiguration handover command
  • the source gNB triggers the Uu handover by sending an RRCReconfiguration message to the UE, containing the information required to access the target cell: at least the target cell ID, the new C-RNTI, the target gNB security security for algorithm ed identif algorithms.It can also include a set of dedicated RACH resources, the association between RACH resources and SSB(s), the association between RACH resources and UE-specific CSI-RS/SSB configuration(s), common RACH resources, and system information of the target cell, etc.)
  • the RRC reconfiguration message (RRCReconfiguration) described above may be, for example, a handover command, and the handover command in this embodiment may include the first configuration information described above, or it can be understood that the handover command introduced currently is It is the first configuration information introduced above.
  • the handover command may include TA indication information, for example, the RACH-skip information introduced above, so the handover command may indicate that the handover process is a RACH-less handover process, that is, the first RACH-less handover process described above.
  • a piece of configuration information may instruct the terminal device to perform the first type of handover.
  • resource configuration information for performing the first type of handover is included in the first configuration information.
  • the resource configuration information in this embodiment is configuration information for Type2 CG resources. The implementation of the resource configuration information is introduced below.
  • the resource configuration information may include at least one of the following: carrier information, association relationship between at least one uplink resource and at least one beam, first threshold corresponding to beam quality, time domain resource, frequency domain resource, demodulation Reference signal, open-loop power control, modulation and coding scheme, waveform, redundancy version, number of repetitions, frequency modulation, hybrid automatic repeat request HARQ process and other parameters.
  • carrier information association relationship between at least one uplink resource and at least one beam
  • first threshold corresponding to beam quality
  • time domain resource frequency domain resource
  • demodulation Reference signal open-loop power control
  • modulation and coding scheme waveform
  • redundancy version number of repetitions
  • number of repetitions frequency modulation
  • hybrid automatic repeat request HARQ process hybrid automatic repeat request HARQ process
  • the terminal device may determine transmission resources according to the first configuration information.
  • the UE may, for example, perform transmission resource selection according to at least one of the following steps.
  • the terminal device may, for example, determine the first BWP, where the first BWP is any of the following: the initial BWP, the BWP configured with CG resources, or the BWP indicated by the first parameter, where the first parameter is the network It is configured or stipulated by the protocol.
  • the first parameter can be firstActiveUplinkBWP, for example.
  • the specific implementation of the first parameter can be selected according to actual needs. This embodiment does not limit this, as long as The first parameter is specified by the network configuration or the protocol, and only needs to be used to indicate the BWP.
  • the terminal device may also determine at least one first CG resource according to carrier information based on the selected first BWP, for example, the first CG resource in this embodiment is a resource on the first BWP.
  • the carrier information may include first indication information, where the first indication information may indicate that the terminal device uses NUL, and CG resources are configured on the NUL, then when determining the first CG resource according to the carrier information, For example, it may be determined that the CG resource configured on the NUL indicated by the first indication information is the first CG resource.
  • the first indication information included in the carrier information may indicate that the terminal device uses the SUL, and CG resources are configured on the SUL, then when determining the first CG resource according to the carrier information, for example, it may be determined that the SUL indicated by the first indication information
  • the configured CG resource is the first CG resource.
  • the target network device can directly indicate whether SUL or NUL is currently used in the carrier information according to the UE measurement results, and then determine that the CG resource configured on the indicated SUL or NUL is the first CG resource.
  • the carrier information may include CG resources configured on the NUL, CG resources configured on the SUL, and a second threshold.
  • the second threshold in this embodiment is used for comparison with corresponding parameters. Therefore, it is determined whether the current terminal equipment adopts SUL or NUL.
  • the cell quality information may be compared with a second threshold, and when it is determined that the cell quality information is less than the second threshold, it is determined that the CG resource configured on the SUL is the first CG resource; or, when it is determined that the cell quality information is greater than or equal to the second threshold When the threshold is exceeded, it is determined that the CG resource configured on the NUL is the first CG resource.
  • the cell quality information may include at least one of the following: downlink path loss reference reference signal receiving power (Reference Signal Receiving Power, RSRP), downlink path loss reference reference signal receiving quality (Reference Signal Receiving Quality, RSRQ).
  • the target network device does not directly indicate whether to use SUL or NUL, but by configuring the second threshold, the terminal device can compare the cell quality information with the second threshold to determine whether the current Whether SUL or NUL is used, and then it is determined that the CG resource configured on it is the first CG resource.
  • the carrier information is determined by the carrier configured with CG resources, that is to say, the uplink carrier configured with CG resources is determined as the target carrier, and the CG resource corresponding to the carrier is further determined as the first CG resource. resource.
  • the CG resource configured on the NUL is the first CG resource.
  • the network only configures the CG resource on the SUL, then it may be determined that the CG resource configured on the SUL is the first CG resource.
  • the target network device does not directly indicate whether to use SUL or NUL, and does not configure the second threshold.
  • the terminal determines which one is configured with CG resources on SUL or NUL, and the terminal device selects the configuration There are uplink carriers with CG resources, so as to determine the first CG resources.
  • the specific implementation manner of the carrier information and the specific implementation of determining the first CG resource according to the carrier information can be selected according to actual requirements, which is not limited in this embodiment.
  • the above description is the implementation of determining at least one first CG resource.
  • it may also be based on the association relationship in the resource configuration information and
  • the first threshold is to determine the second CG resource in at least one first CG resource.
  • one of the beams is selected.
  • the beam in this embodiment can be any of the following: synchronization signal and physical broadcast channel block SSB, channel state information reference signal CSI-RS, sounding reference signal SRS, transmission configuration indication TCI situation (state), spatial relationship ( spatial relation), the beam quality information includes at least one of the following: Synchronization Signal Reference Signal Received Power SS-RSRP, Channel State Information Reference Signal Received Power CSI-RSRP.
  • the implementation of beam selection combined with specific beam quality information can be understood as: when the SS-RSRP of at least one SSB is higher than the configured first threshold (rsrp-ThresholdSSB) or the CSI-RSRP of at least one CSI-RSs is higher than the configured When configuring the first threshold (rsrp-ThresholdCSI-RS), select an SSB or CSI-RS among them.
  • the target beam may be, for example, the beam with the strongest beam channel quality among the candidate beams, or the target beam may also be a randomly selected beam among the candidate beams, or the target beam may also be a candidate beam The beam with the largest or smallest index value, etc., this embodiment does not limit the specific implementation manner of selecting the target beam from the candidate beams, as long as the target beam is selected from the candidate beams.
  • the second CG resource may be determined according to the association relationship in the resource configuration information, for example, at least one first CG resource corresponding to the target beam in the association relationship may be determined as the second CG resource.
  • one beam may correspond to at least one CG resource, and it may also be that multiple beams share at least one CG resource. Therefore, in the association relationship determined in this embodiment, the second CG resource corresponding to the target beam There may also be one or more CG resources.
  • the transmission resource can also be further determined in the second CG resource.
  • the second CG resource whose time domain position is closest to the current time among the second CG resources can be , determined as the transmission resource, where the current moment is the moment when the terminal device is currently determining the transmission resource; or, among the second CG resources, the randomly selected second CG resource may also be determined as the transmission resource, in the actual implementation process
  • the implementation manner of determining the transmission resource in the second CG resource may be selected according to actual requirements, which is not limited in this embodiment.
  • the transmission resource after obtaining the target beam SSB or CSI-RS, in the CG resource associated with the SSB or CSI-RS, select the transmission resource according to the implementation described above, so that Uplink transmission may be performed based on transmission resources.
  • the beam quality information when introducing and determining candidate beams, the beam quality information will be compared with the first threshold, so as to determine that at least one beam whose beam quality information is greater than the first threshold is a candidate beam.
  • there is currently no SSB/CSI-RS that meets the threshold and any of the following operations may be performed:
  • the terminal device After the terminal device determines the transmission resource, it can send uplink data to the target cell according to the transmission resource, where the uplink data can include, for example, RRC reconfiguration complete message, and optionally can also include uplink data, C-RNTI, BSR, MAC CE, etc.
  • the uplink data can include, for example, RRC reconfiguration complete message, and optionally can also include uplink data, C-RNTI, BSR, MAC CE, etc.
  • this embodiment does not limit the specific implementation of the uplink data sent by the terminal equipment, which can be selected according to actual needs.
  • the resource processing method by configuring the Type2 CG resource in the handover command, and the Type2 CG resource is associated with the beam, it can effectively implement the Type2 CG resource for communication between the UE and the target network in the RACH-less handover
  • the resource configuration can effectively realize the determination of the transmission resources, so as to ensure that the UE and the network equipment can perform correct data transmission.
  • FIG. 8 is the resource processing method provided by the embodiment of this application Signaling flow chart II.
  • the method includes:
  • the UE sends a measurement report to the source network device.
  • the source network device determines to execute the handover.
  • the source network device sends a switching request to the target network device.
  • the target network device sends a switching command to the source network device.
  • the source network device sends a handover command to the UE.
  • the handover command may include TA indication information, such as the RACH-skip information introduced above, so the handover command may indicate that the handover process is a RACH-less handover process, that is, the first configuration information described above may instruct the terminal device to perform the first Type switch.
  • resource configuration information for performing the first type of handover is included in the first configuration information.
  • the resource configuration information in this embodiment is configuration information for Type2 CG resources. The implementation of the resource configuration information is introduced below.
  • the resource configuration information may include at least one of the following: carrier information, association relationship between at least one uplink resource and at least one beam, first threshold corresponding to beam quality, time domain resource, frequency domain resource, demodulation Reference signal, open-loop power control, modulation and coding scheme, waveform, redundancy version, number of repetitions, frequency modulation, hybrid automatic repeat request HARQ process and other parameters.
  • carrier information association relationship between at least one uplink resource and at least one beam
  • first threshold corresponding to beam quality
  • time domain resource frequency domain resource
  • demodulation Reference signal open-loop power control
  • modulation and coding scheme waveform
  • redundancy version number of repetitions
  • number of repetitions frequency modulation
  • hybrid automatic repeat request HARQ process hybrid automatic repeat request HARQ process
  • the terminal device can select the resource accordingly according to the resource configuration information, so as to determine the transmission resource.
  • the CG resource is a Type2 CG resource
  • the implementation of determining the transmission resource is similar to the implementation of the CG resource introduced in S706 above as a Type1 CG resource, and will not be repeated here.
  • the target network device sends the DCI to the UE.
  • the terminal device determines the transmission resources, the The transport resource is currently not active and therefore unavailable.
  • the terminal device may receive a second message from the network device, where the second message is used to activate the Type2 CG resource.
  • the second message received by the terminal device may be, for example, the DC sent by the target network device described in the current embodiment.
  • the UE may receive the DCI sent by the target cell, and the DCI may be used in the activation handover command
  • the configured Type2 CG resource, or the second message can also be an RRC message, MAC CE, etc., the present embodiment does not limit the specific implementation of the second message, as long as the second message can indicate the activation of the Type2 CG resource.
  • the above handover command may also include beam information used by the UE to receive the DCI sent by the target network device.
  • the CG resource After receiving the DCI sent by the target network device, the CG resource can be activated, and then the transmission resource has been determined, so the uplink data can be sent based on the transmission resource.
  • the uplink data therein may include, for example, an RRC reconfiguration complete message, and may optionally include uplink data, C-RNTI, BSR, MAC CE, etc. This embodiment does not limit the specific implementation of the uplink data sent by the terminal device. It can be selected according to actual needs.
  • the resource processing method by configuring the Type2 CG resource in the handover command, and the Type2 CG resource is associated with the beam, it can effectively implement the Type2 CG resource for communication between the UE and the target network in the RACH-less handover
  • the resource configuration can effectively realize the determination of the transmission resources, so as to ensure that the UE and the network equipment can perform correct data transmission.
  • the above introduction is an implementation of resource configuration and resource selection for Type2 CG resources.
  • the DCI received by the terminal device will activate all CG resources, and then determine based on the above UE
  • the transmission resources are used to send uplink data.
  • the UE may not perform BWP, NUL/SUL, and beam selection, but determine CG resources based on the DCI indication. This implementation will be introduced in conjunction with FIG. 9 below.
  • FIG. 9 is a third signaling flowchart of the resource processing method provided by the embodiment of the present application.
  • the method includes:
  • the UE sends a measurement report to the source network device.
  • the source network device determines to execute the handover.
  • the source network device sends a switching request to the target network device.
  • the target network device sends a switching command to the source network device.
  • the source network device sends a handover command to the UE.
  • the target network device sends DCI to the UE, where the DCI is used to indicate activation of the CG resource associated with the first beam.
  • DCI does not activate all Type2 CG resources, but specifically activates the CG resources associated with the first beam, where the first beam is the beam configured by the network device to be used by the terminal device.
  • the DCI may also include, for example, a BWP indication
  • the DCI may also include, for example, a NUL/SUL indication, that is to say, it indicates whether the terminal device is currently using NUL or SUL. Therefore, in the current implementation, the terminal device does not need to BWP, NUL/SUL, and beam selection are performed, and CG resources can be determined based on the DCI indication.
  • the DCI directly indicates the first beam, so the terminal device does not need to perform the selection process described in the above embodiment, and thus can directly determine the CG resource associated with the first beam as the transmission resource.
  • uplink data can be sent based on the transmission resource.
  • the uplink data therein may include, for example, an RRC reconfiguration complete message, and may optionally include uplink data, C-RNTI, BSR, MAC CE, etc. This embodiment does not limit the specific implementation of the uplink data sent by the terminal device. It can be selected according to actual needs.
  • the resource processing method provided by the embodiment of this application can directly indicate the CG resources currently used by the terminal device by indicating the first beam, NUL/SUL, and BWP in the DCI, so the terminal device does not need to perform a series of selection processes. Therefore, the configuration and selection of Type2 CG resources can be realized simply and effectively.
  • Type2 CG resources are associated with beams, so that the resource configuration of Type2 CG resources for communication between the UE and the target network can be effectively realized during RACH-less handover, and the determination of transmission resources can be effectively realized to ensure that UE and network devices can for correct data transfer.
  • FIG. 10 is a signaling flowchart 4 of the resource processing method provided by the embodiment of the present application.
  • the method includes:
  • the UE sends a measurement report to a source network device.
  • the source network device determines to execute the handover.
  • the source network device sends a switching request to the target network device.
  • the target network device sends a switching command to the source network device.
  • the source network device sends a handover command to the UE.
  • the handover command may include TA indication information, such as the RACH-skip information introduced above, so the handover command may indicate that the handover process is a RACH-less handover process, that is, the first configuration information described above may instruct the terminal device to perform the first Type switch.
  • resource configuration information for performing the first type of handover is included in the first configuration information.
  • the resource configuration information in this embodiment is configuration information for dynamically scheduling resources. The implementation of the resource configuration information will be introduced below.
  • the handover command includes the first configuration information
  • the first configuration information may include resource configuration information
  • the resource configuration information may include, for example, at least one of the following: the first dynamic resource scheduling time Frequency position, redundancy version, repetition times, frequency modulation, HARQ process.
  • the resource configuration information in this embodiment directly indicates the first dynamic scheduling resource, and the resource configuration information also includes related beam information of the first dynamic scheduling resource.
  • the first dynamic scheduling resource is directly indicated in the resource configuration information, so the first dynamic scheduling resource can be directly determined as the transmission resource. at least one beam of .
  • uplink data can be sent based on the transmission resource.
  • the uplink data therein may include, for example, an RRC reconfiguration complete message, and may optionally include uplink data, C-RNTI, BSR, MAC CE, etc. This embodiment does not limit the specific implementation of the uplink data sent by the terminal device. It can be selected according to actual needs.
  • the resource processing method by configuring the first dynamic scheduling resource in the handover command, and the first dynamic scheduling resource is associated with the beam, it can effectively realize the communication between the UE and the target network in the RACH-less handover
  • the resource configuration of the dynamic scheduling resource can effectively realize the determination of the transmission resource, so as to ensure that the UE and the network device can perform correct data transmission.
  • the resource configuration information may further include first beam information, where the first beam information is used to indicate the first beam used to monitor the third message , the third message is used to indicate the second dynamic scheduling resource, and the third message may also indicate at least one beam associated with the second dynamic scheduling resource.
  • the UE may monitor the third message on the first beam according to the first beam information, and after monitoring the third message, determine the second dynamic scheduling resource according to the indication of the third message, and the currently determined second dynamic Scheduling resources are resources used for uplink data transmission. It can be understood that the current third message is different from the first configuration information. Therefore, in the current embodiment, a separate third message can be used to indicate dynamic scheduling resources. .
  • the above-mentioned embodiments all include resource configuration information in the first configuration information, and then determine corresponding transmission resources according to the relevant resource configuration information.
  • the first configuration information does not include resource configuration information, and the first configuration information is only used to instruct the terminal device to perform the first type of handover.
  • resources can be dynamically scheduled according to the DCI indication. The following describes this implementation in conjunction with Figure 11 way to introduce.
  • FIG. 11 is the fifth signaling flowchart of the resource processing method provided by the embodiment of the present application.
  • the method includes:
  • the UE sends a measurement report to the source network device.
  • the source network device determines to execute the handover.
  • the source network device sends a switching request to the target network device.
  • the target network device sends a switching command to the source network device.
  • the source network device sends a handover command to the UE.
  • the content of the switch command in this embodiment is introduced.
  • the switch command in this embodiment for example, you can Including TA indication information, such as the RACH-skip information introduced above, so the handover command can indicate that the handover process is a RACH-less handover process, that is, the first configuration information described above can instruct the terminal device to perform the first type of handover.
  • the first configuration information only instructs the terminal device to perform the first type of handover, and does not indicate resource configuration information.
  • the target network device sends DCI to the UE, where the DCI includes the third dynamic scheduling resource.
  • the terminal device can monitor the DCI of the target cell, so as to receive the dynamic scheduling resource sent by the target cell to the terminal device.
  • the dynamic resource scheduling in this embodiment may include the following content: beam information, time-domain resources, frequency-domain resources, demodulation reference signals, open-loop power control, modulation and coding schemes, waveforms, redundancy Other parameters such as version, number of repetitions, frequency modulation, HARQ process, etc.
  • the DCI directly indicates the third dynamic scheduling resource, so it can be determined that the third dynamic scheduling resource is the transmission resource.
  • the DCI in this embodiment also indicates the beam information of the third dynamic scheduling resource, so the beam information can also be effectively determined,
  • uplink data can be sent based on the transmission resource.
  • the uplink data therein may include, for example, an RRC reconfiguration complete message, and may optionally include uplink data, C-RNTI, BSR, MAC CE, etc. This embodiment does not limit the specific implementation of the uplink data sent by the terminal device. It can be selected according to actual needs.
  • the dynamic scheduling resource allocation for RACH-less handover can be effectively realized based on the DCI
  • the resource configuration can effectively realize the determination of the transmission resources, so as to ensure that the UE and the network equipment can perform correct data transmission.
  • FIG. 12 is the second flowchart of the resource processing method provided by the embodiment of the present application.
  • the method includes:
  • S1201. Send first configuration information to the terminal device, where the first configuration information is used to instruct the terminal device to perform the first type of handover, the first configuration information includes resource configuration information for performing the first type of handover, and the resource configuration information includes An association relationship between at least one uplink resource and at least one beam.
  • the network device may send the first configuration information to the terminal device, and the implementation manner of the first configuration information is similar to that described in the foregoing embodiment, and details are not repeated here.
  • S1202. Receive uplink data sent by the terminal device according to transmission resources, where the transmission resources are determined according to resource configuration information.
  • the uplink data sent by the terminal device on the transmission resources determined based on the resource configuration information can be received, and its various possible implementation methods are also similar to those described above, and will not be repeated here .
  • the resource processing method provided by the embodiment of the present application includes: sending first configuration information to the terminal device, wherein the first configuration information is used to instruct the terminal device to perform the first type of handover, and the first configuration information includes the information used to perform the first type of handover resource configuration information, where the resource configuration information includes an association relationship between at least one uplink resource and at least one beam.
  • the uplink data sent by the terminal device is received according to transmission resources, wherein the transmission resources are determined according to resource configuration information.
  • the transmission resource is according to the first type
  • the first configuration information is determined, so as to ensure that the terminal equipment can effectively select and determine the beam information based on the beam information during the handover process of the first type of handover, so as to realize the determination of the transmission resources, so as to realize the communication resources between the UE and the target network valid configuration.
  • FIG. 13 is a schematic structural diagram of a resource processing device provided by an embodiment of the present application.
  • the resource processing device 130 may include a receiving module 1301 and a determining module 1302, wherein,
  • a receiving module 1301, configured to receive first configuration information from a network device, wherein the first configuration information is used to instruct the terminal device to perform a first type of handover, and the first configuration information includes Resource configuration information for type switching, where the resource configuration information includes an association relationship between at least one uplink resource and at least one beam;
  • the determining module 1302 is configured to determine transmission resources according to the resource configuration information, where the transmission resources are used for the terminal device to send uplink data.
  • the at least one uplink resource is a preconfigured CG resource, or the at least one uplink resource is a dynamically scheduled resource.
  • the at least one uplink resource is a pre-configured CG resource
  • the resource configuration information further includes at least one of the following: carrier information and a first threshold corresponding to beam quality.
  • the determining module 1302 is specifically configured to:
  • the first BWP is any of the following: an initial BWP, a BWP configured with the CG resource, a BWP indicated by a first parameter, and the first parameter is configured by the network or a protocol Specified;
  • the first CG resource is a CG resource on the first BWP
  • the carrier information includes first indication information
  • the first indication information indicates that the terminal device uses a normal uplink NUL, and CG resources are configured on the NUL;
  • the first indication information instructs the terminal device to use a supplementary uplink SUL, on which CG resources are configured.
  • the determining module 1302 is specifically configured to:
  • the carrier information includes the CG resources configured on the NUL, the CG resources configured on the SUL, and the second threshold.
  • the determining module 1302 is specifically configured to:
  • the cell quality information includes at least one of the following: reference signal received power RSRP for downlink path loss reference and RSRQ for downlink path loss reference.
  • the carrier information includes the CG resources configured on the NUL; the determining module 1302 is specifically configured to:
  • the carrier information includes CG resources configured on the SUL; the determining module 1302 is specifically configured to:
  • the determining module 1302 is specifically configured to:
  • the beam quality information includes at least one of the following: Synchronization Signal Reference Signal Received Power SS-RSRP, Channel State Information Reference Signal Received Power CSI-RSRP;
  • the target beam is a beam with the strongest beam channel quality among the candidate beams.
  • the target beam is a randomly selected beam among the candidate beams.
  • the determining module 1302 is also configured to:
  • the determining module 1302 is specifically configured to:
  • the CG resource includes a first-type CG resource and/or a second-type CG resource.
  • the receiving module 1301 is specifically configured to:
  • the resource configuration information and/or the second message further includes at least one of the following information: time domain resources, frequency domain resources, demodulation reference signals, open loop power control, Modulation and coding scheme, waveform, redundancy version, number of repetitions, frequency modulation, hybrid automatic repeat request HARQ process.
  • the at least one uplink resource is a dynamic scheduling resource
  • the resource configuration information further includes at least one of the following: time-frequency position, redundancy version, and repetition of the first dynamic scheduling resource. Frequency, frequency modulation, HARQ process;
  • the transmission resource is the first dynamic scheduling resource, and the association relationship includes at least one beam associated with the first dynamic scheduling resource.
  • the resource configuration information includes first beam information, where the first beam information is used to indicate the first beam used to monitor a third message, and the third message is used to indicate A second dynamic scheduling resource, and at least one beam associated with the second dynamic scheduling resource.
  • the determining module 1302 is specifically configured to:
  • the first type of handover is RACH-less handover.
  • the first configuration information is a radio resource control RRC message.
  • the second message is any one of the following: RRC message, downlink control information DCI, media access control layer control element MAC CE.
  • the beam is any one of the following: synchronization signal and physical broadcast channel block SSB, channel state information reference signal CSI-RS, sounding reference signal SRS, transmission configuration indication TCI situation, space relation.
  • the resource processing device provided in the embodiment of the present application can execute the technical solutions shown in the above method embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a resource processing device provided by an embodiment of the present application.
  • the resource processing device 140 may include a sending module 1401 and a receiving module 1402, wherein,
  • a sending module 1401 configured to send first configuration information to a terminal device, where the first configuration information is used to instruct the terminal device to perform a first type of handover, and the first configuration information includes information for performing the first type of handover Resource configuration information, where the resource configuration information includes an association relationship between at least one uplink resource and at least one beam;
  • the receiving module 1402 is configured to receive uplink data sent by the terminal device according to transmission resources, wherein the transmission resources are determined according to the resource configuration information.
  • the at least one uplink resource is a preconfigured CG resource, or the at least one uplink resource is a dynamically scheduled resource.
  • the at least one uplink resource is a pre-configured CG resource
  • the resource configuration information further includes at least one of the following: carrier information and a first threshold corresponding to beam quality.
  • the transmission resource is determined according to the second CG resource, wherein the second CG resource is determined according to the association relationship and the first threshold, and among at least the first CG resource Determined, the first CG resource is determined in the CG resource on the first BWP according to the carrier information, and the first BWP is any of the following: initial BWP, configured with the CG resource the BWP indicated by the first parameter, and the BWP indicated by the first parameter, where the first parameter is configured by the network or specified by the protocol.
  • the carrier information includes first indication information
  • the first indication information indicates that the terminal device uses a normal uplink NUL, and CG resources are configured on the NUL;
  • the first indication information instructs the terminal device to use a supplementary uplink SUL, on which CG resources are configured.
  • the first CG resource is a CG resource configured on the NUL indicated by the first indication information; or,
  • the first CG resource is a CG resource configured on the SUL indicated by the first indication information.
  • the carrier information includes the CG resources configured on the NUL, the CG resources configured on the SUL, and the second threshold.
  • the first CG resource is the CG resource configured on the SUL;
  • the first CG resource is the CG resource configured on the NUL;
  • the cell quality information includes at least one of the following: reference signal received power RSRP for downlink path loss reference and RSRQ for downlink path loss reference.
  • the carrier information includes CG resources configured on the NUL; the first CG resource is the CG resource configured on the NUL.
  • the carrier information includes a CG resource configured on the SUL; the first CG resource is a CG resource configured on the SUL.
  • the second CG resource is at least one first CG resource corresponding to a target beam in the association relationship
  • the target beam is determined in at least one candidate beam
  • the candidate beam It is at least one beam whose beam quality information is greater than the first threshold, and the beam quality information includes at least one of the following: Synchronization Signal Reference Signal Received Power SS-RSRP, Channel State Information Reference Signal Received Power CSI-RSRP .
  • the target beam is a beam with the strongest beam channel quality among the candidate beams.
  • the target beam is a randomly selected beam among the candidate beams.
  • the target beam is any beam configured with CG resources, and the transmission resource is the CG resource corresponding to the target beam; or,
  • the transmission resource is the second CG resource whose time domain position is closest to the current moment among the second CG resources; or,
  • the transmission resource is a randomly selected second CG resource among the second CG resources.
  • the CG resource includes a first-type CG resource and/or a second-type CG resource.
  • the sending module 1401 is further configured to:
  • the resource configuration information and/or the second message further includes at least one of the following information: time domain resources, frequency domain resources, demodulation reference signals, open loop power control, Modulation and coding scheme, waveform, redundancy version, number of repetitions, frequency modulation, hybrid automatic repeat request HARQ process.
  • the at least one uplink resource is a dynamic scheduling resource
  • the resource configuration information further includes at least one of the following: time-frequency position, redundancy version, and repetition of the first dynamic scheduling resource. Frequency, frequency modulation, HARQ process;
  • the transmission resource is the first dynamic scheduling resource, and the association relationship includes at least one beam associated with the first dynamic scheduling resource.
  • the resource configuration information includes first beam information, where the first beam information is used to indicate the first beam used to monitor a third message, and the third message is used to indicate A second dynamic scheduling resource, and at least one beam associated with the second dynamic scheduling resource.
  • the transmission resource is the second dynamic scheduling resource indicated by a third message
  • the third message is sent on the first beam indicated by the first beam information.
  • the first type of handover is RACH-less handover.
  • the first configuration information is a radio resource control RRC message.
  • the second message is any one of the following: RRC message, downlink control information DCI, media access control layer control element MAC CE.
  • the beam is any one of the following: synchronization signal and physical broadcast channel block SSB, channel state information reference signal CSI-RS, sounding reference signal SRS, transmission configuration indication TCI situation, space relation.
  • FIG. 15 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device 150 may include: a transceiver 21 , a memory 22 , and a processor 23 .
  • the transceiver 21 may include: a transmitter and/or a receiver.
  • the transmitter may also be called a transmitter, a transmitter, a sending port, or a sending interface, and similar descriptions
  • the receiver may also be called a receiver, a receiver, a receiving port, or a receiving interface, or similar descriptions.
  • the transceiver 21 , the memory 22 , and the processor 23 are connected to each other through a bus 24 .
  • the memory 22 is used to store program instructions
  • the processor 23 is configured to execute the program instructions stored in the memory, so as to enable the terminal device 150 to execute any resource processing method shown above.
  • the receiver of the transceiver 21 may be used to perform the receiving function of the terminal device in the resource processing method above.
  • FIG. 16 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device 160 may include: a transceiver 31 , a memory 32 , and a processor 33 .
  • the transceiver 31 may include: a transmitter and/or a receiver.
  • the transmitter may also be called a transmitter, a transmitter, a sending port, or a sending interface, and similar descriptions
  • the receiver may also be called a receiver, a receiver, a receiving port, or a receiving interface, or similar descriptions.
  • the transceiver 31 , the memory 32 , and the processor 33 are connected to each other through a bus 34 .
  • the memory 32 is used to store program instructions
  • the processor 33 is configured to execute the program instructions stored in the memory, so as to enable the network device 160 to execute any resource processing method shown above.
  • the receiver of the transceiver 31 may be used to perform the receiving function of the network device in the above resource processing method.
  • An embodiment of the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement the resource processing method above.
  • the embodiment of the present application may also provide a computer program product, which may be executed by a processor, and when the computer program product is executed, any resource processing method performed by the terminal device or network device shown above may be implemented.
  • the terminal device, computer-readable storage medium, and computer program product in the embodiments of the present application can execute the resource processing method introduced in the above-mentioned embodiments.
  • the resource processing method introduced in the above-mentioned embodiments For the specific implementation process and beneficial effects, refer to the above, and will not be repeated here.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the aforementioned computer program can be stored in a computer-readable storage medium.
  • the computer program When the computer program is executed by the processor, it implements the steps of the above-mentioned method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种资源处理方法及装置,该方法包括: 接收来自于网络设备的第一配置信息,其中,第一配置信息用于指示终端设备执行第一类型切换,第一配置信息包括用于执行第一类型切换的资源配置信息,资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系。根据资源配置信息,确定传输资源,其中,传输资源用于终端设备发送上行数据。通过根据第一配置信息指示上行资源和波束之间的关联关系,并且其中的第一配置信息指示终端设备进行第一类型切换,之后根据第一配置信息确定传输资源,从而可以实现对UE与目标网络进行通信的资源的有效配置。

Description

资源处理方法及装置 技术领域
本申请涉及通信领域,尤其涉及一种资源处理方法及装置。
背景技术
在长期演进技术(Long Term Evolution,LTE)系统中支持连接态用户设备(User Equipment,UE)的切换过程,也就是说将正在使用网络服务的UE从源小区移动到目标小区。
在LTE系统中,针对特定场景,UE的切换过程可以为无随机接入信道(random access channel-less,RACH-less)切换(handover,HO),在RACH-less切换过程中,UE无需执行随机接入流程,目标小区可以在切换命令中配置UE接入目标小区的上行资源,以供UE发送切换完成消息。目前,在新无线(New Radio,NR)中引入了波束的概念,UE通常需要进行波束的选择,之后在波束上进行资源的选择,其中随机接入过程中可以获取波束信息。
然而,针对RACH-less切换,因为没有执行随机接入过程,因此无法有效确定波束信息,所以如何配置用于UE与目标网络通信的资源是需要解决的问题。
发明内容
本申请实施例提供一种资源处理方法及装置,以解决RACH-less切换过程中,UE与目标网络通信的资源配置问题。
第一方面,本申请实施例提供一种资源处理方法,包括:
接收来自于网络设备的第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
根据所述资源配置信息,确定传输资源,其中,所述传输资源用于所述终端设备发送上行数据。
第二方面,本申请实施例提供一种资源处理方法,包括:
向终端设备发送第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
接收终端设备根据传输资源发送的上行数据,其中,所述传输资源为根据所述资源配置信息确定的。
第三方面,本申请实施例提供一种资源处理装置,包括:
接收模块,用于接收来自于网络设备的第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
确定模块,用于根据所述资源配置信息,确定传输资源,其中,所述传输资源用于所述终端设备发送上行数据。
第四方面,本申请实施例提供一种资源处理装置,包括:
发送模块,用于向终端设备发送第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
接收模块,用于接收终端设备根据传输资源发送的上行数据,其中,所述传输资源为根据所述资源配置信息确定的。
第五方面,本申请实施例提供一种终端设备,包括:收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如上第一方面所述的资源处理方法。
第六方面,本申请实施例提供一种网络设备,包括:收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如上第二方面所述的资源处理方法。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如上第一方面或第二方面所述的资源处理方法。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现如上第一方面或第二方面所述的资源处理方法方法。
本申请实施例提供一种资源处理方法及装置,该方法包括:接收来自于网络设备的第一配置信息,其中,第一配置信息用于指示终端设备执行第一类型切换,第一配置信息包括用于执行第一类型切换的资源配置信息,资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系。根据资源配置信息,确定传输资源,其中,传输资源用于终端设备发送上行数据。通过根据第一配置信息指示上行资源和波束之间的关联关系,并且其中的第一配置信息指示终端设备进行第一类型切换,之后根据第一配置信息确定传输资源,从而可以在第一类型切换的切换过程中,有效的基于波束信息的选择和确定,以实现对传输资源的确定,从而可以实现对UE与目标网络进行通信的资源的有效配置。
附图说明
图1为本申请实施例提供的上行链路示意图;
图2为本申请实施例提供的通信场景的示意图;
图3为本申请实施例提供的UE在不同小区之间进行切换的示意图;
图4为本申请实施例提供的4-step RACH的流程示意图;
图5为本申请实施例提供的2-step RACH的流程示意图;
图6为本申请实施例提供的资源处理方法的流程图;
图7为本申请实施例提供的资源处理方法的信令流程图一;
图8为本申请实施例提供的资源处理方法的信令流程图二;
图9为本申请实施例提供的资源处理方法的信令流程图三;
图10为本申请实施例提供的资源处理方法的信令流程图四;
图11为本申请实施例提供的资源处理方法的信令流程图五;
图12为本申请实施例提供的资源处理方法的流程图二;
图13为本申请实施例提供的资源处理装置的结构示意图;
图14为本申请实施例提供的资源处理装置的结构示意图;
图15为本申请实施例提供的终端设备的结构示意图;
图16为本申请实施例提供的网络设备的结构示意图。
具体实施方式
为了更好的理解本申请的技术方案,下面对本申请所涉及的相关概念以及相关技术进行介绍。
终端设备:可以为包含无线收发功能、且可以与网络设备配合为用户提供通讯服务的设备。具体地,终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络或5G之后的网络中的终端设备等。
网络设备:网络设备可以是用于与终端设备进行通信的设备,例如,可以是全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)通信系统中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络侧设备或未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的网络设备等。
本申请实施例中涉及的网络设备也可称为无线接入网(Radio Access Network,RAN)设备。 RAN设备与终端设备连接,用于接收终端设备的数据并发送给核心网设备。RAN设备在不同通信系统中对应不同的设备,例如,在2G系统中对应基站与基站控制器,在3G系统中对应基站与无线网络控制器(Radio Network Controller,RNC),在4G系统中对应演进型基站(Evolutional Node B,eNB),在5G系统中对应5G系统,如新无线(New Radio,NR)中的接入网设备(例如gNB,集中单元CU,分布式单元DU)。
波束(beam):波束在NR协议中的体现可以是空域滤波器(spatial filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameters)。用于发送信号的波束可以称为发射波束(transmission beam,Tx beam),可以称为空间发送滤波器(spatialdomain transmit filter)或空间发射参数(spatial domain transmit parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空间接收滤波器(spatial domain receive filter)或空间接收参数(spatial domain receiveparameter)。
例如,波束可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识,所述索引信息可以对应配置给终端的资源标识(identity,ID),比如,所述索引信息可以对应配置的同步信号块(synchronization signal block,SSB)的标识或者资源;也可以对应配置的信道状态信息参考信号(channel state information reference signal,CSI-RS)的标识或者资源;也可以是对应配置的上行探测参考信号(sounding reference signal,SRS)的标识或者资源。可选地,所述索引信息也可以是通过波束承载的信号或信道显式或隐式承载的索引信息。所述能量传输指向性可以指通过该预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。可选地,同一通信装置(比如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。针对通信装置的配置或者能力,一个通信装置在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。
基于不同的传输方向,波束可以分为发射波束和接收波束。发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
可以理解的是,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
NUL:其中,上行链路(UpLink,UL)是指信号从终端设备到网络设备的物理通道,正常的上行链路即为正常上行链路(Normal UpLink,NUL)。
SUL:其中,补充上行链路(Supplementary UpLink,SUL)是补充的上行链路,SUL采用的频段比NUL采用的频段低,SUL覆盖范围比NUL覆盖范围大,例如可以结合图1进行理解,图1为本申请实施例提供的上行链路示意图。
如图1所示,NUL和SUL都为上行链路,其中,SUL覆盖范围比NUL覆盖范围大,其中,SUL的频点较低,信号损耗较小,可以保证NUL的覆盖。
下面,结合图2,对本申请中的资源处理方法所适用的场景进行说明。
图2为本申请实施例提供的通信场景的示意图。请参见图2,包括网络设备201和终端设备202,网络设备201和终端设备202之间可以进行无线通信,其中,终端设备202可以经无线接入网(Radio Access Network,RAN)与至少一个核心网进行通信。
其中,该通信系统可以为全球移动通讯(Global System of Mobile communication,简称GSM)系统、码分多址(Code Division Multiple Access,简称CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)系统、长期演进(Long Term Evolution,简称LTE)系统或第五代移动通信(5th-Generation,简称5G)系统。
相应的,该网络设备可以为GSM系统或CDMA系统中的基站(Base Transceiver Station,简称BTS),也可以是WCDMA系统中的基站(NodeB,简称NB),还可以是LTE系统中的演进型基站(evolved NodeB,简称eNB)、接入点(access point,AP)或者中继站,也可以是5G系统中的基站等,在此不作限定。
本申请所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统和/或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是PLMN网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、IoT网络或者其他网络。
可以理解的是,若本申请实施例的技术方案应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在上述介绍内容的基础上,下面对小区切换的切换过程进行介绍,其中,小区切换是指在无线通信系统中,当UE从一个小区移动到另一个小区时,为了保持UE的不中断通信需要进行的信道切换。其中小区是指基站或者基站的覆盖范围。
与LTE系统类似,在NR系统中支持连接态UE的切换过程,在一些条件下会执行连接态UE的切换过程,例如,当正在使用网络服务的UE从一个小区移动到另一个小区,或由于无线传输业务负荷量调整、激活操作维护、设备故障等原因,为了保证通信的连续性和服务的质量,系统要将该UE与原小区的通信链路转移到新的小区上,即执行切换过程。
例如可以结合图3理解切换过程,图3为本申请实施例提供的UE在不同小区之间进行切换的示意图。
如图3所示,终端设备301处于三个不同的小区C1、C2、C3共同覆盖的区域,假设终端设备301当前接入的是小区C1,当满足上述介绍的特定条件时,终端设备301例如可以从小区C1切换到小区C2,或者从小区C1切换到小区C3。其中,小区C1就为源小区,也就是说终端设备切换前的小区,小区C2或者小区C3就为目标小区,也就是说终端设备切换后的小区。
上述介绍的切换过程例如可以为站内切换,也就是说源小区和目标小区属于同一个网络设备,其中,原小区和目标小区可以是同一个小区或者不同的小区。或者,上述切换过程还可以为站间切换,也就是说源小区和目标小区属于不同的网路设备,本实施例对此不做限制。
在上述介绍的切换相关内容的基础上,以Xn接口切换过程为例,对切换过程进行介绍,其中,Xn接口是指下一代无线接入网络(Next Generation Radio Access Network,NG-RAN)节点之间的网络接口,NG-RAN节点例如可以包括5G基站(gNB)、升级支持eLTE的4G基站(ng-eNB)。
其中,整个切换过程可以分为以下三个阶段:
(1)切换准备:包括测量控制和汇报,切换请求以及确认。例如,源基站可以配置UE的测量报告,UE根据预定的测量规则向源基站发送测量报告;源基站根据测量报告及无线资源管理(Radio Resource Management,RRM)信息决定UE是否需要切换。当需要切换时,源基站向目标基站发送切换请求;目标基站根据收到的服务质量(Quality of Service,QoS)信息执行接纳控制,并返回切换确认消息。
在切换确认消息中包含目标小区生成的切换命令,源小区不允许对目标小区生成的切换命令进行任何修改,直接将切换命令转发给UE。
应理解,源小区对应源网络设备(例如源基站),目标小区对应目标网络设备(例如目标基站)。
(2)切换执行:UE在收到切换命令后立即执行切换过程,即UE断开源小区并与目标小区连接(如执行随机接入,发送无线资源控制(Radio Resource Control,RRC)切换完成消息给目标基站等。还可以包括SN状态转移,数据转发。
(3)切换完成:目标小区与接入和移动性管理功能(Access and Mobility Management Function,AMF)网元以及用户面功能(User Plane Function,UPF)网元路径转换(Path Switch),释放源基站的UE上下文。
基于上述介绍可以确定的是,在切换过程中,UE需要向目标小区发送切换完成消息,因此UE需要获取相应的上行资源,从而基于上行资源向目标小区发送切换完成消息。
在一种可能的实现方式中,传统的切换过程往往包括随机接入流程,即终端设备在接收到切换消息后,根据切换消息中包含的目标小区的相关信息(如目标小区的物理小区标识、频率信息、 切换至目标小区所需的随机接入资源信息等),与目标小区进行随机接入流程,之后向目标小区发送切换完成消息。
下面对随机接入过程进行简单说明,随机接入是终端设备开始向尝试接入的网络设备发送随机接入前导码索引(preamble index),至终端设备与网络设备间建立起连接的这段过程。随机接入流程例如可能在切换、RRC重建立等流程中发生。
本申请实施例所涉及的随机接入可以包括四步随机接入(还可以称为四步随机接入信道,或者,还可以简称为4-step RACH)和两步随机接入(还可以称为两步随机接入信道,或者还可以简称为2-step RACH),为了便于理解,下面,分别对4-step RACH和2-step RACH的过程进行详细说明。
下面根据图4简单说明四步随机接入。图4为本申请实施例提供的4-step RACH的流程示意图,如图4所示,四步随机接入流程具体可以包括:
S401、终端设备向网络设备发送Msg1。
其中,Msg1用于传输随机接入前导,例如终端设备通过物理随机接入信道(physical random access channel,PRACH)向网络设备发送随机接入前导码(或者称随机接入前导序列)索引。
S402、网络设备向终端设备发送Msg2。
Msg2可以包括随机接入响应。该随机接入响应中可以包含响应的定时提前量(timing advance,TA)、上行链路(UpLink,UL)授权(grant)和临时小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)等。
S403、终端设备向网络设备发送Msg3。
Msg3是随机接入过程中的第一个调度传输,例如终端设备基于接收到的随机接入响应,在网络设备分配的UL grant资源上发送消息/数据,例如,发送RRC建立请求消息,该RRC建立请求消息中可以包含终端设备的标识信息。该标识信息例如可以是上文所述的临时C-RNTI。
S404、网络设备向终端设备发送Msg4。
其中,Msg4用于指示该终端设备是否成功的接入到该网络设备。例如网络设备接收到终端设备在分配的UL grant资源上发送的消息/数据后,若无冲突(或无竞争),则网络设备给终端设备发送竞争解决消息,例如,网络设备向终端设备发送RRC建立消息。此后,终端设备可以与网络设备通信。
下面根据图5简单说明两步随机接入。图5为本申请实施例提供的2-step RACH的流程示意图,如图5所示,两步随机接入流程具体可以包括:
S501、终端设备向网络设备发送MsgA。
其中,MsgA用于传输随机接入前导,例如终端设备通过PRACH向网络设备发送随机接入前导码索引(或者称随机接入前导序列)。在非竞争的随机接入流程中,该随机接入前导码索引是网络设备提前分配给终端设备的。换句话说,该随机接入前导码索引是专用的。
S502、网络设备向终端设备发送MsgB。
其中,MsgB用于指示该终端设备是否成功的接入到该网络设备。例如网络设备向终端设备发送随机接入响应。该随机接入响应中可以包含响应的TA、UL grant等。
需要说明的是,UL grant具体可以包括以下至少一项:时频资源、调制编码方式(MCS)、新数据指示(NDI)、发起上行传输的时刻(如子帧或时隙(slot))以及上行调度的间隔等。其中,UL grant中包含的时频资源具体可以是指通过该UL grant调度的上行资源的时频位置。该UL grant调度的上行资源例如可以是PUSCH资源。
基于上述介绍的随机接入过程的内容可以确定的是,UE通过发起随机接入过程,可以获取上行资源,从而可以向目标小区发送切换完成消息,以及通过发起随机接入过程,还可以获取TA,以实现和目标小区的同步。
在另一种可能的实现方式下,在LTE系统中,针对特定场景,切换过程还可以是RACH-less HO,也就是说终端设备可以不执行与目标小区的随机接入过程,就可以执行切换过程。其中,当前介绍的特定场景例如可以为目标小区能判断UE到源小区的TA和到目标小区的TA相同,或UE到目标小区的TA为0。
比如说,源小区和目标小区可以是同一个网络设备下的不同覆盖范围,或者说,源小区和目标小区可以是共站的。此时,对于某一终端设备,可以确定UE到源小区的TA和到目标小区的TA相同。或者,目标小区也可以为小小区,此时,对于某一终端设备,可以确定UE到目标小区的TA为0。
基于上述介绍可以确定的是,随机接入过程中可以获取TA,但是在上述介绍的特定场景下,终端设备无需执行随机接入过程就可以确定TA,因此在这样的特定场景下,终端设备可以执行RACH-less HO,在RACH-less HO过程中,目标小区在切换命令中可配置RACH-skip(随机接入信道跳过)信息,在RACH-skip信息中可以包含UE接入目标小区的上行资源,供UE发送切换完成消息。
或者,如果切换命令中没有配置上行资源,则UE需要监听目标小区的PDCCH,等待目标小区调度上行传输,用调度的上行资源传输切换完成消息。
基于上述介绍的内容,下面对在RACH-less HO过程中的上行资源进行说明。
用于UE传输上行数据的资源可以基于网络的动态调度,例如通过下行控制信息(Downlink Control Information,DCI)指示;或者也可以基于网络预配置的一组周期性的出现的上行资源,也就是预配置资源(Configured Grant,CG),其中,上行CG可以分为Type1和Type2两种类型。
其中,CG Type1由RRC参数ConfiguredGrantConfig配置,在RRC参数ConfiguredGrantConfig中,可以包括时域资源、频域资源、解调参考信号(Demodulation Reference Signal,DMRS)、开环功控、调制编码方案(调制与编码策略,MCS)、波形、冗余版本、重复次数、调频、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程等参数。UE在接收到高层配置后,即可使用配置的CG type1资源进行上行数据传输,不需要额外的激活步骤。
以及,CG Type2同样通过RRC参数ConfiguredGrantConfig配置,但不包含该参数中的rrc-ConfiguredUplinkGrant域中指示的信息,所配置的CG Type2资源的激活通过配置调度无线网络临时标识(Configured Scheduling Radio Network Temporary Identifier,CS-RNTI)加扰的DCI指示,并同时配置包括时域资源、频域资源、DMRS、MCS等传输资源和传输参数。UE在接收到高层配置后,不可使用CG Type2资源,必须等收到相应的DCI激活指令和配置信息后,才能进行上行数据传输。
值得说明的是,ConfiguredGrantConfig中的rrc-ConfiguredUplinkGrant域用以区分Type1和Type1,如果该字段配置,则表示当前配置为CG Type1,否则为CG Type2。
其中,UE根据网络配置,确定CG资源对应的HARQ进程,当UE利用某一HARQ进行对应的CG资源完成上行数据传输后,启动CG timer(定时器)。在CG timer运行期间内,UE不可使用具有相同HARQ进程的CG资源进行数据新传,以避免HARQ buffer中的数据被其他数据覆盖。当CG timer超时时,隐式指示相应HARQ进程传输的数据已被网络正确接收。为了支持超高可靠超低时延通信(Ultra-reliable and Low Latency Communications,URLLC)业务的高时延要求,URLLC增强了CG周期,支持任意slot-level(时隙级)的业务周期。
上述介绍了RACH-less切换过程以及RACH-less切换过程中的资源配置,在LTE系统中,上述实现方式可以有效指示资源配置的实现方式,但是在NR中引入了波束的概念,在NR中,随机接入过程除了用于获取TA之外,还用于用于确定波束配置信息,例如正常情况下,终端设备可以先进行beam的选择,之后隐式的告诉网络设备当前在哪个波束上进行数据的传输,然后网络设备也使用这个波束,才能够进行正确的通信。
但是,因为在RACH-less过程中,因为没有随机接入过程,因此UE和网络设备实际上并没有交互互相使用的波束信息,这样就有可能出现UE在一个波束上进行数据的发送,但是网络设备在另一个波束上进行数据的接收的情况,因此可能导致数据传输失败。
因此,在NR中,针对RACH-less切换,因为没有针对波束信息进行有效的配置,因此网络如何配置用于UE与目标网络通信的资源,目前尚没有有效的解决方案。
针对现有技术中的问题,本申请提出了如下技术构思:在针对UE进行资源配置的时候,在资源配置信息中同时指示波束的相关信息,以使得UE之后在进行资源选择的时候,可以基于波束进行相关的选择,网络设备也可以在相关的波束上进行数据的接收,从而可以实现在RACH-less切换过程中,有效实现对UE传输资源的配置,并且基于传输资源可以正确的实现数据传输。
下面结合具体的实施例对本申请提供的资源处理方法进行介绍,图6为本申请实施例提供的资源处理方法的流程图。
如图6所示,该方法包括:
S601、接收来自于网络设备的第一配置信息,其中,第一配置信息用于指示终端设备执行第一类型切换,第一配置信息包括用于执行第一类型切换的资源配置信息,资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系。
在本实施例中,终端设备可以接收来自于网络设备的第一配置信息,其中,第一配置信息用于指示终端设备执行第一类型切换,在一种可能的实现方式中,第一类型切换例如可以为RACH-less切换,也就是说上述介绍的无随机接入过程的切换。其中,第一配置信息例如可以为RRC消息,比如说RRC重配消息等,在实际实现过程中,第一配置信息的具体实现方式可以根据实际需求进行选择,只要第一配置信息可以用于指示终端设备执行第一类型切换即可。
以及,本实施例中第一配置信息还可以包括资源配置信息,其中的资源配置信息是用于执行上述介绍的第一类型切换的资源配置信息,本实施例中的资源配置信息可以包括至少一个上行资源和至少一个波束之间的关联关系。
可以理解的是,资源配置信息中的上行资源和波束都是分配给UE,以供UE进行选择的,其中,至少一个上行资源为UE可以选择的用于传输上行数据的资源,至少一个波束同样也是分配给UE可供选择的波束。
其中关联关系例如可以为上行资源和波束之间例如可以为一个波束对应至少一个上行资源,或者还可以为多个波束公用至少一个上行资源,此处例如可以进行举例介绍,假设当前存在波束1和波束2,以及假设存在上行资源A、上行资源B和上行资源C,则例如可以存在如下关联关系:波束1和上行资源A和上行资源B之间存在关联关系,波束2和上行资源C之间存在关联关系。
在实际实现过程中,至少一个上行资源的配置,以及至少一个波束的配置,以及至少一个上行资源和至少一个波束之间的关联关系可以根据实际需求进行选择,本实施例对此不做限制。
S602、根据资源配置信息,确定传输资源,其中,传输资源用于终端设备发送上行数据。
终端设备在接收到资源配置信息之后,就可以根据资源配置信息确定传输资源了,可以理解的是,当前所确定的传输资源例如可以为上述介绍的至少一个上行资源中的资源。在确定传输资源之后,例如可以基于确定的传输资源发送上行数据了,其中,发送的上行数据例如可以为上述介绍的切换完成消息等等,本实施例对终端设备发送的上行数据同样不做限制,只要其是基于当前确定的传输资源向网络设备发送的数据即可。
在根据资源配置信息进行传输资源的选择的实现过程中,例如可以针对波束进行选择,在确定满足条件的目标波束之后,例如可以根据资源配置信息中的关联关系,选择目标波束所关联的上行资源,从而确定传输资源。通过根据关联关系进行选择,从而可以在第一类型切换的实现方式下,有效实现对波束的选择,之后基于选择的波束上的资源进行数据的传输,从而可以保证终端设备和网络设备基于相同的波束进行数据的传输,以有效实现了在RACH-less切换过程中对UE传输资源的配置。
本申请实施例提供的资源处理方法,包括:接收来自于网络设备的第一配置信息,其中,第一配置信息用于指示终端设备执行第一类型切换,第一配置信息包括用于执行第一类型切换的资源配置信息,资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系。根据资源配置信息,确定传输资源,其中,传输资源用于终端设备发送上行数据。通过根据第一配置信息指示上行资源和波束之间的关联关系,并且其中的第一配置信息指示终端设备进行第一类型切换,之后根据第一配置信息确定传输资源,从而可以在第一类型切换的切换过程中,有效的基于波束信息的选择和确定,以实现对传输资源的确定,从而可以实现对UE与目标网络进行通信的资源的有效配置。
在上述实施例的基础上,可以理解的是,本申请中的上行资源可以为上述介绍的CG资源,还可以为上述介绍的动态调度资源,下面不同的上行资源所对应的资源确定的相关实现分别进行介绍。
首先对上行资源为CG资源的实现方式进行介绍,基于上述介绍的内容可以确定的是,CG资源可以为第一类型CG资源(Type1 CG资源),或者还可以为第二类型CG资源(Type2 CG资源),下面对Type1 CG资源和Type2 CG资源分别进行说明。
首先结合图7对Type1 CG资源下,资源配置的相关实现方式进行介绍,图7为本申请实施例提供的资源处理方法的信令流程图一。
如图7所示,该方法包括:
S701、UE向源网络设备设备发送测量报告。
其中,UE例如可以基于源小区配置的测量配置信息执行测量过程,并向源网络设备发送测量报告。
S702、源网络设备确定执行切换。
其中,源小区例如可以基于UE的测量报告和RRM信息,确定执行切换过程。
S703、源网络设备向目标网络设备发送切换请求。
在源网络设备确定执行切换之后,源小区和目标小区可以进行切换准备,例如可以向目标设备发送切换请求。
S704、目标网络设备向源网络设备发送切换命令。
目标网络设备根据源网络设备发送的切换请求,可与向源网络设备发送切换命令。
S705、源网络设备向UE发送切换命令。
源网络设备在接收到目标网络设备发送的切换命令之后,可以将切换命令转发给终端设备,本实施例中的切换命令例如可以为RRC重配消息。
在一种可能的实现方式中,以源网络设备为源gNB,目标网络设备为目标gNB为例,对本实施例中的61-64的具体实现方式进行进一步的详细介绍:
0.源gNB内的UE上下文包含有关漫游和接入限制的信息,这些信息在连接建立或最后一次TA更新时提供。
(The UE context within the source gNB contains information regarding roaming and access restrictions which were provided either at connection establishment or at the last TA update.)
1.源gNB配置UE测量过程,UE根据测量配置进行报告。
(The source gNB configures the UE measurement procedures and the UE reports according to the measurement configuration.)
2.源gNB根据测量报告和RRM信息决定切换UE。
(The source gNB decides to handover the UE,based on MeasurementReport and RRM information.)
3.源gNB向目标gNB发出切换请求消息,切换请求消息中用于传递包括必要信息的透明RRC容器,以便在目标侧准备切换。该信息至少包括目标小区ID、KgNB*、源gNB中UE的小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)、包括UE不活动时间的RRM配置、包括天线信息和DL载波频率的基本AS配置、当前QoS流到应用于UE的DRB映射规则、来自源gNB的SIB1、不同RAT的UE能力、PDU会话相关信息,并且可以包括UE报告的测量信息,包括波束相关信息(如果可用)。PDU会话相关信息包括切片信息和QoS流级QoS配置文件。源gNB还可以请求一个或多个DRB的DAPS切换。
(The source gNB issues a Handover Request message to the target gNB passing a transparent RRC container with necessary information to prepare the handover at the target side.The information includes at least the target cell ID,KgNB*,the C-RNTI of the UE in the source gNB,RRM-configuration including UE inactive time,basic AS-configuration including antenna Info and DL Carrier Frequency,the current QoS flow to DRB mapping rules applied to the UE,the SIB1from source gNB,the UE capabilities for different RATs,PDU session related information,and can include the UE reported measurement information including beam-related information if available.The PDU session related information includes the slice information and QoS flow level QoS profile(s).The source gNB may also request a DAPS handover for one or more DRBs.)
4.准入控制可以由目标gNB执行。如果将切片信息发送到目标gNB,则应执行切片感知准入控制。如果PDU会话与不受支持的切片相关联,则目标gNB应拒绝此类PDU会话。
(Admission Control may be performed by the target gNB.Slice-aware admission control shall be performed if the slice information is sent to the target gNB.If the PDU sessions are associated with non-supported slices the target gNB shall reject such PDU Sessions.)
5.目标gNB准备与L1/L2的切换,并向源gNB发送移交请求确认,其中包括要作为RRC消息发送给UE以执行切换的透明容器。目标gNB还指示是否接受DAPS切换。
(The target gNB prepares the handover with L1/L2 and sends the HANDOVER REQUEST ACKNOWLEDGE to the source gNB,which includes a transparent container to be sent to the UE as an RRC message to perform the handover.The target gNB also indicates if a DAPS handover is accepted.)
6.源gNB通过向UE发送切换命令(RRCReconfiguration)消息来触发Uu切换,其中包含接入目标小区所需的信息:至少目标小区ID、新的C-RNTI、目标gNB安全算法标识符,用于选定的安全算法.它还可以包括一组专用RACH资源、RACH资源与SSB之间的关联、RACH资源与UE特定的CSI-RS/SSB配置之间的关联、公共RACH资源以及目标小区的系统信息等。
(The source gNB triggers the Uu handover by sending an RRCReconfiguration message to the  UE,containing the information required to access the target cell:at least the target cell ID,the new C-RNTI,the target gNB security algorithm identifiers for the selected security algorithms.It can also include a set of dedicated RACH resources,the association between RACH resources and SSB(s),the association between RACH resources and UE-specific CSI-RS/SSB configuration(s),common RACH resources,and system information of the target cell,etc.)
在本实施例中,上述介绍的RRC重配置消息(RRCReconfiguration)例如可以为切换命令,本实施例中的切换命令中可以包括上述介绍的第一配置信息,或者可以理解,当前介绍的切换命令就为上述介绍的第一配置信息。
在一种可能的实现方式中,该切换命令中例如可以包括TA指示信息,比如说上述介绍的RACH-skip信息,因此切换命令可以指示切换过程为RACH-less切换过程,即为上述介绍的第一配置信息可以指示终端设备执行第一类型切换。同时,在第一配置信息中包括用于执行第一类型切换的资源配置信息,本实施例中的资源配置信息是针对Type2 CG资源的配置信息,下面对资源配置信息的实现方式进行介绍。
其中,资源配置信息中可以包括如下中的至少一种:载波信息、至少一个上行资源和至少一个波束之间的关联关系、波束质量对应的第一阈值、时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、混合自动重传请求HARQ进程等参数。在实际实现过程中,资源配置信息所包括的内容还可以根据实际需求进行选择和扩展,本实施例对此不做限制,只要资源配置信息中所包括的参数是用于对资源进行指示的即可。
S706、确定传输资源。
终端设备在接收第一配置信息之后,可以根据第一配置信息确定传输资源,UE在基于当前介绍的资源配置信息确定传输资源的时候,例如可以根据如下中的至少一个步骤进行传输资源的选择。
可选地,终端设备例如可以确定第一BWP,其中,第一BWP为如下中的任一种:初始BWP、配置了CG资源的BWP、或者第一参数指示的BWP,其中第一参数为网络配置的或者协议规定的,在本实施例中,第一参数例如可以为firstActiveUplinkBWP,在实际实现过程中,第一参数的具体实现可以根据实际需求进行选择,本实施例对此不做限制,只要第一参数是网络配置或者协议规定的,用于指示BWP的即可。
以及,可选地,终端设备还例如可以在选择的第一BWP的基础上,根据载波信息确定至少一个第一CG资源,本实施例中的第一CG资源为第一BWP上的资源。
下面对载波信息的几种可能的实现方式分别进行介绍,并对各种载波信息的各种实现方式下,确定第一CG资源的实现方式进行介绍。
在一种可能的实现方式种,载波信息可以包括第一指示信息,其中第一指示信息可以指示终端设备使用NUL,在NUL上配置有CG资源,则在根据载波信息确定第一CG资源时,例如可以确定第一指示信息所指示的NUL上配置的CG资源为第一CG资源。
或者,载波信息中包括的第一指示信息可以指示终端设备使用SUL,在SUL上配置有CG资源,则在根据载波信息确定第一CG资源时,例如可以确定第一指示信息所指示的SUL上配置的CG资源为第一CG资源。
也就是说在当前的实现方式中,目标网络设备例如可以直接根据UE测量结果,在载波信息中直接指示当前是使用SUL还是NUL,然后确定指示的SUL或者NUL上配置的CG资源为第一CG资源。
在另一种可能的实现方式中,载波信息中可以包括NUL上配置的CG资源、SUL上配置的CG资源以及第二阈值,本实施例中的第二阈值用于和相应的参数进行比较,从而确定当前终端设备是采用SUL还是NUL。
例如,可以将小区质量信息和第二阈值进行比较,当确定小区质量信息小于第二阈值时,确定SUL上配置的CG资源为第一CG资源;或者,当确定小区质量信息大于或等于第二阈值时,确定NUL上配置的CG资源为第一CG资源。其中,小区质量信息可以包括如下中的至少一种:下行路损参考的参考信号接收功率(Reference Signal Receiving Power,RSRP)、下行路损参考的参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。
也就是说在当前的实现方式中,目标网络设备并不直接指示当前是使用SUL还是NUL,而是通过配置第二阈值,终端设备可以基于小区质量信息和第二阈值进行比较,从而确定当前是使用SUL还是NUL,进而确定其上配置的CG资源为第一CG资源。
在又一种可能的实现方式中,载波信息中通过配置了CG资源的载波确定,也就是说确定配 置了CG资源的上行载波为目标载波,进一步的确定该载波对应的CG资源为第一CG资源。
例如只有NUL上配置了CG资源,则确定NUL上配置的CG资源为第一CG资源。
或者,还例如网络只在SUL上配置了CG资源,则可以确定SUL上配置上配置的CG资源为第一CG资源。
也就是说在当前的实现方式中,目标网络设备并不直接指示当前是使用SUL还是NUL,也不配置第二阈值,终端确定在SUL或者NUL上,具体哪个配置有CG资源,终端设备选择配置有CG资源的上行载波,从而确定第一CG资源。
在实际实现过程中,载波信息的具体实现方式,以及根据载波信息确定第一CG资源的具体实现均可以根据实际需求进行选择,本实施例对此不做限制。
上述介绍的是确定至少一个第一CG资源的实现方式,可选地,在上述确定的至少一个第一CG资源的基础上,在确定传输资源时,还可以根据资源配置信息中的关联关系以及第一阈值,在至少一个第一CG资源中确定第二CG资源。
在一种可能的实现方式中,当至少一个波束的波束质量信息高于所配置的第一阈值时,在其中选择一个波束。
本实施例中的波束可以为如下中的任一种:同步信号和物理广播信道块SSB、信道状态信息参考信号CSI-RS、探测参考信号SRS、传输配置指示TCI情况(state),空间关系(spatial relation),波束质量信息包括如下中的至少一种:同步信号参考信号接收功率SS-RSRP、信道状态信息参考信号接收功率CSI-RSRP。
则选择波束的实现方式结合具体的波束质量信息可以理解为:当至少一个SSB的SS-RSRP高于所配置的第一阈值(rsrp-ThresholdSSB)或者至少一个CSI-RSs的CSI-RSRP高于所配置的第一阈值(rsrp-ThresholdCSI-RS)时,在其中选择一个SSB或CSI-RS。
可以理解的是,在本实施例中,波束质量信息的大于第一阈值的波束可以有一个或多个,因此当前可以确定至少一个候选波束,所以在确定候选波束之后,还可以在至少一个候选波束中进一步选择,从而确定目标波束。
在一种可能的实现方式中,目标波束例如可以为候选波束中波束信道质量最强的波束,或者,目标波束还可以为在候选波束中随机选择的波束,或者,目标波束还可以为候选波束中索引值最大或者最小的波束等等,本实施例对从候选波束中选择目标波束的具体实现方式不做限制,只要目标波束是从候选波束中选择的即可。
在确定目标波束之后,可选地,可以根据资源配置信息中的关联关系确定第二CG资源,例如可以将关联关系中,目标波束对应的至少一个第一CG资源,确定为第二CG资源。
基于上述介绍可以确定的是,在关联关系中可以为一个波束对应至少一个CG资源,还可以是多个波束共用至少一个CG资源,因此本实施例中确定的关联关系中目标波束对应的第二CG资源也可能有一个或者多个。
因此,可选地,还可以在第二CG资源中进一步确定传输资源,在一种可能的实现方式中,可以将各第二CG资源中,时域位置和当前时刻最接近的第二CG资源,确定为传输资源,其中,当前时刻为终端设备当前正在确定传输资源的时刻;或者,还可以将各第二CG资源中,随机选择的第二CG资源,确定为传输资源,在实际实现过程中,在第二CG资源中确定传输资源的实现方式可以根据实际需求进行选择,本实施例对此不做限制。
例如在上述结合具体的波束质量信息介绍的内容中,在得到目标波束SSB或CSI-RS后,之后在该SSB或CSI-RS关联的CG资源中,按照上述介绍的实现方式选择传输资源,从而可以基于传输资源进行上行传输。
然而,此处还需要说明的是,上述在介绍确定候选波束的时候,会将波束质量信息和第一阈值进行比较,从而确定波束质量信息大于第一阈值的至少一个波束为候选波束,在另一种可能的实现方式中,当前可能不存在大于第一阈值的波束,例如在上述介绍的示例中,当前不存在满足阈值的SSB/CSI-RS,则可以执行如下操作中的任一种:
确定任意一个配置了CG资源的波束为目标波束,并确定目标波束对应的CG资源为传输资源;或者,
向目标小区发起随机接入过程;或者,
向目标小区或者源小区发起连接重建立流程。
上述介绍的就是确定传输资源的各种可能的实现方式,在实际实现过程中,确定传输资源的实现方式可以根据实际需求进行选择,本实施例对此不做限制。
S707、根据传输资源发送上行数据。
在终端设备确定传输资源之后,就可以根据传输资源向目标小区发送上行数据了,其中的上行数据例如可以包括RRC重配完成消息,可选的还可以包括上行数据,C-RNTI,BSR,MAC CE等,本实施例对终端设备发送的上行数据的具体实现方式不做限制,其可以根据实际需求进行选择。
本申请实施例提供的资源处理方法,通过在切换命令中配置Type2 CG资源,并且Type2 CG资源与波束关联,从而可以有效实现对于RACH-less切换中,UE与目标网络进行通信的Type2 CG资源的资源配置,进而可以有效实现对传输资源的确定,以确保UE和网络设备可以进行正确的数据传输。
上述介绍的是Type1 CG资源的资源配置的相关实现的实现方式,下面结合图8对Type2 CG资源的资源配置的相关实现的实现方式进行介绍,图8为本申请实施例提供的资源处理方法的信令流程图二。
如图8所示,该方法包括:
S801、UE向源网络设备设备发送测量报告。
S802、源网络设备确定执行切换。
S803、源网络设备向目标网络设备发送切换请求。
S804、目标网络设备向源网络设备发送切换命令。
S805、源网络设备向UE发送切换命令。
其中,S801-S805的实现方式与上述介绍的S701-S705的实现方式类似,此处不再赘述。
在上述介绍内容的基础上,本实施例中的切换命令的实现方式与上述实施例存在一些差别,此处对本实施例中的切换命令的内容进行介绍,在一种可能的实现方式中,该切换命令中例如可以包括TA指示信息,比如说上述介绍的RACH-skip信息,因此切换命令可以指示切换过程为RACH-less切换过程,即为上述介绍的第一配置信息可以指示终端设备执行第一类型切换。同时,在第一配置信息中包括用于执行第一类型切换的资源配置信息,本实施例中的资源配置信息是针对Type2 CG资源的配置信息,下面对资源配置信息的实现方式进行介绍。
其中,资源配置信息中可以包括如下中的至少一种:载波信息、至少一个上行资源和至少一个波束之间的关联关系、波束质量对应的第一阈值、时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、混合自动重传请求HARQ进程等参数。在实际实现过程中,资源配置信息所包括的内容还可以根据实际需求进行选择和扩展,本实施例对此不做限制,只要资源配置信息中所包括的参数是用于对资源进行指示的即可。
S806、确定传输资源。
终端设备可以根据资源配置信息,对资源进行相应的选择,从而确定传输资源。其中,针对CG资源为Type2 CG资源时,其确定传输资源的实现方式与上述S706介绍的CG资源为Type1 CG资源的实现方式类似,此处不再赘述。
S807、目标网络设备向UE发送DCI。
基于上述介绍可以确定的是,针对Type2 CG资源,在进行配置之后,还需要相应的DCI激活指令对CG资源进行激活才能够使用,因此在本实施例中,虽然终端设备确定了传输资源,但是传输资源目前还没有激活,因此是不可用的。
在本实施例中,终端设备例如可以接收来自于网络设备的第二消息,其中,第二消息用于激活Type2 CG资源。
在一种可能的实现方式中,终端设备接收的第二消息例如可以为当前实施例所介绍的目标网络设备发送的DC例如UE可以接收目标小区发送的DCI,该DCI可以用于激活切换命令中配置的Type2 CG资源,或者,第二消息还可以为RRC消息、MAC CE等等,本实施例对第二消息的具体实现方式不做限制,只要第二消息可以指示激活Type2 CG资源即可。
在可选的实现方式中,当CG资源为Type2 CG资源时,上述切换命令中还可以包括UE用于接收目标网络设备发送的DCI的波束信息。
S808、根据传输资源发送上行数据。
在接收到目标网络设备发送的DCI之后,就可以对CG资源进行激活了,然后上述已经确定了传输资源,因此可以基于传输资源进行上行数据的发送。其中的上行数据例如可以包括RRC重配完成消息,可选的还可以包括上行数据,C-RNTI,BSR,MAC CE等,本实施例对终端设备发送的上行数据的具体实现方式不做限制,其可以根据实际需求进行选择。
本申请实施例提供的资源处理方法,通过在切换命令中配置Type2 CG资源,并且Type2 CG资源与波束关联,从而可以有效实现对于RACH-less切换中,UE与目标网络进行通信的Type2 CG资源的资源配置,进而可以有效实现对传输资源的确定,以确保UE和网络设备可以进行正确的数据传输。
上述介绍的是针对Type2 CG资源中,进行资源配置以及资源选择的一种实现方式,在上述实现方式中,终端设备接收的DCI是会对所有的CG资源进行激活,然后再基于上述UE确定的传输资源进行上行数据的发送。然而在另一种可能的实现方式中,UE还可以不执行BWP,NUL/SUL以及波束的选择,而是基于DCI的指示确定CG资源,下面结合图9对这种实现方式进行介绍。
图9为本申请实施例提供的资源处理方法的信令流程图三。
如图9所示,该方法包括:
S901、UE向源网络设备设备发送测量报告。
S902、源网络设备确定执行切换。
S903、源网络设备向目标网络设备发送切换请求。
S904、目标网络设备向源网络设备发送切换命令。
S905、源网络设备向UE发送切换命令。
其中,S901-S905的实现方式与上述介绍的S801-S805的实现方式类似,此处不再赘述。
S906、目标网络设备向UE发送DCI,其中,DCI用于指示激活第一波束关联的CG资源。
在本实施例中,DCI并不激活所有的Type2 CG资源,而是针对性的激活第一波束关联的CG资源,其中的第一波束就是网络设备配置的使得终端设备使用的波束,在这种情况下,DCI中还例如可以包括BWP指示,以及DCI中还例如可以包括NUL/SUL指示,也就是说指示终端设备当前是使用NUL还是SUL,因此在当前的实现方式下,终端设备就无需再进行BWP、NUL/SUL以及波束的选择,基于DCI指示就可以确定CG资源。
S907、确定第一波束关联的CG资源为传输资源。
在本实施例中,DCI会直接指示第一波束,因此终端设备无需执行上述实施例中介绍的选择过程,从而可以直接确定第一波束关联的CG资源为传输资源。
S908、根据传输资源发送上行数据。
在确定传输资源之后,就可以基于传输资源进行上行数据的发送。其中的上行数据例如可以包括RRC重配完成消息,可选的还可以包括上行数据,C-RNTI,BSR,MAC CE等,本实施例对终端设备发送的上行数据的具体实现方式不做限制,其可以根据实际需求进行选择。
本申请实施例提供的资源处理方法,通过在DCI中指示第一波束以及NUL/SUL、BWP,从而可以直接指示终端设备当前所使用的CG资源,因此终端设备就无需进行一系列的选择过程,从而可以简单有效的实现针对Type2 CG资源的其配置和选择。其中Type2 CG资源与波束关联,从而可以有效实现对于RACH-less切换中,UE与目标网络进行通信的Type2 CG资源的资源配置,进而可以有效实现对传输资源的确定,以确保UE和网络设备可以进行正确的数据传输。
上述实施例中介绍的是上行资源为CG资源的实现方式,基于上述介绍可以确定的是,本申请中的上行资源还可以为动态资源,下面结合图10对上行资源为动态配置资源时,资源配置的相关实现方式进行介绍,图10为本申请实施例提供的资源处理方法的信令流程图四。
如图10所示,该方法包括:
S1001、UE向源网络设备设备发送测量报告。
S1002、源网络设备确定执行切换。
S1003、源网络设备向目标网络设备发送切换请求。
S1004、目标网络设备向源网络设备发送切换命令。
S1005、源网络设备向UE发送切换命令。
其中,S1001-S1005的实现方式与上述介绍的S701-S705的实现方式类似,此处不再赘述。
在上述介绍内容的基础上,本实施例中的切换命令的实现方式与上述实施例存在一些差别,此处对本实施例中的切换命令的内容进行介绍,在一种可能的实现方式中,该切换命令中例如可以包括TA指示信息,比如说上述介绍的RACH-skip信息,因此切换命令可以指示切换过程为RACH-less切换过程,即为上述介绍的第一配置信息可以指示终端设备执行第一类型切换。同时,在第一配置信息中包括用于执行第一类型切换的资源配置信息,本实施例中的资源配置信息是针对动态调度资源的配置信息,下面对资源配置信息的实现方式进行介绍。
在本实施例中,切换命令中包括第一配置信息,在第一配置信息中可以包括资源配置信息,资源配置信息例如可以包括第一包括如下中的至少一种:第一动态调度资源的时频位置、冗余版本、重复次数、调频、HARQ进程。
也就是说本实施例中的资源配置信息直接指示了第一动态调度资源,以及在资源配置信息中还包括第一动态调度资源的相关波束信息。
S1006、确定第一动态调度资源为传输资源。
在本实施例中,资源配置信息中直接指示了第一动态调度资源,因此可以直接将第一动态调度资源确定为传输资源,在上述介绍的关联关系中,就包括第一调度动态资源所关联的至少一个波束。
S1007、根据传输资源发送上行数据。
在确定传输资源之后,就可以基于传输资源进行上行数据的发送。其中的上行数据例如可以包括RRC重配完成消息,可选的还可以包括上行数据,C-RNTI,BSR,MAC CE等,本实施例对终端设备发送的上行数据的具体实现方式不做限制,其可以根据实际需求进行选择。
本申请实施例提供的资源处理方法,通过在切换命令中配置第一动态调度资源,并且第一动态调度资源与波束关联,从而可以有效实现对于RACH-less切换中,UE与目标网络进行通信的动态调度资源的资源配置,进而可以有效实现对传输资源的确定,以确保UE和网络设备可以进行正确的数据传输。
可选地,针对动态调度资源,在另一种可能的实现方式中,在资源配置信息中还可以包括第一波束信息,其中第一波束信息用于指示监听第三消息所使用的第一波束,第三消息用于指示第二动态调度资源,以及第三消息还可以指示第二动态调度资源所关联的至少一个波束。
则UE例如可以在根据第一波束信息,在第一波束上对第三消息进行监听,在监听到第三消息之后,根据第三消息的指示确定第二动态调度资源,当前确定的第二动态调度资源就是用于进行上行数据传输的资源,可以理解的是,当前的第三消息是不同于第一配置信息的,因此在当前的实施例中,可以通过单独的第三消息指示动态调度资源。
针对动态资源调度,上述实施例中介绍的都是在第一配置信息中包括资源配置信息,之后根据相关的资源配置信息确定相应的传输资源,中在另一种可能的实现方式中,在第一配置信息中不包括资源配置信息,第一配置信息仅仅用于指示终端设备执行第一类型切换,在这样的实现方式下,可以通过根据DCI指示动态调度资源,下面结合图11对这种实现方式进行介绍。
图11为本申请实施例提供的资源处理方法的信令流程图五。
如图11所示,该方法包括:
S1101、UE向源网络设备设备发送测量报告。
S1102、源网络设备确定执行切换。
S1103、源网络设备向目标网络设备发送切换请求。
S1104、目标网络设备向源网络设备发送切换命令。
S1105、源网络设备向UE发送切换命令。
其中,S1101-S1105的实现方式与上述介绍的S701-S705的实现方式类似,此处不再赘述。
在上述介绍内容的基础上,本实施例中的切换命令的实现方式与上述实施例存在一些差别,此处对本实施例中的切换命令的内容进行介绍,本实施例中的切换命令中例如可以包括TA指示信息,比如说上述介绍的RACH-skip信息,因此切换命令可以指示切换过程为RACH-less切换过程,即为上述介绍的第一配置信息可以指示终端设备执行第一类型切换。
在本实施例中,第一配置信息仅仅指示终端设备执行第一类型切换,不指示资源配置信息。
S1106、目标网络设备向UE发送DCI,其中,DCI中包括第三动态调度资源。
在本实施例中,终端设备可以监听目标小区的DCI,从而接收目标小区给终端设备发送的动态调度资源。
在一种可能的实现方式中,本实施例中的动态调度资源可以包括以下内容:波束信息、时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、HARQ进程等参数。
S1107、确定第三动态调度资源为传输资源。
在本实施例中,DCI直接指示了第三动态调度资源,因此可以确定第三动态调度资源为传输资源。
同时本实施例中的DCI还指示了第三动态调度资源的波束信息,因此同样可以有效实现对波 束信息的确定,
S1108、根据传输资源发送上行数据。
在确定传输资源之后,就可以基于传输资源进行上行数据的发送。其中的上行数据例如可以包括RRC重配完成消息,可选的还可以包括上行数据,C-RNTI,BSR,MAC CE等,本实施例对终端设备发送的上行数据的具体实现方式不做限制,其可以根据实际需求进行选择。
本申请实施例提供的资源处理方法,通过在DCI中配置第三动态调度资源,并且配置第三动态调度资源关联的波束信息,从而可以基于DCI有效实现对于RACH-less切换中,动态调度资源的资源配置,进而可以有效实现对传输资源的确定,以确保UE和网络设备可以进行正确的数据传输。
上述各实施例介绍的是终端设备一侧的实现方式,下面结合图12对网络设备侧的实现方式进行介绍,图12为本申请实施例提供的资源处理方法的流程图二。
如图12所示,该方法包括:
S1201、向终端设备发送第一配置信息,其中,第一配置信息用于指示终端设备执行第一类型切换,第一配置信息包括用于执行第一类型切换的资源配置信息,资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系。
在本实施例中,网络设备可以向终端设备发送第一配置信息,第一配置信息的实现方式与上述实施例中介绍的类似,此处不再赘述。
S1202、接收终端设备根据传输资源发送的上行数据,其中,传输资源为根据资源配置信息确定的。
在向终端设备发送第一配置信息之后,就可以接收终端设备在基于资源配置信息确定的传输资源上发送的上行数据,其各种可能的实现方式也与上述介绍的类似,此处不再赘述。
本申请实施例提供的资源处理方法,包括:向终端设备发送第一配置信息,其中,第一配置信息用于指示终端设备执行第一类型切换,第一配置信息包括用于执行第一类型切换的资源配置信息,资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系。接收终端设备根据传输资源发送的上行数据,其中,传输资源为根据资源配置信息确定的。通过根据第一配置信息指示上行资源和波束之间的关联关系,并且其中的第一配置信息指示终端设备进行第一类型切换,之后接收终端设备根据传输资源发送的上行数据,传输资源为根据第一配置信息确定的,从而保证终端设备在第一类型切换的切换过程中,有效的基于波束信息的选择和确定,以实现对传输资源的确定,从而可以实现对UE与目标网络进行通信的资源的有效配置。
图13为本申请实施例提供的资源处理装置的结构示意图。请参见图13,该资源处理装置130可以包括接收模块1301以及确定模块1302,其中,
接收模块1301,用于接收来自于网络设备的第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
确定模块1302,用于根据所述资源配置信息,确定传输资源,其中,所述传输资源用于所述终端设备发送上行数据。
在一种可能的实施方式中,所述至少一个上行资源为预配置CG资源,或者,所述至少一个上行资源为动态调度资源。
在一种可能的实施方式中,所述至少一个上行资源为预配置CG资源,则所述资源配置信息还包括如下中的至少一种:载波信息、波束质量对应的第一阈值。
在一种可能的实施方式中,所述确定模块1302具体用于:
确定第一BWP,其中,所述第一BWP为如下中的任一种:初始BWP、配置了所述CG资源的BWP、第一参数指示的BWP,所述第一参数为网络配置的或者协议规定的;
根据所述载波信息,确定至少一个第一CG资源,其中,所述第一CG资源为所述第一BWP上的CG资源;
根据所述关联关系以及所述第一阈值,在所述至少一个第一CG资源中确定第二CG资源;
根据所述第二CG资源,确定所述传输资源。
在一种可能的实施方式中,所述载波信息包括第一指示信息;
其中,所述第一指示信息指示所述终端设备使用正常上行链路NUL,所述NUL上配置有CG资源;
或者,所述第一指示信息指示所述终端设备使用补充上行链路SUL,所述SUL上配置有CG 资源。
在一种可能的实施方式中,所述确定模块1302具体用于:
确定所述第一指示信息所指示的NUL上配置的CG资源为所述第一CG资源;或者,
确定所述第一指示信息所指示的SUL上配置的CG资源为所述第一CG资源。
在一种可能的实施方式中,所述载波信息包括NUL上配置的CG资源、SUL上配置的CG资源以及第二阈值。
在一种可能的实施方式中,所述确定模块1302具体用于:
当小区质量信息小于所述第二阈值时,确定所述SUL上配置的CG资源为所述第一CG资源;或者,
当小区质量信息大于或等于所述第二阈值时,确定所述NUL上配置的CG资源为所述第一CG资源;
其中,所述小区质量信息包括如下中的至少一种:下行路损参考的参考信号接收功率RSRP、下行路损参考的RSRQ。
在一种可能的实施方式中,所述载波信息包括所述NUL上配置的CG资源;所述确定模块1302具体用于:
确定所述NUL上配置的CG资源为所述第一CG资源。
在一种可能的实施方式中,所述载波信息包括所述SUL上配置的CG资源;所述确定模块1302具体用于:
确定所述SUL上配置的CG资源为所述第一CG资源。
在一种可能的实施方式中,所述确定模块1302具体用于:
确定各所述波束各自对应的波束质量信息,其中,所述波束质量信息包括如下中的至少一种:同步信号参考信号接收功率SS-RSRP、信道状态信息参考信号接收功率CSI-RSRP;
确定所述波束质量信息大于所述第一阈值的至少一个波束为候选波束;
在所述至少一个候选波束中确定目标波束;
确定所述关联关系中所述目标波束对应的至少一个第一CG资源为所述第二CG资源。
在一种可能的实施方式中,所述目标波束为所述候选波束中波束信道质量最强的波束;或者,
所述目标波束为在所述候选波束中随机选择的波束。
在一种可能的实施方式中,所述确定模块1302还用于:
当各所述波束各自对应的波束质量信息均小于或等于所述第一阈值时,执行如下操作中的任一种:
确定任意一个配置了CG资源的波束为目标波束,确定将所述目标波束对应的CG资源所述传输资源;或者,
向目标小区发起随机接入过程;或者,
向目标小区或者源小区发起连接重建立流程。
在一种可能的实施方式中,所述确定模块1302具体用于:
确定各所述第二CG资源中时域位置和当前时刻最接近的第二CG资源为所述传输资源;或者,
确定各所述第二CG资源中随机选择的第二CG资源为所述传输资源。
在一种可能的实施方式中,所述CG资源包括第一类型CG资源和/或第二类型CG资源。
在一种可能的实施方式中,当所述CG资源包括第二类型CG资源时,所述接收模块1301具体用于:
接收来自于网络设备的第二消息,其中,所述第二消息用于激活所述第二类型CG资源。
在一种可能的实施方式中,所述资源配置信息和/或所述第二消息还包括如下信息中的至少一种:时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、混合自动重传请求HARQ进程。
在一种可能的实施方式中,所述至少一个上行资源为动态调度资源,则所述资源配置信息还包括如下中的至少一种:第一动态调度资源的时频位置、冗余版本、重复次数、调频、HARQ进程;
所述传输资源为所述第一动态调度资源,所述关联关系中包括所述第一动态调度资源所关联的至少一个波束。
在一种可能的实施方式中,所述资源配置信息包括第一波束信息,其中,所述第一波束信息 用于指示监听第三消息所使用的第一波束,所述第三消息用于指示第二动态调度资源,以及所述第二动态调度资源所关联的至少一个波束。
在一种可能的实施方式中,所述确定模块1302具体用于:
根据所述第一波束信息,接收所述第三消息;
确定所述第三消息所指示的所述第二动态调度资源为传输资源。
在一种可能的实施方式中,所述第一类型切换为无随机接入信道RACH-less切换。
在一种可能的实施方式中,所述第一配置信息为无线资源控制RRC消息。
在一种可能的实施方式中,所述第二消息为如下中的任一种:RRC消息、下行控制信息DCI、媒体访问控制层控制元素MAC CE。
在一种可能的实施方式中,所述波束为如下中的任一种:同步信号和物理广播信道块SSB、信道状态信息参考信号CSI-RS、探测参考信号SRS、传输配置指示TCI情况,空间关系。
本申请实施例提供的资源处理装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图14为本申请实施例提供的资源处理装置的结构示意图。请参见图14,该资源处理装置140可以包括发送模块1401以及接收模块1402,其中,
发送模块1401,用于向终端设备发送第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
接收模块1402,用于接收终端设备根据传输资源发送的上行数据,其中,所述传输资源为根据所述资源配置信息确定的。
在一种可能的实施方式中,所述至少一个上行资源为预配置CG资源,或者,所述至少一个上行资源为动态调度资源。
在一种可能的实施方式中,所述至少一个上行资源为预配置CG资源,则所述资源配置信息还包括如下中的至少一种:载波信息、波束质量对应的第一阈值。
在一种可能的实施方式中,所述传输资源为根据第二CG资源确定的,其中,所述第二CG资源为根据所述关联关系以及所述第一阈值,在至少第一CG资源中确定的,所述第一CG资源为根据载波信息,在所述第一BWP上的CG资源中确定的,所述第一BWP为如下中的任一种:初始BWP、配置了所述CG资源的BWP、第一参数指示的BWP,所述第一参数为网络配置的或者协议规定的。
在一种可能的实施方式中,所述载波信息包括第一指示信息;
其中,所述第一指示信息指示所述终端设备使用正常上行链路NUL,所述NUL上配置有CG资源;
或者,所述第一指示信息指示所述终端设备使用补充上行链路SUL,所述SUL上配置有CG资源。
在一种可能的实施方式中,所述第一CG资源为所述第一指示信息所指示的NUL上配置的CG资源;或者,
所述第一CG资源为所述第一指示信息所指示的SUL上配置的CG资源。
在一种可能的实施方式中,所述载波信息包括NUL上配置的CG资源、SUL上配置的CG资源以及第二阈值。
在一种可能的实施方式中,当小区质量信息小于所述第二阈值时,所述第一CG资源为所述SUL上配置的CG资源;或者,
当小区质量信息大于或等于所述第二阈值时,所述第一CG资源为所述NUL上配置的CG资源;
其中,所述小区质量信息包括如下中的至少一种:下行路损参考的参考信号接收功率RSRP、下行路损参考的RSRQ。
在一种可能的实施方式中,所述载波信息包括所述NUL上配置的CG资源;所述第一CG资源为所述NUL上配置的CG资源。
在一种可能的实施方式中,所述载波信息包括所述SUL上配置的CG资源;所述第一CG资源为所述SUL上配置的CG资源。
在一种可能的实施方式中,所述第二CG资源为所述关联关系中目标波束对应的至少一个第一CG资源,所述目标波束为在至少一个候选波束中确定的,所述候选波束为所述波束质量信息 大于所述第一阈值的至少一个波束,所述波束质量信息包括如下中的至少一种:同步信号参考信号接收功率SS-RSRP、信道状态信息参考信号接收功率CSI-RSRP。
在一种可能的实施方式中,所述目标波束为所述候选波束中波束信道质量最强的波束;或者,
所述目标波束为在所述候选波束中随机选择的波束。
在一种可能的实施方式中,当各所述波束各自对应的波束质量信息均小于或等于所述第一阈值时,
所述目标波束为任意一个配置了CG资源的波束,以及所述传输资源为所述目标波束对应的CG资源;或者,
和所述终端设备执行随机接入过程;或者,
和所述终端设备执行连接重建立流程。
在一种可能的实施方式中,所述传输资源为各所述第二CG资源中时域位置和当前时刻最接近的第二CG资源;或者,
所述传输资源为各所述第二CG资源中随机选择的第二CG资源。
在一种可能的实施方式中,所述CG资源包括第一类型CG资源和/或第二类型CG资源。
在一种可能的实施方式中,当所述CG资源包括第二类型CG资源时,所述发送模块1401还用于:
向终端设备发送第二消息,其中,所述第二消息用于激活所述第二类型CG资源。
在一种可能的实施方式中,所述资源配置信息和/或所述第二消息还包括如下信息中的至少一种:时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、混合自动重传请求HARQ进程。
在一种可能的实施方式中,所述至少一个上行资源为动态调度资源,则所述资源配置信息还包括如下中的至少一种:第一动态调度资源的时频位置、冗余版本、重复次数、调频、HARQ进程;
所述传输资源为所述第一动态调度资源,所述关联关系中包括所述第一动态调度资源所关联的至少一个波束。
在一种可能的实施方式中,所述资源配置信息包括第一波束信息,其中,所述第一波束信息用于指示监听第三消息所使用的第一波束,所述第三消息用于指示第二动态调度资源,以及所述第二动态调度资源所关联的至少一个波束。
在一种可能的实施方式中,所述传输资源为第三消息所指示的所述第二动态调度资源,所述第三消息在所述第一波束信息指示的所述第一波束上发送。
在一种可能的实施方式中,所述第一类型切换为无随机接入信道RACH-less切换。
在一种可能的实施方式中,所述第一配置信息为无线资源控制RRC消息。
在一种可能的实施方式中,所述第二消息为如下中的任一种:RRC消息、下行控制信息DCI、媒体访问控制层控制元素MAC CE。
在一种可能的实施方式中,所述波束为如下中的任一种:同步信号和物理广播信道块SSB、信道状态信息参考信号CSI-RS、探测参考信号SRS、传输配置指示TCI情况,空间关系。
图15为本申请实施例提供的终端设备的结构示意图。请参见图15,终端设备150可以包括:收发器21、存储器22、处理器23。收发器21可包括:发射器和/或接收器。该发射器还可称为发送器、发射机、发送端口或发送接口等类似描述,接收器还可称为接收器、接收机、接收端口或接收接口等类似描述。示例性地,收发器21、存储器22、处理器23,各部分之间通过总线24相互连接。
存储器22用于存储程序指令;
处理器23用于执行该存储器所存储的程序指令,用以使得终端设备150执行上述任一所示的资源处理方法。
其中,收发器21的接收器,可用于执行上述资源处理方法中终端设备的接收功能。
图16为本申请实施例提供的网络设备的结构示意图。请参见图16,网络设备160可以包括:收发器31、存储器32、处理器33。收发器31可包括:发射器和/或接收器。该发射器还可称为发送器、发射机、发送端口或发送接口等类似描述,接收器还可称为接收器、接收机、接收端口或接收接口等类似描述。示例性地,收发器31、存储器32、处理器33,各部分之间通过总线34相互连接。
存储器32用于存储程序指令;
处理器33用于执行该存储器所存储的程序指令,用以使得网络设备160执行上述任一所示的资源处理方法。
其中,收发器31的接收器,可用于执行上述资源处理方法中网络设备的接收功能。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现上述资源处理方法。
本申请实施例还可提供一种计算机程序产品,该计算机程序产品可以由处理器执行,在计算机程序产品被执行时,可实现上述任一所示的终端设备或者网络设备执行的资源处理方法。
本申请实施例的终端设备、计算机可读存储介质及计算机程序产品,可执行上述实施例介绍的资源处理方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的计算机程序可以存储于一计算机可读取存储介质中。该计算机程序在被处理器执行时,实现包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (100)

  1. 一种资源处理方法,其特征在于,包括:
    接收来自于网络设备的第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
    根据所述资源配置信息,确定传输资源,其中,所述传输资源用于所述终端设备发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个上行资源为预配置CG资源,或者,所述至少一个上行资源为动态调度资源。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个上行资源为预配置CG资源,则所述资源配置信息还包括如下中的至少一种:载波信息、波束质量对应的第一阈值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述资源配置信息,确定传输资源,包括以下至少之一:
    确定第一BWP,其中,所述第一BWP为如下中的任一种:初始BWP、配置了所述CG资源的BWP、第一参数指示的BWP,所述第一参数为网络配置的或者协议规定的;
    根据所述载波信息,确定至少一个第一CG资源,其中,所述第一CG资源为所述第一BWP上的CG资源;
    根据所述关联关系以及所述第一阈值,在所述至少一个第一CG资源中确定第二CG资源;
    根据所述第二CG资源,确定所述传输资源。
  5. 根据权利要求4所述的方法,其特征在于,所述载波信息包括第一指示信息;
    其中,所述第一指示信息指示所述终端设备使用正常上行链路NUL,所述NUL上配置有CG资源;
    或者,所述第一指示信息指示所述终端设备使用补充上行链路SUL,所述SUL上配置有CG资源。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述载波信息,确定至少一个第一CG资源,包括:
    确定所述第一指示信息所指示的NUL上配置的CG资源为所述第一CG资源;或者,
    确定所述第一指示信息所指示的SUL上配置的CG资源为所述第一CG资源。
  7. 根据权利要求4所述的方法,其特征在于,所述载波信息包括NUL上配置的CG资源、SUL上配置的CG资源以及第二阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述载波信息,确定至少一个第一CG资源,包括:
    当小区质量信息小于所述第二阈值时,确定所述SUL上配置的CG资源为所述第一CG资源;或者,
    当小区质量信息大于或等于所述第二阈值时,确定所述NUL上配置的CG资源为所述第一CG资源;
    其中,所述小区质量信息包括如下中的至少一种:下行路损参考的参考信号接收功率RSRP、下行路损参考的RSRQ。
  9. 根据权利要求4所述的方法,其特征在于,所述载波信息包括NUL上配置的CG资源;所述根据所述载波信息,确定至少一个第一CG资源,包括:
    确定所述NUL上配置的CG资源为所述第一CG资源。
  10. 根据权利要求4所述的方法,其特征在于,所述载波信息包括SUL上配置的CG资源;所述根据所述载波信息,确定至少一个第一CG资源,包括:
    确定所述SUL上配置的CG资源为所述第一CG资源。
  11. 根据权利要求4-10任一项所述的方法,其特征在于,所述根据所述关联关系以及所述第一阈值,在所述至少一个第一CG资源中确定第二CG资源,包括:
    确定各所述波束各自对应的波束质量信息,其中,所述波束质量信息包括如下中的至少一种:同步信号参考信号接收功率SS-RSRP、信道状态信息参考信号接收功率CSI-RSRP;
    确定所述波束质量信息大于所述第一阈值的至少一个波束为候选波束;
    在所述至少一个候选波束中确定目标波束;
    确定所述关联关系中所述目标波束对应的至少一个第一CG资源为所述第二CG资源。
  12. 根据权利要求11所述的方法,其特征在于,所述目标波束为所述候选波束中波束信道质量最强的波束;或者,
    所述目标波束为在所述候选波束中随机选择的波束。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    当各所述波束各自对应的波束质量信息均小于或等于所述第一阈值时,执行如下操作中的任一种:
    确定任意一个配置了CG资源的波束为目标波束,并确定所述目标波束对应的CG资源为所述传输资源;或者,
    向目标小区发起随机接入过程;或者,
    向目标小区或者源小区发起连接重建立流程。
  14. 根据权利要求4-13任一项所述的方法,其特征在于,所述根据所述第二CG资源,确定所述传输资源,包括:
    确定各所述第二CG资源中时域位置和当前时刻最接近的第二CG资源为所述传输资源;或者,
    确定各所述第二CG资源中随机选择的第二CG资源为所述传输资源。
  15. 根据权利要求3-14任一项所述的方法,其特征在于,所述CG资源包括第一类型CG资源和/或第二类型CG资源。
  16. 根据权利要求15所述的方法,其特征在于,当所述CG资源包括第二类型CG资源时,所述方法还包括:
    接收来自于网络设备的第二消息,其中,所述第二消息用于激活所述第二类型CG资源。
  17. 根据权利要求1-16任一项所述的方法,其特征在于,所述资源配置信息和/或所述第二消息还包括如下信息中的至少一种:时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、混合自动重传请求HARQ进程。
  18. 根据权利要求2-17任一项所述的方法,其特征在于,所述至少一个上行资源为动态调度资源,则所述资源配置信息还包括如下中的至少一种:第一动态调度资源的时频位置、冗余版本、重复次数、调频、HARQ进程;
    所述传输资源为所述第一动态调度资源,所述关联关系中包括所述第一动态调度资源所关联的至少一个波束。
  19. 根据权利要求1所述的方法,其特征在于,所述资源配置信息包括第一波束信息,其中,所述第一波束信息用于指示监听第三消息所使用的第一波束,所述第三消息用于指示第二动态调度资源,以及所述第二动态调度资源所关联的至少一个波束。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述资源配置信息,确定传输资源,包括:
    根据所述第一波束信息,接收所述第三消息;
    确定所述第三消息所指示的所述第二动态调度资源为传输资源。
  21. 根据权利要求1-20任一项所述的方法,其特征在于,所述第一类型切换为无随机接入信道RACH-less切换。
  22. 根据权利要求1-21任一项所述的方法,其特征在于,所述第一配置信息为无线资源控制RRC消息。
  23. 根据权利要求1-22任一项所述的方法,其特征在于,所述第二消息为如下中的任一种:RRC消息、下行控制信息DCI、媒体访问控制层控制元素MAC CE。
  24. 根据权利要求1-23任一项所述的方法,其特征在于,所述波束为如下中的任一种:同步信号和物理广播信道块SSB、信道状态信息参考信号CSI-RS、探测参考信号SRS、传输配置指示TCI情况,空间关系。
  25. 一种资源处理方法,其特征在于,包括:
    向终端设备发送第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
    接收终端设备根据传输资源发送的上行数据,其中,所述传输资源为根据所述资源配置信息确定的。
  26. 根据权利要求25所述的方法,其特征在于,所述至少一个上行资源为预配置CG资源, 或者,所述至少一个上行资源为动态调度资源。
  27. 根据权利要求26所述的方法,其特征在于,所述至少一个上行资源为预配置CG资源,则所述资源配置信息还包括如下中的至少一种:载波信息、波束质量对应的第一阈值。
  28. 根据权利要求27所述的方法,其特征在于,所述传输资源为根据第二CG资源确定的,其中,所述第二CG资源为根据所述关联关系以及所述第一阈值,在至少第一CG资源中确定的,所述第一CG资源为根据载波信息,在第一BWP上的CG资源中确定的,所述第一BWP为如下中的任一种:初始BWP、配置了所述CG资源的BWP、第一参数指示的BWP,所述第一参数为网络配置的或者协议规定的。
  29. 根据权利要求28所述的方法,其特征在于,所述载波信息包括第一指示信息;
    其中,所述第一指示信息指示所述终端设备使用正常上行链路NUL,所述NUL上配置有CG资源;
    或者,所述第一指示信息指示所述终端设备使用补充上行链路SUL,所述SUL上配置有CG资源。
  30. 根据权利要求29所述的方法,其特征在于,所述第一CG资源为所述第一指示信息所指示的NUL上配置的CG资源;或者,
    所述第一CG资源为所述第一指示信息所指示的SUL上配置的CG资源。
  31. 根据权利要求28所述的方法,其特征在于,所述载波信息包括NUL上配置的CG资源、SUL上配置的CG资源以及第二阈值。
  32. 根据权利要求31所述的方法,其特征在于,所述根据所述载波信息,确定至少一个第一CG资源,包括:
    当小区质量信息小于所述第二阈值时,所述第一CG资源为所述SUL上配置的CG资源;或者,
    当小区质量信息大于或等于所述第二阈值时,所述第一CG资源为所述NUL上配置的CG资源;
    其中,所述小区质量信息包括如下中的至少一种:下行路损参考的参考信号接收功率RSRP、下行路损参考的RSRQ。
  33. 根据权利要求28所述的方法,其特征在于,所述载波信息包括NUL上配置的CG资源;所述第一CG资源为所述NUL上配置的CG资源。
  34. 根据权利要求28所述的方法,其特征在于,所述载波信息包括SUL上配置的CG资源;所述第一CG资源为所述SUL上配置的CG资源。
  35. 根据权利要求28-34任一项所述的方法,其特征在于,所述第二CG资源为所述关联关系中目标波束对应的至少一个第一CG资源,所述目标波束为在至少一个候选波束中确定的,所述候选波束为所述波束质量信息大于所述第一阈值的至少一个波束,所述波束质量信息包括如下中的至少一种:同步信号参考信号接收功率SS-RSRP、信道状态信息参考信号接收功率CSI-RSRP。
  36. 根据权利要求35所述的方法,其特征在于,所述目标波束为所述候选波束中波束信道质量最强的波束;或者,
    所述目标波束为在所述候选波束中随机选择的波束。
  37. 根据权利要求35或36所述的方法,其特征在于,当各所述波束各自对应的波束质量信息均小于或等于所述第一阈值时,
    所述目标波束为任意一个配置了CG资源的波束,以及所述传输资源为所述目标波束对应的CG资源;或者,
    和所述终端设备执行随机接入过程;或者,
    和所述终端设备执行连接重建立流程。
  38. 根据权利要求28-37任一项所述的方法,其特征在于,所述传输资源为各所述第二CG资源中时域位置和当前时刻最接近的第二CG资源;或者,
    所述传输资源为各所述第二CG资源中随机选择的第二CG资源。
  39. 根据权利要求27-38任一项所述的方法,其特征在于,所述CG资源包括第一类型CG资源和/或第二类型CG资源。
  40. 根据权利要求39所述的方法,其特征在于,当所述CG资源包括第二类型CG资源时,所述方法还包括:
    向终端设备发送第二消息,其中,所述第二消息用于激活所述第二类型CG资源。
  41. 根据权利要求25-40任一项所述的方法,其特征在于,所述资源配置信息和/或所述第二消息还包括如下信息中的至少一种:时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、混合自动重传请求HARQ进程。
  42. 根据权利要求26-41任一项所述的方法,其特征在于,所述至少一个上行资源为动态调度资源,则所述资源配置信息还包括如下中的至少一种:第一动态调度资源的时频位置、冗余版本、重复次数、调频、HARQ进程;
    所述传输资源为所述第一动态调度资源,所述关联关系中包括所述第一动态调度资源所关联的至少一个波束。
  43. 根据权利要求25所述的方法,其特征在于,所述资源配置信息包括第一波束信息,其中,所述第一波束信息用于指示监听第三消息所使用的第一波束,所述第三消息用于指示第二动态调度资源,以及所述第二动态调度资源所关联的至少一个波束。
  44. 根据权利要求43所述的方法,其特征在于,所述传输资源为第三消息所指示的所述第二动态调度资源,所述第三消息在所述第一波束信息指示的所述第一波束上发送。
  45. 根据权利要求25-44任一项所述的方法,其特征在于,所述第一类型切换为无随机接入信道RACH-less切换。
  46. 根据权利要求25-45任一项所述的方法,其特征在于,所述第一配置信息为无线资源控制RRC消息。
  47. 根据权利要求25-46任一项所述的方法,其特征在于,所述第二消息为如下中的任一种:RRC消息、下行控制信息DCI、媒体访问控制层控制元素MAC CE。
  48. 根据权利要求25-47任一项所述的方法,其特征在于,所述波束为如下中的任一种:同步信号和物理广播信道块SSB、信道状态信息参考信号CSI-RS、探测参考信号SRS、传输配置指示TCI情况,空间关系。
  49. 一种资源处理装置,其特征在于,包括:
    接收模块,用于接收来自于网络设备的第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
    确定模块,用于根据所述资源配置信息,确定传输资源,其中,所述传输资源用于所述终端设备发送上行数据。
  50. 根据权利要求49所述的装置,其特征在于,所述至少一个上行资源为预配置CG资源,或者,所述至少一个上行资源为动态调度资源。
  51. 根据权利要求50所述的装置,其特征在于,所述至少一个上行资源为预配置CG资源,则所述资源配置信息还包括如下中的至少一种:载波信息、波束质量对应的第一阈值。
  52. 根据权利要求51所述的装置,其特征在于,所述确定模块具体用于:
    确定第一BWP,其中,所述第一BWP为如下中的任一种:初始BWP、配置了所述CG资源的BWP、第一参数指示的BWP,所述第一参数为网络配置的或者协议规定的;
    根据所述载波信息,确定至少一个第一CG资源,其中,所述第一CG资源为所述第一BWP上的CG资源;
    根据所述关联关系以及所述第一阈值,在所述至少一个第一CG资源中确定第二CG资源;
    根据所述第二CG资源,确定所述传输资源。
  53. 根据权利要求52所述的装置,其特征在于,所述载波信息包括第一指示信息;
    其中,所述第一指示信息指示所述终端设备使用正常上行链路NUL,所述NUL上配置有CG资源;
    或者,所述第一指示信息指示所述终端设备使用补充上行链路SUL,所述SUL上配置有CG资源。
  54. 根据权利要求53所述的装置,其特征在于,所述确定模块具体用于:
    确定所述第一指示信息所指示的NUL上配置的CG资源为所述第一CG资源;或者,
    确定所述第一指示信息所指示的SUL上配置的CG资源为所述第一CG资源。
  55. 根据权利要求52所述的装置,其特征在于,所述载波信息包括NUL上配置的CG资源、SUL上配置的CG资源以及第二阈值。
  56. 根据权利要求55所述的装置,其特征在于,所述确定模块具体用于:
    当小区质量信息小于所述第二阈值时,确定所述SUL上配置的CG资源为所述第一CG资源; 或者,
    当小区质量信息大于或等于所述第二阈值时,确定所述NUL上配置的CG资源为所述第一CG资源;
    其中,所述小区质量信息包括如下中的至少一种:下行路损参考的参考信号接收功率RSRP、下行路损参考的RSRQ。
  57. 根据权利要求52所述的装置,其特征在于,所述载波信息包括NUL上配置的CG资源;所述确定模块具体用于:
    确定所述NUL上配置的CG资源为所述第一CG资源。
  58. 根据权利要求52所述的装置,其特征在于,所述载波信息包括SUL上配置的CG资源;所述确定模块具体用于:
    确定所述SUL上配置的CG资源为所述第一CG资源。
  59. 根据权利要求52-58任一项所述的装置,其特征在于,所述确定模块具体用于:
    确定各所述波束各自对应的波束质量信息,其中,所述波束质量信息包括如下中的至少一种:同步信号参考信号接收功率SS-RSRP、信道状态信息参考信号接收功率CSI-RSRP;
    确定所述波束质量信息大于所述第一阈值的至少一个波束为候选波束;
    在所述至少一个候选波束中确定目标波束;
    确定所述关联关系中所述目标波束对应的至少一个第一CG资源为所述第二CG资源。
  60. 根据权利要求59所述的装置,其特征在于,所述目标波束为所述候选波束中波束信道质量最强的波束;或者,
    所述目标波束为在所述候选波束中随机选择的波束。
  61. 根据权利要求59或60所述的装置,其特征在于,所述确定模块还用于:
    当各所述波束各自对应的波束质量信息均小于或等于所述第一阈值时,执行如下操作中的任一种:
    确定任意一个配置了CG资源的波束为目标波束,确定所述目标波束对应的CG资源为所述传输资源;或者,
    向目标小区发起随机接入过程;或者,
    向目标小区或者源小区发起连接重建立流程。
  62. 根据权利要求52-61任一项所述的装置,其特征在于,所述确定模块具体用于:
    确定各所述第二CG资源中时域位置和当前时刻最接近的第二CG资源为所述传输资源;或者,
    确定各所述第二CG资源中随机选择的第二CG资源为所述传输资源。
  63. 根据权利要求51-62任一项所述的装置,其特征在于,所述CG资源包括第一类型CG资源和/或第二类型CG资源。
  64. 根据权利要求63所述的装置,其特征在于,当所述CG资源包括第二类型CG资源时,所述接收模块具体用于:
    接收来自于网络设备的第二消息,其中,所述第二消息用于激活所述第二类型CG资源。
  65. 根据权利要求49-64任一项所述的装置,其特征在于,所述资源配置信息和/或所述第二消息还包括如下信息中的至少一种:时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、混合自动重传请求HARQ进程。
  66. 根据权利要求50-65任一项所述的装置,其特征在于,所述至少一个上行资源为动态调度资源,则所述资源配置信息还包括如下中的至少一种:第一动态调度资源的时频位置、冗余版本、重复次数、调频、HARQ进程;
    所述传输资源为所述第一动态调度资源,所述关联关系中包括所述第一动态调度资源所关联的至少一个波束。
  67. 根据权利要求49所述的装置,其特征在于,所述资源配置信息包括第一波束信息,其中,所述第一波束信息用于指示监听第三消息所使用的第一波束,所述第三消息用于指示第二动态调度资源,以及所述第二动态调度资源所关联的至少一个波束。
  68. 根据权利要求67所述的装置,其特征在于,所述确定模块具体用于:
    根据所述第一波束信息,接收所述第三消息;
    确定所述第三消息所指示的所述第二动态调度资源为传输资源。
  69. 根据权利要求49-68任一项所述的装置,其特征在于,所述第一类型切换为无随机接入 信道RACH-less切换。
  70. 根据权利要求49-69任一项所述的装置,其特征在于,所述第一配置信息为无线资源控制RRC消息。
  71. 根据权利要求49-70任一项所述的装置,其特征在于,所述第二消息为如下中的任一种:RRC消息、下行控制信息DCI、媒体访问控制层控制元素MAC CE。
  72. 根据权利要求49-71任一项所述的装置,其特征在于,所述波束为如下中的任一种:同步信号和物理广播信道块SSB、信道状态信息参考信号CSI-RS、探测参考信号SRS、传输配置指示TCI情况,空间关系。
  73. 一种资源处理装置,其特征在于,包括:
    发送模块,用于向终端设备发送第一配置信息,其中,所述第一配置信息用于指示终端设备执行第一类型切换,所述第一配置信息包括用于执行所述第一类型切换的资源配置信息,所述资源配置信息中包括至少一个上行资源和至少一个波束之间的关联关系;
    接收模块,用于接收终端设备根据传输资源发送的上行数据,其中,所述传输资源为根据所述资源配置信息确定的。
  74. 根据权利要求73所述的装置,其特征在于,所述至少一个上行资源为预配置CG资源,或者,所述至少一个上行资源为动态调度资源。
  75. 根据权利要求74所述的装置,其特征在于,所述至少一个上行资源为预配置CG资源,则所述资源配置信息还包括如下中的至少一种:载波信息、波束质量对应的第一阈值。
  76. 根据权利要求75所述的装置,其特征在于,所述传输资源为根据第二CG资源确定的,其中,所述第二CG资源为根据所述关联关系以及所述第一阈值,在至少第一CG资源中确定的,所述第一CG资源为根据载波信息,在第一BWP上的CG资源中确定的,所述第一BWP为如下中的任一种:初始BWP、配置了所述CG资源的BWP、第一参数指示的BWP,所述第一参数为网络配置的或者协议规定的。
  77. 根据权利要求76所述的装置,其特征在于,所述载波信息包括第一指示信息;
    其中,所述第一指示信息指示所述终端设备使用正常上行链路NUL,所述NUL上配置有CG资源;
    或者,所述第一指示信息指示所述终端设备使用补充上行链路SUL,所述SUL上配置有CG资源。
  78. 根据权利要求77所述的装置,其特征在于,所述第一CG资源为所述第一指示信息所指示的NUL上配置的CG资源;或者,
    所述第一CG资源为所述第一指示信息所指示的SUL上配置的CG资源。
  79. 根据权利要求76所述的装置,其特征在于,所述载波信息包括NUL上配置的CG资源、SUL上配置的CG资源以及第二阈值。
  80. 根据权利要求79所述的装置,其特征在于,当小区质量信息小于所述第二阈值时,所述第一CG资源为所述SUL上配置的CG资源;或者,
    当小区质量信息大于或等于所述第二阈值时,所述第一CG资源为所述NUL上配置的CG资源;
    其中,所述小区质量信息包括如下中的至少一种:下行路损参考的参考信号接收功率RSRP、下行路损参考的RSRQ。
  81. 根据权利要求76所述的装置,其特征在于,所述载波信息包括NUL上配置的CG资源;所述第一CG资源为所述NUL上配置的CG资源。
  82. 根据权利要求76所述的装置,其特征在于,所述载波信息包括SUL上配置的CG资源;所述第一CG资源为所述SUL上配置的CG资源。
  83. 根据权利要求76-82任一项所述的装置,其特征在于,所述第二CG资源为所述关联关系中目标波束对应的至少一个第一CG资源,所述目标波束为在至少一个候选波束中确定的,所述候选波束为所述波束质量信息大于所述第一阈值的至少一个波束,所述波束质量信息包括如下中的至少一种:同步信号参考信号接收功率SS-RSRP、信道状态信息参考信号接收功率CSI-RSRP。
  84. 根据权利要求83所述的装置,其特征在于,所述目标波束为所述候选波束中波束信道质量最强的波束;或者,
    所述目标波束为在所述候选波束中随机选择的波束。
  85. 根据权利要求83或84所述的装置,其特征在于,当各所述波束各自对应的波束质量信 息均小于或等于所述第一阈值时,
    所述目标波束为任意一个配置了CG资源的波束,以及所述传输资源为所述目标波束对应的CG资源;或者,
    和所述终端设备执行随机接入过程;或者,
    和所述终端设备执行连接重建立流程。
  86. 根据权利要求76-85任一项所述的装置,其特征在于,所述传输资源为各所述第二CG资源中时域位置和当前时刻最接近的第二CG资源;或者,
    所述传输资源为各所述第二CG资源中随机选择的第二CG资源。
  87. 根据权利要求75-86任一项所述的装置,其特征在于,所述CG资源包括第一类型CG资源和/或第二类型CG资源。
  88. 根据权利要求87所述的装置,其特征在于,当所述CG资源包括第二类型CG资源时,所述发送模块还用于:
    向终端设备发送第二消息,其中,所述第二消息用于激活所述第二类型CG资源。
  89. 根据权利要求73-88任一项所述的装置,其特征在于,所述资源配置信息和/或所述第二消息还包括如下信息中的至少一种:时域资源、频域资源、解调参考信号、开环功控、调制编码方案、波形、冗余版本、重复次数、调频、混合自动重传请求HARQ进程。
  90. 根据权利要求74-89任一项所述的装置,其特征在于,所述至少一个上行资源为动态调度资源,则所述资源配置信息还包括如下中的至少一种:第一动态调度资源的时频位置、冗余版本、重复次数、调频、HARQ进程;
    所述传输资源为所述第一动态调度资源,所述关联关系中包括所述第一动态调度资源所关联的至少一个波束。
  91. 根据权利要求73所述的装置,其特征在于,所述资源配置信息包括第一波束信息,其中,所述第一波束信息用于指示监听第三消息所使用的第一波束,所述第三消息用于指示第二动态调度资源,以及所述第二动态调度资源所关联的至少一个波束。
  92. 根据权利要求91所述的装置,其特征在于,所述传输资源为第三消息所指示的所述第二动态调度资源,所述第三消息在所述第一波束信息指示的所述第一波束上发送。
  93. 根据权利要求73-92任一项所述的装置,其特征在于,所述第一类型切换为无随机接入信道RACH-less切换。
  94. 根据权利要求73-93任一项所述的装置,其特征在于,所述第一配置信息为无线资源控制RRC消息。
  95. 根据权利要求73-94任一项所述的装置,其特征在于,所述第二消息为如下中的任一种:RRC消息、下行控制信息DCI、媒体访问控制层控制元素MAC CE。
  96. 根据权利要求73-95任一项所述的装置,其特征在于,所述波束为如下中的任一种:同步信号和物理广播信道块SSB、信道状态信息参考信号CSI-RS、探测参考信号SRS、传输配置指示TCI情况,空间关系。
  97. 一种终端设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至24任一项所述的资源处理方法。
  98. 一种网络设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求25至48任一项所述的资源处理方法。
  99. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至24或25至48任一项所述的资源处理方法。
  100. 一种计算机程序产品,包括计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至24或25至48任一项所述的资源处理方法。
PCT/CN2021/107722 2021-07-21 2021-07-21 资源处理方法及装置 WO2023000235A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180097248.2A CN117204014A (zh) 2021-07-21 2021-07-21 资源处理方法及装置
PCT/CN2021/107722 WO2023000235A1 (zh) 2021-07-21 2021-07-21 资源处理方法及装置
EP21950491.7A EP4340439A1 (en) 2021-07-21 2021-07-21 Resource processing method and apparatus
US18/385,049 US20240064584A1 (en) 2021-07-21 2023-10-30 Resource processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/107722 WO2023000235A1 (zh) 2021-07-21 2021-07-21 资源处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/385,049 Continuation US20240064584A1 (en) 2021-07-21 2023-10-30 Resource processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2023000235A1 true WO2023000235A1 (zh) 2023-01-26

Family

ID=84980289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107722 WO2023000235A1 (zh) 2021-07-21 2021-07-21 资源处理方法及装置

Country Status (4)

Country Link
US (1) US20240064584A1 (zh)
EP (1) EP4340439A1 (zh)
CN (1) CN117204014A (zh)
WO (1) WO2023000235A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392178A (zh) * 2017-08-10 2019-02-26 维沃移动通信有限公司 Mpdu传输的方法、用户侧设备和网络侧设备
WO2019136611A1 (zh) * 2018-01-09 2019-07-18 Oppo广东移动通信有限公司 小区切换的方法、接入网设备和终端设备
CN111083747A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 通信方法及装置
CN111418255A (zh) * 2017-09-28 2020-07-14 瑞典爱立信有限公司 切换执行中的多波束随机接入过程
CN113170363A (zh) * 2018-11-20 2021-07-23 高通股份有限公司 无随机接入信道(rach)过程

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392178A (zh) * 2017-08-10 2019-02-26 维沃移动通信有限公司 Mpdu传输的方法、用户侧设备和网络侧设备
CN111418255A (zh) * 2017-09-28 2020-07-14 瑞典爱立信有限公司 切换执行中的多波束随机接入过程
WO2019136611A1 (zh) * 2018-01-09 2019-07-18 Oppo广东移动通信有限公司 小区切换的方法、接入网设备和终端设备
CN111083747A (zh) * 2018-10-19 2020-04-28 华为技术有限公司 通信方法及装置
CN113170363A (zh) * 2018-11-20 2021-07-23 高通股份有限公司 无随机接入信道(rach)过程

Also Published As

Publication number Publication date
EP4340439A1 (en) 2024-03-20
US20240064584A1 (en) 2024-02-22
CN117204014A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US11627504B2 (en) Radio network nodes, wireless device and methods performed therein for handling communication in a wireless communication network
EP2249601B1 (en) Handover method, mobile terminal and base station
US20190222291A1 (en) Method and apparatus for supporting movement of user equipment in wireless communications
CN111801968A (zh) 用于分级寻呼、小区选择和小区重选的系统和方法
EP3497972B1 (en) Telecommunications system, terminal device, infrastructure equipment and methods
JP6663036B2 (ja) 無線通信システムにおける接続を管理するためのシステムおよび方法
US11937135B2 (en) Signaling of delta configuration for handover
CN117914372A (zh) 移动终端、基站及其方法
TW201127114A (en) Method and apparatus for performing component carrier-specific reconfiguration
WO2013120274A1 (en) Methods, apparatuses and computer program products for wlan discovery and handover in coexisted lte and wlan networks
US11412425B2 (en) Radio network nodes, and methods performed therein for handling communication in a wireless communication network
EP4135468A1 (en) Communication system, communication terminal, and base station
CN107769830B (zh) 协同工作子状态的方法、装置及系统
US20210368399A1 (en) PSCell Activation with Early Data-Forwarding for Dual Connectivity Based Handover
WO2023000235A1 (zh) 资源处理方法及装置
WO2023060523A1 (zh) 切换方法及装置
WO2023108476A1 (zh) 通信方法及装置
WO2023134681A1 (zh) 传输信息的方法和装置
WO2024029424A1 (ja) 通信システム
WO2023054394A1 (ja) 通信システム
WO2023227283A1 (en) Methods, communications devices and infrastructure equipment
WO2023158699A1 (en) Dynamic uplink band transmission
TW202406394A (zh) 基於上行鏈路的無線電資源管理方法
CN116868623A (zh) 通信系统及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950491

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097248.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021950491

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021950491

Country of ref document: EP

Effective date: 20231213

NENP Non-entry into the national phase

Ref country code: DE