WO2024066957A1 - 磨床及其控制方法 - Google Patents

磨床及其控制方法 Download PDF

Info

Publication number
WO2024066957A1
WO2024066957A1 PCT/CN2023/116978 CN2023116978W WO2024066957A1 WO 2024066957 A1 WO2024066957 A1 WO 2024066957A1 CN 2023116978 W CN2023116978 W CN 2023116978W WO 2024066957 A1 WO2024066957 A1 WO 2024066957A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding wheel
grinding
rough
fine
assembly
Prior art date
Application number
PCT/CN2023/116978
Other languages
English (en)
French (fr)
Inventor
郭世锋
徐公志
戴鑫辉
刘明杰
王勇
吕清乐
杨东
Original Assignee
青岛高测科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222614934.7U external-priority patent/CN218639216U/zh
Priority claimed from CN202222614285.0U external-priority patent/CN218658138U/zh
Priority claimed from CN202222614230.XU external-priority patent/CN218639314U/zh
Priority claimed from CN202211215765.8A external-priority patent/CN115922449A/zh
Priority claimed from CN202222614931.3U external-priority patent/CN218658298U/zh
Priority claimed from CN202222614939.XU external-priority patent/CN218639283U/zh
Application filed by 青岛高测科技股份有限公司 filed Critical 青岛高测科技股份有限公司
Publication of WO2024066957A1 publication Critical patent/WO2024066957A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/02Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
    • B24B5/04Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/50Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground, e.g. strings

Definitions

  • the present invention relates to the technical field of grinding machines, and specifically provides a grinding machine and a control method for the grinding machine.
  • a grinding machine is a device for grinding hard and brittle materials.
  • a grinding machine usually includes a feeding device, a feed slide device, and a grinding device.
  • the silicon rod after square cutting is first fixed to the feeding device. After the position and posture of the silicon rod are preliminarily adjusted, the silicon rod is delivered between the two chucks of the feed slide device.
  • the two chucks can both be movable chucks, or one of the two chucks is a movable chuck and the other is a fixed chuck.
  • the silicon rod is delivered to the position corresponding to the grinding device, based on which, one group of the silicon rod surfaces to be ground can be subjected to corresponding grinding. Afterwards, the silicon rod is rotated so as to rotate to the second group of surfaces to be ground, based on which the second group of surfaces to be ground can be subjected to corresponding grinding.
  • the grinding process mainly includes the rough grinding operation first and the fine grinding operation later.
  • the grinding device mainly includes a rough grinding wheel for the rough grinding operation and a fine grinding wheel for the fine grinding operation.
  • a pair of rough grinding wheels and a pair of fine grinding wheels need to be configured.
  • the rough grinding wheel and the fine grinding wheel also need to be configured with two drive transmission mechanisms respectively, one is a drive transmission mechanism (movement) for realizing the rough/fine grinding wheel approaching/moving away from the silicon rod, and the other is a drive transmission mechanism (rotation) for realizing the rough/fine grinding wheel grinding the silicon rod.
  • This will cause the grinding device to have a considerable proportion in volume relative to the entire grinder. Since the corresponding movement forms and operation sequences of the rough grinding wheel and the fine grinding wheel are quite related, there is still room for improvement in how to integrate the spatial layout of the two.
  • the present invention is proposed to solve the above technical problems at least to a certain extent. Specifically, how to achieve a compact structure of the grinding device while ensuring that the grinding function can be achieved as much as possible is a technical problem to be solved by the present invention.
  • the present invention provides a grinding machine, which includes: 1) a fixed base; 2) a beam slide assembly, which includes: a beam, which can slide relative to the fixed base; and a slide, which can slide relative to the beam; 3) a grinding assembly, which includes: a rough grinding wheel; and a fine grinding wheel; wherein one of the fine grinding wheel and the rough grinding wheel is formed with a reserved space distributed along its axial direction, and at least a part of the other of the fine grinding wheel and the rough grinding wheel can be accommodated in the reserved space, so as to: When one of the fine grinding wheel and the rough grinding wheel is in working state, the end of the other one of the fine grinding wheel and the rough grinding wheel close to the workpiece to be processed is accommodated in the reserved space and thus does not interfere with the grinding operation of the rough grinding wheel; wherein the grinding assembly is fixedly arranged on the slide.
  • the rough grinding wheel and the fine grinding wheel can be spatially integrated to make the structure of the grinding assembly more compact. Since the time required for switching between the rough grinding wheel and the fine grinding wheel is saved, the grinding efficiency can be effectively improved.
  • the position state of the rough grinding wheel when it is in a non-working state (a position where the workpiece cannot be ground) according to actual needs.
  • a non-working state a position where the workpiece cannot be ground
  • it can be in a fixed position or can be in one of several optional positions.
  • there are three positions set relative to the fine grinding wheel in the axial direction the first position is a position roughly aligned with the end face of the fine grinding wheel, the second position is a position slightly retracted relative to the end face of the fine grinding wheel, and the third position is a position significantly retracted relative to the end face of the fine grinding wheel.
  • the rough grinding wheel can be located in the second position or the third position when it is in a non-working state, and the rough grinding wheel can be located in the first position when the grinding machine is in the production stage and the use stage or when the last rough grinding operation in the current operation is completed.
  • the grinding assembly includes: a rough grinding wheel and a fine grinding wheel; wherein the fine grinding wheel is formed with a reserved space distributed along its axial direction, and at least a portion of the rough grinding wheel can be accommodated in the reserved space, so that: when the rough grinding wheel is in a working state, the rough grinding wheel can grind the workpiece to be processed in a manner close to the workpiece to be processed, and the end of the fine grinding wheel close to the workpiece to be processed is accommodated in the reserved space and therefore does not interfere with the grinding operation of the rough grinding wheel.
  • the grinding assembly includes: a rough grinding wheel; and a fine grinding wheel; wherein one of the fine grinding wheel and the rough grinding wheel is formed with a pre-cutting groove distributed along its axial direction.
  • the grinding assembly further comprises: a first driving component, which can drive the fine grinding wheel and/or the rough grinding wheel to rotate to perform a corresponding grinding operation; and a second driving component, which can drive the end of the fine grinding wheel and the rough grinding wheel close to the workpiece to be processed to be accommodated in the reserved space.
  • the grinding assembly includes: a rough grinding wheel; and a fine grinding wheel; wherein one of the fine grinding wheel and the rough grinding wheel is formed with a reserved space distributed along its axial direction, and at least a portion of the other of the fine grinding wheel and the rough grinding wheel can be accommodated in the reserved space, so that: when one of the fine grinding wheel and the rough grinding wheel is in a working state, the end of the other of the fine grinding wheel and the rough grinding wheel close to the workpiece to be processed is accommodated in the reserved space and thus does not interfere with the grinding operation of the rough grinding wheel; the grinding assembly also includes: a first driving component, which can drive the fine grinding wheel and/or the rough grinding wheel to rotate to perform corresponding grinding operations; and at least a portion of the first driving component is arranged to form the grinding assembly in a manner not exposed to the environment.
  • the grinding device includes: 1) a grinding assembly, which includes: a rough grinding wheel; and a fine grinding wheel; wherein one of the fine grinding wheel and the rough grinding wheel is formed with a reserved space distributed along its axial direction, and at least a portion of the other of the fine grinding wheel and the rough grinding wheel can be accommodated in the reserved space, so that: when one of the fine grinding wheel and the rough grinding wheel is in a working state, the end of the other of the fine grinding wheel and the rough grinding wheel close to the workpiece to be processed is accommodated in the reserved space and thus does not interfere with the grinding operation of the rough grinding wheel; 2) a detection assembly, which is configured on the grinding assembly, and the detection assembly can move synchronously with the grinding assembly in a direction close to/away from the workpiece to be processed; and the detection assembly can move relative to the grinding assembly in a direction close to/away from the workpiece to be processed.
  • a grinding assembly which includes: a rough grinding wheel; and a fine grinding wheel; wherein one of the fine grinding wheel and the rough grinding wheel
  • the second driving component is drivingly connected to the second transmission shaft in a belt drive manner.
  • This configuration provides another possible structural form for realizing drive connection between the second drive component and the second transmission shaft. It is understandable that those skilled in the art can select any feasible specific form of belt drive according to actual needs.
  • the present invention further provides a control method for a grinding machine, characterized in that the grinding machine comprises a fixed base, a crossbeam slide assembly and a grinding assembly, wherein one of the fine grinding wheel and the rough grinding wheel is formed with a reserved space distributed along its axial direction, and at least a portion of the other of the fine grinding wheel and the rough grinding wheel can be accommodated in the reserved space, and the control method comprises: sliding a crossbeam of the crossbeam slide assembly relative to the fixed base so that the grinding assembly moves along the axial direction of the workpiece to be processed; and/or sliding the slide relative to the crossbeam so that the grinding assembly fixed to the slide
  • the grinding assembly moves in a manner of approaching/moving away from the workpiece to be processed; and/or the fine grinding wheel and/or the rough grinding wheel are rotated so that the fine grinding wheel or the rough grinding wheel in a working state can perform the corresponding grinding operation; and/or the fine grinding wheel or the rough grinding wheel at least partly accommodated in the reserved space is moved in a
  • silicon rod to be ground
  • grinder as a vertical grinder as an example and describes the preferred embodiment of the present invention with reference to the accompanying drawings, in which:
  • FIG1 shows a structural schematic diagram 1 of a grinding machine according to an embodiment of the present invention
  • FIG2 shows a second structural schematic diagram of a grinding machine according to an embodiment of the present invention, in which the grinding device is removed;
  • FIG3 is a schematic structural diagram of a grinding device of a grinding machine according to an embodiment of the present invention.
  • FIG4 is a schematic structural diagram of a beam slide of a grinding machine according to an embodiment of the present invention.
  • FIG5 is a schematic cross-sectional view of a grinding assembly of a grinding machine according to an embodiment of the present invention.
  • FIG6 shows a first structural schematic diagram of a grinding assembly of a grinding machine according to an embodiment of the present invention, in which the rough grinding wheel is in a working state;
  • FIG7 shows a second structural schematic diagram of a grinding assembly of a grinding machine according to an embodiment of the present invention, in which the rough grinding wheel is in a non-working state;
  • FIG8 is a schematic structural diagram of a grinding assembly of a grinding machine according to another embodiment of the present invention.
  • FIG9 is a schematic structural diagram of a detection assembly of a grinding machine according to an embodiment of the present invention.
  • FIG. 10 is a schematic flow chart showing a method for controlling a grinding machine according to an embodiment of the present invention.
  • the terms “installation”, “setting”, and “connection” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or the internal connection of two components.
  • installation e.g., it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, an indirect connection through an intermediate medium, or the internal connection of two components.
  • Figure 1 shows a structural schematic diagram of a grinder according to an embodiment of the present invention
  • Figure 2 shows a structural schematic diagram of a grinder according to an embodiment of the present invention
  • Figure 3 shows a structural schematic diagram of a grinding device of a grinder according to the first embodiment of the present invention
  • Figure 4 shows a structural schematic diagram of a crossbeam slide of a grinder according to an embodiment of the present invention
  • Figure 5 shows a cross-sectional schematic diagram of a grinding assembly of a grinder according to an embodiment of the present invention
  • Figure 6 shows a structural schematic diagram of a grinding assembly of a grinder according to an embodiment of the present invention
  • Figure 7 shows a structural schematic diagram of a grinding assembly of a grinder according to an embodiment of the present invention
  • Figure 8 shows a structural schematic diagram of a grinding assembly of another embodiment of the present invention
  • Figure 9 shows a structural schematic diagram of a detection assembly of a grinder according to an embodiment of the present invention.
  • the present invention will be described below with reference to all or part of Figures 1 to 9.
  • the grinder is mainly used to grind the squared silicon rods to the set specifications.
  • the squared silicon rods are usually rectangular parallelepipeds with equal width and height. But in reality, the surface of the squared silicon rods is not smooth.
  • the middle part of the silicon rod is convex compared to the two ends, and the exit edge of the silicon rod is larger than the entry edge (the side length of the square where the diamond wire cuts out of the end face is larger than the side length of the square where the diamond wire cuts into the end face). Therefore, the squared silicon rods need to be ground into an ideal rectangular parallelepiped of standard specifications by a grinder.
  • the vertical grinder 100 mainly includes a fixed base 1, a grinding device 3 and a beam slide 4.
  • the grinding device 3 mainly includes a pair of grinding assemblies 31 arranged opposite to each other for grinding the silicon rod 2 and a pair of detection assemblies 32 for detecting the position and posture of the silicon rod before the grinding operation.
  • the grinding assembly includes a fine grinding wheel 311 for fine grinding the silicon rod and a rough grinding wheel 312 for rough grinding the silicon rod.
  • an upper clamping seat and a lower clamping seat are arranged on a vertically arranged fixed base 1, wherein the upper clamping seat can move in the vertical direction (such as being referred to as a movable chuck 11), and the lower clamping seat is relatively fixedly arranged on the fixed base (such as being referred to as a fixed chuck 12), and the movable chuck is provided with a movable chuck driving motor 111 to drive the movable chuck to move in the vertical direction, so as to cooperate with the fixed chuck to clamp the silicon rod, and the fixed chuck also plays the role of supporting the bottom of the silicon rod.
  • the movable chuck is also provided with a movable chuck rotating motor 112 to drive the silicon rod to rotate, so as to realize the rotation of the silicon rod.
  • the fixed chuck may be provided with a fixed chuck rotating motor 121 or may not be provided. In the case of providing a fixed chuck rotating motor, it can ensure that the rotation process of the silicon rod 2 from one set of grinding surfaces to another set of grinding surfaces is more stable.
  • the beam slide 4 mainly includes a beam 41 and two slide assemblies 42 corresponding to the two groups of grinding devices, wherein the upper and lower sides of the beam 41 are provided with slide rails 411, and the slide assembly 42 includes a slide plate 421 and a slide plate driving component 422 (such as an electric cylinder), and the upper and lower sides of the slide plate have slide grooves that can cooperate with the slide rails.
  • the slide plate driving component such as an electric cylinder
  • the slide slides along the beam through the cooperation between the slide groove and the slide rail.
  • the probe in the detection assembly mentioned below can be close to the silicon rod to detect the position and posture of the silicon rod before the grinding operation, and the rough/fine grinding wheel can be close to the silicon rod to perform rough grinding or fine grinding on the silicon rod.
  • the fixed base 1 is provided with two groups of vertical slide grooves 14 near the two sides, and the two beam fixing seats 13 corresponding to the two groups of grinding assemblies move in the vertical direction with the help of the slide grooves on the corresponding sides (such as the corresponding sides of the beam fixing seats are provided with sliders that match the slide grooves).
  • the beam 41 in the beam slide is fixed on the beam fixing seat 13, so that the pair of grinding assemblies are driven to move in the vertical direction with the up and down sliding of a pair of beam slide seats relative to the fixed base. In this way, the two grinding assemblies on the left and right sides can grind a pair of grinding surfaces of the silicon rod in a synchronous up and down movement manner.
  • the fine grinding wheel 311 and the rough grinding wheel 312 are arranged concentrically at the same workstation, and the rough grinding wheel is freely accommodated in the reserved space formed inside the fine grinding wheel.
  • a pair of grinding assemblies and a pair of detection assemblies are symmetrically arranged on the crossbeam slide 4 (located on both sides of the silicon rod) and can slide relative to the crossbeam slide in the direction of approaching/moving away from the silicon rod. In this way, the grinding assembly can realize the fine grinding and rough grinding of the silicon rod at the same workstation.
  • the grinding assembly 31 also includes a composite shaft, which includes a first transmission shaft 3131 (bushing) of a cylindrical structure and a second transmission shaft 3132 accommodated in the cylindrical structure, wherein the bushing is connected to the fine grinding wheel so as to drive the fine grinding wheel to be connected when the bushing rotates, and the second transmission shaft is connected to the rough grinding wheel so as to drive the rough grinding wheel to be connected when the second transmission shaft rotates.
  • a composite shaft which includes a first transmission shaft 3131 (bushing) of a cylindrical structure and a second transmission shaft 3132 accommodated in the cylindrical structure, wherein the bushing is connected to the fine grinding wheel so as to drive the fine grinding wheel to be connected when the bushing rotates, and the second transmission shaft is connected to the rough grinding wheel so as to drive the rough grinding wheel to be connected when the second transmission shaft rotates.
  • the grinding assembly realizes its grinding operation in the following principle: when the silicon rod needs to be rough-ground, the second transmission shaft is moved along its axial direction so that the rough-ground grinding wheel extends out of the fine-ground grinding wheel. Combined with the movement of the grinding assembly along the crossbeam slide, the rough-ground grinding wheel can reach the grinding position, and the second transmission shaft is rotated to drive the rough-ground grinding wheel to rotate.
  • the second transmission shaft is telescopically moved to make the rough-ground grinding wheel in a position that does not interfere with the fine-ground grinding wheel. Based on this, combined with the movement of the grinding assembly along the crossbeam slide, the fine-ground grinding wheel can reach the grinding position, and the first transmission shaft is rotated to drive the rough-ground grinding wheel to rotate.
  • the fine grinding operation needs to include the rotation of the first transmission shaft, the lateral sliding of the slide relative to the beam, and the vertical sliding of the beam fixing seat relative to the fixed base.
  • the rough grinding operation needs to include the telescopic movement of the second transmission shaft, the rotation of the second transmission shaft, the lateral sliding of the slide relative to the beam, and the vertical sliding of the beam fixing seat relative to the fixed base.
  • the grinding assembly 31 includes a first driving component 314, such as a driving motor, which is simultaneously driven and connected to a composite shaft formed by the first driving component and the second transmission shaft.
  • the grinding assembly 31 includes a mounting base 315, a mounting space is formed between the mounting base and the outer wall of the first rotating shaft, and the first driving component is accommodated in the mounting space and is directly drivingly connected to the outer wall of the first transmission shaft. It can be seen that such a built-in motor arrangement makes the structure of the grinding assembly more compact.
  • the first drive component can also be set as an external component, such as an external motor (such as set at the rear end of the composite shaft or the side along the radial direction), a pneumatic motor or a hydraulic motor
  • an external motor such as set at the rear end of the composite shaft or the side along the radial direction
  • a pneumatic motor such as set at the rear end of the composite shaft or the side along the radial direction
  • a hydraulic motor such as set at the rear end of the composite shaft or the side along the radial direction
  • the equally driven composite shaft realizes its rotational motion.
  • the grinding assembly 31 includes a second driving component 316 , such as a driving motor, through which the second driving component enables the second transmission shaft to telescopically move relative to the first transmission shaft along its axial direction.
  • a second driving component 316 such as a driving motor
  • the grinding assembly includes a screw nut pair 51, the output shaft of the second driving component is connected to the screw of the screw nut pair, and a rotating support component is provided on the second transmission shaft, such as a sleeve, a bearing, a bearing box, etc.
  • the rotating support component is a bearing box 52, and a connecting seat 53 is provided between the bearing box and the nut of the screw nut pair, and the connecting seat is provided with a linear guide 54.
  • the second drive component related to the telescopic part can be set at any position of the composite shaft, such as the radial outer side in this example or at other positions such as the tail end of the composite shaft.
  • the mounting base 315 is roughly a shell-like structure (such as called a spindle body shell), which is not only used to cooperate with the first transmission shaft to form an installation space, but also serves as a carrier for structures such as the second drive component, the screw nut pair, the linear guide rail and the connecting seat.
  • a spindle body shell such as called a spindle body shell
  • the second driving component 316 is a motor, which is connected to the rear end of the composite shaft through a pulley mechanism 55 and thus drives the first transmission shaft 3131 and the second transmission shaft 3132 to rotate synchronously.
  • a mechanism that can realize its extension and retraction is configured for the second transmission shaft corresponding to the rough grinding wheel 312, so that the switching between the rough grinding operation and the fine grinding operation can be realized.
  • the silicon rod needs to be rough ground, it is extended relative to the fine grinding wheel 311, and when the silicon rod needs to be fine ground, it is retracted relative to the fine grinding wheel (reserved space).
  • one way to switch between rough grinding and fine grinding is that the telescopic mechanism includes a spring, and the second transmission shaft is in a state of retraction relative to the fine grinding wheel under the action of the preload force of the spring.
  • the telescopic mechanism includes a spring
  • the second transmission shaft is in a state of retraction relative to the fine grinding wheel under the action of the preload force of the spring.
  • an external force mechanism such as a power cylinder, a linear module, or a drive transmission mechanism that can achieve telescopic movement can be used to apply an external force to the pressure cover that supports the rear end of the bearing box, so that the spring is deformed under the action of the external force and the rough grinding wheel is extended.
  • an external force mechanism such as a power cylinder, a linear module, or a drive transmission mechanism that can achieve telescopic movement
  • a power cylinder such as a power cylinder, a linear module, or a drive transmission mechanism that can achieve telescopic movement
  • a drive transmission mechanism that can achieve telescopic movement
  • the grinding assembly is equipped with a water spray assembly 61, an air jet assembly 62 and a water-blocking brush 63 at the end near the rough grinding wheel and the fine grinding wheel, wherein the water spray assembly 61 can spray cooling water to the rough grinding wheel or the fine grinding wheel to cool the rough grinding wheel or the fine grinding wheel, and the air jet assembly 62 can blow compressed air to the rough grinding wheel or the fine grinding wheel to dry the water stains on the surface of the silicon rod after grinding, such an operation facilitates the probe to accurately detect the silicon rod after a set of grinding operations are completed.
  • the water-blocking brush is mainly used to isolate the silicon powder generated during the grinding operation and the water vapor associated with the aforementioned water spray/air jet assembly. It can be seen that the mounting base 315 is also a carrier of the water spray assembly 61, the air jet assembly 62 and the water-blocking brush 63.
  • the inner second transmission shaft has an extending portion at the end (tail end) away from the rough grinding wheel that always extends out of the first transmission shaft, and the extending portion is connected to the connecting seat through a bearing box (such as a reducing bearing sleeve).
  • a bearing box such as a reducing bearing sleeve
  • the force couple formed by the supporting force of the second transmission shaft and the grinding reaction force is borne by the linear guide rail. Based on this, while providing precise guiding for the axial telescopic movement of the second transmission shaft, it also reduces the bearing capacity of the bearing box located at the tail end of the second transmission shaft, thereby ensuring the grinding accuracy and grinding reliability and increasing the service life cycle of the grinding assembly.
  • the grinding head of the rough grinding wheel when the rough grinding wheel is in working state, the grinding head of the rough grinding wheel extends out and protrudes from the reference surface of the outer cylindrical fine grinding surface of the fine grinding wheel by a first axial distance X, where theoretically X is equal to the thickness of the grinding head of the rough grinding wheel.
  • the first axial distance X is the thickness of the grinding head of the rough grinding wheel plus 0.1-5 mm (such as 1 mm). Under normal circumstances, the first axial distance X ranges from 3 to 25 mm.
  • the grinding head of the rough grinding wheel is retracted and forms a second axial distance Y between the reference plane of the outer cylindrical fine grinding surface of the fine grinding wheel, which is similar to the aforementioned X.
  • Y is equal to the thickness of the grinding head of the fine grinding wheel.
  • the second axial distance Y is the thickness of the grinding head of the fine grinding wheel plus 0.1-5 mm (such as 1 mm). Under normal circumstances, the value range of the second axial distance Y is 3-25 mm.
  • the outer diameter of the fine grinding wheel is 335mm, and the inner diameter of the fine grinding wheel is 285mm.
  • the outer diameter of the rough grinding wheel is 280mm, and the inner diameter of the rough grinding wheel is 248mm.
  • the outer/inner diameter of the fine/rough grinding wheel can be flexibly adjusted according to actual needs (such as the width of the silicon rod, etc.).
  • the outer diameter of the outer ring of the fine grinding wheel should generally not be less than 100mm.
  • the telescopic stroke of the rough grinding wheel is 18mm, the first axial distance X is 8mm, and the second axial distance Y is equal to the grinding head of the fine grinding wheel. Thickness.
  • the detection component includes a probe housing 321 and a probe mounting plate 322, three probes 323 are arranged on the probe mounting plate, a slide cylinder 324 is arranged in the housing, and the slide cylinder is driven and connected to the probe mounting plate.
  • the cylinder is arranged on the bottom outer side or the bottom inner side of the housing. In this way, under the action of the slide cylinder, the probe mounting plate can extend out of the housing, and the three probes installed on the probe mounting plate can now approach the silicon rod and thus detect the position and posture of the silicon rod.
  • the slide cylinder is only one of the driving methods to realize the extension and retraction of the probe.
  • Those skilled in the art can flexibly select a suitable driving mechanism according to actual needs, such as using an electric cylinder or a hydraulic cylinder instead of a cylinder, or realizing it through a combination of a drive motor and a lead screw nut pair, etc.
  • the component used to detect the silicon rod can also be realized by a laser distance sensor, a grating ruler, etc.
  • the feed slide device 1 After the loading device completes the posture adjustment of the silicon rod, the feed slide device 1 reaches the predetermined position according to the length of the silicon rod 2 measured by the centering assembly, and the movable chuck moves in the feed direction relative to the slide assembly, thereby clamping the silicon rod through the cooperation between the fixed chuck and the movable chuck. After that, the feed slide device moves in the feed direction to transport the silicon rod to the grinding area. The feed slide device moves the silicon rod in the feed direction and rotates the silicon rod according to the program settings, and completes the corresponding grinding operation through the grinding device. After grinding, the feed slide device returns to the unloading area of the loading device. At this time, the (fixed and movable) chucks release the silicon rod, allowing the silicon rod to fall to the unloading platform corresponding to the unloading area to complete the unloading.
  • the detection component 32 in the grinding device 3 will detect the position and posture of the silicon rod 2. Specifically, when the silicon rod 2 stops moving after reaching the first detection position, the slide cylinder in the detection component pushes the probe mounting plate to move to the right, so that the three probes arranged on the probe mounting plate move along the grinding feed direction. At this time, the probe positions of the three probes will be ahead of the rough grinding wheel and the fine grinding wheel in the grinding component 31. Then, the grinding component 31 and the detection component 32 continue to move along the crossbeam slide 4 driven by the slide drive component 42 until the probe contacts the silicon rod and completes the detection (dot marking without grinding). Along with the movement of the silicon rod along the feed direction, the probe can detect the entry position of the silicon rod, the middle position along the length of the rod, and the exit position of the silicon rod in turn.
  • the silicon rod 2 is to be ground. Specifically, if the maximum grinding size of the silicon rod is smaller than the standard size after grinding, it is determined that the rod size is unqualified and cannot be ground. In this case, the rod needs to be withdrawn, that is, the silicon rod needs to be returned to the unloading platform, and then different degrees of manual intervention are performed.
  • the silicon rod is qualified, the position deviation and angle deviation between the axis of the (fixed and movable) chuck and the axis of the silicon rod can be measured by measuring the three positions of the silicon through the probe group. The deviation is adjusted and then re-tested. After the test is completed, grinding can be started.
  • the grinding amount of the rough grinding wheel 312 can be calculated. According to the grinding amount, the rough grinding wheel extends out of the fine grinding wheel 311 under the drive of the second driving component, and the fine grinding wheel 311 is driven by the slide drive.
  • the first driving component drives the composite shaft to rotate, thereby driving the rough grinding wheel to rotate and performing a rough grinding operation corresponding to the grinding amount. After the rough grinding is completed, the rough grinding wheel can be retracted into the reserved space formed in the middle of the fine grinding wheel by the second driving component.
  • the detection component repeats the previous detection process, calculates the grinding amount of the fine grinding wheel 311, and according to the grinding amount, the fine grinding wheel also moves forward a certain distance under the drive of the slide driving component 42, and drives the composite shaft to rotate by the first driving component, thereby driving the fine grinding wheel to rotate and performing a fine grinding operation corresponding to the grinding amount.
  • the grinder of the present invention by integrating the fine grinding wheel and the rough grinding wheel, the rough grinding and fine grinding operations of the silicon rod can be simultaneously performed based on the same workstation of the grinder.
  • the setting of the composite shaft ensures that both the rough grinding and fine grinding operations can be reliably performed without interference.
  • the movable part is the rough grinding wheel, so it can be ensured that the accuracy of the fine grinding wheel is completely unaffected.
  • the first drive component inside the installation space formed by the mounting base and the first transmission shaft, the grinding assembly is made more compact.
  • the second drive component enables the second transmission shaft to realize its telescopic movement relative to the first transmission shaft through the screw nut pair-connecting seat-bearing box, and the transmission is reliable and the structure is relatively compact.
  • Figure 10 shows a schematic flow chart of a control method for a grinding machine according to an embodiment of the present invention.
  • the control method of the present invention mainly includes the following steps:
  • the probe is retracted to a position where it does not interfere with the grinding operation. It is understandable that the grinding assembly and the detection assembly can also be synchronously approached/moved away from the silicon rod by sliding the slide along the beam.
  • the rough grinding wheel can reach different positions of the silicon rod by sliding the crossbeam along the fixed base, thereby ensuring that the rough grinding wheel can perform corresponding rough grinding operations on different positions of the silicon rod.
  • the second driving component is operated again through the power transmission of the screw nut pair and the sliding guidance of the connecting seat in the linear guide rail, so that the second transmission shaft moves to the left, so that the rough grinding wheel retracts to the left to a position that can ensure that the fine grinding wheel is in a working state.
  • the fine grinding wheel can reach different positions of the silicon rod by sliding the crossbeam along the fixed base, thereby ensuring that the fine grinding wheel can perform corresponding rough grinding operations on different positions of the silicon rod.
  • the silicon rod is rotated from one set of grinding surfaces to another set of grinding surfaces by operating the fixed/movable chuck rotating motor. Based on this, the grinding operation of the silicon rod can be completed by the coarse/fine grinding wheel integrated in the same station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

一种磨床及其控制方法,其中的控制方法包括:使横梁滑台(4)的横梁(41)相对固定基座(1)滑动;并且/或者使滑台组件(42)相对横梁(41)滑动;并且/或者使精磨砂轮(311)和/或粗磨砂轮(312)转动;并且/或者使至少一部分容纳于预留空间的精磨砂轮(311)或者粗磨砂轮(312)以靠近/远离待加工件的方式运动,以使精磨砂轮(311)和粗磨砂轮(312)中的一个处于工作状态,并且在精磨砂轮(311)和粗磨砂轮(312)中的一个处于工作状态的情形下,精磨砂轮(311)和粗磨砂轮(312)中的另一个不干涉处于工作状态的磨削作业。

Description

磨床及其控制方法 技术领域
本发明涉及磨床技术领域,具体提供一种磨床以及磨床的控制方法。
背景技术
磨床是对硬脆材料进行磨削加工的设备。如磨床通常包括上料上料装置、进给滑台装置以及磨削装置。以硬脆材料为硅棒为例,如首先将开方后的硅棒固定至上料装置,在对硅棒所处的位置和姿态进行初步调节后,将硅棒送达至进给滑台装置的两个夹头之间,如两个夹头可以均为动夹头,或者两个夹头中的一个为动夹头而另一个为定夹头。通过硅棒的轴向运动,将硅棒送达对应于磨削装置的位置,基于此,便可对硅棒的其中一组待磨削面进行相应的磨削加工。之后,通过使硅棒旋转,从而转动至第二组待磨削面,基于此便对该第二组待磨削面进行相应的磨削加工。
磨削加工主要包括在先的粗磨作业和在后的精磨作业,相应地,磨削装置主要包括负责粗磨作业的粗磨砂轮和负责精磨作业的精磨砂轮。如前所述对于同一组磨削面而言,需要配置一对的粗磨砂轮一对精磨砂轮,加之粗磨砂轮和精磨砂轮还需要分别配置两个驱动传动机构,一个为用于实现粗/精磨砂轮靠近/远离硅棒的驱动传动机构(移动),另一个为用于实现粗/精磨砂轮对硅棒进行磨削的驱动传动机构(转动),这将导致磨削装置相对磨床整体在体积上具有相当的占比。由于对应于的粗磨砂轮和精磨砂轮的运动形式以及作业顺序具有相当的关联性,因此,如何针对二者在空间上的布置进行整合,尚存一定的提升空间。
发明内容
为了至少一定程度地解决上述技术问题,提出本发明。具体而言,如何在尽可能地保证磨削功能仍能够实现的前提下实现磨削装置的结构的紧凑化,是本发明要解决的技术问题。
在第一方面,本发明提供了一种磨床,该磨床包括:1)固定基座;2)横梁滑台组件,其包括:横梁,其能够相对所述固定基座滑动;以及滑台,其能够相对所述横梁滑动;3)磨削组件,其包括:粗磨砂轮;以及精磨砂轮;其中,所述精磨砂轮和所述粗磨砂轮中的其中一个形成有沿其轴向分布的预留空间,所述精磨砂轮和所述粗磨砂轮中的另一个的至少一部分能够容纳于所述预留空间,以便:在 所述精磨砂轮和所述粗磨砂轮中的一个处于工作状态的情形下,所述精磨砂轮和所述粗磨砂轮中的另一个的靠近待加工件的端部容纳于所述预留空间并因此不干涉所述粗磨砂轮的磨削作业;其中,所述磨削组件固定设置于所述滑台。
通过这样的构成,能够谋求通过将粗磨砂轮和精磨砂轮进行空间上的整合的方式,使得磨削组件的结构更为紧凑。由于节省了粗磨砂轮和精磨砂轮转换所需的时间,因此能够有效地提高磨削效率。
可以理解的是,本领域技术人员可以根据实际需求确定粗磨砂轮和精磨砂轮之间的相对位置,如可以是粗磨砂轮在外精磨砂轮在内,也可以是精磨砂轮在外而粗磨砂轮在内。
可以理解的是,本领域技术人员可以根据实际需求确定预留空间的构造方式以及位于径向内侧的精/粗磨砂轮如何实现其相对预留空间的位置变化。以粗磨砂轮位于径向内侧为例,如除了精磨砂轮自身中部与预留空间相适配的第一部分“掏空”,还包括与精磨砂轮相关联的部件的第二部分“掏空”,或者该第二部分“掏空”可以通过额外增设的部件形成或者二者的结合(额外增设的部件和与精磨砂轮相关联的部件相结合)形成等。
仍以粗磨砂轮位于径向内侧为例,此外,可以理解的是,本领域技术人员可以根据实际需求确定粗磨砂轮在处于非工作状态时(无法磨削待加工件的位置)的位置状态。如在粗磨砂轮处于非工作状态期间,其可以处于某一固定的位置或者可以处于可选的某几个位置之一。示例性地,沿轴向相对精磨砂轮的位置设定有三个,第一位置为与精磨砂轮的端面大致对齐的位置、第二位置为相对精磨砂轮的端面略缩回的位置、第三位置为相对精磨砂轮的端面明显缩回的位置。如在频繁使用磨床期间,可以使粗磨砂轮处于非工作状态期间位于第二位置或者第三位置,在磨床处于生产阶段和使用阶段的期间或者是当前作业中的最后一次粗磨作业结束的情形下,可以使粗磨砂轮位于第一位置。
在一种可能的实施方式中,所述磨削组件包括:粗磨砂轮以及精磨砂轮;其中,所述精磨砂轮形成有沿其轴向分布的预留空间,所述粗磨砂轮的至少一部分能够容纳于所述预留空间,以便:在所述粗磨砂轮处于工作状态的情形下,所述粗磨砂轮能够以靠近待加工件的方式对待加工件进行磨削作业,并且所述精磨砂轮靠近待加工件的端部容纳于所述预留空间并因此不干涉所述粗磨砂轮的磨削作业。
在一种可能的实施方式中,所述磨削组件包括:粗磨砂轮;以及精磨砂轮;其中,所述精磨砂轮和所述粗磨砂轮中的其中一个形成有沿其轴向分布的预 留空间,所述精磨砂轮和所述粗磨砂轮中的另一个的至少一部分能够容纳于所述预留空间;所述磨削组件还包括:第一驱动部件,其能够驱动所述精磨砂轮和/或所述粗磨砂轮转动以进行相应的磨削作业;以及第二驱动部件,其能够驱动所述精磨砂轮和所述粗磨砂轮中的另一个靠近待加工件的端部容纳于所述预留空间。
在一种可能的实施方式中,所述磨削组件包括:粗磨砂轮;以及精磨砂轮;其中,所述精磨砂轮和所述粗磨砂轮中的其中一个形成有沿其轴向分布的预留空间,所述精磨砂轮和所述粗磨砂轮中的另一个的至少一部分能够容纳于所述预留空间,以便:在所述精磨砂轮和所述粗磨砂轮中的一个处于工作状态的情形下,所述精磨砂轮和所述粗磨砂轮中的另一个的靠近待加工件的端部容纳于所述预留空间并因此不干涉所述粗磨砂轮的磨削作业;所述磨削组件还包括:第一驱动部件,其能够驱动所述精磨砂轮和/或所述粗磨砂轮转动以进行相应的磨削作业;并且所述第一驱动部件的至少一部分以不暴露于环境的方式设置于形成所述磨削组件。
在一种可能的实施方式中,所述磨削装置包括:1)磨削组件,其包括:粗磨砂轮;以及精磨砂轮;其中,所述精磨砂轮和所述粗磨砂轮中的其中一个形成有沿其轴向分布的预留空间,所述精磨砂轮和所述粗磨砂轮中的另一个的至少一部分能够容纳于所述预留空间,以便:在所述精磨砂轮和所述粗磨砂轮中的一个处于工作状态的情形下,所述精磨砂轮和所述粗磨砂轮中的另一个的靠近待加工件的端部容纳于所述预留空间并因此不干涉所述粗磨砂轮的磨削作业;2)检测组件,其配置于磨削组件,并且所述检测组件能够与所述磨削组件同步向靠近/远离待加工件的方向移动;以及所述检测组件能够相对所述磨削组件向靠近/远离待加工件的方向移动。
对于上述磨削组件,在一种可能的实施方式中,所述第二驱动部件以带传动的方式与所述第二传动轴驱动连接。
通过这样的构成,给出了第二驱动部件与第二传动轴之间实现驱动连接的另一种可能的结构形式。可以理解的是,本领域技术人员可以根据实际需求选择任意可行的带传动的具体形式。
在第二方面,本发明还提供一种磨床的控制方法,其特征在于,所述磨床包括固定基座、横梁滑台组件和磨削组件,其中,所述精磨砂轮和所述粗磨砂轮中的其中一个形成有沿其轴向分布的预留空间,所述精磨砂轮和所述粗磨砂轮中的另一个的至少一部分能够容纳于所述预留空间,所述控制方法包括:使所述横梁滑台组件的横梁相对所述固定基座滑动,以使得所述磨削组件沿待加工件的轴向运动;并且/或者使所述滑台相对所述横梁滑动,以使得固定设置于所述滑台的所述磨 削组件以靠近/远离待加工件的方式运动;并且/或者使所述精磨砂轮和/或所述粗磨砂轮转动,以使得处于工作状态的精磨砂轮或者所述粗磨砂轮能够进行相应的磨削作业;并且/或者使至少一部分容纳于所述预留空间的所述精磨砂轮或者所述粗磨砂轮以靠近/远离待加工件的方式运动,以便:使所述精磨砂轮和所述粗磨砂轮中的一个处于工作状态,并且在所述精磨砂轮和所述粗磨砂轮中的一个处于工作状态的情形下,所述精磨砂轮和所述粗磨砂轮中的另一个不干涉其磨削作业。
附图说明
下面以待加工件为待磨削的硅棒(下文简称硅棒)、磨床为立式磨床为例并参照附图来描述本发明的优选实施方式,附图中:
图1示出本发明一种实施例的磨床的结构示意图一;
图2示出本发明一种实施例的磨床的结构示意图二,该图中移除了磨削装置;
图3示出本发明一种实施例的磨床的磨削装置的结构示意图;
图4示出本发明一种实施例的磨床的横梁滑台的结构示意图;
图5示出本发明一种实施例的磨床的磨削组件的剖视示意图;
图6示出本发明一种实施例的磨床的磨削组件的结构示意图一,该图中粗磨砂轮处于工作状态;
图7示出本发明一种实施例的磨床的磨削组件的结构示意图二,该图中粗磨砂轮处于非工作状态;
图8示出本发明另一种实施例的磨床的磨削组件的结构示意图;
图9示出本发明一种实施例的磨床的检测组件的结构示意图;以及
图10示出本发明一种实施例的磨床的控制方法的流程示意图。
附图标记列表:
100、立式磨床;1、固定基座;11、动夹头;111、动夹头驱动电机;
112、动夹头旋转电机;12、定夹头;121、定夹头旋转电机;13、横梁固定座;14、滑槽;2、硅棒;3、磨削装置;31、磨削组件;311、精磨砂轮;312、粗磨砂轮;3131、第一传动轴;3132、第二传动轴;314、第一驱动部件;315、安装基体;316、第二驱动部件;32、检测组件;321、探针壳体;322、探针安装板;323、探针;324、滑台气缸;4、横梁滑台;41、横梁;411、滑轨;42、滑台组件;421、滑板;422、滑板驱动部件;51、丝杠螺母副;52、轴承箱;53、连接座;54、直线导轨;55、带轮机构;61、喷水组件;62、喷气组件;63、挡水毛刷。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式是以立式磨床为例来进行介绍的,显然磨削组件也适用于卧室磨床。此外,虽然本实施方式是以第一驱动部件设置于由安装基体和第一传动轴形成的安装空间内、第二驱动部件设置于复合轴的径向外侧为例来进行介绍的,但是这并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员可以灵活的变更,如将第一驱动部件外置、第二驱动部件设置于第二传动轴的尾端等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
另外,为了更好地说明本发明,在下文的具体实施方式中给出了众多的具体细节,本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的磨床的原理等未作详细描述,以便于凸显本发明的主旨。
如图1至图9所示,图1示出本发明一种实施例的磨床的结构示意图一;图2示出本发明一种实施例的磨床的结构示意图二;图3示出本发明第一种实施例的磨床的磨削装置的结构示意图;图4示出本发明一种实施例的磨床的横梁滑台的结构示意图;图5示出本发明一种实施例的磨床的磨削组件的剖视示意图;图6示出本发明一种实施例的磨床的磨削组件的结构示意图一;图7示出本发明一种实施例的磨床的磨削组件的结构示意图二;图8示出本发明另一种实施例的磨床的磨削组件的结构示意图;图9示出本发明一种实施例的磨床的检测组件的结构示意图。下文将参照图1至图9中的全部或者部分来阐述本发明。
磨床主要用于将作为待加工件的、开方后的硅棒磨削加工至设定的规格。具体而言,理想状态下,开方后的硅棒通常是宽度和高度相等的长方体。但在实际中,开方后的硅棒的表面并不平整,如通常情形下表现为:硅棒的中间部分较之于两端部分凸起,硅棒的出刀口尺寸大于入刀口尺寸(金刚线切出端面的正方形的边长大于金刚线切入端面的正方形的边长)。因此,需要通过磨床将开方后的硅棒磨削至标准规格的理想长方体。
主要参照图1至图4,在一种可能的实施方式中,立式磨床100主要包括固定基座1、磨削装置3和横梁滑台4。其中,磨削装置3主要包括一对相向设置的用于对硅棒2进行磨削作业的磨削组件31以及一对在磨削作业之前对硅棒的位置和姿态进行检测的检测组件32。其中,磨削组件包括用于对硅棒进行精磨作业的精磨砂轮311以及用于对硅棒进行粗磨作业的粗磨砂轮312。
在一种可能的实施方式中,竖向设置的固定基座1上设置有上夹紧座和下夹紧座,其中,上夹紧座可沿竖直方向活动(如可称作动夹头11),下夹紧座相对固定地设置于固定基座(如可称作定夹头12),动夹头配置有动夹头驱动电机111以驱动动夹头沿竖直方向移动,从而与定夹头配合将硅棒夹紧,定夹头还起到支撑硅棒底部的作用。其中,动夹头还设置有动夹头旋转电机112以带动硅棒进行旋转,从而实现硅棒的旋转。定夹头可以设置定夹头旋转电机121也可以不设置,在设置定夹头旋转电机的情形下,能够保证硅棒2从一组磨削面旋转到另一组磨削面的旋转过程更加稳定。
在一种可能的实施方式中,横梁滑台4主要包括横梁41以及与两组磨削装置对应的两个滑台组件42,其中,横梁41的上下侧设置有滑轨411,滑台组件42包括滑板421以及滑板驱动部件422(如电缸),滑板的上下两侧具有能够与滑轨配合的滑槽。这样一来,在滑板驱动部件的驱动作用下,滑台通过滑槽与滑轨之间的配合沿横梁滑动。基于这一滑动,下文中所说的检测组件中的探针便可靠近硅棒从而在磨削作业前检测硅棒的位置和姿态,粗/精磨砂轮便可靠近硅棒从而对硅棒进行粗磨作业或者精磨作业。
与横梁滑台4相适配,固定基座1在靠近两侧的部分设置有两组竖向的滑槽14,与两组磨削组件对应的两个横梁固定座13借助于相应侧的滑槽(如横梁固定座的相应侧设置有与滑槽配合的滑块)沿竖直方向移动。横梁滑台中的横梁41固定在横梁固定座13上,从而伴随着一对横梁滑台座相对固定基座的上下滑动带动一对磨削组件沿竖直方向移动。这样一来,左右两侧的两个磨削组件可以以同步上、下移动的方式对硅棒的一对磨削面进行磨削作业。
在一种可能的实施方式中,精磨砂轮311和粗磨砂轮312以同心设置的方式处于同一个工位,并且粗磨砂轮自由容纳于精磨砂轮内部形成的预留空间内。在本示例中,一对磨削组件和一对检测组件在横梁滑台4上对称设置(位于硅棒的两侧)并能够以靠近/远离硅棒的方向相对横梁滑台滑动。这样一来,便可使得磨削组件在同一个工位实现对硅棒的精磨和粗磨作业。
主要参照图5至图7,在一种可能的实施方式中,磨削组件31还包括复合轴,复合轴包括筒状结构的第一传动轴3131(轴套)和容纳于所述筒状结构内的第二传动轴3132,其中,轴套与精磨砂轮连接以便在轴套转动的情形下带动精磨砂轮连接,第二传动轴与粗磨砂轮连接以便在第二传动轴转动的情形下带动粗磨砂轮连接。
基于该复合轴,磨削组件实现其磨削作业的原理是:在需要对硅棒进行粗磨作业的情形下,使第二传动轴沿其轴向运动从而使得粗磨砂轮沿伸出精磨砂轮。并结合磨削组件沿横梁滑台的移动,便可使得粗磨砂轮到达磨削位,从而通过使第二传动轴转动带动粗磨砂轮转动。而在需要对硅棒进行精磨作业的情形下,通过第二传动轴的伸缩运动使得粗磨砂轮处于不干涉精磨砂轮的位置。基于此,结合磨削组件沿横梁滑台的移动,便可使得精磨砂轮到达磨削位,从而通过使第一传动轴转动带动粗磨砂轮转动。
参照前述的描述可知,其中的精磨作业的实现需要包含第一传动轴的转动、滑台相对横梁的横向滑动以及横梁固定座相对固定基座的竖向滑动。其中的粗磨作业的实现需要包含第二传动轴的伸缩运动、第二传动轴的转动、滑台相对横梁的横向滑动以及横梁固定座相对固定基座的竖向滑动。
在一种可能的实施方式中,第一传动轴和第二传动轴始终保持同步转动。相应地,磨削组件31包括第一驱动部件314,如第一驱动部件为驱动电机,通过第一驱动部件与第一传动轴和第二传动轴构成的复合轴同时驱动连接。
在一种可能的实施方式中,磨削组件31包括安装基体315,安装基体和第一转动轴的外壁之间形成安装空间,第一驱动部件容纳于该安装空间内并与第一传动轴的外壁直接驱动连接。可以看出,这样的电机内置的设置方式使得磨削组件的结构更为紧凑。
可以理解的是,本领域技术人员可以根据实际需求确定安装空间的具体构造方式、结构形式及其相对复合轴的位置,如可以靠近中部或者端部的位置等。此外,可以理解的是,可选地,也可以将第一驱动部件设置为外置的部件,如可以通过外置(如设置于复合轴尾端或者沿径向的侧部)的电机、气动马达或液压马达 等驱动复合轴实现其旋转运动。
在一种可能的实施方式中,磨削组件31包括第二驱动部件316,如第二驱动部件为驱动电机,通过第二驱动部件使得第二传动轴相对第一传动轴沿其轴向的伸缩运动。
在一种可能的实施方式中,磨削组件包括丝杠螺母副51,第二驱动部件的输出轴与丝杠螺母副的丝杠连接,第二传动轴上设置有旋转支撑部件,如旋转支撑部件可以为轴套、轴承、轴承箱等,在本示例中,旋转支撑部件为轴承箱52,轴承箱和丝杠螺母副的螺母之间设置有连接座53,连接座配置有直线导轨54。这样一来,第二驱动部件转动带动丝杠转动,伴随着与螺母固接的连接座在直线导轨内的滑动,与连接座和第二传动轴均固接的轴承箱将的带动第二传动轴在第一传动轴内的伸缩运动。
可以理解的是,除了前述的驱动电机和丝杠螺母副的配合,也可以采用如滑台气缸/电缸/液压缸等其他方式实现。此外,与伸缩部分相关的第二驱动部件可以设置于复合轴的任意位置,如可以是本示例中的径向外侧或者也可以设置于复合轴的尾端端等其他位置。
主要参照图7,在一种可能的实施方式中,安装基体315大致为一个壳状结构(如称作主轴体壳),除了用于与第一传动轴配合形成安装空间,也同时作为如第二驱动部件、丝杠螺母副、直线导轨以及连接座等结构的载体。
主要参照图8,在另一种可能的实施方式中,第二驱动部件316为电机,电机通过带轮机构55与复合轴的后端相连并因此带动第一传动轴3131和第二传动轴3132同步转动。基于此,主要为对应于粗磨砂轮312的第二传动轴配置一个可实现其伸缩的机构,便可实现粗磨作业和精磨作业的切换。具体而言,在需要对硅棒进行粗磨作业的情形下将其相对精磨砂轮311伸出,而在需要对硅棒进行精磨作业的情形下将其相对精磨砂轮缩回(预留空间)即可。
示例性地,实现粗磨作业和精磨作业的切换一种方式为:伸缩机构包括弹簧,第二传动轴在弹簧的预紧力的作用下处于相对精磨砂轮缩回的状态。这样一来,在需要对硅棒进行精磨作业的情形下,保持无外力施加的状态即可。而在需要对硅棒进行粗磨作业的情形下,通过向弹簧施加外力的方式从而使得与之相关联的粗磨砂轮伸出精磨砂轮。如可以通过动力缸、直线模组或者能够实现伸缩运动的驱动传动机构等外力机构对顶住轴承箱后端的压盖施加外力,从而使得弹簧在该外力的作用下发生形变并因此使得粗磨砂轮伸出。显然本领域技术人员可以根据实际需求采用其他合理的、同样可实现切换的结构或者机构等。
除了前述的电机与包含丝杠螺母副/带传动组合的传动方式,本领域技术人员还可以根据实际需求采用其他合理的驱动传动方式来实现第二传动轴的伸缩运动,如电机与齿轮齿条机构的组合、动力缸直接驱动、直线模组的直线驱动等。
此外,在本示例中,磨削组件在靠近粗磨砂轮和精磨砂轮的端部配置有喷水组件61、喷气组件62以及挡水毛刷63,其中,喷水组件61能够向粗磨砂轮或者精磨砂轮喷冷却水从而对粗磨砂轮或者精磨砂轮降温,喷气组件62能够向粗磨砂轮或者精磨砂轮吹出压缩空气从而将磨削后的硅棒表面的水渍吹干,如这样的操作便于探针在一组磨削作业完成后对硅棒进行准确的检测作业。挡水毛刷主要用于隔离在磨削作业的过程中产生的硅粉以及与前述的喷水/喷气组件相关的水汽。可以看出,安装基体315同样也是喷水组件61、喷气组件62和挡水毛刷63的载体。
在本实施例中,内侧的第二传动轴在远离粗磨砂轮的一端(尾端)具有始终伸出第一传动轴的伸出部分,伸出部分通过轴承箱(如变径轴承套)与连接座连接,这样一来,在保证伸缩运动得以可靠地实现的前提下,为第二传动轴提供了强大的磨削承载力。
这样一来,在磨削作业期间,第二传动轴的支撑力与磨削反力所形成的力偶由直线导轨承载,基于此,在能为第二传动轴的轴向伸缩运动提供精确的导向作用的同时,还减少了位于第二传动轴的尾端的轴承箱的承载力,因此保证了磨削精度、磨削可靠性,增加了磨削组件的使用寿命周期。
主要参照图5,在一种可能的实施方式中,在粗磨砂轮处于工作状态的情形下,粗磨砂轮的磨头伸出并凸出精磨砂轮外圆精磨面基准面第一轴向距离X,如理论上X等于粗磨砂轮的磨头厚度即可。优选地,第一轴向距离X为粗磨砂轮的磨头厚度加0.1-5mm(如1mm)。如通常情形下,第一轴向距离X取值范围为3-25mm。
主要参照图6,在一种可能的实施方式中,在精磨砂轮处于工作状态的情形下,粗磨砂轮的磨头缩回并与精磨砂轮外圆精磨面基准面之间形成第二轴向距离Y,与前述的X类似,如理论上Y等于精磨砂轮的磨头厚度即可。优选地,第二轴向距离Y为精磨砂轮的磨头厚度加0.1-5mm(如1mm)。如通常情形下,第二轴向距离Y的取值范围为3-25mm。
在一种具体的实施方式中,精磨砂轮的外径尺寸为335mm,精磨砂轮的内径尺寸为285mm。粗磨砂轮的外径尺寸为280mm,粗磨砂轮的内径尺寸为248mm。显然,精/粗磨砂轮的外/内径尺寸可以根据实际需求(如硅棒的宽度等)灵活地调整。不过,外圈的精磨砂轮的外径尺寸通常应当不小于100mm。粗磨砂轮的伸缩行程为18mm,第一轴向距离X为8mm,第二轴向距离Y等于精磨砂轮的磨头 厚度。主要参照图9,在一种可能的实施方式中,检测组件包括探针壳体321以及探针安装板322,探针安装板上设置有三个探针323,壳体内设置有滑台气缸324,滑台气缸与探针安装板驱动连接。在本示例中,气缸设置于壳体的底部外侧或者底部内侧。这样一来,在滑台气缸的作用下,探针安装板能够伸出壳体,安装于探针安装板上的三个探针此时便可靠近硅棒并因此检测硅棒的位置和姿态。
显然,滑台气缸只是实现探针伸缩的其中一种驱动方式,本领域技术人员可以根据实际需求灵活地选用合适的驱动机构,如可以用电缸、液压缸代替气缸,或者通过驱动电机和丝杠螺母副的组合来实现等。用于检测硅棒的部件除了采用与硅棒直接接触的探针外,还可以采用激光测距传感器、光栅尺等实现。
基于上述结构,本发明的磨床的工作过程大致为:
上料装置完成对硅棒的位姿调整后,进给滑台装置1根据对中组件测得的硅棒2的长度到达预定的位置后,动夹头相对于滑台组件沿进给方向运动,从而通过定夹头和动夹头之间的配合将硅棒夹紧。之后,进给滑台装置沿进给方向运动,将硅棒运送到磨削区域,进给滑台装置使硅棒按照程序的设定沿进给方向运动以及对硅棒进行旋转,并通过磨削装置完成相应的磨削作业。完成磨削后,进给滑台装置返回至上料装置的下料区,此时(定、动)夹头松开硅棒,使硅棒落至与下料区对应的下料平台,完成下料。
磨削作业前,磨削装置3中的检测组件32会对硅棒2的位置和姿态进行检测。具体地,当硅棒2来到第一个检测位置后停止运动,检测组件中的滑台气缸推动探针安装板向右运动,从而使得设置于探针安装板上的三个探针沿磨削进给方向运动,此时三个探针的探头位置会超前于磨削组件31中的粗磨砂轮和精磨砂轮。然后,磨削组件31和检测组件32在滑台驱动部件42的驱动下沿横梁滑台4继续运动,直到探针与硅棒接触并完成检测(打点未磨削)。伴随着硅棒沿进给方向的运动,探针如可以依次对硅棒的入刀口位置、沿棒长的中间位置以及硅棒的出刀口位置进行检测。
通过检测组件的检测结果,确定出是否对硅棒2进行磨削加工。具体而言,若硅棒的最大磨削尺寸小于磨削后的标准尺寸,则判定棒料尺寸不合格,无法磨削,如此时需要退棒,即将硅棒退回下料平台,之后进行不同程度的人工介入。在硅棒合格的前提下,则通过探针组对硅的三个位置的测量可以测得(定、动)夹头的轴线和硅棒的轴线之间的位置偏差和角度偏差,通过对偏差进行调整后重新检测,检测完毕后,可以开始磨削。检测过程中,可以计算出粗磨砂轮312的磨削量,根据磨削量,粗磨砂轮在第二驱动部件的驱动下伸出精磨砂轮311,以及在滑台驱动 部件42的驱动下前进一定距离,并通过第一驱动部件驱动复合轴转动从而带动粗磨砂轮转动并进行与磨削量对应的粗磨作业。粗磨结束后,可以通过第二驱动部件使粗磨砂轮缩回精磨砂轮中部形成的预留空间内。之后,检测组件重复之前的检测过程,计算出精磨砂轮311的磨削量,根据磨削量,精磨砂轮同样在滑台驱动部件42的驱动下前进一定距离,并通过第一驱动部件驱动复合轴转动从而带动精磨砂轮转动并进行与磨削量对应的精磨作业。
可以看出,在本发明的磨床中,通过将精磨砂轮和粗磨砂轮进行整合,使得基于磨床的同一个工位便可同时实现对硅棒的粗磨作业和精磨作业。通过复合轴的设置,保证了粗磨作业和精磨作业均能够无干涉地可靠实现。并且,由于粗磨砂轮和精磨砂轮产生相对滑动时,活动件为粗磨砂轮,因此能够保证精磨砂轮的精度完全不受影响。以及,通过将第一驱动部件设置于由安装基体和第一传动轴形成的安装空间内部,使得磨削组件更为紧凑。此外,在本发明中,第二驱动部件通过丝杠螺母副-连接座-轴承箱使得第二传动轴实现其相对于第一传动轴的伸缩运动,传动可靠且结构较为紧凑。
基于上述磨床的结构,下面来描述磨床的控制方法。
主要参照图10,图10示出本发明一种实施例的磨床的控制方法的流程示意图。如图10所示,在一种可能的实施方式中,本发明的控制方法主要包括如下步骤:
S1001、在对硅棒进行磨削作业之前,使滑台气缸运行,使单个探针伸出探针壳体接近硅棒,以及通过横梁沿固定基座的滑动使得探针到达硅棒的不同位置,以保证探针完成对硅棒的位置和姿态的检测。
在检测完毕后,使探针缩回至不干涉磨削作业的位置即可。可以理解的是,也可包含通过滑台沿横梁的滑动实现磨削组件与检测组件的同步接近/远离硅棒。
S1003、在硅棒的位置和姿态符合对其进行磨削作业的情形下,使第二驱动部件运行,通过丝杠螺母副的动力传动以及连接座在直线导轨中的滑动引导,使第二传动轴向右移动,从而使得粗磨砂轮向右伸出至对应于其处于工作状态的位置。
S905、使内置的第一驱动部件运行带动第二传动轴转动从而使得粗磨砂轮对硅棒进行相应的磨削量的粗磨作业。
可以理解的是,可以通过横梁沿固定基座的滑动使得粗磨砂轮到达硅棒的不同位置,从而保证粗磨砂轮能够对硅棒的不同位置进行相应的粗磨作业。
S1007、在对硅棒进行粗磨之后,再次使第二驱动部件运行通过过丝杠螺母副的动力传动以及连接座在直线导轨中的滑动引导,使第二传动轴向左移动,从而使得粗磨砂轮向左缩回至能够保证精磨砂轮处于工作状态的位置。
S1009、使内置的第一驱动部件运行带动第一传动轴转动从而使得精磨砂轮对硅棒进行相应的磨削量的精磨作业。
可以理解的是,与粗磨砂轮类似,可以通过横梁沿固定基座的滑动使得精磨砂轮到达硅棒的不同位置,从而保证精磨砂轮能够对硅棒的不同位置进行相应的粗磨作业。
在此基础上,通过使定/动夹头旋转电机运行从而使硅棒从一组磨削面转动至另一组磨削面。基于此,便可通过同一个工位集成的粗/精磨砂轮,完成对硅棒的磨削作业。
需要指出的是,尽管上述实施例中将各个步骤按照特定的先后顺序进行了描述,但是本领域技术人员可以理解,为了实现本发明的效果,不同的步骤之间并非必须按照这样的顺序执行,其可以同时执行或以其他顺序执行,也可以增加、替换或者省略某些步骤。
需要说明的是,尽管以上述具体方式所构成的磨床的控制方法作为示例进行了介绍,但本领域技术人员能够理解,本发明应不限于此。事实上,用户完全可根据以及实际应用场景等情形灵活地调整相关的步骤以及步骤中的参数等要素。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (20)

  1. 一种磨床,包括磨削组件,其特征在于,所述磨削组件包括:
    粗磨砂轮;以及精磨砂轮;
    其中,所述精磨砂轮和所述粗磨砂轮中的其中一个形成有沿其轴向分布的预留空间,所述精磨砂轮和所述粗磨砂轮中的另一个的至少一部分能够容纳于所述预留空间,以便:
    在所述精磨砂轮和所述粗磨砂轮中的一个处于工作状态的情形下,所述精磨砂轮和所述粗磨砂轮中的另一个的靠近待加工件的端部容纳于所述预留空间并因此不干涉处于工作状态的磨削作业。
  2. 根据权利要求1所述的磨床,其特征在于,所述磨床还包括:
    固定基座;横梁滑台组件,其包括:横梁,其能够相对所述固定基座滑动;以及滑台,其能够相对所述横梁滑动;其中,所述磨削组件固定设置于所述滑台。
  3. 根据权利要求1所述的磨床,其特征在于,所述磨削组件包括:
    第一驱动部件,其能够驱动所述精磨砂轮和/或所述粗磨砂轮转动以进行相应的磨削作业;以及第二驱动部件,其能够驱动所述精磨砂轮和所述粗磨砂轮中的另一个靠近待加工件的端部容纳于所述预留空间。
  4. 根据权利要求3所述的磨床,其特征在于,所述磨削组件包括复合轴,所述复合轴包括:第一传动轴,其为筒状结构,所述筒状结构与位于径向外侧的所述精磨砂轮或者所述粗磨砂轮连接;以及第二传动轴,其至少一部分容纳于所述筒状结构内,所述第二传动轴与位于径向内侧的所述精磨砂轮或者所述粗磨砂轮连接;所述第二驱动部件与所述第二传动轴驱动连接,以便:
    通过所述第二驱动部件驱动所述第二传动轴沿其轴向移动从而带动位于径向内侧的所述粗磨砂轮或者所述精磨砂轮在工作状态和非工作状态之间切换。
  5. 根据权利要求4所述的磨床,其特征在于,所述第二驱动部件设置于所述第二传动轴的周向外侧。
  6. 根据权利要求1所述的磨床,其特征在于,所述磨削组件还包括:
    第一驱动部件,其能够驱动所述精磨砂轮和/或所述粗磨砂轮转动以进行相应的磨削作业;并且所述第一驱动部件的至少一部分以不暴露于环境的方式设置于形成所述磨削组件。
  7. 根据权利要求6所述的磨床,其特征在于,所述磨削组件包括安装基体,所 述安装基体形成或者形成有安装空间,所述第一驱动部件的至少一部分容纳于所述安装空间。
  8. 根据权利要求7所述的磨床,其特征在于,所述磨削组件包括第二驱动部件,所述第二驱动部件能够与所述第二传动轴驱动连接,以便:
    通过所述第二驱动部件驱动所述第二传动轴沿其轴向移动从而带动位于径向内侧的所述粗磨砂轮或者所述精磨砂轮在工作状态和非工作状态之间切换。
  9. 根据权利要求8所述的磨削组件,其特征在于,所述第二驱动部件以带传动的方式与所述第二传动轴驱动连接。
  10. 根据权利要求1所述的磨床,其特征在于,所述磨削组件还包括:
    检测组件,其配置于磨削组件,并且所述检测组件能够与所述磨削组件同步向靠近/远离待加工件的方向移动;以及所述检测组件能够相对所述磨削组件向靠近/远离待加工件的方向移动。
  11. 根据权利要求10所述的磨床,其特征在于,所述检测组件包括:
    探针安装板,其上设置有多个探针;第三驱动部件,其能够驱动所述探针安装板及其上的多个探针相对所述磨削组件向靠近/远离待加工件的方向移动。
  12. 根据权利要求11所述的磨床,其特征在于,所述第三驱动部件为滑台气缸,所述检测组件包括探针壳体,所述滑台气缸设置于所述探针壳体,所述探针安装板以可以沿靠近/远离待加工件的方向伸缩的方式设置于所述探针壳体。
  13. 根据权利要求1至12中任一项所述的磨床,其特征在于,所述精磨砂轮形成有沿其轴向分布的预留空间,所述粗磨砂轮的至少一部分能够容纳于所述预留空间,以便:
    在所述粗磨砂轮处于工作状态的情形下,所述粗磨砂轮能够以靠近待加工件的方式对待加工件进行磨削作业,并且所述精磨砂轮靠近待加工件的端部容纳于所述预留空间并因此不干涉所述粗磨砂轮的磨削作业。
  14. 根据权利要求13所述的磨削组件,其特征在于,所述磨削组件在对应于所述预留空间的位置配置有或者形成有引导结构,所述精磨砂轮能够在所述引导结构的引导作用下在工作状态和非工作状态之间切换。
  15. 一种磨床的控制方法,其特征在于,所述磨床包括固定基座、横梁滑台组件和磨削组件,其中,所述精磨砂轮和所述粗磨砂轮中的其中一个形成有沿其轴向分布的预留空间,所述精磨砂轮和所述粗磨砂轮中的另一个的至少一部分能够容纳于所述预留空间,所述控制方法包括:
    使所述横梁滑台组件的横梁相对所述固定基座滑动,以使得所述磨削组件沿待 加工件的轴向运动;并且/或者
    使所述滑台相对所述横梁滑动,以使得固定设置于所述滑台的所述磨削组件以靠近/远离待加工件的方式运动;并且/或者
    使所述精磨砂轮和/或所述粗磨砂轮转动,以使得处于工作状态的精磨砂轮或者所述粗磨砂轮能够进行相应的磨削作业;并且/或者
    使至少一部分容纳于所述预留空间的所述精磨砂轮或者所述粗磨砂轮以靠近/远离待加工件的方式运动,以便:
    使所述精磨砂轮和所述粗磨砂轮中的一个处于工作状态,并且
    在所述精磨砂轮和所述粗磨砂轮中的一个处于工作状态的情形下,所述精磨砂轮和所述粗磨砂轮中的另一个不干涉其磨削作业。
  16. 根据权利要求15所述的控制方法,其特征在于,所述磨削组件包括复合轴,所述复合轴包括:第一传动轴,其为筒状结构,所述筒状结构与位于径向外侧的所述精磨砂轮或者所述粗磨砂轮连接;以及第二传动轴,其至少一部分容纳于所述筒状结构内,所述第二传动轴与位于径向内侧的所述精磨砂轮或者所述粗磨砂轮连接,所述的“使至少一部分容纳于所述预留空间的所述精磨砂轮或者所述粗磨砂轮以靠近/远离待加工件的方式运动”包括:
    使所述第二传动轴沿所述筒状结构的轴向运动,从而带动与连接的、至少一部分容纳于所述精磨砂轮或者所述粗磨砂轮以靠近/远离待加工件的方式运动。
  17. 根据权利要求16所述的控制方法,其特征在于,所述磨削组件包括第一驱动部件和第二驱动部件,其中,所述的“使所述精磨砂轮和/或所述粗磨砂轮转动,以使得处于工作状态的精磨砂轮或者所述粗磨砂轮能够进行相应的磨削作业”包括:
    使所述第一驱动部件运行,从而:
    通过所述第一驱动部件驱动所述精磨砂轮和/或所述粗磨砂轮转动以进行相应的磨削作业;以及
    所述的“使所述第二传动轴沿所述筒状结构的轴向运动,从而带动与连接的、至少一部分容纳于所述精磨砂轮或者所述粗磨砂轮以靠近/远离待加工件的方式运动”包括:
    使所述第二驱动部件运行,从而:
    通过所述第二驱动部件驱动所述第二传动轴沿其轴向移动从而带动位于径向内侧的所述粗磨砂轮或者所述精磨砂轮在工作状态和非工作状态之间切换。
  18. 根据权利要求17所述的控制方法,其特征在于,所述的“使所述第一驱动部件运行,从而:通过所述第一驱动部件驱动所述精磨砂轮和/或所述粗磨砂轮转动 以进行相应的磨削作业”包括:
    使所述第一驱动部件运行,从而驱动所述第一传动轴和所述第二传动轴同步转动。
  19. 根据权利要求17所述的控制方法,其特征在于,所述第二传动轴配置有旋转支撑部件,所述第二驱动部件通过丝杠螺母副与所述旋转支撑部件连接,所述的“使所述第二驱动部件运行,从而:通过所述第二驱动部件驱动所述第二传动轴沿其轴向移动从而带动位于径向内侧的所述粗磨砂轮或者所述精磨砂轮在工作状态和非工作状态之间切换”包括:
    使所述第二驱动部件的动力输出端驱动所述丝杠螺母副的丝杠旋转,并且通过所述丝杠螺母副中的丝杠与螺母之间的配合关系使得螺母带动旋转支撑部件以及所述第二传动轴其轴向移动从而带动位于径向内侧的所述粗磨砂轮或者所述精磨砂轮在工作状态和非工作状态之间切换。
  20. 根据权利要求15所述的控制方法,其特征在于,所述磨床包括检测组件,所述控制方法包括:
    使所述检测组件中探针相对所述磨削组件向靠近/远离待加工件的方向移动;或者使所述检测组件和所述磨削组件借助于所述滑台沿所述横梁的滑动和/或所述横梁沿所述固定基座的滑动同步运动。
PCT/CN2023/116978 2022-09-30 2023-09-05 磨床及其控制方法 WO2024066957A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202222614934.7U CN218639216U (zh) 2022-09-30 2022-09-30 磨床
CN202222614285.0U CN218658138U (zh) 2022-09-30 2022-09-30 磨削装置以及包含该磨削装置的磨床
CN202222614230.X 2022-09-30
CN202222614285.0 2022-09-30
CN202222614230.XU CN218639314U (zh) 2022-09-30 2022-09-30 磨削组件以及包含该磨削组件的磨床
CN202211215765.8A CN115922449A (zh) 2022-09-30 2022-09-30 磨床及其控制方法及系统、设备、计算机可读存储介质
CN202211215765.8 2022-09-30
CN202222614939.X 2022-09-30
CN202222614931.3U CN218658298U (zh) 2022-09-30 2022-09-30 磨削组件以及包含该磨削组件的磨床
CN202222614934.7 2022-09-30
CN202222614931.3 2022-09-30
CN202222614939.XU CN218639283U (zh) 2022-09-30 2022-09-30 磨削组件以及包含该磨削组件的磨床

Publications (1)

Publication Number Publication Date
WO2024066957A1 true WO2024066957A1 (zh) 2024-04-04

Family

ID=90475985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116978 WO2024066957A1 (zh) 2022-09-30 2023-09-05 磨床及其控制方法

Country Status (1)

Country Link
WO (1) WO2024066957A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362650A (ja) * 1986-08-29 1988-03-18 Disco Abrasive Syst Ltd 研摩機
CN110154256A (zh) * 2019-07-03 2019-08-23 青岛高测科技股份有限公司 一种切方切棱磨抛一体机
CN210968406U (zh) * 2019-09-17 2020-07-10 青岛高测科技股份有限公司 一种用于晶硅粗磨精磨一体机的磨削主轴
CN113858000A (zh) * 2021-10-14 2021-12-31 福州天瑞线锯科技有限公司 一种单驱动复合磨削机构
CN113878448A (zh) * 2021-10-14 2022-01-04 福州天瑞线锯科技有限公司 一种多工位立式磨削机
CN218639283U (zh) * 2022-09-30 2023-03-17 青岛高测科技股份有限公司 磨削组件以及包含该磨削组件的磨床
CN218639314U (zh) * 2022-09-30 2023-03-17 青岛高测科技股份有限公司 磨削组件以及包含该磨削组件的磨床
CN218639216U (zh) * 2022-09-30 2023-03-17 青岛高测科技股份有限公司 磨床
CN218658298U (zh) * 2022-09-30 2023-03-21 青岛高测科技股份有限公司 磨削组件以及包含该磨削组件的磨床
CN218658138U (zh) * 2022-09-30 2023-03-21 青岛高测科技股份有限公司 磨削装置以及包含该磨削装置的磨床
CN115922449A (zh) * 2022-09-30 2023-04-07 青岛高测科技股份有限公司 磨床及其控制方法及系统、设备、计算机可读存储介质
CN219767778U (zh) * 2023-03-31 2023-09-29 青岛高测科技股份有限公司 磨削装置以及包含该磨削装置的磨床
CN219767777U (zh) * 2023-03-31 2023-09-29 青岛高测科技股份有限公司 磨削装置以及包含该磨削装置的磨床

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362650A (ja) * 1986-08-29 1988-03-18 Disco Abrasive Syst Ltd 研摩機
CN110154256A (zh) * 2019-07-03 2019-08-23 青岛高测科技股份有限公司 一种切方切棱磨抛一体机
CN210968406U (zh) * 2019-09-17 2020-07-10 青岛高测科技股份有限公司 一种用于晶硅粗磨精磨一体机的磨削主轴
CN113858000A (zh) * 2021-10-14 2021-12-31 福州天瑞线锯科技有限公司 一种单驱动复合磨削机构
CN113878448A (zh) * 2021-10-14 2022-01-04 福州天瑞线锯科技有限公司 一种多工位立式磨削机
CN218639283U (zh) * 2022-09-30 2023-03-17 青岛高测科技股份有限公司 磨削组件以及包含该磨削组件的磨床
CN218639314U (zh) * 2022-09-30 2023-03-17 青岛高测科技股份有限公司 磨削组件以及包含该磨削组件的磨床
CN218639216U (zh) * 2022-09-30 2023-03-17 青岛高测科技股份有限公司 磨床
CN218658298U (zh) * 2022-09-30 2023-03-21 青岛高测科技股份有限公司 磨削组件以及包含该磨削组件的磨床
CN218658138U (zh) * 2022-09-30 2023-03-21 青岛高测科技股份有限公司 磨削装置以及包含该磨削装置的磨床
CN115922449A (zh) * 2022-09-30 2023-04-07 青岛高测科技股份有限公司 磨床及其控制方法及系统、设备、计算机可读存储介质
CN219767778U (zh) * 2023-03-31 2023-09-29 青岛高测科技股份有限公司 磨削装置以及包含该磨削装置的磨床
CN219767777U (zh) * 2023-03-31 2023-09-29 青岛高测科技股份有限公司 磨削装置以及包含该磨削装置的磨床

Similar Documents

Publication Publication Date Title
CN218639314U (zh) 磨削组件以及包含该磨削组件的磨床
US7690967B2 (en) Mounting structure for measuring device and grinding machine with the structure
CN218639216U (zh) 磨床
CN109475991B (zh) 用于加工工件的机器
CN219767777U (zh) 磨削装置以及包含该磨削装置的磨床
CN213970498U (zh) 硅棒研磨机
CN218639221U (zh) 对中组件以及包括该对中组件的磨床
CN218639363U (zh) 夹持组件以及包括该夹持组件的磨床
CN218639349U (zh) 上料装置以及包括该上料装置的磨床
US9630336B2 (en) Portable power tool
CN218658138U (zh) 磨削装置以及包含该磨削装置的磨床
CN218658298U (zh) 磨削组件以及包含该磨削组件的磨床
WO2024066957A1 (zh) 磨床及其控制方法
CN218639283U (zh) 磨削组件以及包含该磨削组件的磨床
CN219767778U (zh) 磨削装置以及包含该磨削装置的磨床
CN115922449A (zh) 磨床及其控制方法及系统、设备、计算机可读存储介质
JP2019042901A (ja) 加工装置及びそれを用いた加工方法
JP6657905B2 (ja) テーブルトラバース型研削盤
CN115502795B (zh) 上料装置、磨床的上料控制方法及系统、设备、介质
US20230201941A1 (en) Wire Electrical Discharge Machine
JP6927779B2 (ja) 加工装置及びそれを用いた加工方法
CN219767744U (zh) 可调节的夹持组件以及包括该夹持组件的磨床
CN218639374U (zh) 磨床及其检测组件
CN114102376A (zh) 硅棒研磨机及硅棒研磨方法
CN219633384U (zh) 上料台组件以及包括该上料台组件的磨床

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870197

Country of ref document: EP

Kind code of ref document: A1