WO2024066873A1 - 一种耐穿刺的柔性纳米复合材料及其制备方法 - Google Patents

一种耐穿刺的柔性纳米复合材料及其制备方法 Download PDF

Info

Publication number
WO2024066873A1
WO2024066873A1 PCT/CN2023/115675 CN2023115675W WO2024066873A1 WO 2024066873 A1 WO2024066873 A1 WO 2024066873A1 CN 2023115675 W CN2023115675 W CN 2023115675W WO 2024066873 A1 WO2024066873 A1 WO 2024066873A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
matrix
resistant flexible
nanocomposite material
material according
Prior art date
Application number
PCT/CN2023/115675
Other languages
English (en)
French (fr)
Inventor
张赶年
石正兵
Original Assignee
中山莱圃新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山莱圃新材料有限公司 filed Critical 中山莱圃新材料有限公司
Publication of WO2024066873A1 publication Critical patent/WO2024066873A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers

Definitions

  • the invention relates to a puncture-resistant flexible nano composite material and a preparation method thereof.
  • Hypodermic needles are a common medical tool for delivering drugs or blood into the body. This type of needle is not only sharp but also has a very small diameter (about 400-700 ⁇ m), which can easily penetrate the skin and insert into the subcutaneous tissue to cause infection. Therefore, gloves that can protect against hypodermic needles are very important for the health and safety of medical staff.
  • Existing stab-proof and cut-proof gloves are generally made of knitted fabrics of polyethylene, glass fiber, carbon fiber, and aramid, with millimeter or even centimeter-level pores, and injection needles can penetrate directly through the pores without touching the knitted fabric.
  • Other materials such as hard ceramics, glass, metal sheets, etc.
  • materials with stab-proof and cut-proof functions are not necessarily resistant to injection needles.
  • Stab-proof generally refers to the ability to prevent puncture by cones with a diameter of 1-5mm in the EN388-2016 standard, while the diameter of an injection needle is generally 400-700 ⁇ m, which is much smaller than the cone in the EN388-2016 standard; cut-proof generally refers to preventing the material from being cut when the blade is parallel to the surface of the material. It is a different principle from injection needle puncture, so they should not be confused.
  • High-density plain woven fabrics are made by weaving and calendering ultra-fine aramid yarns ( ⁇ 200D).
  • the porosity between the yarns of this fabric is extremely low, and the injection needle is likely to contact the yarn when piercing, thus achieving a certain anti-needle puncture effect.
  • Dense hexagonal ceramic particles are adhered to the nylon non-woven fabric. When the needle is inserted, it is likely to pierce the ceramic particles, thereby achieving a certain anti-needle effect.
  • the anti-needle ability of a single layer is not strong, and a better anti-needle effect can only be achieved by stacking multiple layers.
  • the multi-layer stacked material loses its flexibility and cannot meet the requirements of medical staff for fine hand operations when working. Therefore, it is necessary to invent a material that has high needle puncture resistance in a single layer and excellent flexibility to meet the relevant needs of medical staff.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a puncture-resistant flexible nanocomposite material that can effectively prevent injection needle punctures.
  • Another object of the present invention is to provide a method for preparing the composite material.
  • a puncture-resistant flexible nano-composite material is characterized in that it is made of a weft-knitted matrix and a composite shear thickening fluid, and the compactness of the matrix is 14-49.5.
  • the compactness of the substrate of the present invention is 14 to 23.
  • the compactness of the weft knitted fabric, namely the underfill coefficient, is usually expressed by the ratio of the coil length of the weft knitted fabric to the yarn diameter.
  • the material of the substrate in the present invention is ultra-high molecular weight polyethylene, the yarn count is 200D-600D, the transverse density of the substrate is 18-30 wales/inch, and the longitudinal density is 30-43 wales/inch.
  • the yarn count is 300D-590D, the transverse density of the substrate is 23-30 wales/inch, and the longitudinal density is 30-40 wales/inch.
  • the content of the shear thickening fluid in the composite material is 7-111 wt %, preferably 10-65 wt %.
  • the shear thickening fluid in the present invention is composed of nanoparticles and solvent, and the concentration is 0.5-0.55, preferably 0.52-0.55.
  • the nanoparticles in the present invention are nano silicon dioxide balls, and the solvent is polyethylene glycol with a relative molecular mass of 200.
  • the substrate After the shear thickening fluid is diluted and mixed with a volatile diluent solvent at a certain mass ratio, the substrate is immersed in the fluid to fully wet it, and then the excess liquid is squeezed out and dried to obtain a flexible nano-composite material.
  • the dilution solvent is 95% ethanol aqueous solution, which is diluted and mixed at a mass ratio of 1:1.
  • the soaked substrate is passed through a pressure roller to remove excess liquid, and the pressure between the rollers is 0.1-0.4MPa.
  • the present invention has the following advantages:
  • the composite material of the present invention can effectively resist needle puncture, has good flexibility, does not affect the fine operation of the user's hands, and a single layer of material can achieve an ideal needle puncture resistance effect.
  • the preparation process of the invention is simple and can be mass-produced. Green solvents and materials are used in the preparation process and are non-toxic.
  • a puncture-resistant flexible nanocomposite material is prepared by compounding a shear thickening fluid with a weft knitted fabric matrix having a density of 14 to 49.5, wherein the matrix is made of ultra-high molecular weight polyethylene, the yarn count is 200D-600D, the transverse density of the matrix is 18-30 wales/inch, the longitudinal density is 30-43 wales/inch, the concentration of the shear thickening fluid is 0.5-0.55, and the preparation method of the composite material is as follows:
  • the shear thickening fluid was diluted and mixed with a 95% ethanol aqueous solution at a mass ratio of 1:1, a substrate was immersed in the diluted shear thickening fluid so that the substrate was fully wetted by the fluid, and then excess liquid was squeezed out, and the ethanol aqueous solution was evaporated in an oven to obtain a flexible nanocomposite material.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Monodisperse silica spheres with a particle size of 520 nm ⁇ 55 nm were dispersed in polyethylene glycol with a relative molecular mass of 200 to prepare a shear thickening fluid with a silica sphere volume fraction of 0.52.
  • the shear thickening fluid was mixed with an ethanol aqueous solution (the mass ratio of ethanol to water was 95:5) at a mass ratio of 1:1, and vortexed for 5 h to obtain a uniform, milky white diluted shear thickening fluid.
  • a 400D, 24x38 strands/inch, 350g/ m2 high molecular weight polyethylene (UHMWPE) weft knitted fabric was immersed in a diluted fluid for at least 1 min. After the fabric was fully wetted by the fluid, excess liquid was removed by a rubber pressure roller at a roller pressure of 0.2 MPa. The fabric after the roller was placed in an oven and dried at 105°C for 15 min to evaporate the ethanol aqueous solution, thereby obtaining a flexible nano-composite material containing a shear thickening fluid.
  • UHMWPE high molecular weight polyethylene
  • Aramid plain woven fabric, warp and weft yarn density is 90*90 strands/inch, yarn is 200D.
  • the non-woven fabric is composed of nylon non-woven fabric and hexagonal ceramic particles.
  • the ceramic particles and the non-woven fabric are bonded by polyurethane glue.
  • 3M cut-resistant gloves are made of a mixture of glass fiber, high molecular weight polyethylene filament and carbon fiber, and the surface is coated with a layer of nitrile rubber resin about 2 mm thick.
  • Example 1 and Comparative Examples 1-4 The hypodermic needle puncture resistance of Example 1 and Comparative Examples 1-4 was tested on a universal material testing machine according to the standard ASTM F2878-2010.
  • the flexible nanocomposite material containing the shear thickening fluid was cut into 5cm x 5cm samples and clamped on the sample table of the universal material testing machine.
  • a 25G hypodermic needle was connected to a sensor with a range of 100N and an accuracy of 0.001N, and inserted perpendicularly to the sample plane at a constant speed of 500mm/min at 90°.
  • the sensor can sense the change in force during the needle insertion process and output the relationship curve between force and needle displacement on the computer.
  • the maximum force of the curve was recorded, and this value was determined to be the force required for the needle to completely penetrate the material.
  • the test results are shown in Table 1.
  • the composite shear thickening fluid can increase the anti-needle performance of the single-layer UHMWPE weft knitted fabric from 0.697N to 3.220N, which is 4.6 times higher. From the test results of Example 1 and Comparative Examples 2-4, it can be concluded that the anti-needle capability of the flexible nanocomposite material is at least 14% higher than that of the materials used in existing protective gloves, achieving a better anti-needle effect.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a UHMWPE weft knitted fabric with a specification of 590D, a density of 24x30 strands/inch, and a gram weight of 520 g/ m2 was treated according to the method of Example 1 to obtain a flexible nano-composite material.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a UHMWPE weft knitted fabric with a specification of 400D, a density of 23x36 strands/inch, and a gram weight of 430 g/ m2 was treated according to the method of Example 1 to obtain a flexible nano-composite material.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a UHMWPE weft knitted fabric with a specification of 300D, a density of 29x36 strands/inch, and a grammage of 550 g/ m2 was treated according to the method of Example 1 to obtain a flexible nano-composite material.
  • a UHMWPE weft knitted fabric with a specification of 400D, a density of 18x38 strands/inch, and a gram weight of 450 g/ m2 was selected, and treated according to the method of Example 1 to obtain a flexible nano-composite material.
  • a UHMWPE weft knitted fabric with a specification of 300D, a density of 23x36 strands/inch, and a gram weight of 450 g/m 2 was selected, and treated according to the method of Example 1 to obtain a flexible nano-composite material.
  • a UHMWPE weft knitted fabric with a specification of 200D, a density of 23x43 strands/inch, and a gram weight of 410 g/m 2 was selected, and treated according to the method of Example 1 to obtain a flexible nano-composite material.
  • the tightness (i.e., underfill coefficient) is usually expressed as the ratio of the coil length of the weft knitted fabric to the yarn diameter.
  • Weft knitted fabrics of different tightness were selected, and the tightness of the selected weft knitted fabrics obtained by measurement and calculation is shown in Table 2.
  • the anti-injection needle capabilities of Examples 1-4 and Comparative Examples 2, 5, 6, and 7 were tested according to the method of ASTM F2878-2010, and the results are shown in Table 2.
  • test data of Examples 1-4 and Comparative Examples 5-7 show that the injection needle puncture resistance of UHMWPE weft knitted fabrics of different specifications is greatly improved after being compounded with a shear thickening fluid, and the increase is basically more than 1 times.
  • test data of Examples 1-4 and Comparative Example 2 show that when the tightness of the fabric is between 14 and 23, the anti-needle capability of the flexible nanocomposite material compounded with the shear thickening fluid is higher than that of the existing anti-needle material on the market ( Aramid plain woven fabric).
  • the test data of Comparative Examples 2 and 5-7 show that if the tightness of the fabric reaches 30-50, although the composite shear thickening fluid can greatly increase the needle puncture resistance of the fabric, the needle puncture resistance of the composite material cannot reach the same level as the existing Quite the effect.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • a weft knitted fabric made of high molecular weight polyethylene filaments with a density of 400D and a density of 14.83 was selected and rolled according to the method of Example 1 with a roller pressure of 0.4 MPa to prepare a flexible nano-composite material.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the method and substrate were the same as those in Example 5, and the pressure between the rollers during rolling was 0.35 MPa to prepare a flexible nanocomposite material.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the method and substrate were the same as those in Example 5, and the pressure between the rollers during rolling was 0.30 MPa to prepare a flexible nanocomposite material.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the method and substrate were the same as those in Example 5, and the pressure between the rollers during rolling was 0.20 MPa to prepare a flexible nanocomposite material.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • the method and substrate were the same as those in Example 5, and the pressure between the rollers during rolling was 0.15 MPa to prepare a flexible nanocomposite material.
  • Embodiment 10 is a diagrammatic representation of Embodiment 10:
  • the method and substrate were the same as those in Example 5, and the pressure between the rollers during rolling was 0.10 MPa to prepare a flexible nanocomposite material.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the method and substrate are the same as those in Example 5. After the knitted fabric is impregnated with the diluted shear thickening fluid, it is directly dried without being rolled to prepare a flexible nanocomposite material.
  • the fluid content of the flexible nanocomposite materials prepared in Examples 5-11 is shown in Table 3.
  • the needle head protection ability of the flexible nanocomposite materials was measured according to the ASTM F2878-2010 method, and the results are shown in Table 3.
  • the composite material's resistance to needle puncture decreases slightly from 4.004N to 3.634N, maintaining a higher anti-needle ability than existing materials. It also shows that the higher the fluid content, the higher the resistance to needle puncture, but there is a certain optimal range.
  • the needle head protection ability of the same knitted fabric with the same fluid content and different fluid concentrations is the same.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • a shear thickening fluid with a volume fraction (concentration) of 0.48 was prepared in the same manner as in Example 1, and a flexible nanocomposite material was prepared in the same manner as in Example 1 after dilution.
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • a shear thickening fluid with a volume fraction (concentration) of 0.50 was prepared in the same manner as in Example 1, and a flexible nanocomposite material was prepared in the same manner as in Example 1 after dilution.
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • a shear thickening fluid with a volume fraction (concentration) of 0.54 was prepared in the same manner as in Example 1, and a flexible nanocomposite material was prepared in the same manner as in Example 1 after dilution.
  • Embodiment 15 is a diagrammatic representation of Embodiment 15:
  • a shear thickening fluid with a volume fraction (concentration) of 0.55 was prepared in the same manner as in Example 1, and a flexible nanocomposite material was prepared in the same manner as in Example 1 after dilution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种耐穿刺的柔性纳米复合材料及其制备方法,该复材采用纬编针织基体复合剪切增稠流体而成,所述基体的紧密程度为14~49.5,基体的材质为超高分子量聚乙烯,纱支为200D-600D,所述基体的横向密度是18-30纵行数/英寸,纵向密度是30-43横行数/英寸。优选纱支为300D-590D,基体横向密度23-30纵行数/英寸,纵向密度是30-40横行数/英寸。本发明复合材料能有效耐针头刺穿,柔性好,不影响使用者手部精细操作,单层材料就能够达到理想的耐针头刺穿的效果。本发明制备工艺简单,可量产。制备过程中使用的均为绿色溶剂和材料,无毒。

Description

一种耐穿刺的柔性纳米复合材料及其制备方法 技术领域
本发明涉及一种耐穿刺的柔性纳米复合材料及其制备方法。
背景技术
[根据细则26改正 01.12.2023]
皮下注射针头是一种将药物或血液输送至生物体内的常用医学工具。该类针头不但针尖锐利而且针管直径极小(约400-700μm),可以轻易穿透皮肤,插入皮下组织造成感染。因此可以防注射针头的手套对于医护人员的健康安全非常重要。
现有的防刺、防切割手套一般由聚乙烯、玻璃纤维、碳纤维、芳纶的针织物制成,有着毫米甚至厘米级的孔隙,注射针头可以不触碰针织物直接从孔隙刺入。其他材料(如硬质的陶瓷、玻璃、金属薄板等)没有孔隙且材质致密,可以有效地抵御针头穿刺,但没有柔性无法制成手套。另外,具有防刺和防切割功能的材料并不一定能防注射针头。防刺一般指的是阻碍EN388-2016标准中的1-5mm直径的锥状物刺穿的能力,而注射针头的直径一般是400-700μm,远远小于EN388-2016标准中的锥状物;防切割一般指的是阻碍刀刃平行于材料表面划动时导致材料被划开,与注射针头穿刺是不同的原理,因此不可混为一谈。
目前可以一定程度地抵御注射针头穿刺的材料只有分别公开在US5837623和WO2012/024532A1中。采用极细芳纶纱线(≤200D)通过梭织、压光得到高密度平织面料。这种面料纱线间的孔隙率极低,注射针头在刺入时很大概率能接触到纱线,从而达到一定的抗针头穿刺的效果。在尼龙无纺布上粘有密集的六边形陶瓷微粒,针头在刺入时大概率会刺在陶瓷微粒上,从而达到一定的防针头效果。这两种材料虽然设计巧妙,但是单层的防针头能力并不强,只能通过多层叠合的方式达到较好的防针头效果。然而多层叠合后的材料丧失了柔性,无法满足医护人员工作时对手部精细操作的要求。因此需要发明一种单层就具备很高的耐针头穿刺性能,同时又有极好柔性的材料,来满足医护人士的相关需求。
发明内容
本发明目的是为了克服现有技术的缺陷,提供一种能够有效防止注射针头刺伤的耐穿刺的柔性纳米复合材料。
本发明的另一目的是提供一种上述复合材料的制备方法。
本发明的目的是通过以下技术方案实现的:
一种耐穿刺的柔性纳米复合材料,其特征在于采用纬编针织基体复合剪切增稠流体而成,所述基体的紧密程度为14~49.5。
本发明基体的紧密程度为14~23,纬编针织物的紧密程度,即未充满系数,通常是用纬编针织物的线圈长度与纱线直径的比值表示。
本发明中基体的材质为超高分子量聚乙烯,纱支为200D-600D,所述基体的横向密度是18-30纵行数/英寸,纵向密度是30-43横行数/英寸。优选纱支为300D-590D,基体横向密度23-30纵行数/英寸,纵向密度是30-40横行数/英寸。
复合材料中剪切增稠流体的含量为7-111wt%,优选为10-65wt%。
本发明中的剪切增稠流体由纳米粒子和溶剂构成,浓度为0.5-0.55,优选浓度为0.52-0.55。
本发明中纳米粒子为纳米二氧化硅球,溶剂为相对分子质量为200的聚乙二醇。
一种上述耐穿刺的柔性纳米复合材料的制备方法,其特征在于包括以下步骤:
将剪切增稠流体用易挥发的稀释溶剂按一定质量比稀释混匀后,将基体浸润其中充分润湿,然后挤压除去多余的液体,烘干后即制得柔性纳米复合材料。
稀释溶剂为95%乙醇水溶液,稀释时按质量比1:1稀释混匀,浸润后的基体通过压力辊除去多余液体,辊间压强为0.1-0.4MPa。
与现有技术相比,本发明有如下优点:
本发明复合材料能有效耐针头刺穿,柔性好,不影响使用者手部精细操作,单层材料就能够达到理想的耐针头刺穿的效果。
本发明制备工艺简单,可量产。制备过程中使用的均为绿色溶剂和材料,无毒。
具体实施方式
一种耐穿刺的柔性纳米复合材料,采用紧密程度为14~49.5的纬编针织物基体复合剪切增稠流体而成,其中基体的材质为超高分子量聚乙烯,纱支为200D-600D,所述基体的横向密度是18-30纵行数/英寸,纵向密度是30-43横行数/英寸,剪切增稠流体的浓度为0.5-0.55,所述复合材料的制备方法如下:
将剪切增稠流体用95%乙醇水溶液按质量比1:1稀释混匀,将基体浸润在稀释的剪切增稠流体中使基体被流体充分润湿,然后挤压除去多余的液体,再于烘箱中挥发乙醇水溶液,制得柔性纳米复合材料。
下面结合具体实施例对本发明作进一步地详细说明:
实施例1:
将粒径为520nm±55nm的单分散性二氧化硅球分散在相对分子质量为200的聚乙二醇中,制得硅球体积分数为0.52的剪切增稠流体,将剪切增稠流体与乙醇的水溶液(乙醇与水的质量比为95:5)以质量比1:1混合,并旋涡振荡5h得到均匀的、乳白色的稀释的剪切增稠流;
将400D,密度为24ⅹ38根/英寸,350g/m2的高分子量聚乙烯(UHMWPE)纬编针织物浸润在稀释的流体中于少1min,针织物被流体充分润湿后,再通过橡胶压力辊于辊间压强0.2MPa条件除去多余的液体,将过辊后的织物放入烘箱中,于105℃烘15min挥发乙醇水溶液,制得含剪切增稠流体的柔性纳米复合材料。
对比例1:
400D,密度为24ⅹ38根/英寸,350g/m2的高分子量聚乙烯纬编针织物,未经剪切增稠流体处理。
对比例2:
芳纶平织面料,经纬纱线密度为90*90根/英寸,纱线为200D。
对比例3:
无纺布面料,由尼龙无纺布和六边形陶瓷微粒构成,陶瓷微粒和无纺布之间通过聚氨酯胶水粘合。
对比例4:
3M防切割手套,手套材料由玻纤、高分子量聚乙烯长丝、碳纤维混合针织而成,且表面涂覆了一层约2mm厚的丁晴橡胶树脂。
按标准ASTM F2878-2010在万能材料试验机上测试实施例1、对比例1-4的耐皮下注射针头穿刺能力。将含剪切增稠流体的柔性纳米复合材料剪成5cmⅹ5cm的样品夹在万能材料试验机的样品台上,将25G皮下注射针头与量程为100N,精度为0.001N的传感器相连,以500mm/min的匀速与样品平面成90°垂直刺入。传感器可以感知针头刺入过程中的受力变化情况,并在电脑上输出受力与针头位移的关系曲线。依照ASTM F2878-2010标准要求,记录曲线的受力最大值,并认定该值为针头完全贯穿材料所需的力,测试的结果如表1所示。
表1:不同材料防25G注射针头穿刺能力
由表1可知,复合剪切增稠流体能够将单层UHMWPE纬编针织物的防针头性能从0.697N增加到3.220N,即增加了4.6倍。从实施例1,对比例2-4测试结果可以得出:柔性纳米复合材料的防针头能力比现有防护类手套所用的材料增强了至少14%,达到了更好的防针头效果。
实施例2:
将规格为590D、密度为24ⅹ30根/英寸、克重为520g/m2的UHMWPE纬编针织物,按实施例1的方法处理后得到柔性纳米复合材料。
实施例3:
将规格为400D、密度为23ⅹ36根/英寸、克重为430g/m2的UHMWPE纬编针织物,按实施例1的方法处理后得到柔性纳米复合材料。
实施例4:
将规格为300D、密度为29ⅹ36根/英寸、克重为550g/m2的UHMWPE纬编针织物,按实施例1的方法处理后得到柔性纳米复合材料。
对比例5:
选择规格为400D、密度为18ⅹ38根/英寸、克重为450g/m2的UHMWPE纬编针织物,按实施例1的方法处理后得到柔性纳米复合材料。
对比例6:
选择规格为300D、密度为23ⅹ36根/英寸、克重为450g/m2的UHMWPE纬编针织物,并按实施例1的方法处理后得到柔性纳米复合材料。
对比例7:
选择规格为200D、密度为23ⅹ43根/英寸、克重为410g/m2的UHMWPE纬编针织物,并按实施例1的方法处理后得到柔性纳米复合材料。
紧密程度(即未充满系数)通常是用纬编针织物的线圈长度与纱线直径的比值表示。选择不同紧密程度的纬编针织物,测量计算得出的所选纬编针织物的紧密程度如表2所示,按照ASTM F2878-2010的方法测试实施例1-4、对比例2、5、6、7的防注射针头能力,结果表2所示。
表2.不同紧密程度材料的耐针刺能力
实施例1-4及对比例5-7的测试数据说明,不同规格的UHMWPE纬编针织物在复合了剪切增稠流体后,其耐注射针头穿刺性能均大幅度提升,且增幅基本在1倍以上。
对比实施例1-4和对比例2的测试数据说明,织物的紧密程度在14-23之间时,复合了剪切增稠流体后的柔性纳米复合材料的防针头能力均高于市面上已有的防针头材料(芳纶平织面料)。对比例2和5-7的测试数据说明,织物的紧密程度如果达到30-50,虽然复合剪切增稠流体能大幅度增加织物的耐针头穿刺性能,但是复合材料的防针头达不到与现有的相当的效果。
测试同一流体浓度、同一织物、不同流体含量的柔性纳米复合材料的防针头能力。
实施例5:
选用400D、紧密程度为14.83的高分子量聚乙烯长丝制得的纬编针织物,按实施例1的方法,辊压时辊间压强为0.4MPa,制备柔性纳米复合材料。
实施例6:
同实施例5方法和基体,辊压时辊间压强为0.35MPa,制备柔性纳米复合材料。
实施例7:
同实施例5方法和基体,辊压时辊间压强为0.30MPa,制备柔性纳米复合材料。
实施例8:
同实施例5方法和基体,辊压时辊间压强为0.20MPa,制备柔性纳米复合材料。
实施例9:
同实施例5方法和基体,辊压时辊间压强为0.15MPa,制备柔性纳米复合材料。
实施例10:
同实施例5方法和基体,辊压时辊间压强为0.10MPa,制备柔性纳米复合材料。
实施例11:
同实施例5方法和基体,针织物浸渍稀释剪切增稠流体后不过辊,直接烘干,制备柔性纳米复合材料。
实施例5-11制备的柔性纳米复合材料的流体含量如表3所示,按ASTM F2878-2010的方法测量柔性纳米复合材料的防针头能力,结果如表3所示。
表3:同一针织物不同流体含量时的耐25G注射针头穿刺能力
由表3可知,流体含量<15wt%时,复合材料的耐针刺能力已经可以提升几倍,然而无法与对比例2中的及对比例3中的的防针头能力相比。当流体含量达到15-65wt%时,复合材料的耐注射针头穿刺的能力随着流体含量升高而稳步提升,且与剪切增稠流体处理前的织物相比,处理后的织物耐针刺能力最高可以提升4.5倍。此时耐针刺所需力的绝对值为2.867-4.004N,与对比例2和3现有材料的防针头能力相比增强了很多。当流体含量继续升高直至111wt%时,复合材料的耐针刺能力从4.004N稍有下降至3.634N,保持着高于现有材料的防针头能力,同时也说明流体含量并非越高,耐针刺的能力就越高,而是有一定的最优选范围。
同一针织物,同一流体含量,不同流体浓度的防针头能力。
实施例12:
同实施例1方法制备体积分数(浓度)为0.48的剪切增稠流体,稀释后同实施例1方法制备柔性纳米复合材料。
实施例13:
同实施例1方法制备体积分数(浓度)为0.50的剪切增稠流体,稀释后同实施例1方法制备柔性纳米复合材料。
实施例14:
同实施例1方法制备体积分数(浓度)为0.54的剪切增稠流体,稀释后同实施例1方法制备柔性纳米复合材料。
实施例15:
同实施例1方法制备体积分数(浓度)为0.55的剪切增稠流体,稀释后同实施例1方法制备柔性纳米复合材料。
按ASTM F2878-2010标准的要求,测试实施例1、12-15和对比例2、3的耐针头穿刺能力,其结果如表4所示。
表4:同一织物、不同浓度流体的复合材料的防针头能力
表4实验数据表明:在流体含量相当的前提下,随着流体浓度提升,防针头的能力也逐渐增强,且当流体浓度达到0.52及以上时,制备的柔性纳米复合材料的防针头能力将强于现有的而流体浓度达到0.5时,防针头的能力达到2.064N,属于美标ANSI/ISEA 105-2016耐注射针头穿刺等级的1级,已经具备了较好的实用价值。

Claims (10)

  1. 一种耐穿刺的柔性纳米复合材料,其特征在于采用纬编针织基体复合剪切增稠流体而成,所述基体的紧密程度为14~49.5。
  2. 根据权利要求1所述的一种耐穿刺的柔性纳米复合材料,其特征在于所述基体的紧密程度为14~23。
  3. 根据权利要求1所述的一种耐穿刺的柔性纳米复合材料,其特征在于所述基体的材质为超高分子量聚乙烯,纱支为200D-600D,所述基体的横向密度是18-30纵行数/英寸,纵向密度是30-43横行数/英寸。
  4. 根据权利要求1所述的一种耐穿刺的柔性纳米复合材料,其特征在于所述剪切增稠流体的含量为7-111wt%。
  5. 根据权利要求1所述的一种耐穿刺的柔性纳米复合材料,其特征在于所述剪切增稠流体的含量为10-65wt%。
  6. 根据权利要求1所述的一种耐穿刺的柔性纳米复合材料,其特征在于所述剪切增稠流体由纳米粒子和溶剂构成,浓度为0.5-0.55。
  7. 根据权利要求6所述的一种耐穿刺的柔性纳米复合材料,其特征在于所述纳米粒子为纳米二氧化硅球,溶剂为相对分子质量为200的聚乙二醇。
  8. 一种权利要求1-7中任一项所述耐穿刺的柔性纳米复合材料的制备方法,其特征在于包括以下步骤:
    将剪切增稠流体用易挥发的稀释溶剂按一定质量比稀释混匀后,将基体浸润其中充分润湿,然后挤压除去多余的液体,烘干后即制得柔性纳米复合材料。
  9. 根据权利要求8所述的一种耐穿刺的柔性纳米复合材料的制备方法,其特征在于所述的稀释溶剂为95%乙醇水溶液,稀释时按质量比1:1稀释混匀。
  10. 根据权利要求8所述的一种耐穿刺的柔性纳米复合材料的制备方法,其特征在于所述浸润后的基体通过压力辊除去多余液体,辊间压强为0.1-0.4MPa。
PCT/CN2023/115675 2022-09-29 2023-08-30 一种耐穿刺的柔性纳米复合材料及其制备方法 WO2024066873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211200410.1 2022-09-29
CN202211200410.1A CN115637584A (zh) 2022-09-29 2022-09-29 一种耐穿刺的柔性纳米复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2024066873A1 true WO2024066873A1 (zh) 2024-04-04

Family

ID=84941603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115675 WO2024066873A1 (zh) 2022-09-29 2023-08-30 一种耐穿刺的柔性纳米复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN115637584A (zh)
WO (1) WO2024066873A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115637584A (zh) * 2022-09-29 2023-01-24 中山莱圃新材料有限公司 一种耐穿刺的柔性纳米复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808210A (zh) * 2012-11-15 2014-05-21 南京理工大学 一种低成本高强度柔性防护材料及其制备方法
CN104002522A (zh) * 2014-05-26 2014-08-27 上海工程技术大学 防刺抗冲击材料
CN110962412A (zh) * 2018-09-27 2020-04-07 天津工业大学 织物混杂结构防刺复合材料及其制备方法
CN112391691A (zh) * 2020-09-21 2021-02-23 江苏六甲科技有限公司 一种超高分子量聚乙烯纤维/剪切增稠流体复合纤维制备的防弹材料
CN112900105A (zh) * 2021-01-18 2021-06-04 河北科技大学 一种柔性防护复合材料及其制作方法
CN115637584A (zh) * 2022-09-29 2023-01-24 中山莱圃新材料有限公司 一种耐穿刺的柔性纳米复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102330355A (zh) * 2011-06-29 2012-01-25 深圳航天科技创新研究院 一种纤维织物复合吸能材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808210A (zh) * 2012-11-15 2014-05-21 南京理工大学 一种低成本高强度柔性防护材料及其制备方法
CN104002522A (zh) * 2014-05-26 2014-08-27 上海工程技术大学 防刺抗冲击材料
CN110962412A (zh) * 2018-09-27 2020-04-07 天津工业大学 织物混杂结构防刺复合材料及其制备方法
CN112391691A (zh) * 2020-09-21 2021-02-23 江苏六甲科技有限公司 一种超高分子量聚乙烯纤维/剪切增稠流体复合纤维制备的防弹材料
CN112900105A (zh) * 2021-01-18 2021-06-04 河北科技大学 一种柔性防护复合材料及其制作方法
CN115637584A (zh) * 2022-09-29 2023-01-24 中山莱圃新材料有限公司 一种耐穿刺的柔性纳米复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHENQIAN LU: "Study on Stab Resistant Performance of Shear Thickening Fluids Impregnated Ultra High Molecular Weight Polyethylene Fabric", JOURNAL OF TEXTILE RESEARCH, vol. 39, no. 10, 1 October 2018 (2018-10-01), pages 58 - 62, XP093154604, DOI: 10.13475/j.fzxb.20180101706 *

Also Published As

Publication number Publication date
CN115637584A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2024066873A1 (zh) 一种耐穿刺的柔性纳米复合材料及其制备方法
CN110982114B (zh) 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
CN111588900B (zh) 皮肤敷料用防水透气高弹自修复双层纳米纤维膜及其制法
EP2072666B1 (en) Fiber containing nano-sized diamond and platinum nanocolloid, and bedding product comprising the fiber
CN106945362A (zh) 具有防水透湿功能的框架增强气凝胶保暖材料及其制备
CN106827730A (zh) 一种双层单向导湿面料及其应用
WO2020082684A1 (zh) 一种x射线防护布料及x射线防护服
CN109998199A (zh) 一种抗雾化防雾霾口罩材料的制备方法
CN114949325A (zh) 一种用于伤口敷料的复合纳米纤维膜的制备方法及复合纳米纤维膜
EP3766366A1 (en) Glove
CN106867017B (zh) 一种孔径可控的微多孔膜及其制备方法
Kattamuri et al. Nanofibers in Pharmaceuticals—A Review
CN114351358A (zh) ePTFE-TPU复合膜及其制备方法
Tang et al. Preparation of polyvinyl alcohol/chitosan nanofibrous films incorporating graphene oxide and lanthanum chloride by electrospinning method for potential photothermal and chemical synergistic antibacterial applications in wound dressings
CN110484980B (zh) 一种复合保暖面料及其制备方法
WO2024066874A1 (zh) 一种轻质耐穿刺夹网布
CN110578208A (zh) 一种纳米纤维多组分复合丝柔非织造布及其制造方法
CN208232464U (zh) 一种抗菌吸湿面料
EP3662773B1 (en) Glove
CN106883469B (zh) 石墨烯贴合六方纳米片层氮化硼复合乳胶制备高强无敏高隔绝医疗手套的方法
CN112656409B (zh) 一种纺织离子传感器及其制备方法与应用
CN211460359U (zh) 一种“皮芯”结构的术中血管吊带
CN111038038A (zh) 一种医用复合材料及其制造工艺
KR102630709B1 (ko) 편안한 착용감을 제공하는 기능성 의류 및 이의 제조 방법
Xianhua et al. STUDY ON PREPARATION AND PROPERTIES OF PVA/AgNPs COMPOSITE NANOFIBER MASK MATERIAL.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870114

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)