WO2024066315A1 - 一种动力电池温度控制方法、系统、装置和车辆 - Google Patents

一种动力电池温度控制方法、系统、装置和车辆 Download PDF

Info

Publication number
WO2024066315A1
WO2024066315A1 PCT/CN2023/090273 CN2023090273W WO2024066315A1 WO 2024066315 A1 WO2024066315 A1 WO 2024066315A1 CN 2023090273 W CN2023090273 W CN 2023090273W WO 2024066315 A1 WO2024066315 A1 WO 2024066315A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
solenoid valve
temperature control
cooling
coolant
Prior art date
Application number
PCT/CN2023/090273
Other languages
English (en)
French (fr)
Inventor
耿宇明
孙焕丽
王书洋
孙士杰
赵名翰
刘佳鑫
曹海月
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2024066315A1 publication Critical patent/WO2024066315A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a temperature control method, system, device and vehicle, and in particular to a power battery temperature control method, system, device and vehicle, belonging to the technical field of vehicle power devices.
  • the power battery system is the core component of electric vehicles.
  • a power battery thermal management device In order to ensure that the power battery cells work safely and efficiently in an appropriate temperature range, it is generally necessary to use a power battery thermal management device to cool or heat the cells.
  • the existing power battery thermal management device has a fixed liquid device inlet and outlet, and the liquid flow direction is constant. During the cooling or heating process of the power battery cells, due to the heat absorption or heat release of the liquid, the temperature of the liquid flowing through the outlet side cells will always be higher or lower than the liquid flowing through the inlet side cells. In the long run, the performance decay of the cells on the outlet side and the inlet side is different, which affects the service life of the power battery.
  • the object of the present invention is to provide a power battery temperature control method, system, device and vehicle, which can effectively avoid the influence of the liquid temperature difference at the outlet and the inlet on the battery cell and balance the performance error of the battery cell.
  • Another technical problem to be solved by the present invention is to reasonably determine the flow direction of the coolant and reduce the temperature difference in the battery pack according to different working conditions of heating or cooling the battery pack.
  • Another technical problem to be solved by the present invention is to provide a device and a vehicle capable of controlling the temperature of a power battery, so as to maintain a balanced temperature among the battery cells in a battery pack.
  • a power battery temperature control method specifically comprising:
  • the solenoid valve is switched to the first position to control the flow direction of the coolant: first the two side flow channels, then the middle flow channel;
  • the solenoid valve is switched to the second position to control the flow direction of the coolant: first the middle flow channel, then the flow channels on both sides.
  • the flow direction of the coolant is changed by switching the first and second positions of the solenoid valve.
  • a power battery temperature control system specifically comprising:
  • the temperature collection module collects the temperature at the water outlet and/or water inlet of the cooling plate and the temperature of the battery cells in the battery pack;
  • the coolant control module for the cell heating condition is used to switch the solenoid valve to the first position under the power battery cell heating condition to control the flow direction of the coolant: first the two side flow channels, then the middle flow channel;
  • the coolant control module for the battery cell cooling condition is used to switch the solenoid valve to the second position under the power battery cell cooling condition to control the flow direction of the coolant: first the middle flow channel, then the flow channels on both sides.
  • a coolant control module for the battery pack under the condition of uneven temperature in the battery pack which is used to change the flow direction of the coolant by switching the first and second positions of the solenoid valve under the condition of uneven temperature in the battery pack.
  • a power battery temperature control device specifically includes: a heat exchanger, a solenoid valve and a cooling plate, a water pump is connected between the heat exchanger and the solenoid valve, a cooling pipeline is connected between the solenoid valve and the cooling plate, the solenoid valve is connected to a battery management system, the solenoid valve switches between a first position and a second position according to the instructions of the battery management system, and battery cells are arranged on the surface of the cooling plate.
  • the solenoid valve is a four-way solenoid valve.
  • a first water distribution pipe and a second water distribution pipe for liquid distribution are arranged in the cooling plate.
  • An electronic device comprising: a processor, a communication interface, a memory and a communication bus, wherein the processor, the communication interface and the memory communicate with each other via the communication bus;
  • a computer program is stored, which, when executed by the processor, causes the processor to perform the steps of the method.
  • a computer-readable storage medium stores a computer program executable by an electronic device.
  • the computer program runs on the electronic device, the electronic device executes the steps of the method.
  • a vehicle wherein a power battery temperature control system and/or a power battery temperature control device is provided in the vehicle, further comprising:
  • processor runs a program, and when the program runs, the steps of the power battery temperature control method are executed for the data output from the electronic device;
  • the storage medium is used to store a program, and when the program is running, the steps of the power battery temperature control method are executed for the data output from the electronic device.
  • the present invention has the following advantages:
  • the power battery temperature control method provided by the present invention can dynamically control the temperature of the battery cells according to the temperature of the water outlet and inlet of the cooling plate and the battery cells in the battery pack, combined with the heating condition and the cooling condition: the heat of the battery cells located inside the battery pack is easy to accumulate and is not easy to diffuse to the surrounding environment, and the temperature is higher than the battery cells outside the battery pack; the heat of the battery cells located inside the battery pack is easy to accumulate and is not easy to diffuse to the surrounding environment, and the temperature is higher than the battery cells outside the battery pack - different battery temperature control strategies are adopted based on the above-mentioned different working conditions to achieve dynamic control of the battery cell temperature.
  • the present invention also aims to achieve a balanced cooling effect for the battery pack by switching the first and second positions of the solenoid valve to change the flow direction of the coolant under the condition of uneven temperature inside the battery pack.
  • the present invention also provides a power battery temperature control device and a vehicle, which can dynamically control the flow direction of the coolant in combination with the heating condition and the cooling condition, thereby extending the life of the battery cell.
  • FIG. 1 is a flow chart of a power battery temperature control method according to the present invention.
  • FIG. 2 is a schematic diagram of a power battery temperature control system according to the present invention.
  • FIG. 3 is a structural diagram of a power battery temperature control device according to the present invention.
  • FIG. 4 is a flow diagram of the coolant under the condition of heat accumulation between battery cells when the vehicle is driving in summer.
  • FIG5 is a flow diagram of the coolant under the condition of heat loss between battery cells when the vehicle is driving in winter.
  • FIG. 6 is a system architecture diagram of an electronic device.
  • the thermal management device obtains cold or heat from the vehicle and transfers it to the battery cell through the liquid in the water pipe.
  • the thermal management device usually has a fixed liquid inlet and outlet, and the liquid flow direction is constant.
  • the temperature of the liquid on the outlet side of the battery cell is always higher or lower than the temperature of the inlet side of the battery cell due to the heat absorption or heat release of the liquid.
  • the performance of the battery cells on the outlet side and the inlet side will decay differently, affecting the service life of the power battery.
  • the steps of the power battery temperature control method specifically include:
  • Step S1 temperature collection: collecting the temperature at the water outlet and/or water inlet of the cooling plate, and collecting the temperature of the battery cells in the battery pack;
  • Step S2 solenoid valve first position: under the condition of power battery cell heating, switch the solenoid valve to the first position to control the flow direction of the coolant: first the two side flow channels, then the middle flow channel;
  • Step S3 solenoid valve second position: under the power battery cell cooling condition, switch the solenoid valve to the second position to control the flow direction of the coolant: first the middle flow channel, then the two side flow channels.
  • Step S4 switching the first and second positions of the solenoid valve: under the condition of uneven temperature inside the battery pack, the flow direction of the coolant is changed by switching the first and second positions of the solenoid valve.
  • the power battery temperature control system specifically includes:
  • the temperature collection module collects the temperature at the water outlet and/or water inlet of the cooling plate and the temperature of the battery cells in the battery pack;
  • the coolant control module for the cell heating condition is used to switch the solenoid valve to the first position under the power battery cell heating condition to control the flow direction of the coolant: first the two side flow channels, then the middle flow channel;
  • the coolant control module for the battery cell cooling condition is used to switch the solenoid valve to the second position under the power battery cell cooling condition to control the flow direction of the coolant: first the middle flow channel, then the flow channels on both sides.
  • the coolant control module for the battery pack under the condition of uneven temperature inside the battery pack is used to change the flow direction of the coolant by switching the first and second positions of the solenoid valve under the condition of uneven temperature inside the battery pack.
  • the device implementation described above is merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the present implementation scheme. Those of ordinary skill in the art may understand and implement it without creative work.
  • the power battery temperature control device shown in FIG3 the reference numerals are as follows: cooling plate 1 , cooling pipeline 2 , solenoid valve 3 , heat exchanger 4 , water pump 5 , battery cell 6 , first water distribution pipe 11 , second water distribution pipe 12 .
  • the power battery temperature control device includes a heat exchanger, a solenoid valve and a cooling plate.
  • a water pump is connected between the heat exchanger and the solenoid valve, a cooling pipeline is connected between the solenoid valve and the cooling plate, and the solenoid valve is connected to the battery management system C.
  • the solenoid valve switches the first position a and the second position b of the solenoid valve 3 according to the instruction of the battery management system C.
  • the surface of the cooling plate 1 is arranged with a battery cell 6.
  • the solenoid valve 3 is a four-way solenoid valve, and a first water distribution pipe 11 and a second water distribution pipe 12 for liquid distribution are arranged in the cooling plate 1.
  • the battery cooling plate includes a water distribution pipe, a cooling channel, a water outlet and a water inlet, and a temperature sensor located at the water outlet and/or the water inlet;
  • the water distribution pipe realizes the distribution of liquid, distributes the liquid at the water inlet into two or more paths, so that the liquid enters the bottom surface of the battery cell along a specific direction, for example:
  • the pipe can be a flow channel formed by stamping the battery cooling plate, or a pipeline connected by nylon or rubber.
  • the cooling channel is connected to the water distribution pipe, on which the battery cell is arranged to achieve cooling or heating of the battery cell.
  • the water outlet and the water inlet are connected to the water distribution pipe, which is the external interface of the battery cooling plate, and together form a loop for the flow of liquid in the battery cooling plate.
  • the temperature sensor thereon collects the temperature of the liquid entering and/or flowing out of the battery cooling plate.
  • Solenoid valve 3 is a two-position four-way solenoid valve.
  • the two channels on one side of solenoid valve 3 are respectively connected to the water outlet and water inlet of the battery cooling plate, and the two channels on the other side are connected to the external water outlet of the thermal management device; solenoid valve 3 receives the control of the battery management system C, and realizes the switching of the two positions of the four-way valve according to the instructions of the battery management system.
  • the cooling pipeline connects the solenoid valve 3 and the cooling plate 1 to form a liquid loop of the thermal management device with reversible flow direction.
  • a thermal management device, a battery cell 4 and a battery management system C are fixed in the battery box; the lower surface of the battery cell 4 is in contact with the cooling channel of the cooling plate 1 to achieve cooling and heating of the battery cell 4.
  • the battery management system C collects the temperature of the temperature sensors at the water inlet and/or outlet of the battery cooling plate 1, as well as the battery cell temperature, and controls the four-way valve of the thermal management device.
  • Thermal management method when cooling the battery cells, due to the heat concentration of the battery cells in the middle of the battery case, the liquid needs to cool the middle battery cells and the edge battery cells in turn.
  • the battery management system issues a control instruction to the solenoid valve to switch the position of the four-way valve; when heating the battery cells, due to the heat loss of the battery cells at the edge of the battery case, the liquid needs to heat the edge battery cells and the middle battery cells in turn.
  • the battery management system issues a control instruction to the solenoid valve to switch the position of the four-way valve.
  • the solenoid valve 3 In the initial state, the solenoid valve 3 is placed in the first position a, and the external coolant enters the first water distribution pipe 11 through the solenoid valve 3 and the cooling pipeline 2, and cools or heats the power battery through the cooling plate 1. then the coolant flows out of the channel of the solenoid valve 3 from the second water distribution pipe 12 through the cooling line 2 and returns to the heat exchanger 4, completing the cycle of the cooling system.
  • Another possible specific implementation is as follows: When a vehicle is driving in summer, the heat of the battery cells inside the battery pack is easily accumulated and is not easy to diffuse to the surrounding environment. The temperature is higher than that of the battery cells outside the battery pack. At this time, the coolant flows in the direction of Figure 4, which is beneficial to the cooling of the entire battery pack and the temperature balance between the battery cells.
  • the battery cells on the outside of the battery pack are affected by the convection of the external cold air through the battery case, and their heat is easily dissipated.
  • the temperature is lower than that of the battery cells inside the battery pack.
  • the coolant flow channel follows the flow direction of Figure 5, which is beneficial to the heating of the entire battery pack and the temperature balance between the battery cells.
  • the present invention also discloses electronic equipment and storage media corresponding to the power battery control method, system, and device:
  • An electronic device includes: a processor, a communication interface, a memory and a communication bus, wherein the processor, the communication interface and the memory communicate with each other via the communication bus; a computer program is stored in the memory, and when the computer program is executed by the processor, the processor executes the steps of a power battery temperature control method.
  • a computer-readable storage medium stores a computer program executable by an electronic device.
  • the computer program runs on the electronic device, the electronic device executes the steps of a power battery temperature control method.
  • the communication bus mentioned in the above electronic device can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the electronic device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory.
  • the operating system can be any one or more computer operating systems that control electronic devices through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system, or Windows operating system.
  • the electronic device can be a handheld device such as a smart phone or a tablet computer, or can be an electronic device such as a desktop computer or a portable computer, which is not particularly limited in the embodiment of the present invention.
  • the execution subject of the electronic device control in the embodiment of the present invention may be an electronic device, or a functional module in the electronic device that can call and execute a program.
  • the electronic device may obtain the firmware corresponding to the storage medium.
  • the firmware corresponding to the storage medium is provided by the supplier.
  • the firmware corresponding to different storage media may be the same or different, which is not limited here.
  • the firmware corresponding to the storage medium may be written into the storage medium, specifically, the firmware corresponding to the storage medium may be burned into the storage medium.
  • the process of burning the firmware into the storage medium may be implemented using existing technology, which will not be described in detail in the embodiment of the present invention.
  • the electronic device can also obtain a reset command corresponding to the storage medium.
  • the reset command corresponding to the storage medium is provided by the supplier.
  • the reset commands corresponding to different storage media may be the same or different, and are not limited here.
  • the storage medium of the electronic device is a storage medium in which the corresponding firmware is written.
  • the electronic device can respond to the reset command corresponding to the storage medium in the storage medium in which the corresponding firmware is written, thereby The electronic device resets the storage medium in which the corresponding firmware is written according to the reset command corresponding to the storage medium.
  • the process of resetting the storage medium according to the reset command can be implemented by the prior art and will not be described in detail in the embodiment of the present invention.
  • the present invention also discloses a vehicle, in which a power battery temperature control system and/or a power battery temperature control device is provided, and further includes:
  • a processor wherein the processor runs a program, and when the program runs, the steps of the power battery temperature control method are performed for the data output from the electronic device;
  • the storage medium is used to store a program, and when the program is run, the steps of the power battery temperature control method are executed for the data output from the electronic device.
  • the vehicle of this embodiment is provided with a power battery temperature control system and/or a power battery temperature control device, which can dynamically control the flow direction of the coolant in combination with the heating condition and the cooling condition, thereby extending the life of the battery cell.
  • the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such an understanding, the technical solution of the present invention can be essentially or partly contributed to the prior art in the form of a software product, which can be stored in a storage medium such as ROM/RAM, a magnetic disk, an optical disk, etc., and includes several instructions for enabling a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in the various embodiments of the present invention or some parts of the embodiments.
  • a computer device which can be a personal computer, a server, or a network device, etc.
  • the present invention can be used in many general or special purpose computing system environments or configurations, such as: personal computers, server computers, handheld or portable devices, tablet devices, multiprocessor systems, microprocessor-based systems, set-top boxes, programmable consumer electronics devices, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
  • the present invention may be described in the general context of computer-executable instructions executed by a computer, such as program modules.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the present invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices connected through a communication network.
  • program modules may be located in local and remote computer storage media, including storage devices.
  • each box in the flowchart or block diagram can represent a module, a program segment or a part of a code, and the module, program segment or a part of the code contains one or more executable instructions for implementing the specified logical functions.
  • the functions marked in the box can also occur in a different order from the order marked in the accompanying drawings.
  • each box in the block diagram and/or flowchart, and the combination of boxes in the block diagram and/or flowchart can be implemented with a dedicated hardware-based system that performs a specified function or action, or can be implemented with a combination of dedicated hardware and computer instructions.
  • the functional modules in the various embodiments of the present invention may be integrated together to form an independent part, or each module may exist independently, or two or more modules may be integrated to form an independent part.
  • modules in the devices in the embodiments may be adaptively changed and arranged in one or more devices different from the embodiments.
  • the modules or units or components in the embodiments may be combined into one module or unit or component, and further may be divided into multiple sub-modules or sub-units or sub-components. All features disclosed in this specification (including corresponding claims, abstracts and drawings) and any method or device disclosed in this manner may be used in any combination, except that at least some of such features and/or processes or units are mutually exclusive. Unless explicitly stated otherwise, each feature disclosed in this specification (including corresponding claims, abstract and drawings) may be replaced by an alternative feature providing the same, equivalent or similar purpose.
  • the various component embodiments of the present invention can be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof. It should be understood by those skilled in the art that a microprocessor or digital signal processor (DSP) can be used in practice to implement some or all functions of some or all components in the device for distributing messages according to an embodiment of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device or apparatus program (e.g., computer program and computer program product) for executing part or all of the methods described herein.
  • Such a program implementing the present invention can be stored on a computer-readable medium, or can have the form of one or more signals. Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种动力电池温度控制方法、系统、装置和车辆,方法步骤包括:采集冷却板出水口和/或入水口处的温度,采集电池包内的电芯温度;在动力电池电芯加热工况下,切换电磁阀至第一位置,控制冷却液的液路流向为:先两侧流道,后中间流道;在动力电池电芯冷却工况下,切换电磁阀至第二位置,控制冷却液的液路流向为:先中间流道,后两侧流道。本发明能够根据冷却板出水口、入口处以及电池包内电芯的温度,结合加热工况和冷却工况对电池电芯的温度进行动态控制,本发明提供的动力电池温度控制装置和车辆,无论在炎热的夏季还是寒冷的冬季,均能够结合加热工况和冷却工况对冷却液的液路流向进行动态控制,延长了电芯的寿命。

Description

一种动力电池温度控制方法、系统、装置和车辆 技术领域
本发明涉及一种温度控制方法、系统、装置和车辆,尤其涉及一种动力电池温度控制方法、系统、装置和车辆,属于车辆动力装置的技术领域。
背景技术
动力电池系统是电动汽车的核心部件,为保证动力电池电芯在适宜的温度区间安全、高效的工作,一般需要借助动力电池热管理装置对电芯进行冷却降温或加热升温;现有动力电池热管理装置,具有固定的液体装置进口和出口,液体流向恒定,在对动力电池电芯冷却或加热过程中,由于液体吸热或放热的原因,流经出口侧电芯的液体,其温度始终会高于或低于流经进口侧电芯的液体,长期下去,位于出口侧与进口侧电芯性能衰减不同,影响动力电池的使用寿命。
发明内容
本发明的目的在于提供一种动力电池温度控制方法、系统、装置和车辆,能够有效避免出口和入口处液体温差对电芯的影响,平衡电芯的性能误差。
本发明要解决的另一个技术问题是针对电池包的加热或冷却的不同工况,合理确定冷却液的流向,减小电池包内的温差。
本发明要解决的又一个技术问题是提供一种能够对动力电池进行温度控制装置和车辆,能够保持电池包内电芯间温度均衡。
本发明提供了下述方案:
一种动力电池温度控制方法,具体包括:
采集冷却板出水口和/或入水口处的温度,采集电池包内的电芯温度;
在动力电池电芯加热工况下,切换电磁阀至第一位置,控制冷却液的液路流向为:先两侧流道,后中间流道;
在动力电池电芯冷却工况下,切换电磁阀至第二位置,控制冷却液的液路流向为:先中间流道,后两侧流道。
进一步的,在电池包内冷热不均的工况下,通过切换电磁阀的第一、二位置,改变冷却液的流向。
一种动力电池温度控制系统,具体包括:
温度采集模块,采集冷却板出水口和/或入水口处的温度,采集电池包内的电芯温度;
电芯加热工况冷却液控制模块,用于在动力电池电芯加热工况下,切换电磁阀至第一位置,控制冷却液的液路流向为:先两侧流道,后中间流道;
电芯冷却工况冷却液控制模块,用于在动力电池电芯冷却工况下,切换电磁阀至第二位置,控制冷却液的液路流向为:先中间流道,后两侧流道。
进一步的,还包括:电池包冷热不均工况冷却液控制模块,用于在电池包内冷热不均的工况下,通过切换电磁阀的第一、二位置,改变冷却液的流向。
一种动力电池温度控制装置,具体包括:换热器、电磁阀和冷却板,所述换热器与电磁阀之间连接有水泵,所述电磁阀和冷却板之间连接有冷却管路,所述电磁阀与电池管理系统相连,电磁阀根据所述电池管理系统的指令,切换电磁阀的第一、二位置,所述冷却板的表面布置有电芯。
进一步的,所述电磁阀为四通电磁阀。
进一步的,在所述冷却板内设置有用于进行液体分配的第一分水管和第二分水管。
一种电子设备,包括:处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;所述存储器中 存储有计算机程序,当所述计算机程序被所述处理器执行时,使得所述处理器执行所述方法的步骤。
一种计算机可读存储介质,其存储有可由电子设备执行的计算机程序,当所述计算机程序在所述电子设备上运行时,使得所述电子设备执行所述方法的步骤。
一种车辆,所述车辆中设置有动力电池温度控制系统和/或动力电池温度控制装置,还包括:
电子设备,用于实现动力电池温度控制方法;
处理器,所述处理器运行程序,当所述程序运行时,对于从所述电子设备输出的数据执行所述的动力电池温度控制方法的步骤;
存储介质,用于存储程序,所述程序在运行时,对于从电子设备输出的数据执行所述的动力电池温度控制方法的步骤。
本发明与现有技术相比具有以下的优点:
本发明提供的动力电池温度控制方法,能够根据冷却板出水口、入口处以及电池包内电芯的温度,结合加热工况和冷却工况对电池电芯的温度进行动态控制:位于电池包内侧的电芯,其热量容易形成聚集,不易向周边环境扩散,温度相对电池包外侧的电芯较高,位于电池包内侧的电芯,其热量容易形成聚集,不易向周边环境扩散,温度相对电池包外侧的电芯较高——基于上述的不同工况采取不同的电池温度控制策略,实现对电池电芯温度的动态控制。
本发明还针对在电池包内冷热不均的工况下,通过切换电磁阀的第一、二位置,改变冷却液的流向,实现电池包的均衡冷却效果。
本发明还提供了一种动力电池温度控制装置和车辆,无论在炎热的夏季还是寒冷的冬季,均能够结合加热工况和冷却工况对冷却液的液路流向进行动态控制,延长了电芯的寿命。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明动力电池温度控制方法的流程图。
图2是本发明动力电池温度控制系统的架构图。
图3是本发明动力电池温度控制装置的结构图。
图4是夏季车辆行驶时电芯间热量聚集工况下冷却液的液路流向图。
图5是冬季乘车行驶时电芯间热量散失工况下冷却液的液路流向图。
图6是电子设备的系统架构图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有动力电池系统中热管理装置自整车获取冷量或热量并通过水管内液体传递到电芯,热管理装置通常具有固定的液体进口和出口,液体流向恒定,在对动力电池电芯冷却或加热过程中,由于液体吸热或放热的原因,液体在出口侧电芯的温度始终高于或低于进口侧电芯的温度。长期下去,位于出口侧与进口侧电芯性能衰减不同,影响动力电池的使用寿命。
如图1所示,动力电池温度控制方法的步骤具体包括:
步骤S1,温度采集:采集冷却板出水口和/或入水口处的温度,采集电池包内的电芯温度;
步骤S2,电磁阀第一位置:在动力电池电芯加热工况下,切换电磁阀至第一位置,控制冷却液的液路流向为:先两侧流道,后中间流道;
步骤S3,电磁阀第二位置:在动力电池电芯冷却工况下,切换电磁阀至第二位置,控制冷却液的液路流向为:先中间流道,后两侧流道。
步骤S4,切换电磁阀第一、二位置:在电池包内冷热不均的工况下,通过切换电磁阀的第一、二位置,改变冷却液的流向。
通过上述动力电池温度控制方法流程步骤中的一步或多步,能够实现对冷却液流向的动态控制。
对于上述实施例公开的方法步骤,出于简单描述的目的将方法步骤表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明实施例并不受所描述的动作顺序的限制,因为依据本发明实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本发明实施例所必须的。
如图2所示,动力电池温度控制系统具体包括:
温度采集模块,采集冷却板出水口和/或入水口处的温度,采集电池包内的电芯温度;
电芯加热工况冷却液控制模块,用于在动力电池电芯加热工况下,切换电磁阀至第一位置,控制冷却液的液路流向为:先两侧流道,后中间流道;
电芯冷却工况冷却液控制模块,用于在动力电池电芯冷却工况下,切换电磁阀至第二位置,控制冷却液的液路流向为:先中间流道,后两侧流道。
电池包冷热不均工况冷却液控制模块,用于在电池包内冷热不均的工况下,通过切换电磁阀的第一、二位置,改变冷却液的流向。
值得注意的是,虽然在本实施例中只披露了图2所示的基本功能模块,但并不意味着本系统的组成仅仅局限于上述基本功能模块,相反,本实施例 所要表达的意思是:在上述基本功能模块的基础之上本领域技术人员可以结合现有技术任意添加一个或多个功能模块,形成无穷多个实施例或技术方案,也就是说本系统是开放式而非封闭式的,不能因为本实施例仅仅披露了个别基本功能模块,就认为本发明权利要求的保护范围局限于所公开的基本功能模块。同时,为了描述的方便,描述以上装置时以功能分为各种单元、模块分别描述。当然在实施本发明时可以把各单元、模块的功能在同一个或多个软件和/或硬件中实现。
以上所描述的装置实施方式仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施方式方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
如图3所示的动力电池温度控制装置,附图标记说明:冷却板1、冷却管路2、电磁阀3、换热器4、水泵5、电芯6、第一分水管11、第二分水管12。
动力电池温度控制装置包括换热器、电磁阀和冷却板,换热器与电磁阀之间连接有水泵,电磁阀和冷却板之间连接有冷却管路,电磁阀与电池管理系统C相连,电磁阀根据电池管理系统C的指令切换电磁阀3的第一位置a、第二位置b,冷却板1的表面布置有电芯6。电磁阀3为四通电磁阀,在冷却板1内设置有用于进行液体分配的第一分水管11和第二分水管12。
具体的,电池冷却板包括分水管、冷却通道、出水口和进水口,以及位于出水口和/或进水口处的温度传感器;分水管实现液体的分配,将进水口的液体分配成两路或多路,使液体沿特定方向进入电芯底面,示例性的:分水 管既可为电池冷却板冲压形成的流道,也可为由尼龙或橡胶等连接的管路;冷却通道与分水管连接,其上布置有电芯,实现对电芯的冷却或加热;
出水口和进水口与分水管连接,是电池冷却板对外的接口,共同形成电池冷却板内液体流动的回路,其上的温度传感器采集进入和/或流出电池冷却板的液体温度。
电磁阀3为两位四通电磁阀,电磁阀3一侧的两个通道分别与电池冷却板的出水口和进水口相连,另一侧的两个通道与热管理装置的外部水口相连;电磁阀3接收电池管理系统C的控制,根据电池管理系统的指令,实现四通阀两个位置的切换。
冷却管路连接电磁阀3与冷却板1,形成可换流向的热管理装置的液体回路。
电池箱体内固定有热管理装置、电芯4和电池管理系统C;电芯4下表面与冷却板1的冷却通道接触,实现对电芯4的冷却和加热。
电池管理系统C采集电池冷却板1上进水口和/或出水口处温度传感器的温度,以及电芯温度,对热管理装置的四通阀实施控制。
热管理方法:包括当对电芯进行冷却时,由于电池箱体中部电芯的产热聚集原因,液体需要依次对中部电芯和边缘电芯进行冷却,此时电池管理系统对电磁阀发出控制指令,实现四通阀位置的切换;当对电芯进行加热时,由于电池箱体边缘电芯的热量散失原因,液体需要依次对边缘电芯和中部电芯进行加热,此时电池管理系统对电磁阀发出控制指令,实现四通阀位置的切换。
如图4和图5所示,本实施例的工作原理为:
初始状态时,电磁阀3置于第一位置a,外部冷却液经由电磁阀3和冷却管路2,进入第一分水管11,通过冷却板1对动力电池进行冷却降温或加 热升温;随后冷却液自第二分水管12经由冷却管路2流出电磁阀3的通道返回至换热器4,完成冷却系统的循环。
当位于冷却管路进出水口处的电芯长期处于不同冷却温度的情况下时,两处电芯的性能衰减不同;此时为平衡电芯寿命衰减状态,通过电池管理系统发送指令,将电磁阀3置于第二位置b,外部冷却液经由电磁阀3和冷却管路2,进入第二分水管12,通过冷却板1对动力电池进行冷却降温或加热升温;随后冷却液自第一分水管11经由冷却管路2流出电磁阀3的通道返回至换热器4,完成冷却系统的循环,从而实现均衡冷却系统的效果。
另一种可能的具体实施方式如下:夏季车辆行驶时,位于电池包内侧的电芯,其热量容易形成聚集,不易向周边环境扩散,温度相对电池包外侧的电芯较高,此时冷却液按照图4的流向,有利于电池包整体的冷却和电芯间温度均衡。
冬季车辆行驶时,位于电池包外侧的电芯通过电池箱体受到外界冷空气对流的影响,其热量容易散失,温度相对电池包内侧的电芯较低,此时冷却液流道按照图5的的流向,有利于电池包整体的加热和电芯间温度均衡。
如图6所示,本发明还公开了与动力电池控制方法、系统、装置相对应的电子设备和存储介质:
一种电子设备,包括:处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;存储器中存储有计算机程序,当计算机程序被处理器执行时,使得处理器执行动力电池温度控制方法的步骤。
一种计算机可读存储介质,其存储有可由电子设备执行的计算机程序,当计算机程序在电子设备上运行时,使得电子设备执行动力电池温度控制方法的步骤。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
电子设备包括硬件层,运行在硬件层之上的操作系统层,以及运行在操作系统上的应用层。该硬件层包括中央处理器(CPU,Central Processing Unit)、内存管理单元(MMU,Memory Management Unit)和内存等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现电子设备控制的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。并且在本发明实施例中该电子设备可以是智能手机、平板电脑等手持设备,也可以是桌面计算机、便携式计算机等电子设备,本发明实施例中并未特别限定。
本发明实施例中的电子设备控制的执行主体可以是电子设备,或者是电子设备中能够调用程序并执行程序的功能模块。电子设备可以获取到存储介质对应的固件,存储介质对应的固件由供应商提供,不同存储介质对应的固件可以相同可以不同,在此不做限定。电子设备获取到存储介质对应的固件后,可以将该存储介质对应的固件写入存储介质中,具体地是往该存储介质中烧入该存储介质对应固件。将固件烧入存储介质的过程可以采用现有技术实现,在本发明实施例中不做赘述。
电子设备还可以获取到存储介质对应的重置命令,存储介质对应的重置命令由供应商提供,不同存储介质对应的重置命令可以相同可以不同,在此不做限定。
此时电子设备的存储介质为写入了对应的固件的存储介质,电子设备可以在写入了对应的固件的存储介质中响应该存储介质对应的重置命令,从而 电子设备根据存储介质对应的重置命令,对该写入对应的固件的存储介质进行重置。根据重置命令对存储介质进行重置的过程可以现有技术实现,在本发明实施例中不做赘述。
本发明还公开了一种车辆,车辆中设置有动力电池温度控制系统和/或动力电池温度控制装置,还包括:
电子设备,用于实现动力电池温度控制方法;
处理器,所述处理器运行程序,当所述程序运行时,对于从所述电子设备输出的数据动力电池温度控制方法的步骤;
存储介质,用于存储程序,所述程序在运行时,对于从电子设备输出的数据执行动力电池温度控制方法的步骤。
在本实施例的车辆中设置有动力电池温度控制系统和/或动力电池温度控制装置,无论在炎热的夏季还是寒冷的冬季,均能够结合加热工况和冷却工况对冷却液的液路流向进行动态控制,延长了电芯的寿命。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非被特定定义,否则不会用理想化或过于正式的含义来解释。
需要说明的是,本说明书与权利要求中使用了某些词汇来指称特定元件。本领域技术人员应可以理解,车辆制造商可能会用不同名词来称呼同一个元件。本说明书与权利要求并不以名词的差异来作为区分元件的方式,而是以元件在功能上的差异作为区分的准则。如通篇说明书及权利要求当中所提及的“包含”或“包括”为一开放式用语,故其应被理解成“包括但不限定于”。后续将对实施本发明的较佳实施方式进行描述说明,但是所述说明是 以说明书的一般原则为目的,并非用于限定本发明的范围。本发明的保护范围当根据其所附的权利要求所界定者为准。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施方式或者实施方式的某些部分所述的方法。
本发明可用于众多通用或专用的计算系统环境或配置中,例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本发明,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
在本发明所提供的几个实施例中,应该理解到,所揭示的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和框图显示了根据本发明的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,由所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本发明各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
本领域技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括相应的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备 的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括相应的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的分发消息的设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
另外,为简化说明和讨论,并且为了不会使本说明书一个或多个实施例难以理解,在所提供的附图中可以示出或可以不示出与集成电路(IC)芯片和其它部件的公知的电源/接地连接。此外,可以以框图的形式示出装置,以便避免使本说明书一个或多个实施例难以理解,并且这也考虑了以下事实,即关于这些框图装置的实施方式的细节是高度取决于将要实施本说明书一个或多个实施例的平台的(即,这些细节应当完全处于本领域技术人员的理解范围内)。在阐述了具体细节(例如,电路)以描述本公开的示例性实施例的情况下,对本领域技术人员来说显而易见的是,可以在没有这些具体细节的 情况下或者这些具体细节有变化的情况下实施本说明书一个或多个实施例。因此,这些描述应被认为是说明性的而不是限制性的。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种动力电池温度控制方法,其特征在于,具体包括:
    采集冷却板出水口和/或入水口处的温度,采集电池包内的电芯温度;
    在动力电池电芯加热工况下,切换电磁阀至第一位置,控制冷却液的液路流向为:先两侧流道,后中间流道;
    在动力电池电芯冷却工况下,切换电磁阀至第二位置,控制冷却液的液路流向为:先中间流道,后两侧流道。
  2. 根据权利要求1所述的动力电池温度控制方法,其特征在于,在电池包内冷热不均的工况下,通过切换电磁阀的第一、二位置,改变冷却液的流向。
  3. 一种动力电池温度控制系统,其特征在于,具体包括:
    温度采集模块,采集冷却板出水口和/或入水口处的温度,采集电池包内的电芯温度;
    电芯加热工况冷却液控制模块,用于在动力电池电芯加热工况下,切换电磁阀至第一位置,控制冷却液的液路流向为:先两侧流道,后中间流道;
    电芯冷却工况冷却液控制模块,用于在动力电池电芯冷却工况下,切换电磁阀至第二位置,控制冷却液的液路流向为:先中间流道,后两侧流道。
  4. 根据权利要求3所述的动力电池温度控制系统,其特征在于,还包括:电池包冷热不均工况冷却液控制模块,用于在电池包内冷热不均的工况下,通过切换电磁阀的第一、二位置,改变冷却液的流向。
  5. 一种动力电池温度控制装置,其特征在于,具体包括:换热器、电磁阀和冷却板,所述换热器与电磁阀之间连接有水泵,所述电磁阀和冷却板之间连接有冷却管路,所述电磁阀与电池管理系统相连,电磁阀根据所述电池管理系统的指令,切换电磁阀的第一、二位置,所述冷却板的表面布置有电芯。
  6. 根据权利要求5所述的动力电池温度控制装置,其特征在于,所述电磁阀为四通电磁阀。
  7. 根据权利要求5所述的动力电池温度控制装置,其特征在于,在所述冷却板内设置有用于进行液体分配的第一分水管和第二分水管。
  8. 一种电子设备,其特征在于,包括:处理器、通信接口、存储器和通信总线,其中,处理器,通信接口,存储器通过通信总线完成相互间的通信;所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,使得所述处理器执行权利要求1或2所述方法的步骤。
  9. 一种计算机可读存储介质,其特征在于,其存储有可由电子设备执行的计算机程序,当所述计算机程序在所述电子设备上运行时,使得所述电子设备执行权利要求1或2所述方法的步骤。
  10. 一种车辆,其特征在于,所述车辆中设置有动力电池温度控制系统和/或动力电池温度控制装置,还包括:
    电子设备,用于实现动力电池温度控制方法;
    处理器,所述处理器运行程序,当所述程序运行时,对于从所述电子设备输出的数据执行权利要求1或2所述的动力电池温度控制方法的步骤;
    存储介质,用于存储程序,所述程序在运行时,对于从电子设备输出的数据执行权利要求1或2所述的动力电池温度控制方法的步骤。
PCT/CN2023/090273 2022-09-27 2023-04-24 一种动力电池温度控制方法、系统、装置和车辆 WO2024066315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211183097.5A CN115882121A (zh) 2022-09-27 2022-09-27 一种动力电池温度控制方法、系统、装置和车辆
CN202211183097.5 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024066315A1 true WO2024066315A1 (zh) 2024-04-04

Family

ID=85770077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090273 WO2024066315A1 (zh) 2022-09-27 2023-04-24 一种动力电池温度控制方法、系统、装置和车辆

Country Status (2)

Country Link
CN (1) CN115882121A (zh)
WO (1) WO2024066315A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115882121A (zh) * 2022-09-27 2023-03-31 中国第一汽车股份有限公司 一种动力电池温度控制方法、系统、装置和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207265190U (zh) * 2017-08-11 2018-04-20 宝沃汽车(中国)有限公司 电池包的换热装置、动力电池包以及电动车
CN109818112A (zh) * 2019-01-24 2019-05-28 浙江新吉奥汽车有限公司 一种可换流向的动力电池液冷板及其实现方法
CN111244572A (zh) * 2020-01-22 2020-06-05 恒大新能源汽车科技(广东)有限公司 电池包温差控制系统、控制方法及电子设备
CN211265669U (zh) * 2019-12-25 2020-08-14 合肥国轩高科动力能源有限公司 一种全并联的动力电池冷却系统
US20210402842A1 (en) * 2020-06-30 2021-12-30 Woven Planet North America, Inc. Vehicle processing component cooling systems and methods
CN115882121A (zh) * 2022-09-27 2023-03-31 中国第一汽车股份有限公司 一种动力电池温度控制方法、系统、装置和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207265190U (zh) * 2017-08-11 2018-04-20 宝沃汽车(中国)有限公司 电池包的换热装置、动力电池包以及电动车
CN109818112A (zh) * 2019-01-24 2019-05-28 浙江新吉奥汽车有限公司 一种可换流向的动力电池液冷板及其实现方法
CN211265669U (zh) * 2019-12-25 2020-08-14 合肥国轩高科动力能源有限公司 一种全并联的动力电池冷却系统
CN111244572A (zh) * 2020-01-22 2020-06-05 恒大新能源汽车科技(广东)有限公司 电池包温差控制系统、控制方法及电子设备
US20210402842A1 (en) * 2020-06-30 2021-12-30 Woven Planet North America, Inc. Vehicle processing component cooling systems and methods
CN115882121A (zh) * 2022-09-27 2023-03-31 中国第一汽车股份有限公司 一种动力电池温度控制方法、系统、装置和车辆

Also Published As

Publication number Publication date
CN115882121A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US10321610B2 (en) Free cooling in high humidity environments
US10194562B2 (en) System and method for mitigating condensation in a liquid cooled information handling system
WO2024066315A1 (zh) 一种动力电池温度控制方法、系统、装置和车辆
CN102893273B (zh) 基于资源的自适应服务器加载
US9107327B2 (en) Data center cooling method
CN206134866U (zh) 一种中低速新能源电动汽车的bms安全管理系统装置
US20120123595A1 (en) Controlling fluid coolant flow in cooling systems of computing devices
CN110600831A (zh) 电池包的温度控制方法、系统、电子设备和存储介质
WO2022007683A1 (zh) 新能源车辆废热回收系统及方法、新能源车辆
US20220326759A1 (en) Method for Adjusting Power of Processor and Apparatus
WO2021120815A1 (zh) 车辆的热管理系统和车辆
JP6300969B2 (ja) ラックシステムにおける最適化、および、自動制御のファン制御メカニズム
US9753773B1 (en) Performance-based multi-mode task dispatching in a multi-processor core system for extreme temperature avoidance
CN111854209B (zh) 一种双温控冷却系统及其控制方法、双温控冷却机
CN112038731A (zh) 电池温度控制方法、电池管理控制器、系统及汽车
CN110571454B (zh) 一种防止加湿气体冷凝的系统
US20090217066A1 (en) Controlling connection status of network adapters
CN113972420B (zh) 一种电池热管理控制方法、系统及存储介质
CN106762771B (zh) 风扇控制系统、散热系统以及风扇控制方法
CN114188566A (zh) 热管理系统的控制方法、系统及热管理系统、燃料电池
CN114665189A (zh) 车辆的热管理方法以及热管理装置
US10780982B2 (en) Cooling systems having inline supplemental ram air heat exchangers
US20220283079A1 (en) Assessment of humidity and non-humidity driven corrosion risk
CN220865157U (zh) 车辆热管理系统和自动驾驶车辆
CN115972986B (zh) 用于热管理系统的控制方法、热管理系统及控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869571

Country of ref document: EP

Kind code of ref document: A1