WO2024066242A1 - 驾驶员操作水平评价方法、装置、工程车辆及存储介质 - Google Patents

驾驶员操作水平评价方法、装置、工程车辆及存储介质 Download PDF

Info

Publication number
WO2024066242A1
WO2024066242A1 PCT/CN2023/083132 CN2023083132W WO2024066242A1 WO 2024066242 A1 WO2024066242 A1 WO 2024066242A1 CN 2023083132 W CN2023083132 W CN 2023083132W WO 2024066242 A1 WO2024066242 A1 WO 2024066242A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaluation
driver
change information
evaluation result
action signal
Prior art date
Application number
PCT/CN2023/083132
Other languages
English (en)
French (fr)
Inventor
刘效忠
宋海楠
Original Assignee
三一重机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一重机有限公司 filed Critical 三一重机有限公司
Publication of WO2024066242A1 publication Critical patent/WO2024066242A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means

Definitions

  • the present application relates to the technical field of engineering machinery, and in particular to a method and device for evaluating a driver's operating level, an engineering vehicle and a storage medium.
  • the driver's operating level will affect the overall stability of the engineering vehicles, the construction efficiency of the engineering vehicles, etc. For example, if the driver's operating level is low, it is easy to cause safety accidents of the engineering vehicles and it is also easy to cause low construction efficiency of the engineering vehicles. Therefore, it is necessary to evaluate the driver's operating level during the operation of the engineering vehicles and determine the driver's specific operating level.
  • a camera is installed on the engineering vehicle to take pictures of the actions of the engineering vehicle during operation.
  • the driver's operating level is then analyzed through the captured pictures and deep learning models. This not only increases the hardware cost, but also requires pre-training of the learning model.
  • the evaluation process is more complicated, time-consuming and labor-intensive.
  • the embodiments of the present application provide a driver operation level evaluation method, device, engineering vehicle and storage medium, which can effectively solve the technical problems of increased hardware costs, complex evaluation process, and time-consuming and labor-intensive.
  • a method for evaluating a driver's operation level comprising: obtaining change information of an action signal within a preset time period; wherein the action signal represents a signal generated when an input component and/or an execution component moves during the driver's operation; based on the change information, obtaining an evaluation result of at least one operation evaluation factor; wherein the at least one operation evaluation factor includes at least one of the smoothness of the input component operation process, the frustration of the execution component movement process, the fuel consumption of the compound action execution process, and the operating efficiency; and based on the evaluation result of at least one operation evaluation factor, outputting a final evaluation result of evaluating the driver's operation level.
  • the driver operation level evaluation method can detect through the original sensors on the engineering vehicle during the process of obtaining the change information of the action signal without adding additional hardware, which effectively solves the problem of needing to add additional shooting devices in related technologies.
  • the driver operation level evaluation method obtains the final evaluation result through the evaluation result of at least one operation evaluation factor.
  • the evaluation process is simple and convenient, and there is no need to pre-train the learning model, which saves time and effort.
  • obtaining the change information of the action signal within the preset time period includes: obtaining the change information of a single input action signal within the first time period; wherein the single input action signal represents the control signal generated by the input component during one operation; and obtaining at least one according to the change information.
  • the evaluation results of the operation evaluation factors include: obtaining the evaluation results of the smoothness of the operation process of the input component according to the change information of the single input action signal.
  • the first time period includes multiple first unit times; based on the change information of a single input action signal, an evaluation result of evaluating the smoothness of the input component operation process is obtained, including: based on the change information of the single input action signal, calculating the change rate of the single input action signal in each first unit time; and based on the change rate of the single input action signal in each first unit time, obtaining the evaluation result of evaluating the smoothness of the input component operation process.
  • the first time period can be divided into a plurality of first unit times, and then the change information of a single input action signal can be quantified and calculated through the change rate, so as to more intuitively reflect the operation level of the driver.
  • obtaining the change information of the action signal within a preset time period includes: obtaining the change information of a single execution action signal within a second time period; wherein the single execution action signal represents the posture signal generated by the execution component during a movement process; based on the change information, obtaining the evaluation result of at least one operation evaluation factor includes: based on the change information of the single execution action signal, obtaining the evaluation result of evaluating the frustration of the movement process of the execution component.
  • the second time period includes multiple second unit times; based on the change information of a single execution action signal, an evaluation result of evaluating the frustration of the movement process of the execution component is obtained, including: based on the change information of the single execution action signal, calculating the change rate of the single execution action signal in each second unit time; and based on the change rate of the single execution action signal in each second unit time, obtaining the evaluation result of evaluating the frustration of the movement process of the execution component.
  • the second time period can be divided into a plurality of second unit times, and then the change information of a single execution action signal can be quantified and calculated through the change rate, so as to more intuitively reflect the operation level of the driver.
  • obtaining change information of an action signal within a preset time period includes: obtaining change information of a compound input action signal within a third time period; wherein the compound input action signal represents a compound control signal generated during a process of performing multiple compound operations on an input component; and obtaining an evaluation result of at least one operation evaluation factor based on the change information includes: obtaining an evaluation result of the fuel consumption of the compound action execution process based on the change information of the compound input action signal.
  • the evaluation result of the fuel consumption of the composite action execution process can be obtained separately.
  • the third time period includes multiple third unit times; the driver operation level evaluation method also includes: obtaining the engine fuel consumption in multiple third unit times; obtaining the evaluation result of the fuel consumption of the composite action execution process according to the change information of the composite input action signal, including: obtaining multiple composite time periods in which the composite input action is in a synchronous action state according to the change information of the composite input action signal; wherein each composite time period includes at least a part of the third unit time; based on Based on at least part of the engine fuel consumption in the third unit time, the average fuel consumption in each compound time period is obtained; and based on the average fuel consumption in each compound time period, an evaluation result of the fuel consumption of the compound action execution process is obtained.
  • the composite time period can be divided into a plurality of third unit times, and then the average fuel consumption in the composite time period is calculated, and the value of the average fuel consumption is used to reflect the evaluation result of the fuel consumption of the composite action execution process.
  • the evaluation result of at least one operation evaluation factor includes multiple evaluation results
  • outputting a final evaluation result for evaluating the driver's operation level includes: based on the multiple operation evaluation factors, obtaining weight values corresponding one-to-one to the multiple evaluation results; and calculating and outputting the final evaluation result based on the multiple evaluation results and the weight values corresponding one-to-one to the multiple evaluation results.
  • the driver operation level evaluation method also includes: controlling the display screen to display the final evaluation result; and controlling the display screen to display operation suggestion information based on the final evaluation result.
  • the displayed final evaluation results can facilitate the driver to check his own operating level, and the driver can also make targeted improvements based on the operating suggestion information to improve the operating level, which is conducive to the driver to develop good operating habits.
  • the driver operation level evaluation method also includes: uploading the final evaluation result to the cloud, so as to summarize the final evaluation results of all drivers in the cloud to obtain the ranking of each driver.
  • a driver operation level evaluation method is applied to an excavator, the input component includes at least one of a handle and a pedal of the excavator, and the execution component includes at least one of a dipper arm, a boom and a bucket of the excavator.
  • a device for evaluating a driver's operation level comprising: a first acquisition module, configured to acquire change information of an action signal within a preset time period; wherein the action signal represents a signal generated when an input component and/or an execution component operates during the driver's operation; a first evaluation module, configured to obtain an evaluation result of at least one operation evaluation factor based on the change information; wherein at least one operation evaluation factor includes at least one of the smoothness of the input component operation process, the frustration of the execution component movement process, the fuel consumption of the compound action execution process, and the operating efficiency; and a first output module, configured to output a final evaluation result of evaluating the driver's operation level based on the evaluation result of at least one operation evaluation factor.
  • the driver operation level evaluation device obtaineds the change information of the action signal within a preset time period, and then obtains the evaluation result of at least one operation evaluation factor based on the change information, and then outputs the final evaluation result of evaluating the driver's operation level based on the evaluation result of at least one operation evaluation factor; in the process of obtaining the change information of the action signal, it can be detected by the original sensor on the engineering vehicle without adding additional hardware, which effectively solves the problem of needing to add additional shooting devices in related technologies; it obtains the final evaluation result through the evaluation result of at least one operation evaluation factor, the evaluation process is simple and convenient, and there is no need to pre-train the learning model, saving time and effort.
  • an engineering vehicle comprising: a body; and
  • the driver operation level evaluation device is arranged on the machine body.
  • the engineering vehicle provided in the embodiment of the present application has all the functions of the aforementioned driver operation level evaluation device, which obtains the change information of the action signal within a preset time period, and then obtains the evaluation result of at least one operation evaluation factor based on the change information, and then outputs the final evaluation result of evaluating the driver's operation level based on the evaluation result of at least one operation evaluation factor; in the process of obtaining the change information of the action signal, it can be detected through the original sensor on the engineering vehicle without adding additional hardware, which effectively solves the problem of needing to add additional shooting devices in related technologies; it obtains the final evaluation result through the evaluation result of at least one operation evaluation factor, and the evaluation process is simple and convenient, and there is no need to pre-train the learning model, saving time and effort.
  • an engineering vehicle comprising: a body; and an electronic device, disposed on the body, the electronic device being configured to execute the driver operation level evaluation method as described in any of the preceding aspects.
  • the engineering vehicle provided in the embodiment of the present application obtains change information of the action signal within a preset time period, and then obtains an evaluation result of at least one operation evaluation factor based on the change information, and then outputs a final evaluation result of evaluating the driver's operation level based on the evaluation result of at least one operation evaluation factor; in the process of obtaining the change information of the action signal, it can be detected by the original sensor on the engineering vehicle without adding additional hardware, which effectively solves the problem of needing to add additional shooting devices in related technologies; the final evaluation result is obtained through the evaluation result of at least one operation evaluation factor, the evaluation process is simple and convenient, and there is no need to pre-train the learning model, saving time and effort.
  • a storage medium which stores a computer program, and the computer program is configured to execute the driver operation level evaluation method as described in any of the previous aspects.
  • the storage medium provided in the embodiment of the present application obtains change information of the action signal within a preset time period, and then obtains an evaluation result of at least one operation evaluation factor based on the change information, and then outputs a final evaluation result of evaluating the driver's operation level based on the evaluation result of at least one operation evaluation factor; in the process of obtaining the change information of the action signal, it can be detected by the original sensor on the engineering vehicle without adding additional hardware, which effectively solves the problem of needing to add additional shooting devices in related technologies; it obtains the final evaluation result through the evaluation result of at least one operation evaluation factor, and the evaluation process is simple and convenient, and there is no need to pre-train the learning model, which saves time and effort.
  • FIG1 is a flow chart of a method for evaluating a driver's operating level provided by an exemplary embodiment of the present application.
  • FIG2 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application.
  • FIG3 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application.
  • FIG. 4 is a comparison diagram of input action signal change curves between a driver with a higher operating level and a driver with a lower operating level provided by an exemplary embodiment of the present application.
  • FIG5 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application.
  • FIG6 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application.
  • FIG. 7 is a comparison diagram of execution action signal change curves between a driver with a higher operating level and a driver with a lower operating level provided by an exemplary embodiment of the present application.
  • FIG8 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application.
  • FIG. 9 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application.
  • FIG. 10 is a variation curve diagram of a composite input action signal provided by an exemplary embodiment of the present application.
  • FIG. 11 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application.
  • FIG12 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application.
  • FIG. 13 is a structural block diagram of a driver operation level evaluation device provided by an exemplary embodiment of the present application.
  • FIG. 14 is a structural block diagram of a driver operation level evaluation device provided by another exemplary embodiment of the present application.
  • FIG. 15 is a structural block diagram of an engineering vehicle provided by an exemplary embodiment of the present application.
  • FIG. 16 is a structural block diagram of an engineering vehicle provided by another exemplary embodiment of the present application.
  • FIG. 17 is a structural block diagram of an electronic device provided by an exemplary embodiment of the present application.
  • the driver's operating level will affect the overall stability of the engineering vehicles and the construction efficiency of the engineering vehicles. Therefore, in order to reduce the probability of safety accidents of engineering vehicles and to improve the construction efficiency of engineering vehicles, it is necessary to evaluate the driver's operating level and determine whether the driver's operating level meets the operating requirements.
  • the feature points of the execution component are extracted based on the information of the intercepted picture.
  • the deep learning model identifies the operating state of the execution component through the feature points, thereby evaluating the driver's operating level.
  • the embodiments of the present application provide a method, device, engineering vehicle and storage medium for evaluating the operation level of a driver, which can effectively solve the technical problems of increased hardware cost, complicated evaluation process, and time-consuming and labor-intensive.
  • the method, device, engineering vehicle and storage medium for evaluating the operation level of a driver are introduced in detail below.
  • FIG1 is a flow chart of a method for evaluating a driver's operating level provided by an exemplary embodiment of the present application.
  • the method for evaluating a driver's operating level can be applied to engineering vehicles such as excavators, cranes, and pump trucks.
  • the method for evaluating a driver's operating level provided by an embodiment of the present application may include the following contents.
  • S210 Acquire change information of the motion signal within a preset time period.
  • the action signal can be understood as the signal generated when the input component and/or the execution component moves during the driver's operation.
  • a corresponding control signal can be generated; after the driver operates the input component, the execution component moves, and the execution component generates a corresponding posture signal during the action.
  • the change of the motion signal can be detected by the existing detection components such as the ammeter, voltmeter, hydraulic pressure meter, displacement sensor, angle sensor, etc. in the engineering vehicle, and the controller can obtain the change information of the motion signal within the preset time period through these detection components. In this way, before evaluating the driver's operation level, the change information of the motion signal can be obtained without adding additional hardware to the engineering vehicle, which effectively solves the problem of additional hardware cost.
  • the existing detection components such as the ammeter, voltmeter, hydraulic pressure meter, displacement sensor, angle sensor, etc.
  • the input components may include a handle, a pedal, etc.
  • the execution components may include a boom, a movable arm, a bucket, etc.
  • the change information can be understood as a plurality of data of the action signal that changes over time within a preset time period.
  • the change information can be displayed in the form of an icon.
  • the preset time period can be of different lengths.
  • the preset time period can include a first time period and a second time period.
  • the change information of the action signal within the first time period can be obtained;
  • the change information of the action signal within the second time period can be obtained;
  • the span of the first time period and the second time period can be the same or different.
  • S220 Obtaining an evaluation result of at least one operation evaluation factor according to the change information.
  • the at least one operation evaluation factor may include at least one of the smoothness of the operation process of the input component, the frustration of the movement process of the execution component, the fuel consumption of the compound action execution process, and the working efficiency.
  • the smoothness of the input component operation process if the smoothness of the input component operation process is not good, it will reflect that the driver has problems such as violent operation and unstable operation when operating the input component, which will cause the engineering vehicle to shake or even be damaged. Therefore, the evaluation result of the smoothness of the input component operation process can be used as a factor in evaluating the driver's operating level.
  • the jerkingness of the movement of the executing component if the jerkingness of the movement of the executing component is large, it will cause instability in the working process of the engineering vehicle and pose a safety risk. The driver will also feel a large sense of jerking, affecting work efficiency. Therefore, the jerkingness of the movement of the executing component can also be used as a factor in evaluating the driver's operating level.
  • the fuel consumption during the execution of a compound action may reflect that the driver has problems such as misjudgment or poor timing in performing the compound action when performing the compound action. Therefore, the fuel consumption during the execution of the compound action may also be used as a factor in evaluating the driver's operating level.
  • the operating efficiency of the engineering vehicle may also reflect that the driver is unskilled in operation, has a low operating level, and so on. Therefore, the operating efficiency may also be used as a factor for evaluating the driver's operating level.
  • S230 Outputting a final evaluation result of evaluating the driver's operation level according to the evaluation result of at least one operation evaluation factor.
  • the evaluation result of at least one operation evaluation factor is obtained by evaluating different types of operation evaluation factors. Considering that different operation evaluation factors can reflect the driver's operation level to different degrees, the evaluation result of at least one operation evaluation factor can be integrated to output the final evaluation result of evaluating the driver's operation level.
  • the final evaluation result can be directly calculated according to the change information of the action signal.
  • the evaluation process is simple and convenient, and there is no need to pre-train the learning model, which saves time and effort.
  • the final evaluation result may be output in the form of a score or a grade.
  • the final evaluation result may be outputted through a display screen or through voice broadcast.
  • the driver operation level evaluation method obtaineds the change information of the action signal within a preset time period, and then obtains the evaluation result of at least one operation evaluation factor based on the change information, and then outputs the final evaluation result of evaluating the driver's operation level based on the evaluation result of at least one operation evaluation factor; in the process of obtaining the change information of the action signal, it can be detected through the original sensors on the engineering vehicle without adding additional hardware, which effectively solves the problem of adding additional shooting devices; the final evaluation result is obtained through the evaluation result of at least one operation evaluation factor, the evaluation process is simple and convenient, and there is no need to pre-train the learning model, saving time and effort.
  • FIG2 is a flow chart of a method for evaluating a driver's operation level provided by another exemplary embodiment of the present application.
  • the method may be executed by a processor of an engineering vehicle, as shown in FIG2 , step S210 may include:
  • S211 Acquire change information of a single input action signal within a first time period.
  • step S220 may include:
  • S221 Obtaining an evaluation result of the smoothness of the input component operation process based on the change information of the single input action signal.
  • the input action signal can be understood as a control signal generated during the operation of the input component.
  • the control signal changes according to factors such as the operation speed of the input component and the operation direction of the input component.
  • the evaluation result of the smoothness of the operation process of the input component can be obtained according to the change information of the single input action signal.
  • a single input action signal may be a signal generated during one operation of the input component.
  • the input action signal may include a control signal for operating the left handle to complete left rotation, a control signal for operating the left handle to complete right rotation, a control signal for operating the left handle to complete arm digging, a control signal for operating the left handle to complete arm unloading, a control signal for operating the right handle to complete arm lifting, a control signal for operating the right handle to complete arm lowering, a control signal for operating the right handle to complete bucket digging, and a control signal for operating the right handle to complete bucket unloading.
  • a single input action signal is any one of the control signals for operating the left handle to complete left rotation, the control signal for operating the left handle to complete right rotation, the control signal for operating the left handle to complete arm digging, the control signal for operating the left handle to complete arm unloading, the control signal for operating the right handle to complete arm lifting, the control signal for operating the right handle to complete arm lowering, the control signal for operating the right handle to complete bucket digging, and the control signal for operating the right handle to complete bucket unloading.
  • the input action signal can be a control current signal, a control voltage signal, etc.
  • the input action signal may be a hydraulic signal, a main pump pressure signal, or the like.
  • FIG3 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application. Executed by the processor of the engineering vehicle, as shown in FIG3 , step S221 may include the following contents.
  • S2211 Calculate the change rate of the single input action signal in each first unit time according to the change information of the single input action signal.
  • the first time period may include multiple first unit times. According to the change information of a single input action signal in the first time period, the change amplitude of the single input action signal in each first unit time can be obtained, thereby calculating the change rate of the single input action signal in each first unit time.
  • the first unit time can be set according to actual conditions, and this application does not make any specific limitation on the first unit time.
  • S2212 Obtain an evaluation result of the smoothness of the input component operation process based on the change rate of the single input action signal in each first unit time.
  • FIG4 is a comparison diagram of the change curves of a single input action signal between a driver with a higher operating level and a driver with a lower operating level provided by an exemplary embodiment of the present application.
  • the greater the rate of change of the single input action signal in each first unit time the area indicated by the arrow A in FIG4), the more intensely the driver operates the input component, the more likely the engineering vehicle is to vibrate and the more likely it is to be damaged. Therefore, under the same situation, if the number of areas indicated by the arrow A is greater, it means that the driver's operating level is lower, and correspondingly, the evaluation result of the smoothness of the input component operation process is worse.
  • FIG5 is a flow chart of a method for evaluating a driver's operation level provided by another exemplary embodiment of the present application.
  • the method may be executed by a processor of an engineering vehicle.
  • step S210 may include:
  • S212 Acquire change information of a single execution action signal within a second time period.
  • step S220 may include:
  • the execution action signal can be understood as a posture signal generated by the execution component during the movement process.
  • the posture signal changes according to factors such as the movement speed and movement direction of the execution component.
  • the evaluation result of the frustration of the movement process of the execution component can be obtained according to the change information of the single execution action signal.
  • a single execution action signal may be a signal generated during a process of performing an action operation on the execution component.
  • the execution action signal may include a posture signal generated during the movement of the boom, a posture signal generated during the raising or lowering of the arm, and a posture signal generated during the bucket excavation and unloading process.
  • a single execution action signal is any one of the posture signals generated during the movement of the boom, the posture signal generated during the raising or lowering of the arm, and the posture signal generated during the bucket excavation and unloading process.
  • each actuator of the engineering vehicle is equipped with an angle sensor, and the change information of the execution action signal can be obtained by detecting the change of the posture signal obtained by the angle sensors on different actuators.
  • FIG6 is a flow chart of a method for evaluating a driver's operating level provided by another exemplary embodiment of the present application. Executed by the processor of the engineering vehicle, as shown in FIG6 , step S222 may include the following contents.
  • S2221 Calculate the change rate of the single execution action signal in each second unit time according to the change information of the single execution action signal.
  • the second time period includes multiple second unit times. According to the change information of a single execution action signal in each second unit time, the change amplitude of the single execution action signal in each second unit time can be obtained, thereby calculating the change rate of the single execution action signal in each second unit time.
  • the second unit time can be set according to actual conditions, and this application does not specifically limit the second unit time.
  • S2222 Obtain an evaluation result of the frustration of the movement process of the execution component based on the change rate of the single execution action signal in each second unit time.
  • FIG7 is a comparison diagram of the change curves of a single execution action signal between a driver with a higher operating level and a driver with a lower operating level provided by an exemplary embodiment of the present application.
  • the greater the rate of change of the single execution action signal in each second unit time the area indicated by the arrow B in FIG7), the more unstable the movement of the execution component is, and the more likely it is to cause a safety accident. Therefore, under the same circumstances, if the number of areas indicated by the arrow B is greater, it means that the driver's operating level is also lower, and correspondingly, the evaluation result of evaluating the frustration of the movement process of the execution component is also worse.
  • FIG8 is a flow chart of a method for evaluating a driver's operation level provided by another exemplary embodiment of the present application.
  • the method may be executed by a processor of an engineering vehicle.
  • step S210 may include:
  • step S220 may include:
  • the composite input action signal can be understood as a composite control signal generated during the process of performing multiple composite operations on the input component.
  • the composite input action changes according to factors such as the operation speed of the input component and the operation direction of the input component.
  • the evaluation result of the fuel consumption during the composite action execution process can be obtained according to the change information of the composite input action signal.
  • the composite input action signal may be a composite control signal generated during a two-action composite operation on the input component, or may be a composite control signal generated during a three-action composite operation on the input component.
  • the composite input action signal can be a composite signal of at least any two of the control signals of operating the left handle to complete left rotation, operating the left handle to complete right rotation, operating the left handle to complete dipper arm digging, operating the left handle to complete dipper arm unloading, operating the right handle to complete boom lifting, operating the right handle to complete boom lowering, operating the right handle to complete bucket digging, and operating the right handle to complete bucket unloading.
  • the composite input action signal may be a composite signal between multiple control current signals or a composite signal between multiple control voltage signals.
  • the composite input action signal may be a composite signal of a plurality of hydraulic signals.
  • FIG9 is a flow chart of a method for evaluating a driver's operation level provided by another exemplary embodiment of the present application.
  • the method may be executed by a processor of an engineering vehicle.
  • the method for evaluating a driver's operation level may further include:
  • the fuel consumption of the engine in the third unit time can be obtained through the engine operation data.
  • the third time period can include multiple third unit times, that is, the third time period can be divided into multiple third unit times, so that within the third time period, one piece of engine fuel consumption data can be obtained every third unit time.
  • the third unit time may be 100 ms, 200 ms, etc.
  • step S223 may include the following content.
  • S2231 Obtain multiple composite time periods when the composite input action is in a synchronous action state according to the change information of the composite input action signal.
  • FIG10 is a graph showing a change in a composite input action signal provided by an exemplary embodiment of the present application.
  • the area indicated by arrow C in FIG10 can be understood as a composite time period.
  • the slewing mechanism left rotation action is performed while the bucket unloading action is performed.
  • each composite time period includes at least a portion of the third unit time.
  • S2232 Obtain an average fuel consumption in each composite time period according to at least a portion of the engine fuel consumption in the third unit time.
  • the engine fuel consumption in multiple third unit times corresponding to each compound time period is summed to obtain the total fuel consumption in each compound time period, and then the total fuel consumption in each compound time period is divided by the length of the corresponding compound time period to obtain the average fuel consumption in each compound time period.
  • S2233 Obtaining an evaluation result of the fuel consumption of the composite action execution process according to the average fuel consumption in each composite time period.
  • the evaluation result of the fuel consumption of the compound action execution process is better; if the average fuel consumption in each compound time period is high, the evaluation result of the fuel consumption of the compound action execution process is worse.
  • the correspondence between the average fuel consumption and the score can be pre-set. After the average fuel consumption is determined, the corresponding score can be obtained according to the pre-set correspondence, that is, the evaluation result of the fuel consumption of the execution process of the composite action can be quickly obtained.
  • the driver operation level evaluation method further includes: obtaining an evaluation result of operation efficiency.
  • the driver operation level evaluation method can be applied to an excavator by measuring the amount of material dug per bucket.
  • the net weight is used to reflect the working efficiency, and thus the working efficiency is used as one of the factors to evaluate the driver's operating level. For example, the greater the net weight of each bucket of material dug, the higher the working efficiency, and correspondingly, the better the evaluation result of the working efficiency.
  • the operation efficiency can also be reflected by the average value of the main pump pressure value within the construction time range of the engineering vehicle. For example, the larger the average value of the main pump pressure value of the engineering vehicle within the construction time range, the higher the operation efficiency, and correspondingly, the better the evaluation result of the operation efficiency.
  • step S210 may also include step S211, step S212 and step S213 at the same time, and accordingly, step S220 may also include step S221, step S222 and step S223 at the same time.
  • at least one operation evaluation factor includes three operation evaluation factors, namely, the smoothness of the operation process of the input component, the frustration of the movement process of the execution component, and the fuel consumption of the execution process of the compound action.
  • the evaluation result of at least one operation evaluation factor includes three evaluation results, namely, the evaluation result of the smoothness of the operation process of the input component, the evaluation result of the frustration of the movement process of the execution component, and the evaluation result of the fuel consumption of the execution process of the compound action.
  • the evaluation result of at least one operation evaluation factor includes multiple evaluation results, for example, the evaluation result of the smoothness of the input component operation process, the evaluation result of the frustration of the execution component movement process, the evaluation result of the fuel consumption of the compound action execution process, and the evaluation result of the working efficiency.
  • weight values corresponding to multiple operation evaluation factors can be pre-set for different operation evaluation factors, so that weight values corresponding to multiple operation evaluation factors can be obtained according to multiple operation evaluation factors. Since there is a one-to-one correspondence between multiple operation evaluation factors and multiple evaluation results, the weight values corresponding to multiple operation evaluation factors are also weight values corresponding to multiple evaluation results. Finally, according to multiple evaluation results and their corresponding weight values, the final evaluation result calculated can more accurately reflect the driver's operation level.
  • FIG12 is a flow chart of a method for evaluating a driver's operation level provided by another exemplary embodiment of the present application.
  • the method may be executed by a processor of an engineering vehicle.
  • the method for evaluating a driver's operation level may further include:
  • control display screen Based on the final evaluation result, the control display screen displays operation suggestion information.
  • control display screen displays the final evaluation results, which can facilitate the driver to check his own operating level. Moreover, the driver can also make targeted improvements based on the operating suggestion information to improve the operating level, which is conducive to the driver to develop good operating habits.
  • the driver operation level evaluation method further includes: uploading the final evaluation result to the cloud, so as to summarize the final evaluation results of all drivers in the cloud to obtain the ranking of each driver.
  • the final evaluation result of each driver's operating level can be uploaded to the cloud every day, and then all the data in the cloud can be summarized to obtain each person's ranking.
  • the impact of the part that needs to be improved on the final evaluation result after the improvement can also be provided, which effectively increases the driver's enthusiasm for subsequent improvement of the operation level.
  • FIG13 is a block diagram of a driver operation level evaluation device provided by an exemplary embodiment of the present application.
  • the driver operation level evaluation device 400 provided by the embodiment of the present application may include: a first acquisition module 410, configured to acquire change information of an action signal within a preset time period; wherein the action signal represents a signal generated when an input component and/or an execution component is in action during the driver's operation; a first evaluation module 420, configured to obtain an evaluation result of at least one operation evaluation factor according to the change information; wherein at least one operation evaluation factor includes at least one of the smoothness of the input component operation process, the frustration of the execution component movement process, the fuel consumption of the compound action execution process, and the operating efficiency; and a first output module 430, configured to output a final evaluation result of evaluating the driver's operation level according to the evaluation result of at least one operation evaluation factor.
  • the driver operation level evaluation device obtaineds the change information of the action signal within a preset time period, and then obtains the evaluation result of at least one operation evaluation factor based on the change information, and then outputs the final evaluation result of evaluating the driver's operation level based on the evaluation result of at least one operation evaluation factor; in the process of obtaining the change information of the action signal, it can be detected by the original sensor on the engineering vehicle without adding additional hardware, which effectively solves the problem of needing to add additional shooting devices in related technologies; it obtains the final evaluation result through the evaluation result of at least one operation evaluation factor, the evaluation process is simple and convenient, and there is no need to pre-train the learning model, saving time and effort.
  • FIG14 is a block diagram of a driver operation level evaluation device provided by another exemplary embodiment of the present application.
  • the first acquisition module 410 may include a second acquisition module 411 configured to obtain change information of a single input action signal within a first time period; wherein the single input action signal represents a control signal generated by the operation input component during one operation; correspondingly, the first evaluation module 420 may include a second evaluation module 421 configured to obtain an evaluation result of the smoothness of the input component operation process according to the change information of the single input action signal.
  • the second evaluation module 421 may include a first calculation module 4211, configured to calculate the change rate of the single input action signal in each first unit time based on the change information of the single input action signal; and a third evaluation module 4212, configured to obtain an evaluation result of the smoothness of the input component operation process based on the change rate of the single input action signal in each first unit time.
  • the first acquisition module 410 may include a third acquisition module 412, configured to obtain change information of a single execution action signal within a second time period; wherein the single execution action signal represents a posture signal generated by the execution component during a movement process; correspondingly, the first evaluation module 420 may include a fourth evaluation module 422, configured to obtain an evaluation result of the frustration of the movement process of the execution component based on the change information of the single execution action signal.
  • the fourth evaluation module 422 may include a second calculation module 4221, configured to calculate the change rate of the execution action signal in each second unit time based on the change information of the single execution action signal; and a fifth evaluation module 4222, configured to obtain an evaluation result of the frustration of the movement process of the execution component based on the change rate of the single execution action signal in each second unit time.
  • the first acquisition module 410 may include a fourth acquisition module 413, configured to obtain change information of the compound input action signal within a third time period; wherein the compound input action signal represents a compound control signal generated during the process of performing multiple compound operations on the input component; correspondingly, the first evaluation module 420 may include a sixth evaluation module 423, configured to obtain an evaluation result of the fuel consumption of the compound action execution process based on the change information of the compound input action signal.
  • the driver operation level evaluation device 400 may also include a fifth acquisition module 440, configured to obtain the engine fuel consumption in multiple third unit times; correspondingly, the sixth evaluation module 423 may include a selection module 4231, configured to obtain multiple composite time periods in which the composite input action is in a synchronous action state according to the change information of the composite input action signal; wherein each composite time period includes at least a part of the third unit time; the third calculation module 4232 is configured to obtain the average fuel consumption in each composite time period according to at least a part of the third unit time; the seventh evaluation module 4233 is configured to obtain the evaluation result of the fuel consumption of the composite action execution process according to the average fuel consumption in each composite time period.
  • the driver operation level evaluation device 400 may further include a sixth acquisition module 470 configured to obtain an evaluation result of work efficiency.
  • the evaluation result of at least one operation evaluation factor includes multiple evaluation results
  • the first output module 430 may include a matching module 431, configured to obtain weight values corresponding to the multiple evaluation results one-to-one according to the multiple operation evaluation factors
  • the second output module 432 is configured to calculate and output the final evaluation result according to the multiple evaluation results and the weight values corresponding to the multiple evaluation results one-to-one.
  • the driver operation level evaluation device 400 may further include a first display module 450 configured to control the display screen to display the final evaluation result; and a second display module 460 configured to control the display screen to display operation suggestion information according to the final evaluation result.
  • the driver operation level evaluation device 400 may further include an upload module 480 configured to upload the final evaluation result to the cloud, so as to summarize the final evaluation results of all drivers in the cloud and obtain the ranking of each driver.
  • an upload module 480 configured to upload the final evaluation result to the cloud, so as to summarize the final evaluation results of all drivers in the cloud and obtain the ranking of each driver.
  • the driver operation level evaluation method is applied to an excavator
  • the input component includes at least one of a handle and a pedal of the excavator
  • the execution component includes at least one of a dipper arm, a boom, and a bucket of the excavator.
  • Fig. 15 is a structural block diagram of an engineering vehicle provided by an exemplary embodiment of the present application.
  • the engineering vehicle 500 provided by the embodiment of the present application may include: a body 510; and the driver operation level evaluation device 400 as described above.
  • the engineering vehicle 500 may include an excavator, a crane, a pump truck, etc.
  • the engineering vehicle 500 provided in the embodiment of the present application has all the functions of the driver operation level evaluation device 400. It obtains the change information of the action signal within a preset time period, and then obtains the evaluation result of at least one operation evaluation factor according to the change information, and then outputs the final evaluation result of evaluating the driver's operation level according to the evaluation result corresponding to the at least one operation evaluation factor; in the process of obtaining the change information of the action signal, it can be detected by the original sensor on the engineering vehicle without adding additional hardware, which effectively solves the problem of needing to add an additional shooting device in the related art; it obtains the change information of the action signal by the original sensor on the engineering vehicle without adding additional hardware, and effectively solves the problem of needing to add additional shooting devices ...
  • the evaluation results are obtained by obtaining the final evaluation results.
  • the evaluation process is simple and convenient, and there is no need to pre-train the learning model, which saves time and effort.
  • Fig. 16 is a structural block diagram of an engineering vehicle provided by another exemplary embodiment of the present application.
  • the engineering vehicle 600 provided by the embodiment of the present application may include: a body 610; and an electronic device 620, which is arranged on the body 610, and the electronic device 620 is configured to perform the driver operation level evaluation method as described above.
  • the engineering vehicle 600 may include an excavator, a crane, a pump truck, etc.
  • the engineering vehicle 600 provided in the embodiment of the present application obtains change information of the action signal within a preset time period, and then obtains an evaluation result of at least one operation evaluation factor based on the change information, and then outputs a final evaluation result of evaluating the driver's operation level based on the evaluation result of at least one operation evaluation factor; in the process of obtaining the change information of the action signal, it can be detected by the original sensor on the engineering vehicle without adding additional hardware, which effectively solves the problem of needing to add additional shooting devices in related technologies; it obtains the final evaluation result through the evaluation result of at least one operation evaluation factor, the evaluation process is simple and convenient, and there is no need to pre-train the learning model, saving time and effort.
  • FIG. 17 is a structural block diagram of an electronic device provided by an exemplary embodiment of the present application.
  • the electronic device 620 includes one or more processors 621 and a memory 622 .
  • the processor 621 may be a central processing unit (CPU) or other forms of processing units having data processing capabilities and/or instruction execution capabilities, and may control other components in the electronic device 620 to perform desired functions.
  • CPU central processing unit
  • the processor 621 may be a central processing unit (CPU) or other forms of processing units having data processing capabilities and/or instruction execution capabilities, and may control other components in the electronic device 620 to perform desired functions.
  • the memory 622 may include one or more computer program products, which may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include, for example, a random access memory (RAM) and/or a cache memory (cache), etc.
  • the non-volatile memory may include, for example, a read-only memory (ROM), a hard disk, a flash memory, etc.
  • One or more computer program instructions may be stored on the computer-readable storage medium, and the processor 621 may run the program instructions to implement the control methods of the various embodiments of the present application described above and/or other desired functions.
  • Various contents such as action signals may also be stored in the computer-readable storage medium.
  • the electronic device 620 may further include: an input device 623 and an output device 624 , and these components are interconnected via a bus system and/or other forms of connection mechanisms (not shown).
  • the input device 623 may also include, for example, a handle, a keyboard, a mouse, etc.
  • the output device 624 can output the final evaluation result to the outside, etc.
  • the output device 624 can include, for example, a display, a speaker, a printer, a communication network and a remote output device connected thereto, etc.
  • FIG17 only shows some of the components related to the present application in the electronic device 620, omitting components such as a bus, an input/output interface, etc.
  • the electronic device 620 may also include any other appropriate components according to specific application scenarios.
  • the computer program product may be written in any combination of one or more programming languages to write program codes for performing the operations of the embodiments of the present application, including object-oriented programming languages, such as Java, C++, etc., and conventional procedural programming languages, such as "C" language or similar programming languages.
  • the program code may be executed entirely on the user computing device, partially on the user device, as an independent software package, partially on the user computing device and partially on a remote computing device, or entirely on a remote computing device or server.
  • the computer readable storage medium can adopt any combination of one or more readable media.
  • the readable medium can be a readable signal medium or a readable storage medium.
  • the readable storage medium can include, for example, but is not limited to, a system, device or device of electricity, magnetism, light, electromagnetic, infrared, or semiconductor, or any combination of the above.
  • readable storage media include: an electrical connection with one or more wires, a portable disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • CD-ROM compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • each component or each step can be decomposed and/or recombined.
  • Such decomposition and/or recombination should be regarded as equivalent solutions of the present application.

Abstract

一种驾驶员操作水平评价方法、装置、工程车辆及存储介质,涉及工程机械技术领域,该驾驶员操作水平评价方法包括:获取预设时间段内的动作信号的变化信息(S210);根据变化信息,得到至少一个操作评价因素的评价结果(S220);以及根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果(S230)。该驾驶员操作水平评价方法、装置、工程车辆及存储介质,其可以有效地解决硬件成本增加,评价的过程复杂,费时费力的技术问题。

Description

驾驶员操作水平评价方法、装置、工程车辆及存储介质
本申请要求2022年9月27日提交的申请号为202211182310.0的中国申请的优先权,通过引用将其全部内容并入本文。
技术领域
本申请涉及工程机械技术领域,具体涉及一种驾驶员操作水平评价方法、装置、工程车辆及存储介质。
背景技术
在工程车辆作业的过程中,驾驶员的操作水平会影响工程车辆整体的稳定性、工程车辆的施工效率等,例如,如果驾驶员的操作水平较低,容易导致工程车辆出现安全事故,也容易导致工程车辆的施工效率较低,因此,有必要在工程车辆作业的过程中,对驾驶员的操作水平进行评价,确定驾驶员的具体操作水平。
一般在工程车辆上加装摄像装置,摄像装置对工程车辆工作过程中的动作进行拍照,然后通过拍摄的图片以及深度学习模型来分析驾驶员的操作水平,这样,不仅增加了硬件成本,而且需要预先训练学习模型,评价的过程较为复杂,费时费力。
发明内容
为了解决上述技术问题,本申请的实施例提供了一种驾驶员操作水平评价方法、装置、工程车辆及存储介质,其可以有效地解决硬件成本增加,评价的过程复杂,费时费力的技术问题。
根据本申请的一个方面,提供了一种驾驶员操作水平评价方法,包括:获取预设时间段内的动作信号的变化信息;其中,动作信号表征在驾驶员操作过程中,输入部件和/或执行部件动作时产生的信号;根据变化信息,得到至少一个操作评价因素的评价结果;其中,至少一个操作评价因素包括输入部件操作过程的平顺性、执行部件运动过程的顿挫性、复合动作执行过程的油耗量以及作业效率中的至少一个;以及根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果。
这样,该驾驶员操作水平评价方法在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了相关技术中需要额外增加拍摄装置的问题,以及该驾驶员操作水平评价方法通过至少一个操作评价因素的评价结果,得到最终评价结果,评价的过程简单方便,不用预先训练学习模型,省时省力。
根据本申请的一个方面,在至少一个操作评价因素包括输入部件操作过程的平顺性时,获取预设时间段内的动作信号的变化信息包括:获取第一时间段内的单个输入动作信号的变化信息;其中,单个输入动作信号表征输入部件在一次操作过程中产生的控制信号;根据变化信息,得到至少一个 操作评价因素的评价结果包括:根据单个输入动作信号的变化信息,得到评价输入部件操作过程的平顺性的评价结果。
这样,根据操作输入部件的过程中产生的控制信号的变化信息,可以单独得到评价输入部件操作过程的平顺性的评价结果。
根据本申请的一个方面,第一时间段包括多个第一单位时间;根据单个输入动作信号的变化信息,得到评价输入部件操作过程的平顺性的评价结果包括:根据单个输入动作信号的变化信息,计算得到单个输入动作信号在每个第一单位时间内的变化速率;以及根据单个输入动作信号在每个第一单位时间内的变化速率,得到评价输入部件操作过程的平顺性的评价结果。
这样,可以将第一时间段划分为多个第一单位时间,然后可以将单个输入动作信号的变化信息通过变化速率进行量化计算,更加直观地反应驾驶员的操作水平。
根据本申请的一个方面,在至少一个操作评价因素包括执行部件运动过程的顿挫性时,获取预设时间段内的动作信号的变化信息包括:获取第二时间段内的单个执行动作信号的变化信息;其中,单个执行动作信号表征执行部件在一次运动过程中产生的姿态信号;根据变化信息,得到至少一个操作评价因素的评价结果包括:根据单个执行动作信号的变化信息,得到评价执行部件运动过程的顿挫性的评价结果。
这样,根据执行部件在运动过程中产生的姿态信号的变化信息,可以单独得到评价执行部件运动过程的顿挫性的评价结果。
根据本申请的一个方面,第二时间段包括多个第二单位时间;根据单个执行动作信号的变化信息,得到评价执行部件运动过程的顿挫性的评价结果包括:根据单个执行动作信号的变化信息,计算得到单个执行动作信号在每个第二单位时间内的变化速率;以及根据单个执行动作信号在每个第二单位时间内的变化速率,得到评价执行部件运动过程的顿挫性的评价结果。
这样,可以将第二时间段划分为多个第二单位时间,然后可以将单个执行动作信号的变化信息通过变化速率进行量化计算,更加直观地反应驾驶员的操作水平。
根据本申请的一个方面,在至少一个操作评价因素包括复合动作执行过程的油耗量时,获取预设时间段内的动作信号的变化信息包括:获取第三时间段内的复合输入动作信号的变化信息;其中,复合输入动作信号表征对输入部件进行多个动作复合操作的过程中产生的复合控制信号;根据变化信息,得到至少一个操作评价因素的评价结果包括:根据复合输入动作信号的变化信息,得到评价复合动作执行过程的油耗量的评价结果。
这样,根据对输入部件进行多个动作复合操作的过程中产生的复合控制信号的变化信息,可以单独得到评价复合动作执行过程的油耗量的评价结果。
根据本申请的一个方面,第三时间段包括多个第三单位时间;驾驶员操作水平评价方法还包括:获取多个第三单位时间内的发动机油耗量;根据复合输入动作信号的变化信息,得到评价复合动作执行过程的油耗量的评价结果包括:根据复合输入动作信号的变化信息,得到复合输入动作处于同步动作状态下的多个复合时间段;其中,每个复合时间段均包括至少部分数量的第三单位时间;根 据至少部分数量的第三单位时间内的发动机油耗量,得到每个复合时间段内的平均油耗量;以及根据每个复合时间段内的平均油耗量,得到评价复合动作执行过程的油耗量的评价结果。
这样,可以将复合时间段划分为多个第三单位时间,然后计算复合时间段内的平均油耗,通过平均油耗的数值来反应评价复合动作执行过程的油耗量的评价结果。
根据本申请的一个方面,在至少一个操作评价因素包括作业效率时,驾驶员操作水平评价方法还包括:获取作业效率的评价结果。
根据本申请的一个方面,在至少一个操作评价因素包括多个操作评价因素时,至少一个操作评价因素的评价结果包括多个评价结果,根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果包括:根据多个操作评价因素,得到与多个评价结果一一对应的权重值;以及根据多个评价结果和与多个评价结果一一对应的权重值,计算并输出最终评价结果。
这样,可以针对不同操作评价因素对驾驶员操作水平的反应程度不同,对各个操作评价因素施加不同的权重,也就是说,不同的评价结果对应有不同的权重,使得计算得到的最终评价结果可以更加准确地反应驾驶员的操作水平。
根据本申请的一个方面,驾驶员操作水平评价方法还包括:控制显示屏显示最终评价结果;以及根据最终评价结果,控制显示屏显示操作建议信息。
这样,显示的最终评价结果可以方便驾驶员查看查自身的操作水平,并且,驾驶员根据操作建议信息,也可以针对性地进行改进,提高操作水平,有利于驾驶员养成良好的操作习惯。
根据本申请的一个方面,驾驶员操作水平评价方法还包括:将最终评价结果上传至云端,以在云端将所有驾驶员的最终评价结果进行汇总,得到每个驾驶员的排名。
根据本申请的一个方面,驾驶员操作水平评价方法应用于挖掘机中,输入部件包括挖掘机的手柄和踏板中的至少一个,执行部件包括挖掘机到的斗杆、动臂和铲斗中的至少一个。
根据本申请的另一个方面,提供了一种驾驶员操作水平评价装置,包括:第一获取模块,配置为获取预设时间段内的动作信号的变化信息;其中,动作信号表征在驾驶员操作过程中,输入部件和/或执行部件动作时产生的信号;第一评价模块,配置为根据变化信息,得到至少一个操作评价因素的评价结果;其中,至少一个操作评价因素包括输入部件操作过程的平顺性、执行部件运动过程的顿挫性、复合动作执行过程的油耗量以及作业效率中的至少一个;以及第一输出模块,配置为根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果。
本申请实施例提供的驾驶员操作水平评价装置,其通过获取预设时间段内的动作信号的变化信息,然后根据变化信息,得到至少一个操作评价因素的评价结果,然后根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果;其在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了相关技术中需要额外增加拍摄装置的问题;其通过至少一个操作评价因素的评价结果,得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
根据本申请的另一个方面,还提供了一种工程车辆,包括:机体;以及
如前的驾驶员操作水平评价装置,驾驶员操作水平评价装置设于机体上。
本申请实施例提供的工程车辆,其具备前述驾驶员操作水平评价装置的全部功能,其通过获取预设时间段内的动作信号的变化信息,然后根据变化信息,得到至少一个操作评价因素的评价结果,然后根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果;其在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了相关技术中需要额外增加拍摄装置的问题;其通过至少一个操作评价因素的评价结果,得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
根据本申请的另一个方面,提供了一种工程车辆,包括:机体;以及电子设备,设于机体上,电子设备配置为执行如前任一方面所述的驾驶员操作水平评价方法。
本申请实施例提供的工程车辆,其通过获取预设时间段内的动作信号的变化信息,然后根据变化信息,得到至少一个操作评价因素的评价结果,然后根据至少一个操作评价因素评价结果,输出评价驾驶员操作水平的最终评价结果;其在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了相关技术中需要额外增加拍摄装置的问题;其通过至少一个操作评价因素的评价结果,得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
根据本申请的另一个方面,还提供了一种存储介质,存储介质存储有计算机程序,计算机程序配置为执行如前任一方面所述的驾驶员操作水平评价方法。
本申请实施例提供的存储介质,其通过获取预设时间段内的动作信号的变化信息,然后根据变化信息,得到至少一个操作评价因素的评价结果,然后根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果;其在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了相关技术中需要额外增加拍摄装置的问题;其通过至少一个操作评价因素的评价结果,得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1为本申请一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图2为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图3为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图4为本申请一示例性实施例提供的操作水平较高的驾驶员与操作水平较低的驾驶员之间的输入动作信号变化曲线对比图。
图5为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图6为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图7为本申请一示例性实施例提供的操作水平较高的驾驶员与操作水平较低的驾驶员之间的执行动作信号变化曲线对比图。
图8为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图9为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图10为本申请一示例性实施例提供的复合输入动作信号的变化曲线图。
图11为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图12为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。
图13为本申请一示例性实施例提供的驾驶员操作水平评价装置的结构框图。
图14为本申请另一示例性实施例提供的驾驶员操作水平评价装置的结构框图。
图15为本申请一示例性实施例提供的工程车辆的结构框图。
图16为本申请另一示例性实施例提供的工程车辆的结构框图。
图17为本申请一示例性实施例提供的电子设备的结构框图。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
在工程车辆作业的过程中,由于驾驶员的操作水平会影响工程车辆整体的稳定性和工程车辆的施工效率,因此,为了降低工程车辆出现安全事故的几率以及为了提高工程车辆的施工效率,需要对驾驶员的操作水平进行评价,确定驾驶员的操作水平是否符合作业要求。通过在工程车辆上加装摄像装置,然后在施工过程中,使用拍摄装置对执行部件进行视频拍摄,然后截取图片,根据截取图片的信息,提取执行部件的特征点,深度学习模型通过特征点识别执行部件所处的作业状态,从而对驾驶员的操作水平进行评价。
可以推理的是,在对驾驶员的操作水平进行评价作业前,需要增加额外拍摄装置,增加了工程车辆的生产成本。另外,在进行评价作业前,还需要预先训练学习模型,导致实现整个过程较为复杂,费时费力,整体工作效率较低。
有鉴于此,本申请实施例提供了一种驾驶员操作水平评价方法、装置、工程车辆及存储介质,其可以有效地解决硬件成本增加,评价的过程复杂,费时费力的技术问题。下面对该驾驶员操作水平评价方法、装置、工程车辆及存储介质进行详细介绍。
图1为本申请一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该驾驶员操作水平评价方法可以应用于挖掘机、起重机、泵车等工程车辆。具体地,如图1所示,本申请实施例提供的驾驶员操作水平评价方法可以包括如下内容。
S210:获取预设时间段内的动作信号的变化信息。
具体地,动作信号可以理解为驾驶员操作过程中输入部件和/或执行部件动作时所产生的信号。例如,驾驶员操作输入部件,可以产生相应的控制信号;驾驶员操作输入部件后,执行部件发生运动,执行部件在动作的过程中会产生对应的姿态信号。
在一实施例中,可以通过工程车辆中原有的电流表、电压表、液压表、位移传感器、角度传感器等检测部件来检测动作信号的变化情况,控制器通过这些检测部件可以得到预设时间段内的动作信号的变化信息。这样,在对驾驶员操作水平进行评价前,可以不用在工程车辆上额外增加硬件,就可以得到动作信号的变化信息,有效地解决了额外增加硬件成本的问题。
在一实施例中,以该驾驶员操作水平评价方法应用于挖掘机为例,输入部件可以包括手柄、踏板等;执行部件可以包括斗杆、动臂、铲斗等。
在一实施例中,变化信息可以理解为动作信号在预设时间段内,随着时间变化的多个数据。一般地,为了便于工作人员查看,变化信息可以以图标的形式进行展示。
需要说明的是,针对不同类型的动作信号,预设时间段可以选取不同的长度。例如,预设时间段可以包括第一时间段和第二时间段,针对操作输入部件产生的动作信号,可以选择获取第一时间段内的动作信号的变化信息;针对执行部件运动过程产生的动作信号,可以选择获取第二时间段内的动作信号的变化信息;第一时间段与第二时间段的跨度可以相同也可以不同。
S220:根据变化信息,得到至少一个操作评价因素的评价结果。
具体地,至少一个操作评价因素可以包括输入部件操作过程的平顺性、执行部件运动过程的顿挫性、复合动作执行过程的油耗量以及作业效率中的至少一个。
应当理解的是,不同动作信号的变化信息可以用于得到不同操作评价因素的评价结果。
在一实施例中,如果输入部件操作过程的平顺性不佳,则会反应出驾驶员操作输入部件时存在激烈操作、操作不稳定等问题,进而会导致工程车辆出现抖动,甚至损坏的情况,因此,输入部件操作过程的平顺性的评价结果可以作为评价驾驶员操作水平的因素。
在一实施例中,如果执行部件运动过程的顿挫性较大,则会导致工程车辆工作过程不稳定,存在安全风险,驾驶员也会感受到较大顿挫感,影响工作效率,因此,执行部件运动过程的顿挫性也可以作为评价驾驶员操作水平的因素。
在一实施例中,如果复合动作执行过程的油耗量较高,那么可以反应驾驶员在进行复合动作操作时,存在判断失误,进行复合操作的时机不好等问题,因此,复合动作执行过程的油耗量也可以作为评价驾驶员操作水平的因素。
在一实施例中,如果工程车辆的作业效率太低,也可以反应出驾驶员操作不熟练、操作水平太低等问题,因此,作业效率也可以作为评价驾驶员操作水平的因素。
S230:根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果。
具体地,至少一个操作评价因素的评价结果通过对不同类型的操作评价因素进行评价后得到,考虑到不同的操作评价因素均能够不同程度地反应驾驶员的操作水平,因此,可以综合至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果。
应当理解的是,在通过评价不同的操作评价因素得到至少一个操作评价因素的评价结果,然后综合至少一个操作评价因素的评价结果得到最终评价结果的过程中,可以根据动作信号的变化信息直接计算得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
在一实施例中,最终评价结果可以以分数的形式输出、也可以以等级的形式输出。
在一实施例中,输出最终评价结果的方式可以通过显示屏显示、也可以通过语音播报的形式输出。
本申请实施例提供的驾驶员操作水平评价方法,其通过获取预设时间段内的动作信号的变化信息,然后根据变化信息,得到至少一个操作评价因素的评价结果,然后根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果;其在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了额外增加拍摄装置的问题;其通过至少一个操作评价因素的评价结果,得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
图2为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该方法可以由工程车辆的处理器执行,如图2所示,步骤S210可以包括:
S211:获取第一时间段内的单个输入动作信号的变化信息。
对应地,步骤S220可以包括:
S221:根据单个输入动作信号的变化信息,得到评价输入部件操作过程的平顺性的评价结果。
具体地,输入动作信号可以理解为操作输入部件的过程中产生的控制信号。该控制信号根据输入部件的操作速度、输入部件的操作方向等因素对应发生变化,得到变化信息后,根据单个输入动作信号的变化信息,可以得到评价输入部件操作过程的平顺性的评价结果。
在一实施例中,单个输入动作信号可以是对输入部件进行一次操作过程中产生的信号。
在一实施例中,以该驾驶员操作水平评价方法应用于挖掘机为例,输入动作信号可以包括操作左手柄完成左旋转的控制信号、操作左手柄完成右旋转的控制信号、操作左手柄完成斗杆挖掘的控制信号、操作左手柄完成斗杆卸载的控制信号、操作右手柄完成动臂提升的控制信号、操作右手柄完成动臂下降的控制信号、操作右手柄完成铲斗挖掘的控制信号以及操作右手柄完成铲斗卸载的控制信号,单个输入动作信号为操作左手柄完成左旋转的控制信号、操作左手柄完成右旋转的控制信号、操作左手柄完成斗杆挖掘的控制信号、操作左手柄完成斗杆卸载的控制信号、操作右手柄完成动臂提升的控制信号、操作右手柄完成动臂下降的控制信号、操作右手柄完成铲斗挖掘的控制信号以及操作右手柄完成铲斗卸载的控制信号中的任意一个信号。
在一实施例中,若工程车辆的输入部件通过电控系统控制执行部件动作,那么输入动作信号可以选用控制电流信号、控制电压信号等。
在一实施例中,若工程车辆的输入部件通过液压系统控制执行部件动作,那么输入动作信号可以选用液压信号、主泵压力信号等。
图3为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该方法可以 由工程车辆的处理器执行,如图3所示,步骤S221可以包括如下内容。
S2211:根据单个输入动作信号的变化信息,计算得到单个输入动作信号在每个第一单位时间内的变化速率。
具体地,第一时间段可以包括多个第一单位时间,根据单个输入动作信号在第一时间段内的变化信息,可以得到单个输入动作信号在每个第一单位时间内的变化幅度,从而计算得到单个输入动作信号在每个第一单位时间内的变化速率。
在一实施例中,第一单位时间可以根据实际情况进行设定,本申请对第一单位时间不作具体限定。
S2212:根据单个输入动作信号在每个第一单位时间内的变化速率,得到评价输入部件操作过程的平顺性的评价结果。
具体地,图4为本申请一示例性实施例提供的操作水平较高的驾驶员与操作水平较低的驾驶员之间的单个输入动作信号变化曲线对比图。参考图4,单个输入动作信号在每个第一单位时间内的变化速率越大(图4中箭头A所指示的区域),说明驾驶员操作输入部件越激烈,工程车辆越容易产生抖动,越容易出现损坏的情况,因此,在同一情况下,若箭头A所指示的区域的数量越多,说明驾驶员的操作水平也就越低,对应地,评价输入部件操作过程的平顺性的评价结果也就越差。
应当理解的是,若评价结果以分数或者等级来衡量,在同一情况下,箭头A所指示的区域的数量越多,评价结果的分数或者等级也就越低。
图5为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该方法可以由工程车辆的处理器执行,如图5所示,步骤S210可以包括:
S212:获取第二时间段内的单个执行动作信号的变化信息。
对应地,步骤S220可以包括:
S222:根据单个执行动作信号的变化信息,得到评价执行部件运动过程的顿挫性的评价结果。
具体地,执行动作信号可以理解为执行部件在运动过程中产生的姿态信号。该姿态信号根据执行部件的运动速度、运动方向等因素对应发生变化,得到变化信息后,根据单个执行动作信号的变化信息,可以得到评价执行部件运动过程的顿挫性的评价结果。
在一实施例中,单个执行动作信号可以是对执行部件进行一次动作操作的过程中产生的信号。
在一实施例中,以该驾驶员操作水平评价方法应用于挖掘机为例,执行动作信号可以包括斗杆运动过程中产生的姿态信号、动臂上升或者下降过程中产生的姿态信号、铲斗挖掘以及卸载过程中产生的姿态信号,单个执行动作信号为斗杆运动过程中产生的姿态信号、动臂上升或者下降过程中产生的姿态信号、铲斗挖掘以及卸载过程中产生的姿态信号中的任意一个信号。
在一实施例中,工程车辆的各执行部件上装有角度传感器,可以通过不同执行部件上的角度传感器检测得到的姿态信号的变化情况,来得到执行动作信号的变化信息。
图6为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该方法可以 由工程车辆的处理器执行,如图6所示,步骤S222可以包括如下内容。
S2221:根据单个执行动作信号的变化信息,计算得到单个执行动作信号在每个第二单位时间内的变化速率。
具体地,第二时间段包括多个第二单位时间,根据单个执行动作信号在每个第二单位时间内的变化信息,可以得到单个执行动作信号在每个第二单位时间内的变化幅度,从而计算得到单个执行动作信号在每个第二单位时间内的变化速率。
在一实施例中,第二单位时间可以根据实际情况进行设定,本申请对第二单位时间不作具体限定。
S2222:根据单个执行动作信号在每个第二单位时间内的变化速率,得到评价执行部件运动过程的顿挫性的评价结果。
具体地,图7为本申请一示例性实施例提供的操作水平较高的驾驶员与操作水平较低的驾驶员之间的单个执行动作信号变化曲线对比图。参考图7,单个执行动作信号在每个第二单位时间内的变化速率越大(图7中箭头B所指示的区域),说明执行部件运动过程中越不稳定,越容易发生安全事故,因此,在同一情况下,若箭头B所指示的区域的数量越多,说明驾驶员的操作水平也就越低,对应地,评价执行部件运动过程的顿挫性的评价结果也就越差。
应当理解的是,若评价结果以分数或者等级来衡量,在同一情况下,箭头B所指示的区域的数量越多,评价结果的分数或者等级也就越低。
图8为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该方法可以由工程车辆的处理器执行,如图8所示,步骤S210可以包括:
S213:获取第三时间段内的复合输入动作信号的变化信息。
对应地,步骤S220可以包括:
S223:根据复合输入动作信号的变化信息,得到评价复合动作执行过程的油耗量的评价结果。
具体地,复合输入动作信号可以理解为对输入部件进行多个动作复合操作的过程中产生的复合控制信号。该复合输入动作根据输入部件的操作速度、输入部件的操作方向等因素对应发生变化,得到变化信息后,根据复合输入动作信号的变化信息,可以得到评价复合动作执行过程的油耗量的评价结果。
在一实施例中,复合输入动作信号可以是对输入部件进行两个动作复合操作的过程中产生的复合控制信号,也可以是对输入部件进行三个动作复合操作的过程中产生的复合控制信号。
在一实施例中,以该驾驶员操作水平评价方法应用于挖掘机为例,复合输入动作信号可以为操作左手柄完成左旋转的控制信号、操作左手柄完成右旋转的控制信号、操作左手柄完成斗杆挖掘的控制信号、操作左手柄完成斗杆卸载的控制信号、操作右手柄完成动臂提升的控制信号、操作右手柄完成动臂下降的控制信号、操作右手柄完成铲斗挖掘的控制信号以及操作右手柄完成铲斗卸载的控制信号中的至少任意两个控制信号进行复合后的信号。
在一实施例中,若工程车辆的输入部件通过电控系统控制执行部件动作,那么复合输入动作信 号可以为多个控制电流信号之间的复合信号,多个控制电压之间的复合信号。
在一实施例中,若工程车辆的输入部件通过液压系统控制执行部件动作,那么复合输入动作信号可以为多个液压信号之间的复合信号。
图9为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该方法可以由工程车辆的处理器执行,如图9所示,在步骤S223之前,驾驶员操作水平评价方法还可以包括:
S240:获取多个第三单位时间内的发动机油耗量。
具体地,在实际应用中,发动机在工作过程中,通过发动机的工作数据,可以获取发动机在第三单位时间内的油耗量。而第三时间段可以包括多个第三单位时间,即可以将第三时间段划分为多个第三单位时间,这样,在第三时间段内,每隔第三单位时间,就可以获取得到一个发动机油耗量数据。
在一实施例中,第三单位时间可以为100ms、200ms等。
对应地,步骤S223可以包括如下内容。
S2231:根据复合输入动作信号的变化信息,得到复合输入动作处于同步动作状态下的多个复合时间段。
具体地,图10为本申请一示例性实施例提供的复合输入动作信号的变化曲线图。如图10所示,以铲斗卸载和回转机构左旋转两个输入动作信号复合为例,图10中箭头C所指示的区域可以理解为复合时间段。在复合时间段下,在进行铲斗卸载动作的同时还进行了回转机构左旋转动作。
在一实施例中,每个复合时间段均包括有至少部分数量的第三单位时间,执行步骤S240后,确定多个复合时间段后,可以确定每个复合时间段内对应的多个第三单位时间内的油耗量。
S2232:根据至少部分数量的第三单位时间内的发动机油耗量,得到每个复合时间段内的平均油耗量。
具体地,将每个复合时间段内对应的多个第三单位时间内的发动机油耗量求和,得到每个复合时间段内的总油耗量,然后用每个复合时间段内的总油耗量除以对应复合时间段的长度,得到每个复合时间段内的平均油耗量。
S2233:根据每个复合时间段内的平均油耗量,得到评价复合动作执行过程的油耗量的评价结果。
在一实施例中,若每个复合时间段内的平均油耗量较低,得到评价复合动作执行过程的油耗量的评价结果较好;若每个复合时间段内的平均油耗量较高,得到评价复合动作执行过程的油耗量的评价结果较差。
在一实施例中,若评价结果以分数来衡量,可以预先设置平均油耗量与分数之间的对应关系,确定平均油耗量之后,根据预先设置的对应关系可以得到对应的分数,即可以快速得到评价复合动作执行过程的油耗量的评价结果。
在一实施例中,驾驶员操作水平评价方法还包括:获取作业效率的评价结果。
在一实施例中,以驾驶员操作水平评价方法应用于挖掘机为例,可以通过测量每挖一斗的物料 净重量来体现作业效率,从而将作业效率作为评价驾驶员操作水平的因素之一。例如,每挖一斗的物料净重量越大,作业效率越高,对应地,评价作业效率的评价结果也就越好。
在一实施例中,若该驾驶员操作水平评价方法应用于其它类型的工程车辆,也可以通过工程车辆施工时间范围内主泵压力值的平均值来体现作业效率。例如,工程车辆在施工时间范围内的主泵压力值的平均值越大,作业效率越高,对应地,评价作业效率的评价结果越好。
需要说明的是,步骤S210还可以同时包括步骤S211、步骤S212以及步骤S213,相应地,步骤S220还可以同时包括步骤S221、步骤S222以及步骤S223。也就是说,至少一个操作评价因素包括三个操作评价因素,分别为输入部件操作过程的平顺性、执行部件运动过程的顿挫性以及复合动作执行过程的油耗量,相应地,至少一个操作评价因素的评价结果包括三个评价结果,分别为输入部件操作过程的平顺性的评价结果、执行部件运动过程的顿挫性的评价结果以及复合动作执行过程的油耗量的评价结果。
在至少一个操作评价因素包括多个操作评价因素时,至少一个操作评价因素的评价结果包括多个评价结果,例如,输入部件操作过程的平顺性的评价结果、执行部件运动过程的顿挫性的评价结果、复合动作执行过程的油耗量的评价结果以及作业效率的评价结果。
图11为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该方法可以由工程车辆的处理器执行,如图11所示,步骤S230可以包括如下内容。
S231:根据多个操作评价因素,得到与多个评价结果一一对应的权重值。
S232:根据多个评价结果和与多个评价结果一一对应的权重值,计算并输出最终评价结果。
具体地,不同操作评价因素对驾驶员操作水平的反应程度不同,因此,可以针对不同操作评价因素,预先设置对应的权重值,从而可以根据多个操作评价因素,得到与多个操作评价因素一一对应的权重值。由于多个操作评价因素与多个评价结果之间存在一一对应关系,因此,与多个操作评价因素一一对应的权重值也是与多个评价结果一一对应的权重值。最后,根据多个评价结果和各自对应的权重值,计算得到的最终评价结果可以更加准确地反应驾驶员的操作水平。
图12为本申请另一示例性实施例提供的驾驶员操作水平评价方法的流程示意图。该方法可以由工程车辆的处理器执行,如图12所示,在步骤S230之后,驾驶员操作水平评价方法还可以包括:
S250:控制显示屏显示最终评价结果。
S260:根据最终评价结果,控制显示屏显示操作建议信息。
具体地,控制显示屏显示最终评价结果可以方便驾驶员查看查自身的操作水平,并且,驾驶员根据操作建议信息,也可以针对性地进行改进,提高操作水平,有利于驾驶员养成良好的操作习惯。
在一实施例中,驾驶员操作水平评价方法还包括:将最终评价结果上传至云端,以在云端将所有驾驶员的最终评价结果进行汇总,得到每个驾驶员的排名。
在一实施例中,每位驾驶员操作水平的最终评价结果可以每天上传至云端,然后,可以将云端的所有数据汇总,得到每个人的排名。
在一实施例中,给出操作建议信息后,还可以给出需要改进的部分在改进之后将对最终评价结果的影响,有效地提高驾驶员后续提升操作水平的积极性。
图13为本申请一示例性实施例提供的驾驶员操作水平评价装置的结构框图。如图13所示,本申请实施例提供的驾驶员操作水平评价装置400可以包括:第一获取模块410,配置为获取预设时间段内的动作信号的变化信息;其中,动作信号表征在驾驶员操作过程中,输入部件和/或执行部件动作时产生的信号;第一评价模块420,配置为根据变化信息,得到至少一个操作评价因素的评价结果;其中,至少一个操作评价因素包括输入部件操作过程的平顺性、执行部件运动过程的顿挫性、复合动作执行过程的油耗量以及作业效率中的至少一个;以及第一输出模块430,配置为根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果。
本申请实施例提供的驾驶员操作水平评价装置,其通过获取预设时间段内的动作信号的变化信息,然后根据变化信息,得到至少一个操作评价因素的评价结果,然后根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果;其在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了相关技术中需要额外增加拍摄装置的问题;其通过至少一个操作评价因素的评价结果,得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
图14为本申请另一示例性实施例提供的驾驶员操作水平评价装置的结构框图。如图14所示,在一实施例中,在至少一个操作评价因素包括输入部件操作过程的平顺性时,第一获取模块410可以包括第二获取模块411,配置为获取第一时间段内的单个输入动作信号的变化信息;其中,单个输入动作信号表征操作输入部件在一次操作过程中产生的控制信号;对应地,第一评价模块420可以包括第二评价模块421,配置为根据单个输入动作信号的变化信息,得到评价输入部件操作过程的平顺性的评价结果。
如图14所示,在一实施例中,第二评价模块421可以包括第一计算模块4211,配置为根据单个输入动作信号的变化信息,计算得到单个输入动作信号在每个第一单位时间内的变化速率;以及第三评价模块4212,配置为根据单个输入动作信号在每个第一单位时间内的变化速率,得到评价输入部件操作过程的平顺性的评价结果。
如图14所示,在一实施例中,在至少一个操作评价因素包括执行部件运动过程的顿挫性时,第一获取模块410可以包括第三获取模块412,配置为获取第二时间段内的单个执行动作信号的变化信息;其中,单个执行动作信号表征执行部件在一次运动过程中产生的姿态信号;对应地,第一评价模块420可以包括第四评价模块422,配置为根据单个执行动作信号的变化信息,得到评价执行部件运动过程的顿挫性的评价结果。
如图14所示,在一实施例中,第四评价模块422可以包括第二计算模块4221,配置为根据单个执行动作信号的变化信息,计算得到执行动作信号在每个第二单位时间内的变化速率;以及第五评价模块4222,配置为根据单个执行动作信号在每个第二单位时间内的变化速率,得到评价执行部件运动过程的顿挫性的评价结果。
如图14所示,在一实施例中,在至少一个操作评价因素包括复合动作执行过程的油耗量时,第一获取模块410可以包括第四获取模块413,配置为获取第三时间段内的复合输入动作信号的变化信息;其中,复合输入动作信号表征对输入部件进行多个动作复合操作的过程中产生的复合控制信号;对应地,第一评价模块420可以包括第六评价模块423,配置为根据复合输入动作信号的变化信息,得到评价复合动作执行过程的油耗量的评价结果。
如图14所示,在一实施例中,驾驶员操作水平评价装置400还可以包括第五获取模块440,配置为获取多个第三单位时间内的发动机油耗量;对应地,第六评价模块423可以包括选取模块4231,配置为根据复合输入动作信号的变化信息,得到复合输入动作处于同步动作状态下的多个复合时间段;其中,每个复合时间段均包括有至少部分数量的第三单位时间;第三计算模块4232,配置为根据至少部分数量的第三单位时间内的发动机油耗量,得到每个复合时间段内的平均油耗量;第七评价模块4233,配置为根据每个复合时间段内的平均油耗量,得到评价复合动作执行过程的油耗量的评价结果。
如图14所示,在一实施例中,在至少一个操作评价因素包括作业效率时,驾驶员操作水平评价装置400还可以包括第六获取模块470,配置为获取作业效率的评价结果。
如图14所示,在一实施例中,在至少一个操作评价因素包括多个操作评价因素时,至少一个操作评价因素的评价结果包括多个评价结果,第一输出模块430可以包括匹配模块431,配置为根据多个操作评价因素,得到与多个评价结果一一对应的权重值;第二输出模块432,配置根据多个评价结果和与多个评价结果一一对应的权重值,计算并输出最终评价结果。
如图14所示,在一实施例中,驾驶员操作水平评价装置400还可以包括第一显示模块450,配置为控制显示屏显示最终评价结果;第二显示模块460,配置为根据最终评价结果,控制显示屏显示操作建议信息。
如图14所示,在一实施例中,驾驶员操作水平评价装置400还可以包括上传模块480,配置为将最终评价结果上传至云端,以在云端将所有驾驶员的最终评价结果进行汇总,得到每个驾驶员的排名。
在一实施例中,驾驶员操作水平评价方法应用于挖掘机中,输入部件包括挖掘机的手柄和踏板中的至少一个,执行部件包括挖掘机到的斗杆、动臂和铲斗中的至少一个。
图15为本申请一示例性实施例提供的工程车辆的结构框图。如图15所示,本申请实施例提供的工程车辆500可以包括:机体510;以及如前所述的驾驶员操作水平评价装置400。
在一实施例中,工程车辆500可以包括挖掘机、起重机、泵车等。
本申请实施例提供的工程车辆500,其具备驾驶员操作水平评价装置400的全部功能,其通过获取预设时间段内的动作信号的变化信息,然后根据变化信息,得到至少一个操作评价因素的评价结果,然后根据至少一个操作评价因素对应的评价结果,输出评价驾驶员操作水平的最终评价结果;其在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了相关技术中需要额外增加拍摄装置的问题;其通过至少一个操作评价因素的 评价结果,得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
图16为本申请另一示例性实施例提供的工程车辆的结构框图。如图16所示,本申请实施例提供的工程车辆600可以包括:机体610;以及电子设备620,设于机体610上,电子设备620配置为执行如前所述的驾驶员操作水平评价方法。
在一实施例中,工程车辆600可以包括挖掘机、起重机、泵车等。
本申请实施例提供的工程车辆600,其通过获取预设时间段内的动作信号的变化信息,然后根据变化信息,得到至少一个操作评价因素的评价结果,然后根据至少一个操作评价因素的评价结果,输出评价驾驶员操作水平的最终评价结果;其在获取动作信号的变化信息的过程中,可以通过工程车辆上原有的传感器进行检测,不用额外增加硬件,有效地解决了相关技术中需要额外增加拍摄装置的问题;其通过至少一个操作评价因素的评价结果,得到最终评价结果,评价的过程简单方便,也不用预先训练学习模型,省时省力。
图17为本申请一示例性实施例提供的电子设备的结构框图。
如图17所示,电子设备620包括一个或多个处理器621和存储器622。
处理器621可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备620中的其他组件以执行期望的功能。
存储器622可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器621可以运行所述程序指令,以实现上文所述的本申请的各个实施例的控制方法以及/或者其他期望的功能。在所述计算机可读存储介质中还可以存储诸如动作信号等各种内容。
在一个示例中,电子设备620还可以包括:输入装置623和输出装置624,这些组件通过总线系统和/或其他形式的连接机构(未示出)互连。
该输入装置623还可以包括例如手柄、键盘、鼠标等等。
该输出装置624可以向外部输出最终评价结果等。该输出装置624可以包括例如显示器、扬声器、打印机、以及通信网络及其所连接的远程输出设备等等。
当然,为了简化,图17中仅示出了该电子设备620中与本申请有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备620还可以包括任何其他适当的组件。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
本申请中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
还需要指出的是,在本申请的装置、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。

Claims (16)

  1. 一种驾驶员操作水平评价方法,其特征在于,包括:
    获取预设时间段内的动作信号的变化信息;其中,所述动作信号表征在所述驾驶员操作过程中,输入部件和/或执行部件动作时产生的信号;
    根据所述变化信息,得到至少一个操作评价因素的评价结果;其中,所述至少一个操作评价因素包括所述输入部件操作过程的平顺性、所述执行部件运动过程的顿挫性、复合动作执行过程的油耗量以及作业效率中的至少一个;以及
    根据所述至少一个操作评价因素的评价结果,输出评价所述驾驶员操作水平的最终评价结果。
  2. 根据权利要求1所述的驾驶员操作水平评价方法,其特征在于,在所述至少一个操作评价因素包括输入部件操作过程的平顺性时,所述获取预设时间段内的动作信号的变化信息包括:
    获取第一时间段内的单个输入动作信号的变化信息;其中,所述单个输入动作信号表征所述输入部件在一次操作过程中产生的控制信号;
    所述根据所述变化信息,得到至少一个操作评价因素的评价结果包括:
    根据所述单个输入动作信号的变化信息,得到评价所述输入部件操作过程的平顺性的评价结果。
  3. 根据权利要求2所述的驾驶员操作水平评价方法,其特征在于,所述第一时间段包括多个第一单位时间;
    所述根据所述单个输入动作信号的变化信息,得到评价所述输入部件操作过程的平顺性的评价结果包括:
    根据所述单个输入动作信号的变化信息,计算得到所述单个输入动作信号在每个第一单位时间内的变化速率;以及
    根据所述单个输入动作信号在每个第一单位时间内的变化速率,得到评价所述输入部件操作过程的平顺性的评价结果。
  4. 根据权利要求1至3中任一项所述的驾驶员操作水平评价方法,其特征在于,在所述至少一个操作评价因素包括执行部件运动过程的顿挫性时,所述获取预设时间段内的动作信号的变化信息包括:
    获取第二时间段内的单个执行动作信号的变化信息;其中,所述单个执行动作信号表征所述执行部件在一次运动过程中产生的姿态信号;
    所述根据所述变化信息,得到至少一个操作评价因素的评价结果包括:
    根据所述单个执行动作信号的变化信息,得到评价所述执行部件运动过程的顿挫性的评价结果。
  5. 根据权利要求4所述的驾驶员操作水平评价方法,其特征在于,所述第二时间段包括多个第二单位时间;
    所述根据所述单个执行动作信号的变化信息,得到评价所述执行部件运动过程的顿挫性的评 价结果包括:
    根据所述单个执行动作信号的变化信息,计算得到所述单个执行动作信号在每个第二单位时间内的变化速率;以及
    根据所述单个执行动作信号在每个第二单位时间内的变化速率,得到评价所述执行部件运动过程的顿挫性的评价结果。
  6. 根据权利要求1至5中任一项所述的驾驶员操作水平评价方法,其特征在于,在所述至少一个操作评价因素包括复合动作执行过程的油耗量时,所述获取预设时间段内的动作信号的变化信息包括:
    获取第三时间段内的复合输入动作信号的变化信息;其中,所述复合输入动作信号表征对所述输入部件进行多个动作复合操作的过程中产生的复合控制信号;
    所述根据所述变化信息,得到至少一个操作评价因素的评价结果包括:
    根据所述复合输入动作信号的变化信息,得到评价所述复合动作执行过程的油耗量的评价结果。
  7. 根据权利要求6所述的驾驶员操作水平评价方法,其特征在于,所述第三时间段包括多个第三单位时间;
    所述驾驶员操作水平评价方法还包括:
    获取所述多个第三单位时间内的发动机油耗量;
    所述根据所述复合输入动作信号的变化信息,得到评价所述复合动作执行过程的油耗量的评价结果包括:
    根据所述复合输入动作信号的变化信息,得到复合输入动作处于同步动作状态下的多个复合时间段;其中,每个复合时间段均包括至少部分数量的所述第三单位时间;
    根据所述至少部分数量的所述第三单位时间内的发动机油耗量,得到每个复合时间段内的平均油耗量;以及
    根据每个复合时间段内的平均油耗量,得到评价所述复合动作执行过程的油耗量的评价结果。
  8. 根据权利要求1至7中任一项所述的驾驶员操作水平评价方法,其特征在于,在所述至少一个操作评价因素包括作业效率时,其中,所述驾驶员操作水平评价方法还包括:获取所述作业效率的评价结果。
  9. 根据权利要求1至8中任一项所述的驾驶员操作水平评价方法,其特征在于,在所述至少一个操作评价因素包括多个操作评价因素时,所述至少一个操作评价因素的评价结果包括多个评价结果,
    其中,所述根据所述至少一个操作评价因素的评价结果,输出评价所述驾驶员操作水平的最终评价结果包括:
    根据所述多个操作评价因素,得到与所述多个评价结果一一对应的权重值;以及
    根据所述多个评价结果和与所述多个评价结果一一对应的权重值,计算并输出所述最终评价 结果。
  10. 根据权利要求1至9中任一项所述的驾驶员操作水平评价方法,其特征在于,还包括:
    控制显示屏显示所述最终评价结果;以及
    根据所述最终评价结果,控制所述显示屏显示操作建议信息。
  11. 根据权利要求1至10中任一项所述的驾驶员操作水平评价方法,其特征在于,还包括:
    将所述最终评价结果上传至云端,以在所述云端将所有驾驶员的最终评价结果进行汇总,得到每个驾驶员的排名。
  12. 根据权利要求1至11中任一项所述的驾驶员操作水平评价方法,其特征在于,所述驾驶员操作水平评价方法应用于挖掘机中,所述输入部件包括所述挖掘机的手柄和踏板中的至少一个,所述执行部件包括所述挖掘机到的斗杆、动臂和铲斗中的至少一个。
  13. 一种驾驶员操作水平评价装置,其特征在于,包括:
    第一获取模块,配置为获取预设时间段内的动作信号的变化信息;其中,所述动作信号表征在所述驾驶员操作过程中,输入部件和/或执行部件动作时产生的信号;
    第一评价模块,配置为根据所述变化信息,得到至少一个操作评价因素的评价结果;其中,所述至少一操作评价因素包括所述输入部件操作过程的平顺性、所述执行部件运动过程的顿挫性以及复合动作执行过程的油耗量中的至少一个;以及
    第一输出模块,配置为根据所述至少一个操作评价因素的评价结果,输出评价所述驾驶员操作水平的最终评价结果。
  14. 一种工程车辆,其特征在于,包括:
    机体;以及
    如权利要求13所述的驾驶员操作水平评价装置,所述驾驶员操作水平评价装置设于所述机体上。
  15. 一种工程车辆,其特征在于,包括:
    机体;以及
    电子设备,设于所述机体上,所述电子设备配置为执行如权利要求1至11中任一项所述的驾驶员操作水平评价方法。
  16. 一种存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序配置为执行如权利要求1至11中任一项所述的驾驶员操作水平评价方法。
PCT/CN2023/083132 2022-09-27 2023-03-22 驾驶员操作水平评价方法、装置、工程车辆及存储介质 WO2024066242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211182310.0A CN115384521A (zh) 2022-09-27 2022-09-27 驾驶员操作水平评价方法、装置、工程车辆及存储介质
CN202211182310.0 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024066242A1 true WO2024066242A1 (zh) 2024-04-04

Family

ID=84129277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083132 WO2024066242A1 (zh) 2022-09-27 2023-03-22 驾驶员操作水平评价方法、装置、工程车辆及存储介质

Country Status (2)

Country Link
CN (1) CN115384521A (zh)
WO (1) WO2024066242A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115384521A (zh) * 2022-09-27 2022-11-25 三一重机有限公司 驾驶员操作水平评价方法、装置、工程车辆及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247162A (ja) * 1999-02-26 2000-09-12 Mitsubishi Motors Corp 車両用運転状態評価装置
JP2012198344A (ja) * 2011-03-18 2012-10-18 Mazda Motor Corp 車両用運転支援装置
JP2018001831A (ja) * 2016-06-28 2018-01-11 本田技研工業株式会社 運転技量判定装置
JP2018001830A (ja) * 2016-06-28 2018-01-11 本田技研工業株式会社 運転技量判定装置
WO2019013852A1 (en) * 2017-07-11 2019-01-17 Siemens Industry, Inc. METHOD AND SYSTEM FOR MONITORING AND EVALUATING PERFORMANCE OF A DRIVER OF A VEHICLE
CN111622285A (zh) * 2020-06-09 2020-09-04 三一重机有限公司 一种挖掘机的能效检测系统、检测方法及挖掘机
CN115384521A (zh) * 2022-09-27 2022-11-25 三一重机有限公司 驾驶员操作水平评价方法、装置、工程车辆及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247162A (ja) * 1999-02-26 2000-09-12 Mitsubishi Motors Corp 車両用運転状態評価装置
JP2012198344A (ja) * 2011-03-18 2012-10-18 Mazda Motor Corp 車両用運転支援装置
JP2018001831A (ja) * 2016-06-28 2018-01-11 本田技研工業株式会社 運転技量判定装置
JP2018001830A (ja) * 2016-06-28 2018-01-11 本田技研工業株式会社 運転技量判定装置
WO2019013852A1 (en) * 2017-07-11 2019-01-17 Siemens Industry, Inc. METHOD AND SYSTEM FOR MONITORING AND EVALUATING PERFORMANCE OF A DRIVER OF A VEHICLE
CN111622285A (zh) * 2020-06-09 2020-09-04 三一重机有限公司 一种挖掘机的能效检测系统、检测方法及挖掘机
CN115384521A (zh) * 2022-09-27 2022-11-25 三一重机有限公司 驾驶员操作水平评价方法、装置、工程车辆及存储介质

Also Published As

Publication number Publication date
CN115384521A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
US20210072835A1 (en) Performing an action associated with a motion based input
WO2024066242A1 (zh) 驾驶员操作水平评价方法、装置、工程车辆及存储介质
WO2018084161A1 (ja) 作業機械用安全管理システム、管理装置、安全管理方法
KR101033629B1 (ko) 건설 기계의 운전 시스템
EP3447198A1 (en) Display device for shovel
US20140315164A1 (en) System and method for improving operator performance
JP2018003282A (ja) ショベルの表示装置
CN110344467B (zh) 挖掘机测量和控制逻辑电路
WO2016148242A1 (ja) ショベル
WO2021054417A1 (ja) ショベル、ショベルの管理装置、ショベルの管理システム、ショベルの支援装置
CN114203119A (zh) 显示控制方法、装置、电子设备及存储介质
WO2023197417A1 (zh) 起重机稳定性分析方法、起重机防倾覆控制方法及装置
JP5759955B2 (ja) Webページ閲覧サーバ、Webページ閲覧システム、Webページ閲覧方法及びプログラム
US20230213908A1 (en) Timing prediction method, timing prediction device, timing prediction system, program, and construction machinery system
KR20230018091A (ko) 건설기계 모니터링 시스템 및 방법
WO2021098460A1 (zh) 截屏显示方法、装置和终端设备
CN111796980B (zh) 数据处理方法、装置、电子设备和存储介质
JP5926807B2 (ja) 協調シミュレーション用計算機システム、組込みシステムの検証システム及び組込みシステムの検証方法
JP2008245150A (ja) 映像表示装置及びその制御方法、プログラム、記憶媒体
WO2022025079A1 (ja) 建設機械
CN115185425B (zh) 一种控制终端显示的电子书翻页的方法及装置
EP2808752B1 (en) Performing an action associated with a motion based input
JP2022146689A (ja) ショベル、ショベルの表示装置、ショベルの管理装置
WO2022124477A1 (ko) 전자 장치 및 그 제어 방법
US20230033876A1 (en) Systems and methods for identifying machine modifications for improved productivity