WO2024066075A1 - 气密性检测控制方法、控制器、检测系统以及存储介质 - Google Patents

气密性检测控制方法、控制器、检测系统以及存储介质 Download PDF

Info

Publication number
WO2024066075A1
WO2024066075A1 PCT/CN2022/139647 CN2022139647W WO2024066075A1 WO 2024066075 A1 WO2024066075 A1 WO 2024066075A1 CN 2022139647 W CN2022139647 W CN 2022139647W WO 2024066075 A1 WO2024066075 A1 WO 2024066075A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
gas
helium
micro
airtightness
Prior art date
Application number
PCT/CN2022/139647
Other languages
English (en)
French (fr)
Inventor
刁权发
唐志耀
Original Assignee
广东利元亨智能装备股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东利元亨智能装备股份有限公司 filed Critical 广东利元亨智能装备股份有限公司
Publication of WO2024066075A1 publication Critical patent/WO2024066075A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Definitions

  • the embodiments of the present invention relate to, but are not limited to, the field of automation, and in particular to an airtightness detection control method, a controller, a detection system, and a storage medium.
  • the main purpose of the embodiments of the present invention is to propose an airtightness detection control method, controller, detection system and storage medium, which can be applicable to different airtightness detection systems, achieve compatibility with different detection modes, improve the efficiency of software and program design and software and program compatibility, and meet the on-site debugging requirements of the airtightness detection system.
  • an embodiment of the present invention provides an airtightness detection control method, comprising:
  • a large leak detection and/or a micro leak detection is performed on the detection object.
  • the large leak detection is characterized by performing a vacuum pressure detection on the detection object
  • the micro leak detection is characterized by performing a gas concentration detection on the detection object.
  • performing a large leak detection and/or a micro leak detection on a detection object according to a target detection mode includes:
  • the target detection mode is the first detection mode
  • large leak detection and micro leak detection are performed on the detection object.
  • the step of performing large leak detection and micro leak detection on the detection object includes:
  • the detection object When the air pressure difference is less than or equal to a preset air pressure difference threshold, the detection object is filled with the first gas, and a gas concentration test is performed on the detection object filled with the first gas to obtain a test result.
  • the method further includes:
  • the detection object When the air pressure difference is greater than a preset air pressure difference threshold, the detection object has a large leak problem.
  • performing large leak detection and/or micro leak detection on the detection object according to the target detection mode includes:
  • micro-leakage detection is performed on the detection object.
  • the micro-leakage detection on the detection object includes:
  • the step of performing gas concentration detection on the detection object filled with the first gas to obtain the detection result includes:
  • the detection result is that the detection object has a micro-leakage problem
  • the detection result is that there is no micro-leakage problem in the detection object.
  • the number of the detection objects is at least two, and the micro-leakage detection on the detection objects includes:
  • the first gas is filled into at least two of the detection objects that have been cleaned with the first gas, and gas concentration detection is performed on each of the detection objects that have been filled with the first gas to obtain a detection result.
  • the cleaning process of the at least two detection objects from which the first gas has been extracted and the first gas in the first gas transmission pipeline comprises:
  • the second gas is filled into at least two of the detection objects and the first gas transmission pipeline from which the first gas has been extracted, so as to clean the detection objects and the first gas in the first gas transmission pipeline with the second gas.
  • an embodiment of the present invention provides a controller, comprising: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the airtightness detection control method as described in the first aspect is implemented.
  • an embodiment of the present invention provides an airtightness detection system, wherein the airtightness detection system includes the controller described in the second aspect.
  • a computer-readable storage medium stores computer-executable instructions, wherein the computer-executable instructions are used to execute the airtightness detection control method described in the first aspect.
  • the embodiment of the present invention includes: when it is necessary to perform on-site debugging work or specific production work on the helium detection system, the controller for controlling the helium detection system will receive a detection mode instruction, which is issued according to the structure and processing capacity of the helium detection system, and then the controller will determine the target detection mode that the helium detection system needs to execute according to the detection mode instruction, and then perform large leak detection and/or micro leak detection on the detection object according to the target detection mode, wherein the large leak detection is characterized by vacuum pressure detection on the detection object, and the micro leak detection is characterized by helium concentration detection on the detection object.
  • the switching of the detection mode can be realized by the controller without changing the structure of the helium detection system, so as to realize the compatibility of different detection modes, improve the efficiency of software and program design and the compatibility of software and programs, and meet the requirements for on-site debugging of the helium detection system.
  • FIG1 is a system architecture platform for executing an airtightness detection control method provided by an embodiment of the present invention
  • FIG2 is a schematic diagram of a helium detection system provided by one embodiment of the present invention.
  • FIG3 is a schematic diagram of a helium detection system provided by another embodiment of the present invention.
  • FIG4 is a flow chart of an airtightness detection control method provided by an embodiment of the present invention.
  • FIG5 is a flow chart of an airtightness detection control method provided by another embodiment of the present invention.
  • FIG6 is a flow chart of an airtightness detection control method provided by another embodiment of the present invention.
  • FIG. 7 is a flow chart of an airtightness detection control method provided by another embodiment of the present invention.
  • the embodiments of the present invention provide an airtightness detection control method, a controller, a detection system and a storage medium.
  • the airtightness detection control method of the controller applied to the helium detection system includes at least the following steps: receiving a detection mode instruction; determining a target detection mode according to the detection mode instruction; performing a large leak detection and/or a micro leak detection on the detection object according to the target detection mode, wherein the large leak detection is characterized by performing a vacuum pressure detection on the detection object, and the micro leak detection is characterized by performing a gas concentration detection on the detection object.
  • the switching of the detection mode can be realized through the controller without changing the structure of the airtightness detection system, so as to realize the compatibility of different detection modes, improve the efficiency of software and program design and the compatibility of software and programs, and meet the requirements for on-site debugging of the helium detection system.
  • FIG. 1 is a schematic diagram of a system architecture platform 100 for executing an airtightness detection control method provided by an embodiment of the present application.
  • the system architecture platform 100 is provided with a processor 110 and a memory 120 , wherein the processor 110 and the memory 120 may be connected via a bus or other means, and FIG. 1 takes the connection via a bus as an example.
  • the memory 120 can be used to store non-transitory software programs and non-transitory computer executable programs.
  • the memory 120 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one disk storage device, a flash memory device, or other non-transitory solid-state storage device.
  • the memory 120 may optionally include a memory remotely arranged relative to the processor 110, and these remote memories may be connected to the system architecture platform 100 via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the system architecture platform may be a programmable controller, or may be other controllers, which is not specifically limited in this embodiment.
  • FIG. 1 does not constitute a limitation on the embodiments of the present application, and may include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components.
  • Figure 2 is a schematic diagram of an airtightness detection system provided by an embodiment of the present invention
  • the airtightness detection system includes a plurality of cavities 220 for placing a detection object 210, a large leak detection module 230 for performing a large leak detection on the detection object 210 in the cavity 220, and a micro leak detection module 240 for performing a micro leak detection on the detection object 210 in the cavity 220, wherein the large leak detection is characterized by performing a vacuum pressure detection on the detection object 210, and the micro leak detection is characterized by performing a gas concentration detection on the detection object 210.
  • the airtightness detection system is a helium detection system, which is a helium detection system for detecting battery cells.
  • the helium detection system includes two cavities for placing battery cells, a large leakage detection module for performing large leakage detection on the battery cells in the cavity, and a micro leakage detection module for performing micro leakage detection on the battery cells in the cavity.
  • the two cavities are respectively a first cavity 301 and a second cavity 303.
  • the first cavity 301 is provided with a first cavity connecting valve 309 and a first battery cell connecting valve 323, and the second cavity 303 is provided with a second cavity connecting valve 311 and a second battery cell connecting valve 325.
  • the large leakage detection module includes a first cavity connecting valve 309 and a second battery cell connecting valve 325 respectively connected to the first cavity and the second cavity 303.
  • the cavity vacuum detection unit comprises a cavity vacuum pump group, a cavity vacuum gauge 313 and a cavity vacuum connecting valve group. One end of the cavity vacuum connecting valve group is respectively connected to the first cavity connecting valve 309 and the second cavity connecting valve 311, and the other end is connected to the cavity vacuum pump group.
  • the cavity vacuum gauge 313 is respectively connected to the first cavity connecting valve 309 and the second cavity connecting valve 311 to detect the vacuum conditions of the first cavity 301 and the second cavity 303.
  • the battery cell vacuum detection unit includes a first battery cell vacuum gauge 315 for detecting the vacuum condition of the first battery cell 305, a second battery cell vacuum gauge 317 for detecting the vacuum condition of the second battery cell 307, a battery cell vacuum valve 319 and a battery cell vacuum pump 321, one end of the battery cell vacuum valve 319 is respectively connected to the first battery cell connecting valve 323 and the second battery cell connecting valve 325, and the other end is connected to the battery cell vacuum pump 321.
  • the micro-leak detection module includes a helium filling valve 327, a helium filling unit 329, a helium detection unit group and a helium detection valve group.
  • the helium filling unit 329 fills helium into the first battery cell 305 through the helium filling valve 327 and the first battery cell connecting valve 323.
  • the helium filling unit 329 fills helium into the second battery cell 307 through the helium filling valve 327 and the second battery cell connecting valve 325.
  • the helium detection unit group is used to detect the helium concentration in the first cavity 301 and/or the second cavity 303.
  • the helium detection valve group is used to control the first cavity 301 and/or the second cavity 303 to be connected to the helium detection unit group.
  • the cavity vacuum pump group may include a Roots pump 331, or may include a Roots pump 331 and a Roots pre-pump 333, or may include a cavity vacuum pump, which is not specifically limited in this embodiment.
  • the cavity vacuum connecting valve group includes the cavity vacuum main valve 335 and the cavity vacuum valve 337, or may include the cavity vacuum valve 337, which is not specifically limited in this embodiment.
  • a maintaining branch is provided on the pipeline between the cavity vacuum main valve 335 and the cavity vacuum valve 337, and a maintaining valve 339 and a maintaining pump 341 are provided on the maintaining branch.
  • One end of the maintaining valve 339 is connected to the pipeline between the cavity vacuum main valve 335 and the cavity vacuum valve 337, and the other end is connected to the maintaining pump 341.
  • an air return branch is provided between the first battery cell connecting valve 323 and the second battery cell connecting valve 325 , and an air return valve 343 is provided on the air return branch.
  • a pipeline cleaning branch is provided on the pipeline between the cavity vacuum main valve 335 and the cavity vacuum valve 337, and a pipeline cleaning valve 345 and a pipeline cleaning unit 347 are provided on the pipeline cleaning branch.
  • the pipeline cleaning branch is used to clean the helium remaining on the pipeline between the cavity vacuum main valve 335 and the cavity vacuum valve 337.
  • a helium detection pipeline vacuum gauge 349 is provided on the pipeline between the cavity vacuum main valve 335 and the cavity vacuum valve 337 for detecting the air pressure in the pipeline between the cavity vacuum main valve 335 and the cavity vacuum valve 337 .
  • the helium detection unit group may include a helium detector 351 and a helium detection fore-stage pump 353 connected to the helium detector 351, or may include the helium detector 351, or may include the helium detector 351, a helium detection fore-stage pump 353 connected to the helium detector 351, a helium detector leak valve 355 and a helium detector standard leak hole 357, one end of the helium detector leak valve 355 is connected to the helium detector 351, and the other end is connected to the helium detector leak valve 355, which is not specifically limited in this embodiment.
  • the helium detection valve group may include a main leak detection valve 371 and a cavity leak detection valve 373 , or may include a cavity leak detection valve 373 , which is not specifically limited in this embodiment.
  • the micro-leak detection module also includes a cleaning helium unit, which includes a first cleaning valve 359 connected to the first cavity 301, a second cleaning valve 361 connected to the second cavity 303, a nitrogen output unit 363 connected to the first cleaning valve 359 and the second cleaning valve 361 respectively, and a nitrogen source meter 365 for detecting nitrogen concentration.
  • a cleaning helium unit which includes a first cleaning valve 359 connected to the first cavity 301, a second cleaning valve 361 connected to the second cavity 303, a nitrogen output unit 363 connected to the first cleaning valve 359 and the second cleaning valve 361 respectively, and a nitrogen source meter 365 for detecting nitrogen concentration.
  • the helium detection system also includes an external standard leak valve 367 and an external standard leak hole 369, one end of the external standard leak valve 367 is connected to the external standard leak hole 369, and the other end is respectively connected to the first cavity 301 vacuum valve and the cavity vacuum main valve 335.
  • the helium detection system further includes a cavity air release valve 375 , which is connected to the first cavity communication valve 309 and the second cavity communication valve 311 , respectively.
  • the helium detection system also includes an interface display module (not shown in the figure).
  • the program designs an HMI display interface, through which the jump process of the helium detection process and the results of each process step can be intuitively displayed, and it also has the function of displaying the numerical values of relevant parameters such as cavity vacuum degree, pressure value, and leakage rate during the large leak detection and micro leak detection process.
  • a program for manually setting parameters such as detection thresholds and vacuum pressure values can also be set.
  • each two cavities can be grouped into two groups, and the helium detection is performed in groups; or four cavities can be grouped into one group, and the helium detection is performed in groups; or three cavities can be grouped into one group, and the remaining cavity can be another group, and the helium detection is performed in groups.
  • This embodiment does not specifically limit the number of cavities set in the helium detection system and the grouping method of the cavities.
  • the connection method of each group is the same as that in the above embodiment.
  • the number of cavities provided in the helium detection system may be two, three, or four, and this embodiment does not impose any specific limitation thereto.
  • one or more helium detectors 351 can be provided, and the cavities in different groups can be detected by controlling various valve bodies provided in the micro-leakage detection module.
  • Micro-leakage detection can be performed on the battery cells in all cavities at one time, or micro-leakage detection can be performed on the battery cells in the cavities of the group as a unit, or micro-leakage detection can be performed on the battery cells in a single cavity. This embodiment does not make any specific limitations on this.
  • the helium inspection system for helium inspection of battery cells concentrates valve bodies such as connecting valves (first cavity connecting valve 309, first battery cell connecting valve 323, second cavity connecting valve 311 and second battery cell connecting valve 325), vacuum valves (battery cell vacuum valve 319, cavity vacuum valve 337), leak detection valves (main leak detection valve 371 and cavity leak detection valve 373), and helium filling valves (helium filling valve 327) on the cavity for placing battery cells, connects to different common pipelines and connects to corresponding pumps, and controls the progress of the helium inspection process through the signal interaction between the system architecture platform (controller) of Figure 1 and the valves, pumps, helium detectors, sensors and servo drivers connected to the cavity.
  • the corresponding devices can be enabled or disabled according to the number of cavities and process requirements to achieve compatibility with different numbers of cavities and different inspection modes.
  • the helium detection system can also be provided with a cavity background detection function, a cavity pressure rise rate judgment function, a pipeline self-inspection function, a helium detection calibration and a connecting pipeline cleaning function, etc.
  • This embodiment does not make any specific limitations on it and can be set according to actual conditions.
  • the helium detection system in the above embodiment is one embodiment of the airtightness detection system, and may also be a detection system for detecting other gases, which is not specifically limited in this embodiment.
  • system architecture platform of Figure 1 can be set in the airtightness detection system, or it can be placed outside the airtightness detection system and communicated with the airtightness detection system. It can be set according to actual conditions, and this embodiment does not make any specific limitations on it.
  • control method of the embodiment of the present invention is applied to a helium detection system.
  • the control method of the embodiment of the present invention may include but is not limited to step S100, step S200 and step S300.
  • Step S100 receiving a detection mode instruction.
  • the controller used to control the airtightness detection system will receive a detection mode instruction.
  • the controller used to control the helium detection system will receive a helium detection mode instruction (detection mode instruction).
  • the detection mode instruction may be an instruction issued by the user during on-site debugging, or may be an instruction preset according to production requirements, and this embodiment does not specifically limit it.
  • Step S200 determining a target detection mode according to a detection mode instruction.
  • different target detection modes are pre-set in the helium detection system to correspond thereto.
  • the helium detection system receives the detection mode instruction, it can determine the corresponding target detection mode according to the detection mode instruction and call a specific control program according to the target detection mode.
  • Step S300 performing a major leak detection and/or a minor leak detection on the detection object according to the target detection mode.
  • the major leak detection is characterized by performing a vacuum pressure detection on the detection object
  • the minor leak detection is characterized by performing a gas concentration detection on the detection object.
  • the airtightness detection process is a helium detection process
  • the helium detection process is used to detect the gap of the shell of the detection object, including large leak detection and micro leak detection.
  • the large leak detection is characterized by vacuuming the detection object
  • the micro leak detection is characterized by helium concentration detection of the detection object.
  • the large leak detection is to evacuate the cavity of the detection object, and judge whether there is a large leak by comparing the pressure drop value in the detection object with the preset pressure difference threshold; while the micro leak detection is to fill helium (first gas) in the detection object, and use the helium detector to detect the helium concentration in the cavity where the detection object is located to judge whether the shell of the detection object is micro leaking.
  • the detection object is subjected to large leak detection, or the detection object can be subjected to micro leak detection, or the detection object is subjected to large leak detection and micro leak detection, or one large leak detection and two micro leak detections are performed according to the detection object, and this embodiment does not specifically limit it.
  • the target detection mode may include a first detection mode and a second detection mode, the first detection mode includes large leak detection and micro leak detection, and the second detection mode includes micro leak detection.
  • the target detection mode may include a first detection mode, a second detection mode and a third detection mode, the first detection mode includes micro-leak detection, the second detection mode includes micro-leak detection, and the third detection mode includes large leak detection and micro-leak detection.
  • the controller used to control the helium detection system will receive a detection mode instruction, which is issued according to the structure and processing capacity of the helium detection system. Then the controller will determine the target detection mode that the helium detection system needs to execute according to the detection mode instruction, and then perform large leak detection and/or micro leak detection on the detection object according to the target detection mode, wherein the large leak detection is characterized by vacuum pressure detection on the detection object, and the micro leak detection is characterized by helium concentration detection on the detection object.
  • the switching of the detection mode can be realized by the controller without changing the structure of the helium detection system, so as to achieve compatibility of helium detection in different modes, improve the efficiency of software and program design and the compatibility of software and programs, and meet the requirements for on-site debugging of the helium detection system.
  • Figure 5 is a flowchart of an airtightness detection control method provided by another embodiment of the present invention.
  • the steps of performing large leak detection and micro leak detection on the detection object may include but are not limited to step S510 and step S520.
  • Step S510 vacuuming the detection object and detecting the air pressure difference of the detection object, wherein the air pressure difference represents the pressure change of the detection object before and after the vacuuming treatment.
  • the detection object is first vacuumed through the large leak detection module.
  • the vacuuming of the detection object can be understood as vacuuming the detection object itself and the cavity where the detection object is located, and detecting the pressure change of the detection object before and after the vacuuming to determine whether there is a large leak problem in the detection object.
  • the air pressure difference is less than or equal to the preset air pressure difference threshold, the detection object does not have a large leak problem; when the air pressure difference is greater than the preset air pressure difference threshold, the detection object has a large leak problem.
  • the large leak detection process needs to first determine the detection mode. If the detection mode is selected as the first detection mode, it jumps to the large leak detection process: the top cylinder of the cavity (first cavity and/or second cavity) corresponding to the battery cell (first battery cell and/or second battery cell) to be detected extends to seal the cavity, opens the cavity vacuum valve and the cavity connecting valve (first cavity connecting valve and/or second cavity connecting valve), starts the cavity vacuum pump to vacuum the cavity (first cavity and/or second cavity), and opens the cavity and battery cell connecting valve for placing the battery cell, starts the cavity vacuum pump group, records the battery cell pressure value, and determines the large leak detection result according to the pressure difference of the battery cell and the preset pressure difference threshold value.
  • the detection result is OK (no large leak problem)
  • it jumps to the micro leak detection process
  • the detection result is NG, it is necessary to determine the battery cell with a large leak problem and perform a re-inspection process without entering the micro leak detection process.
  • Step S520 when the pressure difference is less than or equal to the preset pressure difference threshold, the first gas is filled into the detection object, and the gas concentration of the detection object filled with the first gas is detected to obtain a detection result.
  • the air pressure difference when the air pressure difference is less than or equal to the preset air pressure difference threshold, it indicates that the detection object does not have a major leak problem, that is, the detection object passes the major leak detection. Then, it is necessary to perform a micro leak detection on the detection object, fill the detection object with helium (first gas), and perform a helium detection on the detection object filled with helium (first gas) through the micro leak detection module to obtain a detection result. If the detected helium (first gas) concentration is greater than the preset concentration threshold, it proves that the shell of the detection object has a micro leak problem. If the detected helium concentration value is less than or equal to the preset concentration threshold, the detection result is that the detection object does not have a micro leak problem.
  • the preset pressure difference threshold and the preset concentration threshold can be set according to the actual process requirements of the detection object, and this embodiment does not specifically limit them.
  • the cavity connection valve and the battery cell connection valve are opened to detect the cavity and determine whether the cavity needs to be evacuated. If the cavity pressure does not meet the conditions, the cavity is evacuated. When the cavity pressure meets the conditions, the helium detection valve group is opened, and the air pressure in the leak detection pipeline is waited to meet the conditions. The helium filling valve is opened to fill the battery cell with helium. When the helium filling pressure meets the conditions, the helium filling valve is closed, and then the helium detector data is read to determine the detection result based on the detection data.
  • step S300 of the embodiment of the present invention includes but is not limited to step S610 , step S620 , step S630 and step S640 .
  • Step S610 simultaneously performing gas concentration detection on at least two detection objects that have been filled with the first gas
  • Step S620 when the detection result shows that the detection object has a leakage problem, extracting the first gas from at least two detection objects that have been filled with the first gas and the first gas in the cavity where the detection object is located;
  • Step S630 cleaning at least two detection objects from which the first gas has been extracted and the first gas in the first gas transmission pipeline, where the first gas transmission pipeline is a transmission pipeline between the detection object and the detection unit group;
  • Step S640 filling at least two detection objects that have been cleaned with the first gas with the first gas, and performing gas concentration detection on each detection object that has been filled with the first gas separately to obtain a detection result.
  • the number of detection objects is at least two or more
  • at least two detection objects that have been filled with helium (first gas) can be simultaneously detected for helium to obtain helium detection results. If there is no helium (first gas) leakage in the detection objects detected at the same time, then the result of passing the micro-leak detection can be directly obtained. If the detection result is found that there is a leakage problem in the detection object, it is necessary to extract the helium (first gas) filled in the detection object detected at the same time, and clean the helium (first gas) in the transmission pipeline between the detection object and the helium detection unit group.
  • the detection object that has been cleaned with helium (first gas) is filled with helium (first gas), and each detection object that has been filled with helium (first gas) is individually detected for helium to obtain the detection result, so that the battery cell with helium (first gas) leakage problem can be obtained. Since the production yield of the battery cell is relatively high, in most cases, multiple detection objects are detected simultaneously for multiple times, which can effectively improve the efficiency of helium (first gas) detection.
  • the program in the controller jumps to the deflation process to determine whether helium (first gas) needs to be extracted. If NG occurs after the battery cell helium filling test, it is necessary to open the battery cell vacuum valve and the battery cell connection valve, and extract the air pressure in the battery cell to the pressure setting value through the battery cell vacuum pump, and then close the battery cell vacuum valve, open the cavity connection valve and the cavity deflation valve, and when the pressure reaches the requirement, close the cavity connection valve and the cavity deflation valve to end the deflation process. For dual cavities, the program flow can jump to the single cavity deflation process.
  • nitrogen (second gas) may be filled into at least two detection objects from which helium (first gas) has been extracted and the helium (first gas) transmission pipeline, so that the detection object and the helium (first gas) in the helium (first gas) transmission pipeline are cleaned by nitrogen (second gas), and the helium (first gas) in the transmission pipeline is tested by a helium detector until the helium (first gas) is cleaned.
  • the cavity and the helium (first gas) transmission pipeline are cleaned with nitrogen (second gas) to avoid misjudgment of the re-test result due to the presence of residual helium ions when the detection object is re-tested for micro-leakage.
  • the cavity connecting valve, cavity cleaning valve, and cavity air release valve are opened. After a certain period of cleaning, the cumulative number of cleaning times is used to determine whether the cavity needs to be evacuated. Usually, after the number of cleaning times reaches 3-5 times, it is determined that vacuuming is required. At this time, the cavity vacuum valve is opened. After the cavity pressure is evacuated to less than the set value, the cavity vacuum valve is closed. After the cleaning is completed, the cavity connecting valve, cavity cleaning valve, cavity air release valve and other valve bodies are closed.
  • the step of performing micro-leakage detection on the detection object may include but is not limited to step S710 .
  • Step S710 performing gas concentration detection on the detection object filled with the first gas to obtain a detection result.
  • the target detection mode is the second detection mode
  • the detection object has passed the large leak detection and the detection object has been filled with helium (first gas)
  • the large leak detection result directly displays OK, and directly enters the micro leak detection process.
  • helium (first gas) the pressure of the cavity where the detection object is located can be directly judged.
  • the helium detector data is directly read to obtain the micro leak detection result; if the concentration of helium (first gas) is detected to be greater than the preset concentration threshold, it proves that there is a micro leak problem in the shell of the detection object; if the concentration of helium (first gas) is detected to be less than or equal to the preset concentration threshold, the detection result is that there is no micro leak problem in the detection object.
  • helium detection can be performed on at least two detection objects that have been filled with helium at the same time to obtain helium detection results. If the detection result shows that the detection object has a leakage problem, it is necessary to extract the helium filled in the detection objects that are detected at the same time, and clean the helium in the transmission pipeline between the detection object and the helium detection unit group.
  • the detection object that has been cleaned with helium (first gas) is filled with helium (first gas), and helium detection is performed on each detection object that has been filled with helium (first gas) separately to obtain the detection results, so as to obtain the battery cell with helium (first gas) leakage problem. Since the manufacturing yield of the battery cell is relatively high, in most cases, multiple detection objects are detected simultaneously for multiple times, which can effectively improve the efficiency of the helium detection work.
  • an embodiment of the present application provides a controller, which includes: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor and the memory may be connected via a bus or other means.
  • the controller in this embodiment may correspond to the memory and the processor in the embodiment shown in FIG. 1, and may constitute a part of the system architecture platform in the embodiment shown in FIG. 1. Both belong to the same inventive concept, and therefore both have the same implementation principle and beneficial effects, which will not be described in detail here.
  • the non-transient software programs and instructions required to implement the airtightness detection control method on the controller side of the above-mentioned embodiment are stored in the memory.
  • the airtightness detection control method of the above-mentioned embodiment is executed, for example, method steps S100 to S300 in Figure 4, method steps S510 to S520 in Figure 5, method steps S610 to S640 in Figure 6, and method step S710 in Figure 7 described above are executed.
  • an embodiment of the present application further provides a helium detection system, including the controller in the above embodiment, and the implementation principle and beneficial effects are consistent with those of the controller, which will not be described in detail here.
  • an embodiment of the present application also provides a computer-readable storage medium, which stores computer-executable instructions.
  • the computer-executable instructions are used to execute the above-mentioned airtightness detection control method, for example, execute the method steps S100 to S300 in Figure 4, the method steps S510 to S520 in Figure 5, the method steps S610 to S640 in Figure 6, and the method step S710 in Figure 7 described above.
  • computer storage medium includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules or other data).
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, disk storage or other magnetic storage devices, or any other medium that may be used to store desired information and may be accessed by a computer.
  • communication media generally include computer-readable instructions, data structures, program modules, or other data in modulated data signals such as carrier waves or other transmission mechanisms, and may include any information delivery media.
  • computer-readable storage media may be non-volatile or volatile.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明实施例提供了一种气密性检测控制方法、控制器、检测系统以及存储介质,其中应用于氦检系统的控制器的气密性检测控制方法至少包括以下步骤:接收检测模式指令;根据所述检测模式指令确定目标检测模式;根据目标检测模式对检测对象进行大漏检测和/或微漏检测,所述大漏检测表征对所述检测对象进行抽真空气压检测,所述微漏检测表征对所述检测对象进行气体浓度检测。在本实施例的技术方案中,可以在不改变气密性检测系统结构的基础上,通过控制器实现检测模式的切换,实现不同检测模式的兼容,提高程序设计的效率及程序兼容性,满足对气密性检测系统现场调试要求。

Description

气密性检测控制方法、控制器、检测系统以及存储介质 技术领域
本发明实施例涉及但不限于自动化领域,尤其涉及一种气密性检测控制方法、控制器、检测系统以及存储介质。
背景技术
目前,在气密性检测过程中,由于腔体数量的不同、检测阶段的不同或者检测要求的不同,需要通过设计相对应的结构与控制程序来满足不同生产状况的工艺要求,但是气密性检测工艺涉及流程较多,如氦气检测工艺,软件、程序等设计过程比较复杂,不同的腔体数量或不同的检测阶段或者要求,其气密性检测系统的结构不同,从而软件、程序等的设计也不相同,且不同设计思路的软件、程序存在差异,不利于现场调试工作要求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例的主要目的在于提出一种气密性检测控制方法、控制器、检测系统以及存储介质,能够适用于不同的气密性检测系统,实现不同检测模式的兼容,提高软件、程序设计的效率及软件、程序兼容性,满足对气密性检测系统现场调试要求。
第一方面,本发明实施例提供了一种气密性检测控制方法,包括:
接收检测模式指令;
根据所述检测模式指令确定目标检测模式;
根据目标检测模式对检测对象进行大漏检测和/或微漏检测,所述大漏检测表征对所述检测对象进行抽真空气压检测,所述微漏检测表征对所述检测对象进行气体浓度检测。
在一实施例中,根据目标检测模式对检测对象进行大漏检测和/或微漏检测,包括:
在所述目标检测模式为第一检测模式的情况下,对检测对象进行大漏检测和微漏检测。
在一实施例中,所述对检测对象进行大漏检测和微漏检测,包括:
对所述检测对象进行抽真空处理,并检测所述检测对象的气压差值,所述气压差值表征对述检测对象抽真空处理前与抽真空处理后的压强变化情况;
在所述气压差值小于或者等于预设气压差阈值的情况下,对所述检测对象充入第一气体,并对已充入第一气体的所述检测对象进行气体浓度检测,得到检测 结果。
在一实施例中,在所述检测所述检测对象的气压差值之后,所述方法还包括:
在所述气压差值大于预设气压差阈值的情况下,所述检测对象存在大漏问题。
在一实施例中,所述根据目标检测模式对检测对象进行大漏检测和/或微漏检测,包括:
在所述目标检测模式为第二检测模式的情况下,对检测对象进行微漏检测。
在一实施例中,所述对检测对象进行微漏检测,包括:
对已充入第一气体的所述检测对象进行气体浓度检测,得到检测结果。
在一实施例中,所述对已充入第一气体的所述检测对象进行气体浓度检测,得到检测结果,包括:
在检测到所述检测对象的第一气体浓度值大于预设浓度阈值的情况下,所述检测结果为所述检测对象存在微漏问题;和/或,
在检测到所述检测对象的第一气体浓度值小于或者等于预设浓度阈值的情况下,所述检测结果为所述检测对象不存在微漏问题。
在一实施例中,所述检测对象的数量为至少两个,所述对所述检测对象进行微漏检测,包括:
同时对至少两个已充入第一气体的所述检测对象进行气体浓度检测;
在所述检测结果为所述检测对象存在泄漏问题的情况下,对至少两个已充入第一气体的所述检测对象以及所述检测对象所处腔体中的第一气体进行抽取处理;
对至少两个已抽取第一气体的所述检测对象和第一气体传输管道中的第一气体进行清洗处理,所述第一气体传输管道为所述检测对象和检测单元组之间的传输管道;
对至少两个已清洗第一气体的所述检测对象充入第一气体,并单独对每个已充入第一气体的所述检测对象进行气体浓度检测,得到检测结果。
在一实施例中,所述对至少两个已抽取第一气体的所述检测对象和第一气体传输管道中的第一气体进行清洗处理,包括:
向至少两个已抽取第一气体的所述检测对象和第一气体传输管道中充入第二气体,以通过第二气体对所述检测对象和所述第一气体传输管道中的第一气体进行清洗处理。
第二方面,本发明实施例提供了一种控制器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如第一方面所述的气密性检测控制方法。
第三方面,本发明实施例提供了一种气密性检测系统,所述气密性检测系统包括第二方面所述的控制器。
第四方面,一种计算机可读存储介质,存储有计算机可执行指令,所述计算 机可执行指令用于执行第一方面所述的气密性检测控制方法。
本发明实施例包括:当需要对氦检系统进行现场调试工作或者具体生产个工作时,用于控制氦检系统的控制器会接收到检测模式指令,该检测模式指令是根据该氦检系统的结构和处理能力进行下发的,然后控制器会根据检测模式指令确定该氦检系统需要执行的目标检测模式,再根据目标检测模式对检测对象进行大漏检测和/或微漏检测,其中大漏检测表征对检测对象进行抽真空气压检测,微漏检测表征对检测对象进行氦气浓度检测。在本实施例的技术方案中,可以在不改变氦检系统结构的基础上,通过控制器实现检测模式的切换,实现不同检测模式的兼容,提高软件、程序设计的效率及软件、程序兼容性,满足对氦检系统现场调试要求。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图1是本发明一个实施例提供的用于执行气密性检测控制方法的系统架构平台;
图2是本发明一个实施例提供的氦检系统的示意图;
图3是本发明另一个实施例提供的氦检系统的示意图;
图4是本发明一个实施例提供的气密性检测控制方法的流程图;
图5是本发明另一个实施例提供的气密性检测控制方法的流程图;
图6是本发明另一个实施例提供的气密性检测控制方法的流程图;
图7是本发明另一个实施例提供的气密性检测控制方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书、权利要求书或上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
目前,在气密性检测过程中,由于腔体数量的不同、检测阶段的不同或者检测要求的不同,需要通过设计相对应的结构与控制程序来满足不同生产状况的工艺要求,但是气密性检测工艺涉及流程较多,如氦气检测工艺,软件、程序等设计过程比较复杂,不同的腔体数量或不同的检测阶段或者要求,其气密性检测系 统的结构不同,从而软件、程序等的设计也不相同,且不同设计思路的软件、程序存在差异,不利于现场调试工作要求。
为解决上述存在的问题,本发明实施例提供了一种气密性检测控制方法、控制器、检测系统以及存储介质,应用于氦检系统的控制器的气密性检测控制方法至少包括以下步骤:接收检测模式指令;根据检测模式指令确定目标检测模式;根据目标检测模式对检测对象进行大漏检测和/或微漏检测,大漏检测表征对检测对象进行抽真空气压检测,微漏检测表征对检测对象进行气体浓度检测。在本实施例的技术方案中,可以在不改变气密性检测系统结构的基础上,通过控制器实现检测模式的切换,实现不同检测模式的兼容,提高软件、程序设计的效率及软件、程序兼容性,满足对氦检系统现场调试要求。
下面结合附图,对本发明实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的用于执行气密性检测控制方法的系统架构平台100的示意图。
在图1的示例中,该系统架构平台100设置有处理器110和存储器120,其中,处理器110和存储器120可以通过总线或者其他方式连接,图1中以通过总线连接为例。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器120可选包括相对于处理器110远程设置的存储器,这些远程存储器可以通过网络连接至该系统架构平台100。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
系统架构平台可以是可编程控制器,或者可以是其他控制器,本实施例对其不作具体限定。
本领域技术人员可以理解的是,图1中示出的系统架构平台并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
参照图2,图2为本发明一个实施例提供的气密性检测系统的示意图,气密性检测系统包括用于放置检测对象210的多个腔体220、用于对腔体220中的检测对象210进行大漏检测的大漏检测模块230和用于对腔体220中的检测对象210进行微漏检测的微漏检测模块240,其中,大漏检测表征对检测对象210进行抽真空气压检测,微漏检测表征对检测对象210进行气体浓度检测。
在一实施例中,参照图3,该气密性检测系统为氦检系统,该氦检系统为用于检测电芯的氦检系统,该氦检系统包括用于放置电芯的两个腔体、用于对腔体中的电芯进行大漏检测的大漏检测模块和用于对腔体中的电芯进行微漏检测的微漏检测模块,两个腔体分别为第一腔体301和第二腔体303,第一腔体301上设置有第一腔体连通阀309和第一电芯连通阀323,第二腔体303上设置有第二腔体连通阀311和第二电芯连通阀325,大漏检测模块包括分别与第一腔体连通 阀309、第二腔体连通阀311连接的腔体真空检测单元和分别穿过第一腔体301、第二腔体303与第一电芯305、第二电芯307连接的电芯真空检测单元,腔体真空检测单元包括腔体真空泵组、腔体真空规313和腔体真空连通阀组,腔体真空连通阀组一端分别与第一腔体连通阀309、第二腔体连通阀311连接,另一端与腔体真空泵组连接,腔体真空规313分别与第一腔体连通阀309、第二腔体连通阀311连接,以检测第一腔体301和第二腔体303的真空情况。电芯真空检测单元包括用于检测第一电芯305的真空情况的第一电芯真空表315、用于检测第二电芯307的真空情况的第二电芯真空表317、电芯真空阀319和电芯真空泵321,电芯真空阀319的一端分别与第一电芯连通阀323和第二电芯连通阀325连接,另一端与电芯真空泵321连接。微漏检测模块包括充氦阀327、充氦单元329、氦检单元组和氦检阀组,充氦单元329通过充氦阀327、第一电芯连通阀323向第一电芯305充入氦气,充氦单元329通过充氦阀327、第二电芯连通阀325向第二电芯307充入氦气,氦检单元组用于检测第一腔体301和/或第二腔体303中的氦气浓度,氦检阀组用于控制第一腔体301和/或第二腔体303连通至氦检单元组。
进一步地在一些实施例中,腔体真空泵组可以包括罗茨泵331,或者可以包括罗茨泵331和罗茨前置泵333,或者可以包括腔体真空泵,本实施例对其不作具体限定。
需要说明的是,腔体真空连通阀组包括腔体真空总阀335和腔体真空阀337,或者可以包括腔体真空阀337,本实施例对其不作具体限定。
进一步地在一些实施例中,在腔体真空总阀335和腔体真空阀337之间管道上还设置有维持支路,维持支路上设置有维持阀339和维持泵341,维持阀339的一端与腔体真空总阀335和腔体真空阀337之间管道连接,另外一端与维持泵341连接。
进一步地在一些实施例中,第一电芯连通阀323和第二电芯连通阀325之间设置回气支路,回气支路上设置有回气阀343。
进一步地在一些实施例中,在腔体真空总阀335和腔体真空阀337之间管道上还设置有管道清洗支路,管道清洗支路上设置有管道清洗阀345和管道清洗单元347,管道清洗支路用于清洗腔体真空总阀335和腔体真空阀337之间管道上残留的氦气。
进一步地在一些实施例中,在腔体真空总阀335和腔体真空阀337之间管道上还设置有氦检管道真空规349,用于检测腔体真空总阀335和腔体真空阀337之间管道中的气压情况。
需要说明的是,氦检单元组可以包括氦检仪351和与氦检仪351连接的氦检前级泵353,或者可以包括氦检仪351,或者可以包括氦检仪351、与氦检仪351连接的氦检前级泵353、氦检仪标漏阀355和氦检仪标配漏孔357,氦检仪标漏阀355的一端与氦检仪351连接,另一端与氦检仪标漏阀355连接,本实施例对 其不作具体限定。
需要说明的是,氦检阀组可以包括捡漏总阀371和腔体捡漏阀373,或者可以包括腔体捡漏阀373,本实施例对其不作具体限定。
进一步地在一些实施例中,微漏检测模块还包括清洗氦气单元,清洗氦气单元包括用于与第一腔体301连接的第一清洗阀359、与第二腔体303连接的第二清洗阀361、分别与第一清洗阀359和第二清洗阀361连接的氮气输出单元363和用于检测氮气浓度的氮源表365。
进一步地在一些实施例中,该氦检系统还包括外置标漏阀367和外置标准漏孔369,外置标漏阀367的一端与外置标准漏孔369连接,另一端分别与第一腔体301真空阀和腔体真空总阀335连接。
进一步地,该氦检系统还包括腔体放气阀375,腔体放气阀375分别与第一腔体连通阀309、第二腔体连通阀311连接。
进一步地在一些实施例中,该氦检系统还包括界面显示模块(图中未显示),为了便于查看和测试需要,程序设计出HMI显示界面,通过HMI显示界面可以直观的显示氦检流程的跳转过程和每一个流程步骤的结果,还具有显示大漏检测和微漏检测处理过程中的腔体真空度、压力值、漏率等相关参数的数值功能。为了便于现场调试工作,还可以设置手动设置检测阈值、抽真空压力值等参数设定的程序。
需要说明的是,当氦检系统设置有四个腔体时,可以每两个腔体为一组,分为两组,氦检工作时以组为单位进行检测;又或者可以是四个腔体为一组,氦检工作时以组为单位进行检测;又或者可以是三个腔体为一组,剩下的一个腔体为另外一组,氦检工作时以组为单位进行检测,本实施例对氦检系统设置腔体数量和腔体的分组方式不作具体限定。每个分组的连接方式与上述实施例中的相同。
需要说明的是,氦检系统所设置的腔体数量可以是两个,或者可以是三个,或者可以是四个,本实施对其不作具体限定。
需要说明的是,同一个氦检系统中,氦检仪351可以设置一个,或者多个,通过控制微漏检测模块中设置的各种阀体对不同的组中的腔体进行检测,可以是一次性对所有腔体中的电芯进行微漏检测,或者可以是以组为单元对组中的腔体中的电芯进行微漏检测,或者可以是对单个腔体中的电芯进行微漏检测,本实施对其不作具体限定。
在本实施例中用于氦检电芯的氦检系统将连通阀(第一腔体连通阀309、第一电芯连通阀323、第二腔体连通阀311和第二电芯连通阀325)、真空阀(电芯真空阀319、腔体真空阀337)、检漏阀(捡漏总阀371和腔体捡漏阀373)、充氦阀(充氦阀327)等阀体集中在用于放置电芯的腔体上,接入不同的共用管道并与相应的泵进行连通,通过图1的系统架构平台(控制器)与腔体连接的阀门、泵、氦检仪、感应器及伺服驱动器之间的信号交互来控制着氦检流程的进行,结合此系统和氦检功能块,可以根据腔体数量和工艺要求的不同,启用或屏蔽相 应的器件来实现不同数量腔体、不同的检测模式进行兼容。
需要说明的是,除了上述实施例中的功能结构之外,氦检系统还可以设置腔体本底检测功能、腔体压升率判断功能、管道自检功能、氦检校准以及连通管道清洗功能等,本实施例对其不作具体限定,可以根据实际情况进行设置。
需要说明的是,上述实施例中的氦检系统是气密性检测系统的其中一个实施例,还可以是检测其他气体的检测系统,本实施例对其不作具体限定。
需要说明的是,图1的系统架构平台可以设置在气密性检测系统中,也可以外置于气密性检测系统,且与气密性检测系统通信连接,可以根据实际情况进行设置,本实施例对其不作具体限定。
基于上述系统架构平台和气密性检测系统,下面提出本发明的气密性检测控制方法的各个实施例。
参照图4,图4为本发明一个实施例提供的气密性检测控制方法的流程图,本发明实施例的控制方法所应用于的氦检系统,本发明实施例的控制方法可以包括但不限于包括步骤S100、步骤S200和步骤S300。
步骤S100,接收检测模式指令。
具体地,当需要对气密性检测系统进行现场调试工作或者具体生产个工作时,用于控制气密性检测系统的控制器会接收到检测模式指令。例如:当需要对氦检系统进行现场调试工作或者具体生产个工作时,用于控制氦检系统的控制器会接收到氦捡模式指令(检测模式指令)。
需要说明的是,检测模式指令可以是用户在现场调试的时候下发的指令,也可以是根据生产要求预设置好的指令,本实施例对其不作具体限定。
需要说明的是,不同的气密性检测系统的结构不同,气密性检测系统用于处理的检测模式可以是一样的,或者可以是不一样的,本实施例对其不作具体限定,根据实际工作要求和工作过程中的氦检情况设定。
步骤S200,根据检测模式指令确定目标检测模式。
具体地,对于不同的检测模式指令,氦检系统中预设置好不同的目标检测模式与其对应,当氦检系统接收到检测模式指令之后,可以根据该检测模式指令确定其对应的目标检测模式,并根据目标检测模式调用具体的控制程序。
步骤S300,根据目标检测模式对检测对象进行大漏检测和/或微漏检测,大漏检测表征对检测对象进行抽真空气压检测,微漏检测表征对检测对象进行气体浓度检测。
具体地,当气密性检测工艺为氦检工艺,氦检工艺用于检测检测对象壳体的缝隙,包括大漏检测和微漏检测,大漏检测表征对检测对象进行抽真空气压检测,微漏检测表征对检测对象进行氦气浓度检测。其中,大漏检测是对检测对象的腔体抽真空,通过对比检测对象内的气压下降值与预设气压差阈值之间的大小来判定是否大漏;而微漏检测是在检测对象内充入氦气(第一气体),通过氦检仪检测检测对象所处腔体中的氦气浓度大小来判断检测对象的壳体是否微漏。根据目 标检测模式对检测对象进行大漏检测,或者可以检测对象进行微漏检测,又或者对检测对象进行大漏检测和微漏检测,又或者根据检测对象进行一次大漏检测和两次微漏检测,本实施例对其不作具体限定。例如:目标检测模式可以包括第一检测模式和第二检测模式,第一检测模式包括大漏检测和微漏检测,第二检测模式包括微漏检测。又例如:目标检测模式可以包括第一检测模式、第二检测模式和第三检测模式,第一检测模式包括微漏检测,第二检测模式包括微漏检测,第三检测模式包括大漏检测和微漏检测。
本实施例的技术方案中,当需要对氦检系统进行现场调试工作或者具体生产个工作时,用于控制氦检系统的控制器会接收到检测模式指令,该检测模式指令是根据该氦检系统的结构和处理能力进行下发的,然后控制器会根据检测模式指令确定该氦检系统需要执行的目标检测模式,再根据目标检测模式对检测对象进行大漏检测和/或微漏检测,其中大漏检测表征对检测对象进行抽真空气压检测,微漏检测表征对检测对象进行氦气浓度检测。在本实施例的技术方案中,可以在不改变氦检系统结构的基础上,通过控制器实现检测模式的切换,实现不同模式氦检的兼容,提高软件、程序设计的效率及软件、程序兼容性,满足对氦检系统现场调试要求。
参照图5,图5为本发明另一个实施例提供的气密性检测控制方法的流程图,在目标检测模式为第一检测模式的情况下,对检测对象进行大漏检测和微漏检测的步骤可以包括但不限于包括步骤S510和步骤S520。
步骤S510,对检测对象进行抽真空处理,并检测检测对象的气压差值,气压差值表征对述检测对象抽真空处理前与抽真空处理后的压强变化情况。
具体地,首先通过大漏检测模块对检测对象进行抽真空处理,对检测对象进行抽真空处理可以理解为对检测对象的自身以及对检测对象所处的腔体进行抽真空处理,并检测检测对象在抽真空处理前和抽真空处理后的压强变化情况,以确定检测对象是否存在大漏问题,在气压差值小于或者等于预设气压差阈值的情况下,检测对象不存在大漏问题;在气压差值大于预设气压差阈值的情况下,检测对象存在大漏问题。
在一实施例中,对于电芯的氦检工艺,大漏检测流程需要先判断检测模式,若检测模式选择为第一次检测模式,则跳转至检大漏流程中:需要检测的电芯(第一电芯和/或第二电芯)对应的腔体(第一腔体和/或第二腔体)上顶气缸伸出对腔体进行密封,打开腔体真空阀和腔体连通阀(第一腔体连通阀和/或第二腔体连通阀),开启腔体真空泵对腔体(第一腔体和/或第二腔体)进行抽真空处理,并打开用于放置电芯的腔体、电芯连通阀,启动腔体真空泵组,记录电芯压力值,根据电芯的气压差值与预设气压差阈值大小来判定大漏检测结果。若检测结果为OK(不存在大漏问题),则跳转至检微漏检测流程;若检测结果为NG,则需要确定存在大漏问题的电芯,并进行复检处理,不进入微漏检测流程。
在一实施例中,在需要检测的电芯为两个或者两个以上的情况下,即同时对 两个电芯进行大漏检测,对于双腔体同时检测时,若大漏检测结果为NG,则需要单独对一个抽真空复检,确定具体哪一个腔体的检测结果为NG。
步骤S520,在气压差值小于或者等于预设气压差阈值的情况下,对检测对象充入第一气体,并对已充入第一气体的检测对象进行气体浓度检测,得到检测结果。
具体地,在气压差值小于或者等于预设气压差阈值的情况下,表明检测对象不存在大漏问题,即检测对象通过大漏检测,那么此时需要对检测对象进行微漏检测,对检测对象充入氦气(第一气体),并通过微漏检测模块对已充入氦气(第一气体)的检测对象进行氦气检测,从而得到检测结果,若检测到氦气(第一气体)的浓度大于预设浓度阈值的情况下,则证明检测对象的壳体存在微漏问题,若检测到氦气浓度值小于或者等于预设浓度阈值的情况下,检测结果为检测对象不存在微漏问题。
需要说明的是,预设气压差阈值、预设浓度阈值可以根据实际的检测对象的工艺要求进行设置,本实施例对其不作具体限定。
在一实施例中,微漏检测过程中,若检测模式选择为一次氦检,则打开腔体连通阀、电芯连通阀,对进行腔体进行检测,判断是否需要对腔体进行抽真空处理。若腔体压力不满足条件,则对腔体进行抽真空处理,当腔体压力满足条件时,打开氦检阀组,等待检漏管道气压满足条件,则打开充氦阀,向电芯充入氦气,待充氦压力满足时,关闭充氦阀,然后通过读取氦检仪数据,根据检测数据判断得到检测结果。
参照图6,图6为本发明另一个实施例提供的气密性检测控制方法的流程图,检测对象的数量为至少两个或者两个以上,本发明实施例的步骤S300包括但不限于包括步骤S610、步骤S620、步骤S630和步骤S640。
步骤S610,同时对至少两个已充入第一气体的检测对象进行气体浓度检测;
步骤S620,在检测结果为检测对象存在泄漏问题的情况下,对至少两个已充入第一气体的检测对象以及检测对象所处腔体中的第一气体进行抽取处理;
步骤S630,对至少两个已抽取第一气体的检测对象和第一气体传输管道中的第一气体进行清洗处理,第一气体传输管道为检测对象和检测单元组之间的传输管道;
步骤S640,对至少两个已清洗第一气体的检测对象充入第一气体,并单独对每个已充入第一气体的检测对象进行气体浓度检测,得到检测结果。
具体地,在检测对象的数量为至少两个或者两个以上的情况下,为了提高检测效率,可以同时对至少两个已充入氦气(第一气体)的检测对象进行氦气检测,得到氦气检测结果,如果同时检测的检测对象均没有氦气(第一气体)泄露,那么可以直接得到微漏检测通过的结果,如果发现检测结果为检测对象存在泄漏问题,那么需要对本次同时检测对象中已充入的氦气(第一气体)进行抽取处理,并对检测对象和氦检单元组之间的传输管道中的氦气(第一气体)进行清洗处理, 在清洗完成之后,对已清洗氦气(第一气体)的检测对象充入氦气(第一气体),并单独对每个已充入氦气(第一气体)的检测对象进行氦气检测,得到检测结果,从而能够得到出现氦气(第一气体)泄露问题的电芯,由于电芯的制作良率比较高,因此大部分情况下同时多次检测多个检测对象,能够有效提高氦气(第一气体)检测工作的效率。
在一实施例中,在对氦气(第一气体)进行抽取处理的步骤中,控制器中的程序跳转至放气流程中,判断是否需要抽取氦气(第一气体),若电芯充氦检测后出现NG情况,则需要打开电芯真空阀、电芯连通阀,通过电芯真空泵将电芯中的气压抽取至压力设定值,然后关闭电芯真空阀,打开腔体连通阀和腔体放气阀,待压力达到要求时,关闭腔体连通阀和腔体放气阀,结束放气流程。对于双腔体,程序流程可跳转至单独腔体放气流程。
在一实施例中,在对传输管道中的氦气进行清洗处理的步骤中,可以向至少两个已抽取氦气(第一气体)的检测对象和氦气(第一气体)传输管道中充入氮气(第二气体),以通过氮气(第二气体)对检测对象和氦气(第一气体)传输管道中的氦气(第一气体)进行清洗处理,并通过氦检仪对传输管道中的氦气(第一气体)进行检测,直至氦气(第一气体)清理干净为止。用氮气(第二气体)对腔体和氦气(第一气体)传输管道进行清洗,避免对检测对象进行微漏检测复检时,由于残余的氦离子存在对复检结果造成误判。具体地,在满足清洗流程条件时,打开腔体连通阀、腔体清洗阀、腔体放气阀,清洗一定时长后,通过累计清洗次数判断是否需要抽腔体,通常清洗次数达到3-5次之后,则判定为需要进行抽真空处理,此时打开腔体真空阀,待腔体压力抽至小于设定值后,关闭腔体真空阀,在清洗完成之后,关闭腔体连通阀、腔体清洗阀和腔体放气阀等阀体。
参照图7,图7为本发明另一个实施例提供的气密性检测控制方法的流程图,在目标检测模式为第二检测模式的情况下,对检测对象进行微漏检测的步骤可以包括但不限于包括步骤S710。
步骤S710,对已充入第一气体的检测对象进行气体浓度检测,得到检测结果。
具体地,在目标检测模式为第二检测模式的情况下,证明检测对象已经通过大漏检测且检测对象已经充入氦气(第一气体),即大漏检测结果直接显示OK,直接进入检微漏流程,此时,则不需要向检测对象充入氦气(第一气体),可以直接判断检测对象所处腔体的压力情况,符合压力要求的情况下,直接读取氦检仪数据,能够得到微漏检测结果;若检测到氦气(第一气体)的浓度大于预设浓度阈值的情况下,则证明检测对象的壳体存在微漏问题,若检测到氦气(第一气体)浓度值小于或者等于预设浓度阈值,则检测结果为检测对象不存在微漏问题。
在一实施例中,同样的在检测对象的数量为至少两个或者两个以上的情况下,为了提高检测效率,可以同时对至少两个已充入氦气的检测对象进行氦气检测,得到氦气检测结果,如果发现检测结果为检测对象存在泄漏问题,那么需要 对本次同时检测对象中已充入的氦气进行抽取处理,并对检测对象和氦检单元组之间的传输管道中的氦气进行清洗处理,在清洗完成之后,对已清洗氦气(第一气体)的检测对象充入氦气(第一气体),并单独对每个已充入氦气(第一气体)的检测对象进行氦气检测,得到检测结果,从而能够得到出现氦气(第一气体)泄露问题的电芯,由于电芯的制作良率比较高,因此大部分情况下同时多次检测多个检测对象,能够有效提高氦气检测工作的效率。
另外,本申请的一个实施例提供了一种控制器,该控制器包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序。处理器和存储器可以通过总线或者其他方式连接。需要说明的是,本实施例中的控制器,可以对应为包括有如图1所示实施例中的存储器和处理器,能够构成图1所示实施例中的系统架构平台的一部分,两者属于相同的发明构思,因此两者具有相同的实现原理以及有益效果,此处不再详述。
实现上述实施例的控制器侧的气密性检测控制方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例的气密性检测控制方法,例如,执行以上描述的图4中的方法步骤S100至S300、图5中的方法步骤S510至S520、图6中的方法步骤S610至S640、图7中的方法步骤S710。
此外,本申请的一个实施例还提供了一种氦检系统,包括上述实施例中的控制器,实现原理以及有益效果与控制器一致,此处不再详述。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,当计算机可执行指令用于执行上述气密性检测控制方法,例如,执行以上描述的图4中的方法步骤S100至S300、图5中的方法步骤S510至S520、图6中的方法步骤S610至S640、图7中的方法步骤S710。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。需要说明的是,计算机可读存储介质可以是非易失性,也可以是易失性。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (12)

  1. 一种气密性检测控制方法,其特征在于,包括:
    接收检测模式指令;
    根据所述检测模式指令确定目标检测模式;
    根据所述目标检测模式对检测对象进行大漏检测和/或微漏检测,所述大漏检测表征对所述检测对象进行抽真空气压检测,所述微漏检测表征对所述检测对象进行气体浓度检测。
  2. 根据权利要求1所述的气密性检测控制方法,其特征在于,所述根据目标检测模式对所述检测对象进行大漏检测和/或微漏检测,包括:
    在所述目标检测模式为第一检测模式的情况下,对所述检测对象进行大漏检测和微漏检测。
  3. 根据权利要求2所述的气密性检测控制方法,其特征在于,所述对检测对象进行大漏检测和微漏检测,包括:
    对所述检测对象进行抽真空处理,并检测所述检测对象的气压差值,所述气压差值表征对述检测对象抽真空处理前与抽真空处理后的压强变化情况;
    在所述气压差值小于或者等于预设气压差阈值的情况下,对所述检测对象充入第一气体,并对已充入所述第一气体的所述检测对象进行气体浓度检测,得到检测结果。
  4. 根据权利要求3所述的气密性检测控制方法,其特征在于,在所述检测所述检测对象的气压差值之后,所述方法还包括:
    在所述气压差值大于所述预设气压差阈值的情况下,所述检测对象存在大漏问题。
  5. 根据权利要求1所述的气密性检测控制方法,其特征在于,所述根据目标检测模式对所述检测对象进行大漏检测和/或微漏检测,包括:
    在所述目标检测模式为第二检测模式的情况下,对所述检测对象进行微漏检测。
  6. 根据权利要求5所述的气密性检测控制方法,其特征在于,所述对检测对象进行微漏检测,包括:
    对已充入所述第一气体的所述检测对象进行气体浓度检测,得到检测结果。
  7. 根据权利要求3或6所述的气密性检测控制方法,其特征在于,所述对已充入所述第一气体的所述检测对象进行气体浓度检测,得到检测结果,包括:
    在检测到所述检测对象的所述第一气体浓度值大于预设浓度阈值的情况下,所述检测结果为所述检测对象存在微漏问题;和/或,
    在检测到所述检测对象的所述第一气体浓度值小于或者等于所述预设浓度阈值的情况下,所述检测结果为所述检测对象不存在微漏问题。
  8. 根据权利要求7所述的气密性检测控制方法,其特征在于,所述检测对象的数量为至少两个,所述对所述检测对象进行微漏检测,包括:
    同时对至少两个已充入所述第一气体的所述检测对象进行气体浓度检测;
    在所述检测结果为所述检测对象存在泄漏问题的情况下,对至少两个已充入所述第一气体的所述检测对象以及所述检测对象所处腔体中的所述第一气体进行抽取处理;
    对至少两个已抽取所述第一气体的所述检测对象和第一气体传输管道中的所述第一气体进行清洗处理,所述第一气体传输管道为所述检测对象和检测单元组之间的传输管道;
    对至少两个已清洗所述第一气体的所述检测对象充入所述第一气体,并单独对每个已充入所述第一气体的所述检测对象进行气体浓度检测,得到检测结果。
  9. 根据权利要求8所述的气密性检测控制方法,其特征在于,所述对至少两个已抽取所述第一气体的所述检测对象和所述第一气体传输管道中的所述第一气体进行清洗处理,包括:
    向至少两个已抽取所述第一气体的所述检测对象和所述第一气体传输管道中充入第二气体,以通过所述第二气体对所述检测对象和所述第一气体传输管道中的所述第一气体进行清洗处理。
  10. 一种控制器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至9任意一项所述的气密性检测控制方法。
  11. 一种气密性检测系统,其特征在于,包括:权利要求10所述的控制器。
  12. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至9任意一项所述的气密性检测控制方法。
PCT/CN2022/139647 2022-09-29 2022-12-16 气密性检测控制方法、控制器、检测系统以及存储介质 WO2024066075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211199442.4 2022-09-29
CN202211199442.4A CN115406594A (zh) 2022-09-29 2022-09-29 气密性检测控制方法、控制器、检测系统以及存储介质

Publications (1)

Publication Number Publication Date
WO2024066075A1 true WO2024066075A1 (zh) 2024-04-04

Family

ID=84167059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139647 WO2024066075A1 (zh) 2022-09-29 2022-12-16 气密性检测控制方法、控制器、检测系统以及存储介质

Country Status (2)

Country Link
CN (1) CN115406594A (zh)
WO (1) WO2024066075A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115406594A (zh) * 2022-09-29 2022-11-29 广东利元亨智能装备股份有限公司 气密性检测控制方法、控制器、检测系统以及存储介质
CN117630007A (zh) * 2023-11-07 2024-03-01 浙江康思特动力机械有限公司 一种户外应急用发电机组气缸盖的气密性检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735084A (en) * 1985-10-01 1988-04-05 Varian Associates, Inc. Method and apparatus for gross leak detection
CN201368790Y (zh) * 2008-09-29 2009-12-23 合肥皖仪科技有限公司 超高灵敏度氦质谱检漏仪
CN214471575U (zh) * 2020-12-28 2021-10-22 安徽诺益科技有限公司 一种模块式氦质谱检漏仪
CN114563135A (zh) * 2022-03-02 2022-05-31 苏州中科科美科技有限公司 一种全自动气密性检测设备及检测方法
CN115406594A (zh) * 2022-09-29 2022-11-29 广东利元亨智能装备股份有限公司 气密性检测控制方法、控制器、检测系统以及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735084A (en) * 1985-10-01 1988-04-05 Varian Associates, Inc. Method and apparatus for gross leak detection
CN201368790Y (zh) * 2008-09-29 2009-12-23 合肥皖仪科技有限公司 超高灵敏度氦质谱检漏仪
CN214471575U (zh) * 2020-12-28 2021-10-22 安徽诺益科技有限公司 一种模块式氦质谱检漏仪
CN114563135A (zh) * 2022-03-02 2022-05-31 苏州中科科美科技有限公司 一种全自动气密性检测设备及检测方法
CN115406594A (zh) * 2022-09-29 2022-11-29 广东利元亨智能装备股份有限公司 气密性检测控制方法、控制器、检测系统以及存储介质

Also Published As

Publication number Publication date
CN115406594A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2024066075A1 (zh) 气密性检测控制方法、控制器、检测系统以及存储介质
JP4441573B2 (ja) 洩れ検査装置の異常検出方法、洩れ検査装置
CN109540408A (zh) 气密性检测方法及装置
CN201965006U (zh) 锂离子电池差压式检漏装置
US20200264066A1 (en) Pressure Measurement at a Test Gas Inlet
US6167749B1 (en) Method and apparatus for automatically detecting gas leak, and recording medium for leak detection
JP5806462B2 (ja) 洩れ検査装置及び方法
CN208239037U (zh) 一种阀体密封性能检测装置
WO2019096759A1 (fr) Installation et procede de detection et de localisation de fuite dans un circuit de transport d'un fluide, notamment d'un aeronef
CN113884253A (zh) 一种气密性检测方法、设备以及系统
CN114813191A (zh) 液冷设备的性能测试系统及方法
CN110686841A (zh) 一种双腔结构的气密性检测装置及检测方法
CN208208885U (zh) 一种燃料电池电堆气密性检测装置
CN109916568A (zh) 电机控制器密封性检测系统、装置及方法
CN204679222U (zh) 一种气体浓度探测装置
CN104797916A (zh) 测试泄漏检测系统的方法
CN109186883A (zh) 一种方形锂离子电池气密检测系统和方法
CN215677476U (zh) 一种氢能源电池堆内外泄漏测试系统
CN207231716U (zh) 一种加速器真空等级实时监测系统
CN105182432A (zh) 一种水氡模拟自动观测仪
CN206772522U (zh) 滤芯自动测试装置
CN108896255A (zh) 一种靶管检漏装置及检漏方法
CN108151988A (zh) 一种高精度气密性检测设备的检测方法
JP2020178845A (ja) リークテスター
CN111238746A (zh) 冰箱密封性能的检测方法、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960670

Country of ref document: EP

Kind code of ref document: A1