WO2024065192A1 - 固态电解质、正极极片及制备方法、电池及用电装置 - Google Patents

固态电解质、正极极片及制备方法、电池及用电装置 Download PDF

Info

Publication number
WO2024065192A1
WO2024065192A1 PCT/CN2022/121798 CN2022121798W WO2024065192A1 WO 2024065192 A1 WO2024065192 A1 WO 2024065192A1 CN 2022121798 W CN2022121798 W CN 2022121798W WO 2024065192 A1 WO2024065192 A1 WO 2024065192A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid electrolyte
electrode active
inorganic solid
template
Prior art date
Application number
PCT/CN2022/121798
Other languages
English (en)
French (fr)
Inventor
云亮
孙信
吴李力
董苗苗
宋佩东
陈兴布
李璇
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/121798 priority Critical patent/WO2024065192A1/zh
Publication of WO2024065192A1 publication Critical patent/WO2024065192A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials

Definitions

  • the present invention relates to the technical field of power batteries, and in particular to solid electrolytes, positive electrode sheets and preparation methods, batteries and electrical devices.
  • the main technical problem to be solved by the present application is that the solid electrolyte in the power battery still has the problem of insufficient liquid phase mass transfer capacity and loss of volume energy density.
  • a technical solution adopted in the present application is: a solid electrolyte, including a plurality of inorganic solid electrolyte particles, and the inorganic solid electrolyte particles are hollow structures.
  • the inorganic solid electrolyte particles are hollow tubular structures composed of ceramic electrolyte materials.
  • the inorganic solid electrolyte particles include a hollow tubular template and a ceramic electrolyte material coated on the outer surface of the hollow tubular template.
  • the hollow tubular templating agent comprises a magnetic modifying material.
  • the inorganic solid electrolyte particles are hollow tubular structures with openings at both ends, and the inner diameter of the hollow tubular structure is 1 ⁇ m to 100 ⁇ m.
  • the preform is dried.
  • the step of applying a slurry containing a ceramic electrolyte material to the outer surface of the template to obtain a preform comprises:
  • the blend is ball milled to obtain a preform.
  • the template includes a solid tubular template or a hollow tubular template; the outer diameter of the solid tubular template is 1 ⁇ m to 100 ⁇ m; the inner diameter of the hollow tubular template is 1 ⁇ m to 100 ⁇ m.
  • the hollow tubular template includes a plurality of fiber tubes or a plurality of porous carbon particles.
  • the method further comprises the step of removing the template, wherein:
  • Methods for removing the template include sintering oxidation, thermal decomposition or corrosion treatment.
  • the method for preparing the ceramic electrolyte material comprises the following steps:
  • the dried precursor is pre-calcined at a temperature of 400° C. to 500° C. to obtain a pre-calcined powder
  • the pre-sintered powder is sintered at a temperature of 850°C to 1000°C to obtain a sintered powder
  • the sintered powder is crushed to obtain a ceramic electrolyte material.
  • a positive electrode plate including a positive electrode collector and a positive electrode active layer arranged on the positive electrode collector; the positive electrode active layer includes a positive electrode active material and any solid electrolyte as described above.
  • a plurality of inorganic solid electrolyte particles are randomly distributed or directionally arranged in the positive electrode active material.
  • multiple inorganic solid electrolyte particles are arranged in order in the positive electrode active material, and the angle between the axial direction of the inorganic solid electrolyte particles and the positive electrode current collector is greater than or equal to 60 degrees and less than or equal to 90 degrees, and the port of the inorganic solid electrolyte particle away from the positive electrode current collector is exposed.
  • the positive electrode active layer is a single-layer structure and includes a positive electrode active material and inorganic solid electrolyte particles dispersed in the positive electrode active material; or
  • the positive electrode active layer has a double-layer structure and includes a first positive electrode active layer arranged on one side of the positive electrode current collector and a second positive electrode active layer arranged on the side of the first positive electrode active layer away from the positive electrode current collector; the first positive electrode active layer is a positive electrode active material layer; the second positive electrode active layer includes positive electrode active material and inorganic solid electrolyte particles.
  • the thickness of the positive electrode active layer is at least 400 ⁇ m.
  • a method for preparing a positive electrode sheet comprising:
  • the solid electrolyte is any of the inorganic solid electrolyte particles described above;
  • the slurry is applied to the positive electrode current collector.
  • a magnetic field is applied to align multiple inorganic solid electrolyte particles.
  • a battery including a negative electrode plate, a separator, an electrolyte and any positive electrode plate as described above.
  • an electrical device comprising the battery as described above.
  • the specific embodiments of the present application provide inorganic solid electrolyte particles with a hollow structure, which increase the electrode reaction depth, improve the liquid phase mass transfer capacity, and increase the lithium ion migration number of the electrolyte, thereby increasing the gram capacity of the electrode material containing the inorganic solid electrolyte particles at a high rate, thereby improving the volume energy density of the power battery containing such inorganic solid electrolyte particles.
  • the specific embodiments of the present application provide thick positive electrode sheets, which further improve the volume energy density of power batteries containing such thick positive electrode sheets.
  • the battery containing the inorganic solid electrolyte particles of the present application can be an ultra-high energy density battery, achieving a vehicle range of more than 1200 km.
  • FIG1 is a schematic diagram of a first structure of an inorganic solid electrolyte particle provided in an embodiment of the present application
  • FIG2 is a schematic diagram of a second structure of an inorganic solid electrolyte particle provided in an embodiment of the present application.
  • FIG3 is a schematic structural diagram of a hollow tubular template provided in an embodiment of the present application.
  • FIG4 is a schematic flow chart of a method for preparing a solid electrolyte provided in an embodiment of the present application
  • FIG5 is a schematic diagram of the process of obtaining the preform in FIG4;
  • FIG6 is a schematic flow chart of a method for preparing a ceramic electrolyte material provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of the structure of a positive electrode sheet provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a first structure of inorganic solid electrolyte particles provided by the present application arranged in a directional manner in a positive electrode active material;
  • FIG. 9 is a second structural schematic diagram of the inorganic solid electrolyte particles provided by the present application arranged in a directional manner in the positive electrode active material;
  • FIG10 is a schematic structural diagram of a double-layer positive electrode active layer provided in the present application.
  • FIG11 is a schematic diagram of a process for preparing a positive electrode sheet provided in the present application.
  • FIG12 is a schematic diagram of the structure of a battery provided by the present application.
  • FIG13 is a schematic diagram of the structure of an electric device provided by the present application.
  • FIG14 is a microscopic morphology of the porous carbon used in Example 1 of the present application.
  • FIG. 15 is a microscopic morphology of the carbon fiber tube used in Example 7 of the present application.
  • first”, “second”, and “third” in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first”, “second”, and “third” can expressly or implicitly include at least one of the features.
  • the meaning of “multiple” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • all directional indications (such as up, down, left, right, front, back%) are only used to explain the relative position relationship, movement, etc. between the components under a certain specific posture (as shown in the accompanying drawings). If the specific posture changes, the directional indication also changes accordingly.
  • Solid electrolytes have a direct impact on the improvement of the volume energy density of power batteries. Specifically, adding solid electrolytes to the positive electrode active material of the positive electrode sheet of the power battery can effectively improve the volume energy density of the power battery.
  • the inventors of this application have found in their research that increasing the porosity of solid electrolytes can further improve the volume energy density of batteries.
  • the pore-forming method of solid electrolytes usually involves adding additives such as ammonium bicarbonate or azo compounds to solid electrolytes, and obtaining pores by coating and heating.
  • additives such as ammonium bicarbonate or azo compounds
  • such pores will undergo closed-cell phenomena during the electrode rolling process, and most of these pores are at the nanoscale and do not have the ability of liquid phase mass transfer. Instead, they will increase the tortuosity of the electrode, reduce the characteristic thickness of the thick electrode, and reduce the gram capacity.
  • the inventors of the present application found in their research that controlling the pore structure and pore size of solid electrolytes is beneficial to improving the liquid phase mass transfer ability of solid electrolytes, and thus is beneficial to improving the volume energy density of power batteries containing such solid electrolytes.
  • the embodiment of the present application provides a solid electrolyte, including a plurality of inorganic solid electrolyte particles 10 (as shown in FIG. 1 or FIG. 2 ), and the inorganic solid electrolyte particles 10 are hollow structures.
  • the solid electrolyte represents a solid ion conductor electrolyte, which can replace the liquid electrolyte for use in electrical energy storage.
  • the inorganic solid electrolyte particles 10 represent inorganic solid electrolytes in the form of particles.
  • the hollow structure represents a hollow shell structure. In this embodiment, the hollow structure shell is formed by the inorganic solid electrolyte particles 10.
  • the inorganic solid electrolyte particles 10 are hollow structures, which increases the electrode reaction depth, increases the contact area between the inorganic solid electrolyte particles 10 and the electrolyte, facilitates the reflux of the electrolyte, improves the liquid phase mass transfer capacity, and ions can also be transmitted from the side walls of the inorganic solid electrolyte particles 10, while promoting the dissociation of solvated lithium, and increasing the lithium ion migration number of the electrolyte, so that the electrode material containing the inorganic solid electrolyte particles 10 increases the gram capacity at high rates, thereby increasing the volume energy density of the battery 400 (see Figure 13) containing such inorganic solid electrolyte particles 10.
  • the charge distribution inside the inorganic solid electrolyte particles 10 can act on the solvated lithium ions, making them conducive to desolvation, increasing the lithium ion migration number, and reducing the liquid phase ohmic polarization.
  • Volume energy density refers to the ratio of the initial charging energy and initial discharge energy of a battery to the battery volume under specified test conditions and test methods.
  • FIG. 1 is a first structural schematic diagram of an inorganic solid electrolyte particle provided in an embodiment of the present application.
  • the inorganic solid electrolyte particle 10 is a hollow tubular structure composed of a ceramic electrolyte material 11. As shown in Fig. 1, a plurality of ceramic electrolyte materials 11 in this embodiment are tightly combined to form a macroscopic hollow tubular structure.
  • the ceramic electrolyte material 11 refers to a type of inorganic non-metal electrolyte material made by forming and sintering natural or synthetic compounds at high temperature.
  • the hollow tubular structure refers to a hollow tubular structure.
  • the hollow tubular structure is composed of ceramic electrolyte material 11, and the conductivity of the formed inorganic solid electrolyte particles 10 is comparable to that of liquid electrolytes. Moreover, since it is a solid material, it has a higher safety factor and better low-temperature performance.
  • FIG. 2 is a second structural schematic diagram of the inorganic solid electrolyte particles provided in an embodiment of the present application.
  • the inorganic solid electrolyte particle 10 includes a hollow tubular template 12 and a ceramic electrolyte material 11 coated on the outer surface of the hollow tubular template 12.
  • the inner wall of the hollow tubular template 12 of this embodiment serves as the inner wall of the hollow tubular structure of the inorganic solid electrolyte particle 10.
  • the hollow tubular template 12 refers to a template having a hollow tubular structure, which is used to play a structural guiding role in the forming process of the inorganic solid electrolyte particles 10 .
  • the inorganic solid electrolyte particles 10 are formed by ceramic electrolyte materials 11 and hollow tubular templates 12, which can effectively shape the structure of the inorganic solid electrolyte particles 10, and can ensure the stability of the inorganic solid electrolyte particles 10, and the properties of the inorganic solid electrolyte particles 10 formed in each batch are uniform and stable.
  • the inorganic solid electrolyte particles 10 of this embodiment use hollow tubular templates 12 to form pores, the pore forming method belongs to non-destructive pore forming.
  • the non-destructive pore forming method of this embodiment is more gentle, simple and fast, and the properties of the formed inorganic solid electrolyte particles 10 are more stable, and the non-destructive pore forming method of this embodiment allows the spacing between the pores to be closer, so that more pores can exist in the same volume, so that the number of lithium ion migration per unit volume is greater, so that the volume energy density of the battery 400 containing the inorganic solid electrolyte particles 10 of this embodiment is further improved.
  • FIG. 3 is a schematic structural diagram of a hollow tubular template provided in an embodiment of the present application.
  • the hollow tubular template 12 includes a magnetic modification material 121. As shown in FIG3 , the magnetic modification material 121 is randomly distributed on the side wall of the hollow tubular template 12.
  • the magnetic modified material 121 represents a nanoscale material with magnetism, which is used to modify the hollow tubular template 12 to have magnetism, so that the inorganic solid electrolyte particles 10 formed by the magnetically modified hollow tubular template 12 have magnetism, thereby making the inorganic solid electrolyte particles 10 with magnetism have directional properties.
  • the directional inorganic solid electrolyte particles 10 make the direction of liquid phase mass transfer of the inorganic solid electrolyte particles 10 controllable, and the direction of liquid phase mass transfer can be regulated according to actual needs, which is beneficial to improving the volume energy density of the battery 400 containing such inorganic solid electrolyte particles 10.
  • the magnetic modification material 121 and the hollow tubular template 12 can be combined by heat treatment so that the magnetic modification material 121 grows on the tubular side wall of the hollow tubular template 12 .
  • the magnetic modification material 121 in this embodiment can be any one or more of iron oxide, ferroferric oxide, high-valent oxide of nickel, and high-valent oxide of cobalt.
  • the inorganic solid electrolyte particle 10 is a hollow tubular structure with two ends open, and the inner diameter of the hollow tubular structure is 1 ⁇ m to 100 ⁇ m.
  • the inorganic solid electrolyte particle 10 is a hollow tubular structure, and the two ends of the hollow tubular structure are open, which further improves the liquid phase mass transfer capacity of the inorganic solid electrolyte particle 10.
  • this embodiment further limits the inner diameter of the hollow tubular structure, specifically 1 ⁇ m to 100 ⁇ m.
  • the inner diameter of the micron-level hollow tubular structure enables the hollow tubular structure with two ends open to effectively realize liquid phase mass transfer.
  • the hollow tubular structure of the inorganic solid electrolyte particle 10 of the embodiment of the present application is open at least at one end. Under the condition that one end of the hollow tubular structure of the inorganic solid electrolyte particle 10 of the embodiment of the present application is open, the opening is exposed toward the end away from the positive electrode current collector 40.
  • FIG. 4 is a schematic flow chart of a method for preparing a solid electrolyte provided in an embodiment of the present application.
  • a method for preparing a solid electrolyte comprising the following steps:
  • the slurry refers to a wet material with viscosity composed of a binder, a conductive agent, a positive electrode material, etc.
  • the slurry containing the ceramic electrolyte material 11 means that the solid matter present in the slurry includes the ceramic electrolyte material 11.
  • the preform refers to a prefabricated component.
  • the drying process refers to the operation of using heat energy to gasify the moisture in the wet material, and using air flow or vacuum to take away the gasified moisture, thereby obtaining a dry material.
  • the method for preparing a solid electrolyte provided in this embodiment is to prepare a solid electrolyte with high liquid phase mass transfer capability by coating a slurry containing a ceramic electrolyte material 11 on the outer surface of a template and then performing a drying treatment.
  • the drying process in this step can achieve a moisture content of the preform that is less than a certain threshold.
  • the drying process in this step may be a vacuum drying process.
  • drying temperature is 80° C. to 140° C.
  • drying time is 4 h to 8 h.
  • the drying temperature in this step may be 80°C, 100°C, 120°C or 140°C.
  • the drying time of this step can be 4 h, 5 h, 6 h, 7 h or 8 h.
  • FIG. 5 is a schematic diagram of the process of obtaining the preform in FIG. 4 .
  • the steps of applying a slurry containing a ceramic electrolyte material 11 to the outer surface of the template to obtain a preform include:
  • the dispersant in step S11 can achieve uniform dispersion of the raw materials.
  • the dispersant in step S11 may be N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the mixing in step S11 can achieve uniform distribution among the raw materials.
  • the mixing process in step S11 may be a ball milling process and/or a grinding process.
  • the process conditions of the ball milling treatment in step S11 are: a ball milling speed of 450 r/min to 800 r/min, and a ball milling time of 8 h to 14 h.
  • the process conditions of the grinding treatment in step S11 are: the grinding time is 4 hours to 8 hours.
  • the ball milling speed in step S12 may be 450 r/min, 550 r/min, 600 r/min, 700 r/min, 800 r/min or 900 r/min.
  • the ball milling time in step S12 may be 16 h, 20 h, 24 h, 28 h or 30 h.
  • the dispersant refers to a surfactant having two opposite properties, lipophilicity and hydrophilicity, in the molecule.
  • a blend refers to a physical mixture of two or more materials with different molecular structures.
  • Ball milling refers to the process of crushing materials using a ball mill.
  • the blend formed by the ceramic electrolyte material 11, the template and the dispersant is pulverized by ball milling to make the particles of the obtained preform uniform and well dispersed, which is conducive to the ceramic electrolyte material 11 being evenly wrapped on the outer surface of the template, improving the bonding degree between the ceramic electrolyte material 11 and the template, and further improving the stability of the inorganic solid electrolyte particles 10.
  • the template includes a solid tubular template or a hollow tubular template 12; the outer diameter of the solid tubular template is 1 ⁇ m to 100 ⁇ m; the inner diameter of the hollow tubular template 12 is 1 ⁇ m to 100 ⁇ m.
  • the solid tubular template agent indicates that the shape of the template agent is tubular and the tubular shape is a solid structure.
  • the hollow tubular template agent 12 indicates that the shape of the template agent is tubular and the tubular shape is a hollow structure.
  • the outer diameter of the solid tubular template agent indicates the diameter of the outer periphery of the solid tubular template agent.
  • the inner diameter of the hollow tubular template agent 12 indicates the diameter of the inner cavity of the hollow tubular template agent 12.
  • the solid tubular template of this embodiment is only applicable to the preparation of a hollow tubular structure composed of a ceramic electrolyte material 11, and the solid tubular template needs to be removed later.
  • the hollow tubular template 12 of this embodiment can be applied to a hollow tubular structure composed of a ceramic electrolyte material 11, and can also be applied to the preparation of an inorganic solid electrolyte particle 10 including the hollow tubular template 12.
  • the hollow tubular template 12 includes a plurality of fiber tubes or a plurality of porous carbon particles.
  • the fiber tube refers to a continuous hollow tubular filament.
  • the fiber tube of the embodiment of the present application can be a carbon fiber tube or a polymer fiber tube.
  • the porous carbon particles refer to carbon materials with different pore structures, and the pore size ranges from nano-scale ultra-fine pores equivalent to the size of molecules to micron-scale macropores.
  • the fiber tubes or porous carbon particles of this embodiment are widely available and can be easily combined with the ceramic electrolyte material 11 , which is beneficial to ensure the stability of the properties of the prepared inorganic solid electrolyte particles 10 .
  • the pores formed by the inorganic solid electrolyte particles 10 are lossless straight through holes by using a solid tubular template or a hollow tubular template 12.
  • Such lossless straight through hole structure can effectively accelerate ion transmission and reduce liquid phase polarization.
  • the method for preparing the solid electrolyte further comprises:
  • methods for removing the template include sintering oxidation, thermal decomposition or corrosion treatment.
  • the template is carbon fiber
  • sintering oxidation refers to the process of removing the template by causing an oxidation reaction of the template through high-temperature treatment.
  • Heating decomposition refers to the process of removing the template by causing a gasification decomposition reaction of the template through heating treatment.
  • Corrosion treatment refers to the process of removing the template by causing a corrosive decomposition reaction of the template through treatment with a corrosive agent.
  • the sintering oxidation in this embodiment is suitable for removing the carbon fiber tube.
  • the heating decomposition is suitable for removing the polymer fiber tube.
  • the corrosion treatment is suitable for removing the polymer fiber tube.
  • FIG. 6 is a schematic flow chart of a method for preparing a ceramic electrolyte material provided in an embodiment of the present application.
  • a method for preparing a ceramic electrolyte material 11 comprises the following steps:
  • the molar ratio of lithium carbonate, aluminum oxide, diammonium phosphate, and germanium oxide can be (0.5:4.5:0.5:2.5), (1.5:5.5:1.5:3.5), (1:5:1:3), (0.75:4.75:0.75:2.75), (1.25:5.25:1.25:3.25), (0.6:5.2:1.2:2.7), and (1.4:4.8:1.3:2.7).
  • the dispersant in step S1A can achieve uniform dispersion of the raw materials.
  • the dispersant in step S1A may be isobutanol.
  • step S1A can achieve uniform distribution among the raw materials.
  • step S1A is performed by ball milling.
  • the process conditions of the ball milling mixing in step S1A are: the ball milling speed is 300 r/min to 600 r/min, and the ball milling time is 8 h to 16 h.
  • the pre-firing temperature of step S1B may be 400°C, 425°C, 450°C, 475°C or 500°C.
  • the pre-burning treatment time of step S1B is 20 hours to 30 hours.
  • the burn-in time of step S1B may be 20 hours, 22 hours, 24 hours, 26 hours, 28 hours or 30 hours.
  • the sintering temperature of step S1C may be 850°C, 900°C, 950°C or 1000°C.
  • the sintering time of step S1C is 6 hours to 12 hours.
  • the sintering time of step S1C may be 6 h, 8 h, 10 h or 12 h.
  • the precursor refers to a form of existence before obtaining the target product.
  • Pre-sintering treatment refers to the process of pre-heat-treating the raw materials before making sintered powder.
  • Pre-sintered powder refers to the powder formed after the precursor is pre-sintered.
  • Sintering treatment refers to the process of densifying and recrystallizing the powder.
  • Sintered powder refers to the powder formed after sintering.
  • Crushing refers to the process of processing large particles to make them smaller and more evenly distributed.
  • This embodiment provides a feasible method for preparing a ceramic electrolyte material 11. It is understood that ceramic electrolyte materials 11 of other formulations can also be made into inorganic solid electrolyte particles 10 with a hollow structure through the solution provided in this application, thereby improving the liquid phase mass transfer capacity and further improving the volume energy density of the battery 400.
  • FIG. 7 is a schematic diagram of the structure of the positive electrode plate provided in an embodiment of the present application.
  • the present application provides a positive electrode sheet 100 , including a positive electrode collector 40 and a positive electrode active layer 30 disposed on the positive electrode collector 40 ; the positive electrode active layer 30 includes a positive electrode active material 20 and the above-mentioned inorganic solid electrolyte particles 10 .
  • the positive electrode current collector 40 represents the base metal for attaching the positive electrode active material to the positive electrode of the battery.
  • the positive electrode active layer 30 represents a material layer composed of the positive electrode active material 20, the conductive agent and the binder, etc., arranged on the positive electrode current collector 40.
  • the positive electrode active material 20 represents a lithium intercalation compound.
  • the material of the positive electrode current collector 40 can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • solid electrolyte particles 10 are added to the positive electrode plate 100 to improve the liquid phase mass transfer capability.
  • FIG. 8 is a first structural schematic diagram of the directional arrangement of inorganic solid electrolyte particles in the positive electrode active material provided by the present application.
  • a plurality of inorganic solid electrolyte particles 10 are randomly distributed (as shown in FIG. 7 ) or directionally arranged (as shown in FIG. 8 ) in the positive electrode active material 20 .
  • the arrangement of the plurality of inorganic solid electrolyte particles 10 in the positive electrode active material 20 is helpful to improve the volume energy density of the battery 400 .
  • FIG. 9 is a second structural schematic diagram of the directional arrangement of inorganic solid electrolyte particles in the positive electrode active material provided by the present application.
  • a plurality of inorganic solid electrolyte particles 10 are orderly arranged in the positive electrode active material 20 , and the angle between the axial direction of the inorganic solid electrolyte particle 10 and the positive electrode current collector 40 is greater than or equal to 60 degrees and less than or equal to 90 degrees, and the port of the inorganic solid electrolyte particle 10 at one end away from the positive electrode current collector 40 is exposed.
  • the angle at which the plurality of inorganic solid electrolyte particles 10 are orderly arranged in the positive electrode active material 20 makes the angle of liquid phase mass transfer controllable.
  • the positive electrode active layer 30 is a single-layer structure and includes a positive electrode active material 20 and inorganic solid electrolyte particles 10 dispersed in the positive electrode active material 20 (as shown in FIG. 8 ).
  • FIG. 10 is a schematic diagram of the structure of the positive electrode active layer of the double-layer structure provided in the present application.
  • the positive electrode active layer 30 is a double-layer structure and includes a first positive electrode active layer 31 disposed on one side of the positive electrode current collector 40 and a second positive electrode active layer 32 disposed on the side of the first positive electrode active layer 31 away from the positive electrode current collector 40 ;
  • the first positive electrode active layer 31 is a positive electrode active material layer;
  • the second positive electrode active layer 32 includes a positive electrode active material 20 and inorganic solid electrolyte particles 10 .
  • the positive electrode active layer 30 is a double-layer structure.
  • the second positive electrode active layer 32 arranged on the side of the first positive electrode active layer 31 away from the positive electrode collector 40 includes the inorganic solid electrolyte particles 10 of the present application.
  • it can improve the wetting time of the thick electrode, which is beneficial to the reflux of the electrolyte and improves the cycle performance.
  • it makes the realization of a thick positive electrode sheet 100 a reality.
  • the thickness of the positive active layer 30 is at least 400 ⁇ m.
  • a thick positive electrode active layer 30 can be prepared, thereby further increasing the number of lithium ion migrations, improving the power performance and low-temperature performance of the thick film electrode, and reducing polarization.
  • the battery 400 including the positive electrode active layer 30 of this embodiment can be an ultra-high energy density battery, which can achieve a vehicle endurance of more than 1200 km.
  • FIG. 11 is a schematic diagram of the process of preparing the positive electrode plate provided in the present application.
  • the present application provides a method for preparing a positive electrode sheet 100 , comprising the following steps:
  • A1 mixing the positive electrode active material 20 and the inorganic solid electrolyte particles 10 to obtain a slurry; wherein the inorganic solid electrolyte particles 10 are any of the above inorganic solid electrolyte particles 10;
  • A2 Apply the slurry to the positive electrode current collector 40 .
  • the preparation method of the positive electrode plate 100 of this embodiment is simple and easy to operate.
  • the solid electrolyte is the inorganic solid electrolyte particles 10 as described above; the step of applying the slurry to the positive electrode current collector 40 includes:
  • A3 Apply a magnetic field to align the plurality of inorganic solid electrolyte particles 10 .
  • the inorganic solid electrolyte particles 10 are quickly and contactlessly arranged by applying a magnetic field. It is understood that in this embodiment, the inorganic solid electrolyte particles 10 that can be arranged in an orientation by applying a magnetic field must contain a magnetically modified template, which can be a solid tubular template or a hollow tubular template 12.
  • a magnetically modified template which can be a solid tubular template or a hollow tubular template 12.
  • the hollow tubular template 12 can be removed by heat treatment or corrosion treatment during or after drying the positive electrode plate 100, or the hollow tubular template 12 may not be removed.
  • FIG. 12 is a schematic diagram of the structure of the battery provided in the present application.
  • the present application provides a battery 400 , including a negative electrode plate 200 , a separator 300 , an electrolyte, and any of the positive electrode plates 100 described above.
  • the battery 400 represents a single physical module including one or more battery cells (as shown in FIG. 12 ) to provide higher voltage and capacity.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet 100, a negative electrode sheet 200, and a separator 300.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet 100 and the negative electrode sheet 200 to work.
  • the positive electrode sheet 100 includes a positive electrode current collector 40 and a positive electrode active layer 30.
  • the positive electrode active layer 30 is coated on the surface of the positive electrode current collector 40.
  • the positive electrode current collector 40 not coated with the positive electrode active layer 30 protrudes from the positive electrode current collector 40 coated with the positive electrode active layer 30.
  • the positive electrode current collector 40 not coated with the positive electrode active layer 30 serves as a positive electrode tab.
  • the material of the positive electrode current collector 40 can be aluminum, and the positive electrode active material 20 can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet 200 includes a negative electrode current collector and a negative electrode active layer.
  • the negative electrode active layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector not coated with the negative electrode active layer protrudes from the negative electrode current collector coated with the negative electrode active layer.
  • the negative electrode current collector not coated with the negative electrode active layer serves as a negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon, etc. In order to ensure that a large current is passed without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the diaphragm 300 may be PP (polypropylene) or PE (polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure.
  • the electrode assembly mentioned in the embodiment of the present application is a wound structure.
  • the thick positive electrode active layer 30 of this embodiment can save half the thickness of the positive electrode current collector 40, the negative electrode current collector and the separator 300, thereby greatly reducing the cost.
  • FIG. 13 is a schematic diagram of the structure of the electrical device provided in the present application.
  • the present application provides an electric device, including the above battery 400.
  • the electric device may be a mobile phone, a computer, an electric motorcycle, an electric car, etc. This embodiment is described by taking an electric car 500 as an example.
  • the electric vehicle 500 is provided with a battery 400 inside, and the battery 400 can be provided at the bottom, head or tail of the electric vehicle 500.
  • the battery 400 can be used to power the electric vehicle 500, for example, the battery 400 can be used as an operating power source of the electric vehicle 500.
  • the electric vehicle 500 can also include a controller 501 and a motor 502, and the controller 501 is used to control the battery 400 to power the motor 502, for example, for the starting, navigation and working power requirements of the electric vehicle 500 during driving.
  • the battery 400 can not only serve as an operating power source for the electric vehicle 500 , but also serve as a driving power source for the electric vehicle 500 , thereby providing driving power for the electric vehicle 500 .
  • Lithium carbonate, aluminum oxide, diammonium hydrogen phosphate, and germanium oxide were added to isobutanol in a molar ratio of 1:5:1:3, and ball milling was performed at a rotation speed of 450 r/min for 12 hours to form a precursor.
  • the dried precursor was pre-calcined at 450° C. for 24 hours to obtain a pre-calcined powder.
  • the pre-calcined powder is sintered at 900° C. for 8 hours to obtain a sintered powder, which is a ceramic electrolyte material 11 .
  • the prepared ceramic electrolyte material 11, a plurality of magnetically modified porous carbons with an inner diameter of 50 ⁇ m, and N-methylpyrrolidone were mixed, ball-milled for 10 h at a ball-milling speed of 600 r/min, and then ground for 6 h to obtain a blend;
  • the microscopic morphology of the porous carbon used in this embodiment is shown in FIG14 , which has a clear and stable hollow structure, the inner diameter of the hollow structure is 10 ⁇ m to 20 ⁇ m, and a plurality of hollow structures are closely and regularly arranged, so that the solid electrolyte particles 10 prepared by the template agent can form more hollow structures without loss in the same volume compared with the solid electrolyte formed by laser drilling in the prior art, and thus the solid electrolyte particles 10 prepared in this embodiment can migrate more lithium ions in the same volume, thereby improving the volume energy density of the battery 400 containing the inorganic solid electrolyte particles 10 of this embodiment;
  • the blend was ball-milled at a ball-milling speed of 600 r/min for 24 h to obtain a preform
  • the preform was vacuum dried at a drying temperature of 120° C. for 6 hours.
  • NCM96 LiNiCoMnO: inorganic solid electrolyte particles 10, conductive carbon black Super-P, single-walled carbon nanotubes SWCNT, and polyvinylidene fluoride PVDF are mixed in a mass percentage of 96%: 2%: 0.6%: 0.2%: 1.2%, and after sufficient mixing, a positive electrode slurry with a viscosity of 7500 mPa ⁇ s and a solid content of 68% is formed.
  • the positive electrode slurry is coated on a 10 ⁇ m thick aluminum foil, and under the action of an external magnetic field, the coating thickness is 500 ⁇ m. After a sheeting process, a positive electrode sheet 100 with a thickness of 400 ⁇ m is obtained.
  • Silicon monoxide SiO conductive carbon black Super-P, single-walled carbon nanotubes SWCNT, and polyacrylate lithium PAALi are mixed in a mass percentage of 96.8%: 1.04%: 0.06%: 0.2%: 2.1%, and mixed thoroughly to form a negative electrode slurry.
  • the negative electrode slurry is coated on a 4.5 ⁇ m thick aluminum foil to a coating thickness of 125 ⁇ m, and after a sheeting process, a negative electrode sheet 200 with a thickness of 110 ⁇ m is obtained.
  • the prepared positive electrode sheet 100, negative electrode sheet 200, separator Celgard 7+4 and electrolyte (8950FB) were assembled into a soft-pack battery and left to stand at a temperature of 45°C for 24 hours.
  • the difference between this embodiment and embodiment 1 is that in the preparation of the inorganic solid electrolyte particles 10 of this embodiment, porous carbon materials that have not been magnetically modified are used, and in the preparation of the positive electrode plate 100, the positive electrode material is prepared without applying an external magnetic field; the inorganic solid electrolyte particles 10 are randomly distributed in the positive electrode active material 20.
  • the template agent of this embodiment is carbon fiber, and in the preparation of the inorganic solid electrolyte particles 10, it also includes the step of removing the template agent from the obtained inorganic solid electrolyte particles 10, specifically: the obtained inorganic solid electrolyte particles 10 are sintered and oxidized in air to obtain new inorganic solid electrolyte particles 10 with the template agent removed; the inorganic solid electrolyte particles 10 are randomly distributed in the positive electrode active material 20.
  • the positive electrode active layer 30 of the positive electrode plate 100 is a double-layer structure and includes a first positive electrode active layer 31 disposed on one side of the positive electrode current collector 40 and a second positive electrode active layer 32 disposed on the side of the first positive electrode active layer 31 away from the positive electrode current collector 40;
  • the first positive electrode active layer 31 is a positive electrode active material layer, and its thickness before being pressed is 250 ⁇ m;
  • the second positive electrode active layer 32 includes positive electrode active material 20 and inorganic solid electrolyte particles 10, and its thickness before being pressed is 250 ⁇ m.
  • the slurry formula of the first positive electrode active layer 31 is: NCM96 (LiNiCoMnO), conductive carbon black Super-P, single-walled carbon nanotube SWCNT: polyvinylidene fluoride PVDF are mixed in a mass percentage of 96%: 0.6%: 0.2%: 1.2%, and are fully mixed to form a positive electrode slurry.
  • the difference between this embodiment and embodiment 4 is that the thickness of the first positive electrode active layer 31 of this embodiment before being pressed into sheets is 200 ⁇ m; the thickness of the second positive electrode active layer 32 before being pressed into sheets is 300 ⁇ m.
  • the difference between this embodiment and embodiment 4 is that the thickness of the first positive electrode active layer 31 of this embodiment before being pressed into sheets is 300 ⁇ m; the thickness of the second positive electrode active layer 32 before being pressed into sheets is 200 ⁇ m.
  • the microscopic morphology of the carbon fiber tube used in this embodiment is shown in Figure 15, which has a clear and stable hollow structure with an inner diameter of 5 ⁇ m to 10 ⁇ m, so that the solid electrolyte particles 10 prepared using the template have a regularly shaped hollow structure, which is beneficial to improving the mobility of lithium ions.
  • Example 1 The difference between this comparative example and Example 1 is that the solid electrolyte in this comparative example is not formed by a template agent, and is subjected to a pore-forming process using ammonium bicarbonate as an additive to form inorganic solid electrolyte particles with a nano-scale pore structure.
  • Example 1 The difference between this comparative example and Example 1 is that the solid electrolyte in this comparative example is not formed by a template agent, and its pores are prepared by laser drilling.
  • volume energy density test After standing at high temperature, perform the capacity splitting operation and record the first efficiency and medium voltage. The specific steps of capacity splitting are: let the battery 400 stand at high temperature for 12 hours, then charge it to 3.5V at a constant current of 0.02C, then discharge it to 4.6V at a constant current of 0.1C, then charge it to 0.02C at a constant voltage of 4.6V, stand for 3 minutes, discharge it to 2.5V at a constant current of 0.1C, and then seal it by decompression. After capacity splitting, perform a 0.5C cycle.
  • Rate performance test At 25°C, charge at 2C constant current and constant voltage to 4.5V, cut off at 0.02C, let stand for 5 minutes, and then discharge at 2C constant current to 3V. Record the capacity discharged at different rates, and calculate the discharge capacity ratio at different rates based on the 0.2C discharge capacity.
  • Example 1 1020Wh/L 48% 74%
  • Example 2 1040Wh/L 55% 78%
  • Example 3 1080Wh/L 62% 81%
  • Example 4 1120Wh/L 68% 81%
  • Example 5 1160Wh/L 72% 82%
  • Example 6 1200Wh/L 80% 85%
  • Example 7 1010Wh/L 47% 74% Comparative
  • Comparative Example 1 880Wh/L 38% 68% Comparative Example 2 900Wh/L 42% 70%
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, which can be electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供一种固态电解质、正极极片及制备方法、电池及用电装置,该固态电解质包括多个无机固态电解质颗粒,且所述无机固态电解质颗粒为中空结构。本申请提供的具有中空结构的无机固态电解质颗粒,增加了电极反应深度,提高了液相传质的能力,提升了电解液的锂离子迁移数,从而使含无机固态电解质颗粒的电极材料增加高倍率下的克容量发挥,进而提高了含有该类无机固态电解质颗粒的动力电池的体积能量密度。

Description

固态电解质、正极极片及制备方法、电池及用电装置 技术领域
本发明涉及动力电池技术领域,尤其涉及固态电解质、正极极片及制备方法、电池及用电装置。
背景技术
当前市场上的动力电池以超长寿命、使用安全、大容量等优势受到广泛关注。固体电解质对于动力电池的体积能量密度的提升有直接影响。现有技术中,动力电池中的固体电解质还存在液相传质能力不足、体积能量密度有损失的问题。
发明内容
本申请主要解决的技术问题是动力电池中的固体电解质还存在液相传质能力不足、体积能量密度有损失的问题。
为解决上述技术问题,本申请采用的一个技术方案是:一种固态电解质,包括多个无机固态电解质颗粒,且无机固态电解质颗粒为中空结构。
优选地,无机固态电解质颗粒为:由陶瓷电解质材料组成的中空管状结构。
优选地,无机固态电解质颗粒包括中空管状模板剂以及包覆于中空管状模板剂的外表面的陶瓷电解质材料。
更优选地,中空管状模板剂包括磁性修饰材料。
优选地,其中,无机固态电解质颗粒为两端开口的中空管状结构,中空管状结构的内径为1μm~100μm。
为解决上述技术问题,本申请采用的另一种技术方案是:一种固态电解质的制备方法,包括以下步骤:
将包含陶瓷电解质材料的浆料涂覆于模板剂的外表面,得到预制体;
对预制体进行干燥处理。
优选地,将包含陶瓷电解质材料的浆料涂覆于模板剂的外表面,得到预制体的步骤包括:
将陶瓷电解质材料、模板剂以及分散剂混合,得到共混物;
将共混物经球磨,得到预制体。
优选地,模板剂包括实心管状模板剂或中空管状模板剂;实心管状模板剂的外径为1μm~100μm;中空管状模板剂的内径为1μm~100μm。
更优选地,中空管状模板剂包括多个纤维管或多个多孔碳颗粒。
优选地,还包括去除模板剂的步骤,其中:
去除模板剂的方法包括烧结氧化、加热分解或腐蚀处理。
优选地,陶瓷电解质材料的制备方法,包括以下步骤:
将碳酸锂、氧化铝、磷酸氢二铵、氧化锗按照0.5-1.5:4.5-5.5:0.5-1.5:2.5-3.5 的摩尔比添加至分散剂中混合,形成前驱体;
将干燥的前驱体在400℃~500℃的温度条件下进行预烧处理,得到预烧粉体;
将预烧粉体在850℃~1000℃的温度条件下进行烧结处理,得到烧结粉体;
对烧结粉体经粉碎,得到陶瓷电解质材料。
为解决上述技术问题,本申请采用的又一种技术方案是:一种正极极片,包括正极集流体和设置在正极集流体上的正极活性层;正极活性层包括正极活性材料和如上任一所述的固态电解质。
优选地,多个无机固态电解质颗粒在正极活性材料中随机分布或定向排布。
优选地,多个无机固态电解质颗粒在正极活性材料中有序排列,且无机固态电解质颗粒的轴向与正极集流体的夹角大于等于60度且小于等于90度,且无机固态电解质颗粒远离正极集流体的一端的端口暴露。
优选地,正极活性层为单层结构且包括正极活性材料和分散于正极活性材料中的无机固态电解质颗粒;或
正极活性层为双层结构且包括设于正极集流体的一侧的第一正极活性层和设于第一正极活性层远离正极集流体的一侧的第二正极活性层;第一正极活性层为正极活性材料层;第二正极活性层包括正极活性材料和无机固态电解质颗粒。
优选地,正极活性层的厚度至少为400μm。
为解决上述技术问题,本申请采用的再一种技术方案是:一种正极极片的制备方法,包括:
将正极活性材料和固态电解质进行混合,得到浆料;其中,固态电解质为如上任一所述的无机固态电解质颗粒;
将浆料涂覆于正极集流体。
优选地,固态电解质为如上所述的无机固态电解质颗粒;将浆料涂覆于正极集流体的步骤包括:
施加磁场,使多个无机固态电解质颗粒定向排布。
为解决上述技术问题,本申请采用的再一种技术方案是:一种电池,包括负极极片、隔膜、电解液以及如上任一所述的正极极片。
为解决上述技术问题,本申请采用的再一种技术方案是:一种用电装置,包括如上所述的电池。
有益效果:
(1)本申请具体实施例提供具有中空结构的无机固态电解质颗粒,增加了电极反应深度,提高了液相传质的能力,提升了电解液的锂离子迁移数,从而使含无机固态电解质颗粒的电极材料增加高倍率下的克容量发挥,进而提高了含有该类无机固态电解质颗粒的动力电池的体积能量密度。
(2)本申请具体实施例提供大厚度正极极片,进一步提高含有该类大厚度正极极片的动力电池的体积能量密度。
(3)本申请具体实施例提供含有本申请无机固态电解质颗粒的电池可以为超高能量密度电池,实现汽车续航大于1200KM。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的无机固态电解质颗粒的第一结构示意图;
图2是本申请实施例提供的无机固态电解质颗粒的第二结构示意图;
图3是本申请实施例提供的中空管状模板剂的一结构示意图;
图4是本申请实施例提供的固态电解质的制备方法的流程示意图;
图5是图4中得到预制体的流程示意图;
图6是本申请实施例提供的陶瓷电解质材料的制备方法的流程示意图;
图7是本申请实施例提供的正极极片的结构示意图;
图8是本申请提供的无机固态电解质颗粒在正极活性材料中定向排布的第一结构示意图;
图9是本申请提供的无机固态电解质颗粒在正极活性材料中定向排布的第二结构示意图;
图10是本申请提供的双层结构的正极活性层的结构示意图;
图11是本申请提供的正极极片的制备方法的流程示意图;
图12是本申请提供的电池的结构示意图;
图13是本申请提供的用电装置的结构示意图;
图14是本申请实施例1采用的多孔碳的微观形貌图;
图15是本申请实施例7采用的碳纤维管的微观形貌图。
具体实施方式中的附图标号如下:
正极极片100、负极极片200、隔膜300、电池400、电动汽车500;无机固态电解质颗粒10、正极活性材料20、正极活性层30、正极集流体40;陶瓷电解质材料11、中空管状模板剂12、磁性修饰材料121、第一正极活性层31、第二正极活性层32。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、 方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
固体电解质对于动力电池的体积能量密度的提升有直接影响。具体来说,固体电解质添加至动力电池的正极极片的正极活性材料中,可以有效提升动力电池的体积能量密度。
本申请发明人在研究中发现,增加固态电解质的孔隙率,可以进一步提高电池的体积能量密度。现有技术中,固态电解质的造孔方式通常采用在固态电解质中添加碳酸氢铵或偶氮类等添加剂,通过涂布加热得到孔隙。但是此类孔隙在电极滚压过程中会发生闭孔现象,且此类孔隙大多属于纳米级别,不具备液相传质的能力,反而会增加电极的迂曲度,使得厚电极的特征厚度减小,克容量发挥偏低。
为了解决固体电解质的孔隙不能有效提高动力电池的体积能量密度的问题,本申请发明人在研究中发现,控制固态电解质的孔隙结构以及孔隙尺寸有利于提高固态电解质的液相传质的能力,进而有利于提升含有该类固态电解质的动力电池的体积能量密度。
下面结合附图和实施例对本申请进行详细的说明。
本申请实施例提供了一种固态电解质,包括多个无机固态电解质颗粒10(如图1或图2所示),且无机固态电解质颗粒10为中空结构。
本实施例中,固态电解质表示固体离子导体电解质,可以代替液态电解质用于电能存储中。无机固态电解质颗粒10表示形态为颗粒状的无机固态电解质。中空结构表示空心的壳体结构。本实施例由无机固态电解质颗粒10形成中空结构的壳体。
本实施例采用无机固态电解质颗粒10为中空结构,增加了电极反应深度,增加了无机固态电解质颗粒10与电解液的接触面积,利于电解液的回流,提高了液相传质的能力,离子也可以从无机固态电解质颗粒10的侧壁传输,同时促进溶剂化的锂解离,提升了电解液的锂离子迁移数,从而使含无机固态电解质颗粒10的电极材料增加高倍率下的克容量发挥,进而提高了含有该类无机固态电解质颗粒10的电池400(见图13)的体积能量密度。同时无机固态电解质颗粒10内部的电荷分布,可以对溶剂化的锂离子作用,使其利于脱溶剂化,提升锂离子迁移数,降低液相欧姆极化。
体积能量密度是指电芯在规定试验条件和试验方法下,电池的初始充电能量、初始放电能量分别与电池体积的比值。
请参阅图1,图1是本申请实施例提供的无机固态电解质颗粒的第一结构示意图。
在一些实施例中,参见图1,无机固态电解质颗粒10为:由陶瓷电解质材料11组成的中空管状结构。如图1所示,本实施例中的多个陶瓷电解质材料11紧密结合,形成宏观上的中空管状结构。
本实施例中,陶瓷电解质材料11表示用天然或合成化合物经过成形和高温烧结制成的一类无机非金属电解质材料。中空管状结构表示空心的管状结构。
本实施例由陶瓷电解质材料11组成中空管状结构,形成的无机固态电解质颗粒10的电导率可与液体电解质比拟,且由于为固体材料,安全系数更高、低温性能更好。
请参阅图2,图2是本申请实施例提供的无机固态电解质颗粒的第二结构示意图。
在一些实施例中,参见图2,无机固态电解质颗粒10包括中空管状模板剂12以及包覆于中空管状模板剂12的外表面的陶瓷电解质材料11。如图2所示,本实施例的中空管状模板剂12的内壁作为无机固态电解质颗粒10的中空管状结构的内壁。
本实施例中,中空管状模板剂12表示结构为空心管状的模板剂,用于在无机固态电解质颗粒10成型过程中起结构导向的作用。
本实施例通过陶瓷电解质材料11以及中空管状模板剂12形成无机固态电解质颗粒10,可以有效塑造无机固态电解质颗粒10的结构,并且能够保证塑造无机固态电解质颗粒10的稳定性,各批次形成的无机固态电解质颗粒10的性质均一、稳定。并且,由于本实施例的无机固态电解质颗粒10采用中空管状模板剂12造孔,其造孔方式属于无损造孔,相较于现有技术采用激光造孔等有损造孔,本实施例的无损造孔方式更为温和、简便、快捷,且形成的无机固态电解质颗粒10的性质更加稳定,且本实施例的无损造孔方式使得各孔隙之间的间距可以更近,使得在相同体积内可以存在更多的孔隙,从而使得单位体积内锂离子迁移的数量更多,从而使得含有本实施例的无机固态电解质颗粒10的电池400的体积能量密度进一步提高。
请参阅图3,图3是本申请实施例提供的中空管状模板剂的一结构示意图。
在一些实施例中,参见图3,中空管状模板剂12包括磁性修饰材料121。如图3所示,磁性修饰材料121随机分布于中空管状模板剂12的侧壁上。
本实施例中,磁性修饰材料121表示具有磁性的纳米级材料,用于修饰中空管状模板剂12具有磁性,使得磁性修饰的中空管状模板剂12形成的无机固态电解质颗粒10具有磁性,从而使得具有磁性的无机固态电解质颗粒10具备可导向性,具备可导向性的无机固态电解质颗粒10使得无机固态电解质颗粒10液相传质的方向可控,可以根据实际需求调控液相传质的方向,有利于改善含有该类无机固态电解质颗粒10的电池400的体积能量密度。
具体地,本实施例中磁性修饰材料121与中空管状模板剂12的结合可以采用热处理的方式使得磁性修饰材料121生长在中空管状模板剂12的管状侧壁上。
示例地,本实施例中的磁性修饰材料121可以为氧化铁、四氧化三铁、镍的高价氧化物、钴的高价氧化物中的任一或几种。
在一些实施例中,无机固态电解质颗粒10为两端开口的中空管状结构,中空管状结构的内径为1μm~100μm。
本实施例中,无机固态电解质颗粒10为中空管状结构,且该中空管状结构两端开口,进一步提高该无机固态电解质颗粒10的液相传质能力。并且,本实施例对于中空管状结构的内径进行了进一步的限制,具体为1μm~100μm,微米级的中空管状 结构的内径使得两端开口的中空管状结构可以有效实现液相传质。可以理解,本申请实施例的无机固态电解质颗粒10的中空管状结构至少一端开口。在本申请实施例无机固态电解质颗粒10的中空管状结构一端开口的条件下,该开口朝向远离正极集流体40的一端暴露。
请参阅图4,图4是本申请实施例提供的固态电解质的制备方法的流程示意图。
在一些实施例中,参见图4,提供了一种固态电解质的制备方法,包括以下步骤:
S1,将包含陶瓷电解质材料11的浆料涂覆于模板剂的外表面,得到预制体;
S2,对预制体进行干燥处理。
本实施例中,浆料表示由粘合剂、导电剂、正极材料等组成具有粘度的湿物料。包含陶瓷电解质材料11的浆料表示浆料中存在的固态物质包括陶瓷电解质材料11。预制体表示预先制造成型的构件。干燥处理表示利用热能使湿物料中的湿分气化,并利用气流或真空带走气化了的湿分,从而获得干燥物料的操作。
本实施例提供的固态电解质的制备方法,通过将包含陶瓷电解质材料11的浆料涂覆于模板剂的外表面,再进行干燥处理的方式,即可制得液相传质能力高的固态电解质。
具体地,本步骤的干燥处理可以实现预制体的含水率小于一定的阈值即可。
示例地,本步骤的干燥处理可以为真空干燥处理。
具体地,本步骤的干燥处理的工艺条件为:干燥温度为80℃~140℃,干燥时间为4h~8h。
示例地,本步骤的干燥温度可以为80℃、100℃、120℃或140℃。
示例地,本步骤的干燥时间可以为4h、5h、6h、7h或8h。
请参阅图5,图5是图4中得到预制体的流程示意图。
在一些实施例中,参见图5,将包含陶瓷电解质材料11的浆料涂覆于模板剂的外表面,得到预制体的步骤包括:
S11,将陶瓷电解质材料11、模板剂以及分散剂混合,得到共混物;
S12,将共混物经球磨,得到预制体。
具体地,步骤S11的分散剂可以实现各原料的均匀分散即可。
示例地,步骤S11的分散剂可以为N-甲基吡咯烷酮(NMP)。
具体地,步骤S11的混合可以实现各原料之间的均匀分布即可。
示例地,步骤S11的混合处理可以为球磨处理和/或研磨处理。
示例地,步骤S11的球磨处理的工艺条件为:球磨转速450r/min~800r/min,球磨时间为8h~14h。
示例地,步骤S11的研磨处理的工艺条件为:研磨时间为4h~8h。
具体地,步骤S12的球磨混合的工艺条件是:球磨转速为450r/min~900r/min,球磨时间为16h~30h。
示例地,步骤S12的球磨转速可以为450r/min、550r/min、600r/min、700r/min、800r/min或900r/min。
示例地,步骤S12的球磨时间可以为16h、20h、24h、28h或30h。
本实施例中,分散剂表示一种在分子内同时具有亲油性和亲水性两种相反性质 的界面活性剂。共混物表示两种或两种以上分子结构不同的材料的物理混合物。球磨表示采用球磨机对材料进行粉碎的过程。
本实施例通过球磨将陶瓷电解质材料11、模板剂以及分散剂混合形成的共混物进行粉碎处理,以使得到的预制体的颗粒均匀、分散性良好,有利于陶瓷电解质材料11均匀地包裹在模板剂的外表面,提高陶瓷电解质材料11与模板剂二者之间的结合程度,进一步提高无机固态电解质颗粒10的稳定性。
在一些实施例中,模板剂包括实心管状模板剂或中空管状模板剂12;实心管状模板剂的外径为1μm~100μm;中空管状模板剂12的内径为1μm~100μm。
本实施例中,实心管状模板剂表示模板剂的形状为管状且该管状为实心结构。中空管状模板剂12表示模板剂的形状为管状且该管状为空心结构。实心管状模板剂的外径表示实心管状模板剂的外周的直径。中空管状模板剂12的内径表示中空管状模板剂12的内腔的直径。
本实施例的实心管状模板剂仅适用于制备由陶瓷电解质材料11组成的中空管状结构,并且后续需要去除该实心管状模板剂。本实施例的中空管状模板剂12即可以适用于由陶瓷电解质材料11组成的中空管状结构,也可以适用于制备包括中空管状模板剂12的无机固态电解质颗粒10。
在一些实施例中,中空管状模板剂12包括多个纤维管或多个多孔碳颗粒。
本实施例中,纤维管表示连续的中空管状的细丝。本申请实施例的纤维管可以是碳纤维管或高分子纤维管。多孔碳颗粒表示具有不同孔结构的碳素材料,其孔大小从具有相当于分子大小的纳米级超细微孔直到微米级大孔。
本实施例的纤维管或多孔碳颗粒来源广泛、且容易与陶瓷电解质材料11结合,有利于保证制备形成的无机固态电解质颗粒10的性质的稳定性。
本实施例通过实心管状模板剂或中空管状模板剂12进行造孔的方式使得无机固态电解质颗粒10制造的孔隙为无损直通孔,该种无损直通孔的构造可以有效加快离子传输、减小液相极化。
在一些实施例中,固态电解质的制备方法还包括:
S3,去除模板剂。
具体地,去除模板剂的方法包括烧结氧化、加热分解或腐蚀处理。
本实施例中,模板剂为碳纤维,烧结氧化表示通过高温处理使得模板剂发生氧化反应而实现去除模板剂的过程。加热分解表示通过加热处理使得模板剂发生气化分解反应,从而实现去除模板剂的过程。腐蚀处理表示通过腐蚀剂的处理,使得模板剂发生腐蚀分解反应,从而实现去除模板剂的过程。
本实施例烧结氧化适用于碳纤维管的去除。加热分解适用于高分子纤维管的去除。腐蚀处理适用于高分子纤维管的去除。
请参阅图6,图6是本申请实施例提供的陶瓷电解质材料的制备方法的流程示意图。
在一些实施例中,参见图6,陶瓷电解质材料11的制备方法,包括以下步骤:
S1A,将碳酸锂、氧化铝、磷酸氢二铵、氧化锗按照0.5-1.5:4.5-5.5:0.5-1.5:2.5-3.5的摩尔比添加至分散剂中混合,形成前驱体;
S1B,将干燥的前驱体在400℃~500℃的温度条件下进行预烧处理,得到预烧粉 体;
S1C,将预烧粉体在850℃~1000℃的温度条件下进行烧结处理,得到烧结粉体;
S1D,对烧结粉体经粉碎,得到陶瓷电解质材料11。
示例地,碳酸锂、氧化铝、磷酸氢二铵、氧化锗的摩尔比可以是(0.5:4.5:0.5:2.5)、(1.5:5.5:1.5:3.5)、(1:5:1:3)、(0.75:4.75:0.75:2.75)、(1.25:5.25:1.25:3.25)、(0.6:5.2:1.2:2.7)、(1.4:4.8:1.3:2.7)。
具体地,步骤S1A的分散剂可以实现各原料的均匀分散即可。
示例地,步骤S1A的分散剂可以为异丁醇。
具体地,步骤S1A的混合可以实现各原料之间的均匀分布即可。
示例地,步骤S1A的混合采用球磨混合。
示例地,步骤S1A的球磨混合的工艺条件是:球磨转速为300r/min~600r/min,球磨时间为8h~16h。
示例地,步骤S1B的预烧温度可以为400℃、425℃、450℃、475℃或500℃。
具体地,步骤S1B的预烧处理的时间为20h~30h。
示例地,步骤S1B的预烧时间可以为20h、22h、24h、26h、28h或30h。
示例地,步骤S1C的烧结温度可以为850℃、900℃、950℃或1000℃。
具体地,步骤S1C的烧结处理的时间为6h~12h。
示例地,步骤S1C的烧结时间可以为6h、8h、10h或12h。
本实施例中,前驱体表示获得目标产物前的一种存在形式。预烧处理表示是在制成烧结粉体前,预先对原料进行热处理的工艺。预烧粉体表示前驱体经预烧处理后形成的粉体。烧结处理表示将粉体进行致密化和再结晶化的过程。烧结粉体表示经过烧结处理后形成的粉体。粉碎表示对大体积的颗粒进行加工,使其变小、分布变均匀的过程。
本实施例提供一种可行的陶瓷电解质材料11的制备方法。可以理解,其他配方的陶瓷电解质材料11也可以通过本申请提供的方案制成具有中空结构的无机固态电解质颗粒10,从而提高液相传质能力,进而提高电池400的体积能量密度。
请参阅图7,图7是本申请实施例提供的正极极片的结构示意图。
在一些实施例中,参见图7,本申请提供一种正极极片100,包括正极集流体40和设置在正极集流体40上的正极活性层30;正极活性层30包括正极活性材料20和上述无机固态电解质颗粒10。
本实施例中,正极集流体40表示电池正极用于附着正极活性物质的基体金属。正极活性层30表示正极活性材料20、导电剂和粘结剂等构成的设置在正极集流体40上的材料层。正极活性材料20表示嵌锂化合物。以锂离子电池为例,正极集流体40的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。
本实施例通过在正极极片100中添加有固态电解质颗粒10,从而提高液相传质的能力。
请参阅图8,图8是本申请提供的无机固态电解质颗粒在正极活性材料中定向排布的第一结构示意图。
在一些实施例中,多个无机固态电解质颗粒10在正极活性材料20中随机分布(如图7所示)或定向排布(如图8所示)。
本实施例中多个无机固态电解质颗粒10在正极活性材料20中的排布情况均有助于提高电池400的体积能量密度。
请参阅图9,图9是本申请提供的无机固态电解质颗粒在正极活性材料中定向排布的第二结构示意图。
在一些实施例中,参见图9,多个无机固态电解质颗粒10在正极活性材料20中有序排列,且无机固态电解质颗粒10的轴向与正极集流体40的夹角大于等于60度且小于等于90度,且无机固态电解质颗粒10远离正极集流体40的一端的端口暴露。
本实施例中,多个无机固态电解质颗粒10在正极活性材料20中有序排列的角度,使得液相传质的角度可控。
在一些实施例中,正极活性层30为单层结构且包括正极活性材料20和分散于正极活性材料20中的无机固态电解质颗粒10(如图8所示)。
请参阅图10,图10是本申请提供的双层结构的正极活性层的结构示意图。
在一些实施例中,参见图10,正极活性层30为双层结构且包括设于正极集流体40的一侧的第一正极活性层31和设于第一正极活性层31远离正极集流体40的一侧的第二正极活性层32;第一正极活性层31为正极活性材料层;第二正极活性层32包括正极活性材料20和无机固态电解质颗粒10。
本实施例中正极活性层30为双层结构,在第一正极活性层31远离正极集流体40的一侧设置的第二正极活性层32中包括本申请的无机固态电解质颗粒10,一方面可以改善厚电极浸润时间,有利于电解液的回流,提升循环性能,另一方面,使大厚度正极极片100的实现成为现实。
在一些实施例中,正极活性层30的厚度至少为400μm。
本实施例中可以制得大厚度正极活性层30,从而可以进一步提高锂离子的迁移数量,提升厚膜电极的功率性能、低温性能能,减小极化。
含有本实施例的正极活性层30的电池400可以为超高能量密度电池,实现汽车续航大于1200KM。
请参阅图11,图11是本申请提供的正极极片的制备方法的流程示意图。
在一些实施例中,参见图11,本申请提供一种正极极片100的制备方法,包括以下步骤:
A1:将正极活性材料20和无机固态电解质颗粒10进行混合,得到浆料;其中,无机固态电解质颗粒10为如上任一无机固态电解质颗粒10;
A2:将浆料涂覆于正极集流体40。
本实施例正极极片100的制备方法简单、易于操作。
在一些实施例中,固态电解质为如上的无机固态电解质颗粒10;将浆料涂覆于正极集流体40的步骤包括:
A3:施加磁场,使多个无机固态电解质颗粒10定向排布。
本实施例通过施加磁场,通过无接触的方式快捷地将无机固态电解质颗粒10定向排列。可以理解的是,本实施例可以通过施加磁场的方式进行定向排列的无机固态电解质颗粒10中必然存在被磁性修饰的模板剂,该模板剂可为实心管状模板剂或中空管状模板剂12。模板剂为实心管状模板剂时,完成施加磁场使多个无机固态 电解质颗粒10定向排布的步骤之后,需在对正极极片100进行干燥的过程中或干燥之后,通过热处理或腐蚀处理的方式去除实心管状模板剂。模板剂为中空管状模板剂12时,完成施加磁场使多个无机固态电解质颗粒10定向排布的步骤之后,可在对正极极片100进行干燥的过程中或干燥之后,通过热处理或腐蚀处理的方式去除中空管状模板剂12,也可不去除中空管状模板剂12。
请参阅图12,图12是本申请提供的电池的结构示意图。
在一些实施例中,参见图12,本申请提供一种电池400,包括负极极片200、隔膜300、电解液以及如上任一的正极极片100。
本实施例中,电池400表示包括一个或多个电池单体(如图12所示)以提供更高的电压和容量的单一的物理模块。电池单体包括电极组件和电解液,电极组件由正极极片100、负极极片200和隔膜300组成。电池单体主要依靠金属离子在正极极片100和负极极片200之间移动来工作。
正极极片100包括正极集流体40和正极活性层30,正极活性层30涂覆于正极集流体40的表面,未涂敷正极活性层30的正极集流体40凸出于已涂覆正极活性层30的正极集流体40,未涂敷正极活性层30的正极集流体40作为正极极耳。以锂离子电池为例,正极集流体40的材料可以为铝,正极活性材料20可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。
负极极片200包括负极集流体和负极活性层,负极活性层涂覆于负极集流体的表面,未涂敷负极活性层的负极集流体凸出于已涂覆负极活性层的负极集流体,未涂敷负极活性层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔膜300的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构。本申请实施例提及的电极组件为卷绕式结构。
本实施例的大厚度的正极活性层30的设置,可以节约一半厚度的正极集流体40,负极集流体和隔膜300,使得成本大大降低。
请参阅图13,图13是本申请提供的用电装置的结构示意图。
在一些实施例中,参见图13本申请提供一种用电装置,包括如上的电池400。用电装置可以为手机、电脑、电动摩托、电动汽车等。本实施例以电动汽车500为例进行说明。
电动汽车500的内部设置有电池400,电池400可以设置在电动汽车500的底部或头部或尾部。电池400可以用于电动汽车500的供电,例如,电池400可以作为电动汽车500的操作电源。电动汽车500还可以包括控制器501和马达502,控制器501用来控制电池400为马达502供电,例如,用于电动汽车500的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池400不仅可以作为电动汽车500的操作电源,还可以作为电动汽车500的驱动电源,为电动汽车500提供驱动动力。
实施例1
陶瓷电解质材料11的制备:
将碳酸锂、氧化铝、磷酸氢二铵、氧化锗按照1:5:1:3的摩尔比添加至异丁醇中,在450r/min的转速下进行球磨混合,球磨时间为12h,形成前驱体。
将干燥的前驱体在450℃的温度条件下进行预烧处理24h,得到预烧粉体。
将预烧粉体在900℃的温度条件下进行烧结处理8h,得到烧结粉体,即为陶瓷电解质材料11。
无机固态电解质颗粒10的制备:
将制备的陶瓷电解质材料11、多个内径为50μm的经磁性修饰的多孔碳以及N-甲基吡咯烷酮混合,在600r/min的球磨转速条件下进行球磨处理10h,然后再经研磨处理6h,得到共混物;
本实施例采用的多孔碳的微观形貌如图14所示,其具有结构清晰、稳定的中空结构,该中空结构的内径尺寸为10μm~20μm,且多个中空结构紧密规则排布,使得采用该模板剂制备的固态电解质颗粒10相比现有技术通过激光打孔形成的固态电解质,在相同体积下无损形成数量更多的中空结构,进而使得本实施例制备的固态电解质颗粒10在相同体积下迁移数量更多的锂离子,从而可以提高含有本实施例的无机固态电解质颗粒10的电池400的体积能量密度;
将共混物在600r/min的球磨转速条件下进行球磨处理24h,得到预制体;
对预制体在120℃的干燥温度条件下进行真空干燥处理6h。
正极极片100的制备:
将NCM96(LiNiCoMnO):无机固态电解质颗粒10、导电炭黑Super-P、单壁碳纳米管SWCNT、聚偏二氟乙烯PVDF以96%:2%:0.6%:0.2%:1.2%的质量百分数混合,经充分地混合,形成粘度为7500mpa·s、固含量为68%的正极浆料。
把正极浆料涂布于10μm厚的铝箔上,在外加磁场的作用下,涂覆厚度为500μm,经压片处理,得到厚度为400μm的正极极片100。
负极极片200的制备:
将一氧化硅SiO:导电炭黑Super-P、单壁碳纳米管SWCNT、聚丙烯酸锂PAALi以96.8%:1.04%:0.06%:0.2%:2.1%的质量百分数混合,经充分地混合,形成负极浆料。
把负极浆料涂布于4.5μm厚的铝箔上,涂覆厚度为125μm,经压片处理,得到厚度为110μm的负极极片200。
电池400的组装:
将制备的正极极片100、负极极片200与隔膜celgard7+4与电解液(8950FB)组装成软包电池,在45℃的温度条件下高温静置24h。
实施例2
本实施例与实施例1的区别之处在于:本实施例的无机固态电解质颗粒10的制备中,采用未经磁性修饰的多孔碳材料,且正极极片100的制备中在未施加外加磁场的条件下进行正极材料的制备;无机固态电解质颗粒10在正极活性材料20中随机分布。
实施例3
本实施例与实施例1的区别之处在于:本实施例的模板剂为碳纤维,在无机固态电解质颗粒10的制备中,还包括对于得到的无机固态电解质颗粒10去除模板剂 的步骤,具体为:将得到的无机固态电解质颗粒10经过空气中烧结氧化处理,得到去除模板剂的新的无机固态电解质颗粒10;无机固态电解质颗粒10在正极活性材料20中随机分布。
实施例4
本实施例与实施例1的区别之处在于:本实施例的正极极片100的制备中,将正极极片100的正极活性层30为双层结构且包括设于正极集流体40的一侧的第一正极活性层31和设于第一正极活性层31远离正极集流体40的一侧的第二正极活性层32;第一正极活性层31为正极活性材料层,其未压片前的厚度为250μm;第二正极活性层32包括正极活性材料20和无机固态电解质颗粒10,其未压片前的厚度为250μm。其中第一正极活性层31的浆料配方为:NCM96(LiNiCoMnO)、导电炭黑Super-P、单壁碳纳米管SWCNT:聚偏二氟乙烯PVDF以96%:0.6%:0.2%:1.2%的质量百分数混合,经充分地混合,形成正极浆料。
实施例5
本实施例与实施例4的区别之处在于:本实施例的第一正极活性层31在未压片前的厚度为200μm;第二正极活性层32在未压片前的厚度为300μm。
实施例6
本实施例与实施例4的区别之处在于:本实施例的第一正极活性层31在未压片前的厚度为300μm;第二正极活性层32在未压片前的厚度为200μm。
实施例7
本实施例与实施例1的区别之处在于:本实施例的无机固态电解质颗粒10的制备中,采用碳纤维管作为中空管状模板剂12。
本实施例采用的碳纤维管的微观形貌如图15所示,其具有结构清晰、稳定的中空结构,该中空结构的内径尺寸为5μm~10μm,使得采用该模板剂制备的固态电解质颗粒10具有规则形状的中空结构,有利于锂离子的迁移率的提高。
对比例1
本对比例与实施例1的区别之处在于:本对比例的固态电解质未经过模板剂成型,且经碳酸氢铵为添加剂对其进行成孔工艺,形成纳米级孔隙结构的无机固态电解质颗粒。
对比例2
本对比例与实施例1的区别之处在于:本对比例的固态电解质未经过模板剂成型,且其孔隙采用激光打孔制备。
性能测试
(1)体积能量密度测试:高温静置后,进行化成分容操作记录首次效率及中压。化成分容的具体步骤为:将高温静置后的电池400静置12h,然后以0.02C的电流恒流充电至3.5V,然后以0.1C电流恒流放电至4.6V,再以4.6V的电压恒压充电至电流为0.02C,静置时间3min,0.1C恒流放电至2.5V,减压抽气密封,化成分容完毕。化成分容后进行0.5C循环。
(2)倍率性能测试:25℃条件下,2C恒流恒压充电至4.5V,0.02C截止,静置5分钟,然后分别以2C倍率恒流放电至3V,记录不同倍率下放出的容量,以0.2C放出容量为基准,算出不同倍率下放电容量比率。
(3)放电保持率性能测试:在-20℃的温度条件下,以2C恒流恒压充电至4.5V,0.02C截止,静置5分钟,然后0.7C恒流放电至3V,在该条件下循环1000圈,记录第1000圈的1C放电对应的容量及电芯厚度,以第一圈放电容量及电芯初始厚度为基准,算出第1000圈的容量保持率(Capacity Retention)及厚度膨胀率(Swelling)。
实施例1~7组装形成的电池和对比例1~2组装形成的电池的测试结果如表1所示。
表1本申请实施例制备的电池的性能测试结果
项目 体积能量密度 2C倍率性能 -20℃放电保持率
实施例1 1020Wh/L 48% 74%
实施例2 1040Wh/L 55% 78%
实施例3 1080Wh/L 62% 81%
实施例4 1120Wh/L 68% 81%
实施例5 1160Wh/L 72% 82%
实施例6 1200Wh/L 80% 85%
实施例7 1010Wh/L 47% 74%
对比例1 880Wh/L 38% 68%
对比例2 900Wh/L 42% 70%
根据表1,可以看出:对于组装形成的电池400的体积能量密度、倍率性能和低温性能(-20℃放电保持率),根据实施例1~7以及对比例1~2的性能测试结果可知,实施例1~7的测试结果均相对于对比例1~2的测试结果有较大幅度的提升,这说明添加了本申请提供的无机固态电解质颗粒10,可实现组装形成的电池400的体积能量密度、倍率性能和低温性能的大幅提升;实施例1~7的测试结果中,具有双层结构正极极片100的电池400相较于单层结构正极极片100的电池400的体积能量密度、倍率性能和低温性能有显著提升,这可能与双层结构正极极片100中远离正极集流体40的第二正极活性层32中,无机固态电解质颗粒10的利用率高,提升电池400的体积能量密度、倍率性能和低温性能有关。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种固态电解质,其特征在于,包括多个无机固态电解质颗粒,且所述无机固态电解质颗粒为中空结构。
  2. 根据权利要求1所述的固态电解质,其特征在于,所述无机固态电解质颗粒为:由陶瓷电解质材料组成的中空管状结构。
  3. 根据权利要求1所述的固态电解质,其特征在于,所述无机固态电解质颗粒包括中空管状模板剂以及包覆于所述中空管状模板剂的外表面的陶瓷电解质材料。
  4. 根据权利要求3所述的固态电解质,其特征在于,所述中空管状模板剂包括磁性修饰材料。
  5. 根据权利要求1所述的固态电解质,其特征在于,其中,所述无机固态电解质颗粒为两端开口的中空管状结构,所述中空管状结构的内径为1μm~100μm。
  6. 一种固态电解质的制备方法,其特征在于,包括以下步骤:
    将包含陶瓷电解质材料的浆料涂覆于模板剂的外表面,得到预制体;
    对所述预制体进行干燥处理。
  7. 根据权利要求6所述的固态电解质的制备方法,其特征在于,将包含陶瓷电解质材料的浆料涂覆于模板剂的外表面,得到预制体的步骤包括:
    将所述陶瓷电解质材料、所述模板剂以及分散剂混合,得到共混物;
    将所述共混物经球磨,得到预制体。
  8. 根据权利要求6所述的固态电解质的制备方法,其特征在于,所述模板剂包括实心管状模板剂或中空管状模板剂;所述实心管状模板剂的外径为1μm~100μm;所述中空管状模板剂的内径为1μm~100μm。
  9. 根据权利要求8所述的固态电解质的制备方法,其特征在于,所述中空管状模板剂包括多个纤维管或多个多孔碳颗粒。
  10. 根据权利要求6所述的固态电解质的制备方法,其特征在于,还包括去除所述模板剂的步骤,其中:
    去除所述模板剂的方法包括烧结氧化、加热分解或腐蚀处理。
  11. 根据权利要求6所述的固态电解质的制备方法,其特征在于,所述陶瓷电解质材料的制备方法,包括以下步骤:
    将碳酸锂、氧化铝、磷酸氢二铵、氧化锗按照0.5-1.5:4.5-5.5:0.5-1.5:2.5-3.5的摩尔比添加至分散剂中混合,形成前驱体;
    将干燥的所述前驱体在400℃~500℃的温度条件下进行预烧处理,得到预烧粉体;
    将所述预烧粉体在850℃~1000℃的温度条件下进行烧结处理,得到烧结粉体;
    对所述烧结粉体经粉碎,得到陶瓷电解质材料。
  12. 一种正极极片,其特征在于,包括正极集流体和设置在所述正极集流体上的正极活性层;所述正极活性层包括正极活性材料和如权利要求1-5任意一项所述的固态电解质。
  13. 根据权利要求12所述的正极极片,其特征在于,多个所述无机固态电解质颗粒在所述正极活性材料中随机分布或定向排布。
  14. 根据权利要求12所述的正极极片,其特征在于,多个所述无机固态电解质颗粒在所述正极活性材料中有序排列,且所述无机固态电解质颗粒的轴向与所述正极集流体的夹角大于等于60度且小于等于90度,且所述无机固态电解质颗粒远离所述正极集流体的一端的端 口暴露。
  15. 根据权利要求12所述的正极极片,其特征在于,所述正极活性层为单层结构且包括所述正极活性材料和分散于所述正极活性材料中的所述无机固态电解质颗粒;或
    所述正极活性层为双层结构且包括设于所述正极集流体的一侧的第一正极活性层和设于所述第一正极活性层远离所述正极集流体的一侧的第二正极活性层;所述第一正极活性层为正极活性材料层;所述第二正极活性层包括所述正极活性材料和所述无机固态电解质颗粒。
  16. 根据权利要求12所述的正极极片,其特征在于,所述正极活性层的厚度至少为400μm。
  17. 一种正极极片的制备方法,其特征在于,包括:
    将正极活性材料和固态电解质进行混合,得到浆料;其中,所述固态电解质为如权利要求1-5任意一项所述的无机固态电解质颗粒;
    将所述浆料涂覆于正极集流体。
  18. 根据权利要求17所述的正极极片的制备方法,其特征在于,所述固态电解质为如权利要求4所述的无机固态电解质颗粒;所述将所述浆料涂覆于正极集流体的步骤包括:
    施加磁场,使多个所述无机固态电解质颗粒定向排布。
  19. 一种电池,其特征在于,包括负极极片、隔膜、电解液以及权利要求12~16中任一所述的正极极片。
  20. 一种用电装置,其特征在于,包括权利要求19所述的电池。
PCT/CN2022/121798 2022-09-27 2022-09-27 固态电解质、正极极片及制备方法、电池及用电装置 WO2024065192A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121798 WO2024065192A1 (zh) 2022-09-27 2022-09-27 固态电解质、正极极片及制备方法、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121798 WO2024065192A1 (zh) 2022-09-27 2022-09-27 固态电解质、正极极片及制备方法、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024065192A1 true WO2024065192A1 (zh) 2024-04-04

Family

ID=90475047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121798 WO2024065192A1 (zh) 2022-09-27 2022-09-27 固态电解质、正极极片及制备方法、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024065192A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170125842A1 (en) * 2014-07-31 2017-05-04 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
CN108493480A (zh) * 2018-04-28 2018-09-04 哈尔滨工业大学 一种复合单颗粒层固态电解质及其制备方法
CN111559740A (zh) * 2020-05-29 2020-08-21 河南大学 一种具有空气间隙固态电解质制备方法
CN112038688A (zh) * 2020-08-19 2020-12-04 河南电池研究院有限公司 一维纳米形貌llzo基固态电解质材料的制备方法
CN112186262A (zh) * 2020-10-09 2021-01-05 西安交通大学 一种基于mlcc结构的全固态锂离子电池及其制备方法
CN113991170A (zh) * 2021-10-15 2022-01-28 深圳大学 全固态电池
CN114162862A (zh) * 2021-11-22 2022-03-11 上海国瓷新材料技术有限公司 一种中空结构的锂镧锆氧基粉体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170125842A1 (en) * 2014-07-31 2017-05-04 Fujifilm Corporation All solid-state secondary battery, inorganic solid electrolyte particles, solid electrolyte composition, electrode sheet for battery, and method for manufacturing all solid-state secondary battery
CN108493480A (zh) * 2018-04-28 2018-09-04 哈尔滨工业大学 一种复合单颗粒层固态电解质及其制备方法
CN111559740A (zh) * 2020-05-29 2020-08-21 河南大学 一种具有空气间隙固态电解质制备方法
CN112038688A (zh) * 2020-08-19 2020-12-04 河南电池研究院有限公司 一维纳米形貌llzo基固态电解质材料的制备方法
CN112186262A (zh) * 2020-10-09 2021-01-05 西安交通大学 一种基于mlcc结构的全固态锂离子电池及其制备方法
CN113991170A (zh) * 2021-10-15 2022-01-28 深圳大学 全固态电池
CN114162862A (zh) * 2021-11-22 2022-03-11 上海国瓷新材料技术有限公司 一种中空结构的锂镧锆氧基粉体及其制备方法

Similar Documents

Publication Publication Date Title
CN108461694B (zh) 一种锂硫电池用的双效复合隔膜及其制备方法
KR101939270B1 (ko) 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
WO2020164353A1 (zh) 一种金属原子掺杂多孔碳纳米复合材料及其制备方法和应用
WO2014032406A1 (zh) 一种硅碳复合负极材料及其制备方法和锂离子电池
CN112002883A (zh) 一种负极活性物质用硅基复合材料及负极片和锂离子电池
KR102246197B1 (ko) 리튬 이차전지용 실리콘-탄소 복합 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2017124439A1 (zh) 三维Na3V2(PO4)3纳米线网络电极材料及其制备方法和应用
WO2022021933A1 (zh) 非水电解质二次电池用负极材料及其制备方法
CN111653783B (zh) 多孔氮化硼纤维/多壁碳纳米管/硫复合型锂硫电池正极材料
CN113659125B (zh) 一种硅碳复合材料及其制备方法
TW201607117A (zh) 透過噴塗製備電池電極的方法、透過該方法製備的電極及電池
CN103022435A (zh) 一种锂离子电池硅碳复合负极材料及其制备方法
CN101355150B (zh) 锂离子电池用石墨碳纳米管复合电极材料的制备方法
Zhang et al. A review on electrode materials of fast‐charging lithium‐ion batteries
CN113871574B (zh) 锂离子电池负极片及其制备方法与应用
KR101927414B1 (ko) 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
TWI651882B (zh) 鋰離子電池
CN108666532B (zh) 锂离子电池阳极的制备方法
WO2024065192A1 (zh) 固态电解质、正极极片及制备方法、电池及用电装置
CN115084488A (zh) 一种硫化铜掺杂碳基复合材料及其制备方法、钠离子电池
CN114804039A (zh) 一种碳基体复合氮化钒纳米阵列及其制备方法与应用
CN114284481A (zh) 一种高倍率硅氧碳材料及其制备方法和应用
CN113346050A (zh) 硅碳负极极片及其制备方法与应用
TWI650896B (zh) 鋰離子電池
TWI653778B (zh) 鋰離子電池陽極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959842

Country of ref document: EP

Kind code of ref document: A1