WO2024063594A1 - 배터리 팩 - Google Patents

배터리 팩 Download PDF

Info

Publication number
WO2024063594A1
WO2024063594A1 PCT/KR2023/014481 KR2023014481W WO2024063594A1 WO 2024063594 A1 WO2024063594 A1 WO 2024063594A1 KR 2023014481 W KR2023014481 W KR 2023014481W WO 2024063594 A1 WO2024063594 A1 WO 2024063594A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
battery pack
flow path
battery
port
Prior art date
Application number
PCT/KR2023/014481
Other languages
English (en)
French (fr)
Inventor
김정민
김수길
최형민
유승용
강민주
Original Assignee
인지컨트롤스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220120293A external-priority patent/KR20240041134A/ko
Priority claimed from KR1020220177031A external-priority patent/KR20240094614A/ko
Application filed by 인지컨트롤스 주식회사 filed Critical 인지컨트롤스 주식회사
Publication of WO2024063594A1 publication Critical patent/WO2024063594A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames

Definitions

  • the present invention relates to a battery pack that can improve vehicle cooling systems.
  • batteries are widely used in electrical devices that cannot be connected by wire, such as portable electronic devices, mobile communication terminals, and electric vehicles.
  • portable electronic devices such as portable electronic devices, mobile communication terminals, and electric vehicles.
  • electric vehicles such as portable electronic devices, mobile communication terminals, and electric vehicles.
  • research and development of batteries is becoming more active as the battery market expands, but accidents in which batteries catch fire or explode still occur frequently.
  • High-capacity battery modules or battery packs are used in typical electric vehicles. It is important to increase the performance and capacity of the battery module or battery pack of an electric vehicle as described above, but it is also very important to prevent casualties and property damage due to fire and explosion. To this end, research and development has recently been actively conducted to develop battery modules or battery packs with high capacity, high efficiency, and high safety.
  • the problem solved by the present invention is to improve assemblyability and productivity by configuring the battery cooling device as a battery pack unit.
  • the present invention seeks to provide a battery pack that improves the cooling performance of the battery module and reduces the volume and weight of the layout of the vehicle cooling system through a structure that applies a heat absorbing material to the battery module.
  • a battery pack according to an embodiment of the present invention for achieving the above object includes a battery pack in which a plurality of battery modules are disposed; an upper heat sink that covers the upper surface of the battery pack and has a plurality of upper cooling passages through which cooling fluid flows to cool the battery module; and a lower heat sink that covers the lower surface of the battery pack and has a plurality of lower cooling passage portions through which cooling fluid flows to cool the battery module.
  • the upper cooling passage portion or the lower cooling passage portion has the same shape as each other including a ' ⁇ ' shaped passage, and is characterized in that it is formed symmetrically to face each other about a reference line.
  • the upper cooling passage portion or the lower cooling passage portion adjacent to each other based on the flow direction of the cooling fluid is characterized in that it is connected through a connection passage.
  • connection passage is arranged in a straight line along the direction of the reference line.
  • each of the upper cooling passage portion and the lower cooling passage portion is formed to cool at least one of the plurality of battery modules.
  • the upper cooling passage portion or the lower cooling passage portion includes a first bending portion through which the cooling fluid flows and a second bending portion formed between the first bending portion.
  • a fixing part capable of fixing a battery cell is formed in the battery module, and the second curved part has a shape into which the fixing part can be inserted.
  • the fixing part is characterized as a bar-shaped strap.
  • the thickness of the lower cooling passage portion is thicker than the thickness of the upper cooling passage portion.
  • the upper cooling passage portion or the lower cooling passage portion is connected to one inlet, and the upper cooling passage portion or lower cooling passage portion is connected to one outlet.
  • the inlet and outlet connected to the upper cooling passage portion are connected to the upper inlet port and the upper outlet port, respectively, and the inlet and outlet connected to the lower cooling passage portion are respectively connected to the lower inlet port and the lower It is characterized in that it is connected to the outlet port.
  • the upper inlet port and the lower inlet port are connected to each other to form one inlet port, and the upper outlet port and lower outlet port are connected to each other to form one outlet port. It is characterized by
  • a pad-type gap filler is positioned between the upper surface of the battery module and the upper heat sink.
  • the pad-type gap filler is located only in a certain area of the upper surface of the battery module.
  • a gel-type gap filler is positioned in an area of the upper surface of the battery module where the pad-type gap filler is not positioned.
  • a gel-type gap filler is positioned between each lower surface of the plurality of battery modules and the lower heat sink.
  • a battery pack according to the present invention includes a battery pack in which a plurality of battery modules are disposed; and a heat sink that covers the upper or lower surface of the battery pack and has a plurality of cooling passages formed to cool the battery module, wherein the cooling passages are between a first curved portion through which the cooling fluid flows and the first curved portion. It is characterized in that it includes a formed second bent portion.
  • the first curved portion has a first width
  • the second curved portion has a second width
  • the first width is greater than the second width
  • the first curved portion has a first height
  • the second curved portion has a second height
  • the first height is greater than the second height
  • a battery pack for achieving the above problem includes: a battery module assembly; a passage portion coupled to the battery module assembly portion and through which cooling fluid flows; a plurality of heat sinks having a receiving portion that is a space between partitions formed on a side of the flow path portion, and a heat absorbing material being accommodated in the receiving portion; and pipes connecting each of the heat sinks, wherein each heat sink has a groove-shaped channel portion open at the top on one side, and a receiving portion having a groove-shape open at the bottom on the other side.
  • a first plate formed; a second plate coupled to cover one surface of the first plate; and a third plate coupled to cover the other surface of the first plate.
  • the heat sink is coupled to the lower surface of the battery module assembly.
  • the flow path portion is characterized in that it includes a straight flow path portion formed in a straight direction, and a curved flow path portion that changes the flow direction of the straight flow path portion.
  • the flow path portion is characterized in that the straight flow path portion and the curved flow path portion formed on both sides of the center of the first plate are symmetrical to each other.
  • the partition wall is characterized in that it has an inclined shape or a curved shape with respect to the lower surface of the first plate.
  • an inlet hole through which cooling fluid flows and an outlet hole through which cooling fluid flows out are formed in the straight flow path portion located on the outermost side of the first plate.
  • the third plate is characterized in that port grooves are formed at positions corresponding to the inlet hole and the outlet hole.
  • the heat sink includes an inlet port connected to the inlet hole and an outlet port connected to the outlet hole.
  • the third plate is coupled to a region on the other side of the first plate where the heat absorbing material is accommodated.
  • the third plate is characterized by including an injection port through which the heat absorbing material is injected into the receiving portion.
  • the injection port is formed in the central area of the third plate.
  • the present invention is characterized by including a suction port for sucking air from the receiving part.
  • the suction port is formed in a corner area of the third plate.
  • the heat absorbing material is accommodated in the receiving portion in a solid or liquid state and is formed to correspond to the side shape of the partition.
  • the third plate is formed in the form of a cover of a film material and is attached to the first plate.
  • the third plate is formed to be smaller than the area of the first plate.
  • a battery pack for achieving the above problem includes: a battery module assembly; a plurality of heat sinks disposed corresponding to the battery module assembly portion; At least one heat sink includes: a first plate having a groove shape formed on one side and a groove shape formed on the other side; a second plate covering one surface of the first plate; a third plate covering the other side of the first plate; And the groove shape formed on one surface of the first plate includes a flow path portion through which cooling fluid can flow, wherein an accommodating portion is disposed between the flow path portions, a heat absorbing material is disposed in the accommodating portion, and each heat sink The flow paths are connected through pipes, and the groove-shaped protruding surface formed on one surface of the first plate is lower than the end surface of the second plate.
  • the at least one heat sink is coupled to the lower surface of the battery module assembly.
  • the flow path part is characterized in that it includes a straight flow path part formed in the longitudinal direction of the at least one heat sink, and a curved flow path part that changes the flow direction of the straight flow path part.
  • the flow path portion is characterized in that the straight flow path portion and the curved flow path portion formed on both sides of the center of the first plate are symmetrical to each other.
  • a partition is formed on a side of the flow path portion, and the partition is formed between a groove shape formed on one side of the first plate and a groove shape formed on the other side of the first plate,
  • the partition wall is characterized in that it has an inclined shape or a curved shape with respect to the lower surface of the first plate.
  • the straight flow passage portion includes a first straight flow passage portion and a second straight flow passage portion, and an inlet hole through which cooling fluid flows is formed in the first straight flow passage portion, and the second straight flow passage portion is formed in the first straight flow passage portion.
  • the flow path portion is characterized in that an outflow hole through which the cooling fluid flows is formed.
  • the third plate is characterized in that port grooves are formed at positions corresponding to the inlet hole and the outlet hole.
  • the third plate is formed to be smaller than the area of the first plate.
  • the third plate is characterized in that it covers the area of the other surface of the first plate corresponding to the area where the heat absorbing material is accommodated.
  • the third plate is characterized by including a plurality of ports.
  • the port includes an injection port and a suction port, wherein the injection port is formed in a central area of the third plate, and the suction port is formed in a corner area of the third plate. It is characterized by being
  • the heat absorbing material is formed to correspond to the side shape of the partition.
  • the width of the flow path portion is larger than the width of the receiving portion.
  • the heat sink is configured as a battery pack unit, assembly efficiency is improved during battery pack manufacturing and mass production can be secured.
  • heat sinks are mounted on the top and bottom of the battery pack, heat generated from the battery cells is transferred to the top and bottom, thereby improving cooling efficiency.
  • the configuration of the upper and lower heat sinks is simple, and the number of inflow and outflow ports through which the cooling fluid flows is small, thereby reducing the risk of leakage due to damage to the cooling fluid pipe.
  • the battery pack weight and work time can be saved by reducing the application area of the gel-type gap filler.
  • a heat absorbing material is formed in an area other than the area where the flow path is formed in the heat sink, it is possible to effectively cool the heated battery cell or battery module through a dual cooling method without increasing the radiator and pump capacity. You can.
  • FIG. 1 is a perspective view showing a battery pack according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the battery pack shown in FIG. 1.
  • Figure 3 is a view showing the top surface of the battery module assembly according to the present invention.
  • Figure 4 is a cross-sectional view taken along line A1-A1' shown in Figure 1.
  • Figure 5 is a diagram showing an upper cooling passage portion formed in the upper heat sink according to an embodiment of the present invention.
  • Figure 6 is a diagram showing a pad-type gap filler disposed on the upper surface of the battery module assembly according to an embodiment of the present invention.
  • Figure 7 is an enlarged view of portion Y shown in Figure 6.
  • Figure 8 is a cross-sectional view taken along line B1-B1' shown in Figure 1.
  • Figure 9 is a diagram showing the states of the inlet and outlet ports according to an embodiment of the present invention.
  • Figure 10 is a diagram showing the states of the inlet and outlet ports according to another embodiment of the present invention.
  • Figure 11 is a perspective view showing a battery pack according to an embodiment of the present invention.
  • Figure 12 is an exploded perspective view of a battery pack according to an embodiment of the present invention.
  • Figure 13 is a diagram showing a state in which a heat sink is mounted on the battery module assembly according to an embodiment of the present invention.
  • Figure 14 is a diagram showing the top and bottom surfaces of a heat sink according to an embodiment of the present invention.
  • Figure 15 is an exploded perspective view of a heat sink according to an embodiment of the present invention.
  • Figure 16 is a view showing the lower surface of the first plate according to an embodiment of the present invention.
  • FIG. 17 is a cross-sectional view taken along line B2-B2' shown in FIG. 16.
  • FIG. 18 is a cross-sectional view taken along line C2-C2' shown in FIG. 16.
  • FIGS. 19a and 19b are diagrams showing a heat sink according to another embodiment of the present invention.
  • Figure 20 is a bottom view showing the bottom of a battery pack according to an embodiment of the present invention.
  • FIG. 21 is a cross-sectional view taken along line A2-A2' shown in FIG. 13.
  • FIG. 22 is an enlarged view of portion X shown in FIG. 21.
  • Figure 23 is a diagram showing the assembly process of a heat sink according to an embodiment of the present invention.
  • Figure 24 is a diagram showing the assembly process of a heat sink according to another embodiment of the present invention.
  • FIG. 1 is a perspective view showing a battery pack according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the battery pack shown in FIG. 1
  • FIG. 3 is a top surface of a battery module assembly according to an embodiment of the present invention. This is a drawing showing .
  • a battery pack according to an embodiment of the present invention includes a battery module assembly 110 and a heat sink.
  • the battery module assembly unit 110 accommodates the battery module 114 within the case 111.
  • the battery module 114 includes a battery cell assembly in which a plurality of battery cells 112 are stacked.
  • a plurality of battery modules 114 may be arranged in a matrix form at regular intervals from each other.
  • 12 battery modules 114 are arranged in a 3 x 4 shape, but the number and arrangement of the battery modules 114 may be configured in various ways depending on required capacity or design purpose.
  • a fixing part 115 may be formed in the battery module 114 according to the present invention to fix the stacked state of the battery cells 112.
  • the fixing part 115 may be formed as a bar-shaped strap.
  • the fixing part 115 may be formed to surround the stacked battery cells 112 .
  • three fixing parts 115a, 115b, and 115c are located at regular intervals. However, there are no restrictions on the shape, location, and number of the fixing parts 115.
  • FIG. 4 is a cross-sectional view taken along line A1-A1' shown in FIG. 1
  • FIG. 5 is a view showing the upper cooling passage portion formed in the upper heat sink according to an embodiment of the present invention.
  • the heat sink according to an embodiment of the present invention includes an upper heat sink 120 and a lower heat sink 130.
  • the upper heat sink 120 covers the upper surface of the battery module assembly 110 and can cool the battery module 114.
  • An upper cooling passage portion 122 may be formed along the surface direction of the upper heat sink 120.
  • the upper cooling passage portion 122 has a passage through which cooling fluid can flow.
  • the cooling fluid may be a fluid with excellent cooling properties.
  • it may be a coolant with high latent heat to maximize cooling efficiency, but is not limited to this and may be composed of various fluids such as antifreeze, gas refrigerant, and air. .
  • the width and thickness of the upper cooling passage portion 122 can be set in various ways.
  • the upper cooling passage portion 122 may be formed in plural pieces and may be connected to each other to allow cooling fluid to flow.
  • the upper cooling passage portion 122 includes upper cooling passage portions 122a, 122b, and 122c formed on the left side and an upper cooling passage portion 122d formed on the right side around the center reference line (L). , 122e, 122f) are symmetrical.
  • one upper cooling passage portion 122 may be configured to cool two battery modules 114.
  • the number or shape of the upper cooling passage portions 122 may be changed depending on the number or shape of the battery modules 114 to be cooled.
  • one upper cooling passage portion 122 may be configured to cool one battery module, and the other upper cooling passage portion 122 may be configured to cool one or more battery modules. You can.
  • each upper cooling passage portion 122 includes a substantially ' ⁇ ' shaped passage and has an overall rectangular shape. Specifically, each upper cooling passage portion 122 is formed so that the ' ⁇ '-shaped passages are repeated, and at this time, neighboring ' ⁇ '-shaped passages are connected to each other at the opposing end positions (E).
  • the upper cooling passage parts (122a, 122b, 122c or 122d, 122e, 122f) arranged in the direction of the reference line (L) are arranged at a certain interval (d) apart, and the connection passages (123, 126) ) is connected through. This takes into account the case where each battery module 114 is placed apart from each other.
  • the connection passages 123 and 126 may be arranged in the direction of the reference line (L).
  • one of the upper cooling passage portions 122a disposed on the left side of the reference line L is connected to an inlet 127 through which cooling fluid flows, and one of the upper cooling passage portions 122a disposed on the right side An outlet 128 through which cooling fluid flows is connected to the upper cooling passage portion 122f.
  • each passage and connection passages 123 and 126 connected to the upper inlet 127 and the upper outlet 128 are arranged in a straight line close to the reference line (L).
  • each upper cooling passage portion 122 is formed between a first curved portion 124 curved in a direction toward the battery module 114 and between the first curved portions 124. ) may include a second bent portion 125 bent in a direction opposite to the bending direction.
  • the first bent portion 124 is a flow path through which cooling fluid flows.
  • the cross-sectional shape of the first bent portion 124 may be variously formed, such as circular, oval, or polygonal.
  • the second bent portion 125 is an area into which the fixing portion 115 protruding above the upper surface of the battery module 114 can be inserted.
  • the second bent portion 125 may have a shape into which the fixing portion 115 can be inserted.
  • the first curved portion 124 has a first width
  • the second curved portion 125 has a second width. In one embodiment of the invention the first width is greater than the second width.
  • the first curved portion 124 has a first height
  • the second curved portion 125 has a second height. In one embodiment of the invention the first height is greater than the second height.
  • the width and height of the first curved portion 124 and the second curved portion 125 may be set in various ways.
  • each upper cooling passage portion 122 is provided with three second bending portions 125a, 125b, and 125c so that three fixing portions 115a, 115, and 115b formed on the battery module 114 are inserted. ) is formed.
  • the position and number of fixing parts 115 may be determined depending on the position and number of second bent parts 125.
  • the cooling fluid flowing in through the upper inlet 127 flows along the first upper cooling passage portion 122a on the left.
  • the cooling fluid flows zigzagly along the ' ⁇ '-shaped flow path and moves to the next upper cooling flow path portion 122b through the connecting flow path 123.
  • the cooling fluid flows through all of the upper cooling passage portions 122a, 122b, and 122c on the left, it moves to the upper cooling passage portion 122d located on the right.
  • the cooling fluid that flows through the connection passage 126 and all of the upper cooling passage portions 122d, 122e, and 122f on the right side flows out through the upper outlet 128.
  • the lower heat sink 130 covers the lower surface of the battery module assembly 110 and is configured to cool the battery module 114.
  • a lower cooling passage portion 132 may be formed along the surface direction of the lower heat sink 130.
  • the configuration and function of the lower cooling passage portion 132 are the same as those of the upper cooling passage portion 122. Accordingly, the contents of the lower cooling passage portion 132 can be fully understood by those skilled in the art by referring to the contents mentioned in the upper cooling passage portion 122, and therefore detailed description will be omitted.
  • the passage thickness of the lower cooling passage portion 132 (or the degree of curvature of the first bent portion) is equal to the thickness of the flow path of the upper cooling passage portion 122 (or the degree of curvature of the first bent portion). It can be formed thicker. This is to prevent cooling efficiency from being reduced due to compression of the flow path due to the force with which the battery module 114 presses the lower heat sink 130.
  • FIG. 6 is a view showing a pad-type gap filler disposed on the upper surface of the battery module assembly according to the present invention
  • FIG. 7 is an enlarged view of the Y portion shown in FIG. 6,
  • FIG. 8 is a view showing the pad-type gap filler in FIG. 1. This is a cross-sectional view cut along the line B1-B1'.
  • a gap filler is used to prevent an air gap between the battery module and the heat sink and to efficiently transfer the heat generated from the battery module to the heat sink.
  • These gap fillers also serve an insulating function and alleviate battery pack assembly tolerances.
  • the gap filler may be located between the upper heat sink 120 and the upper surface of the battery module 114 or between the lower heat sink 130 and the lower surface of the battery module 114.
  • Gap fillers can be classified into pad type and gel type depending on their shape, and can be classified into solid and liquid depending on their state.
  • Gel-type gap filler is provided in ointment form, and can be applied in any form, so it can achieve the same level of heat conduction performance even with low adhesion and shallow thickness compared to pad-type gap pads. Additionally, the gel-type gap filler may melt into a liquid state due to heat received from the battery module, and then harden from the liquid state into an ointment or solid state when the battery module is cooled.
  • the gap filler may be a thermal interface material (TIM) or a phase change material (PCM).
  • TIM thermal interface material
  • PCM phase change material
  • a pad-type gap filler 142 may be located on the upper surface of the battery module 114.
  • one pad type gap filler 142 may be located between two fixing parts 115 in one battery module 114.
  • two pad-type gap fillers 142 may be located between the three fixing parts 115.
  • the pad-type gap filler 142 may be positioned corresponding to the first curved portion 124.
  • the number or shape of the pad-type gap fillers 142 may vary depending on the size and shape of the battery module 114 or the number of fixing parts 115.
  • the pad-type gap filler 142 may not cover the entire upper surface of the battery module 114. As shown in FIG. 7, the pad-type gap filler 142 is located only in a certain area of the upper surface of the battery module 114, and the pad-type gap filler 142 is not located in the remaining areas (Z1, Z2, Z3). . In one embodiment of the present invention, a gel-type gap filler 144 may be applied to the remaining areas Z1, Z2, and Z3. Here, the remaining areas (Z1, Z2, Z3) may be spaces formed between the fixing parts (115a, 115b, 115c) and the second bent parts (125a, 125b, 125c) shown in FIG. 8.
  • the pad-type gap filler 142 may be positioned to cover the entire upper surface area of the battery module 114.
  • a gel-type gap filler 144 may be applied between the lower heat sink 130 and the lower surface of the battery module 114.
  • the gel-type gap filler 144 may be applied to the entire lower surface area of the battery module 114.
  • Figure 9 is a diagram showing the states of the inlet and outlet ports according to one embodiment of the present invention
  • Figure 10 is a diagram showing the states of the inlet and outlet ports according to another embodiment of the present invention.
  • the upper heat sink 120 is formed with an upper inlet port 152 connected to the inlet 127, and an upper outlet port 154 connected to the upper outlet 128. is formed.
  • the lower heat sink 130 is formed with a lower inlet port 162 connected to the lower inlet and a lower outlet port 164 connected to the lower outlet.
  • each port 152, 154, 162, and 164 is separated. That is, according to one embodiment of the present invention, two inlet ports 152 and 162 are connected to allow the cooling fluid to flow into the battery pack 100, and two outlet ports are connected to allow the cooling fluid to flow out of the battery pack 100. Ports 154 and 164 are formed.
  • the lower outlet port 164 is located below the upper inlet port 152, and the lower inlet port 162 is located below the upper outlet port 154.
  • the lower inlet port 164 is located below the upper inlet port 152.
  • the port 162 may be located and the lower inlet port 162 may be located below the upper outlet port 154.
  • the upper inlet port 152 and the lower inlet port 162 are connected to each other through a connector 171, and the connector 171 is connected to the integrated inlet port 182. ) is connected to.
  • the upper outlet port 154 and the lower outlet port 164 are connected to each other through a connector 172, and the connector 172 is connected to the integrated outlet port 184.
  • the connection pipes 171 and 172 are pipes that branch out to allow cooling fluid to flow through inlet and outlet ports formed at the top and bottom. That is, according to another embodiment of the present invention, one inlet port 182 is connected to allow the cooling fluid to flow into the battery pack 100, and one outlet port is connected to allow the cooling fluid to flow out of the battery pack 100 ( 184) is formed.
  • FIG. 11 is a perspective view showing a battery pack according to an embodiment of the present invention
  • FIG. 12 is an exploded perspective view of a battery pack according to an embodiment of the present invention
  • FIG. 13 is a battery module according to an embodiment of the present invention. This is a diagram showing the state in which the heat sink is mounted on the assembly part.
  • the battery pack 1000 includes a battery module assembly 1110, a heat sink 1120, a housing 1130, and a cover 1140. .
  • the battery module assembly unit 1110 is composed of a plurality of battery modules 1113.
  • the battery module 1113 may be formed in a structure in which a plurality of battery cells are repeatedly arranged in a certain direction.
  • a battery cell is a component in which electricity is charged and discharged, and may be formed in a structure in which a plurality of unit cells are repeatedly arranged in a certain direction.
  • the battery module 1113 can be used in various devices that require batteries, but in this embodiment, for convenience of explanation, it is described as being used in a battery pack of an electric vehicle.
  • the battery module assembly unit 1110 may be assembled so that a plurality of battery modules 1113 are arranged in a certain direction and connected to each other.
  • the battery module assembly unit 1110 consists of eight battery modules 1113 arranged in the left and right directions into one battery module unit assembly (1110a, 1110b, 1110c, and 1110d). It is configured, and the battery module unit assemblies 1110a, 1110b, 1110c, and 1110d may be arranged in four numbers in the front-back direction.
  • the number or arrangement of the battery modules 1113 constituting the battery module unit assemblies (1110a, 1110b, 1110c, 1110d) and the number or arrangement of the battery module unit assemblies (1110a, 1110b, 1110c, 1110d) vary. It can be configured.
  • the heat sink 1120 is a component for discharging heat generated from battery cells to the outside, and may be disposed in the battery module assembly unit 1110. As shown in FIG. 13, in one embodiment of the present invention, the heat sink 1120 may be provided in the shape of a square plate and arranged to cover the lower surface of the battery module assembly unit 1110. Accordingly, heat generated in the battery cell or battery module 1113 may move to the heat sink 1120 disposed below and be discharged to the outside.
  • the heat sink 1120 may be disposed to correspond to each of the battery module unit assemblies 1110a, 1110b, 1110c, and 1110d. In one embodiment of the present invention, four heat sinks 1120 may be disposed on each lower surface of the four battery module unit assemblies 1110a, 1110b, 1110c, and 1110d. For example, when n battery module unit assemblies are arranged, n heat sinks 1120 may be arranged.
  • the heat sink 1120 may be disposed on the top or side of the battery module assembly unit 1110. Additionally, the heat sink 1120 may change depending on the shape of the surface in contact with the battery module assembly 1110, and there is no limit to the number of heat sinks 1120 disposed on the battery module assembly 1110.
  • a gap filler with excellent thermal conductivity is used between the heat sink 1120 and the battery module assembly 1110, so that the gap existing between the heat sink 1120 and the battery module 1113 can be eliminated. there is.
  • FIG. 14 is a view showing the upper and lower surfaces of a heat sink according to an embodiment of the present invention
  • FIG. 15 is an exploded perspective view of a heat sink according to an embodiment of the present invention
  • FIG. 16 is a view of the first plate according to the present invention. It is a view showing the lower surface
  • FIG. 17 is a cross-sectional view cut along line B2-B2' shown in FIG. 16
  • FIG. 18 is a cross-sectional view cut along line C2-C2' shown in FIG. 16.
  • Figure 14 shows the assembled state of the heat sink 1120.
  • Figure 14 (a) shows the upper surface of the heat sink 1120
  • Figure 14 (b) shows the lower surface of the heat sink 1120. It is shown.
  • the upper surface of the heat sink 1120 may be disposed to face the lower surface of the battery module assembly 1110, and the lower surface of the heat sink 1120 may be disposed toward the lower surface of the housing 1130. there is.
  • the heat sink 1120 includes a first plate 1121, a second plate 1122, a third plate 1123, and a heat absorbing material 1124.
  • a flow path portion 1121-3 through which cooling fluid can flow may be formed on the first plate 1121 through a press process.
  • the first plate 1121 is disposed between the second plate 1122 and the third plate 1123.
  • the flow path portion 1121-3 When looking at the upper surface (1121-a) of the first plate 1121, the flow path portion 1121-3 is a concave portion that is depressed downward with respect to the upper surface (1121-a) of the first plate 1121. It can have a shape. Conversely, when looking at the lower surface (1121-b) of the first plate 1121, the flow path portion 1121-3 protrudes downward, based on the lower surface (1121-b) of the first plate 1121. It can have a shape.
  • the flow path portion 1121-3 may have a recessed bottom surface, a side surface connected to the bottom surface, and an open surface facing the bottom surface.
  • the flow path portion 1121-3 may have a partition wall 1121-4 on the side having a constant height in the longitudinal direction and a space with a cross-sectional width d1, and this space is used for cooling fluid. It becomes a passageway through which to move.
  • the partition wall 1121-4 and the cross-sectional width d1 of the flow path portion 1121-3 may be formed differently along the flow path direction.
  • an emboss 1121-4 may be formed in the flow path portion 1121-3 to induce turbulence of the cooling fluid.
  • the emboss 1121-4 may have a shape that protrudes upward with respect to the upper surface of the first plate 1121.
  • the emboss (1121-4) is a concave depression depressed in the downward direction with respect to the lower surface (1121-b) of the first plate 1121. It can have a secondary shape.
  • the emboss 1121-4 is formed in a dot shape, but there are no restrictions on the shape of the emboss 1121-4.
  • a receiving portion 1121-5 in which the phase change material 1124 can be accommodated is formed in the first plate 1121.
  • the receiving portion 1121-5 may be formed in an area other than the area where the flow path portion 1121-3 is formed on the first plate 1121.
  • the receiving portion 1121-5 When looking at the upper surface of the first plate 1121, the receiving portion 1121-5 may have a shape that protrudes upward with respect to the upper surface 1121-a of the first plate 1121. On the contrary, when looking at the lower surface (1121-b) of the first plate 1121, the receiving portion 1121-5 is a concave depression depressed downward with respect to the lower surface (1121-b) of the first plate 1121. It can have a secondary shape.
  • the receiving portion 1121-5 may have a recessed bottom surface, a side surface connected to the bottom surface, and an open surface facing the bottom surface.
  • the receiving portion 1121-5 may have a partition 1121-4 on the side having a constant height in the longitudinal direction and a space having a cross-sectional width d2, and a heat absorbing material is stored in this space. (1124) is acceptable.
  • the receiving portion 1121-5 may share the partition wall 1121-4 formed in the flow path portion 1121-3.
  • the height of the partition 1121-4 of the receiving part 1121-5 may vary depending on the height of the partition 1121-4 of the flow path part 1121-3, and the cross-sectional width d2 may be changed depending on the height of the partition 1121-4 of the receiving part 1121-5. ) may vary depending on the area in which it is formed.
  • the flow path portion 1121-3 includes a straight flow path portion 1121-31 formed in a straight direction and a curved flow path portion 1121-32 that changes the direction of the flow path. do.
  • the flow path portion 1121-3 includes a straight flow path portion 1121-31 and a curved flow path formed on both sides (left and right with respect to FIG. 16) with respect to the center of the first plate 1121.
  • the passage portions 1121-32 may be formed symmetrically to face each other.
  • the straight flow passage portions 1121-31 located on the outermost side of the first plate 1121 in the width direction and arranged to face each other in the longitudinal direction may be formed to communicate with each other.
  • the straight passage portions 1121-31 located on the inner side of the first plate 1121 in the width direction and arranged to face each other in the width direction are located near the center of the first plate 1121 by the curved passage portions 1121-32. can be formed to communicate with each other.
  • straight flow passage portions 1121-31 or curved passage portions 1121-32 there is no limit to the number or arrangement direction of the straight flow passage portions 1121-31 or curved passage portions 1121-32.
  • straight flow passage portions 1121-31 formed on both sides of the center of the first plate 1121 are formed in the width direction of the first plate 1121, or are formed based on the center of the first plate 1121.
  • the flow path portions 1121-3 formed on both sides may be formed not symmetrically, or the straight flow path portions 1121-31 and the curved flow path portions 1121-32 may be formed over the entire area of the first plate 1121. there is.
  • the flow path portion (1121-3) has an inlet hole (1121-1) through which cooling fluid flows into the flow path portion (1121-3) from the outside, and an outlet hole (1121-1) through which cooling fluid flows out from the flow path portion (1121-3) to the outside. 1121-2).
  • the cooling fluid entering the inlet hole 1121-1 moves to both sides (left and right with respect to FIG. 16), passes through the straight flow path portion and the curved flow path portion, and then flows into the outlet hole (1121-1). 1121-2) and can be leaked to the outside.
  • the inlet hole 1121-1 and the outlet hole 1121-2 may be formed on the outermost straight flow path portion 1121-31, respectively.
  • the receiving portion (1121-5) of the present invention includes a straight receiving portion (1121-51) formed in a straight direction and a curved receiving portion (1121-52).
  • the receiving portion 1121-5 may be determined according to the shape of the flow path portion 1121-5.
  • the receiving portion 1121-5 according to an embodiment of the present invention includes a straight receiving portion 1121-51 and a curved portion formed on both sides (left and right with respect to FIG. 16) with respect to the center of the first plate 1121.
  • the receiving portions 1121-52 may be formed symmetrically to face each other.
  • the partition wall 1121-4 forms the side of the groove of the flow path portion 1121-3 or the receiving portion 1121-5, and is formed on the first plate.
  • (1121) may have an inclined shape. It can be formed to have a straight line in the vertical direction.
  • the partition wall 1121-4 is formed at an angle so that the distance between the partition walls 1121-4 becomes narrower as it approaches the first plate 1121.
  • the side wall of the partition wall 1121-4 It may have a plurality of inclined shapes with different angles, or may have at least one of an inclined shape, a straight shape, or a curved shape.
  • the endothermic material is a material that causes an endothermic reaction when the temperature of the battery module 1113 or the heat sink 1120 rises above a predetermined temperature.
  • endothermic materials include paraffin, polyethylene glycol, and inorganic hydrates (e.g., Na 2 HPO 4 ⁇ 12H 2 O, Na 2 SO 4 ⁇ 10H 2 O, Zn(NO 3 ) 2 ⁇ 6H 2 O etc.), etc., but are not limited to these alone.
  • phase change materials among these endothermic materials are used as examples.
  • a phase change material undergoes a phase transformation at a predetermined temperature, preferably from a solid phase to a liquid phase or from a solid phase to a gas phase, and has latent heat through this phase transformation.
  • the phase change material 1124 contains a material that undergoes a phase change while absorbing heat generated from the battery cell or battery module 1113, and functions to absorb and store heat by using the latent heat required for the phase change. At this time, the phase change material 1124 can undergo a phase change above a certain temperature.
  • the phase change material 1124 is accommodated in the receiving portion 1121-5.
  • the phase change material 1124 is accommodated in the entire area of the receiving part 1121-5, but may be accommodated only in a partial area of the receiving part 1121-5.
  • the phase change material 1124 includes a straight portion 1124-1 and a curved portion 1124-2.
  • the straight portion 1124-1 may be accommodated in the straight receiving portion 1121-51
  • the curved portion 1124-2 may be accommodated in the curved receiving portion 1121-52.
  • phase change material 1124 may be configured in the form of a capsule member made of an elastic material.
  • the phase change material 1124 is preferably formed of a material that can phase change while absorbing heat at a temperature lower than the fire occurrence temperature of the battery cell.
  • the phase change material 1124 may further include a thermal interface material (TIM) to improve heat transfer performance.
  • TIM thermal interface material
  • the phase change material 1124 may be in a solid state so as to have its shape, but the present invention is not limited thereto, and the phase change material 1124 may also be formed in a liquid state.
  • a first plate alignment portion 121-6 may be formed on the first plate 1121.
  • the first plate alignment part 1121-6 may have a shape that can be inserted into the second plate alignment part 1122-6, which will be described later.
  • the first plate alignment portion 1121-6 When looking at the upper surface (1121-a) of the first plate 1121, the first plate alignment portion 1121-6 is depressed downward based on the upper surface (1121-a) of the first plate 1121. It may have a concave shape.
  • the first plate alignment part 1121-6 is directed downward based on the lower surface (1121-b) of the first plate 1121. It can have a protruding shape.
  • the first plate alignment unit 1121-6 may have a recessed bottom surface, a side surface connected to the bottom surface, and an open surface facing the bottom surface.
  • the second plate 1122 is coupled to the first plate 1121 to cover the upper surface of the first plate 1121. As described above, the upper surface of the flow path portion 1121-3 of the first plate 1121 is exposed to the outside, and the flow path portion 1121-3 is formed by combining the first plate 1121 and the second plate 1122. The upper surface of is closed, completing the passage through which the cooling fluid can flow. That is, the second plate 1122 prevents the cooling fluid from being lost.
  • a second plate alignment portion 1122-6 may be formed on the second plate 1122.
  • the second plate alignment part 1122-6 may have a concave shape that is depressed downward on the upper surface of the second plate 1122.
  • External portions 1122-1 extending in the longitudinal direction may be formed at both ends of the second plate 1122 in the width direction.
  • the outer portion 1122-1 may be formed to extend in a bent state from both ends of the second plate 1122 in the width direction.
  • a seating space S in which the first plate 1121 can be seated may be formed in the second plate 1122 due to the outer portion 1122-1.
  • the third plate 1122 is coupled to the first plate 1121 to cover the lower surface of the first plate 1121. As described above, the lower surface of the receiving portion 1121-5 of the third plate 1121 is exposed to the outside, and the receiving portion 1121-5 is formed by combining the first plate 1121 and the third plate 1122. The lower surface is closed to complete the space in which the phase change material 1124 is accommodated. That is, the third plate 1123 prevents the phase change material 1124 from being lost.
  • the phase change material 1124 When the phase change material 1124 is in a solid state (e.g., paste form), the phase change material 1124 is formed according to the shape of the receiving portion 1121-5 of the first plate 1121 to form the receiving portion ( After receiving in 1121-5), the third plate 1123 may be coupled to the first plate 1121.
  • the phase change material 1124 When the phase change material 1124 is in a liquid state, after applying the phase change material 1124 to the receiving portion 1121-5 of the first plate 1121, the third plate 1123 is applied to the first plate 1121. ) can be combined.
  • the third plate 1123 may be formed only in the area where the phase change material 1124 is accommodated on the lower surface of the first plate 1121, but the third plate 1123 is not limited thereto. It is also possible to cover the entire lower surface of the first plate 1121.
  • an inlet port groove (1123-1) and an outlet port groove (1123-2) are formed in the third plate 1123.
  • the inlet port groove 1123-1 may be formed at a position corresponding to the inlet hole 1121-1 of the first plate 1121
  • the outlet port groove 1123-2 may be formed at a position corresponding to the inlet hole 1121-1 of the first plate 1121. It may be formed at a location corresponding to the hole 1121-2.
  • the inlet port groove 1123-1 is formed to mount the inlet port 1127 on the lower surface of the first plate 1121, and the outlet port groove 1123-2 is an outlet port on the lower surface of the first plate 1121.
  • 1128 is formed to be mounted.
  • the inlet port 1127 is a connection port through which cooling fluid flows from the outside into the flow path portion 1121-3 of the first plate 1121, and is connected to the inlet hole 1121-1.
  • the outlet port 1128 is a connection port for the cooling fluid to flow out from the flow path portion 1121-3 to the outside, and is connected to the outlet hole 1121-2.
  • the first to third plates 1121, 1122, and 1123 may be made of a metal material.
  • the first to third plates 1121, 1122, and 1123 may be made of aluminum.
  • the first plate 1121 and the second plate 1122 may be joined to each other by a brazing method, and the first plate 1121 and the third plate 1123 may be bonded to each other using a laser, etc. They can be joined to each other using welding methods or adhesives.
  • the first and second plates 1121 and 1122 may be made of a metal material
  • the third plate 1123 may be made of a film material.
  • the film material of the third plate 1123 may be a thermoplastic material.
  • the first plate 1121 and the second plate 1122 may be bonded to each other by a brazing method, and the first plate 1121 and the third plate 1123 may be bonded to each other by an adhesive. Alternatively, they can be bonded to each other by melting the film material and attaching it to the first plate 1121.
  • the third plate 1123 includes a film material
  • the thickness may be less than that of the first or second plates 1121 and 1123.
  • FIGS. 19a and 19b are diagrams showing a heat sink according to another embodiment of the present invention.
  • the heat sink 1120 according to another embodiment of the present invention is different from the heat sink 1120 described in one embodiment of the present invention in the configuration of the third plate 1123. .
  • This difference in configuration is due to the method of accommodating the phase change material 1124 in the receiving portion 1121-5, and the method of accommodating the phase change material 1124 will be described later.
  • description of the remaining components of the heat sink 1120 will be omitted and only the components with differences will be described.
  • An injection port 1223-3 and a suction port 1223-1 are formed in the third plate 1123 according to another embodiment of the present invention.
  • the injection port 1223-3 is a port for injecting the phase change material 1124 into the receiving part 1121-5, and the suction port 1223-1 suctions the air present in the receiving part 1121-5. It is a port that does.
  • the phase change material (1124) is injected into the injection port (1223-3) while the air in the receiving portion (1121-5) is sucked through the suction port (1223-1), the phase change material (1124) is smoothly It can be injected into the receiving portion (1121-5).
  • the injection port (1223-3) is formed at approximately the center of the third plate (1123), and the suction ports (1223-1a, 1223-1b, 1223-1c, 1223-1d) are formed at the third plate (1123). ) is formed at each corner of the.
  • the reason that the injection port (1223-3) and the suction ports (1223-1a, 1223-1b, 1223-1c, and 1223-1d) are arranged in this way is that the receiving portion (1121-5) of the first plate (1121) This is because it is formed symmetrically on both sides with respect to the center, so it is effective to inject the phase change material 1124 from the center of the first plate 1121 toward the edge.
  • the number and arrangement of the injection port 1223-3 and suction ports 1223-1a, 1223-1b, 1223-1c, and 1223-1d can be set in various ways.
  • each port may be configured to be closed.
  • the battery module assembly portion 1110 is accommodated in the inner space of the housing 1130.
  • the internal space of the housing 1130 may be partitioned to accommodate each battery module unit assembly (1110a, 1110b, 1110c, and 1110d).
  • a cover 1140 may be coupled to the upper surface of the housing 1130.
  • Figure 20 is a bottom view showing the bottom of the battery pack according to the present invention.
  • pipes 1129a connecting each inlet port 1127 formed in the heat sink 1120 and each outlet port 1128.
  • a pipe 1129b is formed.
  • the cooling fluid provided from the outside of the battery pack 1000 moves along the pipe 1129a and enters the inside of the heat sink 1120 through the inlet hole 1121-1 of the heat sink 1120, more specifically the first plate 1121. ) and the second plate 1122 may flow into the flow path portion 1121-3, and the cooling fluid moving inside the heat sink 1120 moves along the pipe 1129b and then flows into the battery pack 1000. It may leak outside.
  • FIG. 21 is a cross-sectional view taken along line A2-A2' shown in FIG. 13, and FIG. 22 is an enlarged view of portion X shown in FIG. 21.
  • the heat sink 1120 is mounted on the bottom of the battery module 1113 according to the present invention, so the heat generated from the battery cell 1112 or battery module 1113 moves downward and It is transmitted to the heat sink (1120).
  • the phase change material 1124 is formed in the receiving part 1121-5 of the heat sink 1120, and the cooling fluid can flow in the flow path part 1122-1.
  • the heat generated from the battery cell 1112 or battery module 1113 is first cooled by the cooling fluid, and when the temperature exceeds a certain temperature, the phase change material changes phase and absorbs the heat. Therefore, a rapid increase in temperature in the battery cell 1112 or battery module 1113 can be prevented using this dual cooling method.
  • the phase change material 1124 is formed in an area other than the area where the flow path portion 1121-3 is formed in the heat sink 1120, so that it is doubled along with the cooling fluid without increasing the radiator and pump capacity.
  • the cooling method can effectively cool the heat generated from battery cells or battery modules.
  • the phase change material 1124 is accommodated in the receiving portion 1121-5, which is the remaining space where the flow path portion 1121-3 is formed in the first plate 1121, so the phase change material 1124 There is no need to process a separate space in the first plate 1121 to accommodate.
  • Figure 23 is a diagram showing the assembly process of a heat sink according to one embodiment of the present invention
  • Figure 24 is a diagram showing the assembly process of a heat sink according to another embodiment of the present invention.
  • the assembly process of the heat sink 1120 will be looked at.
  • the second plate 1122 is coupled to one surface of the flow path portion 1121-3 of the first plate 1121 where the groove appears.
  • the phase change material 1124 is placed on the other surface of the receiving portion 1121-5 of the first plate 1121 where the groove appears.
  • the phase change material 1124 may be liquid or solid. If the phase change material 1124 is solid (e.g., paste state), its shape may match the shape of the receiving portion 1121-5, and this phase change material 1124 may be placed in the receiving portion 1121-5. ) can be inserted into the groove.
  • phase change material 1124 is a liquid
  • the phase change material 1124 may be applied to the groove of the receiving portion 1121-5.
  • the third plate 1123 is coupled to the other side of the first plate 1121.
  • the inlet port 1127 and the outlet port 1128 are coupled to the inlet port groove 1123-1 and the outlet port groove 1123-2, respectively, of the third plate 1123.
  • the heat sink 1120 according to an embodiment of the present invention is assembled.
  • the second plate 1121 is coupled to one surface where the groove of the flow path portion 1121-3 of the first plate 1121 appears, and the first plate 1121
  • the third plate 1123 is coupled to the other surface of the receiving portion 1121-5 where the groove appears.
  • the phase change material 1124 is injected into the space within the receiving portion 1121-5 through the injection port 1223-3, and at the same time, the phase change material 1124 is injected through the suction port 1223-5.
  • phase change material 1124 may be a liquid or a paste-like solid. Thereafter, as shown in (c) of FIG.
  • the injection port cap 1224-3 is coupled to the injection port 1223-3, and the suction ports 1223-1a, 1223-1b, 1223-1c, and 1223 -1d), combine the suction port caps (1224-1a, 1224-1b, 1224-1c, 1224-1d).
  • the injection port cap (1224-3) and suction port caps (1224-1a, 1224-1b, 1224-1c, 1224-1d) prevent the phase change material (1124) contained in the receiving portion (1121-5) from escaping to the outside. It performs the function of preventing Then, as shown in (d) of FIG. 24, the heat sink 1120 according to another embodiment of the present invention is assembled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 배터리 팩에 관한 것으로, 복수의 배터리 모듈이 배치된 배터리 팩; 상기 배터리 팩의 상면을 커버하고, 상기 배터리 모듈을 냉각하도록 냉각유체가 흐를 수 있는 복수의 상부 냉각유로부가 형성된 상부 히트싱크; 및 상기 배터리 팩의 하면을 커버하고, 상기 배터리 모듈을 냉각하도록 냉각유체가 흐를 수 있는 복수의 하부 냉각유로부가 형성된 하부 히트싱크;를 포함한다.

Description

배터리 팩
본 발명은 차량 냉각 시스템을 개선할 수 있는 배터리 팩에 관한 것이다.
일반적으로, 배터리는 휴대용 전자기기, 이동통신 단말기 및 전기자동차 등과 같이 유선으로 연결할 수 없는 전기 장치에서 널리 사용되고 있다. 그로 인하여, 배터리는 배터리 시장의 확대 추세에 따라 연구 개발이 활발해지고 있지만, 배터리에 화재가 발생하거나 폭발하는 사고가 아직도 종종 발생하고 있는 실정이다.
상기와 같은 배터리의 화재나 폭발은 충격에 의한 손상, 설계 오류, 단락 발생 및 가혹한 사용 환경 등과 같은 다양한 원인으로 발생하고 있으며 완전하게 방지하는 것은 여전히 어려운 실정이다.
한편, 전기자동차의 보급이 근래에 빠르게 확산되는 추세이다. 통상의 전기자동차에는 고용량의 배터리 모듈 또는 배터리 팩이 사용되고 있다. 상기와 같은 전기자동차의 배터리 모듈 또는 배터리 팩은, 성능과 용량을 증가시키는 것도 중요하지만, 화재와 폭발에 의한 인명 피해와 재산 피해를 방지하는 것이 매우 중요하다. 이를 위하여, 최근에는 고용량, 고효율 및 고안전성을 모두 구비한 배터리 모듈 또는 배터리 팩을 개발하기 위한 연구 개발이 활발하게 이루어지고 있다.
본 발명의 해결 과제는, 배터리 냉각 장치를 배터리 팩 단위로 구성하여 조립성 및 생산성을 향상시키는데 있다.
또한, 본 발명은 배터리 모듈에 흡열물질을 적용하는 구조를 통해 배터리 모듈의 냉각 성능을 향상시키고, 차량 냉각 시스템의 레이아웃의 부피 및 무게를 절감할 수 있는 배터리 팩을 제공하고자 한다.
상기의 과제를 달성하기 위한 본 발명의 일 실시예에 따른 배터리 팩은, 복수의 배터리 모듈이 배치된 배터리 팩; 상기 배터리 팩의 상면을 커버하고, 상기 배터리 모듈을 냉각하도록 냉각유체가 흐를 수 있는 복수의 상부 냉각유로부가 형성된 상부 히트싱크; 및 상기 배터리 팩의 하면을 커버하고, 상기 배터리 모듈을 냉각하도록 냉각유체가 흐를 수 있는 복수의 하부 냉각유로부가 형성된 하부 히트싱크;를 포함한다.
본 발명의 일 실시예에서, 상기 상부 냉각유로부 또는 하부 냉각유로부는 'ㄷ'자 유로를 포함하여 서로 동일한 형태로 구성되며, 기준 라인을 중심으로 서로 마주보도록 대칭되게 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 냉각유체의 흐름 방향을 기준으로 이웃하는 상기 상부 냉각유로부 또는 하부 냉각유로부는 연결유로로 연결된 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 연결유로는 상기 기준 라인 방향을 따라 일자 형태로 배치되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 상부 냉각유로부 또는 하부 냉각유로부 각각은 상기 복수의 배터리 모듈 중 적어도 하나 이상을 냉각하도록 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 상부 냉각유로부 또는 하부 냉각유로부는 상기 냉각유체가 흐르는 제1 굴곡부와 상기 제1 굴곡부 사이에 형성된 제2 굴곡부를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 배터리 모듈에는 배터리 셀을 고정시킬 수 있는 고정부가 형성되고, 상기 제2 굴곡부는 상기 고정부가 삽입될 수 있는 형상을 가지는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 고정부는 바(bar) 형태의 스트랩인 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 하부 냉각유로부의 두께는 상기 상부 냉각유로부의 두께보다 두꺼운 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 상부 냉각유로부 또는 하부 냉각유로부는 하나의 유입구와 연결되고, 상기 상부 냉각유로부 또는 하부 냉각유로부와 하나의 유출구와 연결되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 상부 냉각유로부에 연결된 유입구 및 유출구는 각각 상부 유입포트 및 상부 유출포트에 연결되고, 상기 하부 냉각유로부에 연결된 유입구 및 유출구는 각각 하부 유입포트 및 하부 유출포트에 연결되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 상부 유입포트 및 하부 유입포트는 서로 연결되어 하나의 유입포트로 구성되고, 상기 상부 유출포트 및 하부 유출 포트는 서로 연결되어 하나의 유출포트로 구성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 배터리 모듈의 상면과 상기 상부 히트싱크 사이에는 패드 타입의 갭필러가 위치하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 패드 타입의 갭필러는 상기 배터리 모듈의 상면 중 일정 영역에만 위치하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 배터리 모듈의 상면 중 상기 패드 타입의 갭필러가 위치하지 않는 영역에는 젤 타입의 갭필러가 위치하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 복수의 배터리 모듈의 각 하면과 상기 하부 히트싱크 사이에는 젤 타입의 갭필러가 위치하는 것을 특징으로 한다.
한편, 본 발명에 따른 배터리 팩은, 복수의 배터리 모듈이 배치된 배터리 팩; 및 상기 배터리 팩의 상면 또는 하면을 커버하고, 상기 배터리 모듈을 냉각하도록 복수의 냉각유로부가 형성된 히트싱크;를 포함하고, 상기 냉각유로부는 상기 냉각유체가 흐르는 제1 굴곡부와 상기 제1 굴곡부 사이에 형성된 제2 굴곡부를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에서 상기 제1 굴곡부는 제1 폭을 가지고 있고, 상기 제2 굴곡부는 제2 폭을 가지고 있되, 상기 제1 폭은 상기 제2 폭보다 큰 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서 상기 제1 굴곡부는 제1 높이를 가지고 있고, 상기 제2 굴곡부는 제2 높이를 가지고 있되, 상기 제1 높이는 상기 제2 높이보다 큰 것을 특징으로 한다.
상기의 과제를 달성하기 위한 본 발명의 일 실시예에 따른 배터리 팩은, 배터리 모듈 조립부; 상기 배터리 모듈 조립부에 대응하여 결합되고, 냉각유체가 흐를 수 있는 유로부; 상기 유로부의 측면에 형성된 격벽 사이의 공간인 수용부를 갖고, 상기 수용부에는 흡열물질이 수용되는 복수의 히트싱크들; 및 상기 각각의 히트싱크들을 연결하는 파이프들;을 포함하고,상기 각각의 히트싱크는, 일면에 상측이 개방된 홈 형상의 상기 유로부가 형성되고, 타면에 하측이 개방된 홈 형상의 상기 수용부가 형성된 제1 플레이트; 상기 제1 플레이트의 일면을 커버하도록 결합되는 제2 플레이트; 및 상기 제1 플레이트의 타면을 커버하도록 결합되는 제3 플레이트;를 포함하는 것을 특징으로 한다.
본 발명의 일 실시예에서, 상기 히트싱크는 상기 배터리 모듈 조립부의 하면에 결합되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 유로부는 직선방향으로 형성되는 직선유로부와, 상기 직선유로부의 유로 방향을 변경하는 곡선유로부를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 유로부는 상기 제1 플레이트의 중심을 기준으로 양측에 형성된 직선유로부 및 곡선유로부가 서로 대칭되도록 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 격벽은 상기 제1 플레이트의 하면에 대해 경사진 형태를 갖거나, 곡선 형태를 갖는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제1 플레이트의 최외측에 위치한 직선유로부에는 냉각유체가 유입되는 유입홀 및 냉각유체가 유출되는 유출홀이 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트에는 상기 유입홀 및 상기 유출홀과 대응되는 위치에 포트홈이 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 히트싱크는, 상기 유입홀과 연결되는 유입포트와 상기 유출홀과 연결되는 유출포트를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트는 상기 제1 플레이트의 타면 중 상기 흡열물질이 수용된 영역에 대응하여 결합되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트는 상기 흡열물질이 상기 수용부로 주입되는 주입포트를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 주입포트는 상기 제3 플레이트의 중심 영역에 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 수용부의 공기를 흡입하는 흡입포트를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 흡입포트는 상기 제3 플레이트의 모서리 영역에 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 흡열물질은 고체 또는 액체 상태로 상기 수용부에 수용되되, 상기 격벽의 측면 형태에 따라 대응하도록 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트는 필름 물질의 커버 형태로 구성되어 상기 제1 플레이트에 부착되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트는 상기 제1 플레이트의 면적보다 작게 형성되는 것을 특징으로 한다.
상기의 과제를 달성하기 위한 본 발명의 일 실시예에 따른 배터리 팩은, 배터리 모듈 조립부; 상기 배터리 모듈 조립부에 대응하여 배치된 복수의 히트싱크들; 적어도 하나의 히트싱크는, 일면에 형성된 홈 형상 및 타면에 형성된 홈 형상을 갖는 제1 플레이트; 상기 제1 플레이트의 일면을 커버하는 제2 플레이트; 상기 제1 플레이트의 타면을 커버하는 제3 플레이트; 및 상기 제1 플레이트의 일면에 형성된 홈 형상은 냉각유체가 흐를 수 있는 유로부;를 포함하고, 상기 유로부의 사이에는 수용부가 배치되고, 상기 수용부에는 흡열물질이 배치되며, 상기 각각의 히트싱크들의 유로부는 파이프들을 통해 연결되고, 상기 제1 플레이트의 일면에 형성된 홈 형상의 돌출면은 상기 제2 플레이트의 끝단면보다 낮은 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 적어도 하나의 히트싱크는 상기 배터리 모듈 조립부의 하면에 결합되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 유로부는 상기 적어도 하나의 히트싱크의 길이방향으로 형성되는 직선유로부와, 상기 직선유로부의 유로 방향을 변경하는 곡선유로부를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 유로부는 상기 제1 플레이트의 중심을 기준으로 양측에 형성된 직선유로부 및 곡선유로부가 서로 대칭되도록 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 유로부의 측면에는 격벽이 형성되고,상기 격벽은 상기 제1 플레이트의 일면에 형성된 홈 형상 및 상기 제1 플레이트의 타면에 형성된 홈 형상 사이에 형성되며, 상기 격벽은 상기 제1 플레이트의 하면에 대해 경사진 형태를 갖거나, 곡선 형태를 갖는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 직선유로부는 제1 직선유로부 및 제2 직선유로부를 포함하며, 상기 제1 직선유로부에는 냉각유체가 유입되는 유입홀이 형성되고, 상기 제2 직선유로부에는 냉각유체가 유출되는 유출홀이 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트에는 상기 유입홀 및 상기 유출홀과 대응되는 위치에 포트홈이 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트는 상기 제1 플레이트의 면적보다 작게 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트는 상기 제1 플레이트의 타면 중 상기 흡열물질이 수용된 영역에 대응하여 커버된 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 제3 플레이트는 복수의 포트를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시에에서, 상기 포트는 주입포트 및 흡입포트를 포함하되, 상기 주입포트는 상기 제3 플레이트의 중심 영역에 형성되며, 상기 흡입포트는 상기 제3 플레이트의 모서리 영역에 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 흡열물질은 상기 격벽의 측면 형태에 따라 대응하도록 형성되는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에서, 상기 유로부의 폭은 상기 수용부의 폭보다 큰 것을 특징으로 한다.
본 발명에 따르면, 히트싱크가 배터리 팩 단위로 구성되므로, 배터리 팩 제조시 조립성이 개선되고, 양산성 확보가 가능하다.
또한, 본 발명에 따르면, 배터리 팩의 상부 및 하부에 히트싱크가 장착되므로 배터리 셀에서 발생된 열이 상부와 하부로 전달되어 냉각효율이 향상될 수 있다.
또한, 본 발명에 따르면, 상부 및 하부 히트싱크의 구성이 간단하고, 냉각유체가 흐르는 유출입 포트의 개수가 적어 냉각유체 파이프 파손으로 인한 누설 위험성을 낮출 수 있다.
또한, 본 발명에 따르면, 상부 히트싱크와 배터리 모듈 사이에는 패드 타입의 갭필러를 사용함으로써 젤 타입 갭필러 도포 면적 축소에 따른 배터리 팩 중량 및 작업 시간을 절약할 수 있다.
한편, 본 발명에 따르면, 본 발명에 따르면, 냉각유체와 더불어 흡열물질을 통한 이중냉각 방식을 통해 배터리 냉각 성능이 우수한 효과가 있다.
또한, 본 발명에 따르면, 히트싱크에서 유로부가 형성되는 영역 이외의 영역에 흡열물질이 형성되므로, 라디에이터 및 펌프 용량을 증가시키지 않고도, 발열된 배터리 셀 또는 배터리 모듈을 이중냉각 방식을 통해 효과적으로 냉각시킬 수 있다.
<제1 실시예>
도 1은 본 발명의 일 실시예에 따른 배터리 팩을 도시한 사시도이다.
도 2는 도 1에 도시된 배터리 팩의 분리 사시도이다.
도 3은 본 발명에 따른 배터리 모듈 조립부의 상면을 나타낸 도면이다.
도 4는 도 1에 도시된 A1-A1'라인을 따라 절단하여 바라본 단면도이다.
도 5는 본 발명의 일 실시예에 따른 상부 히트싱크에 형성된 상부 냉각유로부를 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 배터리 모듈 조립부의 상면에 패드 타입의 갭필러가 배치된 상태를 나타낸 도면이다.
도 7은 도 6에 도시된 Y부분을 확대한 도면이다.
도 8은 도 1에 도시된 B1-B1'라인을 따라 절단하여 바라본 단면도이다.
도 9는 본 발명의 일 실시예에 따른 유입 및 유출포트의 상태를 나타낸 도면이다.
도 10은 본 발명의 다른 실시예에 따른 유입 및 유출포트의 상태를 나타낸 도면이다.
<제2 실시예>
도 11은 본 발명의 일 실시예에 따른 배터리 팩을 도시한 사시도이다.
도 12는 본 발명의 일 실시예에 따른 배터리 팩의 분리 사시도이다.
도 13은 본 발명의 일 실시예에 따른 배터리 모듈 조립부에 히트싱크가 장착된 상태를 도시한 도면이다.
도 14는 본 발명의 일 실시예에 따른 히트싱크의 상면 및 하면을 나타낸 도면이다.
도 15는 본 발명의 일 실시예에 따른 히트싱크의 분리 사시도이다.
도 16은 본 발명의 일 실시예에 따른 제1 플레이트의 하면을 도시한 도면이다.
도 17은 도 16에 도시된 B2-B2'라인을 따라 절단한 단면도이다.
도 18은 도 16에 도시된 C2-C2'라인을 따라 절단한 단면도이다.
도 19a 및 도 19b는 본 발명의 다른 실시예에 따른 히트싱크를 도시한 도면이다.
도 20은 본 발명의 일 실시예에 따른 배터리 팩의 하면을 도시한 저면도이다.
도 21은 도 13에 도시된 A2-A2'라인을 따라 절단한 단면도이다.
도 22는 도 21에 도시된 X부분을 확대한 도면이다.
도 23은 본 발명의 일 실시예에 따른 히트싱크의 조립 공정을 나타낸 도면이다.
도 24는 본 발명의 다른 실시예에 따른 히트싱크의 조립 공정을 나타낸 도면이다.
이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 배터리 팩에 대해 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
<제1 실시예>
도 1 은 본 발명의 일 실시예에 따른 배터리 팩을 도시한 사시도이고, 도 2는 도 1에 도시된 배터리 팩의 분리 사시도이며, 도 3은 본 발명의 일 실시예에 따른 배터리 모듈 조립부의 상면을 나타낸 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 배터리 팩은 배터리 모듈 조립부(110) 및 히트싱크를 포함한다.
배터리 모듈 조립부(110)는 케이스(111)내에 배터리 모듈(114)을 수용한다. 배터리 모듈(114)은 복수의 배터리 셀(112)들이 적층된 배터리 셀 어셈블리를 포함한다.
케이스(111) 내에는 복수 개의 배터리 모듈(114)이 서로 일정 간격 떨어져 매트릭스 형태로 배치될 수 있다. 도 2에는 12개의 배터리 모듈(114)이 3 x 4의 형태로 배열되어 있으나, 배터리 모듈(114)의 개수 및 배치 형태는 필요한 용량 또는 설계 목적에 따라 다양하게 구성될 수 있다.
도 3에 도시된 바와 같이, 본 발명에 따른 배터리 모듈(114)에는 배터리 셀(112)의 적층 상태를 고정하기 위해 고정부(115)가 형성될 수 있다.
본 발명의 일 실시예에서 고정부(115)는 바(bar) 형태의 스트랩(strap)으로 형성될 수 있다. 고정부(115)는 적층된 배터리 셀(112)의 둘레를 감싸도록 형성될 수 있다. 도 3에는 3개의 고정부(115a, 115b, 115c)가 일정 간격 떨어져 위치하고 있다. 다만, 고정부(115)의 형상, 위치 및 개수 등에 제한이 있는 것은 아니다.
도 4는 도 1에 도시된 A1-A1'라인을 따라 절단하여 바라본 단면도이며, 도 5는 본 발명의 일 실시예에 따른 상부 히트싱크에 형성된 상부 냉각유로부를 나타낸 도면이다.
본 발명의 일 실시예에 따른 히트싱크는 상부 히트싱크(120)와 하부 히트싱크(130)를 포함한다.
도 2 및 도 4를 참조하면, 상부 히트싱크(120)는 배터리 모듈 조립부(110)의 상면을 커버하고, 배터리 모듈(114)을 냉각시킬 수 있다. 상부 히트싱크(120)에는 그 면방향을 따라 상부 냉각유로부(122)가 형성될 수 있다.
상부 냉각유로부(122)는 냉각유체가 흐를 수 있는 유로를 가진다. 냉각유체는 냉각성이 우수한 유체가 사용될 수 있으며, 예를 들어, 잠열이 높아 냉각 효율성을 극대화할 수 있는 냉각수일 수 있으나, 이에 한정되지 않고, 부동액, 가스 냉매, 공기 등 다양한 유체로 구성될 수 있다.
상부 냉각유로부(122)의 폭 및 두께는 다양하게 설정될 수 있다.
상부 냉각유로부(122)는 복수 개로 형성될 수 있고, 냉각유체가 흐를 수 있도록 서로 연결될 수 있다. 도 5에 도시된 실시예에서 상부 냉각유로부(122)는, 가운데 기준라인(L)을 중심으로 좌측에 형성된 상부 냉각유로부(122a, 122b, 122c)와 우측에 형성된 상부 냉각유로부(122d, 122e, 122f)가 대칭 형태를 이루고 있다.
본 발명의 일 실시예에서 하나의 상부 냉각유로부(122)는 2개의 배터리 모듈(114)을 냉각하도록 구성될 수 있다. 다만, 상부 냉각유로부(122)의 개수 또는 형태는 냉각하고자 하는 배터리 모듈(114)의 개수 또는 형태에 따라 얼마든지 변경될 수 있다. 예를 들어, 어느 상부 냉각유로부(122)는 1개의 배터리 모듈을 냉각하도록 그 형태가 구성될 수 있고, 다른 상부 냉각유로부(122)는 1개 이상의 배터리 모듈을 냉각하도록 그 형태가 구성될 수 있다.
본 발명의 일 실시예에서 각 상부 냉각유로부(122)는 대략 'ㄷ'자 유로를 포함하여, 전체적으로 사각형 형태를 가진다. 구체적으로, 각 상부 냉각유로부(122)는 'ㄷ'자 유로가 반복되도록 형성되며, 이때 이웃하는 'ㄷ'자 유로는 마주보는 끝단 위치(E)에서 서로 연결되어 있다.
본 발명의 일 실시예에서, 기준라인(L) 방향으로 배치된 상부 냉각유로부(122a, 122b, 122c 또는 122d, 122e, 122f)는 일정 간격(d) 떨어져 배치되며, 연결유로(123, 126)를 통해 연결된다. 이는 각 배터리 모듈(114)이 서로 떨어져 배치되는 경우를 고려한 것이다. 연결유로(123, 126)는 기준라인(L) 방향으로 배치될 수 있다.
본 발명의 일 실시예에서, 기준라인(L)을 중심으로 좌측에 배치된 상부 냉각유로부(122a, 122b, 122c)와 우측에 배치된 상부 냉각유로부(122d, 122e, 122f)는 서로 마주보도록 형성된다. 서로 마주보는 어느 한 쌍의 상부 냉각유로부(122c, 122d)는 마주보는 끝단 위치(F)에서 서로 연결되어 있다.
본 발명의 일 실시예에서, 기준라인(L)을 중심으로 좌측에 배치된 어느 하나의 상부 냉각유로부(122a)에는 냉각유체가 유입되는 유입구(127)와 연결되고, 우측에 배치된 어느 하나의 상부 냉각유로부(122f)에는 냉각유체가 유출되는 유출구(128)가 연결된다.
본 발명의 일 실시예에서, 상부 유입구(127) 및 상부 유출구(128)와 연결된 각 유로와 연결유로(123, 126)는 기준라인(L)과 가깝도록 일자 형태로 배치된다.
도 5를 참조하면, 각 상부 냉각유로부(122)는 배터리 모듈(114)을 향하는 방향으로 굴곡진 제1 굴곡부(124)와, 제1 굴곡부(124)들 사이에 형성되고 제1 굴곡부(124)의 굴곡 방향과 반대 방향으로 굴곡진 제2 굴곡부(125)를 포함할 수 있다.
제1 굴곡부(124)는 냉각유체가 흐를 수 있는 유로이다. 제1 굴곡부(124)의 단면 형상은 원형, 타원형, 다각형 등 다양하게 형성될 수 있다.
제2 굴곡부(125)는 배터리 모듈(114)의 상면 위로 돌출된 고정부(115)가 삽입될 수 있는 영역이다. 제2 굴곡부(125)는 고정부(115)가 삽입될 수 있는 형상을 가질 수 있다.
제1 굴곡부(124)는 제1 폭을 가지고 있고, 제2 굴곡부(125)는 제2 폭을 가지고 있다. 본 발명의 일 실시예에서 제1 폭은 제2 폭보다 크다.
제1 굴곡부(124)는 제1 높이를 가지고 있고, 제2 굴곡부(125)는 제2 높이를 가지고 있다. 본 발명의 일 실시예에서 제1 높이는 제2 높이보다 크다.
물론, 제1 굴곡부(124) 및 제2 굴곡부(125)의 폭 및 높이는 다양하게 설정될 수 있다.
본 발명의 일 실시예에서, 각 상부 냉각유로부(122)에는 배터리 모듈(114)에 형성된 3개의 고정부(115a, 115, 115b)가 삽입되도록, 3개의 제2 굴곡부(125a, 125b, 125c)가 형성되어 있다. 다만, 제2 굴곡부(125)의 위치 및 개수에 따라 고정부(115)의 위치 및 개수가 결정될 수 있다.
도 5를 참조하여 상부 냉각유로부(122)를 통과하는 냉각유체의 흐름을 살펴본다. 우선, 상부 유입구(127)를 통해 유입된 냉각유체는 좌측 첫 번째 상부 냉각유로부(122a)를 따라 흐른다. 이때, 냉각유체는 'ㄷ'자 유로를 따라 지그재그로 흐르게 되고, 연결유로(123)를 통해 다음 상부 냉각유로부(122b)로 이동한다. 이러한 방식으로, 냉각유체가 좌측의 상부 냉각유로부(122a, 122b, 122c)를 모두 흐르게 되면, 우측에 위치한 상부 냉각유로부(122d)로 이동한다. 연결유로(126)를 통해 우측의 상부 냉각유로부(122d, 122e, 122f)를 모두 흐른 냉각유체는 상부 유출구(128)를 통해 유출된다.
도 2 및 도 4를 참조하면, 하부 히트싱크(130)는 배터리 모듈 조립부(110)의 하면을 커버하고, 배터리 모듈(114)을 냉각하기 위한 구성이다. 하부 히트싱크(130)에는 그 면방향을 따라 하부 냉각유로부(132)가 형성될 수 있다.
본 발명의 일 실시예에서, 하부 냉각유로부(132)의 구성 및 기능 등은 상부 냉각유로부(122)와 동일하다. 따라서, 하부 냉각유로부(132)에 대한 내용은 상부 냉각유로부(122)에서 언급한 내용을 참조하면 통상의 기술자에게 충분히 이해될 수 있으므로, 자세한 설명은 생략한다.
한편, 본 발명의 다른 실시예에 따르면, 하부 냉각유로부(132)의 유로 두께(또는 제1 굴곡부의 굴곡 정도)는 상부 냉각유로부(122)의 유로 두께(또는 제1 굴곡부의 굴곡 정도)보다 두껍게 형성될 수 있다. 이는 배터리 모듈(114)이 하부 히트싱크(130)를 누르는 힘에 따라 유로가 압축되어 냉각 효율이 저하되는 것을 방지하기 위함이다.
도 6은 본 발명에 따른 배터리 모듈 조립부의 상면에 패드 타입의 갭필러가 배치된 상태를 나타낸 도면이고, 도 7은 도 6에 도시된 Y부분을 확대한 도면이며, 도 8은 도 1에 도시된 B1-B1'라인을 따라 절단하여 바라본 단면도이다.
일반적으로 배터리 팩을 구현하는 과정에서 배터리 모듈과 히트싱크 사이의 에어갭을 방지하고, 배터리 모듈에서 발생되는 열을 히트싱크로 효율적으로 전달하기 위해 갭필러(Gap Filler : 간극 충전재)가 사용된다. 이러한 갭필러는 절연 기능과 배터리 팩 조립 공차를 완화하는 기능도 한다.
본 발명의 일 실시예에서, 갭필러는 상부 히트싱크(120)와 배터리 모듈(114)의 상면 사이에 위치하거나 하부 히트싱크(130)와 배터리 모듈(114)의 하면 사이에 위치할 수 있다.
갭필러는 형태에 따라 패드 타입과 젤 타입으로 분류될 수 있고, 상태에 따라 고체 및 액체로 분류될 수 있다. 젤 타입의 갭필러는 연고 형태로 제공되며, 도포되는 형태가 자유로워 패드 타입의 갭패드와 대비해 낮은 면착력과 얕은 두께로도 동등한 수준의 열전도 성능을 발휘할 수 있다. 또한, 젤 타입의 갭필러는 배터리 모듈로부터 전달받은 열에 의해 액상으로 녹았다가 배터리 모듈이 냉각될 경우 액상에서 연고 또는 고체 상태로 굳어질 수 있다.
본 발명의 일 실시예에서, 갭필러는 열계면 물질(Thermal Interface Material : TIM) 또는 상변환 물질(Phase Change Material : PCM)이 사용될 수 있다.
도 6을 참조하면, 배터리 모듈(114)의 상면에는 패드 타입의 갭필러(142)가 위치할 수 있다. 본 발명의 일 실시예에서, 어느 하나의 배터리 모듈(114)에는 2개의 고정부(115) 사이에 1개의 패드 타입의 갭필러(142)가 위치할 수 있다. 한편으로는 3개의 고정부(115) 사이에 2개의 패드 타입의 갭필러(142)가 위치할 수 있다. 바람직하게는 패드 타입의 갭필러(142)는 제1 굴곡부(124)에 대응되어 위치할 수 있다. 물론, 패드 타입의 갭필러(142)의 개수 또는 형태는 배터리 모듈(114)의 크기, 형태 또는 고정부(115)의 개수에 따라 다양하게 구성될 수 있다.
본 발명의 일 실시예에서, 패드 타입의 갭필러(142)는 배터리 모듈(114)의 상면 전체를 덮지 않을 수 있다. 도 7에 도시된 바와 같이, 패드 타입의 갭필러(142)는 배터리 모듈(114)의 상면 중 일정 영역에만 위치하고, 나머지 영역(Z1, Z2, Z3)에는 패드 타입의 갭필러(142)가 위치하지 않는다. 본 발명의 일 실시예에서 나머지 영역(Z1, Z2, Z3)에는 젤 타입의 갭필러(144)가 도포될 수 있다. 여기서, 나머지 영역(Z1, Z2, Z3)은 도 8에 도시된, 고정부(115a, 115b, 115c)와 제2 굴곡부(125a, 125b, 125c)사이에 형성된 공간일 수 있다.
본 발명의 다른 실시예에 따르면, 패드 타입의 갭필러(142)는 배터리 모듈(114)의 상면 전체 영역을 덮도록 위치할 수 있다.
하부 히트싱크(130)와 배터리 모듈(114)의 하면 사이에는 젤 타입의 갭필러(144)가 도포될 수 있다. 젤 타입의 갭필러(144)는 배터리 모듈(114)의 하면 전체 영역에 도포될 수 있다.
도 9는 본 발명의 일 실시예에 따른 유입 및 유출포트의 상태를 나타낸 도면이며, 도 10은 본 발명의 다른 실시예에 따른 유입 및 유출포트의 상태를 나타낸 도면이다.
도 9를 참조하면, 본 발명의 일 실시예에서, 상부 히트싱크(120)에는 유입구(127)와 연결된 상부 유입포트(152)가 형성되고, 상부 유출구(128)와 연결된 상부 유출포트(154)가 형성된다. 그리고, 하부 히트싱크(130)에는 하부 유입구와 연결된 하부 유입포트(162)와 하부 유출구와 연결된 하부 유출포트(164)가 형성된다. 본 발명의 일 실시예에서 각 포트(152, 154, 162, 164)는 분리되어 있다. 즉, 본 발명의 일 실시예에 따르면, 냉각유체가 배터리 팩(100) 내부로 유입되도록 연결되는 2개의 유입포트(152, 162)와, 배터리 팩(100) 외부로 유출되도록 연결되는 2개의 유출포트(154, 164)가 형성된다.
한편, 도 9에는 상부 유입포트(152) 아래에 하부 유출포트(164)가 위치하고, 상부 유출포트(154) 아래에 하부 유입포트(162)가 위치하나, 상부 유입포트(152) 아래에 하부 유입포트(162)가 위치하고 상부 유출포트(154) 아래에 하부 유입포트(162)가 위치할 수 있다.
도 10을 참조하면, 본 발명의 다른 실시예에서, 상부 유입포트(152)와 하부 유입포트(162)는 연결관(171)을 통해 서로 연결되고, 연결관(171)은 통합 유입포트(182)와 연결된다. 또한, 상부 유출포트(154)와 하부 유출포트(164)는 연결관(172)을 통해 서로 연결되고, 연결관(172)은 통합 유출포트(184)와 연결된다. 여기서, 연결관(171, 172)은 상부 및 하부에 형성된 유출입 포트로 냉각유체가 흐를 수 있도록 분기하는 관이다. 즉, 본 발명의 다른 실시예에 따르면, 냉각유체가 배터리 팩(100) 내부로 유입되도록 연결되는 1개의 유입포트(182)와, 배터리 팩(100) 외부로 유출되도록 연결되는 1개의 유출포트(184)가 형성된다.
한편, 종래에는 배터리 팩을 냉각하기 위해 메인 유출입 포트 외에 배터리 모듈에 장착된 히트싱크와 연결된 분기 포트가 복수 개로 형성되었다. 따라서, 파이프 파손으로 인한 냉각유체의 누수 가능성이 컸으나, 본 발명에 따르면 분기 포트가 필요없고, 메인 유입 포트의 개수도 최소될 수 있으므로, 상술한 문제를 개선하는 효과가 있다.
<제2 실시예>
도 11은 본 발명의 일 실시예에 따른 배터리 팩을 도시한 사시도이고, 도 12는 본 발명의 일 실시예에 따른 배터리 팩의 분리 사시도이며, 도 13은 본 발명의 일 실시예에 따른 배터리 모듈 조립부에 히트싱크가 장착된 상태를 도시한 도면이다.
도 11 내지 도 13을 참조하면, 본 발명의 일 실시예에 따른 배터리 팩(1000)은, 배터리 모듈 조립부(1110), 히트싱크(1120), 하우징(1130) 및 커버(1140)를 포함한다.
배터리 모듈 조립부(1110)는 복수개의 배터리 모듈(1113)로 구성된다. 배터리 모듈(1113)은 복수개의 배터리 셀을 일정한 방향으로 반복 배치되는 구조로 형성될 수 있다. 여기서, 배터리 셀은 전기의 충전과 방전이 이루어지는 구성요소로서, 복수개의 단위셀이 일정한 방향으로 반복 배치되는 구조로 형성될 수 있다.
한편, 배터리 모듈(1113)은 배터리를 필요로 하는 다양한 기기에 사용될 수 있으나, 본 실시예에서는 설명의 편의를 위하여 전기자동차의 배터리 팩에 사용되는 것으로 설명한다.
배터리 모듈 조립부(1110)는 복수개의 배터리 모듈(1113)이 일정한 방향으로 배치되어 서로 연결되도록 조립될 수 있다. 도 12를 참조하면, 본 발명의 일 실시예에서 배터리 모듈 조립부(1110)는 좌우 방향으로 배치된 8개의 배터리 모듈(1113)이 하나의 배터리 모듈 단위조립체(1110a, 1110b, 1110c, 1110d)로 구성되고, 이러한 배터리 모듈 단위조립체(1110a, 1110b, 1110c, 1110d)가 전후 방향으로 4개 배치된 형태를 가질 수 있다.
물론, 배터리 모듈 단위조립체(1110a, 1110b, 1110c, 1110d)를 구성하는 배터리 모듈(1113)의 개수 또는 배치 형태, 배터리 모듈 단위조립체(1110a, 1110b, 1110c, 1110d)의 개수 또는 배치 형태는 다양하게 구성될 수 있다.
히트싱크(1120)는 배터리 셀에서 발생되는 열을 외부로 방출하기 위한 구성요소로서, 배터리 모듈 조립부(1110)에 배치될 수 있다. 도 13에 도시된 바와 같이, 본 발명의 일 실시예에서 히트싱크(1120)는 사각판 형상으로 마련되어 배터리 모듈 조립부(1110)의 하면을 덮도록 배치될 수 있다. 따라서, 배터리 셀 또는 배터리 모듈(1113)에서 발생된 열은 하측에 배치된 히트싱크(1120)로 이동하여 외부로 방출될 수 있다.
히트싱크(1120)는 배터리 모듈 단위조립체(1110a, 1110b, 1110c, 1110d) 각각에 대응되어 배치될 수 있다. 본 발명의 일 실시예에서 4개의 배터리 모듈 단위 조립체(1110a, 1110b, 1110c, 1110d)의 각 하면에 4개의 히트싱크(1120)가 배치될 수 있다. 예컨데 n개의 배터리 모듈 단위 조립체가 배치되는 경우, n개의 히트싱크(1120)가 배치될 수 있다.
한편, 히트싱크(1120)는 배터리 모듈 조립부(1110)의 상면 또는 측면에 배치될 수도 있다. 또한 히트싱크(1120)는 배터리 모듈 조립부(1110)에 접촉되는 면의 형상에 따라 변할 수 있으며, 히트싱크(1120)가 배터리 모듈 조립부(1110)에 배치되는 개수에는 제한이 없다.
한편, 히트싱크(1120)와 배터리 모듈 조립부(1110) 사이에는 열전도도가 우수한 갭 필러(gap filler)가 사용되어 히트싱크(1120)와 배터리 모듈(1113) 사이에 존재하는 간극이 제거될 수 있다.
도 14는 본 발명의 일 실시예에 따른 히트싱크의 상면 및 하면을 나타낸 도면이고, 도 15는 본 발명의 일 실시예 따른 히트싱크의 분리 사시도이고, 도 16은 본 발명에 따른 제1 플레이트의 하면을 도시한 도면이고, 도 17은 도 16에 도시된 B2-B2'라인을 따라 절단한 단면도이며, 도 18은 도 16에 도시된 C2-C2'라인을 따라 절단한 단면도이다.
도 14는 히트싱크(1120)가 조립된 상태를 나타낸 것으로, 도 14의 (a)에는 히트싱크(1120)의 상면이 도시되어 있고, 도 14의 (b)에는 히트싱크(1120)의 하면이 도시되어 있다. 본 발명의 일 실시예에서 히트싱크(1120)의 상면은 배터리 모듈 조립부(1110)의 하면과 마주보도록 배치될 수 있으며, 히트싱크(1120)의 하면은 하우징(1130) 하면을 향해 배치될 수 있다.
도 15를 참조하면, 히트싱크(1120)는 제1 플레이트(1121), 제2 플레이트(1122), 제3 플레이트(1123) 및 흡열물질(1124)을 포함한다.
제1 플레이트(1121)에는 냉각유체가 흐를 수 있는 유로부(1121-3)가 프레스 공정에 의해 형성될 수 있다. 제1 플레이트(1121)는 제2 플레이트(1122) 및 제3 플레이트(1123) 사이에 배치된다.
제1 플레이트(1121)의 상면(1121-a)을 바라보았을 때, 유로부(1121-3)는 상기 제1 플레이트(1121)의 상면(1121-a)을 기준으로 하측 방향으로 함몰된 오목부 형상을 가질 수 있다. 반대로, 제1 플레이트(1121)의 하면(1121-b)을 바라보았을 때, 유로부(1121-3)는 제1 플레이트(1121)의 하면(1121-b)을 기준으로, 하측 방향으로 돌출된 형상을 가질 수 있다. 유로부(1121-3)는 함몰된 바닥면과, 바닥면과 연결된 측면과, 바닥면과 마주보는 개방면을 가질 수 있다.
도 17에 도시된 바와 같이, 유로부(1121-3)는 측면에 그 길이 방향으로 일정한 높이를 갖는 격벽(1121-4)과 단면폭(d1)을 가진 공간을 가질 수 있고, 이러한 공간은 냉각유체가 이동할 수 있는 통로가 된다. 물론, 유로부(1121-3)의 격벽(1121-4) 및 단면폭(d1)은 유로 방향을 따라서 다르게 형성될 수도 있다.
한편, 유로부(1121-3)에는 냉각유체의 난류화를 유도하도록 엠보(1121-4)가 형성될 수 있다. 제1 플레이트(1121)의 상면을 바로보았을 때, 엠보(1121-4)는 상기 제1 플레이트(1121)의 상면을 기준으로 상측 방향으로 돌출된 형상을 가질 수 있다. 반대로, 제1 플레이트(1121)의 하면(1121-b)을 바라보았을 때, 엠보(1121-4)는 제1 플레이트(1121)의 하면(1121-b)을 기준으로, 하측 방향으로 함몰된 오목부 형상을 가질 수 있다. 엠보(1121-4)는 도트형으로 형성되나, 엠보(1121-4)의 형상에는 제한이 없다.
제1 플레이트(1121)에는 상변화물질(1124)이 수용될 수 있는 수용부(1121-5)가 형성된다. 수용부(1121-5)는 제1 플레이트(1121) 상에서 유로부(1121-3)가 형성된 영역 외의 영역에 형성될 수 있다.
제1 플레이트(1121)의 상면을 바라보았을 때, 수용부(1121-5)는 상기 제1 플레이트(1121)의 상면(1121-a)을 기준으로 상측 방향으로 돌출된 형상을 가질 수 있다. 반대로, 제1 플레이트(1121)의 하면(1121-b)을 바라보았을 때, 수용부(1121-5)는 제1 플레이트(1121)의 하면(1121-b)을 기준으로 하측 방향으로 함몰된 오목부 형상을 가질 수 있다. 수용부(1121-5)는 함몰된 바닥면과, 바닥면과 연결된 측면과, 바닥면과 마주보는 개방면을 가질 수 있다.
도 17에 도시된 바와 같이, 수용부(1121-5)는 측면에 그 길이 방향으로 일정한 높이를 갖는 격벽(1121-4)과 단면폭(d2)을 가진 공간을 가질 수 있고, 이러한 공간으로 흡열물질(1124)이 수용될 수 있다. 여기서, 수용부(1121-5)는 유로부(1121-3)에 형성된 격벽(1121-4)을 공유할 수 있다. 물론, 수용부(1121-5)의 격벽 높이(1121-4)는 유로부(1121-3)의 격벽 높이(1121-4)에 따라 달라질 수 있으며, 단면폭(d2)은 수용부(1121-5)가 형성된 영역에 따라 달라질 수 있다.
도 16을 참조하면, 본 발명의 일 실시예에서 유로부(1121-3)는 직선 방향으로 형성된 직선유로부(1121-31)와, 유로의 방향을 바꾸는 곡선유로부(1121-32)를 포함한다.
본 발명의 일 실시예에 따른 유로부(1121-3)는 제1 플레이트(1121)의 중심을 기준으로 양측(도 16을 기준으로 좌측 및 우측)에 형성된 직선유로부(1121-31) 및 곡선유로부(1121-32)가 서로 마주보도록 대칭되게 형성될 수 있다.
본 발명의 일 실시예에 따르면, 제1 플레이트(1121)의 폭방향 최외측에 위치하고 길이 방향으로 서로 마주보도록 배치된 직선유로부(1121-31)들은 서로 연통되도록 형성될 수 있다. 그리고, 제1 플레이트(1121)의 폭방향 내측에 위치하고 폭방향으로 서로 마주보도록 배치된 직선유로부(1121-31)들은 곡선유로부(1121-32)에 의해 제1 플레이트(1121)의 중심 부근에서 서로 연통되도록 형성될 수 있다.
다만, 본 발명의 다른 실시예에 따르면, 직선유로부(1121-31) 또는 곡선유로부(1121-32)의 개수 또는 배치 방향에는 제한이 없다. 예를 들어, 제1 플레이트(1121)의 중심을 기준으로 양측에 형성된 직선유로부(1121-31)가 제1 플레이트(1121)의 폭 방향으로 형성되거나, 제1 플레이트(1121)의 중심을 기준으로 양측에 형성된 유로부(1121-3)가 대칭되지 않게 형성되거나, 직선유로부(1121-31) 및 곡선유로부(1121-32)가 제1 플레이트(1121)의 전체 영역에 걸쳐 형성될 수 있다.
유로부(1121-3)는 외부에서 유로부(1121-3)로 냉각유체가 유입되는 유입홀(1121-1)과, 유로부(1121-3)에서 외부로 냉각유체가 유출되는 유출홀(1121-2)을 포함한다. 도 16에 도시된 화살표 방향을 참조하면, 유입홀(1121-1)로 들어온 냉각유체는 양측(도 16을 기준으로 좌측 및 우측)으로 이동한 뒤 직선유로부와 곡선유로부를 거친 후 유출홀(1121-2)에 모여 외부로 유출될 수 있다. 본 발명의 일 실시예에서 유입홀(1121-1) 및 유출홀(1121-2)은 각각 최외측에 위치한 직선유로부(1121-31) 상에 형성될 수 있다.
본 발명의 수용부(1121-5)는 직선 방향으로 형성된 직선수용부(1121-51)와, 곡선수용부(1121-52)를 포함한다.
수용부(1121-5)는 유로부(1121-5)의 형상에 따라 결정될 수 있다. 본 발명의 일 실시예에 따른 수용부(1121-5)는 제1 플레이트(1121)의 중심을 기준으로 양측(도 16을 기준으로 좌측 및 우측)에 형성된 직선수용부(1121-51) 및 곡선수용부(1121-52)가 서로 마주보도록 대칭되게 형성될 수 있다.
한편, 도 17에 도시된 바와 같이, 본 발명의 일 실시예에서 격벽(1121-4)은 유로부(1121-3) 또는 수용부(1121-5) 홈의 측면을 형성하는 것으로, 제1 플레이트(1121)에 대해 경사진 형태를 가질 수 있다. 수직 방향으로 직선 형태를 가지도록 형성될 수 있다. 다만, 격벽(1121-4)은 제1 플레이트(1121)에 가까워질수록 격벽(1121-4) 사이가 좁아지도록 경사지게 형성되어 있으나, 그 반대의 경우도 가능하며, 격벽(1121-4)의 측면이 서로 다른 각도를 가진 복수의 경사 형태를 갖거나, 경사 형태 또는 직선 형태 또는 곡선 형태 중 적어도 어느 하나를 가질 수 있다.
흡열물질은 배터리 모듈(1113) 또는 히트싱크(1120)의 온도가 소정의 온도 이상으로 상승하였을 때 흡열반응을 유발하는 물질이다. 예를 들어, 흡열물질은 파라핀(paraffin), 폴리에틸렌 글리콜, 무기 수화물(예를 들어, Na2HPO4·12H2O, Na2SO4·10H2O, Zn(NO3)2·6H2O 등) 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 본 명세서에서는 이러한 흡열물질 중 상변화물질을 예시로 들어 설명한다. 상변화 물질은, 소정의 온도에서 상변환, 바람직하게는, 고상에서 액상 또는 고상에서 기상으로의 상변화이 일어나며, 이러한 상변환을 통해 잠열을 가진다.
상변화물질(1124)은 배터리 셀 또는 배터리 모듈(1113)에서 발생되는 열을 흡수하면서 상변화되는 물질을 포함하는 것으로서, 상변화에 필요한 잠열을 이용하여 열의 흡수와 저장 기능을 한다. 이때, 상변화물질(1124)은 일정 온도 이상에서 상변화를 수행할 수 있다.
도 15를 참조하면, 상변화물질(1124)은 수용부(1121-5)에 수용된다. 본 발명의 일 실시예에서는 상변화물질(1124)은 수용부(1121-5)의 전체 영역에 수용되나, 수용부(1121-5)의 일부 영역에만 수용될 수 있다.
상변화물질(1124)은 직선부(1124-1)와 곡선부(1124-2)를 포함한다. 직선부(1124-1)는 직선수용부(1121-51)에 수용될 수 있고, 곡선부(1124-2)는 곡선수용부(1121-52)에 수용될 수 있다.
한편, 상변화물질(1124)은 탄성재질의 캡슐 부재의 형태로 구성될 수 있다. 상변화물질(1124)은 배터리 셀의 화재 발생 온도보다 낮은 온도에서 열을 흡수하면서 상변화가능한 재질로 형성되는 것이 바람직하다. 다른 실시예로, 상변화물질(1124)에 열전달 성능을 향상시킬 목적으로 열계면물질(TIM, Thermal Interface Material)을 더 포함할 수 있다.
본 발명의 일 실시예에서는 상변화물질(1124)이 그 형태를 가질 수 있도록 고체 상태를 가질 수 있으나, 이에 한정되지 않으며, 상변화물질(1124)이 액체 상태로 형성되는 것도 가능하다.
제1 플레이트(1121)에는 제1 플레이트 정렬부(121-6)가 형성될 수 있다. 제1 플레이트 정렬부(1121-6)는 후술할 제2 플레이트 정렬부(1122-6)와 삽입가능한 형상을 가질 수 있다. 제1 플레이트(1121)의 상면(1121-a)을 바라보았을 때, 제1 플레이트 정렬부(1121-6)는 상기 제1 플레이트(1121)의 상면(1121-a)을 기준으로 하측 방향으로 함몰된 오목부 형상을 가질 수 있다. 반대로, 제1 플레이트(1121)의 하면(1121-b)를 바라보았을 때, 제1 플레이트 정렬부(1121-6)는 제1 플레이트(1121)의 하면(1121-b)을 기준으로, 하측 방향으로 돌출된 형상을 가질 수 있다. 제1 플레이트 정렬부(1121-6)는 함몰된 바닥면과, 바닥면과 연결된 측면과, 바닥면과 마주보는 개방면을 가질 수 있다.
제2 플레이트(1122)는 제1 플레이트(1121)의 상면을 덮도록 제1 플레이트(1121)와 결합된다. 상술한 바와 같이, 제1 플레이트(1121)의 유로부(1121-3) 상면은 외부에 노출되는 바, 제1 플레이트(1121)와 제2 플레이트(1122)가 결합됨으로써 유로부(1121-3)의 상면이 폐쇄되어 냉각유체가 흐를 수 있는 통로가 완성된다. 즉, 제2 플레이트(1122)는 냉각유체가 유실되는 것을 방지한다.
제2 플레이트(1122)에는 제2 플레이트 정렬부(1122-6)가 형성될 수 있다. 제2 플레이트(1122)의 상면을 바라보았을 때, 제2 플레이트 정렬부(1122-6)는 상기 제2 플레이트(1122)의 상면을 하측 방향으로 함몰된 오목부 형상을 가질 수 있다. 제2 플레이트 정렬부(1122-6)가 제1 플레이트 정렬부(1121-6)에 삽입되면, 제1 플레이트(1121)와 제2 플레이트(1122)는 설계자가 원하는 배치방향으로 정렬되어 결합될 수 있다.
제2 플레이트(1122)의 폭 방향 양끝에는 그 길이 방향(도 15에 도시된 좌측 및 우측 방향)으로 연장된 외측부(1122-1)가 형성될 수 있다. 외측부(1122-1)는 제2 플레이트(1122)의 폭 방향 양 끝단에서 절곡된 상태로 연장되어 형성될 수 있다. 외측부(1122-1)로 인해 제2 플레이트(1122)에는 제1 플레이트(1121)가 안착될 수 있는 안착공간(S)이 형성될 수 있다.
제3 플레이트(1122)는 제1 플레이트(1121)의 하면을 덮도록 제1 플레이트(1121)와 결합된다. 상술한 바와 같이, 제3 플레이트(1121)의 수용부(1121-5) 하면은 외부에 노출되는 바, 제1 플레이트(1121)와 제3 플레이트(1122)가 결합됨으로써 수용부(1121-5)의 하면이 폐쇄되어 상변화물질(1124)이 수용되는 공간이 완성된다. 즉, 제3 플레이트(1123)는 상변화물질(1124)이 유실되는 것을 방지한다.
상변화물질(1124)이 고체상태(예를 들어, 페이스트 형태)인 경우, 제1 플레이트(1121)의 수용부(1121-5)의 형상에 따라 상변화물질(1124)을 형성하여 수용부(1121-5)에 수용한 후, 제3 플레이트(1123)가 제1 플레이트(1121)에 결합될 수 있다. 상변화물질(1124)이 액체상태인 경우, 제1 플레이트(1121)의 수용부(1121-5)에 상변화물질(1124)을 도포한 후, 제3 플레이트(1123)가 제1 플레이트(1121)에 결합될 수 있다.
본 발명의 일 실시예에서, 제3 플레이트(1123)는 제1 플레이트(1121)의 하면 중 상변화물질(1124)이 수용된 영역에만 형성될 수 있으나, 이에 한정되는 것은 아니며 제3 플레이트(1123)가 제1 플레이트(1121)의 하면 전체를 덮도록 구성되는 것도 가능하다.
다시, 도 15를 참조하면, 제3 플레이트(1123)에는 유입포트홈(1123-1) 및 유출포트홈(1123-2)이 형성된다. 유입포트홈(1123-1)은 제1 플레이트(1121)의 유입홀(1121-1)과 대응되는 위치에 형성될 수 있고, 유출포트홈(1123-2)은 제1 플레이트(1121)의 유출홀(1121-2)과 대응되는 위치에 형성될 수 있다.
유입포트홈(1123-1)은 제1 플레이트(1121)의 하면에 유입포트(1127)가 장착되기 위해 형성되고, 유출포트홈(1123-2)은 제1 플레이트(1121)의 하면에 유출포트(1128)가 장착되기 위해 형성된다. 유입포트(1127)는 냉각유체가 외부에서 제1 플레이트(1121)의 유로부(1121-3)로 유입되기 위한 연결포트로서, 유입홀(1121-1)과 연결된다. 유출포트(1128)는 냉각유체가 유로부(1121-3)에서 외부로 유출되기 위한 연결포트로서, 유출홀(1121-2)과 연결된다.
이하, 제1 내지 제3 플레이트(1121, 1122, 1123)의 결합 공정에 대해 살펴본다.
본 발명의 일 실시예에서 제1 내지 제3 플레이트(1121, 1122, 1123)는 금속물질로 구성될 수 있다. 예를 들어, 제1 내지 제3 플레이트(1121, 1122, 1123)는 알루미늄 소재로 구성될 수 있다. 본 발명의 일 실시예에서 제1 플레이트(1121)와 제2 플레이트(1122)는 브레이징(brazing) 공법에 의해 서로 접합될 수 있고, 제1 플레이트(1121)와 제3 플레이트(1123)는 레이저 등의 용접 공법 또는 접착제에 의해 서로 접합될 수 있다.
한편, 본 발명의 다른 실시예에 따르면, 제1 및 제2 플레이트(1121, 1122)는 금속물질로 구성되고, 제3 플레이트(1123)는 필름 물질로 형성될 수 있다. 여기서, 제3 플레이트(1123)의 필름 물질은 열가소성 물질일 수 있다. 본 발명의 다른 실시예에서 제1 플레이트(1121)와 제2 플레이트(1122)는 브레이징 공법에 의해 서로 접합될 수 있고, 제1 플레이트(1121)와 제3 플레이트(1123)는 접착제에 의해 서로 접합되거나, 필름 물질을 녹여 제1 플레이트(1121)에 부착되는 방식으로 서로 접합될 수 있다. 제3 플레이트(1123)는 필름 물질을 포함하는 경우, 제 1 또는 제2 플레이트(1121, 1123)보다 두께가 적을 수 있다.
도 19a 및 도 19b는 본 발명의 다른 실시예에 따른 히트싱크를 도시한 도면이다.
도 19a 및 도 19b를 참조하면, 본 발명의 다른 실시예에 따른 히트싱크(1120)는 본 발명의 일 실시예에서 설명한 히트싱크(1120)와 제3 플레이트(1123)의 구성에 있어서 차이가 있다. 이러한 구성의 차이점은 상변화물질(1124)을 수용부(1121-5)에 수용하는 방법에 기인하는 것으로, 상변화 물질(1124)을 수용하는 방법에 대해서는 후술하기로 한다. 이하, 히트싱크(1120) 중 나머지 구성에 대해서는 설명은 생략하고 차이점이 있는 구성만 설명한다.
본 발명의 다른 실시예에 따른 제3 플레이트(1123)에는 주입포트(1223-3)와 흡입포트(1223-1)가 형성된다. 주입포트(1223-3)는 상변화물질(1124)을 수용부(1121-5) 내로 주입하기 위한 포트이고, 흡입포트(1223-1)는 수용부(1121-5)에 존재하는 공기를 흡입하는 포트이다. 흡입포트(1223-1)를 통해 수용부(1121-5)의 공기를 흡입한 상태에서, 주입포트(1223-3)로 상변화물질(1124)을 주입하면 상변화물질(1124)을 원활하게 수용부(1121-5)로 주입할 수 있다.
본 발명에서 주입포트(1223-3)는 제3 플레이트(1123)의 대략 중심부에 형성되어 있고, 흡입포트(1223-1a, 1223-1b, 1223-1c, 1223-1d)는 제3 플레이트(1123)의 각 모서리부에 형성되어 있다. 이와 같이 주입포트(1223-3) 및 흡입포트(1223-1a, 1223-1b, 1223-1c, 1223-1d)가 배치된 것은, 상기 수용부(1121-5)가 제1 플레이트(1121)의 중심을 기준으로 양측에 대칭되게 형성되므로, 제1 플레이트(1121)의 중심에서 모서리 방향으로 상변화물질(1124)을 주입하는 것이 효과적이기 때문이다. 물론, 주입포트(1223-3) 및 흡입포트(1223-1a, 1223-1b, 1223-1c, 1223-1d)의 개수 및 배치 형태는 다양하게 설정될 수 있다.
한편, 주입포트(1223-3) 및 흡입포트(1223-1a, 1223-1b, 1223-1c, 1223-1d)의 사용이 완료되면, 각 포트가 폐쇄되도록 구성될 수 있다.
다시, 도 12를 참조하면, 하우징(1130)의 내부공간에는 배터리 모듈 조립부(1110)가 수용된다. 하우징(1130)의 내부공간은 각 배터리 모듈 단위조립체(1110a, 1110b, 1110c, 1110d)가 수용될 수 있도록 구획될 수 있다.
하우징(1130)에 배터리 모듈 단위조립체(1110a, 1110b, 1110c, 1110d)가 수용된 상태에서 하우징(1130)의 상면은 커버(1140)가 결합될 수 있다.
도 20은 본 발명에 따른 배터리 팩의 하면을 도시한 저면도이다.
본 발명에 따른 배터리 팩(1000)이 완성된 상태에서 그 하면을 살펴보면, 히트싱크(1120)에 형성된 각 유입포트(1127)를 연결하는 파이프(1129a)와, 각 유출포트(1128)를 연결하는 파이프(1129b)가 형성된다. 배터리 팩(1000)의 외부에서 제공된 냉각유체는 파이프(1129a)를 따라 이동하다가 히트싱크(1120)의 유입홀(1121-1)을 통해 히트싱크(1120) 내부, 더 자세하게는 제1 플레이트(1121)와 제2 플레이트(1122) 사이 공간인 유로부(1121-3)로 유입될 수 있고, 히트싱크(1120) 내부를 이동한 냉각유체는 파이프(1129b)를 따라 이동하다가 배터리 팩(1000)의 외부로 유출될 수 있다.
도 21은 도 13에 도시된 A2-A2' 라인을 따라 절단한 단면도이며, 도 22는 도 21에 도시된 X부분을 확대한 도면이다.
도 21 및 도 22를 참조하면, 본 발명에 따른 배터리 모듈(1113)의 하면에는 히트싱크(1120)가 장착되므로, 배터리 셀(1112) 또는 배터리 모듈(1113)에서 발생되는 열이 하부로 이동하여 히트싱크(1120)로 전달된다. 이때, 히트싱크(1120)의 수용부(1121-5)에는 상변화물질(1124)이 형성되고, 유로부(1122-1)에는 냉각유체가 흐를 수 있다. 배터리 셀(1112) 또는 배터리 모듈(1113)에서 발생되는 열은 우선 냉각유체에 의해 냉각되다가, 일정 온도 이상이 되면 상변화물질이 상변화하면서 열을 흡수한다. 따라서, 이러한 이중 냉각 방식에 따라 배터리 셀(1112) 또는 배터리 모듈(1113)에서 급격하게 온도가 상승되는 것이 방지될 수 있다.
한편, 차량 냉각수 시스템을 살펴보면, 배터리에서 발생된 열을 신속하게 낮추기 위해서는 냉각수 흐름을 빨라지게 할 필요가 있다. 다만, 이를 위해서는 라디에이터와 펌프의 용량이 커야 하나, 이렇게 되면 냉각 시스템의 레이아웃 부피 및 무게가 증가하는 문제가 있다.
본 발명에 따르면, 히트싱크(1120)에서 유로부(1121-3)가 형성되는 영역 이외의 영역에 상변화물질(1124)이 형성되므로, 라디에이터 및 펌프 용량을 증가시키지 않고도, 냉각유체와 함께 이중냉각 방식으로 배터리 셀 또는 배터리 모듈에서 발생되는 열을 효과적으로 냉각시킬 수 있다.
또한, 배터리에서 발생된 열을 신속하게 낮추기 위해 유로부의 크기를 증가시킬 필요가 있다. 그러나, 본 발명에서는 상변화물질을 통한 이중냉각이 가능하므로 유로부의 크기를 증가시킬 필요가 없다.
또한, 본 발명에 따르면, 제1 플레이트(1121)에 유로부(1121-3)가 형성된 나머지 공간인 수용부(1121-5)에 상변화물질(1124)이 수용되므로, 상변화물질(1124)을 수용하기 위한 별도의 공간을 제1 플레이트(1121)에 가공할 필요가 없다.
도 23은 본 발명의 일 실시예에 따른 히트싱크의 조립 공정을 나타낸 도면이며, 도 24는 본 발명의 다른 실시예에 따른 히트싱크의 조립 공정을 나타낸 도면이다.
도 23을 참조하여, 본 발명의 일 실시예에 따른 히트싱크(1120)의 조립 공정을 살펴본다. 우선, 도 23의 (a)에 도시된 바와 같이, 제1 플레이트(1121)의 유로부(1121-3)의 홈이 나타난 일면에 제2 플레이트(1122)를 결합한다. 이후, 도 23의 (b)에 도시된 바와 같이, 제1 플레이트(1121)의 수용부(1121-5)의 홈이 나타난 타면에 상변화물질(1124)을 배치한다. 여기서, 상변화물질(1124)은 액체 또는 고체일 수 있다. 상변화물질(1124)이 고체(예를 들어, 페이스트 상태)인 경우 그 형상은 수용부(1121-5)의 형상과 일치할 수 있으며, 이러한 상변화물질(1124)을 수용부(1121-5)의 홈에 끼워 넣을 수 있다. 상변화물질(1124)이 액체인 경우 상변화물질(1124)은 수용부(1121-5)의 홈에 도포될 수 있다. 이후, 도 23의 (c)에 도시된 바와 같이, 제1 플레이트(1121)의 타면에 제3 플레이트(1123)를 결합한다. 그리고, 제3 플레이트(1123)의 유입포트홈(1123-1)과 유출포트홈(1123-2) 각각에 유입포트(1127) 및 유출포트(1128)를 결합한다. 그러면, 도 23의 (d)에 도시된 바와 같이, 본 발명의 일 실시예에 따른 히트싱크(1120)가 조립된다.
다음으로, 도 24를 참조하여, 본 발명의 다른 실시예에 따른 히트싱크(1120)의 조립 공정을 살펴본다. 우선, 도 24의 (a)에 도시된 바와 같이, 제1 플레이트(1121)의 유로부(1121-3)의 홈이 나타난 일면에 제2 플레이트(1121)를 결합하고, 제1 플레이트(1121)의 수용부(1121-5)의 홈이 나타난 타면에 제3 플레이트(1123)를 결합한다. 이후, 도 24의 (b)에 도시된 바와 같이, 주입포트(1223-3)를 통해 수용부(1121-5) 내 공간에 상변화물질(1124)을 주입하고, 이와 동시에 흡입포트(1223-1a, 1223-1b, 1223-1c, 1223-1d)를 통해 수용부(1121-5) 내 공기를 외부로 빨아드린다. 그러면 상변화물질(1124)은 수용부(1121-5) 공간 중 주입포트(1223-3)가 위치한 곳에서 흡입포트(1223-1a, 1223-1b, 1223-1c, 1223-1d)가 위치한 곳으로 이동하며 수용부(1121-5) 공간을 채우게 된다. 여기서, 상변화물질(1124)은 액체 또는 페이스트 상태의 고체일 수 있다. 이후, 도 24의 (c)에 도시된 바와 같이, 주입포트(1223-3)에는 주입포트 캡(1224-3)을 결합하고, 흡입포트(1223-1a, 1223-1b, 1223-1c, 1223-1d)에는 흡입포트 캡(1224-1a, 1224-1b, 1224-1c, 1224-1d)을 결합한다. 주입포트 캡(1224-3) 및 흡입포트 캡(1224-1a, 1224-1b, 1224-1c, 1224-1d)은 수용부(1121-5) 내에 수용된 상변화물질(1124)이 외부로 빠져나오지 못하도록 하는 기능을 수행한다. 그러면, 도 24의 (d)에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 히트싱크(1120)가 조립된다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.

Claims (48)

  1. 복수의 배터리 모듈이 배치된 배터리 팩;
    상기 배터리 팩의 상면을 커버하고, 상기 배터리 모듈을 냉각하도록 냉각유체가 흐를 수 있는 복수의 상부 냉각유로부가 형성된 상부 히트싱크; 및
    상기 배터리 팩의 하면을 커버하고, 상기 배터리 모듈을 냉각하도록 냉각유체가 흐를 수 있는 복수의 하부 냉각유로부가 형성된 하부 히트싱크;를 포함하는,
    배터리 팩.
  2. 제 1 항에 있어서,
    상기 상부 냉각유로부 또는 하부 냉각유로부는 'ㄷ'자 유로를 포함하여 서로 동일한 형태로 구성되며, 기준 라인을 중심으로 서로 마주보도록 대칭되게 형성되는 것을 특징으로 하는 배터리 팩.
  3. 제 2 항에 있어서,
    상기 냉각유체의 흐름 방향을 기준으로 이웃하는 상기 상부 냉각유로부 또는 하부 냉각유로부는 연결유로로 연결된 것을 특징으로 하는 배터리 팩.
  4. 제 3 항에 있어서,
    상기 연결유로는 상기 기준 라인 방향을 따라 일자 형태로 배치되는 것을 특징으로 하는 배터리 팩.
  5. 제 1 항에 있어서,
    상기 상부 냉각유로부 또는 하부 냉각유로부 각각은 상기 복수의 배터리 모듈 중 적어도 하나 이상을 냉각하도록 형성되는 것을 특징으로 하는 배터리 팩.
  6. 제 1 항에 있어서,
    상기 상부 냉각유로부 또는 하부 냉각유로부는 상기 냉각유체가 흐르는 제1 굴곡부와 상기 제1 굴곡부 사이에 형성된 제2 굴곡부를 포함하는 것을 특징으로 하는 배터리 팩.
  7. 제 6 항에 있어서,
    상기 배터리 모듈에는 배터리 셀을 고정시킬 수 있는 고정부가 형성되고,
    상기 제2 굴곡부는 상기 고정부가 삽입될 수 있는 형상을 가지는 것을 특징으로 하는 배터리 팩.
  8. 제 7 항에 있어서,
    상기 고정부는 바(bar) 형태의 스트랩인 것을 특징으로 하는 배터리 팩.
  9. 제 1 항에 있어서,
    상기 하부 냉각유로부의 두께는 상기 상부 냉각유로부의 두께보다 두꺼운 것을 특징으로 하는 배터리 팩.
  10. 제 1 항에 있어서,
    상기 상부 냉각유로부 또는 하부 냉각유로부는 하나의 유입구와 연결되고, 상기 상부 냉각유로부 또는 하부 냉각유로부와 하나의 유출구와 연결되는 것을 특징으로 하는 배터리 팩.
  11. 제 10 항에 있어서,
    상기 상부 냉각유로부에 연결된 유입구 및 유출구는 각각 상부 유입포트 및 상부 유출포트에 연결되고,
    상기 하부 냉각유로부에 연결된 유입구 및 유출구는 각각 하부 유입포트 및 하부 유출포트에 연결되는 것을 특징으로 배터리 팩.
  12. 제 11 항에 있어서,
    상기 상부 유입포트 및 하부 유입포트는 서로 연결되어 하나의 유입포트로 구성되고,
    상기 상부 유출포트 및 하부 유출 포트는 서로 연결되어 하나의 유출포트로 구성되는 것을 특징으로 하는 배터리 팩.
  13. 제 1 항에 있어서,
    상기 배터리 모듈의 상면과 상기 상부 히트싱크 사이에는 패드 타입의 갭필러가 위치하는 것을 특징으로 하는 배터리 팩.
  14. 제 13 항에 있어서,
    상기 패드 타입의 갭필러는 상기 배터리 모듈의 상면 중 일정 영역에만 위치하는 것을 특징으로 하는 배터리 팩.
  15. 제 14 항에 있어서,
    상기 배터리 모듈의 상면 중 상기 패드 타입의 갭필러가 위치하지 않는 영역에는 젤 타입의 갭필러가 위치하는 것을 특징으로 하는 배터리 팩.
  16. 제 1 항에 있어서,
    상기 복수의 배터리 모듈의 각 하면과 상기 하부 히트싱크 사이에는 젤 타입의 갭필러가 위치하는 것을 특징으로 하는 배터리 팩.
  17. 복수의 배터리 모듈이 배치된 배터리 팩; 및
    상기 배터리 팩의 상면 또는 하면을 커버하고, 상기 배터리 모듈을 냉각하도록 복수의 냉각유로부가 형성된 히트싱크;를 포함하고,
    상기 냉각유로부는 냉각유체가 흐르는 제1 굴곡부와 상기 제1 굴곡부 사이에 형성된 제2 굴곡부를 포함하는 것을 특징으로 배터리 팩.
  18. 제 17 항에 있어서,
    상기 제1 굴곡부는 제1 폭을 가지고 있고, 상기 제2 굴곡부는 제2 폭을 가지고 있되, 상기 제1 폭은 상기 제2 폭보다 큰 것을 특징으로 하는 배터리 팩.
  19. 제 17 항에 있어서,
    상기 제1 굴곡부는 제1 높이를 가지고 있고, 상기 제2 굴곡부는 제2 높이를 가지고 있되, 상기 제1 높이는 상기 제2 높이보다 큰 것을 특징으로 하는 배터리 팩.
  20. 배터리 모듈 조립부;
    상기 배터리 모듈 조립부에 대응하여 결합되고, 냉각유체가 흐를 수 있는 유로부;
    상기 유로부의 측면에 형성된 격벽 사이의 공간인 수용부를 갖고, 상기 수용부에는 흡열물질이 수용되는 복수의 히트싱크들; 및
    상기 각각의 히트싱크들을 연결하는 파이프들;을 포함하고,
    상기 각각의 히트싱크는,
    일면에 상측이 개방된 홈 형상의 상기 유로부가 형성되고, 타면에 하측이 개방된 홈 형상의 상기 수용부가 형성된 제1 플레이트;
    상기 제1 플레이트의 일면을 커버하도록 결합되는 제2 플레이트; 및
    상기 제1 플레이트의 타면을 커버하도록 결합되는 제3 플레이트;를 포함하는 것을 특징으로 하는 배터리 팩.
  21. 제 20 항에 있어서,
    상기 히트싱크는 상기 배터리 모듈 조립부의 하면에 결합되는 것을 특징으로 하는 배터리 팩.
  22. 제 20 항에 있어서,
    상기 유로부는 직선방향으로 형성되는 직선유로부와, 상기 직선유로부의 유로 방향을 변경하는 곡선유로부를 포함하는 것을 특징으로 하는 배터리 팩.
  23. 제 22 항에 있어서,
    상기 유로부는 상기 제1 플레이트의 중심을 기준으로 양측에 형성된 직선유로부 및 곡선유로부가 서로 대칭되도록 형성되는 것을 특징으로 하는 배터리 팩.
  24. 제 20 항에 있어서,
    상기 격벽은 상기 제1 플레이트의 하면에 대해 경사진 형태를 갖거나, 곡선 형태를 갖는 것을 특징으로 하는 배터리 팩.
  25. 제 22 항에 있어서,
    상기 제1 플레이트의 최외측에 위치한 직선유로부에는 냉각유체가 유입되는 유입홀 및 냉각유체가 유출되는 유출홀이 형성되는 것을 특징으로 하는 배터리 팩.
  26. 제 25 항에 있어서,
    상기 제3 플레이트에는 상기 유입홀 및 상기 유출홀과 대응되는 위치에 포트홈이 형성되는 것을 특징으로 하는 배터리 팩.
  27. 제 25 항에 있어서,
    상기 히트싱크는, 상기 유입홀과 연결되는 유입포트와 상기 유출홀과 연결되는 유출포트를 포함하는 것을 특징으로 하는 배터리 팩.
  28. 제 20 항에 있어서,
    상기 제3 플레이트는 상기 제1 플레이트의 타면 중 상기 흡열물질이 수용된 영역에 대응하여 결합되는 것을 특징으로 하는 배터리 팩.
  29. 제 20 항에 있어서,
    상기 제3 플레이트는 상기 흡열물질이 상기 수용부로 주입되는 주입포트를 포함하는 것을 특징으로 하는 배터리 팩.
  30. 제 29 항에 있어서,
    상기 주입포트는 상기 제3 플레이트의 중심 영역에 형성되는 것을 특징으로 하는 배터리 팩.
  31. 제 29 항에 있어서,
    상기 수용부의 공기를 흡입하는 흡입포트를 포함하는 것을 특징으로 하는 배터리 팩.
  32. 제 31 항에 있어서,
    상기 흡입포트는 상기 제3 플레이트의 모서리 영역에 형성되는 것을 특징으로 하는 배터리 팩.
  33. 제 20 항에 있어서,
    상기 흡열물질은 고체 또는 액체 상태로 상기 수용부에 수용되되, 상기 격벽의 측면 형태에 따라 대응하도록 형성되는 것을 특징으로 하는 배터리 팩.
  34. 제 20 항에 있어서,
    상기 제3 플레이트는 필름 물질의 커버 형태로 구성되어 상기 제1 플레이트에 부착되는 것을 특징으로 하는 배터리 팩.
  35. 제 34 항에 있어서,
    상기 제3 플레이트는 상기 제1 플레이트의 면적보다 작게 형성되는 것을 특징으로 하는 배터리 팩.
  36. 배터리 모듈 조립부;
    상기 배터리 모듈 조립부에 대응하여 배치된 복수의 히트싱크들;
    적어도 하나의 히트싱크는,
    일면에 형성된 홈 형상 및 타면에 형성된 홈 형상을 갖는 제1 플레이트;
    상기 제1 플레이트의 일면을 커버하는 제2 플레이트;
    상기 제1 플레이트의 타면을 커버하는 제3 플레이트; 및
    상기 제1 플레이트의 일면에 형성된 홈 형상은 냉각유체가 흐를 수 있는 유로부;를 포함하고,
    상기 유로부의 사이에는 수용부가 배치되고, 상기 수용부에는 흡열물질이 배치되며,
    상기 각각의 히트싱크들의 유로부는 파이프들을 통해 연결되고,
    상기 제1 플레이트의 일면에 형성된 홈 형상의 돌출면은 상기 제2 플레이트의 끝단면보다 낮은 것을 특징으로 하는 배터리 팩.
  37. 제 36 항에 있어서,
    상기 적어도 하나의 히트싱크는 상기 배터리 모듈 조립부의 하면에 결합되는 것을 특징으로 하는 배터리 팩.
  38. 제 36 항에 있어서,
    상기 유로부는 상기 적어도 하나의 히트싱크의 길이방향으로 형성되는 직선유로부와, 상기 직선유로부의 유로 방향을 변경하는 곡선유로부를 포함하는 것을 특징으로 하는 배터리 팩.
  39. 제 38 항에 있어서,
    상기 유로부는 상기 제1 플레이트의 중심을 기준으로 양측에 형성된 직선유로부 및 곡선유로부가 서로 대칭되도록 형성되는 것을 특징으로 하는 배터리 팩.
  40. 제 36 항에 있어서,
    상기 유로부의 측면에는 격벽이 형성되고,
    상기 격벽은 상기 제1 플레이트의 일면에 형성된 홈 형상 및 상기 제1 플레이트의 타면에 형성된 홈 형상 사이에 형성되며,
    상기 격벽은 상기 제1 플레이트의 하면에 대해 경사진 형태를 갖거나, 곡선 형태를 갖는 것을 특징으로 하는 배터리 팩.
  41. 제 38 항에 있어서,
    상기 직선유로부는 제1 직선유로부 및 제2 직선유로부를 포함하며,
    상기 제1 직선유로부에는 냉각유체가 유입되는 유입홀이 형성되고,
    상기 제2 직선유로부에는 냉각유체가 유출되는 유출홀이 형성되는 것을 특징으로 하는 배터리 팩.
  42. 제 41 항에 있어서,
    상기 제3 플레이트에는 상기 유입홀 및 상기 유출홀과 대응되는 위치에 포트홈이 형성되는 것을 특징으로 하는 배터리 팩.
  43. 제 36 항에 있어서,
    상기 제3 플레이트는 상기 제1 플레이트의 면적보다 작게 형성되는 것을 특징으로 하는 배터리 팩.
  44. 제 43 항에 있어서,
    상기 제3 플레이트는 상기 제1 플레이트의 타면 중 상기 흡열물질이 수용된 영역에 대응하여 커버된 것을 특징으로 하는 배터리 팩.
  45. 제 36 항에 있어서,
    상기 제3 플레이트는 복수의 포트를 포함하는 것을 특징으로 하는 배터리 팩.
  46. 제 45 항에 있어서,
    상기 포트는 주입포트 및 흡입포트를 포함하되,
    상기 주입포트는 상기 제3 플레이트의 중심 영역에 형성되며,
    상기 흡입포트는 상기 제3 플레이트의 모서리 영역에 형성되는 것을 특징으로 하는 배터리 팩.
  47. 제 40 항에 있어서,
    상기 흡열물질은 상기 격벽의 측면 형태에 따라 대응하도록 형성되는 것을 특징으로 하는 배터리 팩.
  48. 제 36 항에 있어서,
    상기 유로부의 폭은 상기 수용부의 폭보다 큰 것을 특징으로 하는 배터리 팩.
PCT/KR2023/014481 2022-09-22 2023-09-22 배터리 팩 WO2024063594A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220120293A KR20240041134A (ko) 2022-09-22 2022-09-22 배터리 팩
KR10-2022-0120293 2022-09-22
KR10-2022-0177031 2022-12-16
KR1020220177031A KR20240094614A (ko) 2022-12-16 배터리 팩

Publications (1)

Publication Number Publication Date
WO2024063594A1 true WO2024063594A1 (ko) 2024-03-28

Family

ID=90454750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014481 WO2024063594A1 (ko) 2022-09-22 2023-09-22 배터리 팩

Country Status (1)

Country Link
WO (1) WO2024063594A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147565A (ko) * 2015-06-15 2016-12-23 주식회사 엘지화학 배터리 셀 냉각장치
KR20200001705A (ko) * 2018-06-28 2020-01-07 에스케이이노베이션 주식회사 냉각장치를 구비한 배터리 팩
KR20210078764A (ko) * 2019-12-19 2021-06-29 에이치엘그린파워 주식회사 배터리 모듈 냉각 구조
KR20220036518A (ko) * 2020-09-16 2022-03-23 에스케이온 주식회사 배터리 팩 및 이에 구비되는 배터리 모듈
KR20220070835A (ko) * 2020-11-23 2022-05-31 주식회사 엘지에너지솔루션 열확산 억제 구조를 포함하는 전지팩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160147565A (ko) * 2015-06-15 2016-12-23 주식회사 엘지화학 배터리 셀 냉각장치
KR20200001705A (ko) * 2018-06-28 2020-01-07 에스케이이노베이션 주식회사 냉각장치를 구비한 배터리 팩
KR20210078764A (ko) * 2019-12-19 2021-06-29 에이치엘그린파워 주식회사 배터리 모듈 냉각 구조
KR20220036518A (ko) * 2020-09-16 2022-03-23 에스케이온 주식회사 배터리 팩 및 이에 구비되는 배터리 모듈
KR20220070835A (ko) * 2020-11-23 2022-05-31 주식회사 엘지에너지솔루션 열확산 억제 구조를 포함하는 전지팩

Similar Documents

Publication Publication Date Title
WO2018194296A1 (ko) 배터리 모듈
WO2021221478A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022203278A1 (ko) 냉각수를 활용한 배터리 셀의 열확산 방지 구조를 갖춘 배터리 모듈 및 이를 포함하는 배터리 팩
WO2022191683A1 (ko) 버스바 어셈블리, 이러한 버스바 어셈블리를 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2022169127A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2024063594A1 (ko) 배터리 팩
WO2023153734A1 (ko) 배터리 랙 및 이를 포함하는 전력 저장 장치
WO2023158145A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2022260408A1 (ko) 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2023033553A1 (ko) 배터리 셀, 배터리 모듈, 배터리 팩 및 이를 포함하는 자동차
WO2021215837A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2022239934A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022216016A1 (ko) 배터리 모듈 및 이를 포함하는 ess
WO2022177157A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2023096178A1 (ko) 냉각 부재, 이를 포함하는 전지 모듈 및 전지 팩
WO2023277666A1 (ko) 냉각핀, 전지 모듈, 전지 팩 및 이를 포함하는 디바이스
WO2022197143A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023003427A1 (ko) 냉각 부재, 이를 포함하는 전지 모듈 및 전지 팩
WO2024043644A1 (ko) 유체 수송 배관
WO2023121142A1 (ko) 안전성이 향상된 전지 팩
WO2023090710A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2024136324A1 (ko) 화재 방지 성능이 향상된 전지 팩
WO2023128422A1 (ko) 안전성이 향상된 전지 팩
WO2024136322A1 (ko) 안전성이 향상된 전지 팩
WO2024019405A1 (ko) 전지팩 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868646

Country of ref document: EP

Kind code of ref document: A1