WO2024062997A1 - 化合物、有機薄膜および光電変換素子 - Google Patents

化合物、有機薄膜および光電変換素子 Download PDF

Info

Publication number
WO2024062997A1
WO2024062997A1 PCT/JP2023/033437 JP2023033437W WO2024062997A1 WO 2024062997 A1 WO2024062997 A1 WO 2024062997A1 JP 2023033437 W JP2023033437 W JP 2023033437W WO 2024062997 A1 WO2024062997 A1 WO 2024062997A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted aromatic
general formula
atom
Prior art date
Application number
PCT/JP2023/033437
Other languages
English (en)
French (fr)
Inventor
直朗 樺澤
俊二 望月
大和 島
優太 三枝
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Publication of WO2024062997A1 publication Critical patent/WO2024062997A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers

Definitions

  • the present invention relates to a compound useful as an electron blocking material, an organic thin film containing the compound, and a photoelectric conversion element using the organic thin film.
  • Photoelectric conversion elements such as light receiving elements are widely used in image sensors, solar cells, optical sensors, etc.
  • image sensors which are imaging devices, are expanding in both their applications and markets, with their use not only in cameras installed in television cameras and smartphones, but also in cameras for driving support systems.
  • inorganic materials such as Si films and Se films have been used as photoelectric conversion materials for image sensors, and the imaging methods used are a three-plate type that uses a prism to separate colors, and a single-plate type that uses a color filter. Two were the mainstream.
  • the three-plate type has a high light utilization rate, it is difficult to downsize because it uses a prism.
  • the single-plate type does not use a prism, so it is relatively easy to downsize, but it uses a color filter instead. The resolution and light utilization rate were poor (for example, see Non-Patent Document 1).
  • Organic materials have higher wavelength selectivity in light absorption than inorganic materials, so by combining materials that exhibit absorption wavelengths corresponding to each of the three primary colors, it is possible to efficiently utilize the light of the three primary colors without using a prism.
  • An image sensor can be constructed. This makes it possible to realize a compact image sensor with high light utilization efficiency.
  • organic photoelectric conversion materials can sense not only visible light but also near-infrared light and infrared light depending on the material selection. It has the advantage of being flexible and increasing the area of the element using a coating process (for example, see Non-Patent Document 2).
  • light-receiving elements using organic materials as photoelectric conversion materials are expected to be developed into next-generation imaging devices, and several examples of such light-receiving elements have been reported so far.
  • light receiving elements using quinacudrine and quinazoline derivatives see Patent Document 1
  • light receiving elements using benzothiebenzothiophene derivatives see Patent Document 2
  • light receiving elements using indolocarbazole see Patent Document 3
  • image sensors have characteristics such as contrast and power as indicators of their characteristics, and in order to improve these characteristics, it is necessary to reduce the current that flows when no light is incident (dark current).
  • One method to reduce this dark current is to insert a hole blocking layer or an electron blocking layer (hereinafter collectively referred to as "charge blocking layer") between the light receiving part (photoelectric conversion layer) and the electrode part. It has been known.
  • the charge blocking layer is placed at the interface between the electrode or conductive film that constitutes the device and the film laminated thereon, and quickly removes the necessary charge while controlling the reverse movement of holes or electrons. It has the function of transmitting information to electrodes and conductive films.
  • Patent Document 4 reports that the thermal stability of the device is improved by using an electron blocking material having a glass transition temperature (Tg) of 140° C. or higher. However, devices using this electron blocking material had insufficient performance as light receiving devices.
  • the present invention was made in view of the above situation, and an object thereof is to provide a compound useful as a charge blocking material. Another purpose is to provide an organic thin film with high heat resistance and excellent charge blocking and reverse charge transport properties, and a photoelectric conversion element with high heat resistance and improved dark current characteristics and photoelectric conversion efficiency. do.
  • the present inventors conducted intensive studies and found that a compound having a structure in which a benzofuran ring is fused to an indolocarbazole ring has high heat resistance. Furthermore, we have found that by introducing an arylamine structure into this condensed polycyclic skeleton, excellent hole transport properties and electron blocking properties are exhibited, and a compound useful as an electron blocking material can be realized.
  • the present invention was proposed based on such knowledge, and specifically has the following configuration.
  • Y represents O or S.
  • X 1 to X 12 may be the same or different, and each has a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, or a carbon atom number of 1 to 6 that may have a substituent.
  • Cycloalkyloxy group substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, or substituted or unsubstituted aryloxy group, which is a single bond or substituted or unsubstituted methylene They may be bonded to each other via a group, an oxygen atom, or a sulfur atom to form a ring, and one of X 1 to X 4 is a group represented by the following general formula (2).
  • L represents a single bond, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted aromatic heterocyclic group.
  • Ar 1 to Ar 4 may be the same or different and represent a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group.
  • a part of L and a part of Ar 3 , a part of L and a part of Ar 4 , and a part of Ar 3 and a part of Ar 4 are each a single bond, a substituted or unsubstituted methylene group, They may be bonded to each other via an oxygen atom or a sulfur atom to form a ring.
  • Ar 1 to Ar 4 may be the same or different from each other and represent a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group
  • R 1 to R 3 may be the same or different, and each has a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, or a carbon atom number of 1 to 6 that may have a substituent.
  • Straight chain or branched alkyl group optionally substituted cycloalkyl group having 5 to 10 carbon atoms, straight chain having 2 to 6 carbon atoms optionally having substituent or a branched alkenyl group, a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent, or a branched alkenyl group having 5 to 10 carbon atoms which may have a substituent.
  • Cycloalkyloxy group substituted or unsubstituted aromatic hydrocarbon group, substituted or unsubstituted aromatic heterocyclic group, or substituted or unsubstituted aryloxy group, which is a single bond or substituted or unsubstituted methylene They may be bonded to each other via a group, an oxygen atom or a sulfur atom to form a ring.
  • L represents a single bond, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted aromatic heterocyclic group.
  • Part of L and part of Ar 3 , part of L and part of Ar 4 , and part of Ar 3 and part of Ar 4 are each a single bond, a substituted or unsubstituted methylene group, or an oxygen atom. Alternatively, they may be bonded to each other via a sulfur atom to form a ring.
  • Ar 1 to Ar 4 in the general formula (1a) may be the same or different and represent a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group.
  • R 1 to R 3 may be the same or different and are a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted heteroaromatic hydrocarbon group, and L is A single bond or a substituted or unsubstituted aromatic hydrocarbon group, and a part of L and a part of Ar 3 , a part of L and a part of Ar 4 , a part of Ar 3 and Ar 4
  • the compound according to 2), wherein some of these may be bonded to each other via a single bond to form a ring.
  • Ar 1 and Ar 2 may be the same or different from each other and represent a substituted or unsubstituted aromatic hydrocarbon group or a substituted or unsubstituted aromatic heterocyclic group
  • L represents a single bond, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted aromatic heterocyclic group
  • R 4 to R 13 may be the same or different, and , represents a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted heteroaromatic hydrocarbon group.
  • An electron blocking material comprising the compound described in any one of 1) to 5).
  • a photoelectric conversion element comprising the organic thin film described in 7).
  • the compounds of the present invention are useful as electron blocking materials.
  • An organic thin film containing the compound of the present invention has high heat resistance and exhibits excellent hole transport and electron blocking properties.
  • this organic thin film as an electron blocking layer, it is possible to provide a photoelectric conversion element that has high heat resistance, low dark current, and high conversion efficiency.
  • FIG. 1 is a schematic cross-sectional view showing a configuration example of a light receiving element of the present invention. It is a schematic sectional view showing another example of composition of a light receiving element of the present invention.
  • between is a term expressing a range, for example, the description "5 through 10" means “5 to 10", and the numerical value written before and after "between” It means a range that includes as a lower limit value and an upper limit value, and a numerical range expressed using " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as a lower limit value and an upper limit value.
  • transparent refers to a visible light transmittance of 50% or more, for example 80% or more, for example 90% or more, for example 99% or more. Transmittance of visible light can be measured using an ultraviolet/visible spectrophotometer.
  • the compound of the present invention is a compound represented by the above general formula (1).
  • the compounds of the present invention include compounds represented by the above general formula (1a) and compounds represented by the above general formula (1b).
  • the groups represented by Ar 1 , Ar 2 , L, and R 4 to R 13 in general formula (1b) will be explained.
  • the aromatic ring constituting the "aromatic hydrocarbon group" of the "substituted or unsubstituted aromatic hydrocarbon group” represented by X 1 to X 12 , Ar 1 to Ar 4 , R 1 to R 14 and L is a monocyclic ring. It may be a condensed ring in which two or more rings are condensed, a connected ring in which two or more rings are connected by a single bond, or a spiro ring in which two or more rings are connected by a spiro bond. It's okay.
  • the number of fused rings is preferably 2 to 6, for example 2 to 4.
  • the number of connected rings is preferably 2 to 6, for example 2 to 4.
  • the number of carbon atoms in the aromatic ring is, for example, from 6 to 30, for example from 6 to 22, for example from 6 to 18, for example from 6 to 14, for example from 6 to 10.
  • aromatic hydrocarbon group for Ar 1 to Ar 4 and R 1 to R 3 include phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, spirobiflu. Examples include an olenyl group, an indenyl group, a pyrenyl group, a perylenyl group, a fluoranthenyl group, and a triphenylenyl group.
  • aromatic hydrocarbon group for L include, for example, a phenylene group, a biphenylene group, a terphenylene group, a naphthylene group, an anthracenylene group, a phenanthrenylene group, and the like.
  • the aromatic heterocycle constituting the "aromatic heterocyclic group" of the "substituted or unsubstituted aromatic heterocyclic group” represented by X 1 to X 12 , Ar 1 to Ar 4 , R 1 to R 14 and L is: It may be a single ring or a condensed ring in which two or more rings are condensed. In the case of fused rings, the number of fused rings is preferably 2 to 6, for example 2 to 4.
  • the heteroatoms constituting the aromatic heterocycle include nitrogen atoms, oxygen atoms, and sulfur atoms.
  • the number of carbon atoms in the aromatic heterocycle is, for example, 2 to 40, for example 2 to 30, for example 2 to 18.
  • aromatic heterocyclic group for X 1 to X 12 , Ar 1 to Ar 4 , R 1 to R 14 and L include pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, naphthyridinyl group , phenanthrolinyl group, acridinyl group, carbolinyl group, etc.
  • aromatic heterocyclic group for L include a thienylene group, a furanylene group, a pyridylene group
  • linear or branched alkyl group having 1 to 6 carbon atoms represented by X 1 to X 12 and R 1 to R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, etc. group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, etc., and "cycloalkyl group having 5 to 10 carbon atoms” Specific examples include cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, and the like.
  • X 1 to X 12 and R 1 to R 3 include a vinyl group, an allyl group, an isopropenyl group, and a 2-butenyl group.
  • linear or branched alkyloxy group having 1 to 6 carbon atoms represented by X 1 to X 12 and R 1 to R 3 include methyloxy group, ethyloxy group, n-propyloxy group, etc.
  • cycloalkyloxy group having 5 to 10 carbon atoms include isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, etc.
  • Examples of the group include cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyloxy group, 1-adamantyloxy group, and 2-adamantyloxy group.
  • aromatic ring constituting the "aryl” of the "substituted or unsubstituted aryloxy group” represented by X 1 to X 12 and R 1 to R 3 please refer to the "aromatic hydrocarbon group" in Ar 1 etc. above. Reference can be made to the description of the aromatic ring constituting the .
  • Specific examples of the "substituted or unsubstituted aryloxy group” include phenyloxy group, biphenylyloxy group, terphenylyloxy group, naphthioxyl group, anthracenyloxy group, phenanthrenyloxy group, etc. be able to.
  • Substituted or unsubstituted aromatic hydrocarbon group “substituted or unsubstituted aromatic heterocyclic group,” “substituted or unsubstituted aryloxy group,” and “substituted methylene group,” “substituent,” “carbon “Straight chain or branched alkyl group having 1 to 6 atoms”, “cycloalkyl group having 5 to 10 carbon atoms”, “straight chain or branched alkenyl group having 2 to 6 carbon atoms”, " The "substituent” that the "linear or branched alkyloxy group having 1 to 6 carbon atoms” may have is not particularly limited, but includes, for example, a deuterium atom, a cyano group, a nitro group; fluorine atom, halogen atoms such as chlorine atom, bromine atom, and iodine atom; silyl groups such as trimethylsilyl group and triphenylsilyl group
  • the present invention includes a group of compounds in which Ar 1 and Ar 2 in general formula (1) are each independently substituted or unsubstituted aromatic hydrocarbon groups.
  • the present invention includes a group of compounds in which Ar 3 and Ar 4 in general formula (1) are each independently substituted or unsubstituted aromatic hydrocarbon groups.
  • Ar 3 and Ar 4 in the general formula (1) are each independently substituted or unsubstituted aromatic hydrocarbon groups, and at least one of Ar 3 and Ar 4 has two or more aromatic rings. It includes a group of compounds having a connecting ring having a structure in which these are connected by a single bond. At this time, one or both of Ar 3 and Ar 4 may have a connecting ring.
  • one of X 1 to X 3 is a group represented by the general formula (2), and the remaining two groups may be the same or different, and may be a deuterium atom and an alkyl group.
  • An aromatic hydrocarbon group that may be substituted with at least one of an aryl group, or an aromatic heterocyclic group that may be substituted with at least one of a deuterium atom, an alkyl group, and an aryl group. It includes a group of compounds that are.
  • one of X 1 to X 3 is a group represented by the general formula (2), and X 4 to X 12 may be the same or different, and may be a hydrogen atom or a deuterium atom.
  • X 1 to X 3 is a group represented by the general formula (2), and X 4 to X 12 may be the same or different, and are a hydrogen atom or a deuterium atom. It includes a group of compounds that are.
  • R 1 to R 3 in general formula (1a) are a hydrogen atom, a deuterium atom, a substituted or unsubstituted aromatic hydrocarbon group, or a substituted or unsubstituted aromatic hydrocarbon group. is preferably an aromatic heterocyclic group. Note that R 1 to R 3 may be the same or different.
  • the compound represented by the general formula (1) is an A-B in which a partial structure B consisting of a group represented by the general formula (2) and a partial structure A other than the group represented by the general formula (2) are connected. It has the structure represented by . Specific examples of partial structure A and partial structure B will be shown below.
  • the partial structure A may be selected from A-1, A-5 to A-9, A-12 to A21, or may be selected from other structures.
  • the partial structure A may be selected from A-1 to A-4, A-10 to A-20, or may be selected from other structures.
  • partial structure A may be selected from among A-1 to A-12, or may be selected from among others.
  • partial structure B may be selected from B-1 to B-3, B-8 to B-23, or may be selected from other structures.
  • partial structure B may be selected from among B-1 to B-20, or may be selected from among others.
  • partial structure B may be selected from B-1 to B-12, or may be selected from other structures.
  • partial structure B may be selected from B-12, B-21, and B-22, or may be selected from other structures.
  • X 1 is a group represented by general formula (2), and X 2 and X 3 may be the same or different, and a deuterium atom and Aromatic hydrocarbon group optionally substituted with at least one of an alkyl group and an aryl group, or an aromatic group optionally substituted with a deuterium atom, at least one of an alkyl group and an aryl group
  • Aromatic carbide which is a heterocyclic group, in which Ar 1 to Ar 4 may be the same or different, and may be substituted with at least one of a deuterium atom, a halogen atom, an alkyl group, and an aryl group.
  • Compound group 1 can be shown which is a hydrogen group, or an aromatic heterocyclic group optionally substituted with at least one of a deuterium atom, a halogen atom, an alkyl group, and an aryl group.
  • Compound group 1 includes compound group 1a in which L is a single bond, compound group 1b in which L is a substituted or unsubstituted aromatic hydrocarbon group, and compound group 1b in which L is a substituted or unsubstituted aromatic heterocyclic group. Consists of group 1c.
  • Each of these compound groups 1a, 1b, and 1c can further satisfy at least one additional condition below.
  • One of the additional conditions is when X 1 to X 4 other than the group represented by general formula (2) are hydrogen atoms.
  • X 4 to Branched alkyl group linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent, cyclo having 5 to 10 carbon atoms which may have a substituent
  • An alkyloxy group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted aryloxy group, in which two adjacent groups bond to each other to create an aromatic X 4 to X 12 preferably represent a hydrogen atom, a deuterium atom, or the number of carbon atoms that may have a substituent.
  • One of the additional conditions is when X 1 to X 12 other than the group represented by general formula (2) are hydrogen atoms.
  • Ar 1 to Ar 4 are aromatic groups which may be the same or different and may be substituted with at least one of a deuterium atom, a halogen atom, an alkyl group, and an aryl group. This is a hydrocarbon group, preferably an aromatic hydrocarbon group which may be substituted with at least one of a deuterium atom, an alkyl group, and an aryl group.
  • At least one of Ar 3 and Ar 4 is an aromatic hydrocarbon group having a structure in which two or more aromatic rings are connected by a single bond.
  • One additional condition is when Y is O.
  • One additional condition is when L is a single bond.
  • Another preferred group of compounds represented by general formula (1) is a group in which X 2 is a group represented by general formula (2), X 1 and X 3 may be the same or different, and deuterium
  • Compound Group 2 is a hydrocarbon group, or an aromatic heterocyclic group optionally substituted with at least one of a deuterium atom, a halogen atom, an alkyl group, and an aryl group.
  • Compound group 2 includes compound group 2a in which L is a single bond, compound group 2b in which L is a substituted or unsubstituted aromatic hydrocarbon group, and compound group 2b in which L is a substituted or unsubstituted aromatic heterocyclic group. Consists of group 2c. These compound groups 2a, 2b, and 2c can also each satisfy at least one of the additional conditions described in compound group 1.
  • Another preferred group of compounds represented by general formula (1) is a group in which X 3 is a group represented by general formula (2), X 1 and X 2 may be the same or different, and deuterium
  • Compound Group 3 is a hydrocarbon group, or an aromatic heterocyclic group optionally substituted with at least one of a deuterium atom, a halogen atom, an alkyl group, and an aryl group.
  • Compound group 3 includes compound group 3a in which L is a single bond, compound group 3b in which L is a substituted or unsubstituted aromatic hydrocarbon group, and compound group 3b in which L is a substituted or unsubstituted aromatic heterocyclic group. Consists of group 3c. Each of these compound groups 3a, 3b, and 3c can also satisfy at least one of the additional conditions described in compound group 1.
  • Tables 1 to 3 show the structure of the compound of general formula (1) represented by AB by specifying the combination of partial structure A and partial structure B.
  • the partial structure A is any one of A-1 to A-21
  • the partial structure B is any one of B-1 to B-23.
  • Table 1 shows specific examples of compound group 1 (compounds 1-1 to 1-483 in which X 1 is a group represented by general formula (2)), and
  • Table 2 shows specific examples of compound group 2 (X 2 is Compounds 2-1 to 2-483), which are groups represented by general formula (2), and specific examples of compound group 3 (X Compounds 3, where 3 is a group represented by general formula (2)), -1 to 3-483).
  • a halogenated compound which is a precursor of the final product
  • a general coupling reaction using this halogenated compound and palladium can be performed. It can be synthesized by doing.
  • These compounds can be purified by column chromatography, adsorption purification with silica gel, activated carbon, activated clay, etc., recrystallization with a solvent, crystallization method, etc. Identification of compounds can be performed by NMR analysis.
  • NMR analysis it is preferable to measure the glass transition point (Tg) and the HOMO (Highest Occupied Molecular Orbital) energy level (HOMO level).
  • the glass transition point (Tg) is an index of the stability of a thin film state
  • the HOMO energy level is an index of hole transportability.
  • the organic thin film of the present invention is characterized by containing a compound represented by general formula (1).
  • a compound represented by general formula (1) For a description of the compound represented by general formula (1), reference can be made to the description in the column of ⁇ Compound represented by general formula (1)> above.
  • the organic thin film of the present invention may be composed only of the compound represented by the general formula (1), or may be composed of the compound represented by the general formula (1) in addition to the compound represented by the general formula (1). It may contain compounds other than the compound. Further, the compound represented by general formula (1) contained in the organic thin film may be one type selected from the group of compounds represented by general formula (1), or may be two or more types. Good too.
  • the organic thin film of the present invention can be formed by forming a film of the compound represented by general formula (1) using a known film forming method such as a vapor deposition method, a spin coating method, and an inkjet method. At this time, one type of compound represented by the general formula (1) may be used to form a film alone, but a plurality of types may be mixed to form a film. Furthermore, the film can be formed by mixing with a compound other than the compound represented by the general formula (1) within a range that does not impair the effects of the present invention.
  • the compound represented by the general formula (1) of the present invention has a relatively high glass transition temperature (Tg), has a HOMO energy level suitable as an energy level for a hole transport material, and has electron blocking properties. has. Therefore, an organic thin film containing the compound represented by the general formula (1) has high heat resistance and exhibits excellent hole transport properties and electron blocking properties.
  • electrochromium blocking in this specification means that when an organic thin film is provided adjacent to an anode, electron injection from the anode to the organic thin film is blocked at the adjacent interface. For example, in a photoelectric conversion element, if the dark current is smaller when a target organic thin film is provided than when the organic thin film is not provided, it is determined that this organic thin film has electron blocking properties. Can be done.
  • the compound represented by general formula (1) is useful as an electron blocking material, and an organic thin film containing this compound (organic thin film of the present invention) can be used as an electron blocking layer for organic devices such as photoelectric conversion elements. It is effectively used as In particular, the organic thin film of the present invention can be suitably used for a light receiving element that converts the intensity of light into an electrical signal, especially a light receiving element that constitutes an image sensor, and can also be used for optical sensors and organic solar cells. can. Furthermore, the organic thin film of the present invention can be employed in various organic devices such as organic light emitting diodes and organic transistors.
  • the photoelectric conversion element of the present invention is characterized in that it includes an organic thin film containing a compound represented by general formula (1).
  • a "photoelectric conversion element” in the present invention means an element that converts light energy into electricity.
  • the photoelectric conversion element of the present invention includes a light-receiving element, and includes, for example, a light-receiving element that constitutes an image sensor.
  • An organic thin film containing a compound represented by general formula (1) can be used as an electron blocking layer disposed between an anode and a photoelectric conversion layer.
  • the photoelectric conversion element of the present invention includes at least an anode, an electron blocking layer, a photoelectric conversion layer, and a cathode in this order, and the electron blocking layer contains a compound represented by general formula (1). It consists of an organic thin film containing
  • the photoelectric conversion element of the present invention includes an element having a laminated structure in which glass substrate 1 / transparent anode 2 / electron blocking layer 3 / photoelectric conversion layer 4 / cathode 5 are laminated in this order, as shown in FIG. . Further, as shown in FIG.
  • the photoelectric conversion element of the present invention includes an element having a laminated structure in which glass substrate 1 / cathode 5 / photoelectric conversion layer 4 / electron blocking layer 3 / transparent anode 2 are laminated in this order. included.
  • the photoelectric conversion element of the present invention is not limited to the structure shown in FIGS. 1 and 2.
  • the photoelectric conversion element of the present invention has at least an anode, an electron blocking layer, a photoelectric conversion layer, and a cathode in this order, and may further have another layer between each layer.
  • An example of an element having such a structure is an element having an anode, a first buffer layer (electron blocking layer), a photoelectric conversion layer, a second buffer layer (for example, a hole blocking layer), and a cathode in this order.
  • the organic thin film containing the compound represented by general formula (1) can also be used for a photoelectric conversion layer.
  • the substrate in the photoelectric conversion element of the present invention is not particularly limited, and may be a glass substrate, a plastic substrate, or the like, and may be transparent or opaque.
  • the photoelectric conversion layer is a layer for converting light energy into electricity, and more specifically, a layer that generates a charge separation state by light energy to generate holes and electrons.
  • the photoelectric conversion layer when the photoelectric conversion element of the present invention is a light receiving element, the photoelectric conversion layer generates signal charges according to the amount of received light.
  • the material constituting the photoelectric conversion layer may be an organic material or an inorganic material.
  • the photoelectric conversion layer may include at least one organic semiconductor film. The number of organic semiconductor films constituting the photoelectric conversion layer may be one or more.
  • the organic semiconductor film may be a p-type organic semiconductor film or an n-type organic semiconductor film, and the organic semiconductor film may be a p-type organic semiconductor film or an n-type organic semiconductor film. It may be a mixed film.
  • the mixed film may be a mixture of two types of materials, or a mixture of three or more types of materials.
  • Examples of the organic semiconductor layer composed of a plurality of organic semiconductor films include two selected from the group consisting of a p-type organic semiconductor film, an n-type organic semiconductor film, and a mixed film of a p-type organic semiconductor and an n-type organic semiconductor.
  • One example is a structure in which two or more layers are laminated.
  • a buffer layer may be inserted between adjacent organic semiconductor films.
  • the photoelectric conversion layer may have a bulk heterostructure in which a p-type organic semiconductor and an n-type organic semiconductor form a three-dimensional pn junction.
  • Inorganic materials used in the photoelectric conversion layer include crystalline silicon, amorphous silicon, microcrystalline silicon, crystalline selenium, amorphous selenium, chalcopalite compounds such as CuInGaSe, CuInSe 2 , AgAlSe 2 , AgInS 2 , and III-V group compounds.
  • Compound semiconductor materials such as GaAs, InP, AlGaAs, InGaP, and AlGaInP, as well as CdSe, CdS, In 2 Se 3 , Bi 2 Se 3 , PbSe, and PbS can be mentioned. It is also possible to use quantum dots made of these materials in the photoelectric conversion layer.
  • the p-type organic semiconductor used in the photoelectric conversion layer is a donor organic semiconductor, and is a compound that tends to donate electrons, mainly represented by hole-transporting organic compounds.
  • Examples of p-type organic semiconductors include, but are not limited to, naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, pentacene derivatives, quinacridone derivatives, chrysene derivatives, fluoranthene derivatives, phthalocyanine derivatives, and subphthalocyanine derivatives.
  • metal complexes with heterocyclic compounds as ligands benzothiophene derivatives, dinaphthothienothiophene derivatives, dianthracenethienothiophene derivatives, benzobisbenzothiophene derivatives, thienobisbenzothiophene, dibenzothienobisbenzothiophene derivatives, dithieno Thienoacene-based materials represented by benzodithiophene derivatives, dibenzothienodithiophene derivatives, benzodithiophene derivatives, naphthodithiophene derivatives, anthracenodithiophene derivatives, tetracenodithiophene derivatives, pentacenodithiophene derivatives, triarylamine compounds and amine derivatives such as carbazole compounds, indenocarbazole derivatives, and the like.
  • the n-type organic semiconductor used in the photoelectric conversion layer is an acceptor organic semiconductor, and refers to an organic compound that has the property of easily accepting electrons, mainly represented by electron-transporting organic compounds. More specifically, it refers to the organic compound that has a larger electron affinity when two organic compounds are brought into contact. Therefore, any organic compound can be used as the acceptor organic compound as long as it has electron-accepting properties.
  • fused aromatic carbocyclic compounds naphthalene, anthracene, fullerene, phenanthrene, tetracene, pyrene, perylene, perylene diimide, fluoranthene, or derivatives thereof
  • quinacridine nitrogen atoms, oxygen atoms, and sulfur atoms.
  • any conductive material that is generally used as an electrode can be used without particular restriction.
  • metals, metal oxides, metal nitrides, metal borides, organic conductive compounds, and these Examples include mixtures.
  • Specific examples include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), molybdenum oxide (MoO), and titanium oxide.
  • Metal nitrides such as titanium oxynitride (TiN x O x ) and titanium nitride (TiN); gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni), aluminum (Al ), mixtures or laminates of these metals and conductive metal oxides; organic conductive compounds such as polyaniline, polythiophene, polypyrrole; laminates of these organic conductive compounds and ITO, etc. It will be done.
  • the electron blocking layer is a layer for transporting holes generated in the photoelectric conversion layer to the anode and reducing dark current caused by injection of electrons from the anode.
  • the electron blocking layer is composed of an organic thin film containing a compound represented by general formula (1).
  • the thickness of the electron blocking layer is, for example, 3 to 100 nm, preferably 5 to 20 nm.
  • a hole blocking layer may be inserted between the cathode and the photoelectric conversion layer, if necessary.
  • the hole blocking layer is a layer for transporting electrons generated in the photoelectric conversion layer to the cathode and reducing dark current caused by injection of holes from the cathode.
  • the material used for the hole blocking layer preferably has a work function or HOMO level that is larger in absolute value than the work function or HOMO level of the material used for the electron blocking layer.
  • Examples include organic compounds and organometallic complexes containing nitrogen-containing heterocycles such as pyridine, quinoline, acridine, indole, imidazole, benzimidazole, and phenanthroline, and materials with low absorption in the visible light region are preferred. Further, in the case of forming a thin film of about 5 nm to 20 nm, fullerene and derivatives thereof having absorption in the visible light region can also be used.
  • the glass transition temperature of each synthesized compound was measured using a high-sensitivity differential scanning calorimeter (DSC3100SA, manufactured by Bruker AXS). Furthermore, the glass transition temperatures of comparative compounds (EBL-1) and (EBL-2) were measured in the same manner. The measurement results of glass transition temperature are summarized in Table 4.
  • Compound 3-1, Compound 2-1, and Compound 2-2 having the structure of general formula (1) all have a glass transition temperature of 175°C or higher, and the comparative compounds EBL-1, It had a higher glass transition temperature than the comparative compound EBL-2. From this, the compound represented by general formula (1) has high stability when formed into a thin film, and by using the compound represented by general formula (1), an element with excellent thermal stability can be realized. I found out that it can be done.
  • HOMO level HOMO energy level
  • PYS-202 ionization potential measuring device
  • the LUMO level of these compounds is much lower than the Fermi level of the electrode used as an anode (for example, ITO: 4.7 eV, gold: 5.1 eV), and it was confirmed that they have electron blocking performance. .
  • the hole mobilities of Compound 3-1, Compound 2-1, and Compound 2-2 are 1.3 ⁇ 10 ⁇ 4 to 4.9 ⁇ 10 ⁇ 4 cm 2 /Vs, The hole mobility was superior to that of Comparative Compound EBL-1 and Comparative Compound EBL-2.
  • an electron blocking layer 3, a photoelectric conversion layer 4, and a metal cathode 5 are deposited in this order on a glass substrate 1 on which an ITO electrode as a transparent anode 2 is formed.
  • the device was fabricated.
  • the vapor deposition was performed under reduced pressure conditions of 0.0001 Pa or less.
  • the glass substrate 1 with ITO was subjected to ultrasonic cleaning in isopropyl alcohol for 20 minutes, dried for 10 minutes on a hot plate heated to 200°C, and then subjected to UV ozone treatment. It lasted 15 minutes.
  • compound 3-1 is vapor-deposited to a film thickness of 5 nm to form an electron blocking layer 3, and on top of this, SubPC (p-type semiconductor) and C60 (n-type semiconductor) are deposited. ) to form a photoelectric conversion layer 4 with a thickness of 200 nm.
  • gold was deposited to a thickness of 100 nm to form a metal cathode 5, and a light receiving element 1 was obtained.
  • Light-receiving element 2, light-receiving element 3, and comparative light-receiving element were prepared in the same manner in this order, except that Compound 2-1, Compound 2-2, and Comparative Compound EBL-2 were used instead of Compound 3-1 as materials for electron blocking layer 3. 1 was produced.
  • the spectral sensitivity and bright current of each fabricated light receiving element were measured using a spectral sensitivity measuring device under the following measurement conditions.
  • the irradiation intensity at a specific wavelength during measurement was calibrated using a Si photodiode (S1337-1010BQ, manufactured by Hamamatsu Photonics).
  • the dark current the spectral radiation intensity to the light receiving element was set to zero, and the current value was measured under the same bias conditions.
  • the measurement results are shown in Table 8.
  • Equipment Spectral sensitivity measuring device SM-250A (manufactured by Bunko Keiki Co., Ltd.)
  • Light source xenon 150W
  • Spectral irradiance 2.0mW/cm 2 (550nm)
  • Effective irradiation area 10x10mm
  • Light receiving area 0.04cm 2
  • Source meter Keithley 2635B (manufactured by KEITHLEY)
  • Applied bias -1 to -3V
  • the dark current when -3V is applied is -9.9 ⁇ 10 -9 A/cm 2 for comparison photodetector 1, while photodetectors 1 to 3 have a dark current of -5.7 ⁇ 10 -9 A/cm 2 .
  • the value is as low as 9 to -7.6 ⁇ 10 ⁇ 9 A/cm 2 .
  • the conversion efficiency EQE when -3V is applied is also improved to 67-68% for light-receiving elements 1 to 3, compared to 61% for comparative light-receiving element 1.
  • Even when a bias of -1V and -2V is applied to the elements the light receiving elements 1 to 3 exhibit lower dark current and higher conversion efficiency EQE than the comparative light receiving element 1. This indicates that the dark current characteristics and conversion efficiency of the light receiving element can be significantly improved due to the high electron blocking properties and good hole transport properties of the compound of the present invention.
  • the compound of the present invention has the HOMO level, high heat resistance, and sufficiently high mobility necessary for the blocking layer of an organic photoelectric conversion element, and is particularly useful as a material for a light-receiving element. It can be used suitably.
  • the compounds of the present invention are useful as electron blocking materials.
  • organic devices such as photodetectors, optical sensors, organic solar cells, organic light emitting diodes, and organic transistors that constitute image sensors, heat resistance and dark current can be improved.
  • Device characteristics such as characteristics and photoelectric conversion efficiency can be improved. Therefore, the present invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Indole Compounds (AREA)

Abstract

下記一般式で表される化合物は光電変換素子用の材料として有用である。YはOまたはS、Ar1とAr2は芳香族炭化水素基等、X1~X4のうちの1個はジアリールアミノ基等である。

Description

化合物、有機薄膜および光電変換素子
 本発明は、電子ブロッキング材料として有用な化合物、その化合物を含む有機薄膜、およびその有機薄膜を用いた光電変換素子に関するものである。
 受光素子等の光電変換素子は、撮像素子や太陽電池、光センサー等に広く利用されている。その中でも撮像素子であるイメージセンサーは、テレビカメラやスマートホンに搭載されるカメラだけでなく、運転支援システム用のカメラにも利用され始めるなど、用途、市場共に広がりをみせている。
 これまで、撮像素子の光電変換材料には、Si膜やSe膜といった無機材料が使用されており、その撮像方法としてはプリズムを用いて色を分ける3板式と、カラーフィルターを用いた単板式の2つが主流であった。しかし、3板式は、光の利用率は高いもののプリズムを使用するため小型化が難しく、単板式は、プリズムを使用しないため小型化は比較的容易であるが、代わりにカラーフィルターを使用するため解像度、光の利用率が悪かった(例えば、非特許文献1参照)。
 そこで、近年、有機物を光電変換材料に利用するための研究開発が盛んに行われている。有機物は、無機物と比較して光吸収の波長選択性が高いため、3原色のそれぞれに対応した吸収波長を示す材料を組み合わせることで、プリズムを使用せずとも3原色の光を効率よく利用できる撮像素子を構築することができる。これにより、光の利用効率が高くて小型の撮像素子を実現することが可能となる。また、有機系の光電変換材料は、可視光に限らず、材料の選定次第で、近赤外光や赤外光のセンシングが可能になることの他、無機物では達成することのできない、素子のフレキシブル化や塗布プロセスを用いた素子の大面積化も実現できるというメリットがある(例えば、非特許文献2参照)。
 このようなことから、有機物を光電変換材料に用いた受光素子は、次世代の撮像素子への展開が期待されており、そうした受光素子の例が、これまでにもいくつか報告されている。例えばキナクドリン、キナゾリン誘導体を用いた受光素子(特許文献1参照)、ベンゾチエベンゾチオフェン誘導体を用いた受光素子(特許文献2参照)、インドロカルバゾールを用いた受光素子(特許文献3参照)などが報告されている。
特許第4945146号公報 特開2018-170487号公報 特開2018-085427号公報 特開2011-187937号公報 国際公開第2012/114928号
映像情報学会メディア協会誌、60,3,291(2006) Adv.Mater.28,4766(2016)
 ところで、撮像素子には特性の指標としてコントラストや電力といったものがあり、これらの特性を向上させるためには、光が入射していないときに流れる電流(暗電流)を低減する必要がある。こうした暗電流を低減する手法の一つとして、受光部(光電変換層)と電極部の間に、正孔ブロッキング層や電子ブロッキング層(以下、「電荷ブロッキング層」と総称する)を挿入する手法が知られている。電荷ブロッキング層は、素子を構成する電極または導電性を有する膜と、その上に積層された膜との界面に配置され、正孔または電子の逆移動を制御しながら、必要な電荷を速やかに電極や導電性膜に伝達する機能を持つ。
 しかしながら、撮像素子の製造プロセスでは、カラーフィルターや保護膜の設置、素子のハンダ付け等に際して熱が加わるため、電荷ブロッキング層には高い熱安定性を有することが求められる。これに対して、これまでの電荷ブロッキング層の多くは、ガラス転移温度(Tg)が十分に高いとは言えず、熱安定性が不足するという問題があった。一方、特許文献4には、ガラス転移温度(Tg)が140℃以上である電子ブロッキング材料を使用することにより、素子の熱安定性が向上したことが報告されている。しかし、この電子ブロッキング材料を用いた素子は、受光素子としての性能が不十分であった。
 本発明は上記の状況を鑑みてなされたものであり、電荷ブロッキング材料として有用な化合物を提供することを目的とする。また、耐熱性が高く、優れた電荷ブロッキング性と逆電荷輸送性を有する有機薄膜、および、耐熱性が高く、暗電流特性と光電変換効率が改善された光電変換素子を提供することも目的とする。
 そこで本発明者らは前記の目的を達成するために鋭意検討を行った結果、インドロカルバゾール環にベンゾフラン環が縮合した構造を有する化合物が高い耐熱性を有することを見出した。さらに、この縮合多環骨格にアリールアミン構造を導入することにより優れた正孔輸送性と電子ブロッキング性が発現して、電子ブロッキング材料として有用な化合物が実現するとの知見を得た。本発明はこうした知見に基づいて提案されたものであり、具体的に以下の構成を有する。
1)下記一般式(1)で表される化合物。
 一般式(1)中、YはOまたはSを表す。X~X12は、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または、置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよいが、X~Xのうちの1個は下記一般式(2)で表される基である。
*は結合位置を表す。Lは単結合、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表す。Ar~Arは、相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表す。また、Lの一部とArの一部、Lの一部とArの一部、Arの一部とArの一部は、それぞれ、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
2)下記一般式(1a)で表される、1)に記載の化合物。
前記一般式(1a)中、Ar~Arは、相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表し、R~Rは、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または、置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。Lは単結合、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表す。Lの一部とArの一部、Lの一部とArの一部、Arの一部とArの一部は、それぞれ、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
3)前記一般式(1a)中のAr~Arが、相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表し、R~Rが、相互に同一でも異なってもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の複素芳香族炭化水素基であり、Lは単結合、または、置換もしくは無置換の芳香族炭化水素基であり、また、Lの一部とArの一部、Lの一部とArの一部、Arの一部とArの一部は、それぞれ、単結合を介して互いに結合して環を形成してもよい、2)に記載の化合物。
4)下記一般式(1b)で表される、1)に記載の化合物。
(一般式(1b)中、ArおよびArは、相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表し、Lは単結合、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表す。R~R13は、相互に同一でも異なっていてもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の複素芳香族炭化水素基を表す。Lの一部とR、Lの一部とR13、RとRは、それぞれ互いに結合して、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子となり環を形成してもよい。)
5)ガラス転移温度(Tg)が170℃以上である、1)~4)のいずれか1つに記載の化合物。
6)1)~5)のいずれか1つに記載の化合物からなる電子ブロッキング材料。
7)1)~5)のいずれか1つに記載の化合物を含む有機薄膜。
8)7)に記載の有機薄膜を含む、光電変換素子。
9)前記有機薄膜が電子ブロッキング層である、8)に記載の光電変換素子。
10)受光素子である、8)または9)に記載の光電変換素子。
 本発明の化合物は電子ブロッキング材料として有用である。本発明の化合物を含む有機薄膜は、耐熱性が高く、優れた正孔輸送性と電子ブロッキング性を示す。この有機薄膜を電子ブロッキング層として用いることにより、高い耐熱性を有し、暗電流が低く、変換効率が高い光電変換素子を提供できる。
本発明の受光素子の構成例を示す概略断面図である。 本発明の受光素子の他の構成例を示す概略断面図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において、「ないし」とは範囲を表す用語であり、例えば「5ないし10」との記載は、「5以上10以下」を意味し、「ないし」の前後に記載される数値を下限値および上限値として含む範囲を意味し、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「透明」とは、可視光の透過率が50%以上であることをいい、例えば80%以上、例えば90%以上、例えば99%以上である。可視光の透過率は紫外・可視分光光度計により測定することができる。
<一般式(1)で表される化合物>
 本発明の化合物は、上記一般式(1)で表される化合物である。本発明の化合物は、上記一般式(1a)で表される化合物や上記一般式(1b)で表される化合物を含む。
 以下において、一般式(1)のX~X12、Ar、Ar;一般式(2)のL、Ar、Ar;一般式(1a)のAr~Ar、L、R~R;一般式(1b)のAr、Ar、L、R~R13が表す基について説明する。
 X~X12、Ar~Ar、R~R14およびLが表す「置換もしくは無置換の芳香族炭化水素基」の「芳香族炭化水素基」を構成する芳香環は、単環であっても、2つ以上の環が縮合した縮合環であってもよく、2つ以上の環が単結合で連結した連結環や2つ以上の環がスピロ結合で連結したスピロ環であってもよい。縮合環である場合、縮合している環の数は好ましくは2~6であり、例えば2~4である。連結環である場合、連結している環の数は好ましくは2~6であり、例えば2~4である。芳香環の炭素原子数は、例えば6~30、例えば6~22、例えば6~18、例えば6~14、例えば6~10である。Ar~ArおよびR~Rにおける「芳香族炭化水素基」の具体例として、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、スピロビフルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などを挙げることができる。Lにおける「芳香族炭化水素基」の具体例として、例えば、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラセニレン基、フェナントレニレン基などを挙げることができる。
 X~X12、Ar~Ar、R~R14およびLが表す「置換もしくは無置換の芳香族複素環基」の「芳香族複素環基」を構成する芳香族複素環は、単環であっても、2つ以上の環が縮合した縮合環であってもよい。縮合環である場合、縮合している環の数は好ましくは2~6であり、例えば2~4である。芳香族複素環を構成する複素原子として、窒素原子、酸素原子、硫黄原子を挙げることができる。芳香族複素環の炭素原子数は、例えば2~40、例えば2~30、例えば2~18である。X~X12、Ar~Ar、R~R14およびLにおける「芳香族複素環基」の具体例として、例えば、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基などを挙げることができる。Lにおける「芳香族複素環基」の具体例として、例えば、チエニレン基、フラニレン基、ピリジレン基、ベンゾフラニレン基、ベンゾチエレン基などを挙げることができる。
 「置換もしくは無置換の縮合多環芳香族基」については、上記の「置換もしくは無置換の芳香族炭化水素基」および「置換もしくは無置換の芳香族複素環基」についての説明のうち、2つ以上の環が縮合した縮合環である場合についての説明と具体例を参照することができる。
 X~X12、R~Rが表す「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」の具体例として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などを挙げることができ、「炭素原子数5ないし10のシクロアルキル基」の具体例としては、例えばシクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基などを挙げることができる。
 X~X12、R~Rが表す「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」の具体例として、例えば、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などを挙げることができる。
 X~X12、R~Rが表す「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」の具体例として、例えば、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基などを挙げることができ、「炭素原子数5ないし10のシクロアルキルオキシ基」の具体例として、例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などを挙げることができる。
 X~X12、R~Rが表す「置換もしくは無置換のアリールオキシ基」の「アリール」を構成する芳香環の説明については、上記のAr等における「芳香族炭化水素基」を構成する芳香環についての記載を参照することができる。「置換もしくは無置換のアリールオキシ基」の具体例として、例えば、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチオキシル基、アントラセニルオキシ基、フェナントレニルオキシ基などを挙げることができる。
 「置換もしくは無置換の芳香族炭化水素基」、「置換もしくは無置換の芳香族複素環基」、「置換もしくは無置換のアリールオキシ基」および「置換メチレン基」における「置換基」、「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基」、「炭素原子数5ないし10のシクロアルキル基」、「炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基」、「炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基」が有していてもよい「置換基」としては、特に限定されないが、例えば、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;トリメチルシリル基、トリフェニルシリル基などのシリル基;メチル基、エチル基、プロピル基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、スピロビフルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基;ピリジル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基のような基を挙げることができ、これらの置換基の水素原子は、さらに、ここに例示した置換基で置換されていてもよい。
 本発明は、一般式(1)のArおよびArが、各々独立に置換もしくは無置換の芳香族炭化水素基である化合物群を含む。本発明は、一般式(1)のArおよびArが、各々独立に置換もしくは無置換の芳香族炭化水素基である化合物群を含む。本発明は、一般式(1)のArおよびArは、各々独立に置換もしくは無置換の芳香族炭化水素基であって、ArおよびArの少なくとも一方が、2つ以上の芳香環が単結合で連結した構造を有する連結環を有する化合物群を含む。このとき、連結環を有するものは、ArおよびArのうちの一方であっても両方であってもよい。
 本発明は、X~Xのうちの1個が一般式(2)で表される基であり、残りの2個が、相互に同一でも異なってもよく、重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基、または、重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族複素環基である化合物群を含む。本発明は、X~Xのうちの1個が一般式(2)で表される基であり、X~X12が、相互に同一でも異なってもよく、水素原子、重水素原子、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換もしくは無置換の芳香族炭化水素基である化合物群を含む。本発明は、X~Xのうちの1個が一般式(2)で表される基であり、X~X12が、相互に同一でも異なってもよく、水素原子または重水素原子である化合物群を含む。
 また、耐熱性および電荷移動度の観点から、一般式(1a)中のR~Rは、水素原子、重水素原子、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基であることが好ましい。なお、R~Rは、相互に同一でも異なってもよい。
 一般式(1)で表される化合物は、一般式(2)で表される基からなる部分構造Bと、一般式(2)で表される基以外の部分構造Aを連結したA-Bで表される構造を有する。以下において、部分構造Aと部分構造Bの具体例を示す。
部分構造Aの具体例
部分構造Bの具体例[一般式(2)で表される基の具体例]
 例えば、部分構造Aは、A-1、A-5からA-9、A-12からA21の中から選択してもよいし、それ以外のものの中から選択してもよい。例えば、部分構造Aは、A-1からA-4、A-10からA-20の中から選択してもよいし、それ以外のものの中から選択してもよい。例えば、部分構造Aは、A-1からA-12の中から選択してもよいし、それ以外のものの中から選択してもよい。例えば、部分構造Bは、B-1~B-3、B-8からB-23の中から選択してもよいし、それ以外のものの中から選択してもよい。例えば、部分構造Bは、B-1からB-20の中から選択してもよいし、それ以外のものの中から選択してもよい。例えば、部分構造Bは、B-1からB-12の中から選択してもよいし、それ以外のものの中から選択してもよい。例えば、部分構造Bは、B-12、B-21、B-22の中から選択してもよいし、それ以外のものの中から選択してもよい。
 一般式(1)で表される好ましい化合物群として、Xが一般式(2)で表される基であり、XおよびXが、相互に同一でも異なってもよく、重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基、または、重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族複素環基であり、Ar~Arが、相互に同一でも異なってもよく、重水素原子とハロゲン原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基、または、重水素原子とハロゲン原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族複素環基である化合物群1を示すことができる。化合物群1は、Lが単結合である化合物群1aと、Lが置換もしくは無置換の芳香族炭化水素基である化合物群1bと、Lが置換もしくは無置換の芳香族複素環基である化合物群1cからなる。これらの化合物群1a、1b、1cは、それぞれがさらに以下の少なくとも1個の追加条件を満たすことができる。
 追加条件の1つは、一般式(2)で表される基以外のX~Xが水素原子である場合である。追加条件の1つは、X~X12は、相互に同一でも異なってもよく、水素原子、重水素原子、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基または置換もしくは無置換のアリールオキシ基であって、隣り合う2個が互いに結合して芳香族炭化水素環を形成するのに必要な基を構成していている場合であり、好ましくは、X~X12は水素原子、重水素原子、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、または、置換もしくは無置換の芳香族炭化水素基である場合である。追加条件の1つは、一般式(2)で表される基以外のX~X12が水素原子である場合である。追加条件の1つは、Ar~Arが、相互に同一でも異なってもよく、重水素原子とハロゲン原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基である場合であり、好ましくは重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基である場合である。追加条件の1つは、ArおよびArの少なくとも一方が、2つ以上の芳香環が単結合で連結した構造を有する芳香族炭化水素基である。追加条件の1つは、YがOである場合である。追加条件の1つは、Lが単結合である場合である。
 一般式(1)で表される別の好ましい化合物群として、Xが一般式(2)で表される基であり、XおよびXが、相互に同一でも異なってもよく、重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基、または、重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族複素環基であり、Ar~Arが、相互に同一でも異なってもよく、重水素原子とハロゲン原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基、または、重水素原子とハロゲン原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族複素環基である化合物群2を示すことができる。化合物群2は、Lが単結合である化合物群2aと、Lが置換もしくは無置換の芳香族炭化水素基である化合物群2bと、Lが置換もしくは無置換の芳香族複素環基である化合物群2cからなる。これらの化合物群2a、2b、2cも、それぞれが化合物群1にて記載した追加条件の少なくとも1個を満たすことができる。
 一般式(1)で表される別の好ましい化合物群として、Xが一般式(2)で表される基であり、XおよびXが、相互に同一でも異なってもよく、重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基、または、重水素原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族複素環基であり、Ar~Arが、相互に同一でも異なってもよく、重水素原子とハロゲン原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族炭化水素基、または、重水素原子とハロゲン原子とアルキル基とアリール基のうちの少なくとも1個で置換されていてもよい芳香族複素環基である化合物群3を示すことができる。化合物群3は、Lが単結合である化合物群3aと、Lが置換もしくは無置換の芳香族炭化水素基である化合物群3bと、Lが置換もしくは無置換の芳香族複素環基である化合物群3cからなる。これらの化合物群3a、3b、3cも、それぞれが化合物群1にて記載した追加条件の少なくとも1個を満たすことができる。
 一般式(1)で表される化合物の具体例を以下の表に示す。表1~3では、部分構造Aと部分構造Bの組み合わせを特定することによりA-Bで表される一般式(1)の化合物の構造を示している。部分構造AはA-1からA-21のいずれかであり、部分構造BはB-1からB-23のいずれかである。表1には化合物群1の具体例(Xが一般式(2)で表される基である化合物1-1から1-483)、表2には化合物群2の具体例(Xが一般式(2)で表される基である化合物2-1から2-483)、表3には化合物群3の具体例(Xが一般式(2)で表される基である化合物3-1から3-483)を示している。
 表1~3で特定される化合物1-1から3-483は、一般式(1)のYがOである化合物の具体例である。これらの各化合物のYをOからSに置換した対応化合物を、順に化合物1-1Sから3-483Sとしてここに開示する。
 一般式(1)で表される化合物の具体例として、以下の構造を有する化合物も示す。
<一般式(1)で表される化合物の合成方法>
 上述した縮合多環を含有する新規化合物は、例えば以下のようなスキーム等によって最終物前駆体である、ハロゲン化体が合成でき、このハロゲン化体とパラジウムを用いた一般的なカップリング反応を行うことで合成できる。
 これらの化合物の精製は、カラムクロマトグラフィーによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行うことができる。化合物の同定は、NMR分析によって行うことができる。物性値として、ガラス転移点(Tg)とHOMO(Highest Occupied Molecular Orbital)のエネルギー準位(HOMO準位)の測定を行うことが好ましい。ガラス転移点(Tg)は薄膜状態の安定性の指標となるものであり、HOMOのエネルギー準位は正孔輸送性の指標となるものである。
<有機薄膜>
 本発明の有機薄膜は、一般式(1)で表される化合物を含むことを特徴とする。一般式(1)で表される化合物についての説明は、上記の<一般式(1)で表される化合物>の欄の記載を参照することができる。
 本発明の有機薄膜は、一般式(1)で表される化合物のみで構成されていてもよいし、一般式(1)で表される化合物の他に、一般式(1)で表される化合物以外の化合物を含んでいてもよい。また、有機薄膜が含む一般式(1)で表される化合物は、一般式(1)で表される化合物群の中から選択された1種類であってもよいし、2種類以上であってもよい。
 本発明の有機薄膜は、一般式(1)で表される化合物を、蒸着法、スピンコート法およびインクジェット法などの公知の成膜方法にて成膜することにより形成することができる。このとき、一般式(1)で表される化合物は、1種類単独で成膜してもよいが、複数種を混合して成膜することもできる。さらに本発明の効果を損なわない範囲で、一般式(1)で表される化合物以外の化合物と混合して成膜することもできる。
 本発明の一般式(1)で表される化合物は、ガラス転移温度(Tg)が比較的高く、HOMOのエネルギー準位が正孔輸送材料のエネルギー準位として適切であり、また、電子ブロッキング性を有する。そのため、一般式(1)で表される化合物を含む有機薄膜は、耐熱性が高く、優れた正孔輸送性と電子ブロッキング性を示す。ここで、本明細書中における「電子ブロッキング」とは、陽極に有機薄膜を隣接させて設けたとき、陽極から有機薄膜への電子注入が、その隣接界面で妨げられることを意味する。例えば光電変換素子においては、対象となる有機薄膜を設けた場合の方が、その有機薄膜を設けない場合よりも暗電流が小さくなることをもって、この有機薄膜が電子ブロッキング性を有すると判定することができる。
 以上のことから、一般式(1)で表される化合物は電子ブロッキング材料として有用であり、この化合物を含む有機薄膜(本発明の有機薄膜)は、光電変換素子等の有機デバイスの電子ブロッキング層として効果的に用いられる。中でも、本発明の有機薄膜は、光の強度を電気信号に変換する受光素子、特に、撮像素子を構成する受光素子に好適に用いることができ、光センサーや有機太陽電池にも採用することができる。さらに、本発明の有機薄膜は、有機発光ダイオードや有機トランジスタなど、様々な有機デバイスに採用することができる。
<光電変換素子>
 次に、本発明の光電変換素子について説明する。
 本発明の光電変換素子は、一般式(1)で表される化合物を含む有機薄膜を含むことを特徴とする。有機薄膜の説明については、上記の<有機薄膜>の欄の記載を参照することができる。
 本発明における「光電変換素子」は、光エネルギーを電気に変換する素子のことを意味する。本発明の光電変換素子には受光素子が含まれ、例えば、撮像素子を構成する受光素子が含まれる。
 一般式(1)で表される化合物を含む有機薄膜は、陽極と光電変換層の間に配置する電子ブロッキング層として用いることができる。この場合、本発明の光電変換素子は、少なくとも陽極、電子ブロッキング層、光電変換層、および陰極をこの順に有して構成され、このうち電子ブロッキング層は一般式(1)で表される化合物を含む有機薄膜で構成される。本発明の光電変換素子には、図1に示すように、ガラス基板1/透明陽極2/電子ブロッキング層3/光電変換層4/陰極5の順で積層された積層構造を有する素子が含まれる。また、本発明の光電変換素子には、図2に示すように、ガラス基板1/陰極5/光電変換層4/電子ブロッキング層3/透明陽極2の順で積層された積層構造を有する素子が含まれる。ただし、本発明の光電変換素子は、図1および図2に示す構造に限定されるものではない。例えば、本発明の光電変換素子は、少なくとも陽極、電子ブロッキング層、光電変換層、および陰極をこの順に有しており、さらに、各層の間に他の層を有していてもよい。そのような構造を有する素子として、順に陽極、第1バッファ層(電子ブロッキング層)、光電変換層、第2バッファ層(例えば、正孔ブロッキング層)、陰極を有する素子が挙げられる。
 また、一般式(1)で表される化合物を含む有機薄膜は、光電変換層に使用することもできる。
 以下において、本発明の光電変換素子に用いうる各部材および各層について説明する。
(基板)
 本発明の光電変換素子における基板としては、特に限定は無く、ガラス基板、プラスチック基板等を用いることができ、また透明であっても不透明であってもよい。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、セルロースアセテートフタレート、セルロースナイトレート、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルまたはポリアリレート類、有機無機ハイブリッド樹脂等のプラスチック基板、ガラス、石英、酸化アルミニウム、シリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウムスズ酸化物等の無機基板、金、銅、クロム、チタン、アルムニウム等の金属基板等を挙げることができる。これらのうち、トランジスタの形成の観点から、ガラス、およびシリコンが好ましい。
(光電変換層)
 光電変換層は、光エネルギーを電気に変換するための層であり、より具体的には、光エネルギーにより電荷分離状態を生じて正孔と電子を生成する層である。例えば、本発明の光電変換素子が受光素子であるとき、光電変換層は、受光した光量に応じた信号電荷を発生する。
 光電変換層を構成する材料は、有機材料でも無機材料でもよい。また、光電変換層は少なくとも1層の有機半導体膜を有するものであってもよい。光電変換層を構成する有機半導体膜の数は、1層であっても複数層であってもよい。光電変換層が1層の有機半導体膜からなる場合、その有機半導体膜は、p型有機半導体膜であっても、n型有機半導体膜であってもよく、p型有機半導体とn型有機半導体の混合膜であってもよい。混合膜は2種の材料を混合したものであってもよく、3種以上の材料を混合したものであってもよい。複数の有機半導体膜で構成された有機半導体層の例として、p型有機半導体膜、n型有機半導体膜、および、p型有機半導体とn型有機半導体の混合膜からなる群より選択される2つ以上を積層した構造を挙げることができる。ここで、隣り合う有機半導体膜同士の間にはバッファ層を挿入してもよい。また、光電変換層は、p型有機半導体とn型有機半導体が三次元的なp-n接合を形成したバルクヘテロ構造を有していてもよい。
 光電変換層に用いられる無機材料としては、結晶シリコン、アモルファスシリコン、微結晶シリコン、結晶セレン、アモルファスセレン、カルコパライト系化合物であるCuInGaSe、CuInSe、AgAlSe2 、AgInS2、III-V族化合物であるGaAs、InP、AlGaAs、InGaP、AlGaInP、さらには、CdSe、CdS、InSe、BiSe、PbSe、PbS等の化合物半導体材料を挙げることができる。これらの材料からなる量子ドットを光電変換層に使用することも可能である。
 光電変換層に用いられるp型有機半導体は、ドナー性の有機半導体であり、主に正孔輸送性の有機化合物に代表される電子を供与しやすい性質がある化合物である。p型有機半導体としては、特に限定されないが、例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、ペンタセン誘導体、キナクリドン誘導体、クリセン誘導体、フルオランテン誘導体、フタロシアニン誘導体、サブフタロシアニン誘導体、複素環化合物を配位子とする金属錯体、ベンゾチオフェン誘導体、ジナフトチエノチオフェン誘導体、ジアントラセノチエノチオフェン誘導体、ベンゾビスベンゾチオフェン誘導体、チエノビスベンゾチオフェン、ジベンゾチエノビスベンゾチオフェン誘導体、ジチエノベンゾジチオフェン誘導体、ジベンゾチエノジチオフェン誘導体、ベンゾジチオフェン誘導体、ナフトジチオフェン誘導体、アントラセノジチオフェン誘導体、テトラセノジチオフェン誘導体、ペンタセノジチオフェン誘導体に代表されるチエノアセン系材料、トリアリールアミン化合物およびカルバゾール化合物などのアミン系誘導体、インデノカルバゾール誘導体などを挙げることができる。
 光電変換層に用いられるn型有機半導体は、アクセプター性有機半導体であり、主に電子輸送性有機化合物に代表される電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機化合物を接触させたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、縮合芳香族炭素環化合物(ナフタレン、アントラセン、フラーレン、フェナントレン、テトラセン、ピレン、ペリレン、ペリレンジイミド、フルオランテン、またはこれらの誘導体)、キナクドリン、窒素原子、酸素原子および硫黄原子からなる群より選択される1以上のヘテロ原子を有する5ないし7員のヘテロ環を含む化合物(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。なお、これに限らず、前記したように、ドナー性有機化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプター性有機半導体として用いてよい。
(陽極および陰極)
 陽極、陰極としては、一般に電極として用いられている導電材料であれば特に制限なく用いることができ、例えば、金属、金属酸化物、金属窒化物、金属硼化物、有機導電性化合物、およびこれらの混合物等が挙げられる。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)、酸化モリブデン(MoO)、酸化チタン等の導電性金属酸化物;酸化窒化チタン(TiN)、窒化チタン(TiN)等の金属窒化物;金(Au)、白金(Pt)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)等の金属;さらにこれらの金属と導電性金属酸化物との混合物または積層物;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性化合物;これらの有機導電性化合物とITOとの積層物、などが挙げられる。
(電子ブロッキング層)
 電子ブロッキング層は、光電変換層で生じた正孔を陽極に輸送するとともに、陽極から電子が注入されることによる暗電流を低減するための層である。
 本発明の光電変換素子では、電子ブロッキング層を、一般式(1)で表される化合物を含む有機薄膜で構成する。有機薄膜の説明については、<有機薄膜>の欄の記載を参照することができる。
 電子ブロッキング層の厚さは、例えば3~100nmであり、好ましくは5~20nmである。
(正孔ブロッキング層)
 本発明の光電変換素子には、必要に応じて、陰極と光電変換層との間に正孔ブロッキング層が挿入されていてもよい。
 正孔ブロッキング層は、光電変換層で生じた電子を陰極に輸送するとともに、陰極から正孔が注入されることによる暗電流を低減するための層である。
 正孔ブロッキング層に用いられる材料は、仕事関数またはHOMO準位の絶対値が電子ブロッキング層に用いられる材料の仕事関数またはHOMO準位の絶対値よりも大きい材料であることが好ましい。例えば、ピリジン、キノリン、アクリジン、インドール、イミダゾール、ベンズイミダゾール、フェナントロリンのような含窒素複素環を含む有機化合物および有機金属錯体などが挙げられ、可視光領域の吸収が少ない材料であることが好ましい。また、5nm~20nm程度の薄膜で形成する場合には、可視光領域に吸収を有するフラーレンおよびその誘導体などを用いることもできる。
 以下に合成例および実施例により本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明を逸脱しない限り適宜変更することができる。したがって、本発明は、以下の実施例に限定されるものではない。
<前駆体1の合成>
 窒素気流下、反応容器に中間体1 10.0g、カリウムt‐ブトキシド5.72g、DMSO(N,N-ジメチルスルホキシド)100mLを加え、130~145℃まで加温し、20時間撹拌した。放冷後、反応溶液にトルエン100mL、塩水150mLを加え分液し、得られた有機相を硫酸マグネシウムによる脱水を行った後、濃縮した。得られたクルードをシリカゲルカラムクロマトグラフィーによる精製を行い、前駆体1の淡黄白色粉を3.64g(収率44%)得た。
 得られた淡黄白色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)にて以下の21個の水素原子のシグナルを検出した。
δ(ppm)=8.72(1H),8.77(1H),8.66(1H),7.80(1H),7.53-7.48(2H),7.47-7.37(4H),7.33(1H),7.20-7.08(6H)、6.79-6.72(4H)。
<前駆体2の合成>
 窒素気流下、反応容器に中間体2 15.5g、ヨウ化銅(I)520mg、炭酸カリウム4.54g、3,5-ジ-t‐ブチルサリチル酸683mg、DMSO160mLを仕込み、加温、125~130℃で10時間撹拌した。放冷後、反応液に水160mLを加えた後、析出した固体をろ過により集めた。得られた固体をトルエン300mLに加熱溶解し、ここへシリカ18gを添加後、撹拌した。90℃でろ過を行い、シリカを除去した後、濃縮、析出固体にメタノールを加え、撹拌後、ろ過することで、前駆体2の茶色粉体10.9g(収率75%)を得た。
 得られた茶色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)にて以下の21個の水素原子のシグナルを検出した。
δ(ppm)=8.74(1H),8.67-8.63(2H),7.90(1H)、7.55(1H),7.51-6.71(16H)。
<化合物3-1の合成>
 反応容器に前駆体1 3.50g、ビス(ビフェニル-4-イル)アミン2.42g、酢酸パラジウム65.1mg、トリシクロヘキシルホスフィン(0.6Mトルエン溶液)0.46mL、ナトリウムt‐ブトキシド821mg、キシレン50mLを加え、脱気を行った後、加熱、100~115℃で22時間撹拌した。反応液に対し、シリカおよび活性白土を用いた吸着精製操作を2回行った後に濃縮し、得られたクルードにメタノールを加え、析出している固体をろ過により集めた。得られた固体に対しTHF(テトラヒドロフラン)/酢酸エチルによる、晶析を繰り返すことで、化合物3-1の白色粉を3.96g(収率91%)得た。
 得られた白色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)にて以下の39個の水素原子のシグナルを検出した。
δ(ppm)=8.70(1H),8.53(1H),8.33(1H),7.83(1H),7.62(4H),7.57(4H)7.48-7.29(15H),7.27(1H),7.18-7.07(7H),6.72(2H),6.71(2H)。
<化合物2-1の合成>
 実施例1において、前駆体1に代えて前駆体2を用い、同様の条件で反応を行い、化合物2-1の黄色粉を1.82g(収率37%)得た。
 得られた黄色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)にて以下の39個の水素vのシグナルを検出した。
δ(ppm)=8.76(1H),8.61(2H),7.70(1H),7.65-7.55(8H),7.48-7.30(17H),7.20-7.08(6H),6.76(4H)。
<化合物2-2の合成>
 実施例2において、ビス(ビフェニル-4-イル)アミンに代えて4-アニリノビフェニルを用い、同様の条件で反応を行い、化合物2-2の黄白色粉を1.65g(収率33%)得た。
 得られた黄白色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)にて以下の35個の水素原子のシグナルを検出した。
δ(ppm)=8.74(1H),8.58(2H),7.67-7.52(5H),7.45-7.26(16H),7.18-7.05(7H),6.75(4H)。
<ガラス転移温度の測定>
 合成した各化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によってガラス転移温度を測定した。また、比較化合物(EBL-1)および(EBL-2)についても同様にしてガラス転移温度を測定した。ガラス転移温度の測定結果を表4にまとめて示す。
特許第4945146号公報の電子ブロッキング材料
特開2018-085427号公報の電子ブロッキング材料
 表4に示すように、一般式(1)の構造を有する化合物3-1、化合物2-1、化合物2-2は、いずれもガラス転移温度が175℃以上であり、比較化合物EBL-1、比較化合物EBL-2と比較して高いガラス転移温度を有していた。このことから、一般式(1)で表される化合物は薄膜状態としたときに安定性が高く、一般式(1)で表される化合物を用いることにより、熱安定性に優れた素子が実現できることがわかった。
<有機薄膜の作製>
 ITO付き基板の上に、真空蒸着法にて、化合物3-1、化合物2-1、化合物2-2、比較化合物EBL-1、比較化合物EBL-2をそれぞれ膜厚100nmに蒸着して、各有機薄膜を作製した。
<HOMO準位の測定>
 作製した各有機薄膜について、イオン化ポテンシャル測定装置(住友重機械工業株式会社、PYS-202)によってHOMOのエネルギー準位(HOMO準位)を測定した。測定されたHOMO準位の絶対値を表5にまとめて示す。
 表5に示すように、化合物3-1、化合物2-1、化合物2-2のHOMO準位の絶対値は5.4~5.5eVであり、カルバゾール化合物などの正孔輸送材料が持つHOMO準位と同等であった。このことから、一般式(1)で表される化合物が、良好な正孔輸送能力を有することが確認された。
 また、作製した各有機薄膜について紫外可視分光高度計(日立製作所株式会社、U-3000)を使用して吸収スペクトルを測定し、そのスペクトルの吸収端および上記HOMO準位からギャップを求め、LUMO準位を算出した。LUMO準位の絶対値を表6に示す。
 これら化合物のLUMO準位は陽極に使用される電極のフェルミ準位はより十分に小さく(例えばITO:4.7eV、金:5.1eV)程度であり、電子ブロッキング性能を有することが確認された。
<正孔移動度測定用の素子の作製>
 また、ITO付きガラス基板上に、真空蒸着法にて、化合物3-1、化合物2-1、化合物2-2、比較化合物EBL-1、比較化合物EBL-2をそれぞれ膜厚3~4μmで蒸着して、各有機薄膜を形成した。続いて、各有機薄膜の上に、アルミニウムを膜厚100nmに蒸着して電極を形成することにより、正孔移動度測定用の素子を作製した。
<正孔移動度の測定>
 水分や酸素の吸着による劣化を防止するため、有機EL用水分ゲッターシートを貼り付けたガラスキャップを用意し、作製した各素子を、窒素雰囲気下、ガラスキャップで封止した。このガラス封止した各素子について、過渡光電流測定装置により、下記の測定条件で正孔移動度を測定した。測定結果を表7にまとめて示す。
(測定条件)
 装置:タイムオブフライト測定装置TOF―401(オプテル社製)
 励起光源:窒素レーザ(337.1nm)
 光パルス幅:1nsec以下
 測定面積:0.04cm
 試料温度:25℃
 負荷抵抗:50Ω
 電界強度:0.25MV/cm
 表7に示すように、化合物3-1、化合物2-1、化合物2-2の正孔移動度は、1.3×10-4~4.9×10-4cm/Vsであり、比較化合物EBL-1、比較化合物EBL-2の正孔移動度よりも優れていた。
<受光素子の作製>
 本実施例では、透明陽極2としてのITO電極が形成されたガラス基板1の上に、電子ブロッキング層3、光電変換層4、金属陰極5の順に蒸着して、図1の層構成を有する受光素子を作製した。ここで、蒸着は0.0001Pa以下の減圧条件下で行った。
 具体的には、まず、ITO付きガラス基板1に、イソプロピルアルコール中にて超音波洗浄を20分間行った後、200℃に加熱したホットプレート上にて10分間乾燥し、さらに、UVオゾン処理を15分間行った。このITO付きガラス基板の上に、化合物3-1を、膜厚が5nmとなるように蒸着して電子ブロッキング層3を形成し、この上に、SubPC(p型半導体)とC60(n型半導体)とを二元蒸着して膜厚200nmの光電変換層4を形成した。このとき、化合物の蒸着速度比はSubPC:C60=50:50とした。この光電変換層4の上に、金を膜厚100nmに蒸着して金属陰極5を形成し、受光素子1とした。
 電子ブロッキング層3の材料として化合物3-1の代わりに化合物2-1、化合物2-2、比較化合物EBL-2を用いた以外は、同様にして順に受光素子2、受光素子3、比較受光素子1を作製した。
<受光素子の評価>
 作製した各受光素子の分光感度および明電流を、分光感度測定装置を用いて、下記測定条件により測定した。測定時の特定波長における照射強度は、Siフォトダイオード(S1337-1010BQ、浜松フォトニクス社製)を用いて校正した。暗電流については、受光素子への分光放射強度をゼロにして、同様のバイアス条件で電流値を測定した。この測定結果を表8に示す。
(測定条件)
 装置:分光感度測定装置SM-250A(分光計器社製)
 光源:キセノン150W
 分光放射照度:2.0mW/cm(550nm)
 有効照射面積:10×10mm
 受光面積:0.04cm
 面内不均一性:±5%以内
 ソースメータ:ケースレー2635B(KEITHLEY社製)
 印加バイアス:-1~-3V
 表8に示すように、-3V印加時における暗電流は、比較受光素子1の-9.9×10-9A/cmに対して、受光素子1~3ではー5.7×10-9~-7.6×10-9A/cmと低い値となっている。また-3V印加時の変換効率EQEにおいても、比較受光素子1の61%に対して、受光素子1~3では67~68%と向上している。素子における-1Vおよび-2Vのバイアス印加時にも、受光素子1~3は比較受光素子1の素子と比べ、低い暗電流と高い変換効率EQEが示されている。このことは、本発明の化合物の高い電子ブロッキング性と良好な正孔輸送性により、受光素子の暗電流特性と変換効率を大幅に改善できることを示している。
 以上の結果から明らかなように、本発明の化合物は、有機光電変換素子のブロッキング層に必要なHOMO準位、高い耐熱性、十分な高移動度を有しており、特に受光素子用材料として好適に使用できる。
 本発明の化合物は電子ブロッキング材料として有用である。例えば撮像素子を構成する受光素子、光センサー、有機太陽電池、有機発光ダイオード、有機トランジスタなどの有機デバイスにおいて、本発明の化合物を含む有機薄膜を電子ブロッキング層として用いることにより、耐熱性と暗電流特性、光電変換効率等のデバイス特性を改善することができる。このため、本発明は産業上の利用可能性が高い。
1 ガラス基板
2 透明陽極
3 電子ブロッキング層
4 光電変換層
5 陰極
L 光

Claims (10)

  1. 下記一般式(1)で表される化合物。
    (一般式(1)中、YはOまたはSを表す。X~X12は、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または、置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよいが、X~Xのうちの1個は下記一般式(2)で表される基である。
    *は結合位置を表す。Lは単結合、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表す。Ar~Arは、相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表す。また、Lの一部とArの一部、Lの一部とArの一部、Arの一部とArの一部は、それぞれ、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。)
  2. 下記一般式(1a)で表される、請求項1に記載の化合物。
    (一般式(1a)中、Ar~Arは、相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表し、R~Rは、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキル基、置換基を有していてもよい炭素原子数2ないし6の直鎖状もしくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1ないし6の直鎖状もしくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5ないし10のシクロアルキルオキシ基、置換もしくは無置換の芳香族炭化水素基、置換もしくは無置換の芳香族複素環基、または、置換もしくは無置換のアリールオキシ基であって、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。Lは単結合、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表す。Lの一部とArの一部、Lの一部とArの一部、Arの一部とArの一部は、それぞれ、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。)
  3. 前記一般式(1a)中のAr~Arが、相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表し、R~Rが、相互に同一でも異なってもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の複素芳香族炭化水素基であり、Lは単結合、または、置換もしくは無置換の芳香族炭化水素基であり、また、Lの一部とArの一部、Lの一部とArの一部、Arの一部とArの一部は、それぞれ、単結合を介して互いに結合して環を形成してもよい、請求項2に記載の化合物。
  4. 下記一般式(1b)で表される、請求項1に記載の化合物。
    (一般式(1b)中、ArおよびArは、相互に同一でも異なってもよく、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表し、Lは単結合、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の芳香族複素環基を表す。R~R13は、相互に同一でも異なっていてもよく、水素原子、置換もしくは無置換の芳香族炭化水素基、または、置換もしくは無置換の複素芳香族炭化水素基を表す。Lの一部とR、Lの一部とR13、RとRは、それぞれ互いに結合して、単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子となり環を形成してもよい。)
  5. ガラス転移温度(Tg)が170℃以上である、請求項1に記載の化合物。
  6. 請求項1~5のいずれか1項に記載の化合物からなる電子ブロッキング材料。
  7. 請求項1~5のいずれか1項に記載の化合物を含む有機薄膜。
  8. 請求項7に記載の有機薄膜を含む、光電変換素子。
  9. 前記有機薄膜が電子ブロッキング層である、請求項8に記載の光電変換素子。
  10. 受光素子である、請求項8に記載の光電変換素子。
PCT/JP2023/033437 2022-09-22 2023-09-13 化合物、有機薄膜および光電変換素子 WO2024062997A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022163538 2022-09-22
JP2022-163538 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062997A1 true WO2024062997A1 (ja) 2024-03-28

Family

ID=90454385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033437 WO2024062997A1 (ja) 2022-09-22 2023-09-13 化合物、有機薄膜および光電変換素子

Country Status (2)

Country Link
TW (1) TW202426455A (ja)
WO (1) WO2024062997A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099507A1 (en) * 2013-12-27 2015-07-02 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2020145693A1 (ko) * 2019-01-09 2020-07-16 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20200086619A (ko) * 2019-01-09 2020-07-17 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200119039A (ko) * 2019-04-09 2020-10-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
CN113248532A (zh) * 2020-05-30 2021-08-13 浙江华显光电科技有限公司 一种有机化合物及含有该化合物的有机光电元件与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099507A1 (en) * 2013-12-27 2015-07-02 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2020145693A1 (ko) * 2019-01-09 2020-07-16 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20200086619A (ko) * 2019-01-09 2020-07-17 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200119039A (ko) * 2019-04-09 2020-10-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
CN113248532A (zh) * 2020-05-30 2021-08-13 浙江华显光电科技有限公司 一种有机化合物及含有该化合物的有机光电元件与应用

Also Published As

Publication number Publication date
TW202426455A (zh) 2024-07-01

Similar Documents

Publication Publication Date Title
JP7077326B2 (ja) 光電変換素子、光センサ、撮像素子、化合物
JP6848077B2 (ja) 光電変換素子、光センサ、及び撮像素子
JP5988001B1 (ja) 光電変換素子およびこれを用いたイメージセンサ
JP6610257B2 (ja) 光電変換素子ならびにそれを用いたイメージセンサ、太陽電池、単色検知センサおよびフレキシブルセンサ
WO2014156718A1 (ja) 光電変換素子、撮像素子、光センサ、光電変換素子の使用方法
KR20220091870A (ko) 화합물 및 이를 포함하는 광전 소자, 이미지 센서 및 전자 장치
JP6675005B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2018105269A1 (ja) 光電変換素子、光センサ、及び、撮像素子
WO2017018351A1 (ja) 光電変換素子、撮像素子、光センサ、化合物
WO2024062997A1 (ja) 化合物、有機薄膜および光電変換素子
JP7565524B2 (ja) 組成物、光電変換素子および撮像装置
JP2022120273A (ja) 光電変換素子用有機薄膜、光電変換素子及び撮像素子
JP2013012535A (ja) 光電変換素子およびその使用方法、撮像素子、光センサ、光電変換膜
JP2024127793A (ja) 受光素子用有機薄膜、およびそれを用いた受光素子
WO2022071444A1 (ja) 光電変換素子に用いる有機薄膜、及びその光電変換素子
JP7572830B2 (ja) 化合物及びこれを含む光電素子並びにイメージセンサー及び電子装置
CN114656488A (zh) 具有吲哚并咔唑环的化合物、受光元件用材料、有机薄膜、受光元件及拍摄元件
JP2023118081A (ja) 光電変換素子に用いる材料および有機薄膜
KR20220109343A (ko) 광전 변환 소자 및 촬상 소자
JP6674547B2 (ja) 光電変換素子、撮像素子、光センサ、化合物
JP2022108268A (ja) 光電変換素子に用いる有機薄膜、及びその光電変換素子
CN115874145A (zh) 在光电转换元件中使用的有机薄膜
JP2022120323A (ja) 光電変換素子に用いる有機薄膜、及びその光電変換素子
TWI611594B (zh) 光電轉換元件、攝影元件、光感測器
JP2022123944A (ja) 光電変換素子に用いる有機薄膜、及びその光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868120

Country of ref document: EP

Kind code of ref document: A1