WO2024062988A1 - Resin film, scribing device, and scribing method - Google Patents

Resin film, scribing device, and scribing method Download PDF

Info

Publication number
WO2024062988A1
WO2024062988A1 PCT/JP2023/033380 JP2023033380W WO2024062988A1 WO 2024062988 A1 WO2024062988 A1 WO 2024062988A1 JP 2023033380 W JP2023033380 W JP 2023033380W WO 2024062988 A1 WO2024062988 A1 WO 2024062988A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
resin film
contact surface
scribing
substrate support
Prior art date
Application number
PCT/JP2023/033380
Other languages
French (fr)
Japanese (ja)
Inventor
守 細谷
亮輔 池内
孝志 川畑
亮 森
Original Assignee
三星ダイヤモンド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星ダイヤモンド工業株式会社 filed Critical 三星ダイヤモンド工業株式会社
Publication of WO2024062988A1 publication Critical patent/WO2024062988A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a resin film, a scribing device, and a scribing method.
  • foldable smartphones so-called foldable smartphones
  • a scribing device is used to cut out the glass member.
  • a scribing device forms a groove (also referred to as a scribe line or trench line) on the surface of a glass substrate placed on a substrate support using a scribing tool (for example, see Patent Document 1). After the grooves are formed, a plurality of glass components are obtained from one glass substrate by dividing the glass substrate at the groove positions.
  • Patent Document 1 discloses interposing a polyethylene terephthalate (PET) film between the glass substrate and the substrate support.
  • PET polyethylene terephthalate
  • the glass parts are taken out one by one using a pick-up device or the like, but if one of the glass parts is lifted as it is, the adjacent glass part may get caught. Therefore, when taking out a plurality of glass parts, one glass part to be taken out is first shifted laterally and separated from the adjacent glass part, and then that glass part is lifted. At this time, if the coefficient of friction of the film interposed between the glass component and the substrate support is high, it becomes difficult to shift the glass component laterally, and there is a problem that the glass component cannot be taken out appropriately.
  • the glass substrate when cutting a glass substrate after scribing, the glass substrate may be taken out from the scribing device or transported to the cutting device. A similar problem occurs in this case as well. Furthermore, if the film has low rigidity (softness), especially in the case of a thin glass substrate, scribing becomes difficult because the substrate sinks due to the pressing of the tool.
  • the present invention it is possible to easily hold the substrate to the substrate support part while being interposed between the substrate and the substrate support part, and furthermore, it is possible to appropriately take out a plurality of components obtained from the board.
  • the purpose of the present invention is to provide a resin film, a scribing device, and a scribing method that can perform the following steps.
  • the resin film when scribing a substrate supported by the substrate support, the resin film is disposed between the substrate and the substrate support, the resin film is porous, and It has air permeability between the first contact surface with the substrate and the second contact surface with the substrate support, has a hardness of 1.6 to 33.5 N/mm 2 by nanoindentation method, and has pin-on A resin film is provided whose first contact surface has a coefficient of friction of 1.0 or less as measured by a disk test.
  • a substrate support section that supports the substrate, a processing section that performs scribing on the substrate supported by the substrate support section, and a resin disposed between the substrate and the substrate support section.
  • a film, and a reduced pressure suction section provided on the substrate support section to suck the substrate through the resin film, the resin film has porousity and has a first contact surface with the substrate, and the substrate support section.
  • the hardness is 1.6 to 33.5 N/mm 2 by nanoindentation method, and the friction coefficient of the first contact surface is 1 by pin-on-disk test.
  • a scribing device is provided in which the scribing device has a .0 or less.
  • a method for scribing a substrate in which the substrate is placed on the resin film of the substrate support portion on which the resin film is placed, and vacuum suction is applied to the substrate support portion through the resin film.
  • the resin film is porous and has a first contact surface with the substrate. , has air permeability between the second contact surface with the substrate support, has a hardness of 1.6 to 33.5 N/mm 2 by nanoindentation method, and has a hardness of 1.6 to 33.5 N/mm 2 by the pin-on-disk test of the first contact surface.
  • a scribing method is provided in which the coefficient of friction is 1.0 or less.
  • the substrate can be sucked through the resin film, and the substrate can be held by the substrate support. Therefore, the effort of fixing the resin film and the substrate with tape or the like can be eliminated.
  • the hardness of the resin film measured by the nanoindentation method is 1.6 to 33.5 N/ mm2
  • the friction coefficient of the first contact surface of the resin film measured by the pin-on-disk test is 1.0 or less, the parts obtained from the substrate can be easily shifted sideways, and the multiple parts can be appropriately removed.
  • FIG. 1 is a schematic cross-sectional view showing an example of a resin film and a scribing device according to an embodiment.
  • FIG. 2 is a schematic plan view showing an example of a resin film and a scribing device according to the embodiment. It is an exploded perspective view showing a part of resin film and a scribing device concerning an embodiment. It is a sectional view showing an example of the resin film concerning an embodiment.
  • FIG. 2 is an enlarged cross-sectional view showing a state in which a substrate is sucked in the scribing device according to the embodiment. It is a figure showing an example of the manufacturing method of the resin film concerning an embodiment. It is a figure showing an example of the manufacturing method of the resin film concerning an embodiment.
  • FIG. 10 is a flowchart illustrating an example of a method for scribing a substrate according to an embodiment. It is a figure showing one process of the scribing method of the substrate concerning an embodiment. It is a figure showing one process of the scribing method of the substrate concerning an embodiment. Continuing from FIG. 10, it is a diagram showing one step of the substrate scribing method according to the embodiment. Continuing from FIG.
  • FIG. 10 it is a diagram showing one step of the substrate scribing method according to the embodiment.
  • FIG. 11 it is a diagram showing one step of the substrate scribing method according to the embodiment.
  • FIG. 12 is a diagram illustrating one step of the substrate scribing method according to the embodiment, following FIG. 12 .
  • FIG. 13 is a diagram illustrating one step of the substrate scribing method according to the embodiment, following FIG. 13 .
  • 1 is a table showing the results of evaluation tests of resin films according to examples.
  • a direction perpendicular to the XY plane is referred to as a Z direction (vertical direction).
  • the X direction, Y direction, and Z direction will be described assuming that the direction indicated by the arrow in the figure is the + direction, and the direction opposite to the direction indicated by the arrow is the - direction.
  • FIG. 1 is a schematic cross-sectional view showing an example of a resin film 40 and a scribing device 1 according to an embodiment.
  • FIG. 2 is a schematic plan view showing an example of the resin film 40 and the scribing device 1 according to the embodiment.
  • FIG. 3 is an exploded perspective view showing a part of the resin film 40 and the scribing device 1 according to the embodiment.
  • the scribing apparatus 1 includes a substrate support section 10, a processing section 20, a vacuum suction section 30, a resin film 40, and a control section 50.
  • the substrate support section 10 supports the substrate S on the upper surface 11 side.
  • the substrate S is, for example, a glass substrate having a predetermined thickness.
  • the substrate S is a rectangular substrate having a rectangular shape such as a square or a rectangle in a plan view, that is, viewed from the Z direction (vertical direction), but is not limited to being a rectangular substrate and may have a circular or elliptical shape. , oval shape, trapezoid shape, etc.
  • the thickness of the substrate S is, for example, 100 ⁇ m or less.
  • the substrate S has a processed surface S1 and a lower surface S2.
  • the surface to be processed S1 is oriented upward when supported by the substrate support section 10, and is scribed by a scribing tool (scribe tool) 23, which will be described later.
  • the lower surface S2 faces toward the substrate support 10 when supported by the substrate support 10.
  • the substrate S is not limited to being a glass substrate, and may be other brittle material substrates, resin substrates, or the like.
  • the substrate support portion 10 is provided in a size that allows the substrate S to be placed on the upper surface 11, and includes a space portion 12 and a suction hole 13.
  • the substrate support section 10 fixes the substrate S on the upper surface 11 side via the resin film 40.
  • the space part 12 is provided inside the substrate support part 10. The size of the space 12 is arbitrary.
  • the upper surface of the space 12 communicates with the suction hole 13, and the lower surface communicates with a suction pipe 31 of a reduced pressure suction section 30, which will be described later.
  • a plurality of suction holes 13 are provided so as to communicate with the space portion 12 from the upper surface 11 of the substrate support portion 10 in the ⁇ Z direction (downward).
  • the number and arrangement of the suction holes 13 are arbitrary.
  • the plurality of suction holes 13 may be arranged such that the distance between adjacent suction holes 13 is constant or almost constant, or they may be arranged concentrically around the upper surface 11 of the substrate support part 10. good.
  • the plurality of suction holes 13 may be arranged concentrically around the upper surface 11 of the substrate support section 10, for example.
  • the plurality of suction holes 13 are provided at least in the upper surface 11 in a range where the resin film 40 is placed. The number of suction holes 13 is appropriately set depending on the sizes of the resin film 40 and the substrate S.
  • a configuration in which a plurality of suction holes 13 are opened in the upper surface 11 of the substrate support portion 10 is described as an example, but the present invention is not limited to this configuration.
  • a plurality of suction grooves may be formed on the upper surface 11 of the substrate support section 10. In this case, a portion of the suction groove is communicated with the space 12 via the communication hole.
  • the substrate support section 10 is rotated on the XY plane by a rotation mechanism (not shown), and is positioned at a predetermined angle with respect to the X direction, for example.
  • the processing unit 20 performs scribing processing on the processed surface S1 of the substrate S.
  • the processing section 20 includes a processing head 21, a drive section 22, and a scribing tool 23.
  • the processing head 21 is arranged above the substrate support part 10, is supported by a head support part (not shown), and is movable in the X direction and the Y direction.
  • the head support unit (not shown) includes, for example, a gantry that straddles the substrate support unit 10 in the Y direction and is movable in the X direction, a Y slider that is movable in the Y direction relative to the gantry, and a gantry that is movable in the Y direction relative to the gantry.
  • the processing head 21 is supported by a lifting table, and is movable in the X and Y directions by moving the gantry in the X direction, moving the Y slider in the Y direction, and raising and lowering the elevating section. Further, as the head support section (not shown), for example, a robot arm may be used.
  • the processing head 21 is moved via the above-described head support section (not shown) by driving the drive section 22.
  • the drive section 22 is composed of a gantry drive section, a Y slider drive section, and an elevator platform drive section.
  • the driving of the driving section 22 is controlled by the control section 50.
  • Data regarding the position, movement amount, movement speed, etc. of the processing head 21 is stored in advance in a storage section (not shown) provided in the control section 50.
  • the control unit 50 reads various data from the storage unit and controls the operation of the processing head 21.
  • the scribing tool 23 is, for example, fixed to the -Y side surface of the processing head 21 via a holder. Tool 23 is replaceable.
  • the attachment position of the tool 23 to the processing head 21 is arbitrary; for example, the tool 23 may be attached to the -Z side surface (lower surface) of the processing head 21, or may be attached to the +X side surface.
  • the lower end of the tool 23 has a blade portion 23a for scribing the surface S1 of the substrate S to be processed.
  • the material of the blade portion 23a is not particularly limited as long as it can scribe the processed surface S1 of the substrate S, but diamond is preferable. More preferably, single crystal diamond is used. Further, polycrystalline diamond or sintered diamond may be used.
  • a type is used in which the blade part 23a is slid on the surface S1 to be processed of the substrate S to perform the scribing process. A type with a cutting edge may also be used.
  • the reduced pressure suction unit 30 is provided below the substrate support unit 10.
  • the reduced pressure suction unit 30 includes a suction tube 31 and a suction device 32.
  • the suction tube 31 is arranged approximately at the center of the lower surface of the substrate support section 10 and communicates with the space section 12 .
  • the suction device 32 is, for example, a suction pump, and is connected to the suction pipe 31.
  • As the suction device 32 a known device can be used as long as it has a suction function.
  • driving the suction device 32 By driving the suction device 32, the pressure in the space 12 is reduced through the suction pipe 31.
  • each of the plurality of suction holes 13 sucks the resin film 40 placed on the upper surface 11 of the substrate support part 10.
  • Driving of the suction device 32 is controlled by a control section 50.
  • the resin film 40 is a porous resin film with air permeability, and is disposed between the substrate S and the substrate support section 10 as shown in FIGS. 1 to 3.
  • FIG. 4 is a cross-sectional view showing an example of the resin film 40 according to the embodiment. As shown in FIG. 4, the resin film 40 has a first contact surface 41, a second contact surface 42, and a gap 43. The size of the resin film 40 is the same as or larger than the substrate S in plan view.
  • the gap 43 is provided so as to penetrate the first contact surface 41 and the second contact surface 42 . That is, the resin film 40 has air permeability between the first contact surface 41 and the second contact surface 42 due to the voids 43 .
  • the resin film 40 preferably has a porosity of, for example, 50 to 70%.
  • the void 43 is formed by a plurality of voids communicating with each other, and the size of each void is preferably 250 to 2600 nm, for example.
  • the thickness t (film thickness) of the resin film 40 is, for example, preferably 20 to 50 ⁇ m, more preferably 25 to 40 ⁇ m.
  • the hardness of the resin film 40 is preferably 1.6 to 33.5 N/mm 2 by, for example, a nanoindentation method, and more preferably 5.17 to 33.5 N/mm 2 .
  • the friction coefficient of the first contact surface 41 of the resin film 40 measured by a pin-on-disk test is preferably, for example, 1.0 or less, and more preferably 0.845 or less. Note that the material, manufacturing method, etc. of the resin film 40 will be described later.
  • FIG. 5 is an enlarged cross-sectional view showing the state in which the substrate S is sucked in the scribing device 1 according to the embodiment.
  • suction device 32 when the suction device 32 is driven, suction is started from the suction hole 13 (see the white arrow) and sucks the resin film 40. This suction force reaches the lower surface S2 of the substrate S through the gap 43 of the resin film 40.
  • the substrate S is sucked to the upper surface 11 of the substrate support part 10 (see the arrow), and is held (fixed) to the substrate support part 10 with the resin film 40 sandwiched between the substrate S and the upper surface 11 of the substrate support part 10.
  • the control unit 50 centrally controls each operation in the scribing device 1 described above. As described above, the control unit 50 controls the start and stop of driving of the suction device 32 of the vacuum suction unit 30, and controls the driving of the drive unit 22 of the processing unit 20. For example, when the resin film 40 and the substrate S are placed on the upper surface 11 of the substrate support part 10, the suction device 32 is driven by the output of a sensor (not shown) or by an instruction from an operator to remove the substrate support part 10. The substrate S is held on the upper surface 11. Further, after holding the substrate S on the substrate support section 10, the control section 50 moves the processing head 21 (tool 23) on a preset trajectory, and moves the tool 23 against the processing surface S1 of the substrate S. Scribe processing is performed using the blade portion 23a. Note that details of how the scribing device 1 according to the present embodiment performs scribing and the like on the substrate S will be described later.
  • FIGS. 6A to 6C and FIGS. 7A and 7B are diagrams showing an example of a method for manufacturing the resin film 40 according to the embodiment. Note that the following description is an example of a manufacturing method, and does not limit the manufacturing method.
  • a dry film D is manufactured from a coating liquid L, fine particles B, a base material F, and the like.
  • a coating liquid L containing a predetermined resin material 45, fine particles B, and a solvent is prepared.
  • the predetermined resin material 45 includes polyamic acid, polyimide, polyamideimide, polyamide, polyvinylidene fluoride, polybenzoxazole resin, precursor polymer of polybenzoxazole resin, polybenzimidazole resin, precursor polymer of polybenzimidazole resin, At least one of polysulfone, polyaryl sulfone, and polyether sulfone is mentioned. Among these, at least one of imide-based resins such as polyamic acid, polyimide, polyamideimide, and polyamide is preferred.
  • the solvent any organic solvent that can dissolve the resin material 45 used can be used.
  • the coating liquid L described above is prepared by, for example, mixing a solvent in which the fine particles B are dispersed in advance and at least one of polyamic acid, polyimide, polyamideimide, and polyamide as the resin material 45 in an arbitrary ratio. .
  • it may be prepared by polymerizing at least one of polyamic acid, polyimide, polyamideimide, and polyamide in a solvent in which the fine particles B are dispersed in advance.
  • it can be produced by polymerizing a tetracarboxylic dianhydride and a diamine in an organic solvent in which fine particles B are dispersed in advance to obtain a polyamic acid, or by further imidizing it to obtain a polyimide.
  • the final viscosity of the coating liquid L is preferably 300 to 5000 cP, more preferably 400 to 3000 cP, and even more preferably 600 to 2500 cP. If the viscosity of the coating liquid L is within this range, it is possible to form a film uniformly.
  • the content of the solvent is, for example, 50 to 95% by mass, preferably 60 to 85% by mass.
  • the coating liquid L contains the resin material 45 and the fine particles B in a volume ratio of 10:90 to 50:50.
  • the volume of each resin material 45 is determined by multiplying the mass of each resin material 45 by its specific gravity.
  • the volume of the fine particles B is 65 or more when the entire volume of the coating liquid L is 100, the particles will be uniformly dispersed, and if the volume of the fine particles B is 81 or less, the particles will aggregate. Disperse without doing anything. Therefore, the voids 43 can be uniformly formed in the resin film 40.
  • the volume ratio of the fine particles B is within this range, releasability when forming the dry film D can be ensured.
  • the ratio of fine particles/polyimide is, for example, 2 to 2.
  • Fine particles B and polyamic acid or polyimide are mixed so that the ratio is 6 (mass ratio), preferably 3 to 5 (mass ratio).
  • the fine particles B and the polyamic acid are mixed so that the fine particle/polyimide ratio is, for example, 1 to 3.5 (mass ratio), preferably 1.2 to 3 (mass ratio). Or mixed with polyimide.
  • dry film D for example, fine particles and polyamic acid or polyimide are mixed so that the volume ratio of fine particles/polyimide is 1.5 to 4.5, preferably 1.8 to 3 (volume ratio). Mix.
  • volume ratio is within the above range, a film can be stably formed without causing problems such as an increase in viscosity or cracks in the film.
  • mass ratio or volume ratio of fine particles/polyimide is above the lower limit value, pores with an appropriate density can be obtained, and if it is below the upper limit value, viscosity increase or cracks in the film may occur. It is possible to stably form a film without causing problems such as the following.
  • the resin material 45 is polyamideimide or polyamide instead of polyamic acid or polyimide, the mass ratio is the same as above.
  • the preferred resin material 45, fine particles B, and solvent constituting the coating liquid L will be specifically explained below.
  • the resin material 45 will be explained.
  • the polyamic acid obtained by polymerizing any tetracarboxylic dianhydride and diamine can be used without particular limitation.
  • the amounts of tetracarboxylic dianhydride and diamine to be used are not particularly limited, but it is preferable to use 0.50 to 1.50 mol of diamine, and 0.60 to 1.50 mol, per 1 mol of tetracarboxylic dianhydride. It is more preferable to use 30 mol, particularly preferably 0.70 to 1.20 mol.
  • the tetracarboxylic dianhydride can be appropriately selected from tetracarboxylic dianhydrides that have been conventionally used as raw materials for synthesizing polyamic acid.
  • the tetracarboxylic dianhydride may be an aromatic tetracarboxylic dianhydride or an aliphatic tetracarboxylic dianhydride, but from the viewpoint of the heat resistance of the resulting polyimide resin, it is preferable to use an aromatic tetracarboxylic dianhydride. Two or more types of tetracarboxylic dianhydrides may be used in combination.
  • aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,2,6,6-biphenyltetracarboxylic dianhydride, dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride,
  • aliphatic tetracarboxylic dianhydrides include ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride, cyclohexane tetracarboxylic dianhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, and 1,2,3,4-cyclohexane tetracarboxylic dianhydride.
  • 3,3',4,4'-biphenyl tetracarboxylic dianhydride and pyromellitic dianhydride are preferred in terms of price, availability, and the like.
  • These tetracarboxylic dianhydrides can be used alone or in combination of two or more.
  • the diamine can be appropriately selected from diamines conventionally used as raw materials for synthesizing polyamic acids.
  • the diamine may be aromatic diamine or aliphatic diamine, but aromatic diamine is preferable from the viewpoint of heat resistance of the resulting polyimide resin. These diamines may be used in combination of two or more.
  • aromatic diamine examples include diamino compounds in which one or about 2 to 10 phenyl groups are bonded.
  • phenylene diamine and its derivatives diaminobiphenyl compounds and its derivatives, diaminodiphenyl compounds and its derivatives, diaminotaphenyl compounds and its derivatives, diaminonaphthalene and its derivatives, aminophenylaminoindan and its derivatives, diaminotetraphenyl Compounds and derivatives thereof, diaminohexaphenyl compounds and derivatives thereof, cardo-type fluorenediamine derivatives.
  • Phenylene diamines include m-phenylene diamine and p-phenylene diamine, and examples of phenylene diamine derivatives include diamines to which alkyl groups such as methyl and ethyl groups are bonded, such as 2,4-diaminotoluene and 2,4-triphenylene. diamines, etc.
  • a diaminobiphenyl compound is a compound in which two aminophenyl groups are bonded to each other through the phenyl groups.
  • a diaminobiphenyl compound is a compound in which two aminophenyl groups are bonded to each other through the phenyl groups.
  • a diaminodiphenyl compound is a compound in which two aminophenyl groups are bonded to each other via another group.
  • Bonds include ether bonds, sulfonyl bonds, thioether bonds, alkylene or derivative groups thereof, imino bonds, azo bonds, phosphine oxide bonds, amide bonds, ureylene bonds, and the like.
  • the alkylene bond has about 1 to 6 carbon atoms, and its derivative group is one in which one or more hydrogen atoms of the alkylene group are substituted with a halogen atom or the like.
  • diaminodiphenyl compounds include 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone , 3,4'-diaminodiphenylketone, 2,2-bis(p-aminophenyl)propane, 2,2'-bis(p-aminophenyl)hex
  • p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are preferred in terms of price, availability, etc.
  • the diaminodiphenyl compound has two aminophenyl groups and one phenylene group bonded via other groups, and the other groups are selected from the same groups as in the diaminodiphenyl compound.
  • diaminotriphenyl compounds include 1,3-bis(m-aminophenoxy)benzene, 1,3-bis(p-aminophenoxy)benzene, 1,4-bis(p-aminophenoxy)benzene, etc. be able to.
  • diaminonaphthalene examples include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
  • aminophenylaminoindan examples include 5- or 6-amino-1-(p-aminophenyl)-1,3,3-trimethylindane.
  • diaminotetraphenyl compounds examples include 4,4'-bis(p-aminophenoxy)biphenyl, 2,2'-bis[p-(p'-aminophenoxy)phenyl]propane, 2,2'-bis[ Examples include p-(p'-aminophenoxy)biphenyl]propane and 2,2'-bis[p-(m-aminophenoxy)phenyl]benzophenone.
  • cardo-type fluorenediamine derivatives include 9,9-bisanilinefluorene.
  • the aliphatic diamine preferably has, for example, about 2 to 15 carbon atoms, and specific examples thereof include pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, and the like.
  • the diamine may be a compound in which the hydrogen atom is substituted with at least one substituent selected from the group such as a halogen atom, a methyl group, a methoxy group, a cyano group, and a phenyl group.
  • any known method can be used, such as reacting an acid and a diamine component in an organic solvent.
  • the reaction between tetracarboxylic dianhydride and diamine is usually carried out in an organic solvent.
  • the organic solvent used in the reaction between the tetracarboxylic dianhydride and the diamine is particularly suitable as long as it can dissolve the tetracarboxylic dianhydride and the diamine and does not react with the tetracarboxylic dianhydride and the diamine. Not limited. Organic solvents can be used alone or in combination of two or more.
  • organic solvents used in the reaction between tetracarboxylic dianhydride and diamine include N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, and , N-diethylformamide, N-methylcaprolactam, N,N,N',N'-tetramethylurea, and other nitrogen-containing polar solvents; ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone , ⁇ -caprolactone, ⁇ -caprolactone and other lactone polar solvents; dimethyl sulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dioxane, tetrahydrofuran, methyl cellosolve a
  • nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N-methylcaprolactam, and N,N,N',N'-tetramethylurea are preferred due to the solubility of the resulting polyamic acid.
  • the polymerization temperature is generally -10 to 120°C, preferably 5 to 30°C.
  • the polymerization time varies depending on the raw material composition used, but is usually 3 to 24 hours.
  • the intrinsic viscosity of the organic solvent solution of polyamic acid obtained under such conditions is preferably in the range of 1,000 to 100,000 cP (centipoise), and even more preferably in the range of 5,000 to 70,000 cP.
  • the polyimide used in this embodiment is not limited to its structure or molecular weight, and any known polyimide can be used as long as it is a soluble polyimide that can be dissolved in the organic solvent used in the coating liquid L.
  • the polyimide may have a condensable functional group such as a carboxy group or a functional group that promotes a crosslinking reaction during baking in the side chain.
  • Aromatic diamine such as polyoxyethylene diamine, polyoxypropylene diamine, polyoxybutylene diamine; polysiloxane diamine; 2,3,3',4'-oxydiphthalic anhydride, 3,4,3' , 4'-oxydiphthalic anhydride, 2,2-bis(4-hydroxyphenyl)propanedibenzoate-3,3',4,4'-tetracarboxylic dianhydride, and the like are effective.
  • polyimide that is soluble in an organic solvent
  • examples of such polyimides include aliphatic polyimides (fully aliphatic polyimides), aromatic polyimides, and the like, with aromatic polyimides being preferred.
  • the aromatic polyimide is obtained by thermally or chemically ring-closing a polyamic acid having a repeating unit represented by formula (1), or by dissolving a polyimide having a repeating unit represented by formula (2) in a solvent. good.
  • Ar represents an aryl group.
  • any known polyamide-imide can be used without being limited to its structure or molecular weight as long as it is a soluble polyamide-imide that can be dissolved in the organic solvent used in the coating liquid L.
  • the polyamide-imide may have a condensable functional group such as a carboxy group or a functional group that promotes crosslinking reaction during firing in the side chain.
  • the polyamide-imide used in this embodiment can be obtained by reacting any trimellitic anhydride with a diisocyanate, or imide a precursor polymer obtained by reacting any reactive derivative of trimellitic anhydride with a diamine. It is possible to use the obtained product without any particular limitation.
  • trimellitic anhydride examples include trimellitic anhydride, trimellitic anhydride halides such as trimellitic anhydride chloride, trimellitic anhydride esters, and the like.
  • diisocyanate examples include metaphenylene diisocyanate, p-phenylene diisocyanate, 4,4'-oxybis(phenylisocyanate), 4,4'-diisocyanate diphenylmethane, bis[4-(4-isocyanatophenoxy)phenyl]sulfone, 2, Examples include 2'-bis[4-(4-isocyanatophenoxy)phenyl]propane.
  • polyamide a polyamide obtained from a dicarboxylic acid and a diamine is preferable, and an aromatic polyamide is particularly preferable.
  • Dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, phthalic acid, isophthalic acid, terephthalic acid, and diphenic acid. etc.
  • the fine particles B used have, for example, a high sphericity. Such fine particles B are preferable in that they are easy to form curved surfaces on the inner surfaces of the holes in the resin film 40.
  • the particle size (average diameter) of the fine particles B can be set to, for example, about 100 to 2000 nm.
  • the pore size of the resin film 40 obtained by removing the fine particles B in a later process can be made uniform.
  • the particle size and content of the fine particles B can be appropriately adjusted to achieve a desired porosity.
  • the material of the fine particles B is not particularly limited and may be any known material as long as it is insoluble in the solvent contained in the coating liquid L and can be removed from the dry film D described later in a later step.
  • inorganic materials include metal oxides such as silica (silicon dioxide), titanium oxide, and alumina (Al 2 O 3 ).
  • organic materials include organic polymer fine particles such as high molecular weight olefins (polypropylene, polyethylene, etc.), polystyrene, epoxy resins, cellulose, polyvinyl alcohol, polyvinyl butyral, polyester, polymethyl methacrylate, polyether, and the like.
  • the fine particles B include colloidal silica such as (monodisperse) spherical silica particles, calcium carbonate, and the like. In this case, the pore diameter of the resin film 40 can be made more uniform.
  • the fine particles B contained in the coating liquid L have a particle size of, for example, 100 to 2000 nm.
  • the solvent is not particularly limited, and any known solvent can be used as long as it dissolves polyamic acid, polyimide, polyamideimide, or polyamide.
  • the solvent include N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N,N,N',N'-tetramethylurea, N- Nitrogen-containing polar solvents such as vinyl-2-pyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; tetrahydrofuran, dioxane, dioxolane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, methyl cellosolve acetate and ethers such as ethyl cellosolve acetate.
  • the solvent may contain a high boiling point solvent having a boiling point of 190°C or higher.
  • high boiling point solvents include nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone; lactone-based polar solvents such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, and ⁇ -caprolactone; phenol-based solvents such as pyrrolidonephenol, o-, m-, or p-cresol, xylenol, and catechol; and sulfoxide-based solvents such as diethyl sulfoxide.
  • the high boiling point solvent one of these may be used, or two or more may be used in combination.
  • the content ratio of the high boiling point solvent in the solvent is not particularly limited, and a wide range of content can be used.
  • the content of the high boiling point solvent is preferably 5 to 80% by mass, more preferably 7 to 70% by mass, and most preferably 10 to 60% by mass. If the high boiling point solvent is contained in an amount of 5% by mass or more, there will be no problem with the film formability or physical properties of the porous polyimide film, and if it is 80% by mass or less, the coating and prebaking steps can be performed without any problem.
  • the coating liquid L contains a predetermined resin material 45, fine particles B, a solvent, and, if necessary, various additives such as a mold release agent, a dispersant, a condensing agent, an imidizing agent, and a surfactant. May contain.
  • the base material F is, for example, a resin sheet such as polyethylene terephthalate (PET), but is not limited to a resin sheet, and may be a sheet made of a metal material such as stainless steel.
  • PET polyethylene terephthalate
  • the above-mentioned coating liquid L is applied onto the base material F and dried to remove the solvent in the coating liquid L to form a dry film D.
  • the coating liquid L is discharged toward the surface of the base material F from a not-shown nozzle.
  • the coating liquid L contains fine particles B.
  • the coating liquid L applied onto the base material F is heat-treated (prebaked) at 50 to 100° C. under normal pressure or vacuum to form a dry film D.
  • the dried film D after the prebaking process is peeled off from the base material F.
  • the peeling method is not particularly limited, and may be performed automatically using a manipulator or the like, or may be performed manually by an operator.
  • the dried film D after peeling is fired. Note that, before firing, in order to suppress the occurrence of curls in the dry film D, immersion treatment in a solvent containing water, pressing treatment, etc. may be optionally performed. Further, a drying treatment may be optionally provided after the immersion treatment.
  • the firing temperature of the dry film D is, for example, about 120 to 400°C, and preferably about 150 to 350°C. Further, when the fine particles B contain an organic material, the temperature needs to be set lower than the temperature at which the fine particles B are thermally decomposed. In addition, when the coating liquid L contains polyamic acid, it is preferable to complete imidization in this baking, but this does not apply when the dry film D is composed of polyimide, polyamide-imide, or polyamide.
  • the resin film 40 is manufactured by removing the fine particles B from the dried film D after firing.
  • the fine particles B when silica is used as the fine particles B, it is possible to make the dry membrane D porous by dissolving and removing the silica with low concentration hydrogen fluoride (HF) or the like.
  • the fine particles B are resin fine particles
  • the dry film D is heated to a temperature higher than the thermal decomposition temperature of the resin fine particles and lower than the thermal decomposition temperature of polyimide as described above to thermally decompose the resin fine particles and remove them. Can be done.
  • the portions from which the fine particles B are removed from the dry film D become pores 44, and the pores 44 communicate with each other to form the resin film 40 having the pores 43. Therefore, the resin film 40 becomes a porous resin film having air permeability.
  • the resin film 40 has a uniform porosity in the plane direction (X direction and Y direction).
  • the resin film 40 is subjected to an etching (chemical etching) process.
  • the resin film 40 is immersed in the etching solution L2, and a portion of the resin material 45 in the voids 43 is removed.
  • a chemical etching liquid such as an inorganic alkaline solution or an organic alkaline solution is used.
  • inorganic alkaline solutions include hydrazine solutions containing hydrazine hydrate and ethylenediamine, solutions of alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, sodium carbonate, sodium silicate, and sodium metasilicate, ammonia solutions, and etching solutions mainly containing alkali hydroxide, hydrazine, and 1,3-dimethyl-2-imidazolidinone.
  • organic alkaline solutions include alkaline solutions of primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; and cyclic amines such as pyrrole and piheridine.
  • primary amines such as ethylamine and n-propylamine
  • secondary amines such as diethylamine and di-n-butylamine
  • tertiary amines such as triethylamine and methyldiethylamine
  • alcohol amines such as dimethylethanolamine and triethanolamine
  • quaternary ammonium salts such as tetramethylam
  • the resin film 40 is washed with a cleaning liquid and the liquid is drained. Subsequently, the resin film 40 after draining is heated to, for example, about 100 to 400°C (preferably about 100 to 300°C) to remove the cleaning liquid.
  • the porous resin film 40 after etching may be wound up by a winding device (not shown) or the like to form a roll body (not shown). Further, the size of the roll body can be adjusted depending on the purpose of use by pulling out the resin film 40, cutting it to the length to be used, and then winding it up again to form a roll body. . Note that it is optional whether or not to perform the above-described etching process, and it is not necessary to perform the etching process.
  • FIG. 8 is a cross-sectional view showing another example of the resin film 40A according to the embodiment.
  • an antistatic film 46 is formed on the first contact surface 41.
  • the resin film 40 used in the scribing device 1 according to this embodiment can be used alone, but the first contact surface 41 may be coated with an antistatic film 46 containing an antistatic agent.
  • the friction coefficient of the upper surface of the antistatic film 46 that is, the surface in contact with the lower surface S2 of the substrate S, was determined by the pin-on-disk test. is preferably 1.0 or less.
  • the antistatic film 46 can be formed on the first contact surface 41 using known thin film formation techniques. For example, a method of applying a liquid antistatic agent to the first contact surface 41, physical vapor deposition, chemical vapor deposition, or other techniques can be used. Any known antistatic agent can be used as the antistatic agent, and examples of such agents include antistatic agents containing glycerin fatty acid ester and benzotriazole.
  • the antistatic film 46 may be formed on the second contact surface 42, or on both the first contact surface 41 and the second contact surface 42.
  • FIG. 9 is a flowchart illustrating an example of a method for scribing the substrate S according to the embodiment.
  • 10 to 14 are diagrams showing one step of the scribing method according to the embodiment. In these process drawings, some descriptions are omitted or simplified to make it easier to understand the movements of each part. Hereinafter, the process will be explained along the flowchart of FIG.
  • the resin film 40 is placed on the upper surface 11 of the substrate support section 10 (step S01).
  • the resin film 40 is arranged on the upper surface 11 of the substrate support part 10 so as to cover the plurality of suction holes 13.
  • an operator may manually place the resin film 40 while pulling out the resin film 40 wound into a roll and cutting it into a predetermined size.
  • the substrate S is placed on the resin film 40 (step S02).
  • the substrate S is placed on the first contact surface 41, which is the upper surface of the resin film 40.
  • the substrate S may be placed by various conveyance devices capable of conveying the substrate S, or may be placed manually by an operator.
  • step S03 the substrate S is fixed to the substrate support part 10 by vacuum suction (step S03).
  • step S02 the resin film 40 and the substrate S are placed on the upper surface 11 of the substrate support section 10.
  • the control unit 50 drives the suction device 32 to start suctioning the resin film 40 and the substrate S.
  • each of the plurality of suction holes 13 starts suctioning through the suction tube 31 and the space 12, and the resin film 40 is attracted to the upper surface 11.
  • the resin film 40 has the void 43, it attracts the lower surface S2 of the substrate S through the void 43.
  • FIG. 11A the substrate S is suctioned and fixed to the substrate support part 10 together with the resin film 40.
  • a scribing process is performed on the processed surface S1 of the substrate S (step S04).
  • the control unit 50 drives the drive unit 22 at a position away from the substrate S to maintain the processing head 21 at a predetermined height.
  • the height of the processing head 21 is set such that the blade portion 23a of the tool 23 bites into the processed surface S1 of the substrate S by a predetermined amount.
  • the control unit 50 forms a scribe line LX on the processed surface S1 of the substrate S by moving the processing head 21 (tool 23) in the +X direction, as shown in FIG. 11B.
  • the scribe line LX which is a groove in the X direction
  • the groove portion of the scribe line LX which is a recess formed by plastic deformation, may be referred to as a trench line.
  • step S04 the substrate S is placed on the resin film 40, which has a hardness of 1.6 to 33.5 N/mm 2 by nanoindentation. Therefore, even when the tool 23 moves in the X direction or the Y direction, the substrate S does not sink (or sinks to a small extent), and appropriate scribe lines LX and LY can be formed. That is, it is possible to reduce defects in dividing the substrate S due to defective formation of the scribe lines LX and LY, and improve the cutting yield of the component SS.
  • a plurality of scribe lines LX are formed in parallel on one substrate S.
  • the intervals in the Y direction between the plurality of scribe lines LX are set in advance as virtual lines MLX based on the dimensions of the desired component SS.
  • the substrate support part 10 is rotated 90 degrees within the XY plane, and the processing head 21 ( The tool 23) is moved to form a scribe line LY, which is a groove in the Y direction.
  • a plurality of scribe lines LY are formed in parallel on one substrate S.
  • the intervals in the X direction between the plurality of scribe lines LY are set in advance as a virtual line MLY based on the dimensions of the desired component SS.
  • the plurality of scribe lines LX and LY may be formed first, and then the plurality of scribe lines LY may be formed, or conversely, the plurality of scribe lines LX and LY may be formed first. After forming the line LY, a plurality of scribe lines LX may be formed. Alternatively, the scribe lines LX and scribe lines LY may be alternately formed. In addition, when using a tool that rolls the blade portion instead of the tool 23 that slides the blade portion 23a, the tool is held with the rolling blade portion biting into the workpiece surface S1 by a predetermined amount. By moving the blade in the X direction or the Y direction, groove-shaped scribe lines LX and LY are formed while the blade portion rolls.
  • the scribe lines LX and LY are accompanied by a crack line CL, which is a vertical crack that continues from the trench line TL and progresses in the -Z direction (thickness direction), in addition to the trench line TL, which is a groove portion.
  • the crack line CL may be formed at the same time as the trench line TL, or may be formed below the trench line TL after the trench line TL is formed.
  • the length of the crack line CL in the thickness direction varies depending on the depth of the trench line TL (the amount of penetration of the blade portion 23a, or the downward pressing force of the tool 23), the material of the substrate S, etc.
  • the substrate S is divided (step S05).
  • Such division of the substrate S may be referred to as a breaking process.
  • the substrate S by applying bending stress F along the scribe lines LX and LY, the substrate S can be divided to form a plurality of parts SS.
  • the entire crack line CL of the substrate S extends downward from the scribe lines LX and LY to the lower surface S2 of the substrate S, and is divided into a plurality of parts SS.
  • the division of the substrate S as shown in FIG. 13 may be performed, for example, by bending the substrate S by hand by an operator, or by a known method including a break bar that comes into contact with the lower surface S2 along the scribe lines LX and LY. This may be done by using a cutting device.
  • the pickup device 60 includes a support section 61 and a suction pad 62.
  • the support part 61 is a tubular member extending in the vertical direction, and has a suction pad 62 at its lower end, and its upper end is connected to a suction device (not shown).
  • the support section 61 is movable in the X direction, Y direction, and Z direction by a drive section (not shown).
  • the suction pad 62 has a truncated conical shape that expands in diameter from the lower end of the support portion 61 and has a suction space inside.
  • the suction pad 62 contacts the cut out component SS at the lower end and suctions the component SS.
  • the operation of the pickup device 60 is controlled by, for example, the control unit 50 (see FIG. 1).
  • the control unit 50 stops driving the suction device 32 and releases the substrate S from being held by the substrate support unit 10. Subsequently, the suction pad 62 is moved above the component SS to be taken out. In FIG. 14, the component SS1 on the right side (+X side) is to be taken out. Subsequently, the suction pad 62 is lowered, and when the suction pad 62 contacts the upper surface of the component SS1, a suction device (not shown) is driven to cause the suction pad 62 to suction the component SS. Subsequently, the component SS1 attracted to the suction pad 62 is moved by a small distance in +X direction. That is, the component SS1 is moved so as to separate the component SS1 from the component SS2 on the left side (-X side).
  • step S06 the drive of the suction device 32 is stopped, and the substrate S (component SS) is simply placed on the resin film 40.
  • the first contact surface 41 of the resin film 40 has good sliding properties, it is possible to prevent the resin film 40 from twisting while moving the component SS1 smoothly.
  • part SS1 when taking out part SS1, by first separating part SS1 from the neighboring part SS2, when part SS1 is lifted as it is, it will catch the neighboring part SS2, causing damage to the remaining parts SS including part SS2, and positional changes. etc. can be avoided.
  • the component SS1 After moving the component SS1 to the +X side, the component SS1 can be taken out by raising the suction pad 62.
  • the taken out part SS1 is placed at a predetermined position or in a tray.
  • step S06 by repeating this operation for a plurality of parts SS, each of the plurality of parts SS can be taken out.
  • the series of processing ends when the removal of the plurality of parts SS is completed. Note that after the component SS is taken out, the resin film 40 remains on the board support part 10, but this resin film 40 is left on the board support part 10 and is reused in the scribing process of the next board S. It's okay.
  • the pick-up device 60 is not limited to this form, and the operator may manually use suction tweezers, for example. Even in this case, the component SS1 is moved a little from the component SS2 before being lifted, and the movement of the component SS1 becomes smooth, so that the component SS can be easily taken out.
  • the substrate S can be sucked through the resin film 40, and the substrate S can be held by the substrate support part 10. Can be done. Therefore, it is possible to save the effort of fixing the resin film 40 and the substrate S with tape or the like.
  • the hardness of the resin film 40 measured by the nanoindentation method is 1.6 to 33.5 N/mm 2
  • the friction coefficient of the first contact surface 41 of the resin film 40 measured by the pin-on-disc test is 1.0 or less. Therefore, the component SS obtained from the substrate S can be easily shifted laterally, and a plurality of components SS can be appropriately taken out.
  • Example 1 A coating solution was prepared by mixing 12% by weight of polyimide, 18% by weight of silica having a particle size of 2500 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. After that, it was dried at 80° C. for 5 minutes, and then the base material was peeled off to form a resin film. Subsequently, the resin film was baked at 380° C. for 10 minutes. After baking, the resin film was immersed in an etching solution of tetramethylammonium hydroxide for 7 minutes, and then washed with a cleaning solution.
  • a resin film was manufactured by heating the resin film at 60° C. for 2 minutes to remove the cleaning liquid.
  • the produced resin film had a pore size of 2500 nm, a porosity of 60%, and a film thickness of 25 ⁇ m.
  • Example 2 A coating solution was prepared by mixing 12% by weight of polyimide, 18% by weight of silica having a particle size of 2500 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The upper surface of the produced resin film was coated with 10 ml of a liquid containing benzotriazole as an antistatic agent to form an antistatic film. The produced resin film had a pore size of 2500 nm, a porosity of 60%, and a film thickness of 25 ⁇ m.
  • Example 3 A coating liquid was prepared by mixing 13.5% by weight of polyimide, 16.5% by weight of silica having a particle size of 300 to 2000 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The produced resin film had a pore size of 300 to 2000 nm, a porosity of 55%, and a film thickness of 25 ⁇ m.
  • a coating liquid was prepared by mixing 9% by weight of polyimide, 21% by weight of silica having a particle size of 2500 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The produced resin film had a pore size of 2500 nm, a porosity of 70%, and a film thickness of 40 ⁇ m.
  • a coating liquid was prepared by mixing 9% by weight of polyimide, 21% by weight of silica having a particle size of 1000 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The produced resin film had a pore size of 1000 nm, a porosity of 70%, and a film thickness of 40 ⁇ m.
  • a coating liquid was prepared by mixing 9% by weight of polyimide, 21% by weight of silica having a particle size of 300 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The produced resin film had a pore size of 300 nm, a porosity of 70%, and a film thickness of 40 ⁇ m.
  • the hardness of each resin film was measured using the nanoindentation method.
  • the resin films of Examples 1 to 3 and Comparative Examples 1 to 3 were respectively placed on the substrate support section provided with the suction device, and the glass substrate was placed on the resin film to form a glass substrate of 15 mm ⁇ It was cut to 80 mm and the cutting yield was evaluated.
  • the results are shown in FIG. 15.
  • the cutting yield evaluation when the yield of glass parts that could be cut without cracks was 95% or more, it was evaluated as ⁇ , and when it was less than 95%, it was evaluated as ⁇ .
  • the cutting yield of the glass plate was 95% or more.
  • the friction coefficient of the resin film was measured using a pin-on-disc test.
  • removal evaluation was performed to see whether the divided glass parts could be taken out upward by manually sliding them laterally from each resin film.
  • the results are shown in FIG.
  • the case where the divided glass part could be taken out appropriately with suction tweezers was evaluated as ⁇ , and the case where it was not possible was evaluated as ⁇ .
  • cases where the glass component cannot be taken out include cases where the glass component cannot be moved laterally and gets caught on another glass component, or cases where the glass component cannot be peeled off from the resin film.
  • Examples 1 to 3 and Comparative Examples 1 to 3 in FIG. 15 when the coefficient of friction on the upper surface of the resin film was 1.0 or less, the glass component could be taken out appropriately.
  • the scribing device 1 exemplifies a mode in which the scribing process of the substrate S is performed by moving the processing head 21 (tool 23) relative to the substrate S.
  • the substrate S substrate support 10
  • the substrate support 10 may move relative to the processing head 21 (tool 23), or both the processing head 21 and the substrate S may move.
  • a mode in which one resin film 40 is disposed between the substrate S and the substrate support section 10 is described as an example, but the present invention is not limited to this mode.
  • two or more resin films 40 may be arranged between the substrate S and the substrate support section 10.
  • the same resin film 40 may be used for the plurality of resin films 40, or different resin films 40 may be used.
  • a mode in which transport is not included between the scribing process and the dividing process is exemplified and explained, but the present invention is not limited to this mode.
  • a configuration may be adopted in which a step of transporting the substrate S is included between the scribing process and the cutting process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide a resin film which can be interposed between a substrate and a substrate holding part so as to easily hold the substrate on the substrate holding part, and which makes it possible to appropriately remove a plurality of components produced from the substrate. [Solution] Provided is a resin film 40 which is arranged between a substrate S and a substrate holding part 10 when the substrate S supported on the substrate holding part 10 is scribed, the resin film 40 having porosity, also having air permeability between a first contact surface 41 thereof that comes into contact with the substrate S and a second contact surface 42 thereof that comes into contact with the substrate holding part 10, and also having hardness of 1.6 to 33.5 N/mm2 when measured by a nanoindentation method, in which the frictional coefficient of the first contact surface is 1.0 or less when measured in a pin-on-disk test.

Description

樹脂フィルム、スクライブ装置、及びスクライブ方法Resin film, scribing device, and scribing method
 本発明は、樹脂フィルム、スクライブ装置、及びスクライブ方法に関する。
 本願は、2022年9月20日に、日本に出願された特願2022-149613号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a resin film, a scribing device, and a scribing method.
This application claims priority based on Japanese Patent Application No. 2022-149613 filed in Japan on September 20, 2022, the contents of which are incorporated herein.
 例えば、折り畳めるスマートフォン、いわゆるフォルダブルスマートフォンでは、画面を折り曲げられるディスプレイが採用される。このディスプレイに使用されるガラス部品は、厚さが薄いため、1枚のガラス基板から所望の形状に適切に切り出すことが求められる。ガラス部材の切り出しには、スクライブ装置が用いられる。スクライブ装置は、基板支持部に載置されたガラス基板の表面にスクライブ用のツールを用いて溝(スクライブライン、トレンチラインともいう)を形成する(例えば、特許文献1参照)。溝が形成された後、溝の位置でガラス基板を分断することで、1枚のガラス基板から複数のガラス部品を得ている。 For example, foldable smartphones, so-called foldable smartphones, use displays that can be folded. Since the glass parts used in this display are thin, they are required to be appropriately cut into a desired shape from a single glass substrate. A scribing device is used to cut out the glass member. A scribing device forms a groove (also referred to as a scribe line or trench line) on the surface of a glass substrate placed on a substrate support using a scribing tool (for example, see Patent Document 1). After the grooves are formed, a plurality of glass components are obtained from one glass substrate by dividing the glass substrate at the groove positions.
 スクライブ装置において溝を形成する際、ツール移動時にガラス基板がずれないように、ガラス基板を基板支持部に吸着保持することが必要となる。一方、基板支持部に対して直接ガラス基板を載置すると、ガラス基板が基板支持部に接触するので、ガラス基板の表面に傷を付けるなど、ガラス基板の損傷を招くおそれがある。そのため、特許文献1では、ガラス基板と基板支持部との間にポリエチレンテレフタレート(PET)のフィルムを介在させることが開示されている。 When forming grooves in a scribing device, it is necessary to suction and hold the glass substrate on a substrate support so that the glass substrate does not shift when the tool moves. On the other hand, if the glass substrate is placed directly on the substrate support, the glass substrate will come into contact with the substrate support, which may cause damage to the glass substrate, such as scratching the surface of the glass substrate. Therefore, Patent Document 1 discloses interposing a polyethylene terephthalate (PET) film between the glass substrate and the substrate support.
特開2021-053880号公報JP2021-053880A
 特許文献1に記載のように、ガラス基板と基板支持部との間にポリエチレンテレフタレートのフィルムを介在させると、このフィルムを基板支持部の吸引孔又は吸引溝により吸着保持することができるが、フィルムが通気性を有していない(又は通気性が小さい)ので、フィルム上に載置されたガラス基板を適切に保持することができない。そのため、例えば、テープ等でガラス基板をフィルムに対して固定する必要がある。テープ等を貼る作業は作業者が行うことになり、テープ等を剥がす作業を含めて作業者の手間が増えるといった問題がある。 As described in Patent Document 1, when a polyethylene terephthalate film is interposed between the glass substrate and the substrate support, this film can be held by suction through the suction holes or suction grooves of the substrate support. Since the film does not have air permeability (or has low air permeability), it cannot properly hold the glass substrate placed on the film. Therefore, it is necessary to fix the glass substrate to the film using tape or the like, for example. The work of pasting the tape etc. must be done by the worker, and there is a problem in that the work of peeling off the tape etc. increases the labor of the worker.
 また、ガラス基板から複数のガラス部品を得た後、例えば、ピックアップ装置等によりガラス部品を1枚ずつ取り出すが、ガラス部品の1つをそのまま持ち上げると、隣のガラス部品を引っ掛ける場合がある。従って、複数のガラス部品の取り出しは、取り出し対象の1つのガラス部品を先ず横にずらして隣のガラス部品から離した後にそのガラス部品を持ち上げるようにしている。このとき、ガラス部品と基板支持部との間に介在するフィルムの摩擦係数が高いとガラス部品を横にずらすことが難しくなり、ガラス部品を適切に取り出すことができないといった問題がある。このほか、スクライブ後にガラス基板を分断する際に、スクライブ装置からガラス基板を取り出し又は分断装置へ搬送する場合がある。この場合も同様の問題が生じる。
 また、フィルムの剛性が低いと(柔らかいと)、特に薄いガラス基板の場合、ツールの押し付けによる基板の沈み込みによりスクライブが困難となる。
Furthermore, after obtaining a plurality of glass parts from a glass substrate, the glass parts are taken out one by one using a pick-up device or the like, but if one of the glass parts is lifted as it is, the adjacent glass part may get caught. Therefore, when taking out a plurality of glass parts, one glass part to be taken out is first shifted laterally and separated from the adjacent glass part, and then that glass part is lifted. At this time, if the coefficient of friction of the film interposed between the glass component and the substrate support is high, it becomes difficult to shift the glass component laterally, and there is a problem that the glass component cannot be taken out appropriately. In addition, when cutting a glass substrate after scribing, the glass substrate may be taken out from the scribing device or transported to the cutting device. A similar problem occurs in this case as well.
Furthermore, if the film has low rigidity (softness), especially in the case of a thin glass substrate, scribing becomes difficult because the substrate sinks due to the pressing of the tool.
 本発明は、基板と基板支持部との間に介在させつつ、基板を基板支持部に対して容易に保持させることが可能であり、さらに、基板から得られた複数の部品を適切に取り出すことが可能な樹脂フィルム、スクライブ装置、及びスクライブ方法を提供することを目的とする。 According to the present invention, it is possible to easily hold the substrate to the substrate support part while being interposed between the substrate and the substrate support part, and furthermore, it is possible to appropriately take out a plurality of components obtained from the board. The purpose of the present invention is to provide a resin film, a scribing device, and a scribing method that can perform the following steps.
 本発明の態様によれば、基板支持部に支持された基板に対してスクライブを行う際に、基板と基板支持部との間に配置される樹脂フィルムであって、多孔性を有し、かつ基板との第1接触面と、基板支持部との第2接触面との間で通気性を有し、ナノインデンテーション法による硬度が1.6~33.5N/mmであり、ピンオンディスク試験による第1接触面の摩擦係数が1.0以下である、樹脂フィルムが提供される。 According to an aspect of the present invention, when scribing a substrate supported by the substrate support, the resin film is disposed between the substrate and the substrate support, the resin film is porous, and It has air permeability between the first contact surface with the substrate and the second contact surface with the substrate support, has a hardness of 1.6 to 33.5 N/mm 2 by nanoindentation method, and has pin-on A resin film is provided whose first contact surface has a coefficient of friction of 1.0 or less as measured by a disk test.
 また、本発明の態様によれば、基板を支持する基板支持部と、基板支持部に支持された基板に対してスクライブを行う加工部と、基板と基板支持部との間に配置される樹脂フィルムと、基板支持部に設けられ、樹脂フィルムを介して基板を吸引する減圧吸引部と、を備え、樹脂フィルムは、多孔性を有し、かつ基板との第1接触面と、基板支持部との第2接触面との間で通気性を有し、ナノインデンテーション法による硬度が1.6~33.5N/mmであり、ピンオンディスク試験による第1接触面の摩擦係数が1.0以下である、スクライブ装置が提供される。 Further, according to an aspect of the present invention, a substrate support section that supports the substrate, a processing section that performs scribing on the substrate supported by the substrate support section, and a resin disposed between the substrate and the substrate support section. a film, and a reduced pressure suction section provided on the substrate support section to suck the substrate through the resin film, the resin film has porousity and has a first contact surface with the substrate, and the substrate support section. The hardness is 1.6 to 33.5 N/mm 2 by nanoindentation method, and the friction coefficient of the first contact surface is 1 by pin-on-disk test. A scribing device is provided in which the scribing device has a .0 or less.
 また、本発明の態様によれば、基板のスクライブ方法であって、樹脂フィルムが配置された基板支持部の樹脂フィルム上に基板を配置し、樹脂フィルムを介して減圧吸引して基板支持部に基板を固定する工程と、基板に対してスクライブツールを相対移動させて基板にスクライブラインを形成する工程と、を備え、樹脂フィルムは、多孔性を有し、かつ基板との第1接触面と、基板支持部との第2接触面との間で通気性を有し、ナノインデンテーション法による硬度が1.6~33.5N/mmであり、ピンオンディスク試験による第1接触面の摩擦係数が1.0以下である、スクライブ方法が提供される。 Further, according to an aspect of the present invention, there is provided a method for scribing a substrate, in which the substrate is placed on the resin film of the substrate support portion on which the resin film is placed, and vacuum suction is applied to the substrate support portion through the resin film. The resin film is porous and has a first contact surface with the substrate. , has air permeability between the second contact surface with the substrate support, has a hardness of 1.6 to 33.5 N/mm 2 by nanoindentation method, and has a hardness of 1.6 to 33.5 N/mm 2 by the pin-on-disk test of the first contact surface. A scribing method is provided in which the coefficient of friction is 1.0 or less.
 本発明の態様によれば、樹脂フィルムが通気性を有しているので、樹脂フィルムを介して基板を吸引することができ、基板支持部に基板を保持させることができる。そのため、樹脂フィルムと基板とをテープ等で固定する手間を省くことができる。また、樹脂フィルムのナノインデンテーション法による硬度が1.6~33.5N/mmであり、さらに、樹脂フィルムのピンオンディスク試験による第1接触面の摩擦係数が1.0以下であるので、基板から得られた部品を容易に横にずらすことができ、複数の部品を適切に取り出すことができる。 According to the aspect of the present invention, since the resin film has breathability, the substrate can be sucked through the resin film, and the substrate can be held by the substrate support. Therefore, the effort of fixing the resin film and the substrate with tape or the like can be eliminated. In addition, since the hardness of the resin film measured by the nanoindentation method is 1.6 to 33.5 N/ mm2 , and the friction coefficient of the first contact surface of the resin film measured by the pin-on-disk test is 1.0 or less, the parts obtained from the substrate can be easily shifted sideways, and the multiple parts can be appropriately removed.
実施形態に係る樹脂フィルム及びスクライブ装置の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a resin film and a scribing device according to an embodiment. 実施形態に係る樹脂フィルム及びスクライブ装置の一例を示す概略平面図である。FIG. 2 is a schematic plan view showing an example of a resin film and a scribing device according to the embodiment. 実施形態に係る樹脂フィルム及びスクライブ装置の一部を示す分解斜視図である。It is an exploded perspective view showing a part of resin film and a scribing device concerning an embodiment. 実施形態に係る樹脂フィルムの一例を示す断面図である。It is a sectional view showing an example of the resin film concerning an embodiment. 実施形態に係るスクライブ装置において基板を吸引した状態を示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view showing a state in which a substrate is sucked in the scribing device according to the embodiment. 実施形態に係る樹脂フィルムの製造方法の一例を示す図である。It is a figure showing an example of the manufacturing method of the resin film concerning an embodiment. 実施形態に係る樹脂フィルムの製造方法の一例を示す図である。It is a figure showing an example of the manufacturing method of the resin film concerning an embodiment. 実施形態に係る樹脂フィルムの製造方法の一例を示す図である。It is a figure showing an example of the manufacturing method of the resin film concerning an embodiment. 図6に続いて、樹脂フィルムの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a resin film following FIG. 図6に続いて、樹脂フィルムの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a resin film following FIG. 実施形態に係る樹脂フィルムの他の例を示す断面図である。It is a sectional view showing other examples of the resin film concerning an embodiment. 実施形態に係る基板のスクライブ方法の一例を示すフローチャートである。3 is a flowchart illustrating an example of a method for scribing a substrate according to an embodiment. 実施形態に係る基板のスクライブ方法の一工程を示す図である。It is a figure showing one process of the scribing method of the substrate concerning an embodiment. 実施形態に係る基板のスクライブ方法の一工程を示す図である。It is a figure showing one process of the scribing method of the substrate concerning an embodiment. 図10に続いて、実施形態に係る基板のスクライブ方法の一工程を示す図である。Continuing from FIG. 10, it is a diagram showing one step of the substrate scribing method according to the embodiment. 図10に続いて、実施形態に係る基板のスクライブ方法の一工程を示す図である。Continuing from FIG. 10, it is a diagram showing one step of the substrate scribing method according to the embodiment. 図11に続いて、実施形態に係る基板のスクライブ方法の一工程を示す図である。Continuing from FIG. 11, it is a diagram showing one step of the substrate scribing method according to the embodiment. 図12に続いて、実施形態に係る基板のスクライブ方法の一工程を示す図である。FIG. 12 is a diagram illustrating one step of the substrate scribing method according to the embodiment, following FIG. 12 . 図13に続いて、実施形態に係る基板のスクライブ方法の一工程を示す図である。FIG. 13 is a diagram illustrating one step of the substrate scribing method according to the embodiment, following FIG. 13 . 実施例に係る樹脂フィルムの評価試験の結果を示す一覧表である。1 is a table showing the results of evaluation tests of resin films according to examples.
 以下、実施形態について図面を参照しながら説明する。ただし、本発明は、以下の説明に限定されない。また、図面においては実施形態をわかり易く説明するため、一部分を大きく又は強調して記載するなど適宜縮尺を変更して表現しており、実際の製品とは大きさ、形状等が異なっている場合がある。以下の各図において、XYZ直交座標系を用いて図中の方向を説明する。このXYZ直交座標系においては、水平面に平行な平面をXY平面とする。このXY平面に平行な一方向をX方向と表記し、X方向に直交する方向をY方向とする。また、XY平面に垂直な方向をZ方向(上下方向)と表記する。X方向、Y方向及びZ方向のそれぞれは、図中の矢印の指す方向が+方向であり、矢印の指す方向とは反対の方向が-方向であるとして説明する。 Hereinafter, embodiments will be described with reference to the drawings. However, the present invention is not limited to the following explanation. In addition, in order to explain the embodiments in an easy-to-understand manner, the drawings are depicted by changing the scale as appropriate, such as by enlarging or emphasizing some parts, and the size, shape, etc. of the actual product may differ. be. In each figure below, directions in the figure will be explained using an XYZ orthogonal coordinate system. In this XYZ orthogonal coordinate system, a plane parallel to the horizontal plane is defined as an XY plane. One direction parallel to the XY plane will be referred to as the X direction, and the direction perpendicular to the X direction will be referred to as the Y direction. Further, a direction perpendicular to the XY plane is referred to as a Z direction (vertical direction). The X direction, Y direction, and Z direction will be described assuming that the direction indicated by the arrow in the figure is the + direction, and the direction opposite to the direction indicated by the arrow is the - direction.
<樹脂フィルム及びスクライブ装置>
 図1は、実施形態に係る樹脂フィルム40及びスクライブ装置1の一例を示す概略断面図である。図2は、実施形態に係る樹脂フィルム40及びスクライブ装置1の一例を示す概略平面図である。図3は、実施形態に係る樹脂フィルム40及びスクライブ装置1の一部を示す分解斜視図である。図1、図2及び図3に示すように、スクライブ装置1は、基板支持部10と、加工部20と、減圧吸引部30と、樹脂フィルム40と、制御部50とを備える。
<Resin film and scribing device>
FIG. 1 is a schematic cross-sectional view showing an example of a resin film 40 and a scribing device 1 according to an embodiment. FIG. 2 is a schematic plan view showing an example of the resin film 40 and the scribing device 1 according to the embodiment. FIG. 3 is an exploded perspective view showing a part of the resin film 40 and the scribing device 1 according to the embodiment. As shown in FIGS. 1, 2, and 3, the scribing apparatus 1 includes a substrate support section 10, a processing section 20, a vacuum suction section 30, a resin film 40, and a control section 50.
 基板支持部10は、上面11側において基板Sを支持する。基板Sは、例えば所定の厚さを有するガラス基板である。基板Sは、平面視において、すなわちZ方向(上下方向)から見て、例えば正方形状、長方形状等の矩形状の角形基板であるが、角形基板であることに限定されず円形状、楕円形状、長円形状、台形状等であってもよい。基板Sの厚さは、例えば100μm以下である。基板Sは、被加工面S1と下面S2とを有している。被加工面S1は、基板支持部10に支持された際に上方に向けられ、後述するスクライブ用のツール(スクライブツール)23によってスクライブ加工される。下面S2は、基板支持部10に支持された際に基板支持部10側に向けられる。なお、基板Sは、ガラス基板であることに限定されず、その他の脆性材料基板、樹脂製基板等であってもよい。 The substrate support section 10 supports the substrate S on the upper surface 11 side. The substrate S is, for example, a glass substrate having a predetermined thickness. The substrate S is a rectangular substrate having a rectangular shape such as a square or a rectangle in a plan view, that is, viewed from the Z direction (vertical direction), but is not limited to being a rectangular substrate and may have a circular or elliptical shape. , oval shape, trapezoid shape, etc. The thickness of the substrate S is, for example, 100 μm or less. The substrate S has a processed surface S1 and a lower surface S2. The surface to be processed S1 is oriented upward when supported by the substrate support section 10, and is scribed by a scribing tool (scribe tool) 23, which will be described later. The lower surface S2 faces toward the substrate support 10 when supported by the substrate support 10. Note that the substrate S is not limited to being a glass substrate, and may be other brittle material substrates, resin substrates, or the like.
 基板支持部10は、上面11に基板Sを載置可能な大きさに設けられ、空間部12と、吸引孔13とを備える。基板支持部10は、樹脂フィルム40を介して上面11側に基板Sを固定する。空間部12は、基板支持部10内部に設けられている。空間部12の大きさは任意である。空間部12の上面は吸引孔13と連通しており、下面は後述する減圧吸引部30の吸引管31と連通している。 The substrate support portion 10 is provided in a size that allows the substrate S to be placed on the upper surface 11, and includes a space portion 12 and a suction hole 13. The substrate support section 10 fixes the substrate S on the upper surface 11 side via the resin film 40. The space part 12 is provided inside the substrate support part 10. The size of the space 12 is arbitrary. The upper surface of the space 12 communicates with the suction hole 13, and the lower surface communicates with a suction pipe 31 of a reduced pressure suction section 30, which will be described later.
 吸引孔13は、基板支持部10の上面11から-Z方向(下方)に向かって、空間部12と連通するように複数設けられている。吸引孔13の個数及び配置は任意である。複数の吸引孔13は、例えば、隣り合う吸引孔13の距離が一定又はほぼ一定となるように配置されてもよいし、基板支持部10の上面11を中心とする同心円状に配置されてもよい。複数の吸引孔13は、例えば、基板支持部10の上面11を中心とする同心円状に配置されてもよい。複数の吸引孔13は、少なくとも上面11において、樹脂フィルム40が載置される範囲に設けられる。吸引孔13の個数については、樹脂フィルム40及び基板Sの大きさ等により適宜設定される。 A plurality of suction holes 13 are provided so as to communicate with the space portion 12 from the upper surface 11 of the substrate support portion 10 in the −Z direction (downward). The number and arrangement of the suction holes 13 are arbitrary. For example, the plurality of suction holes 13 may be arranged such that the distance between adjacent suction holes 13 is constant or almost constant, or they may be arranged concentrically around the upper surface 11 of the substrate support part 10. good. The plurality of suction holes 13 may be arranged concentrically around the upper surface 11 of the substrate support section 10, for example. The plurality of suction holes 13 are provided at least in the upper surface 11 in a range where the resin film 40 is placed. The number of suction holes 13 is appropriately set depending on the sizes of the resin film 40 and the substrate S.
 なお、本実施形態では、基板支持部10の上面11に複数の吸引孔13が開口する形態を例に挙げて説明しているがこの形態に限定されない。例えば、基板支持部10の上面11に複数の吸引溝が形成される形態であってもよい。この場合、吸引溝の一部が連通孔を介して空間部12に連通される。
 また、基板支持部10は、不図示の回転機構によってXY平面上で回転し、例えばX方向に対して所定角度に位置決めされる。
In this embodiment, a configuration in which a plurality of suction holes 13 are opened in the upper surface 11 of the substrate support portion 10 is described as an example, but the present invention is not limited to this configuration. For example, a plurality of suction grooves may be formed on the upper surface 11 of the substrate support section 10. In this case, a portion of the suction groove is communicated with the space 12 via the communication hole.
Further, the substrate support section 10 is rotated on the XY plane by a rotation mechanism (not shown), and is positioned at a predetermined angle with respect to the X direction, for example.
 加工部20は、基板Sの被加工面S1に対してスクライブ加工を施す。加工部20は、加工ヘッド21と、駆動部22と、スクライブ用のツール23とを備える。加工ヘッド21は、基板支持部10の上方に配置され、不図示のヘッド支持部に支持されてX方向、Y方向に移動可能である。不図示のヘッド支持部としては、例えば、基板支持部10をY方向にまたいでX方向に移動可能なガントリと、このガントリに対してY方向に移動可能なYスライダと、このYスライダに対して昇降可能な昇降台と、により構成される。加工ヘッド21は、昇降台に支持され、ガントリのX方向への移動、YスライダのY方向への移動、昇降部の昇降によりX方向、Y方向に移動可能である。また、不図示のヘッド支持部としては、例えばロボットアームが用いられてもよい。 The processing unit 20 performs scribing processing on the processed surface S1 of the substrate S. The processing section 20 includes a processing head 21, a drive section 22, and a scribing tool 23. The processing head 21 is arranged above the substrate support part 10, is supported by a head support part (not shown), and is movable in the X direction and the Y direction. The head support unit (not shown) includes, for example, a gantry that straddles the substrate support unit 10 in the Y direction and is movable in the X direction, a Y slider that is movable in the Y direction relative to the gantry, and a gantry that is movable in the Y direction relative to the gantry. It consists of a lifting platform that can be raised and lowered. The processing head 21 is supported by a lifting table, and is movable in the X and Y directions by moving the gantry in the X direction, moving the Y slider in the Y direction, and raising and lowering the elevating section. Further, as the head support section (not shown), for example, a robot arm may be used.
 加工ヘッド21は、駆動部22を駆動することにより、上記した不図示のヘッド支持部を介して移動する。上記のように、ヘッド支持部がガントリと、Yスライダと、昇降台とで構成される場合、駆動部22は、ガントリ駆動部、Yスライダ駆動部、昇降台駆動部、で構成される。駆動部22の駆動は、制御部50により制御される。加工ヘッド21の位置、移動量、移動速度等に関するデータは、制御部50に備える不図示の記憶部に予め記憶されている。制御部50は、記憶部から各種データを読み込んで加工ヘッド21の動作を制御する。 The processing head 21 is moved via the above-described head support section (not shown) by driving the drive section 22. As described above, when the head support section is composed of a gantry, a Y slider, and an elevator platform, the drive section 22 is composed of a gantry drive section, a Y slider drive section, and an elevator platform drive section. The driving of the driving section 22 is controlled by the control section 50. Data regarding the position, movement amount, movement speed, etc. of the processing head 21 is stored in advance in a storage section (not shown) provided in the control section 50. The control unit 50 reads various data from the storage unit and controls the operation of the processing head 21.
 スクライブ用のツール23は、例えば、加工ヘッド21の-Y側の面にホルダを介して固定される。ツール23は交換可能である。加工ヘッド21に対するツール23の取り付け位置は任意であり、例えば、ツール23が加工ヘッド21の-Z側の面(下面)に取り付けられてもよいし、+X側の面に取り付けられてもよい。ツール23の下端には、基板Sの被加工面S1をスクライブ加工するための刃部23aを有する。刃部23aの材質は、基板Sの被加工面S1をスクライブ可能であれば特に限定はされないが、ダイヤモンドであることが好ましい。より好ましくは、単結晶ダイヤモンドが好ましい。また、多結晶ダイヤモンド、焼結ダイヤモンドであってもよい。なお、本実施形態では、基板Sの被加工面S1に対して刃部23aを摺動してスクライブ加工するタイプを用いているが、この形態に代えて、例えば、刃部23aが回転する回転切刃を有するタイプが用いられてもよい。 The scribing tool 23 is, for example, fixed to the -Y side surface of the processing head 21 via a holder. Tool 23 is replaceable. The attachment position of the tool 23 to the processing head 21 is arbitrary; for example, the tool 23 may be attached to the -Z side surface (lower surface) of the processing head 21, or may be attached to the +X side surface. The lower end of the tool 23 has a blade portion 23a for scribing the surface S1 of the substrate S to be processed. The material of the blade portion 23a is not particularly limited as long as it can scribe the processed surface S1 of the substrate S, but diamond is preferable. More preferably, single crystal diamond is used. Further, polycrystalline diamond or sintered diamond may be used. In addition, in this embodiment, a type is used in which the blade part 23a is slid on the surface S1 to be processed of the substrate S to perform the scribing process. A type with a cutting edge may also be used.
 減圧吸引部30は、基板支持部10の下方に設けられる。減圧吸引部30は、吸引管31と吸引装置32とを備える。吸引管31は、基板支持部10の下面ほぼ中央に配置され、空間部12と連通している。吸引装置32は、例えば吸引ポンプであり、吸引管31に連結されている。吸引装置32は、吸引機能を有していれば公知の装置が用いられる。吸引装置32を駆動することにより、吸引管31を介して空間部12が減圧される。空間部12が減圧されることで、複数の吸引孔13のそれぞれが吸引し、基板支持部10の上面11に載置された樹脂フィルム40を吸引する。吸引装置32の駆動は、制御部50によって制御される。 The reduced pressure suction unit 30 is provided below the substrate support unit 10. The reduced pressure suction unit 30 includes a suction tube 31 and a suction device 32. The suction tube 31 is arranged approximately at the center of the lower surface of the substrate support section 10 and communicates with the space section 12 . The suction device 32 is, for example, a suction pump, and is connected to the suction pipe 31. As the suction device 32, a known device can be used as long as it has a suction function. By driving the suction device 32, the pressure in the space 12 is reduced through the suction pipe 31. By reducing the pressure in the space part 12, each of the plurality of suction holes 13 sucks the resin film 40 placed on the upper surface 11 of the substrate support part 10. Driving of the suction device 32 is controlled by a control section 50.
 樹脂フィルム40は、通気性を有する多孔性樹脂フィルムであり、図1から図3に示すように基板Sと基板支持部10との間に配置される。図4は、実施形態に係る樹脂フィルム40の一例を示す断面図である。図4に示すように、樹脂フィルム40は、第1接触面41と、第2接触面42と、空隙43とを有する。樹脂フィルム40は、平面視において、基板Sと同一又は基板Sより大きいサイズが用いられる。 The resin film 40 is a porous resin film with air permeability, and is disposed between the substrate S and the substrate support section 10 as shown in FIGS. 1 to 3. FIG. 4 is a cross-sectional view showing an example of the resin film 40 according to the embodiment. As shown in FIG. 4, the resin film 40 has a first contact surface 41, a second contact surface 42, and a gap 43. The size of the resin film 40 is the same as or larger than the substrate S in plan view.
 空隙43は、第1接触面41と第2接触面42とを貫通するように設けられている。すなわち、樹脂フィルム40は、空隙43によって第1接触面41と第2接触面42との間で通気性を有する。樹脂フィルム40の空隙率は、例えば50~70%が好ましい。また、空隙43は、複数の空孔が連通して形成されるが、各空孔サイズは、例えば250~2600nmが好ましい。樹脂フィルム40の厚さt(膜厚)は、例えば20~50μmが好ましく、さらに好ましくは25~40μmである。また、樹脂フィルム40の硬度は、例えばナノインデンテーション法による硬度が1.6~33.5N/mmが好ましく、さらに好ましくは、硬度が5.17~33.5N/mmである。また、樹脂フィルム40における第1接触面41のピンオンディスク試験による摩擦係数は、例えば1.0以下が好ましく、さらに好ましくは0.845以下である。なお、樹脂フィルム40の材質及び製造方法等については、後述する。 The gap 43 is provided so as to penetrate the first contact surface 41 and the second contact surface 42 . That is, the resin film 40 has air permeability between the first contact surface 41 and the second contact surface 42 due to the voids 43 . The resin film 40 preferably has a porosity of, for example, 50 to 70%. Further, the void 43 is formed by a plurality of voids communicating with each other, and the size of each void is preferably 250 to 2600 nm, for example. The thickness t (film thickness) of the resin film 40 is, for example, preferably 20 to 50 μm, more preferably 25 to 40 μm. Further, the hardness of the resin film 40 is preferably 1.6 to 33.5 N/mm 2 by, for example, a nanoindentation method, and more preferably 5.17 to 33.5 N/mm 2 . Further, the friction coefficient of the first contact surface 41 of the resin film 40 measured by a pin-on-disk test is preferably, for example, 1.0 or less, and more preferably 0.845 or less. Note that the material, manufacturing method, etc. of the resin film 40 will be described later.
 図1から図3に示すように、樹脂フィルム40は、基板Sと基板支持部10との間に配置される。樹脂フィルム40の第1接触面41は、基板Sの下面S2と接触する。樹脂フィルム40の第2接触面42は、基板支持部10の上面11と接触する。図5は、実施形態に係るスクライブ装置1において基板Sを吸引した状態を示す拡大断面図である。図5に示すように、吸引装置32を駆動すると、吸引孔13から吸引が開始され(白抜き矢印参照)、樹脂フィルム40を吸引する。この吸引力は、樹脂フィルム40の空隙43を介して基板Sの下面S2に達する。その結果、基板Sは、基板支持部10の上面11に吸引され(矢印参照)、基板支持部10の上面11との間に樹脂フィルム40を挟んだ状態で基板支持部10に保持(固定)される。 As shown in FIG. 1 to FIG. 3, the resin film 40 is disposed between the substrate S and the substrate support part 10. The first contact surface 41 of the resin film 40 contacts the lower surface S2 of the substrate S. The second contact surface 42 of the resin film 40 contacts the upper surface 11 of the substrate support part 10. FIG. 5 is an enlarged cross-sectional view showing the state in which the substrate S is sucked in the scribing device 1 according to the embodiment. As shown in FIG. 5, when the suction device 32 is driven, suction is started from the suction hole 13 (see the white arrow) and sucks the resin film 40. This suction force reaches the lower surface S2 of the substrate S through the gap 43 of the resin film 40. As a result, the substrate S is sucked to the upper surface 11 of the substrate support part 10 (see the arrow), and is held (fixed) to the substrate support part 10 with the resin film 40 sandwiched between the substrate S and the upper surface 11 of the substrate support part 10.
 制御部50は、上記したスクライブ装置1における各動作を統括して制御する。上記したように、制御部50は、減圧吸引部30の吸引装置32に関する駆動開始、駆動停止を制御し、加工部20の駆動部22に関する駆動を制御する。例えば、基板支持部10の上面11に樹脂フィルム40及び基板Sが載置されると、不図示のセンサの出力により、又は作業者からの指示により吸引装置32を駆動して基板支持部10の上面11に基板Sを保持させる。また、基板支持部10に基板Sを保持させた後、制御部50は、予め設定された軌道で加工ヘッド21(ツール23)を移動させ、基板Sの被加工面S1に対してツール23の刃部23aでスクライブ加工を施す。なお、本実施形態に係るスクライブ装置1によって基板Sにスクライブ加工等を施す詳細については後述する。 The control unit 50 centrally controls each operation in the scribing device 1 described above. As described above, the control unit 50 controls the start and stop of driving of the suction device 32 of the vacuum suction unit 30, and controls the driving of the drive unit 22 of the processing unit 20. For example, when the resin film 40 and the substrate S are placed on the upper surface 11 of the substrate support part 10, the suction device 32 is driven by the output of a sensor (not shown) or by an instruction from an operator to remove the substrate support part 10. The substrate S is held on the upper surface 11. Further, after holding the substrate S on the substrate support section 10, the control section 50 moves the processing head 21 (tool 23) on a preset trajectory, and moves the tool 23 against the processing surface S1 of the substrate S. Scribe processing is performed using the blade portion 23a. Note that details of how the scribing device 1 according to the present embodiment performs scribing and the like on the substrate S will be described later.
<樹脂フィルムの製造方法>
 図6A~図6C及び図7A,図7Bを参照にして、樹脂フィルム40の製造方法について説明する。図6A~図6C及び図7A,図7Bは、実施形態に係る樹脂フィルム40の製造方法の一例を示す図である。なお、以下の説明は、製造方法の一例であって、製造方法を限定するものではない。先ず、図6Aに示すように、塗布液L、微粒子B、及び基材F等により乾燥膜Dが製造される。
<Method for manufacturing resin film>
A method for manufacturing the resin film 40 will be described with reference to FIGS. 6A to 6C and FIGS. 7A and 7B. 6A to 6C and FIGS. 7A and 7B are diagrams showing an example of a method for manufacturing the resin film 40 according to the embodiment. Note that the following description is an example of a manufacturing method, and does not limit the manufacturing method. First, as shown in FIG. 6A, a dry film D is manufactured from a coating liquid L, fine particles B, a base material F, and the like.
 所定の樹脂材料45、微粒子B及び溶剤を含有する塗布液Lを準備する。所定の樹脂材料45としては、ポリアミド酸、ポリイミド、ポリアミドイミド、ポリアミド、ポリフッ化ビニリデン、ポリベンゾオキサゾール樹脂、ポリベンゾオキサゾール樹脂の前駆体ポリマー、ポリベンゾイミダゾール樹脂、ポリベンゾイミダゾール樹脂の前駆体ポリマー、ポリスルホン、ポリアリールスルホン、及びポリエーテルスルホンの少なくとも一つが挙げられる。中でも、イミド系樹脂であるポリアミド酸、ポリイミド、ポリアミドイミド、及びポリアミドの少なくとも一つが好ましい。溶剤としては、使用される樹脂材料45を溶解可能な任意の有機溶剤が用いられる。 A coating liquid L containing a predetermined resin material 45, fine particles B, and a solvent is prepared. The predetermined resin material 45 includes polyamic acid, polyimide, polyamideimide, polyamide, polyvinylidene fluoride, polybenzoxazole resin, precursor polymer of polybenzoxazole resin, polybenzimidazole resin, precursor polymer of polybenzimidazole resin, At least one of polysulfone, polyaryl sulfone, and polyether sulfone is mentioned. Among these, at least one of imide-based resins such as polyamic acid, polyimide, polyamideimide, and polyamide is preferred. As the solvent, any organic solvent that can dissolve the resin material 45 used can be used.
 上記した塗布液Lは、例えば、微粒子Bを予め分散した溶剤と、例えば、樹脂材料45としてポリアミド酸、ポリイミド、ポリアミドイミド、ポリアミドの少なくとも一つと、を任意の比率で混合することにより調製される。また、微粒子Bを予め分散した溶剤中でポリアミド酸、ポリイミド、ポリアミドイミド、及びポリアミドの少なくとも一つを重合して調製されてもよい。例えば、微粒子Bを予め分散した有機溶剤中でテトラカルボン酸二無水物及びジアミンを重合してポリアミド酸とするか、さらにイミド化してポリイミドとすることで製造できる。 The coating liquid L described above is prepared by, for example, mixing a solvent in which the fine particles B are dispersed in advance and at least one of polyamic acid, polyimide, polyamideimide, and polyamide as the resin material 45 in an arbitrary ratio. . Alternatively, it may be prepared by polymerizing at least one of polyamic acid, polyimide, polyamideimide, and polyamide in a solvent in which the fine particles B are dispersed in advance. For example, it can be produced by polymerizing a tetracarboxylic dianhydride and a diamine in an organic solvent in which fine particles B are dispersed in advance to obtain a polyamic acid, or by further imidizing it to obtain a polyimide.
 塗布液Lの粘度は、最終的に300~5000cPとすることが好ましく、400~3000cPの範囲がより好ましく、600~2500cPの範囲がさらに好ましい。塗布液Lの粘度がこの範囲内であれば、均一に成膜をすることが可能である。塗布液L中の全成分のうち、溶剤の含有量は、例えば、50~95質量%であり、好ましくは60~85質量%である。 The final viscosity of the coating liquid L is preferably 300 to 5000 cP, more preferably 400 to 3000 cP, and even more preferably 600 to 2500 cP. If the viscosity of the coating liquid L is within this range, it is possible to form a film uniformly. Of all the components in the coating liquid L, the content of the solvent is, for example, 50 to 95% by mass, preferably 60 to 85% by mass.
 例えば、塗布液Lは、樹脂材料45と微粒子Bとが10:90~50:50の体積比となるように含有される。なお、各樹脂材料45の体積は、各樹脂材料45の質量にその比重を乗じて求めた値が用いられる。この場合において、塗布液Lの体積全体を100としたときに微粒子Bの体積が65以上であれば、粒子が均一に分散し、また、微粒子Bの体積が81以内であれば粒子同士が凝集することもなく分散する。このため、樹脂フィルム40に空隙43を均一に形成することができる。また、微粒子Bの体積比率がこの範囲内であれば、乾燥膜Dを成膜する際の剥離性を確保することができる。 For example, the coating liquid L contains the resin material 45 and the fine particles B in a volume ratio of 10:90 to 50:50. Note that the volume of each resin material 45 is determined by multiplying the mass of each resin material 45 by its specific gravity. In this case, if the volume of the fine particles B is 65 or more when the entire volume of the coating liquid L is 100, the particles will be uniformly dispersed, and if the volume of the fine particles B is 81 or less, the particles will aggregate. Disperse without doing anything. Therefore, the voids 43 can be uniformly formed in the resin film 40. Moreover, if the volume ratio of the fine particles B is within this range, releasability when forming the dry film D can be ensured.
 上記の塗布液Lには、微粒子Bとポリアミド酸又はポリイミドを乾燥して乾燥膜Dとした場合において、微粒子Bの材質が後述の無機材料の場合は、例えば、微粒子/ポリイミドの比率が2~6(質量比)、好ましくは3~5(質量比)となるように微粒子Bとポリアミド酸又はポリイミドとを混合する。微粒子Bの材質が後述の有機材料の場合は、例えば微粒子/ポリイミドの比率が1~3.5(質量比)、好ましくは1.2~3(質量比)となるように微粒子Bとポリアミド酸又はポリイミドとを混合する。例えば、樹脂材料45に対して微粒子Bを72体積%(~2.6体積倍)にする場合、質量比でシリカ(微粒子)/ポリイミド=80/20、あるいは、ポリメタクリル酸メチル樹脂(微粒子)/ポリイミド=(68/32)~2.1倍に設定してもよい。このような設定であれば、粘度の増加や膜中のひび割れ等の問題を生じることなく安定的に成膜することができる。 In the above coating liquid L, when fine particles B and polyamic acid or polyimide are dried to form a dry film D, if the material of fine particles B is an inorganic material described below, the ratio of fine particles/polyimide is, for example, 2 to 2. Fine particles B and polyamic acid or polyimide are mixed so that the ratio is 6 (mass ratio), preferably 3 to 5 (mass ratio). When the material of the fine particles B is an organic material described below, the fine particles B and the polyamic acid are mixed so that the fine particle/polyimide ratio is, for example, 1 to 3.5 (mass ratio), preferably 1.2 to 3 (mass ratio). Or mixed with polyimide. For example, when fine particles B are 72% by volume (~2.6 volume times) with respect to the resin material 45, the mass ratio is silica (fine particles)/polyimide = 80/20, or polymethyl methacrylate resin (fine particles). /polyimide=(68/32) to 2.1 times. With such settings, it is possible to stably form a film without causing problems such as an increase in viscosity or cracks in the film.
 また、乾燥膜Dとした場合において、例えば、微粒子/ポリイミドの体積比率が1.5~4.5、好ましくは1.8~3(体積比)となるように微粒子とポリアミド酸又はポリイミドとを混合する。体積比が上記範囲である場合、粘度の増加や膜中のひび割れ等の問題を生じることなく安定的に成膜することができる。乾燥膜Dとした際に微粒子/ポリイミドの質量比又は体積比が下限値以上であれば、適切な密度の孔を得ることができ、上限値以下であれば、粘度の増加や膜中のひび割れ等の問題を生じることなく安定的に成膜することができる。ポリアミド酸又はポリイミドのかわりに樹脂材料45がポリアミドイミド又はポリアミドとなる場合も、質量比は上記と同様である。 In addition, in the case of dry film D, for example, fine particles and polyamic acid or polyimide are mixed so that the volume ratio of fine particles/polyimide is 1.5 to 4.5, preferably 1.8 to 3 (volume ratio). Mix. When the volume ratio is within the above range, a film can be stably formed without causing problems such as an increase in viscosity or cracks in the film. When forming dry film D, if the mass ratio or volume ratio of fine particles/polyimide is above the lower limit value, pores with an appropriate density can be obtained, and if it is below the upper limit value, viscosity increase or cracks in the film may occur. It is possible to stably form a film without causing problems such as the following. When the resin material 45 is polyamideimide or polyamide instead of polyamic acid or polyimide, the mass ratio is the same as above.
 以下、塗布液Lを構成する上記好適な樹脂材料45、微粒子B及び溶剤について具体的に説明する。先ず、樹脂材料45について説明する。
 <ポリアミド酸>
 ポリアミド酸は、任意のテトラカルボン酸二無水物とジアミンを重合して得られるものが、特に限定されることなく使用できる。テトラカルボン酸二無水物及びジアミンの使用量は特に限定されないが、テトラカルボン酸二無水物1モルに対して、ジアミンを0.50~1.50モル用いるのが好ましく、0.60~1.30モル用いるのがより好ましく、0.70~1.20モル用いるのが特に好ましい。
The preferred resin material 45, fine particles B, and solvent constituting the coating liquid L will be specifically explained below. First, the resin material 45 will be explained.
<Polyamic acid>
The polyamic acid obtained by polymerizing any tetracarboxylic dianhydride and diamine can be used without particular limitation. The amounts of tetracarboxylic dianhydride and diamine to be used are not particularly limited, but it is preferable to use 0.50 to 1.50 mol of diamine, and 0.60 to 1.50 mol, per 1 mol of tetracarboxylic dianhydride. It is more preferable to use 30 mol, particularly preferably 0.70 to 1.20 mol.
 テトラカルボン酸二無水物は、従来からポリアミド酸の合成原料として使用されているテトラカルボン酸二無水物から適宜選択することができる。テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物であっても、脂肪族テトラカルボン酸二無水物であってもよいが、得られるポリイミド樹脂の耐熱性の点から、芳香族テトラカルボン酸二無水物を使用することが好ましい。テトラカルボン酸二無水物は、2種以上を組合せて用いてもよい。 The tetracarboxylic dianhydride can be appropriately selected from tetracarboxylic dianhydrides that have been conventionally used as raw materials for synthesizing polyamic acid. The tetracarboxylic dianhydride may be an aromatic tetracarboxylic dianhydride or an aliphatic tetracarboxylic dianhydride, but from the viewpoint of the heat resistance of the resulting polyimide resin, it is preferable to use an aromatic tetracarboxylic dianhydride. Two or more types of tetracarboxylic dianhydrides may be used in combination.
 芳香族テトラカルボン酸二無水物の好適な具体例としては、ピロメリット酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2,6,6-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-へキサフルオロプロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4-(m-フェニレンジオキシ)ジフタル酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス無水フタル酸フルオレン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。脂肪族テトラカルボン酸二無水物としては、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロへキサンテトラカルボン酸二無水物、1,2,4,5-シクロへキサンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物等が挙げられる。これらの中では、価格、入手容易性等から、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物が好ましい。また、これらのテトラカルボン酸二無水物は単独あるいは二種以上混合して用いることもできる。 Specific examples of suitable aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxyphenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,2,6,6-biphenyltetracarboxylic dianhydride, dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride, 3,3',4,4'-benzophenone tetraanhydride Carboxylic acid dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, bis(2,3-dicarboxyphenyl)ether dianhydride, 2,2',3,3'-benzophenone tetracarboxylic acid dianhydride, 4,4-(p-phenylenedioxy)diphthalic acid dianhydride, 4,4-(m-phenylenedioxy)diphthalic acid dianhydride, 1,2,5,6-naphthalene tetracarboxylic acid dianhydride, 1,4,5,8-naphthalene tetracarboxylic acid dianhydride, 2,3,6,7-naphthalene tetracarboxylic acid dianhydride, 1,2,3,4-benzene tetracarboxylic acid dianhydride, 3,4,9,10-perylene tetracarboxylic acid dianhydride, 2,3,6,7-anthracene tetracarboxylic acid dianhydride, 1,2,7,8-phenanthrene tetracarboxylic acid dianhydride, 9,9-bisphthalic anhydride fluorene, 3,3',4,4'-diphenylsulfone tetracarboxylic acid dianhydride, and the like. Examples of aliphatic tetracarboxylic dianhydrides include ethylene tetracarboxylic dianhydride, butane tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride, cyclohexane tetracarboxylic dianhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, and 1,2,3,4-cyclohexane tetracarboxylic dianhydride. Among these, 3,3',4,4'-biphenyl tetracarboxylic dianhydride and pyromellitic dianhydride are preferred in terms of price, availability, and the like. These tetracarboxylic dianhydrides can be used alone or in combination of two or more.
 ジアミンは、従来からポリアミド酸の合成原料として使用されているジアミンから適宜選択することができる。ジアミンは、芳香族ジアミンであっても、脂肪族ジアミンであってもよいが、得られるポリイミド樹脂の耐熱性の点から、芳香族ジアミンが好ましい。これらのジアミンは、2種以上を組合せて用いてもよい。 The diamine can be appropriately selected from diamines conventionally used as raw materials for synthesizing polyamic acids. The diamine may be aromatic diamine or aliphatic diamine, but aromatic diamine is preferable from the viewpoint of heat resistance of the resulting polyimide resin. These diamines may be used in combination of two or more.
 芳香族ジアミンとしては、フェニル基が1個あるいは2~10個程度が結合したジアミノ化合物を挙げることができる。具体的には、フェニレンジアミン及びその誘導体、ジアミノビフェニル化合物及びその誘導体、ジアミノジフェニル化合物及びその誘導体、ジアミノトリフェニル化合物及びその誘導体、ジアミノナフタレン及びその誘導体、アミノフェニルアミノインダン及びその誘導体、ジアミノテトラフェニル化合物及びその誘導体、ジアミノヘキサフェニル化合物及びその誘導体、カルド型フルオレンジアミン誘導体である。 Examples of the aromatic diamine include diamino compounds in which one or about 2 to 10 phenyl groups are bonded. Specifically, phenylene diamine and its derivatives, diaminobiphenyl compounds and its derivatives, diaminodiphenyl compounds and its derivatives, diaminotaphenyl compounds and its derivatives, diaminonaphthalene and its derivatives, aminophenylaminoindan and its derivatives, diaminotetraphenyl Compounds and derivatives thereof, diaminohexaphenyl compounds and derivatives thereof, cardo-type fluorenediamine derivatives.
 フェニレンジアミンはm-フェニレンジアミン、p-フェニレンジアミン等であり、フェニレンジアミン誘導体としては、メチル基、エチル基等のアルキル基が結合したジアミン、例えば、2,4-ジアミノトルエン、2,4-トリフェニレンジアミン等である。 Phenylene diamines include m-phenylene diamine and p-phenylene diamine, and examples of phenylene diamine derivatives include diamines to which alkyl groups such as methyl and ethyl groups are bonded, such as 2,4-diaminotoluene and 2,4-triphenylene. diamines, etc.
 ジアミノビフェニル化合物は、2つのアミノフェニル基がフェニル基同士で結合したものである。例えば、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル等である。 A diaminobiphenyl compound is a compound in which two aminophenyl groups are bonded to each other through the phenyl groups. For example, 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl, and the like.
 ジアミノジフェニル化合物は、2つのアミノフェニル基が他の基を介してフェニル基同士で結合したものである。結合はエーテル結合、スルホニル結合、チオエーテル結合、アルキレン又はその誘導体基による結合、イミノ結合、アゾ結合、ホスフィンオキシド結合、アミド結合、ウレイレン結合等である。アルキレン結合は炭素数が1~6程度のものであり、その誘導体基はアルキレン基の水素原子の1以上がハロゲン原子等で置換されたものである。 A diaminodiphenyl compound is a compound in which two aminophenyl groups are bonded to each other via another group. Bonds include ether bonds, sulfonyl bonds, thioether bonds, alkylene or derivative groups thereof, imino bonds, azo bonds, phosphine oxide bonds, amide bonds, ureylene bonds, and the like. The alkylene bond has about 1 to 6 carbon atoms, and its derivative group is one in which one or more hydrogen atoms of the alkylene group are substituted with a halogen atom or the like.
 ジアミノジフェニル化合物の例としては、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,2-ビス(p-アミノフェニル)プロパン、2,2’-ビス(p-アミノフェニル)へキサフルオロプロパン、4-メチル-2,4-ビス(p-アミノフェニル)-1-ペンテン、4-メチル-2,4-ビス(p-アミノフェニル)-2-ぺンテン、イミノジアニリン、4-メチル-2,4-ビス(p-アミノフェニル)ペンタン、ビス(p-アミノフェニル)ホスフィンオキシド、4,4’-ジアミノアゾベンゼン、4,4’-ジアミノジフェニル尿素、4,4’-ジアミノジフェニルアミド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。 Examples of diaminodiphenyl compounds include 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone , 3,4'-diaminodiphenylketone, 2,2-bis(p-aminophenyl)propane, 2,2'-bis(p-aminophenyl)hexafluoropropane, 4-methyl-2,4-bis( p-aminophenyl)-1-pentene, 4-methyl-2,4-bis(p-aminophenyl)-2-pentene, iminodianiline, 4-methyl-2,4-bis(p-aminophenyl) Pentane, bis(p-aminophenyl)phosphine oxide, 4,4'-diaminoazobenzene, 4,4'-diaminodiphenylurea, 4,4'-diaminodiphenylamide, 1,4-bis(4-aminophenoxy)benzene , 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy) ) phenyl] sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy) ) phenyl]hexafluoropropane and the like.
 これらの中では、価格、入手容易性等から、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、及び4,4’-ジアミノジフェニルエーテルが好ましい。 Among these, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are preferred in terms of price, availability, etc.
 ジアミノトリフェニル化合物は、2つのアミノフェニル基と1つのフェニレン基がいずれも他の基を介して結合したものであり、他の基は、ジアミノジフェニル化合物と同様のものが選ばれる。ジアミノトリフェニル化合物の例としては、1,3-ビス(m-アミノフェノキシ)ベンゼン、1,3-ビス(p-アミノフェノキシ)ベンゼン、1,4-ビス(p-アミノフェノキシ)ベンゼン等を挙げることができる。 The diaminodiphenyl compound has two aminophenyl groups and one phenylene group bonded via other groups, and the other groups are selected from the same groups as in the diaminodiphenyl compound. Examples of diaminotriphenyl compounds include 1,3-bis(m-aminophenoxy)benzene, 1,3-bis(p-aminophenoxy)benzene, 1,4-bis(p-aminophenoxy)benzene, etc. be able to.
 ジアミノナフタレンの例としては、1,5-ジアミノナフタレン及び2,6-ジアミノナフタレンを挙げることができる。 Examples of diaminonaphthalene include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
 アミノフェニルアミノインダンの例としては、5又は6-アミノ-1-(p-アミノフェニル)-1,3,3-トリメチルインダンを挙げることができる。 Examples of aminophenylaminoindan include 5- or 6-amino-1-(p-aminophenyl)-1,3,3-trimethylindane.
 ジアミノテトラフェニル化合物の例としては、4,4’-ビス(p-アミノフェノキシ)ビフェニル、2,2’-ビス[p-(p’-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[p-(p’-アミノフェノキシ)ビフェニル]プロパン、2,2’-ビス[p-(m-アミノフェノキシ)フェニル]ベンゾフェノン等を挙げることができる。 Examples of diaminotetraphenyl compounds include 4,4'-bis(p-aminophenoxy)biphenyl, 2,2'-bis[p-(p'-aminophenoxy)phenyl]propane, 2,2'-bis[ Examples include p-(p'-aminophenoxy)biphenyl]propane and 2,2'-bis[p-(m-aminophenoxy)phenyl]benzophenone.
 カルド型フルオレンジアミン誘導体は、9,9-ビスアニリンフルオレン等が挙げられる。 Examples of cardo-type fluorenediamine derivatives include 9,9-bisanilinefluorene.
 脂肪族ジアミンは、例えば、炭素数が2~15程度のものがよく、具体的には、ペンタメチレンジアミン、へキサメチレンジアミン、へプタメチレンジアミン等が挙げられる。 The aliphatic diamine preferably has, for example, about 2 to 15 carbon atoms, and specific examples thereof include pentamethylene diamine, hexamethylene diamine, heptamethylene diamine, and the like.
 なお、これらのジアミンの水素原子がハロゲン原子、メチル基、メトキシ基、シアノ基、フェニル基等の群より選択される少なくとも1種の置換基により置換された化合物であってもよい。 Note that the diamine may be a compound in which the hydrogen atom is substituted with at least one substituent selected from the group such as a halogen atom, a methyl group, a methoxy group, a cyano group, and a phenyl group.
 本実施形態で用いられるポリアミド酸を製造する手段に特に制限はなく、例えば、有機溶剤中で酸、ジアミン成分を反応させる方法等の公知の手法を用いることができる。 There are no particular limitations on the means for producing the polyamic acid used in this embodiment, and any known method can be used, such as reacting an acid and a diamine component in an organic solvent.
 テトラカルボン酸二無水物とジアミンとの反応は、通常、有機溶剤中で行われる。テトラカルボン酸二無水物とジアミンとの反応に使用される有機溶剤は、テトラカルボン酸二無水物及びジアミンを溶解させることができ、テトラカルボン酸二無水物及びジアミンと反応しないものであれば特に限定されない。有機溶剤は単独で又は2種以上を混合して用いることができる。 The reaction between tetracarboxylic dianhydride and diamine is usually carried out in an organic solvent. The organic solvent used in the reaction between the tetracarboxylic dianhydride and the diamine is particularly suitable as long as it can dissolve the tetracarboxylic dianhydride and the diamine and does not react with the tetracarboxylic dianhydride and the diamine. Not limited. Organic solvents can be used alone or in combination of two or more.
 テトラカルボン酸二無水物とジアミンとの反応に用いる有機溶剤の例としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤;β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン等のラクトン系極性溶剤;ジメチルスルホキシド;アセトニトリル;乳酸エチル、乳酸ブチル等の脂肪酸エステル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジオキサン、テトラヒドロフラン、メチルセルソルブアセテート、エチルセルソルブアセテート等のエーテル類;クレゾール類等のフェノール系溶剤が挙げられる。これらの有機溶剤は単独あるいは2種以上を混合して用いることができる。有機溶剤の使用量に特に制限はないが、生成するポリアミド酸の含有量が5~50質量%とするのが望ましい。 Examples of organic solvents used in the reaction between tetracarboxylic dianhydride and diamine include N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, and , N-diethylformamide, N-methylcaprolactam, N,N,N',N'-tetramethylurea, and other nitrogen-containing polar solvents; β-propiolactone, γ-butyrolactone, γ-valerolactone, δ-valerolactone , γ-caprolactone, ε-caprolactone and other lactone polar solvents; dimethyl sulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dioxane, tetrahydrofuran, methyl cellosolve acetate, ethyl cellosolve Examples include ethers such as acetate; phenolic solvents such as cresols. These organic solvents can be used alone or in combination of two or more. Although there is no particular restriction on the amount of organic solvent used, it is desirable that the content of the polyamic acid produced is 5 to 50% by mass.
 これらの有機溶剤の中では、生成するポリアミド酸の溶解性から、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤が好ましい。 Among these organic solvents, nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N-methylcaprolactam, and N,N,N',N'-tetramethylurea are preferred due to the solubility of the resulting polyamic acid.
 重合温度は一般的には-10~120℃、好ましくは5~30℃である。重合時間は使用する原料組成により異なるが、通常は3~24Hr(時間)である。また、このような条件下で得られるポリアミド酸の有機溶剤溶液の固有粘度は、好ましくは1000~10万cP(センチポアズ)、より一層好ましくは5000~7万cPの範囲である。 The polymerization temperature is generally -10 to 120°C, preferably 5 to 30°C. The polymerization time varies depending on the raw material composition used, but is usually 3 to 24 hours. Further, the intrinsic viscosity of the organic solvent solution of polyamic acid obtained under such conditions is preferably in the range of 1,000 to 100,000 cP (centipoise), and even more preferably in the range of 5,000 to 70,000 cP.
 <ポリイミド>
 本実施形態に用いるポリイミドは、塗布液Lに使用する有機溶剤に溶解可能な可溶性ポリイミドなら、その構造や分子量に限定されることなく、公知のものが使用できる。ポリイミドについて、側鎖にカルボキシ基等の縮合可能な官能基又は焼成時に架橋反応等を促進させる官能基を有していてもよい。
<Polyimide>
The polyimide used in this embodiment is not limited to its structure or molecular weight, and any known polyimide can be used as long as it is a soluble polyimide that can be dissolved in the organic solvent used in the coating liquid L. The polyimide may have a condensable functional group such as a carboxy group or a functional group that promotes a crosslinking reaction during baking in the side chain.
 有機溶剤に可溶なポリイミドとするために、主鎖に柔軟な屈曲構造を導入するためのモノマーの使用、例えば、エチレジアミン、ヘキサメチレンジアミン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン等の脂肪族ジアミン;2-メチル-1,4-フェニレンジアミン、o-トリジン、m-トリジン、3,3’-ジメトキシベンジジン、4,4’-ジアミノベンズアニリド等の芳香族ジアミン;ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシブチレンジアミン等のポリオキシアルキレンジアミン;ポリシロキサンジアミン;2,3,3’,4’-オキシジフタル酸無水物、3,4,3’,4’-オキシジフタル酸無水物、2,2-ビス(4-ヒドロキシフェニル)プロパンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物等の使用が有効である。また、有機溶剤への溶解性を向上する官能基を有するモノマーの使用、例えば、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2-トリフルオロメチル-1,4-フェニレンジアミン等のフッ素化ジアミンを使用することも有効である。さらに、上記ポリイミドの溶解性を向上するためのモノマーに加えて、溶解性を阻害しない範囲で、上記ポリアミド酸の欄に記したものと同じモノマーを併用することもできる。 In order to make the polyimide soluble in organic solvents, use of monomers to introduce a flexible bent structure into the main chain, such as ethylenediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, Aliphatic diamines such as 4,4'-diaminodicyclohexylmethane; 2-methyl-1,4-phenylenediamine, o-tolidine, m-tolidine, 3,3'-dimethoxybenzidine, 4,4'-diaminobenzanilide, etc. Aromatic diamine; polyoxyalkylene diamine such as polyoxyethylene diamine, polyoxypropylene diamine, polyoxybutylene diamine; polysiloxane diamine; 2,3,3',4'-oxydiphthalic anhydride, 3,4,3' , 4'-oxydiphthalic anhydride, 2,2-bis(4-hydroxyphenyl)propanedibenzoate-3,3',4,4'-tetracarboxylic dianhydride, and the like are effective. Also, the use of monomers with functional groups that improve solubility in organic solvents, such as 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2-trifluoromethyl-1,4 - It is also effective to use fluorinated diamines such as phenylene diamine. Furthermore, in addition to the monomers for improving the solubility of the polyimide, the same monomers as those listed in the polyamic acid column can also be used in combination, within a range that does not inhibit the solubility.
 本実施形態で用いられる、有機溶剤に溶解可能なポリイミドを製造する手段に特に制限はなく、例えば、ポリアミド酸を化学イミド化又は加熱イミド化させ、有機溶剤に溶解させる方法等の公知の手法を用いることができる。そのようなポリイミドとしては、脂肪族ポリイミド(全脂肪族ポリイミド)、芳香族ポリイミド等を挙げることができ、芳香族ポリイミドが好ましい。芳香族ポリイミドとしては、式(1)で示す繰り返し単位を有するポリアミド酸を熱又は化学的に閉環反応によって取得したもの、若しくは式(2)で示す繰り返し単位を有するポリイミドを溶媒に溶解したものでよい。式中Arはアリール基を示す。 There are no particular limitations on the means for producing the polyimide that is soluble in an organic solvent, which is used in this embodiment. Can be used. Examples of such polyimides include aliphatic polyimides (fully aliphatic polyimides), aromatic polyimides, and the like, with aromatic polyimides being preferred. The aromatic polyimide is obtained by thermally or chemically ring-closing a polyamic acid having a repeating unit represented by formula (1), or by dissolving a polyimide having a repeating unit represented by formula (2) in a solvent. good. In the formula, Ar represents an aryl group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 <ポリアミドイミド>
 本実施形態に用いるポリアミドイミドは、塗布液Lに使用する有機溶剤に溶解可能な可溶性ポリアミドイミドなら、その構造や分子量に限定されることなく、公知のものが使用できる。ポリアミドイミドについて、側鎖にカルボキシ基等の縮合可能な官能基又は焼成時に架橋反応等を促進させる官能基を有していてもよい。
<Polyamideimide>
As the polyamide-imide used in this embodiment, any known polyamide-imide can be used without being limited to its structure or molecular weight as long as it is a soluble polyamide-imide that can be dissolved in the organic solvent used in the coating liquid L. The polyamide-imide may have a condensable functional group such as a carboxy group or a functional group that promotes crosslinking reaction during firing in the side chain.
 本実施形態で用いるポリアミドイミドは、任意の無水トリメリット酸とジイソシアネートとを反応させて得られるものや、任意の無水トリメリット酸の反応性誘導体とジアミンとの反応により得られる前駆体ポリマーをイミド化して得られるものを特に限定されることなく使用できる。 The polyamide-imide used in this embodiment can be obtained by reacting any trimellitic anhydride with a diisocyanate, or imide a precursor polymer obtained by reacting any reactive derivative of trimellitic anhydride with a diamine. It is possible to use the obtained product without any particular limitation.
 上記任意の無水トリメリット酸又はその反応性誘導体としては、例えば、無水トリメリット酸、無水トリメリット酸クロライド等の無水トリメリット酸ハロゲン化物、無水トリメリット酸エステル等が挙げられる。 Examples of the above-mentioned arbitrary trimellitic anhydride or its reactive derivative include trimellitic anhydride, trimellitic anhydride halides such as trimellitic anhydride chloride, trimellitic anhydride esters, and the like.
 ジイソシアネートとしては、例えば、メタフェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-オキシビス(フェニルイソシアネート)、4,4’-ジイソシアネートジフェニルメタン、ビス[4-(4-イソシアネートフェノキシ)フェニル]スルホン、2,2′-ビス[4-(4-イソシアネートフェノキシ)フェニル]プロパン等が挙げられる。 Examples of the diisocyanate include metaphenylene diisocyanate, p-phenylene diisocyanate, 4,4'-oxybis(phenylisocyanate), 4,4'-diisocyanate diphenylmethane, bis[4-(4-isocyanatophenoxy)phenyl]sulfone, 2, Examples include 2'-bis[4-(4-isocyanatophenoxy)phenyl]propane.
 ジアミンとしては、前記ポリアミド酸の説明において例示したものと同様のものが挙げられる。 As the diamine, the same ones as those exemplified in the explanation of the polyamic acid can be mentioned.
 <ポリアミド>
 ポリアミドとしては、ジカルボン酸とジアミンとから得られるポリアミドが好ましく、特に芳香族ポリアミドが好ましい。
<Polyamide>
As the polyamide, a polyamide obtained from a dicarboxylic acid and a diamine is preferable, and an aromatic polyamide is particularly preferable.
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、フタル酸、イソフタル酸、テレフタル酸、及びジフェン酸等が挙げられる。 Dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, phthalic acid, isophthalic acid, terephthalic acid, and diphenic acid. etc.
 ジアミンとしては、前記ポリアミド酸の説明において例示したものと同様のものが挙げられる。 As the diamine, the same ones as those exemplified in the explanation of the polyamic acid can be mentioned.
 次に、微粒子Bについて説明する。
<微粒子>
 微粒子Bは、例えば真球率が高いものが用いられる。このような微粒子Bは、樹脂フィルム40における孔の内面に曲面を形成しやすい点で好ましい。微粒子Bの粒径(平均直径)としては、例えば、100~2000nm程度に設定することができる。上記のような微粒子Bを用いることにより、後の工程で微粒子Bを除去することで得られる樹脂フィルム40の孔径を揃えることができる。また、微粒子Bの粒径や含有量を適宜調整することにより、所望の空隙率とすることができる。
Next, the fine particles B will be described.
<Microparticles>
The fine particles B used have, for example, a high sphericity. Such fine particles B are preferable in that they are easy to form curved surfaces on the inner surfaces of the holes in the resin film 40. The particle size (average diameter) of the fine particles B can be set to, for example, about 100 to 2000 nm. By using the fine particles B as described above, the pore size of the resin film 40 obtained by removing the fine particles B in a later process can be made uniform. In addition, the particle size and content of the fine particles B can be appropriately adjusted to achieve a desired porosity.
 なお、微粒子Bの材質としては、塗布液Lに含まれる溶剤に不溶であって、後の工程で後述する乾燥膜Dから除去可能な材質であれば、特に限定されることはなく公知のものを採用することができる。例えば、無機材料では、シリカ(二酸化珪素)、酸化チタン、アルミナ(Al)等の金属酸化物が挙げられる。また、有機材料では、高分子量オレフィン(ポリプロピレン,ポリエチレン等)、ポリスチレン、エポキシ樹脂、セルロース、ポリビニルアルコール、ポリビニルブチラール、ポリエステル、ポリメチルメタクリレート、ポリエーテル等の有機高分子微粒子が挙げられる。また、微粒子Bの一例として、(単分散)球状シリカ粒子などのコロイダルシリカ、炭酸カルシウム等が挙げられる。この場合、樹脂フィルム40の孔径をより均一にすることができる。塗布液Lに含まれる微粒子Bは、粒径が、例えば100~2000nmである。 The material of the fine particles B is not particularly limited and may be any known material as long as it is insoluble in the solvent contained in the coating liquid L and can be removed from the dry film D described later in a later step. can be adopted. For example, examples of inorganic materials include metal oxides such as silica (silicon dioxide), titanium oxide, and alumina (Al 2 O 3 ). Examples of organic materials include organic polymer fine particles such as high molecular weight olefins (polypropylene, polyethylene, etc.), polystyrene, epoxy resins, cellulose, polyvinyl alcohol, polyvinyl butyral, polyester, polymethyl methacrylate, polyether, and the like. Examples of the fine particles B include colloidal silica such as (monodisperse) spherical silica particles, calcium carbonate, and the like. In this case, the pore diameter of the resin film 40 can be made more uniform. The fine particles B contained in the coating liquid L have a particle size of, for example, 100 to 2000 nm.
 次に、溶剤について説明する。
 <溶剤>
 溶剤は、ポリアミド酸、ポリイミド、ポリアミドイミド又はポリアミドを溶解するものであれば、特に限定されることなく公知のものが使用できる。溶剤としては、例えば、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N,N’,N’-テトラメチルウレア、N-ビニル-2-ピロリドン等の含窒素極性溶剤;ジメチルスルホキシド等のスルホキシド系溶媒;アセトニトリル;乳酸エチル、乳酸ブチル等の脂肪酸エステル類;テトラヒドロフラン、ジオキサン、ジオキソラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、メチルセルソルブアセテート、エチルセルソルブアセテート等のエーテル類が挙げられる。これらのうち1種を使用してもよいし、2種以上を併用してもよい。
Next, the solvent will be explained.
<Solvent>
The solvent is not particularly limited, and any known solvent can be used as long as it dissolves polyamic acid, polyimide, polyamideimide, or polyamide. Examples of the solvent include N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N,N,N',N'-tetramethylurea, N- Nitrogen-containing polar solvents such as vinyl-2-pyrrolidone; sulfoxide solvents such as dimethyl sulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; tetrahydrofuran, dioxane, dioxolane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, methyl cellosolve acetate and ethers such as ethyl cellosolve acetate. One type of these may be used, or two or more types may be used in combination.
 また、溶剤は、上記の溶剤に加え、沸点が190℃以上の高沸点溶剤を含むことができる。高沸点溶剤としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン等の含窒素極性溶剤;γ―ブチロラクトン、γ―バレロラクトン、δ―バレロラクトン、γ―カプロラクトン、ε―カプロラクトン等のラクトン系極性溶剤;ピロリドンフェノール、o-、m-又はp-クレゾール、キシレノール、カテコール等のフェノール系溶媒;ジエチルスルホキシド等のスルホキシド系溶媒が挙げられる。高沸点溶剤としては、これらのうち1種を使用してもよいし、2種以上を併用してもよい。 In addition to the above solvents, the solvent may contain a high boiling point solvent having a boiling point of 190°C or higher. Examples of high boiling point solvents include nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone; lactone-based polar solvents such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, and ε-caprolactone; phenol-based solvents such as pyrrolidonephenol, o-, m-, or p-cresol, xylenol, and catechol; and sulfoxide-based solvents such as diethyl sulfoxide. As the high boiling point solvent, one of these may be used, or two or more may be used in combination.
 溶剤における高沸点溶剤の含有比率は特に限定されず、広い範囲のものを使用することができる。溶剤中、高沸点溶剤を5~80質量%とすることが好ましく、7~70質量%とすることがさらに好ましく、高沸点溶剤を10~60質量%とすることが最も好ましい。高沸点溶剤が5質量%以上で含有されれば、多孔質ポリイミド膜の成膜性や膜物性に問題がなく、80質量%以下であれば支障なく塗工及びプリベーク工程を行うことができる。 The content ratio of the high boiling point solvent in the solvent is not particularly limited, and a wide range of content can be used. In the solvent, the content of the high boiling point solvent is preferably 5 to 80% by mass, more preferably 7 to 70% by mass, and most preferably 10 to 60% by mass. If the high boiling point solvent is contained in an amount of 5% by mass or more, there will be no problem with the film formability or physical properties of the porous polyimide film, and if it is 80% by mass or less, the coating and prebaking steps can be performed without any problem.
 なお、上記塗布液Lは、所定の樹脂材料45と、微粒子Bと、溶剤の他、必要に応じて、離型剤、分散剤、縮合剤、イミド化剤、界面活性剤等種々の添加剤を含んでいてもよい。 The coating liquid L contains a predetermined resin material 45, fine particles B, a solvent, and, if necessary, various additives such as a mold release agent, a dispersant, a condensing agent, an imidizing agent, and a surfactant. May contain.
 次に、基材Fについて説明する。
 <基材>
 基材Fは、例えばポリエチレンテレフタレート(PET)などの樹脂シートが挙げられるが、樹脂シートに限定されずステンレス鋼等の金属材料によるシートであってもよい。
Next, the base material F will be explained.
<Base material>
The base material F is, for example, a resin sheet such as polyethylene terephthalate (PET), but is not limited to a resin sheet, and may be a sheet made of a metal material such as stainless steel.
 図6Aに示すように、上記した塗布液Lを基材F上に塗布し、乾燥させることにより塗布液L中の溶剤を除去して、乾燥膜Dを形成する。詳説すると、塗布液Lを基材F上に塗布する際に、例えば、不図示のノズルより塗布液Lを基材Fの表面に向かって吐出させる。ノズルからの単位時間あたりの吐出量、又はノズルと基板Sとの相対移動速度等を変化させることにより、乾燥膜Dの膜厚の調整(すなわち樹脂フィルム40の膜厚の調整)が可能である。ここで、塗布液Lは、微粒子Bを含む。次に、基材F上に塗布された塗布液Lは、常圧又は真空下のもと50~100℃で加熱処理され(プリベーク)、乾燥膜Dが形成される。 As shown in FIG. 6A, the above-mentioned coating liquid L is applied onto the base material F and dried to remove the solvent in the coating liquid L to form a dry film D. To explain in detail, when applying the coating liquid L onto the base material F, for example, the coating liquid L is discharged toward the surface of the base material F from a not-shown nozzle. By changing the discharge amount per unit time from the nozzle or the relative movement speed between the nozzle and the substrate S, it is possible to adjust the thickness of the dry film D (that is, adjust the thickness of the resin film 40). . Here, the coating liquid L contains fine particles B. Next, the coating liquid L applied onto the base material F is heat-treated (prebaked) at 50 to 100° C. under normal pressure or vacuum to form a dry film D.
 続いて、図6Bに示すように、プリベーク処理後の乾燥膜Dを基材Fより剥離する。剥離方法は、特に限定されず、マニピュレータ等を用いて自動的に行ってもよいし、作業者による手作業で行ってもよい。続いて、剥離後の乾燥膜Dを焼成する。なお、焼成の前に、乾燥膜Dにカールが発生するのを抑制するため、水を含む溶剤への浸漬処理や、プレス処理等を任意で行ってもよい。また当該浸漬処理後の乾燥処理を任意で設けてもよい。 Subsequently, as shown in FIG. 6B, the dried film D after the prebaking process is peeled off from the base material F. The peeling method is not particularly limited, and may be performed automatically using a manipulator or the like, or may be performed manually by an operator. Subsequently, the dried film D after peeling is fired. Note that, before firing, in order to suppress the occurrence of curls in the dry film D, immersion treatment in a solvent containing water, pressing treatment, etc. may be optionally performed. Further, a drying treatment may be optionally provided after the immersion treatment.
 乾燥膜Dの焼成温度は、例えば120~400℃程度であり、さらに150~350℃程度の温度が好ましい。また、微粒子Bに有機材料が含まれる場合は、微粒子Bが熱分解する温度よりも低い温度に設定する必要がある。なお、塗布液Lがポリアミド酸を含む場合、この焼成においてはイミド化を完結させることが好ましいが、乾燥膜Dがポリイミド、ポリアミドイミド又はポリアミドから構成される場合は、この限りでない。 The firing temperature of the dry film D is, for example, about 120 to 400°C, and preferably about 150 to 350°C. Further, when the fine particles B contain an organic material, the temperature needs to be set lower than the temperature at which the fine particles B are thermally decomposed. In addition, when the coating liquid L contains polyamic acid, it is preferable to complete imidization in this baking, but this does not apply when the dry film D is composed of polyimide, polyamide-imide, or polyamide.
 続いて、焼成後の乾燥膜Dから微粒子Bを除去することにより、樹脂フィルム40を製造する。例えば、微粒子Bとして、シリカを採用した場合、乾燥膜Dを低濃度のフッ化水素水(HF)等によりシリカを溶解除去することで、多孔質とすることが可能である。また、微粒子Bが樹脂微粒子の場合は、上記のような樹脂微粒子の熱分解温度以上かつポリイミドの熱分解温度未満の温度に乾燥膜Dを加熱し、樹脂微粒子を熱分解させてこれを取り除くことができる。 Subsequently, the resin film 40 is manufactured by removing the fine particles B from the dried film D after firing. For example, when silica is used as the fine particles B, it is possible to make the dry membrane D porous by dissolving and removing the silica with low concentration hydrogen fluoride (HF) or the like. In addition, when the fine particles B are resin fine particles, the dry film D is heated to a temperature higher than the thermal decomposition temperature of the resin fine particles and lower than the thermal decomposition temperature of polyimide as described above to thermally decompose the resin fine particles and remove them. Can be done.
 図6Cに示すように、乾燥膜Dから微粒子Bを除去した部分がそれぞれ空孔44となり、空孔44が連通することで空隙43を有する樹脂フィルム40が形成される。よって、樹脂フィルム40は通気性を有する多孔性の樹脂フィルムとなる。樹脂フィルム40は、面方向(X方向及びY方向)に均一な空隙率を有する。 As shown in FIG. 6C, the portions from which the fine particles B are removed from the dry film D become pores 44, and the pores 44 communicate with each other to form the resin film 40 having the pores 43. Therefore, the resin film 40 becomes a porous resin film having air permeability. The resin film 40 has a uniform porosity in the plane direction (X direction and Y direction).
 続いて、樹脂フィルム40に対して、エッチング(ケミカルエッチング)処理が行われる。樹脂フィルム40は、図7Aに示すように、エッチング液L2に浸漬され、空隙43の樹脂材料45の一部が除去される。エッチング液L2としては、無機アルカリ溶液又は有機アルカリ溶液等のケミカルエッチング液が用いられる。 Subsequently, the resin film 40 is subjected to an etching (chemical etching) process. As shown in FIG. 7A, the resin film 40 is immersed in the etching solution L2, and a portion of the resin material 45 in the voids 43 is removed. As the etching liquid L2, a chemical etching liquid such as an inorganic alkaline solution or an organic alkaline solution is used.
 無機アルカリ溶液として例えば、ヒドラジンヒドラートとエチレンジアミンを含むヒドラジン溶液、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム等のアルカリ金属水酸化物の溶液、アンモニア溶液、水酸化アルカリとヒドラジンと1,3-ジメチル-2-イミダゾリジノンを主成分とするエッチング液等が挙げられる。有機アルカリ溶液としては、エチルアミン、n-プロピルアミン等の第一級アミン類;ジエチルアミン、ジ-n-ブチルアミン等の第二級アミン類;トリエチルアミン、メチルジエチルアミン等の第三級アミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩;ピロール、ピヘリジン等の環状アミン類等のアルカリ性溶液が挙げられる。エッチング処理により、図7Bに示すように、空隙43のバリ等の突起部分が除去され、空隙43の通気性が向上する。 Examples of inorganic alkaline solutions include hydrazine solutions containing hydrazine hydrate and ethylenediamine, solutions of alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, sodium carbonate, sodium silicate, and sodium metasilicate, ammonia solutions, and etching solutions mainly containing alkali hydroxide, hydrazine, and 1,3-dimethyl-2-imidazolidinone. Examples of organic alkaline solutions include alkaline solutions of primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; alcohol amines such as dimethylethanolamine and triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; and cyclic amines such as pyrrole and piheridine. By the etching process, as shown in FIG. 7B, protruding parts such as burrs in the gap 43 are removed, and the breathability of the gap 43 is improved.
 その後、樹脂フィルム40は洗浄液によって洗浄され、液切りが行われる。続いて、液切り後の樹脂フィルム40は、例えば、100~400℃程度(好ましくは100℃~300℃程度)に加熱され、洗浄液が除去される。なお、エッチング後の多孔性の樹脂フィルム40は、不図示の巻き取り装置等によって巻き取られ、不図示のロール体を形成してもよい。また、このロール体は、使用目的に応じて、樹脂フィルム40を引き出して、使用する長さに切断してから再び巻き取ってロール体とすることにより、ロール体のサイズを調整することができる。なお、上記したエッチング処理を行うか否かは任意であり、エッチング処理は行わなくてもよい。 After that, the resin film 40 is washed with a cleaning liquid and the liquid is drained. Subsequently, the resin film 40 after draining is heated to, for example, about 100 to 400°C (preferably about 100 to 300°C) to remove the cleaning liquid. Note that the porous resin film 40 after etching may be wound up by a winding device (not shown) or the like to form a roll body (not shown). Further, the size of the roll body can be adjusted depending on the purpose of use by pulling out the resin film 40, cutting it to the length to be used, and then winding it up again to form a roll body. . Note that it is optional whether or not to perform the above-described etching process, and it is not necessary to perform the etching process.
 図8は、実施形態に係る樹脂フィルム40Aの他の例を示す断面図である。この樹脂フィルム40Aは、第1接触面41に帯電防止膜46が形成されている。本実施形態に係るスクライブ装置1に使用される樹脂フィルム40は、単独でも使用できるが第1接触面41上に帯電防止剤を含有する帯電防止膜46をコーティングしてもよい。この場合、基板Sの下面S2と直接接触するのは帯電防止膜46となるため、ピンオンディスク試験による帯電防止膜46の上面、すなわち、基板Sの下面S2と接触している面の摩擦係数が1.0以下であることが好ましい。 FIG. 8 is a cross-sectional view showing another example of the resin film 40A according to the embodiment. In this resin film 40A, an antistatic film 46 is formed on the first contact surface 41. The resin film 40 used in the scribing device 1 according to this embodiment can be used alone, but the first contact surface 41 may be coated with an antistatic film 46 containing an antistatic agent. In this case, since the antistatic film 46 is in direct contact with the lower surface S2 of the substrate S, the friction coefficient of the upper surface of the antistatic film 46, that is, the surface in contact with the lower surface S2 of the substrate S, was determined by the pin-on-disk test. is preferably 1.0 or less.
 第1接触面41上に帯電防止膜46を形成する方法としては、公知の薄膜形成技術が使用可能である。例えば、液状の帯電防止剤を第1接触面41上に塗布する方法、物理蒸着、又は化学蒸着等の手法が適用可能である。帯電防止剤としては、公知の帯電防止剤を適用可能であり、例えば、グリセリン脂肪酸エステル、ベンゾトリアゾールを含有する帯電防止剤などが挙げられる。また、帯電防止膜46は、第2接触面42に形成されてもよいし、第1接触面41及び第2接触面42の双方に形成されてもよい。 The antistatic film 46 can be formed on the first contact surface 41 using known thin film formation techniques. For example, a method of applying a liquid antistatic agent to the first contact surface 41, physical vapor deposition, chemical vapor deposition, or other techniques can be used. Any known antistatic agent can be used as the antistatic agent, and examples of such agents include antistatic agents containing glycerin fatty acid ester and benzotriazole. The antistatic film 46 may be formed on the second contact surface 42, or on both the first contact surface 41 and the second contact surface 42.
 <スクライブ方法>
 次に、基板Sのスクライブ方法について説明する。図9は、実施形態に係る基板Sのスクライブ方法の一例を示すフローチャートである。図10から図14は、実施形態に係るスクライブ方法の一工程を示す図である。これらの工程図では、各部の動きが分かり易くなるように、一部の記載を省略又は簡略化している。以下、図9のフローチャートに沿って説明する。
<Scribe method>
Next, a method for scribing the substrate S will be explained. FIG. 9 is a flowchart illustrating an example of a method for scribing the substrate S according to the embodiment. 10 to 14 are diagrams showing one step of the scribing method according to the embodiment. In these process drawings, some descriptions are omitted or simplified to make it easier to understand the movements of each part. Hereinafter, the process will be explained along the flowchart of FIG.
 まず、基板支持部10の上面11に樹脂フィルム40を配置する(ステップS01)。図10Aに示すように、樹脂フィルム40は、複数の吸引孔13を覆うように基板支持部10の上面11に配置される。樹脂フィルム40を配置する際、例えばロール状に巻かれた樹脂フィルム40を引き出しながら所定の大きさに切断しつつ作業者が手作業で配置してもよい。続いて、樹脂フィルム40上に基板Sを載置する(ステップS02)。図10Bに示すように、樹脂フィルム40の上面である第1接触面41上に基板Sが載置される。基板Sの載置は、基板Sを搬送可能な各種搬送装置等で行ってもよいし、作業者が手作業で行ってもよい。 First, the resin film 40 is placed on the upper surface 11 of the substrate support section 10 (step S01). As shown in FIG. 10A, the resin film 40 is arranged on the upper surface 11 of the substrate support part 10 so as to cover the plurality of suction holes 13. When placing the resin film 40, for example, an operator may manually place the resin film 40 while pulling out the resin film 40 wound into a roll and cutting it into a predetermined size. Subsequently, the substrate S is placed on the resin film 40 (step S02). As shown in FIG. 10B, the substrate S is placed on the first contact surface 41, which is the upper surface of the resin film 40. The substrate S may be placed by various conveyance devices capable of conveying the substrate S, or may be placed manually by an operator.
 次に、減圧吸引して基板Sを基板支持部10に固定する(ステップS03)。ステップS02において、基板支持部10の上面11には、樹脂フィルム40及び基板Sが載置されている。制御部50は、ステップS02が終了すると、吸引装置32を駆動させて、樹脂フィルム40及び基板Sの吸引を開始する。吸引装置32の駆動により、吸引管31、空間部12を介して複数の吸引孔13のそれぞれが吸引を開始し、樹脂フィルム40が上面11に吸着される。さらに、樹脂フィルム40は空隙43を有しているので、空隙43を介して基板Sの下面S2を吸着する。その結果、図11Aに示すように、基板Sは、樹脂フィルム40とともに基板支持部10に吸着固定される。 Next, the substrate S is fixed to the substrate support part 10 by vacuum suction (step S03). In step S02, the resin film 40 and the substrate S are placed on the upper surface 11 of the substrate support section 10. When step S02 is completed, the control unit 50 drives the suction device 32 to start suctioning the resin film 40 and the substrate S. By driving the suction device 32, each of the plurality of suction holes 13 starts suctioning through the suction tube 31 and the space 12, and the resin film 40 is attracted to the upper surface 11. Furthermore, since the resin film 40 has the void 43, it attracts the lower surface S2 of the substrate S through the void 43. As a result, as shown in FIG. 11A, the substrate S is suctioned and fixed to the substrate support part 10 together with the resin film 40.
 続いて、基板Sの被加工面S1に対してスクライブ加工を行う(ステップS04)。先ず、制御部50は、基板Sから外れた位置において、駆動部22を駆動して加工ヘッド21を所定の高さに維持させる。加工ヘッド21の高さは、ツール23の刃部23aが基板Sの被加工面S1に対して所定量だけ食い込むように設定される。続いて、制御部50は、図11Bに示すように、加工ヘッド21(ツール23)を+X方向に移動させることで、基板Sの被加工面S1にスクライブラインLXを形成させる。つまり、ツール23をX方向に移動させ、刃部23aを被加工面S1に対して摺動させることで、X方向の溝であるスクライブラインLXを形成させる。なお、スクライブラインLXのうち塑性変形により形成された凹部である溝部分をトレンチラインと称する場合がある。 Subsequently, a scribing process is performed on the processed surface S1 of the substrate S (step S04). First, the control unit 50 drives the drive unit 22 at a position away from the substrate S to maintain the processing head 21 at a predetermined height. The height of the processing head 21 is set such that the blade portion 23a of the tool 23 bites into the processed surface S1 of the substrate S by a predetermined amount. Subsequently, the control unit 50 forms a scribe line LX on the processed surface S1 of the substrate S by moving the processing head 21 (tool 23) in the +X direction, as shown in FIG. 11B. That is, by moving the tool 23 in the X direction and sliding the blade portion 23a on the processed surface S1, the scribe line LX, which is a groove in the X direction, is formed. Note that the groove portion of the scribe line LX, which is a recess formed by plastic deformation, may be referred to as a trench line.
 ステップS04において、基板Sは、ナノインデンテーション法による硬度が1.6~33.5N/mmである樹脂フィルム40上に載置されている。従って、ツール23がX方向又はY方向に移動した際でも基板Sの沈み込み等がなく(又は小さく)、適切なスクライブラインLX、LYを形成することができる。すなわち、スクライブラインLX、LYの形成不良による基板Sの分断不良を低減でき、部品SSのカット歩留まりを向上できる。 In step S04, the substrate S is placed on the resin film 40, which has a hardness of 1.6 to 33.5 N/mm 2 by nanoindentation. Therefore, even when the tool 23 moves in the X direction or the Y direction, the substrate S does not sink (or sinks to a small extent), and appropriate scribe lines LX and LY can be formed. That is, it is possible to reduce defects in dividing the substrate S due to defective formation of the scribe lines LX and LY, and improve the cutting yield of the component SS.
 図12に示すように、1枚の基板Sにおいて平行して複数のスクライブラインLXが形成される。複数のスクライブラインLXにおけるY方向の間隔は、所望の部品SSの寸法により予め仮想ラインMLXとして設定されている。また、加工ヘッド21(ツール23)を+Y方向に移動させる場合は、例えば、基板支持部10をXY平面内で90°旋回させて、上記と同様に基板Sの-Y側から加工ヘッド21(ツール23)を移動させ、Y方向の溝であるスクライブラインLYを形成させる。図12に示すように、1枚の基板Sにおいて平行して複数のスクライブラインLYが形成される。複数のスクライブラインLYにおけるX方向の間隔は、所望の部品SSの寸法により予め仮想ラインMLYとして設定されている。 As shown in FIG. 12, a plurality of scribe lines LX are formed in parallel on one substrate S. The intervals in the Y direction between the plurality of scribe lines LX are set in advance as virtual lines MLX based on the dimensions of the desired component SS. In addition, when moving the processing head 21 (tool 23) in the +Y direction, for example, the substrate support part 10 is rotated 90 degrees within the XY plane, and the processing head 21 ( The tool 23) is moved to form a scribe line LY, which is a groove in the Y direction. As shown in FIG. 12, a plurality of scribe lines LY are formed in parallel on one substrate S. The intervals in the X direction between the plurality of scribe lines LY are set in advance as a virtual line MLY based on the dimensions of the desired component SS.
 複数のスクライブラインLX、LYを形成する順番としては、例えば、先に複数のスクライブラインLXを形成させた後、複数のスクライブラインLYを形成させてもよいし、逆に、先に複数のスクライブラインLYを形成させた後、複数のスクライブラインLXを形成させてもよい。またスクライブラインLXとスクライブラインLYとを交互に形成させる形態であってもよい。また、刃部23aを摺動させるツール23に代えて、刃部を転動させるツールを用いる場合は、転動する刃部を被加工面S1に対して所定量だけ食い込ませた状態でツールをX方向又はY方向に移動させることで、刃部は転動しつつ溝状のスクライブラインLX、LYが形成される。 As for the order in which the plurality of scribe lines LX and LY are formed, for example, the plurality of scribe lines LX may be formed first, and then the plurality of scribe lines LY may be formed, or conversely, the plurality of scribe lines LX and LY may be formed first. After forming the line LY, a plurality of scribe lines LX may be formed. Alternatively, the scribe lines LX and scribe lines LY may be alternately formed. In addition, when using a tool that rolls the blade portion instead of the tool 23 that slides the blade portion 23a, the tool is held with the rolling blade portion biting into the workpiece surface S1 by a predetermined amount. By moving the blade in the X direction or the Y direction, groove-shaped scribe lines LX and LY are formed while the blade portion rolls.
 スクライブラインLX、LYは、図13に示すように、溝部分であるトレンチラインTLの他に、トレンチラインTLに連続して-Z方向(厚さ方向)に進展した垂直クラックであるクラックラインCLを伴う。クラックラインCLは、トレンチラインTLと同時に形成される場合と、トレンチラインTLの形成後にトレンチラインTLの下方に形成される場合がある。トレンチラインTLの深さ(刃部23aの食い込み量、又はツール23の下方への押圧力)や、基板Sの材質等によりクラックラインCLの厚さ方向の長さが異なる。 As shown in FIG. 13, the scribe lines LX and LY are accompanied by a crack line CL, which is a vertical crack that continues from the trench line TL and progresses in the -Z direction (thickness direction), in addition to the trench line TL, which is a groove portion. The crack line CL may be formed at the same time as the trench line TL, or may be formed below the trench line TL after the trench line TL is formed. The length of the crack line CL in the thickness direction varies depending on the depth of the trench line TL (the amount of penetration of the blade portion 23a, or the downward pressing force of the tool 23), the material of the substrate S, etc.
 次に、基板Sの分断を行う(ステップS05)。このような基板Sの分断をブレイク工程と称する場合がある。例えば、図13の上図に示すように、スクライブラインLX、LYに沿って曲げ応力Fを加えることで基板Sを分断し、複数の部品SSを形成することができる。この場合、基板Sの被加工面S1に形成されているクラックラインCLを開くように、基板Sの下面S2側からスクライブラインLX、LYに沿って応力Fを加えることが好ましい。その結果、基板Sは、図13の下図に示すように、スクライブラインLX、LYから下方に向けてクラックラインCLの全部が基板Sの下面S2まで達し、複数の部品SSに分断される。図13に示すような基板Sの分断は、例えば、作業者の手で基板Sを折り曲げることで行ってもよいし、スクライブラインLX、LYに沿って下面S2側に当接するブレイクバーを備える公知の分断装置を用いることで行ってもよい。 Next, the substrate S is divided (step S05). Such division of the substrate S may be referred to as a breaking process. For example, as shown in the upper diagram of FIG. 13, by applying bending stress F along the scribe lines LX and LY, the substrate S can be divided to form a plurality of parts SS. In this case, it is preferable to apply stress F along the scribe lines LX and LY from the lower surface S2 side of the substrate S so as to open the crack line CL formed on the processed surface S1 of the substrate S. As a result, as shown in the lower diagram of FIG. 13, the entire crack line CL of the substrate S extends downward from the scribe lines LX and LY to the lower surface S2 of the substrate S, and is divided into a plurality of parts SS. The division of the substrate S as shown in FIG. 13 may be performed, for example, by bending the substrate S by hand by an operator, or by a known method including a break bar that comes into contact with the lower surface S2 along the scribe lines LX and LY. This may be done by using a cutting device.
 次に、分断された部品SSの取り出しを行う(ステップS06)。部品SSの取り出しは、例えばピックアップ装置60を用いて行われる。図14に示すように、ピックアップ装置60は、支持部61と吸着パッド62とを備える。支持部61は、上下方向に延在する管状の部材であり、下端に吸着パッド62を備え、上端は不図示の吸引装置に連結されている。支持部61は、不図示の駆動部によりX方向、Y方向、Z方向に移動可能である。吸着パッド62は、支持部61の下端から拡径して内部に吸引空間を有する円錐台形状を有している。吸着パッド62は、下端において切り出された部品SSと接触し、部品SSを吸着する。ピックアップ装置60の動作は、例えば制御部50(図1参照)によって制御される。 Next, the divided parts SS are taken out (step S06). The component SS is taken out using the pickup device 60, for example. As shown in FIG. 14, the pickup device 60 includes a support section 61 and a suction pad 62. The support part 61 is a tubular member extending in the vertical direction, and has a suction pad 62 at its lower end, and its upper end is connected to a suction device (not shown). The support section 61 is movable in the X direction, Y direction, and Z direction by a drive section (not shown). The suction pad 62 has a truncated conical shape that expands in diameter from the lower end of the support portion 61 and has a suction space inside. The suction pad 62 contacts the cut out component SS at the lower end and suctions the component SS. The operation of the pickup device 60 is controlled by, for example, the control unit 50 (see FIG. 1).
 部品SSの取り出しは、先ず、制御部50により吸引装置32の駆動を停止させ、基板支持部10による基板Sの保持を解放させる。続いて、取り出し対象となる部品SSの上方に吸着パッド62を移動させる。図14においては、右側(+X側)の部品SS1を取り出し対象としている。続いて、吸着パッド62を下降させ、吸着パッド62が部品SS1の上面に接触した際に不図示の吸引装置を駆動して吸着パッド62に部品SSを吸着させる。続いて、吸着パッド62に吸着された部品SS1を+Xに微小距離だけ移動させる。すなわち、部品SS1を左側(-X側)の部品SS2から離すように、部品SS1を移動させる。 To take out the component SS, first, the control unit 50 stops driving the suction device 32 and releases the substrate S from being held by the substrate support unit 10. Subsequently, the suction pad 62 is moved above the component SS to be taken out. In FIG. 14, the component SS1 on the right side (+X side) is to be taken out. Subsequently, the suction pad 62 is lowered, and when the suction pad 62 contacts the upper surface of the component SS1, a suction device (not shown) is driven to cause the suction pad 62 to suction the component SS. Subsequently, the component SS1 attracted to the suction pad 62 is moved by a small distance in +X direction. That is, the component SS1 is moved so as to separate the component SS1 from the component SS2 on the left side (-X side).
 このとき、樹脂フィルム40は、第1接触面41の摩擦係数がピンオンディスク試験で1.0以下であるので、滑り性がよく、部品SS1をスムーズに移動させることができる。ステップS06では吸引装置32の駆動を停止させており、基板S(部品SS)は、樹脂フィルム40上に単に載置された状態となっている。上記のように樹脂フィルム40の第1接触面41の滑り性がよいので、部品SS1をスムーズに移動させつつ、樹脂フィルム40の撚れ等が生じるのを防止できる。また、部品SS1の取り出しに際して、先に部品SS1を隣の部品SS2から離すことで、部品SS1をそのまま持ち上げた際に隣の部品SS2を引っ掛けて部品SS2を含む残りの部品SSの損傷、位置変動等を回避することができる。 At this time, since the friction coefficient of the first contact surface 41 of the resin film 40 is 1.0 or less in the pin-on-disc test, the resin film 40 has good slipperiness and can move the component SS1 smoothly. In step S06, the drive of the suction device 32 is stopped, and the substrate S (component SS) is simply placed on the resin film 40. As described above, since the first contact surface 41 of the resin film 40 has good sliding properties, it is possible to prevent the resin film 40 from twisting while moving the component SS1 smoothly. In addition, when taking out part SS1, by first separating part SS1 from the neighboring part SS2, when part SS1 is lifted as it is, it will catch the neighboring part SS2, causing damage to the remaining parts SS including part SS2, and positional changes. etc. can be avoided.
 部品SS1を+X側に移動させた後、吸着パッド62を上昇させることで部品SS1を取り出すことができる。取り出した部品SS1は、所定の位置又はトレー内に載置される。ステップS06では、複数の部品SSに対してこのような動作を繰り返すことで、複数の部品SSをそれぞれ取り出すことができる。複数の部品SSの取り出しが完了することで、一連の処理が終了する。なお、部品SSの取り出し後、基板支持部10には樹脂フィルム40が残っているが、この樹脂フィルム40は、基板支持部10に載置したままとして次の基板Sのスクライブ加工において再利用されてもよい。 After moving the component SS1 to the +X side, the component SS1 can be taken out by raising the suction pad 62. The taken out part SS1 is placed at a predetermined position or in a tray. In step S06, by repeating this operation for a plurality of parts SS, each of the plurality of parts SS can be taken out. The series of processing ends when the removal of the plurality of parts SS is completed. Note that after the component SS is taken out, the resin film 40 remains on the board support part 10, but this resin film 40 is left on the board support part 10 and is reused in the scribing process of the next board S. It's okay.
 なお、上記したステップS06では、ピックアップ装置60を用いているがこの形態に限定されず、作業者が例えば吸着ピンセットを用いて手作業で行ってもよい。この場合であっても、部品SS1を部品SS2から少し移動させてから持ち上げることになり、部品SS1の移動がスムーズになるため、部品SSの取り出しを容易に行うことができる。 Although the pickup device 60 is used in step S06 described above, the pick-up device 60 is not limited to this form, and the operator may manually use suction tweezers, for example. Even in this case, the component SS1 is moved a little from the component SS2 before being lifted, and the movement of the component SS1 becomes smooth, so that the component SS can be easily taken out.
 このように、本実施形態によれば、樹脂フィルム40が通気性を有しているので、樹脂フィルム40を介して基板Sを吸引することができ、基板支持部10に基板Sを保持させることができる。そのため、樹脂フィルム40と基板Sとをテープ等で固定する手間を省くことができる。また、樹脂フィルム40のナノインデンテーション法による硬度が1.6~33.5N/mmであり、さらに、樹脂フィルム40のピンオンディスク試験による第1接触面41の摩擦係数が1.0以下であるので、基板Sから得られた部品SSを容易に横にずらすことができ、複数の部品SSを適切に取り出すことができる。 As described above, according to the present embodiment, since the resin film 40 has air permeability, the substrate S can be sucked through the resin film 40, and the substrate S can be held by the substrate support part 10. Can be done. Therefore, it is possible to save the effort of fixing the resin film 40 and the substrate S with tape or the like. Further, the hardness of the resin film 40 measured by the nanoindentation method is 1.6 to 33.5 N/mm 2 , and the friction coefficient of the first contact surface 41 of the resin film 40 measured by the pin-on-disc test is 1.0 or less. Therefore, the component SS obtained from the substrate S can be easily shifted laterally, and a plurality of components SS can be appropriately taken out.
 以下、実施例について説明する。
 [実施例1]
 ポリイミド12重量%、微粒子として粒径2500nmのシリカを18  重量%、及び有機溶剤としてジメチルアセトアミドを70重量%の割合で混合して塗布液とした。この塗布液を20cm×30cmの基材PETの表面に塗布し、塗布膜とした。その後80℃で5分間乾燥し、その後、基材を剥離して樹脂フィルムを形成した。続いて、樹脂フィルムを380℃で10分間焼成した。焼成後、樹脂フィルムをエッチング液である水酸化テトラメチルアンモニウム水溶液に7分間浸漬させた後、洗浄液にて樹脂フィルムを洗浄した。続いて、樹脂フィルムを60℃で2分間加熱して洗浄液を除去することにより、樹脂フィルムを製造した。製造された樹脂フィルムは、空孔サイズが2500nm、空隙率60%、膜厚25μmであった。
Examples will be described below.
[Example 1]
A coating solution was prepared by mixing 12% by weight of polyimide, 18% by weight of silica having a particle size of 2500 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. After that, it was dried at 80° C. for 5 minutes, and then the base material was peeled off to form a resin film. Subsequently, the resin film was baked at 380° C. for 10 minutes. After baking, the resin film was immersed in an etching solution of tetramethylammonium hydroxide for 7 minutes, and then washed with a cleaning solution. Subsequently, a resin film was manufactured by heating the resin film at 60° C. for 2 minutes to remove the cleaning liquid. The produced resin film had a pore size of 2500 nm, a porosity of 60%, and a film thickness of 25 μm.
 [実施例2]
 ポリイミド12重量%、微粒子として粒径2500nmのシリカを18重量%、及び有機溶剤としてジメチルアセトアミドを70重量%の割合で混合して塗布液とした。この塗布液を20cm×30cmの基材PETの表面に塗布し、塗布膜とした。その後は実施例1と同様の方法で樹脂フィルムを製造した。製造された樹脂フィルムの上面に、帯電防止剤としてベンゾトリアゾールを含有する液体10mlをコーティングし、帯電防止膜を形成した。製造された樹脂フィルムは、空孔サイズが2500nm、空隙率60%、膜厚25μmであった。
[Example 2]
A coating solution was prepared by mixing 12% by weight of polyimide, 18% by weight of silica having a particle size of 2500 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The upper surface of the produced resin film was coated with 10 ml of a liquid containing benzotriazole as an antistatic agent to form an antistatic film. The produced resin film had a pore size of 2500 nm, a porosity of 60%, and a film thickness of 25 μm.
 [実施例3]
 ポリイミド13.5重量%、微粒子として粒径300~2000nmのシリカを16.5重量%、及び有機溶剤としてジメチルアセトアミドを70重量%の割合で混合して塗布液とした。この塗布液を20cm×30cmの基材PETの表面に塗布し、塗布膜とした。その後は実施例1と同様の方法で樹脂フィルムを製造した。製造された樹脂フィルムは、空孔サイズが300~2000nm、空隙率55%、膜厚25μmであった。
[Example 3]
A coating liquid was prepared by mixing 13.5% by weight of polyimide, 16.5% by weight of silica having a particle size of 300 to 2000 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The produced resin film had a pore size of 300 to 2000 nm, a porosity of 55%, and a film thickness of 25 μm.
 [比較例1]
 ポリイミド9重量%、微粒子として粒径2500nmのシリカを21重量%、及び有機溶剤としてジメチルアセトアミドを70重量%の割合で混合して塗布液とした。この塗布液を20cm×30cmの基材PETの表面に塗布し、塗布膜とした。その後は実施例1と同様の方法で樹脂フィルムを製造した。製造された樹脂フィルムは、空孔サイズが2500nm、空隙率70%、膜厚40μmであった。
[Comparative example 1]
A coating liquid was prepared by mixing 9% by weight of polyimide, 21% by weight of silica having a particle size of 2500 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The produced resin film had a pore size of 2500 nm, a porosity of 70%, and a film thickness of 40 μm.
 [比較例2]
 ポリイミド9重量%、微粒子として粒径1000nmのシリカを21重量%、及び有機溶剤としてジメチルアセトアミドを70重量%の割合で混合して塗布液とした。この塗布液を20cm×30cmの基材PETの表面に塗布し、塗布膜とした。その後は、実施例1と同様の方法で樹脂フィルムを製造した。製造された樹脂フィルムは、空孔サイズが1000nm、空隙率70%、膜厚40μmであった。
[Comparative example 2]
A coating liquid was prepared by mixing 9% by weight of polyimide, 21% by weight of silica having a particle size of 1000 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The produced resin film had a pore size of 1000 nm, a porosity of 70%, and a film thickness of 40 μm.
 [比較例3]
 ポリイミド9重量%、微粒子として粒径300nmのシリカを21重量%、及び有機溶剤としてジメチルアセトアミドを70重量%の割合で混合して塗布液とした。この塗布液を20cm×30cmの基材PETの表面に塗布し、塗布膜とした。その後は、実施例1と同様の方法で樹脂フィルムを製造した。製造された樹脂フィルムは、空孔サイズが300nm、空隙率70%、膜厚40μmであった。
[Comparative example 3]
A coating liquid was prepared by mixing 9% by weight of polyimide, 21% by weight of silica having a particle size of 300 nm as fine particles, and 70% by weight of dimethylacetamide as an organic solvent. This coating liquid was applied to the surface of a 20 cm x 30 cm base PET to form a coating film. Thereafter, a resin film was produced in the same manner as in Example 1. The produced resin film had a pore size of 300 nm, a porosity of 70%, and a film thickness of 40 μm.
 なお、各樹脂フィルムの空隙率は、以下の式で求めた。
 各試料片の重量及び体積を測定し、空隙率を下記の方法により求めた。
 空隙率(%)={[試料片の重量(g)/試料片の体積(cm)]/ポリアミド樹脂の比重(g/cm)}×100
The porosity of each resin film was determined using the following formula.
The weight and volume of each sample piece were measured, and the porosity was determined by the following method.
Porosity (%) = {[weight of sample piece (g)/volume of sample piece (cm 3 )]/specific gravity of polyamide resin (g/cm 3 )}×100
 各樹脂フィルムに対して、ナノインデンテーション法による硬度の測定を行った。また、吸引装置が設けられた基板支持部上に実施例1~3及び比較例1~3の樹脂フィルムをそれぞれ配置し、この樹脂フィルム上にガラス基板を載置して、ガラス基板を15mm×80mmにカットして、カット歩留まりの評価を行った。結果を、図15に示す。ここで、カット歩留まり評価は、ひびが無くカットできたガラス部品の歩留まりが95%以上の時を〇、95%未満の時を×とした。図15の実施例1~3及び比較例1~3に示すように、樹脂フィルムの硬度が1.6~33.5N/mmの場合、ガラス板のカット歩留まりが95%以上であった。 The hardness of each resin film was measured using the nanoindentation method. In addition, the resin films of Examples 1 to 3 and Comparative Examples 1 to 3 were respectively placed on the substrate support section provided with the suction device, and the glass substrate was placed on the resin film to form a glass substrate of 15 mm× It was cut to 80 mm and the cutting yield was evaluated. The results are shown in FIG. 15. Here, in the cutting yield evaluation, when the yield of glass parts that could be cut without cracks was 95% or more, it was evaluated as ○, and when it was less than 95%, it was evaluated as ×. As shown in Examples 1 to 3 and Comparative Examples 1 to 3 in FIG. 15, when the hardness of the resin film was 1.6 to 33.5 N/mm 2 , the cutting yield of the glass plate was 95% or more.
 さらに樹脂フィルムに対して、ピンオンディスク試験による摩擦係数の測定を行った。また、分断されたガラス部品を各樹脂フィルムから手で横方向にスライドさせて、上方に取り出せるかどうかの取出し評価を行った。結果を図15に示す。ここで、取出し評価は、分断されたガラス部品を吸着ピンセットで適切に取り出すことができた場合を〇、できなかった場合を×とした。取り出すことができなかった場合とは、ガラス部品を横に移動できず、他のガラス部品に引っ掛かった場合、ガラス部品を樹脂フィルムから剥離できなかった場合などである。図15の実施例1~3及び比較例1~3に示すように、樹脂フィルムの上面での摩擦係数が1.0以下の場合、ガラス部品を適切に取り出すことができた。 Furthermore, the friction coefficient of the resin film was measured using a pin-on-disc test. In addition, removal evaluation was performed to see whether the divided glass parts could be taken out upward by manually sliding them laterally from each resin film. The results are shown in FIG. Here, for the extraction evaluation, the case where the divided glass part could be taken out appropriately with suction tweezers was evaluated as ○, and the case where it was not possible was evaluated as ×. Examples of cases where the glass component cannot be taken out include cases where the glass component cannot be moved laterally and gets caught on another glass component, or cases where the glass component cannot be peeled off from the resin film. As shown in Examples 1 to 3 and Comparative Examples 1 to 3 in FIG. 15, when the coefficient of friction on the upper surface of the resin film was 1.0 or less, the glass component could be taken out appropriately.
 図15に示す結果によると、樹脂フィルムが、ナノインデンテーション法による硬度が1.6~33.5N/mmであり、ピンオンディスク試験による摩擦係数が1.0以下である場合に、カット歩留まりを向上させつつ、取り出し性を向上させることが確認できた。また、実施例1~3のように、樹脂フィルムが、ナノインデンテーション法による硬度が5.17~33.36N/mmであり、ピンオンディスク試験による摩擦係数が0.845以下の場合は、カット歩留まり及び取出し評価のいずれもが良好であることが確認された。 According to the results shown in Figure 15, when the resin film has a hardness of 1.6 to 33.5 N/mm 2 by the nanoindentation method and a friction coefficient of 1.0 or less by the pin-on-disk test, it is difficult to cut. It was confirmed that the yield was improved and the ease of extraction was improved. In addition, as in Examples 1 to 3, if the resin film has a hardness of 5.17 to 33.36 N/mm 2 by the nanoindentation method and a friction coefficient of 0.845 or less by the pin-on-disk test, It was confirmed that both the cutting yield and the take-out evaluation were good.
 以上、実施形態及び実施例について説明したが、本発明の技術的範囲は、上記した実施形態及び実施例に限定されない。上記した実施形態及び実施例に、多様な変更又は改良を加えることが可能であることは当業者において明らかである。また、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれる。上記した実施形態及び実施例で説明した要件の1つ以上は、省略されることがある。また、上記した実施形態及び実施例で説明した要件は、適宜組み合わせることができる。また、実施形態及び実施例において示した各動作の実行順序は、前の動作の結果を後の動作で用いない限り、任意の順序で実現可能である。また、上記した実施形態及び実施例における動作に関して、便宜上「まず」、「次に」、「続いて」等を用いて説明したとしても、この順序で実施することが必須ではない。 Although the embodiments and examples have been described above, the technical scope of the present invention is not limited to the embodiments and examples described above. It will be apparent to those skilled in the art that various changes or improvements can be made to the embodiments and examples described above. Furthermore, forms with such changes or improvements are also included within the technical scope of the present invention. One or more of the requirements described in the embodiments and examples above may be omitted. Furthermore, the requirements described in the above-described embodiments and examples can be combined as appropriate. Furthermore, the operations shown in the embodiments and examples can be executed in any order as long as the result of the previous operation is not used in the subsequent operation. Further, even if the operations in the embodiments and examples described above are described using "first", "next", "successively", etc. for convenience, it is not essential that they be performed in this order.
 また、上記した実施形態では、スクライブ装置1において、基板Sに対して加工ヘッド21(ツール23)を移動させることで基板Sのスクライブ加工を行う形態を例に挙げて説明しているが、この形態に限定されない。例えば、加工ヘッド21(ツール23)に対して基板S(基板支持部10)が移動する形態であってもよいし、加工ヘッド21及び基板Sの双方が移動する形態であってもよい。 Furthermore, in the above-described embodiment, the scribing device 1 exemplifies a mode in which the scribing process of the substrate S is performed by moving the processing head 21 (tool 23) relative to the substrate S. Not limited to form. For example, the substrate S (substrate support 10) may move relative to the processing head 21 (tool 23), or both the processing head 21 and the substrate S may move.
 また、上記した実施形態では、基板Sと基板支持部10との間に1枚の樹脂フィルム40を配置する形態を例に挙げて説明しているが、この形態に限定されない。例えば、基板Sと基板支持部10との間に2枚以上の樹脂フィルム40を配置する形態であってもよい。この場合、複数の樹脂フィルム40は、同一の樹脂フィルム40が用いられてもよいし、異なる樹脂フィルム40が用いられてもよい。
 また、上記した実施形態では、スクライブ加工と分断工程の間に搬送を含まない形態を例に挙げて説明しているが、この形態に限定されない。例えば、スクライブ加工と分断工程の間に基板Sの搬送工程を含む形態であってもよい。
Further, in the above-described embodiment, a mode in which one resin film 40 is disposed between the substrate S and the substrate support section 10 is described as an example, but the present invention is not limited to this mode. For example, two or more resin films 40 may be arranged between the substrate S and the substrate support section 10. In this case, the same resin film 40 may be used for the plurality of resin films 40, or different resin films 40 may be used.
Further, in the above-described embodiments, a mode in which transport is not included between the scribing process and the dividing process is exemplified and explained, but the present invention is not limited to this mode. For example, a configuration may be adopted in which a step of transporting the substrate S is included between the scribing process and the cutting process.
1・・・スクライブ装置
10・・・基板支持部
11・・・上面
12・・・空間部
13・・・吸引孔
20・・・加工部
21・・・加工ヘッド
22・・・駆動部
23・・・ツール(スクライブツール)
30・・・減圧吸引部
31・・・吸引管
32・・・吸引装置
40、40A・・・樹脂フィルム
41・・・第1接触面
42・・・第2接触面
43・・・空隙
44・・・空孔
45・・・樹脂材料
46・・・帯電防止膜
50・・・制御部
60・・・ピックアップ装置
1... Scribing device 10... Substrate support section 11... Top surface 12... Space section 13... Suction hole 20... Processing section 21... Processing head 22... Drive section 23. ...Tool (scribe tool)
30...Reduced pressure suction unit 31...Suction tube 32... Suction device 40, 40A...Resin film 41...First contact surface 42...Second contact surface 43...Gap 44... ...Vacancy 45...Resin material 46...Antistatic film 50...Control unit 60...Pickup device

Claims (10)

  1.  基板支持部に支持された基板に対してスクライブを行う際に、前記基板と前記基板支持部との間に配置される樹脂フィルムであって、
     多孔性を有し、かつ前記基板との第1接触面と、前記基板支持部との第2接触面との間で通気性を有し、
     ナノインデンテーション法による硬度が1.6~33.5N/mmであり、
     ピンオンディスク試験による前記第1接触面の摩擦係数が1.0以下である、樹脂フィルム。
    A resin film disposed between the substrate and the substrate support when scribing the substrate supported by the substrate support,
    having porosity and having air permeability between a first contact surface with the substrate and a second contact surface with the substrate support;
    The hardness by nanoindentation method is 1.6 to 33.5 N/mm 2 ,
    A resin film, wherein the first contact surface has a coefficient of friction of 1.0 or less as determined by a pin-on-disc test.
  2.  空隙率が50~70%であり、空孔サイズが250~2600nmである、請求項1に記載の樹脂フィルム。 The resin film according to claim 1, having a porosity of 50 to 70% and a pore size of 250 to 2,600 nm.
  3.  厚さが20~50μmである、請求項1に記載の樹脂フィルム。 The resin film according to claim 1, having a thickness of 20 to 50 μm.
  4.  イミド系樹脂により形成される、請求項1に記載の樹脂フィルム。 The resin film according to claim 1, which is formed of an imide resin.
  5.  前記イミド系樹脂は、ポリアミド酸、ポリイミド、ポリアミドイミド、及びポリアミドの少なくとも一つを含む、請求項4に記載の樹脂フィルム。 The resin film according to claim 4, wherein the imide resin contains at least one of polyamic acid, polyimide, polyamideimide, and polyamide.
  6.  前記第1接触面及び前記第2接触面の少なくとも一方に帯電防止膜を有する、請求項1に記載の樹脂フィルム。 The resin film according to claim 1, having an antistatic film on at least one of the first contact surface and the second contact surface.
  7.  前記基板は、ガラス基板である、請求項1に記載の樹脂フィルム。 The resin film according to claim 1, wherein the substrate is a glass substrate.
  8.  前記ガラス基板は、厚さが100μm以下である、請求項7に記載の樹脂フィルム。 The resin film according to claim 7, wherein the glass substrate has a thickness of 100 μm or less.
  9.  基板を支持する基板支持部と、
     前記基板支持部に支持された前記基板に対してスクライブを行う加工部と、
     前記基板と前記基板支持部との間に配置される樹脂フィルムと、
     前記基板支持部に設けられ、前記樹脂フィルムを介して前記基板を吸引する減圧吸引部と、を備え、
     前記樹脂フィルムは、
     多孔性を有し、かつ前記基板との第1接触面と、前記基板支持部との第2接触面との間で通気性を有し、
     ナノインデンテーション法による硬度が1.6~33.5N/mmであり、
     ピンオンディスク試験による前記第1接触面の摩擦係数が1.0以下である、スクライブ装置。
    a substrate support part that supports the substrate;
    a processing section that performs scribing on the substrate supported by the substrate support section;
    a resin film disposed between the substrate and the substrate support section;
    a reduced pressure suction unit provided on the substrate support unit and sucking the substrate through the resin film;
    The resin film is
    having porosity and having air permeability between a first contact surface with the substrate and a second contact surface with the substrate support;
    The hardness by nanoindentation method is 1.6 to 33.5 N/mm 2 ,
    A scribing device, wherein the first contact surface has a friction coefficient of 1.0 or less as determined by a pin-on-disc test.
  10.  基板のスクライブ方法であって、
     樹脂フィルムが配置された基板支持部の前記樹脂フィルム上に前記基板を配置し、前記樹脂フィルムを介して減圧吸引して前記基板支持部に前記基板を固定する工程と、
     前記基板に対してスクライブツールを相対移動させて前記基板にスクライブラインを形成する工程と、を備え、
     前記樹脂フィルムは、
     多孔性を有し、かつ前記基板との第1接触面と、前記基板支持部との第2接触面との間で通気性を有し、
     ナノインデンテーション法による硬度が1.6~33.5N/mmであり、
     ピンオンディスク試験による前記第1接触面の摩擦係数が1.0以下である、スクライブ方法。
    A method of scribing a substrate, comprising the steps of:
    a step of placing the substrate on a resin film of a substrate support part on which the resin film is placed, and fixing the substrate to the substrate support part by applying reduced pressure through the resin film;
    and moving a scribing tool relative to the substrate to form a scribe line on the substrate,
    The resin film is
    the substrate is porous and has air permeability between a first contact surface with the substrate and a second contact surface with the substrate support;
    The hardness measured by the nanoindentation method is 1.6 to 33.5 N/ mm2 ;
    A scribing method, wherein the first contact surface has a coefficient of friction of 1.0 or less in a pin-on-disk test.
PCT/JP2023/033380 2022-09-20 2023-09-13 Resin film, scribing device, and scribing method WO2024062988A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-149613 2022-09-20
JP2022149613 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024062988A1 true WO2024062988A1 (en) 2024-03-28

Family

ID=90454337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033380 WO2024062988A1 (en) 2022-09-20 2023-09-13 Resin film, scribing device, and scribing method

Country Status (1)

Country Link
WO (1) WO2024062988A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08258198A (en) * 1995-03-22 1996-10-08 Nitto Denko Corp Porous sheet for suction fixation
JP2003068679A (en) * 2001-08-27 2003-03-07 Hitachi Chem Co Ltd Semiconductor wafer dicing method and polymer porous film to be used therefor
JP2007281206A (en) * 2006-04-07 2007-10-25 Nitto Denko Corp Usage of sheet for suction-fixing
JP2012245597A (en) * 2011-05-31 2012-12-13 Kyocera Corp Conveying arm and suction device using the same
WO2019044873A1 (en) * 2017-08-30 2019-03-07 ユニチカ株式会社 Mold release sheet
WO2020049985A1 (en) * 2018-09-06 2020-03-12 日東電工株式会社 Adhesive sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08258198A (en) * 1995-03-22 1996-10-08 Nitto Denko Corp Porous sheet for suction fixation
JP2003068679A (en) * 2001-08-27 2003-03-07 Hitachi Chem Co Ltd Semiconductor wafer dicing method and polymer porous film to be used therefor
JP2007281206A (en) * 2006-04-07 2007-10-25 Nitto Denko Corp Usage of sheet for suction-fixing
JP2012245597A (en) * 2011-05-31 2012-12-13 Kyocera Corp Conveying arm and suction device using the same
WO2019044873A1 (en) * 2017-08-30 2019-03-07 ユニチカ株式会社 Mold release sheet
WO2020049985A1 (en) * 2018-09-06 2020-03-12 日東電工株式会社 Adhesive sheet

Similar Documents

Publication Publication Date Title
CN108138013B (en) Laminate film for temporary bonding, substrate-processed body using laminate film for temporary bonding, method for manufacturing laminated substrate-processed body, and method for manufacturing semiconductor device using same
KR101945085B1 (en) Flexible substrate assembly and its application for fabricating flexible printed circuits
JP2013511600A (en) Thin film transistor composition and method related thereto
JP6303005B2 (en) Coating device and porous imide resin film manufacturing system
JP6539655B2 (en) Porous imide resin film manufacturing system and porous imide resin film manufacturing method
JP6539656B2 (en) Imide-based resin film production system and imide-based resin film production method
WO2024062988A1 (en) Resin film, scribing device, and scribing method
JP6700846B2 (en) Wiring board laminate, wiring board, and method for manufacturing wiring board laminate
US20070163621A1 (en) Cleaning member for semiconductor apparatus and process for producing the same
TW202417387A (en) Resin film, scribing device, and scribing method
JP7212518B2 (en) METAL-CLAD LAMINATE, METHOD FOR MANUFACTURING SAME AND CIRCUIT BOARD
JP2007227848A (en) Polyimide film for forming circuit substrate and circuit substrate
JP2016186031A (en) Polyimide film
JP7161359B2 (en) HEAT TREATMENT APPARATUS, IMIDE-BASED RESIN FILM MANUFACTURING SYSTEM, AND HEAT TREATMENT METHOD
JP7169809B2 (en) Imide-based resin film manufacturing system, imide-based resin film manufacturing method, and separator manufacturing method
JP2006083207A (en) Polyimide film, its manufacturing process and metal wiring board using it as substrate
JP6389731B2 (en) Film manufacturing system and film manufacturing method
JP7465060B2 (en) Metal-clad laminates and circuit boards
JP2020124925A (en) Laminate for wiring board, wiring board, and method for manufacturing laminate for wiring board
WO2022230546A1 (en) Porous polyimide film
TWM523255U (en) Flexible circuit board
KR20220148107A (en) Cleaning sheet and transfer member provided with cleaning function
JP2016056298A (en) Etching apparatus and manufacturing system
JP2016159564A (en) Solution-deposited film and method and apparatus for producing the film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868111

Country of ref document: EP

Kind code of ref document: A1