WO2022230546A1 - Porous polyimide film - Google Patents

Porous polyimide film Download PDF

Info

Publication number
WO2022230546A1
WO2022230546A1 PCT/JP2022/015189 JP2022015189W WO2022230546A1 WO 2022230546 A1 WO2022230546 A1 WO 2022230546A1 JP 2022015189 W JP2022015189 W JP 2022015189W WO 2022230546 A1 WO2022230546 A1 WO 2022230546A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
bis
porous
polyimide resin
polyimide
Prior art date
Application number
PCT/JP2022/015189
Other languages
French (fr)
Japanese (ja)
Inventor
陽明 森田
巳季夫 西端
武 引間
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to KR1020237028683A priority Critical patent/KR20230174209A/en
Priority to CN202280030410.3A priority patent/CN117202984A/en
Publication of WO2022230546A1 publication Critical patent/WO2022230546A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes

Definitions

  • the present invention relates to polyimide porous membranes.
  • a porous film of polyimide resin after applying a varnish in which silica particles are dispersed in a solution of polyamic acid or polyimide resin on a substrate, the coating film is heated as necessary to obtain a polyimide film containing silica particles.
  • a porous film is known which is obtained by obtaining and then removing silica in a polyimide film by elution with hydrogen fluoride water (see Patent Document 1).
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polyimide porous membrane that is excellent in gas passage speed.
  • the present inventors have found that the contact angle of water is 100° on at least one main surface of a porous membrane having air permeability, which is made of a polyimide resin or a polyimide resin composition containing a polyimide resin.
  • the present inventors have found that the above problems can be solved by setting the amount of fluorine atoms in at least one main surface to 5 atm % or more, and have completed the present invention.
  • a first aspect of the present invention consists of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin, Porous material has air permeability, The porous polyimide membrane has a water contact angle of 100° or more on at least one main surface.
  • a second aspect of the present invention consists of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin, Porous material has air permeability,
  • the polyimide porous membrane has a fluorine atom content of 5 atm % or more on at least one main surface.
  • the polyimide porous membrane is made of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin.
  • the polyimide porous membrane is also simply referred to as "porous membrane".
  • the porous material forming the porous membrane has air permeability.
  • At least one main surface of the porous film has a water contact angle of 100° or more, or a fluorine atom content of 5 atm % or more.
  • a porous membrane having a water contact angle of 100° or more on at least one main surface is also referred to as a "first porous membrane”.
  • a porous film having a fluorine atom content of 5 atm % or more on at least one main surface is also referred to as a “second porous film”.
  • the porous membrane is made of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin.
  • the above porous material has air permeability.
  • the shape of the voids in the porous material is not particularly limited as long as the porous membrane allows gas to flow from one main surface to the other main surface.
  • Each of the porous materials constituting the porous membrane preferably has a desired porosity and, as will be described later, has a structure in which spherical pores communicate with each other (hereinafter abbreviated as communicating pores).
  • communicating pores a structure in which spherical pores communicate with each other
  • a spherical shape as to the shape of the hole is a concept that includes a true spherical shape, but is not necessarily limited to a true spherical shape.
  • the spherical shape may be a substantially spherical shape.
  • a spherical shape also includes a shape that can be recognized as a substantially spherical shape when an enlarged image of the hole is visually confirmed.
  • the surface that defines the hole is a curved surface. It is sufficient that the curved surface defines a hole having a perfect spherical shape or a substantially spherical shape.
  • the porosity and the diameter of the spherical pores forming the communicating pores may be the same or different for each porous layer constituting the laminate.
  • individual spherical pores are typically formed by removing individual fine particles present in a polyimide resin-fine particle composite film described below in a post-process.
  • the communicating pores are formed by removing, in a post-process, a plurality of fine particles present in contact with each other in the polyimide resin-fine particle composite film in the method for producing a porous film, which will be described later.
  • the portion where the spherical holes communicate with each other in the communicating hole originates from the portion where the plurality of fine particles come into contact with each other before being removed.
  • the diameter of the opening of the porous membrane is preferably 50 nm or more and 3000 nm or less, more preferably 100 nm or more and 2000 nm or less, and 200 nm or more and 1000 nm or less, from the viewpoint of achieving both an excellent gas passage speed and the strength of the porous membrane. More preferred.
  • the diameter of the opening is equal to or substantially equal to the diameter of the spherical hole forming the communicating hole.
  • the porous membrane has, inside the porous membrane, communication holes penetrating through the porous membrane in the thickness direction as fluid flow paths. This allows fluid to permeate from one major surface of the porous membrane to the other major surface.
  • the porous membrane when used as a filter, the fluid passes through the inside of the porous membrane while coming into contact with the curved surfaces that define the individual spherical pores.
  • the contact area of the fluid inside the porous membrane is considerably wide due to the provision of the communicating pores made up of spherical pores. For this reason, it is considered that when the fluid passes through the laminate including the porous membrane, minute substances present in the fluid are likely to be adsorbed to the spherical pores in the porous membrane.
  • the porous membrane may be a single-layer membrane consisting of only one type of membrane, or a laminated membrane in which two or more types of membranes are laminated in two or more layers.
  • the laminated film can be formed according to a conventional method such as a lamination method. Further, the porous films included in the laminated film may be sequentially formed on the porous film that constitutes one of the outermost layers of the laminated film. Also, after laminating a precursor film of a porous film by a lamination method, a coating method, or the like, the laminated film having the precursor film laminated thereon is made porous to form a porous film that is a laminated film.
  • the precursor film include a layer containing fine particles that can be removed by heat decomposition or treatment with an organic solvent, water, acid, alkali, or the like in a resin matrix.
  • the shape of the voids of the porous material that constitutes the porous membrane is not particularly limited as long as the fluid can pass from one main surface to the other main surface of the porous membrane.
  • Each of the porous membranes preferably has a desired porosity and, as will be described later, has a structure in which spherical pores communicate with each other (hereinafter abbreviated as communicating pores).
  • communicating pores a structure in which spherical pores communicate with each other
  • communicating pores hereinafter abbreviated as communicating pores.
  • a spherical shape as to the shape of the hole is a concept that includes a true spherical shape, but is not necessarily limited to a true spherical shape.
  • the spherical shape may be substantially spherical, and includes a spherical shape that can be recognized as a substantially spherical shape when an enlarged image of the hole is visually confirmed.
  • the surface that defines the hole portion is a curved surface, and the curved surface defines a true spherical or substantially spherical hole.
  • the porous membrane is a laminated membrane, the porous membranes constituting the laminated membrane may have the same or different porosities and spherical pore diameters constituting communicating pores.
  • the film thickness of the porous membrane is not particularly limited.
  • the film thickness of the porous membrane is appropriately determined according to the use of the porous membrane.
  • the film thickness of the porous membrane is preferably 20 ⁇ m or more, more preferably 20 ⁇ m or more and 200 ⁇ m or less, and even more preferably 30 ⁇ m or more and 100 ⁇ m or less.
  • the film thickness of the porous film, and the film thickness of each porous film contained in the laminated film when the porous film is a laminated film is obtained by measuring the thickness at a plurality of locations with a micrometer, for example, and averaging the thicknesses. or by observing and averaging the cross section of the film with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the porosity of the porous membrane is preferably 60% or more, more preferably 65% or more and 85% or less, and even more preferably 70% or more and 80% or less, in terms of excellent gas passage speed.
  • the porosity indicates the ratio of voids per unit volume of the porous membrane.
  • the porosity can be calculated by the following formula (A).
  • Porosity (%) ⁇ volume of test piece (cm 3 ) - [weight of test piece (g)/specific gravity of polyimide resin or polyimide resin composition (g/cm 3 )] ⁇ /volume of test piece (cm 3 ) ⁇ 100 (A)
  • the porosity can be adjusted to a desired value by appropriately adjusting the particle size and content of the fine particles used when producing the porous membrane.
  • a porous membrane containing therein communicating pores in which spherical pores communicate with each other, which is a preferable porous membrane, is produced, for example, by the following method.
  • an unfired composite film-forming step of forming an unfired composite film on a substrate using the composition for producing a porous film A baking step of baking the unbaked composite film to obtain a polyimide resin-fine particle composite film; and a step of removing fine particles from the polyimide resin-fine particle composite film.
  • the porous film-producing composition contains a compound capable of forming a polyimide resin.
  • a compound capable of forming a polyimide resin may be a monomer for forming a polyimide resin, or may be a polyamic acid that is a precursor of a polyimide resin. Polyamic acid is preferred as a compound capable of forming a polyimide resin.
  • composition for producing a porous film The essential or optional components contained in the composition for producing a porous film are described below.
  • any resin obtained by polymerizing any tetracarboxylic dianhydride and diamine can be used without particular limitation.
  • the amounts of tetracarboxylic dianhydride and diamine to be used are not particularly limited.
  • the amount of diamine used relative to 1 mol of tetracarboxylic dianhydride is preferably 0.50 mol or more and 1.50 mol or less, more preferably 0.60 mol or more and 1.30 mol or less, and 0.70 mol or more and 1.20 mol. Molar or less is particularly preferred.
  • the tetracarboxylic dianhydride can be appropriately selected from tetracarboxylic dianhydrides conventionally used as synthetic raw materials for polyamic acid.
  • the tetracarboxylic dianhydride may be either an aromatic tetracarboxylic dianhydride or an aliphatic tetracarboxylic dianhydride. It is preferable to use an aromatic tetracarboxylic dianhydride from the viewpoint of heat resistance of the resulting polyimide resin. Tetracarboxylic dianhydrides may be used singly or in combination of two or more.
  • the polyimide resin may contain structural units having fluorine atoms.
  • tetracarboxylic dianhydrides containing fluorine atoms are used.
  • aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxy phenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′- Biphenyltetracarboxylic dianhydride, 2,2,6,6-biphenyltetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2 ,3-dicarboxyphenyl)propane dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)ether
  • aliphatic tetracarboxylic dianhydrides include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexanetetracarboxylic dianhydride, 1,2, 4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride and the like.
  • 3,3',4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are preferred in terms of price, availability, and the like.
  • these tetracarboxylic dianhydrides can also be used individually by 1 type or in mixture of 2 or more types.
  • Tetracarboxylic dianhydrides containing a fluorine atom used when the polyimide resin contains a structural unit having a fluorine atom include (trifluoromethyl)pyromellitic dianhydride, di(trifluoromethyl)pyro Melellitic dianhydride, di(heptafluoropropyl)pyromellitic dianhydride, (pentafluoroethyl)pyromellitic dianhydride, bis[3,5-di(trifluoromethyl)phenoxy]pyromellitic dianhydride 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 5,5′-bis(trifluoromethyl)-3,3′,4,4′-tetracarboxybiphenyl dianhydride 2,2′,5,5′-tetrakis(trifluoromethyl)-3,3′,4,4′-tetracarboxybiphenyl dianhydride
  • the diamine can be appropriately selected from diamines conventionally used as raw materials for synthesizing polyamic acid.
  • the diamine may be either an aromatic diamine or an aliphatic diamine, but is preferably an aromatic diamine from the viewpoint of heat resistance of the resulting polyimide resin.
  • These diamines may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the polyimide resin may contain structural units having fluorine atoms. In this case, diamines containing fluorine atoms are used.
  • aromatic diamines include diamino compounds in which one or about two to ten phenyl groups are bonded. Specifically, phenylenediamine and derivatives thereof, diaminobiphenyl compounds and derivatives thereof, diaminodiphenyl compounds and derivatives thereof, diaminotriphenyl compounds and derivatives thereof, diaminonaphthalene and derivatives thereof, aminophenylaminoindane and derivatives thereof, diaminotetraphenyl compounds and their derivatives, diaminohexaphenyl compounds and their derivatives, and cardo-type fluorenediamine derivatives.
  • Phenylenediamine includes m-phenylenediamine, p-phenylenediamine and the like, and phenylenediamine derivatives include diamines to which alkyl groups such as methyl and ethyl groups are bonded, such as 2,4-diaminotoluene and 2,4-triphenylene. diamine and the like.
  • diaminobiphenyl compound two aminophenyl groups are bonded together.
  • examples include 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl and the like.
  • a diaminodiphenyl compound is a compound in which two aminophenyl groups are bonded between phenyl groups via another group.
  • the bond is ether bond, sulfonyl bond, thioether bond, bond by alkylene or derivative group thereof, imino bond, azo bond, phosphine oxide bond, amide bond, ureylene bond and the like.
  • a derivative group of an alkylene group in which the number of carbon atoms in the alkylene bond is about 1 or more and 6 or less is an alkylene group substituted with one or more halogen atoms or the like.
  • diaminodiphenyl compounds include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone , 3,4′-diaminodiphenyl ketone, 2,2-bis(p-aminophenyl)propane, 2,2′-bis(p-aminophenyl)he
  • p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are preferred in terms of price, availability, etc.
  • a diaminotriphenyl compound is a compound in which two aminophenyl groups and one phenylene group are both bonded via another group. Other groups are selected from the same groups as in the diaminodiphenyl compound. Examples of diaminotriphenyl compounds include 1,3-bis(m-aminophenoxy)benzene, 1,3-bis(p-aminophenoxy)benzene, 1,4-bis(p-aminophenoxy)benzene and the like. be able to.
  • diaminonaphthalene examples include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
  • aminophenylaminoindane examples include 5- or 6-amino-1-(p-aminophenyl)-1,3,3-trimethylindane.
  • diaminotetraphenyl compounds examples include 4,4′-bis(p-aminophenoxy)biphenyl, 2,2′-bis[p-(p′-aminophenoxy)phenyl]propane, 2,2′-bis[ p-(p'-aminophenoxy)biphenyl]propane, 2,2'-bis[p-(m-aminophenoxy)phenyl]benzophenone, and the like.
  • Cardo-type fluorenediamine derivatives include 9,9-bisaniline fluorene and the like.
  • the number of carbon atoms in the aliphatic diamine is preferably 2 or more and 15 or less, for example.
  • Specific examples of aliphatic diamines include pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine.
  • a compound in which the hydrogen atoms of these diamines are substituted with at least one substituent selected from the group of halogen atoms, methyl groups, methoxy groups, cyano groups, phenyl groups and the like may also be used.
  • Examples of the diamine containing a fluorine atom used when the polyimide resin contains a structural unit containing a fluorine atom include 4-(1H,1H,11H-eicosafluoroundecanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-butanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-heptanoxy)-1,3-diaminobenzene, 4-(1H,1H -perfluoro-1-octanoxy)-1,3-diaminobenzene, 4-pentafluorophenoxy-1,3-diaminobenzene, 4-(2,3,5,6-tetrafluorophenoxy)-1,3-diamino Benzene, 4-(4-fluorophenoxy)-1,3-diaminobenzene, 4-(1H,1H,2H,
  • polyamic acid there are no particular restrictions on the means of producing polyamic acid.
  • a known technique such as a method of reacting an acid and a diamine component in a solvent can be used.
  • the reaction of tetracarboxylic dianhydride and diamine is usually carried out in a solvent.
  • the solvent used for the reaction of the tetracarboxylic dianhydride and the diamine is particularly limited as long as it can dissolve the tetracarboxylic dianhydride and the diamine and does not react with the tetracarboxylic dianhydride and the diamine. not.
  • a solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • solvents used for the reaction of tetracarboxylic dianhydride and diamine include N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N, Nitrogen-containing polar solvents such as N-diethylformamide, N-methylcaprolactam, N,N,N',N'-tetramethylurea; ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, Lactone-based polar solvents such as ⁇ -caprolactone and ⁇ -caprolactone; dimethyl sulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; and ethers; cresols, and phenolic solvents such as xylene mixed solvents.
  • solvents may be used individually by 1 type, and may be used in combination of 2 or more type. There are no particular restrictions on the amount of solvent used.
  • the solvent is desirably used in such an amount that the content of the produced polyamic acid in the reaction solution is 5% by mass or more and 50% by mass or less.
  • N-methyl-2-pyrrolidone N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethyl
  • Nitrogen-containing polar solvents such as formamide, N-methylcaprolactam and N,N,N',N'-tetramethylurea are preferred.
  • the polymerization temperature is generally preferably ⁇ 10° C. or higher and 120° C. or lower, more preferably 5° C. or higher and 30° C. or lower.
  • the polymerization time varies depending on the raw material composition used, it is usually preferably 3 hours or more and 24 hours or less.
  • Polyamic acid may be used alone or in combination of two or more.
  • the structure and molecular weight of the polyimide resin are not limited. Various known polyimide resins can be used.
  • the polyimide resin may have a condensable functional group such as a carboxyl group or a functional group that promotes a cross-linking reaction or the like during baking in the side chain.
  • a soluble polyimide resin that is soluble in the solvent is preferred.
  • a solvent-soluble polyimide resin it is effective to introduce a flexible bent structure into the main chain.
  • monomers capable of introducing a flexible bent structure into the main chain include fatty acids such as ethylenediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, and 4,4′-diaminodicyclohexylmethane.
  • aromatic diamines such as 2-methyl-1,4-phenylenediamine, o-tolidine, m-tolidine, 3,3'-dimethoxybenzidine, 4,4'-diaminobenzanilide; polyoxyethylenediamine, polyoxy Polyoxyalkylene diamines such as propylene diamine and polyoxybutylene diamine; polysiloxane diamines; 2,3,3',4'-oxydiphthalic anhydride, 3,4,3',4'-oxydiphthalic anhydride, 2, 2-bis(4-hydroxyphenyl)propane dibenzoate-3,3',4,4'-tetracarboxylic dianhydride and the like.
  • a monomer having a functional group that improves solubility in solvents examples include 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 2-trifluoromethyl-1,4- Fluorinated diamines such as phenylenediamine are included.
  • the monomers described in the polyamic acid section above can be used in combination within a range that does not impair the solubility.
  • Each of the polyimide resin and its monomer may be used alone or in combination of two or more.
  • polyimide resin there is no particular limitation on the means for producing the polyimide resin.
  • known techniques such as chemical imidization or thermal imidization of polyamic acid can be used.
  • polyimide resins include aliphatic polyimide resins (full-aliphatic polyimide resins), aromatic polyimide resins, and the like, with aromatic polyimide resins being preferred.
  • the aromatic polyimide resin is a polyimide resin obtained by a ring closure reaction of a polyamic acid having a repeating unit represented by formula (1) by thermal or chemical means, or a polyimide resin having a repeating unit represented by formula (2). etc.
  • Ar represents an aryl group.
  • these polyimide resins are preferably dissolved in the solvent to be used.
  • the material of the fine particles is not particularly limited as long as it is insoluble in the solvent contained in the composition for producing a porous film and can be removed from the polyimide resin-fine particle composite film later.
  • Various known materials that satisfy the above conditions can be used as the material of the fine particles.
  • inorganic materials include silica (silicon dioxide); metal oxides such as titanium oxide and alumina (Al 2 O 3 ).
  • Organic materials include organic polymers such as high-molecular-weight olefin polymers (polypropylene, polyethylene, etc.), polystyrene, epoxy resins, cellulose, polyvinyl alcohol, polyvinyl butyral, polyesters, and polyethers.
  • fine particles include colloidal silica.
  • colloidal silica monodisperse spherical silica particles are preferable because uniform pores can be formed.
  • the fine particles preferably have a high sphericity and a small particle size distribution index. Fine particles satisfying these conditions are excellent in dispersibility in the composition for producing a porous film, and can be used in a state in which they do not aggregate with each other.
  • the average particle diameter of the fine particles is appropriately selected in consideration of the opening diameter on the surface of the porous membrane and the thickness of the porous membrane.
  • the average particle diameter of the fine particles is preferably 50 nm or more, more preferably 100 nm or more and 2000 nm or less, and even more preferably 200 nm or more and 1000 nm or less.
  • the pore size of the porous membrane obtained by removing fine particles can be made uniform. Fine particles may be used singly or in combination of two or more.
  • the solvent is not particularly limited as long as it dissolves the polyamic acid and/or polyimide resin and does not dissolve the fine particles. Suitable examples of the solvent include the solvents exemplified for the reaction of the tetracarboxylic dianhydride and the diamine. A solvent may be used independently and may be used in combination of 2 or more type.
  • a dispersant may be used together with the fine particles for the purpose of uniformly dispersing the fine particles in the composition for producing a porous film.
  • a dispersant By adding a dispersant to the composition for producing a porous film, the fine particles can be more uniformly mixed in the composition for producing a porous film, and furthermore, the fine particles can be mixed more uniformly in the film formed from the composition for producing a porous film. , fine particles can be uniformly distributed.
  • dense openings can be provided on the surface of the finally obtained porous membrane, and the front and back surfaces of the porous membrane can be efficiently communicated with each other, thereby improving the air permeability of the porous membrane.
  • the use of a dispersant facilitates improvement in the drying property of the composition for producing a porous film, and also facilitates improvement in the peelability of the formed unfired composite film from a substrate or the like.
  • the dispersant is not particularly limited. Known dispersants can be used. Specific examples of dispersants include coconut fatty acid salts, castor sulfated oil salts, lauryl sulfate salts, polyoxyalkylene allylphenyl ether sulfate salts, alkylbenzenesulfonic acids, alkylbenzenesulfonates, alkyldiphenyletherdisulfonates, and alkylnaphthalenesulfones.
  • Anionic surfactants such as acid salts, dialkyl sulfosuccinate salts, isopropyl phosphate, polyoxyethylene alkyl ether phosphate salts, polyoxyethylene allylphenyl ether phosphate salts; oleylamine acetate, laurylpyridinium chloride, cetylpyridinium chloride, lauryltrimethylammonium cationic surfactants such as chloride, stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, didecyldimethylammonium chloride; coconut alkyldimethylamine oxide, fatty acid amidopropyldimethylamine oxide, alkylpolyaminoethylglycine hydrochloride, amidobetaine type active agent, Amphoteric surfactants such as alanine-type active agents and lauryliminodipropionic acid; Styryl phenyl ether, polyoxyalkylene polysty
  • polyether polyols such as polyoxyalkylene butyl ether, polyoxyalkylene oleyl ether, and trimethylolpropane tris(polyoxyalkylene) ether. Two or more of the above dispersants may be mixed and used.
  • the content of the dispersant is preferably 0.01% by mass or more and 5% by mass or less, and preferably 0.05% by mass or more, based on the mass of the fine particles, from the viewpoint of film-forming properties. 1% by mass or less is more preferable, and 0.1% by mass or more and 0.5% by mass is even more preferable.
  • the unfired composite film-forming step for example, the above-described composition for producing a porous film is applied onto a substrate, and the temperature is 0° C. or higher and 100° C. or lower under normal pressure or vacuum, preferably 10° C. or higher and 100° C. or less under normal pressure.
  • An unfired composite film can be formed by drying at .
  • substrates include PET films, SUS substrates, and glass substrates.
  • a substrate provided with a release layer can be used in order to further improve the peelability of the film.
  • the release layer is provided on the substrate in advance, the release agent is applied onto the substrate and dried or baked before the porous film-producing composition is applied.
  • known mold release agents such as alkyl phosphate ammonium salt type, fluorine type or silicone can be used without particular limitation.
  • a step of immersing in a solvent containing water, a pressing step, and a drying step after the immersing step may be provided as optional steps before the firing step described later.
  • the unbaked composite film is subjected to post-treatment (baking) by heating to form a composite film (polyimide resin-fine particle composite film) composed of polyimide resin and fine particles.
  • the firing temperature in the firing step is preferably 120° C. or higher and 450° C. or lower, more preferably 150° C. or higher and 400° C. or lower, although it varies depending on the structure of the unsintered composite film and the presence or absence of a condensing agent.
  • the firing conditions are, for example, a method of raising the temperature from room temperature to 400 ° C. in 3 hours and then holding it at 400 ° C. for 20 minutes, or raising the temperature from room temperature to 400 ° C. in steps of 50 ° C. (holding for 20 minutes at each step) ) and finally holding at 400° C. for 20 minutes.
  • a method is adopted in which the ends of the unsintered composite film are fixed to a SUS formwork or the like to prevent deformation. can also
  • Porate matter removal step By selecting an appropriate method to remove the fine particles from the polyimide resin-fine particle composite film formed as described above, a porous membrane having a desired structure can be produced with good reproducibility.
  • silica when used as the material of the fine particles, the silica can be dissolved and removed by treating the polyimide resin-fine particle composite film with a low-concentration hydrogen fluoride solution or the like.
  • the fine particles are organic fine particles, the fine particles can be removed from the polyimide resin-fine particle composite film by thermally decomposing the organic fine particles.
  • a treatment liquid that dissolves the microparticles but does not dissolve the polyimide resin can be selected and treated with the treatment liquid to remove the organic microparticles.
  • an organic solvent is used as the processing liquid. If the organic fine particles are soluble in acid or alkali, an acidic aqueous solution or an alkaline aqueous solution can also be used as the treatment liquid.
  • Resin removal step It may have a resin removing step of removing at least part of the resin portion of the polyimide resin-fine particle composite film before the fine particle removing step, or removing at least part of the porous film after the fine particle removing step. .
  • a resin removing step of removing at least part of the resin portion of the polyimide resin-fine particle composite film before the fine particle removal step, or by removing at least part of the porous membrane after the fine particle removal step compared to the case where no removal is performed. , it is possible to improve the porosity of the porous membrane, which is the final product.
  • the step of removing at least a portion of the resin portion of the polyimide resin-fine particle composite film, or the step of removing at least a portion of the resin portion of the polyimide resin-fine particle composite film can be performed by a normal chemical etching method, physical removal method, Alternatively, it can be carried out by a method combining these.
  • the chemical etching method includes treatment with a chemical etchant such as an inorganic alkaline solution or an organic alkaline solution.
  • a chemical etchant such as an inorganic alkaline solution or an organic alkaline solution.
  • Inorganic alkaline solutions are preferred.
  • examples of inorganic alkaline solutions include hydrazine hydrate and ethylenediamine containing hydrazine hydrate; solutions of alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, sodium carbonate, sodium silicate and sodium metasilicate; ammonia solution; Etching solutions containing alkali, hydrazine, and 1,3-dimethyl-2-imidazolidinone as main components are included.
  • organic alkaline solutions include primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; and dimethylethanolamine.
  • alcohol amines such as , triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; alkaline solutions such as cyclic amines such as pyrrole and pyreridine.
  • Pure water and alcohols can be appropriately selected as the solvent for each of the above solutions.
  • An appropriate amount of surfactant can also be added to each of the above solutions.
  • the alkali concentration is, for example, 0.01% by mass or more and 20% by mass or less.
  • Physical methods include, for example, plasma (oxygen, argon, etc.), dry etching using corona discharge, etc., and dispersion of abrasives (e.g., alumina (hardness 9), etc.) on the surface of the porous film at 30 m/s or more.
  • abrasives e.g., alumina (hardness 9), etc.
  • a method of treating the film surface by discharging at a speed of 100 m/s or less can be used.
  • a base film for example, a polyester film such as a PET film
  • a method of peeling off the laminate from the mount film before drying or after drying the mount film can also be adopted. Due to the surface tension or electrostatic adhesion force of the liquid, the porous membrane is peeled off from the backing film while only the surface layer of the porous membrane existing on the surface to be treated remains on the backing film. .
  • the first porous membrane is the polyimide porous membrane described above and has a water contact angle of 100° or more on at least one main surface. Since the first porous membrane exhibits the above water contact angle on at least one main surface, the porous membrane exhibits an excellent gas passage rate.
  • the contact angle of water is preferably 105° or more, more preferably 110° or more. Although the upper limit of the contact angle of water is not particularly limited, it is realistically, for example, 150° or less, and may be 130° or less.
  • the above water contact angle is a static contact angle.
  • the static contact angle of water for example, using Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.), after applying 2.0 ⁇ L of pure water droplets to the surface of the porous membrane, the contact angle after 10 seconds of dropping It is measurable.
  • the dynamic contact angle of water on the main surface where the contact angle of water is 100°C or more is 30° or more.
  • the dynamic contact angle of water may be 40° or more, or 50° or more.
  • the upper limit of the dynamic contact angle of water is not particularly limited, in reality it is, for example, 120° or less, and may be 100° or less.
  • the dynamic contact angle of water can be measured as follows using, for example, Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.). First, 2.0 ⁇ L of pure water droplets are dropped on the surface of the porous membrane. Next, pure water is supplied to the droplet from the syringe needle until the total amount of pure water reaches 50.0 ⁇ L, and the droplet of pure water is expanded. The measurement was started when the expanded state of the droplet was maintained for 3 seconds, and pure water was sucked from the droplet at a rate of 6.0 ⁇ L/sec from the start of the measurement. The value of the receding angle when the edge shrinks by 10 dots from the edge of the droplet at the start of measurement due to suction of pure water is measured as the dynamic contact angle of water.
  • the method for making the contact angle of water on the main surface 100° or more is not particularly limited. Such methods include, for example, a method of adhering or bonding a water repellent agent to the main surface of the untreated porous membrane prepared by the above method, and a method of incorporating a water-repellent material into the polyimide resin composition constituting the first porous film.
  • the water repellent agent used in the method of adhering or bonding the water repellent agent to the main surface is capable of adhering or bonding to the polyimide resin, and is capable of increasing the contact angle of water on the main surface of the porous membrane to 100° or more. It is not particularly limited as long as it can be increased.
  • Preferred water repellent agents include silicone water repellent agents and fluorine-based water repellent agents. A fluorine-based water repellent agent is more preferable in terms of the water repellent effect.
  • a fluorine-containing organic compound itself or a liquid composition containing a fluorine-containing organic compound is typically used.
  • the fluorine-containing organic compound is not particularly limited as long as it is an organic compound containing a fluorine atom.
  • the fluorine-containing organic compound may be a low-molecular-weight compound, an oligomer, or a polymer.
  • the fluorine-containing organic compound may be an aliphatic compound, an aromatic compound, or a compound containing an aliphatic portion and an aromatic portion.
  • fluorine-containing organic compounds include fluoroalkanes, fluoroalkanols, bisfluoroalkyl ethers, fluoroalkyl alkyl ethers, fluorinated aliphatic ketones, fluorinated aliphatic carboxylic acids, fluorinated aliphatic carboxylic acid alkyl esters, fluorinated fatty group carboxylic acid fluoroalkyl esters, aliphatic carboxylic acid fluoroalkyl esters, fluoroalkylbenzene carboxylic acids, fluoroalkylbenzene carboxylates, fluoroalkylbenzene sulfonic acids, fluoroalkylbenzene sulfonates, and the like.
  • a fluorine-containing silane coupling agent is also suitably used as the fluorine-containing organic compound.
  • Functional groups containing active hydrogen atoms such as hydroxyl groups, amino groups and carboxyl groups are often present on the surface of porous membranes that are not treated with a fluorine-containing organic compound.
  • a fluorine-containing silane coupling agent can react and bond with such functional groups containing active hydrogen atoms.
  • the fluorine-containing silane coupling agent is not particularly limited as long as it is a silane coupling agent containing a fluorine-containing functional group.
  • Fluorine-containing silane coupling agents include fluoroalkyltrialkoxysilanes, difluoroalkyldialkoxysilanes, fluoroalkylalkyldialkoxysilanes, bis(trialkoxysilyl)fluoroalkanes, fluoroalkyltriisocyanatesilanes, and bis(trichlorosilyl)fluoroalkanes. , and bis(triisocyanatosilyl) fluorinated linear aliphatic compounds.
  • fluorine-containing silane coupling agents include perfluorodecyltrimethoxysilane, perfluorodecyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluorooctyltrimethoxysilane, perfluorooctyltrimethoxysilane, fluorooctyltriethoxysilane, perfluorododecyltrimethoxysilane, perfluorododecyltriethoxysilane, perfluoropentyltriethoxysilane, perfluoropentyltrimethoxysilane, and 1H,1H,2H,2H-heptadecafluorodecyltrimethoxysilane fluoroalkylalkoxysilanes such as fluoroalkyl triisocyanate silanes such as
  • a fluororesin is also suitably used as the fluorine-containing organic compound.
  • the type of fluororesin is not particularly limited, and various resins containing fluorine atoms can be used.
  • Suitable fluororesins include, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), tetrafluoroethylene/perfluoro(alkyl vinyl ether) copolymer (PFA), polyfluoride Examples include vinylidene (PVDF) and its copolymer, polyvinyl fluoride (PVA), and ethylene/tetrafluoroethylene copolymer (ETFE).
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene/hexafluoropropylene copolymer
  • PFA tetrafluoroethylene/perfluoro(alkyl vinyl ether) copolymer
  • PVDF polyvinylidene fluoride
  • monomers to be copolymerized include tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, vinyl fluoride and the like.
  • fine particles are prepared as described in JP-A-10-140144 using the fluorine-containing organic compound itself or a liquid composition containing the fluorine-containing organic compound, and the prepared fine particles are subjected to a blasting apparatus or the like.
  • the water-repellent treatment may be performed by colliding against the porous membrane in the atmosphere.
  • a water repellent component such as a fluorine-containing organic compound contained in the water repellent agent adheres or bonds to the main surface.
  • the contact angle of water on the main surface can be adjusted by adjusting the adhesion amount or bonding amount of the water repellent component to the main surface.
  • the amount of adhesion or bonding of the water repellent component can be adjusted by adjusting the contact time between the main surface and the water repellent agent or by adjusting the concentration of the water repellent component in the water repellent agent.
  • the above-mentioned tetracarboxylic dianhydride containing a fluorine atom and the above-mentioned fluorine atom-containing A polyimide resin prepared using at least one of diamines is used.
  • the amount of structural units derived from the above-mentioned tetracarboxylic dianhydride containing a fluorine atom and the amount of the structural units derived from the above-mentioned diamine containing a fluorine atom are the main components of the first porous film.
  • the contact angle of water on the surface is a desired value.
  • the contact angle of water tends to increase as the amount of fluorine atoms on the main surface of the porous membrane increases.
  • the porous membrane can adjust the contact angle of water on the main surface of
  • the components described above for the water-repellent agent can be used.
  • the green composite membrane is fired at a high temperature in forming the porous membrane.
  • the aforementioned fluororesin is preferable as the water-repellent material in terms of heat resistance.
  • the form of the fluororesin is not particularly limited.
  • the fluororesin particles are preferably added to the porous film-producing composition in order to facilitate uniform dispersion of the fluororesin in the polyimide resin composition.
  • the particle size of the fluororesin particles is not particularly limited as long as a porous film comprising a polyamide resin composition containing uniformly dispersed fluororesin particles can be formed.
  • the volume average particle diameter of the fluororesin particles is preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 700 nm or less, and even more preferably 100 nm or more and 500 nm or less.
  • the amount of fluorine atoms on the main surface having a water contact angle of 100° or more is preferably 5 atm% or more, more preferably 10 atm% or more, further preferably 20 atm% or more, and 30 atm% or more. is particularly preferred.
  • the upper limit of the amount of fluorine atoms on the main surface is not particularly limited as long as the contact angle of water is 100° or more.
  • the upper limit of the amount of fluorine atoms is, for example, 68 atm % or less, and may be 50 atm % or less.
  • the amount of fluorine atoms on the main surface is determined by adjusting the amount of fluorine-based water repellent agent used, adjusting the amount of monomers containing fluorine atoms when preparing polyimide resin, and adjusting the amount of fluorine atoms in monomers containing fluorine atoms. can be adjusted by adjusting the content of the polyimide resin composition or by adjusting the amount of the fluorine atom-containing water repellent agent added to the polyimide resin composition.
  • the amount of fluorine atoms on the main surface of the porous film can be measured by X-ray photoelectron spectroscopy.
  • the porosity is 60% or more
  • the average diameter of the openings on the main surface where the contact angle of water is 100° or more is 50 nm or more and 3000 nm or less, It is preferable that the film thickness is 30 ⁇ m or more.
  • the stress at breakage of the first porous membrane is preferably 10 MPa or more, more preferably 15 MPa or more, and even more preferably 20 MPa or more.
  • the elongation at break of the first porous membrane is preferably 5% GL or more, more preferably 10% GL or more, still more preferably 15% GL or more, and particularly preferably 20% GL or more.
  • the second porous film is the polyimide porous film described above, and has a fluorine atom content of 5 atm % or more on at least one main surface.
  • the amount of fluorine atoms in the main surface is preferably 5 atm % or more, more preferably 10 atm % or more, still more preferably 20 atm % or more, and particularly preferably 30 atm % or more.
  • the upper limit of the amount of fluorine atoms in the main surface is, for example, 68 atm % or less, and may be 50 atm % or less.
  • the amount of fluorine atoms on the main surface is adjusted by a method similar to the method described for the first porous film.
  • the porosity is 60% or more
  • the average diameter of the openings in the main surface where the amount of fluorine atoms is 5 atm % or more is 50 nm or more and 3000 nm or less, It is preferable that the film thickness is 30 ⁇ m or more.
  • the stress when the second porous membrane breaks is preferably 10 MPa or more, more preferably 15 MPa or more, and even more preferably 20 MPa or more.
  • the elongation at break of the second porous membrane is preferably 5% GL or more, more preferably 10% GL or more, still more preferably 15% GL or more, and particularly preferably 20% GL or more.
  • Example 1 Slurry A containing 70 parts by mass of fine silica particles, 0.35 parts by mass of a nonionic surfactant as a dispersant, and 70 parts by mass of dimethylacetamide was stirred in a 200 mL vessel at 400 rpm for 15 minutes with a stirring blade. Thereafter, the slurry A after stirring was subjected to dispersion treatment five times at 200 MPa using a dispersion device (NVL-S008, manufactured by Yoshida Kikai Kogyo Co., Ltd.). Silica having an average particle diameter of 300 nm was used as the silica fine particles.
  • Slurry A after dispersion treatment and 30 parts by mass of polyamic acid were mixed to obtain slurry B.
  • Polyamic acid was used as a dimethylacetamide solution with a solid concentration of 20% by mass.
  • 6FDA 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride
  • HFBAPP 2,2-bis[4-(4-aminophenoxy)phenyl]hexa
  • Slurry B contained dimethylacetamide and gamma-butyrolactone at a solids concentration of 29% by weight.
  • the mass ratio of dimethylacetamide and gamma-butyrolactone in slurry B was 90:10 as dimethylacetamide:gamma-butyrolactone.
  • the resulting slurry B was dispersed in a container with a capacity of 200 mL by stirring with a stirring blade at 400 rpm for 30 minutes to prepare a composition for producing a porous film. After coating the composition for producing a porous film on a PET film, the film was heated at 90° C. for 300 seconds to remove the solvent and form a coating film having a thickness of about 40 ⁇ m.
  • the formed coating film was imidized by heat treatment (baking) at 380° C. for 15 minutes to obtain a polyimide resin-fine particle composite film.
  • the resulting polyimide resin-fine particle composite film was immersed in a 10% HF solution for 10 minutes to remove silica fine particles contained in the film. After removing the silica fine particles, the porous film was obtained by washing with water and drying.
  • Example 1 A porous polymer was prepared in the same manner as in Example 1, except that the polyamic acid was changed to a polymer obtained by polymerizing pyromellitic anhydride (hereinafter PMDA) and 4,4′-diaminodiphenyl ether (hereinafter ODA) in equimolar amounts. A membrane was obtained.
  • PMDA pyromellitic anhydride
  • ODA 4,4′-diaminodiphenyl ether
  • Example 2 Except for changing the amount of polyamic acid used from 30 parts by mass to 25 parts by mass and adding 5 parts by mass of fine particles of polytetrafluoroethylene (PTFE) having an average particle size of 300 nm together with the polyamic acid, in Comparative Example 1 A slurry D was obtained in the same manner as the slurry B preparation method.
  • the PTFE microparticles were used as a dispersion liquid in which PTFE microparticles having a solid concentration of 40% by mass were dispersed in N-methyl-2-pyrrolidone.
  • the mass ratio of dimethylacetamide, gamma-butyrolactone and N-methyl-2-pyrrolidone in Slurry D was 87:10:3 as dimethylacetamide:gamma-butyrolactone:N-methyl-2-pyrrolidone.
  • a porous membrane was obtained in the same manner as in Comparative Example 1, except that slurry B was changed to slurry D.
  • Example 3 Chemical etching was performed by immersing the porous film obtained in the same manner as in Comparative Example 1 in an alkaline etching solution for 180 seconds to partially remove the surface of the polyimide resin. Specifically, after pre-wetting the porous membrane by immersing it in an isopropanol aqueous solution with a concentration of 10% by mass, the porous membrane is immersed in an aqueous tetramethylammonium hydroxide (TMAH) solution with a concentration of 1.00% by mass. Then, chemical etching was performed by washing and drying the porous membrane. The chemically etched porous film was again heat-treated (baked) at 380° C.
  • TMAH aqueous tetramethylammonium hydroxide
  • porous film for 10 minutes to re-imidize the ring-opened portion with alkali to obtain a porous film.
  • the main surface of the obtained porous film is subjected to a water-repellent treatment to attach the fluororesin using a water repellent agent containing fluororesin (Adlon (registered trademark) L-4614CR, manufactured by Fluorocoat).
  • a porous membrane was obtained.
  • Comparative Example 2 A porous membrane obtained in the same manner as in Comparative Example 1 was immersed in an N-methyl-2-pyrrolidone solution having a polyvinylidene fluoride concentration of 0.25% by mass for 1 minute, and then the porous membrane was heated at 100° C. for 5 minutes. to obtain a porous membrane having polyvinylidene fluoride attached to its main surface.
  • a K-Alpha (registered trademark) XPS system manufactured by Thermo Fisher Scientific was used to measure the fluorine atomic weight on the main surface of the sample of the porous membrane.

Abstract

Provided is a porous polyimide film having an excellent gas permeation rate. The porous film is constituted from a porous material comprising either a polyimide resin or a polyimide resin composition including a polyimide resin and has gas permeability. At least one main surface of the porous film has a contact angle with water of 100° or greater or the at least one main surface has a content of fluorine atoms of 5 atm% or higher.

Description

ポリイミド多孔質膜polyimide porous membrane
 本発明は、ポリイミド多孔質膜に関する。 The present invention relates to polyimide porous membranes.
 従来から、種々の多孔質膜がフィルター等の用途で使用されている。 Conventionally, various porous membranes have been used for applications such as filters.
 例えば、ポリイミド樹脂の多孔質膜として、ポリアミド酸やポリイミド樹脂の溶液中にシリカ粒子を分散させたワニスを基板上に塗布した後、必要に応じて塗布膜を加熱してシリカ粒子を含むポリイミド膜を得、次いで、ポリイミド膜中のシリカをフッ化水素水で溶出除去して得られた多孔質膜が知られている(特許文献1参照)。 For example, as a porous film of polyimide resin, after applying a varnish in which silica particles are dispersed in a solution of polyamic acid or polyimide resin on a substrate, the coating film is heated as necessary to obtain a polyimide film containing silica particles. A porous film is known which is obtained by obtaining and then removing silica in a polyimide film by elution with hydrogen fluoride water (see Patent Document 1).
特許第5605566号公報Japanese Patent No. 5605566
 一般的に気体-液体の分離や、固体-気体の分離に使用されるフィルターについて、分離速度の向上が求められている。このため、フィルターとして使用される多孔質膜について、気体の通過速度の向上が求められている。
 この点、特許文献1等に記載される従来知られるポリイミド多孔質膜には、気体の通過速度の点で改良の余地がある。
Filters generally used for gas-liquid separation and solid-gas separation are required to improve their separation speed. Therefore, porous membranes used as filters are required to improve gas passage speed.
In this regard, the conventionally known polyimide porous membranes described in Patent Document 1 and the like have room for improvement in terms of gas passage speed.
 本発明は、上記の状況に鑑みなされたものであり、気体の通過速度に優れるポリイミド多孔質膜を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polyimide porous membrane that is excellent in gas passage speed.
 本発明者らは、ポリイミド樹脂、又はポリイミド樹脂を含有するポリイミド樹脂組成物からなる多孔質材料からなり、通気性を有する多孔質膜において、少なくとも一方の主面において、水の接触角を100°以上とするか、少なくとも一方の主面における、フッ素原子の量を5atm%以上とすることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。 The present inventors have found that the contact angle of water is 100° on at least one main surface of a porous membrane having air permeability, which is made of a polyimide resin or a polyimide resin composition containing a polyimide resin. The present inventors have found that the above problems can be solved by setting the amount of fluorine atoms in at least one main surface to 5 atm % or more, and have completed the present invention.
 本発明の第一の態様は、ポリイミド樹脂、又はポリイミド樹脂を含有するポリイミド樹脂組成物からなる多孔質材料からなり、
 多孔質材料が通気性を有し、
 少なくとも一方の主面において、水の接触角が100°以上である、ポリイミド多孔質膜である。
A first aspect of the present invention consists of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin,
Porous material has air permeability,
The porous polyimide membrane has a water contact angle of 100° or more on at least one main surface.
 本発明の第二の態様は、ポリイミド樹脂、又はポリイミド樹脂を含有するポリイミド樹脂組成物からなる多孔質材料からなり、
 多孔質材料が通気性を有し、
 少なくとも一方の主面において、フッ素原子の量が5atm%以上である、ポリイミド多孔質膜である。
A second aspect of the present invention consists of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin,
Porous material has air permeability,
The polyimide porous membrane has a fluorine atom content of 5 atm % or more on at least one main surface.
 本発明によれば、気体の通過速度に優れるポリイミド多孔質膜を提供することができる。 According to the present invention, it is possible to provide a polyimide porous membrane with excellent gas passage speed.
 以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施態様に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the purpose of the present invention. .
≪ポリイミド多孔質膜≫
 ポリイミド多孔質膜は、ポリイミド樹脂、又はポリイミド樹脂を含有するポリイミド樹脂組成物からなる多孔質材料からなる。以下、ポリイミド多孔質膜について、単に「多孔質膜」とも記載する。
 多孔質膜を構成する多孔質材料が通気性を有する。
 多孔質膜の少なくとも一方の主面において、水の接触角が100°以上であるか、フッ素原子の量が5atm%以上である。
≪Porous polyimide membrane≫
The polyimide porous membrane is made of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin. Hereinafter, the polyimide porous membrane is also simply referred to as "porous membrane".
The porous material forming the porous membrane has air permeability.
At least one main surface of the porous film has a water contact angle of 100° or more, or a fluorine atom content of 5 atm % or more.
 以下、少なくとも一方の主面において、水の接触角が100°以上である多孔質膜を、「第1の多孔質膜」とも記す。以下、少なくとも一方の主面において、フッ素原子の量が5atm%以上である多孔質膜を、「第2の多孔質膜」とも記す。 Hereinafter, a porous membrane having a water contact angle of 100° or more on at least one main surface is also referred to as a "first porous membrane". Hereinafter, a porous film having a fluorine atom content of 5 atm % or more on at least one main surface is also referred to as a “second porous film”.
 以下、第1の多孔質膜と、第2の多孔質膜とに共通の点を説明する。 The points common to the first porous membrane and the second porous membrane will be described below.
 多孔質膜は、ポリイミド樹脂、又はポリイミド樹脂を含有するポリイミド樹脂組成物からなる多孔質材料からなる。
 上記の多孔質材料は通気性を有する。
 多孔質材料における空隙の形状は、多孔質膜が、一方の主面から他方の主面へ気体を流通させることができる限り特に限定されない。
 多孔質膜を構成する多孔質材料は、それぞれ所望の空隙率を有し、後述するように、球状孔が相互に連通した構造(以下、連通孔と略称する)を有するのが好ましい。多孔質膜が積層体である場合に、積層体に含まれる多孔質層についても同様である。
 孔の形状に関する球状は、真球状を含む概念であるが、必ずしも真球のみに限定されない。球状とは、実質的に真球状であればよい。孔部の拡大像を目視により確認した場合に略真球状と認識できる形状も、球状に含まれる。
 具体的には球状孔では、孔部を規定する面が曲面である。当該曲面により真球状又は略真球上の空孔が規定されていればよい。
 なお、多孔質膜が積層体である場合に、積層体を構成する各多孔質層について、空隙率や、連通孔を構成する球状孔の孔径は、同じであっても異なっていてもよい。
The porous membrane is made of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin.
The above porous material has air permeability.
The shape of the voids in the porous material is not particularly limited as long as the porous membrane allows gas to flow from one main surface to the other main surface.
Each of the porous materials constituting the porous membrane preferably has a desired porosity and, as will be described later, has a structure in which spherical pores communicate with each other (hereinafter abbreviated as communicating pores). When the porous membrane is a laminate, the same applies to the porous layer included in the laminate.
A spherical shape as to the shape of the hole is a concept that includes a true spherical shape, but is not necessarily limited to a true spherical shape. The spherical shape may be a substantially spherical shape. A spherical shape also includes a shape that can be recognized as a substantially spherical shape when an enlarged image of the hole is visually confirmed.
Specifically, in a spherical hole, the surface that defines the hole is a curved surface. It is sufficient that the curved surface defines a hole having a perfect spherical shape or a substantially spherical shape.
In addition, when the porous membrane is a laminate, the porosity and the diameter of the spherical pores forming the communicating pores may be the same or different for each porous layer constituting the laminate.
 例えば、多孔質膜について、個々の球状孔は、典型的には、後述するポリイミド樹脂-微粒子複合膜中に存在する個々の微粒子が後工程で除去されることにより形成される。
 また、連通孔は、後述する多孔質膜の製造方法において、ポリイミド樹脂-微粒子複合膜中にそれぞれ接して存在する複数の微粒子が、後工程で除去されることにより形成される。連通孔における球状孔が連通する箇所は、除去される前の複数の微粒子が互いに接触する箇所に由来する。
For example, in a porous film, individual spherical pores are typically formed by removing individual fine particles present in a polyimide resin-fine particle composite film described below in a post-process.
Further, the communicating pores are formed by removing, in a post-process, a plurality of fine particles present in contact with each other in the polyimide resin-fine particle composite film in the method for producing a porous film, which will be described later. The portion where the spherical holes communicate with each other in the communicating hole originates from the portion where the plurality of fine particles come into contact with each other before being removed.
 多孔質膜の開口部の直径は、優れた気体の通過速度と、多孔質膜の強度との両立の点で、50nm以上3000nm以下が好ましく、100nm以上2000nm以下がより好ましく、200nm以上1000nm以下がさらに好ましい。
 開口部の直径は、連通孔を構成する球状孔の直径と同等又は略同等である。
 多孔質膜は、多孔質膜の内部に、多孔質膜を厚さ方向に貫通する連通孔を流体の流路として有する。これにより流体は、多孔質膜の一方の主面から、他方の主面へと透過できる。
 また、多孔質膜をフィルターとして用いる場合、流体は個々の球状孔を規定する曲面に接触しながら多孔質膜の内部を通過する。多孔質膜の内部における流体の接触面積は、球状孔からなる連通孔を備えることに起因してかなり広い。このため、流体が、多孔質膜を含む積層体を通過すると、多孔質膜内の球状孔に、流体内に存在する微小な物質が吸着しやすいと考えられる。
The diameter of the opening of the porous membrane is preferably 50 nm or more and 3000 nm or less, more preferably 100 nm or more and 2000 nm or less, and 200 nm or more and 1000 nm or less, from the viewpoint of achieving both an excellent gas passage speed and the strength of the porous membrane. More preferred.
The diameter of the opening is equal to or substantially equal to the diameter of the spherical hole forming the communicating hole.
The porous membrane has, inside the porous membrane, communication holes penetrating through the porous membrane in the thickness direction as fluid flow paths. This allows fluid to permeate from one major surface of the porous membrane to the other major surface.
Moreover, when the porous membrane is used as a filter, the fluid passes through the inside of the porous membrane while coming into contact with the curved surfaces that define the individual spherical pores. The contact area of the fluid inside the porous membrane is considerably wide due to the provision of the communicating pores made up of spherical pores. For this reason, it is considered that when the fluid passes through the laminate including the porous membrane, minute substances present in the fluid are likely to be adsorbed to the spherical pores in the porous membrane.
 多孔質膜は、1種類の膜のみからなる単層膜であっても、2種類以上の膜が2層以上積層された積層膜であってもよい。 The porous membrane may be a single-layer membrane consisting of only one type of membrane, or a laminated membrane in which two or more types of membranes are laminated in two or more layers.
 多孔質膜が積層膜である場合、ラミネート法等の常法に従って積層膜を形成することができる。また、積層膜の最外層のいずれか一方を構成する多孔質膜の上に、順次、積層膜に含まれる多孔質膜を形成していってもよい。また、多孔質膜の前駆膜を、ラミネート法、塗布法等により積層した後に、前駆膜が積層された積層膜を多孔質化して、積層膜である多孔質膜を形成することもできる。前駆膜としては、例えば、樹脂からなるマトリックス中に、熱分解や、有機溶剤、水、酸、又はアルカリ等による処理により除去可能な微粒子を含む層が挙げられる。 When the porous film is a laminated film, the laminated film can be formed according to a conventional method such as a lamination method. Further, the porous films included in the laminated film may be sequentially formed on the porous film that constitutes one of the outermost layers of the laminated film. Also, after laminating a precursor film of a porous film by a lamination method, a coating method, or the like, the laminated film having the precursor film laminated thereon is made porous to form a porous film that is a laminated film. Examples of the precursor film include a layer containing fine particles that can be removed by heat decomposition or treatment with an organic solvent, water, acid, alkali, or the like in a resin matrix.
 多孔質膜を構成する多孔質材料が備える空隙の形状は、流体が、多孔質膜の一方の主面から他方の主面へと通過可能である限り特に限定されない。
 多孔質膜は、それぞれ所望の空隙率を有し、且つ後述するように、球状孔が相互に連通した構造(以下、連通孔と略称する)を有するのが好ましい。多孔質膜が積層体である場合に、積層体に含まれる多孔質層についても同様である。
 孔の形状に関する球状は、真球状を含む概念であるが、必ずしも真球状のみに限定されない。球状とは、実質的に真球状であればよく、孔部の拡大像を目視により確認した場合に略真球状と認識できる形状も、球状に含まれる。
 具体的には球状孔では、孔部を規定する面が曲面であり、当該曲面により真球状又は略真球上の空孔が規定されていればよい。
 多孔質膜が積層膜である場合に、積層膜を構成する各多孔質膜について、空隙率や、連通孔を構成する球状孔の孔径は、同じであっても異なっていてもよい。
The shape of the voids of the porous material that constitutes the porous membrane is not particularly limited as long as the fluid can pass from one main surface to the other main surface of the porous membrane.
Each of the porous membranes preferably has a desired porosity and, as will be described later, has a structure in which spherical pores communicate with each other (hereinafter abbreviated as communicating pores). When the porous membrane is a laminate, the same applies to the porous layer included in the laminate.
A spherical shape as to the shape of the hole is a concept that includes a true spherical shape, but is not necessarily limited to a true spherical shape. The spherical shape may be substantially spherical, and includes a spherical shape that can be recognized as a substantially spherical shape when an enlarged image of the hole is visually confirmed.
Specifically, in a spherical hole, the surface that defines the hole portion is a curved surface, and the curved surface defines a true spherical or substantially spherical hole.
When the porous membrane is a laminated membrane, the porous membranes constituting the laminated membrane may have the same or different porosities and spherical pore diameters constituting communicating pores.
 多孔質膜の膜厚は特に限定されない。多孔質膜の膜厚は、多孔質膜の用等に応じて適宜決定される。典型的には、多孔質膜の膜厚は、20μm以上が好ましく、20μm以上200μm以下がより好ましく、30μm以上100μm以下がさらに好ましい。 The film thickness of the porous membrane is not particularly limited. The film thickness of the porous membrane is appropriately determined according to the use of the porous membrane. Typically, the film thickness of the porous membrane is preferably 20 μm or more, more preferably 20 μm or more and 200 μm or less, and even more preferably 30 μm or more and 100 μm or less.
 多孔質膜の膜厚や、多孔質膜が積層膜である場合に当該積層膜に含まれる各多孔質膜の膜厚は、例えばマイクロメータ等で複数の箇所の厚さを測定し平均することで求めたり、膜断面を走査型電子顕微鏡(SEM)により観察して平均することで求めたりすることができる。 The film thickness of the porous film, and the film thickness of each porous film contained in the laminated film when the porous film is a laminated film, is obtained by measuring the thickness at a plurality of locations with a micrometer, for example, and averaging the thicknesses. or by observing and averaging the cross section of the film with a scanning electron microscope (SEM).
 多孔質膜の空隙率は、優れた気体の通過速度の点で、60%以上が好ましく、65%以上85%以下がより好ましく、70%以上80%以下がさらに好ましい。 The porosity of the porous membrane is preferably 60% or more, more preferably 65% or more and 85% or less, and even more preferably 70% or more and 80% or less, in terms of excellent gas passage speed.
 空隙率は、多孔質膜の単位体積あたりの空隙の割合を示す。空隙率は、以下の式(A)によって算出することができる。
 空隙率(%)={試験片の体積(cm)-[試験片の重量(g)/ポリイミド樹脂又はポリイミド樹脂組成物の比重(g/cm)]}/試験片の体積(cm)×100・・・(A)
 後述するように多孔質膜を製造する際に用いられる微粒子の粒径や含有量を適宜調整することにより空隙率を所望の値に調整できる。
The porosity indicates the ratio of voids per unit volume of the porous membrane. The porosity can be calculated by the following formula (A).
Porosity (%) = {volume of test piece (cm 3 ) - [weight of test piece (g)/specific gravity of polyimide resin or polyimide resin composition (g/cm 3 )]}/volume of test piece (cm 3 )×100 (A)
As will be described later, the porosity can be adjusted to a desired value by appropriately adjusting the particle size and content of the fine particles used when producing the porous membrane.
<多孔質膜の製造方法>
 好ましい多孔質膜である、球状孔が相互に連通した連通孔を内部に含む多孔質膜は、例えば、以下の方法により製造される。
<Method for producing porous membrane>
A porous membrane containing therein communicating pores in which spherical pores communicate with each other, which is a preferable porous membrane, is produced, for example, by the following method.
 具体的には、
多孔質膜製造用組成物を用いて基板上に未焼成複合膜を成膜する未焼成複合膜成膜工程と、
未焼成複合膜を焼成してポリイミド樹脂-微粒子複合膜を得る焼成工程と、
ポリイミド樹脂-微粒子複合膜から微粒子を除去する、微粒子除去工程と、を含む方法である。
In particular,
an unfired composite film-forming step of forming an unfired composite film on a substrate using the composition for producing a porous film;
A baking step of baking the unbaked composite film to obtain a polyimide resin-fine particle composite film;
and a step of removing fine particles from the polyimide resin-fine particle composite film.
 以下、多孔質膜の製造方法について、多孔質膜製造用組成物と、上記の多孔質膜の好ましい製造方法とについて詳細に説明する。 In the following, regarding the method for producing a porous membrane, the composition for producing a porous membrane and the preferred method for producing the above-mentioned porous membrane will be described in detail.
〔多孔質膜製造用組成物〕
 多孔質膜製造用組成物は、ポリイミド樹脂を生成し得る化合物を含有する。
 ポリイミド樹脂を生成し得る化合物は、ポリイミド樹脂形成用の単量体であってもよく、ポリイミド樹脂の前駆体であるポリアミド酸であってもよい。
 ポリイミド樹脂を生成し得る化合物としては、ポリアミド酸が好ましい。
[Composition for producing porous membrane]
The porous film-producing composition contains a compound capable of forming a polyimide resin.
A compound capable of forming a polyimide resin may be a monomer for forming a polyimide resin, or may be a polyamic acid that is a precursor of a polyimide resin.
Polyamic acid is preferred as a compound capable of forming a polyimide resin.
 以下、多孔質膜製造用組成物に含まれる、必須又は任意の成分について説明する。 The essential or optional components contained in the composition for producing a porous film are described below.
[ポリアミド酸]
 ポリアミド酸としては、任意のテトラカルボン酸二無水物とジアミンとを重合して得られる樹脂を、特に限定なく使用できる。テトラカルボン酸二無水物及びジアミンの使用量は特に限定されない。テトラカルボン酸二無水物1モルに対するジアミンの使用量は、0.50モル以上1.50モル以下が好ましく、0.60モル以上1.30モル以下がより好ましく、0.70モル以上1.20モル以下が特に好ましい。
[Polyamide acid]
As the polyamic acid, any resin obtained by polymerizing any tetracarboxylic dianhydride and diamine can be used without particular limitation. The amounts of tetracarboxylic dianhydride and diamine to be used are not particularly limited. The amount of diamine used relative to 1 mol of tetracarboxylic dianhydride is preferably 0.50 mol or more and 1.50 mol or less, more preferably 0.60 mol or more and 1.30 mol or less, and 0.70 mol or more and 1.20 mol. Molar or less is particularly preferred.
 テトラカルボン酸二無水物は、従来からポリアミド酸の合成原料として使用されているテトラカルボン酸二無水物から適宜選択することができる。テトラカルボン酸二無水物は、芳香族テトラカルボン酸二無水物であっても、脂肪族テトラカルボン酸二無水物であってもよい。得られるポリイミド樹脂の耐熱性の点から、芳香族テトラカルボン酸二無水物を使用することが好ましい。テトラカルボン酸二無水物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 後述するように、多孔質膜の主面における水の接触角やフッ素原子量(atm%)を高める目的で、ポリイミド樹脂に、フッ素原子を有する構成単位を含有させる場合がある。この場合、フッ素原子を含むテトラカルボン酸二無水物が使用される。
The tetracarboxylic dianhydride can be appropriately selected from tetracarboxylic dianhydrides conventionally used as synthetic raw materials for polyamic acid. The tetracarboxylic dianhydride may be either an aromatic tetracarboxylic dianhydride or an aliphatic tetracarboxylic dianhydride. It is preferable to use an aromatic tetracarboxylic dianhydride from the viewpoint of heat resistance of the resulting polyimide resin. Tetracarboxylic dianhydrides may be used singly or in combination of two or more.
As will be described later, in order to increase the contact angle of water and the fluorine atom content (atm %) on the main surface of the porous film, the polyimide resin may contain structural units having fluorine atoms. In this case, tetracarboxylic dianhydrides containing fluorine atoms are used.
 芳香族テトラカルボン酸二無水物の好適な具体例としては、ピロメリット酸二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2,6,6-ビフェニルテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、4,4-(p-フェニレンジオキシ)ジフタル酸二無水物、4,4-(m-フェニレンジオキシ)ジフタル酸二無水物、1,2,5,6-ナフタレンテトラカルボン二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス無水フタル酸フルオレン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。脂肪族テトラカルボン酸二無水物としては、例えば、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物等が挙げられる。これらの中では、価格、入手容易性等から、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物が好ましい。また、これらのテトラカルボン酸二無水物は1種類を単独で又は二種以上混合して用いることもできる。 Preferred specific examples of aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(2,3-dicarboxy phenyl)methane dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′- Biphenyltetracarboxylic dianhydride, 2,2,6,6-biphenyltetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2 ,3-dicarboxyphenyl)propane dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, bis(2,3 -dicarboxyphenyl)ether dianhydride, 2,2′,3,3′-benzophenonetetracarboxylic dianhydride, 4,4-(p-phenylenedioxy)diphthalic dianhydride, 4,4-( m-Phenylenedioxy)diphthalic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7 -naphthalenetetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracene Tetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, 9,9-bisphthalic anhydride fluorene, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride things, etc. Examples of aliphatic tetracarboxylic dianhydrides include ethylenetetracarboxylic dianhydride, butanetetracarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexanetetracarboxylic dianhydride, 1,2, 4,5-cyclohexanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride and the like. Among these, 3,3',4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride are preferred in terms of price, availability, and the like. Moreover, these tetracarboxylic dianhydrides can also be used individually by 1 type or in mixture of 2 or more types.
 ポリイミド樹脂に、フッ素原子を有する構成単位を含有させる場合に使用されるフッ素原子を含むテトラカルボン酸二無水物としては、(トリフルオロメチル)ピロメリット酸二無水物、ジ(トリフルオロメチル)ピロメリット酸二無水物、ジ(ヘプタフルオロプロピル)ピロメリット酸二無水物、(ペンタフルオロエチル)ピロメリット酸二無水物、ビス[3,5-ジ(トリフルオロメチル)フェノキシ]ピロメリット酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、5,5’-ビス(トリフルオロメチル)-3,3’,4,4’-テトラカルボキシビフェニル二無水物、2,2’,5,5’-テトラキス(トリフルオロメチル)-3,3’,4,4’-テトラカルボキシビフェニル二無水物、5,5’-ビス(トリフルオロメチル)-3,3’,4,4’-テトラカルボキシジフェニルエーテル二無水物、5,5’-ビス(トリフルオロメチル)-3,3’,4,4’-テトラカルボキシベンゾフェノン二無水物、1,4-ビス(2-トリフルオロメチル-3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(5-トリフルオロメチル-3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(2-トリフルオロメチル-3,4-ジカルボキシフェノキシ)トリフルオロメチルベンゼン二無水物、1,4-ビス(5-トリフルオロメチル-3,4-ジカルボキシフェノキシ)トリフルオロメチルベンゼン二無水物、1,4-ビス(ジカルボキシフェノキシ)トリフルオロメチルベンゼン二無水物、1,4-ビス(ジカルボキシフェノキシ)-2,5-ビス(トリフルオロメチル)ベンゼン二無水物、1,4-ビス(ジカルボキシフェノキシ)-2,6-ビス(トリフルオロメチル)ベンゼン二無水物、1,4-ビス(ジカルボキシフェノキシ)テトラキス(トリフルオロメチル)ベンゼン二無水物、2,2-ビス[(4-(3,4-ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン二無水物、4,4’-ビス(2-トリフルオロメチル-3,4-ジカルボキシフェノキシ)ビフェニル二無水物、4,4’-ビス(5-トリフルオロメチル-3,4-ジカルボキシフェノキシ)ビフェニル二無水物、4,4’-ビス(2-トリフルオロメチル-3,4-ジカルボキシフェノキシ-3,3’-ビス(トリフルオロメチル)ビフェニル二無水物、4,4’-ビス(5-トリフルオロメチル-3,4-ジカルボキシフェノキシ-3,3’-ビス(トリフルオロメチル)ビフェニル二無水物、4,4’-ビス(2-トリフルオロメチル-3,4-ジカルボキシフェノキシ)ジフェニルエーテル二無水物、4,4’-ビス(5-トリフルオロメチル-3,4-ジカルボキシフェノキシ)ジフェニルエーテル二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)-3,3-ビス(トリフルオロメチル)ビフェニル二無水物、2,5-ジフルオロピロメリット酸、2-トリフルオロメチル-5-フルオロピロメリット酸、2,5-ジ(トリフルオロメチル)ピロメリット酸、2,5-ジ(ペンタフルオロエチル)ピロメリット酸、ヘキサフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸、ヘキサフルオロ-3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2-ビス(2,5,6-トリフルオロ-3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、1,3-ビス(2,5,6-トリフルオロ-3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,5,6-トリフルオロ-3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、1,4-ビス(2,5,6-トリフルオロ-3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン、ヘキサフルオロ-3,3’-オキシビスフタル酸、及びヘキサフルオロ-3,3’-オキシビスフタル酸等が挙げられる。 Tetracarboxylic dianhydrides containing a fluorine atom used when the polyimide resin contains a structural unit having a fluorine atom include (trifluoromethyl)pyromellitic dianhydride, di(trifluoromethyl)pyro Melellitic dianhydride, di(heptafluoropropyl)pyromellitic dianhydride, (pentafluoroethyl)pyromellitic dianhydride, bis[3,5-di(trifluoromethyl)phenoxy]pyromellitic dianhydride 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 5,5′-bis(trifluoromethyl)-3,3′,4,4′-tetracarboxybiphenyl dianhydride 2,2′,5,5′-tetrakis(trifluoromethyl)-3,3′,4,4′-tetracarboxybiphenyl dianhydride, 5,5′-bis(trifluoromethyl)-3, 3′,4,4′-tetracarboxydiphenyl ether dianhydride, 5,5′-bis(trifluoromethyl)-3,3′,4,4′-tetracarboxybenzophenone dianhydride, 1,4-bis( 2-trifluoromethyl-3,4-dicarboxyphenoxy)benzene dianhydride, 1,4-bis(5-trifluoromethyl-3,4-dicarboxyphenoxy)benzene dianhydride, 1,4-bis( 2-trifluoromethyl-3,4-dicarboxyphenoxy)trifluoromethylbenzene dianhydride, 1,4-bis(5-trifluoromethyl-3,4-dicarboxyphenoxy)trifluoromethylbenzene dianhydride, 1,4-bis(dicarboxyphenoxy)trifluoromethylbenzene dianhydride, 1,4-bis(dicarboxyphenoxy)-2,5-bis(trifluoromethyl)benzene dianhydride, 1,4-bis( Dicarboxyphenoxy)-2,6-bis(trifluoromethyl)benzene dianhydride, 1,4-bis(dicarboxyphenoxy)tetrakis(trifluoromethyl)benzene dianhydride, 2,2-bis[(4- (3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride, 4,4'-bis(2-trifluoromethyl-3,4-dicarboxyphenoxy)biphenyl dianhydride, 4,4'-bis (5-trifluoromethyl-3,4-dicarboxyphenoxy)biphenyl dianhydride, 4,4′-bis(2-trifluoromethyl-3,4-dicarboxyphenoxy-3,3′-bis(trifluoro methyl) biphe nyl dianhydride, 4,4′-bis(5-trifluoromethyl-3,4-dicarboxyphenoxy-3,3′-bis(trifluoromethyl)biphenyl dianhydride, 4,4′-bis(2 -trifluoromethyl-3,4-dicarboxyphenoxy)diphenyl ether dianhydride, 4,4'-bis(5-trifluoromethyl-3,4-dicarboxyphenoxy)diphenyl ether dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy)-3,3-bis(trifluoromethyl)biphenyl dianhydride, 2,5-difluoropyromellitic acid, 2-trifluoromethyl-5-fluoropyromellitic acid, 2,5 -di(trifluoromethyl)pyromellitic acid, 2,5-di(pentafluoroethyl)pyromellitic acid, hexafluoro-3,3',4,4'-biphenyltetracarboxylic acid, hexafluoro-3,3' ,4,4′-benzophenonetetracarboxylic acid, 2,2-bis(2,5,6-trifluoro-3,4-dicarboxyphenyl)hexafluoropropane, 1,3-bis(2,5,6- trifluoro-3,4-dicarboxyphenyl)hexafluoropropane, 2,2-bis(2,5,6-trifluoro-3,4-dicarboxyphenyl)hexafluoropropane, 1,4-bis(2, 5,6-trifluoro-3,4-dicarboxytrifluorophenoxy)tetrafluorobenzene, hexafluoro-3,3'-oxybisphthalic acid, hexafluoro-3,3'-oxybisphthalic acid, and the like. be done.
 ジアミンは、従来からポリアミド酸の合成原料として使用されているジアミンから適宜選択することができる。ジアミンは、芳香族ジアミンであっても、脂肪族ジアミンであってもよいが、得られるポリイミド樹脂の耐熱性の点から、芳香族ジアミンが好ましい。これらのジアミンは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 後述するように、多孔質膜の主面における水の接触角やフッ素原子量(atm%)を高める目的で、ポリイミド樹脂に、フッ素原子を有する構成単位を含有させる場合がある。この場合、フッ素原子を含むジアミンが使用される。
The diamine can be appropriately selected from diamines conventionally used as raw materials for synthesizing polyamic acid. The diamine may be either an aromatic diamine or an aliphatic diamine, but is preferably an aromatic diamine from the viewpoint of heat resistance of the resulting polyimide resin. These diamines may be used individually by 1 type, and may be used in combination of 2 or more type.
As will be described later, in order to increase the contact angle of water and the fluorine atom content (atm %) on the main surface of the porous film, the polyimide resin may contain structural units having fluorine atoms. In this case, diamines containing fluorine atoms are used.
 芳香族ジアミンとしては、フェニル基が1個あるいは2個以上10個以下程度が結合したジアミノ化合物を挙げることができる。具体的には、フェニレンジアミン及びその誘導体、ジアミノビフェニル化合物及びその誘導体、ジアミノジフェニル化合物及びその誘導体、ジアミノトリフェニル化合物及びその誘導体、ジアミノナフタレン及びその誘導体、アミノフェニルアミノインダン及びその誘導体、ジアミノテトラフェニル化合物及びその誘導体、ジアミノヘキサフェニル化合物及びその誘導体、カルド型フルオレンジアミン誘導体である。 Examples of aromatic diamines include diamino compounds in which one or about two to ten phenyl groups are bonded. Specifically, phenylenediamine and derivatives thereof, diaminobiphenyl compounds and derivatives thereof, diaminodiphenyl compounds and derivatives thereof, diaminotriphenyl compounds and derivatives thereof, diaminonaphthalene and derivatives thereof, aminophenylaminoindane and derivatives thereof, diaminotetraphenyl compounds and their derivatives, diaminohexaphenyl compounds and their derivatives, and cardo-type fluorenediamine derivatives.
 フェニレンジアミンはm-フェニレンジアミン、p-フェニレンジアミン等であり、フェニレンジアミン誘導体としては、メチル基、エチル基等のアルキル基が結合したジアミン、例えば、2,4-ジアミノトルエン、2,4-トリフェニレンジアミン等である。 Phenylenediamine includes m-phenylenediamine, p-phenylenediamine and the like, and phenylenediamine derivatives include diamines to which alkyl groups such as methyl and ethyl groups are bonded, such as 2,4-diaminotoluene and 2,4-triphenylene. diamine and the like.
 ジアミノビフェニル化合物では、2つのアミノフェニル基同士が結合している。例えば、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル等である。 In the diaminobiphenyl compound, two aminophenyl groups are bonded together. Examples include 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl and the like.
 ジアミノジフェニル化合物は、2つのアミノフェニル基が他の基を介してフェニル基同士で結合した化合物である。結合はエーテル結合、スルホニル結合、チオエーテル結合、アルキレン又はその誘導体基による結合、イミノ結合、アゾ結合、ホスフィンオキシド結合、アミド結合、ウレイレン結合等である。アルキレン結合の炭素原子数は1以上6以下程度である、アルキレン基の誘導体基は、1以上のハロゲン原子等で置換されたアルキレン基である。 A diaminodiphenyl compound is a compound in which two aminophenyl groups are bonded between phenyl groups via another group. The bond is ether bond, sulfonyl bond, thioether bond, bond by alkylene or derivative group thereof, imino bond, azo bond, phosphine oxide bond, amide bond, ureylene bond and the like. A derivative group of an alkylene group in which the number of carbon atoms in the alkylene bond is about 1 or more and 6 or less is an alkylene group substituted with one or more halogen atoms or the like.
 ジアミノジフェニル化合物の例としては、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルケトン、2,2-ビス(p-アミノフェニル)プロパン、2,2’-ビス(p-アミノフェニル)ヘキサフルオロプロパン、4-メチル-2,4-ビス(p-アミノフェニル)-1-ペンテン、4-メチル-2,4-ビス(p-アミノフェニル)-2-ペンテン、イミノジアニリン、4-メチル-2,4-ビス(p-アミノフェニル)ペンタン、ビス(p-アミノフェニル)ホスフィンオキシド、4,4’-ジアミノアゾベンゼン、4,4’-ジアミノジフェニル尿素、4,4’-ジアミノジフェニルアミド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルフォン、ビス[4-(3-アミノフェノキシ)フェニル]スルフォン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。 Examples of diaminodiphenyl compounds include 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl ketone , 3,4′-diaminodiphenyl ketone, 2,2-bis(p-aminophenyl)propane, 2,2′-bis(p-aminophenyl)hexafluoropropane, 4-methyl-2,4-bis(p -aminophenyl)-1-pentene, 4-methyl-2,4-bis(p-aminophenyl)-2-pentene, iminodianiline, 4-methyl-2,4-bis(p-aminophenyl)pentane, bis(p-aminophenyl)phosphine oxide, 4,4'-diaminoazobenzene, 4,4'-diaminodiphenylurea, 4,4'-diaminodiphenylamide, 1,4-bis(4-aminophenoxy)benzene, 1 ,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 4,4′-bis(4-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl ] sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl ] hexafluoropropane and the like.
 これらの中では、価格、入手容易性等から、p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジアミノトルエン、及び4,4’-ジアミノジフェニルエーテルが好ましい。 Among these, p-phenylenediamine, m-phenylenediamine, 2,4-diaminotoluene, and 4,4'-diaminodiphenyl ether are preferred in terms of price, availability, etc.
 ジアミノトリフェニル化合物は、2つのアミノフェニル基と1つのフェニレン基がいずれも他の基を介して結合した化合物である。他の基は、ジアミノジフェニル化合物と同様の基が選ばれる。ジアミノトリフェニル化合物の例としては、1,3-ビス(m-アミノフェノキシ)ベンゼン、1,3-ビス(p-アミノフェノキシ)ベンゼン、1,4-ビス(p-アミノフェノキシ)ベンゼン等を挙げることができる。 A diaminotriphenyl compound is a compound in which two aminophenyl groups and one phenylene group are both bonded via another group. Other groups are selected from the same groups as in the diaminodiphenyl compound. Examples of diaminotriphenyl compounds include 1,3-bis(m-aminophenoxy)benzene, 1,3-bis(p-aminophenoxy)benzene, 1,4-bis(p-aminophenoxy)benzene and the like. be able to.
 ジアミノナフタレンの例としては、1,5-ジアミノナフタレン及び2,6-ジアミノナフタレンを挙げることができる。 Examples of diaminonaphthalene include 1,5-diaminonaphthalene and 2,6-diaminonaphthalene.
 アミノフェニルアミノインダンの例としては、5又は6-アミノ-1-(p-アミノフェニル)-1,3,3-トリメチルインダンを挙げることができる。 Examples of aminophenylaminoindane include 5- or 6-amino-1-(p-aminophenyl)-1,3,3-trimethylindane.
 ジアミノテトラフェニル化合物の例としては、4,4’-ビス(p-アミノフェノキシ)ビフェニル、2,2’-ビス[p-(p’-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[p-(p’-アミノフェノキシ)ビフェニル]プロパン、2,2’-ビス[p-(m-アミノフェノキシ)フェニル]ベンゾフェノン等を挙げることができる。 Examples of diaminotetraphenyl compounds include 4,4′-bis(p-aminophenoxy)biphenyl, 2,2′-bis[p-(p′-aminophenoxy)phenyl]propane, 2,2′-bis[ p-(p'-aminophenoxy)biphenyl]propane, 2,2'-bis[p-(m-aminophenoxy)phenyl]benzophenone, and the like.
 カルド型フルオレンジアミン誘導体は、9,9-ビスアニリンフルオレン等が挙げられる。 Cardo-type fluorenediamine derivatives include 9,9-bisaniline fluorene and the like.
 脂肪族ジアミンの炭素原子数は、例えば、2以上15以下程度がよい。脂肪族ジアミンの具体例としては、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン等が挙げられる。 The number of carbon atoms in the aliphatic diamine is preferably 2 or more and 15 or less, for example. Specific examples of aliphatic diamines include pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine.
 なお、これらのジアミンの水素原子がハロゲン原子、メチル基、メトキシ基、シアノ基、フェニル基等の群より選択される少なくとも1種の置換基により置換された化合物であってもよい。 A compound in which the hydrogen atoms of these diamines are substituted with at least one substituent selected from the group of halogen atoms, methyl groups, methoxy groups, cyano groups, phenyl groups and the like may also be used.
 ポリイミド樹脂に、フッ素原子を有する構成単位を含有させる場合に使用されるフッ素原子を含むジアミンとしては、4-(1H,1H,11H-エイコサフルオロウンデカノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-ブタノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-ヘプタノキシ)-1,3-ジアミノベンゼン、4-(1H,1H-パーフルオロ-1-オクタノキシ)-1,3-ジアミノベンゼン、4-ペンタフルオロフェノキシ-1,3-ジアミノベンゼン、4-(2,3,5,6-テトラフルオロフェノキシ)-1,3-ジアミノベンゼン、4-(4-フルオロフェノキシ)-1,3-ジアミノベンゼン、4-(1H,1H,2H,2H-パーフルオロ-1-ヘキサノキシ)-1,3-ジアミノベンゼン、4-(1H,1H,2H,2H-パーフルオロ-1-ドデカノキシ)-1,3-ジアミノベンゼン、2,5-ジアミノベンゾトリフルオライド、2,5-ビス(トリフルオロメチル)-1,4-フェニレンジアミン、2,3-ビス(トリフルオロメチル)-1,4-フェニレンジアミン、2,6-ビス(トリフルオロメチル)-1,4-フェニレンジアミン、4,6-ビス(トリフルオロメチル)-1,3-フェニレンジアミン、4,5-ビス(トリフルオロメチル)-1,3-フェニレンジアミン、2,4-ビス(トリフルオロメチル)-1,3-フェニレンジアミン、2,5-ビス(トリフルオロメチル)-1,3-フェニレンジアミン、1,4-ジアミノテトラ(トリフルオロメチル)ベンゼン、1,3-ジアミノテトラ(トリフルオロメチル)ベンゼン、1,4-ジアミノ-2-ペンタフルオロエチルベンゼン、1,3-ジアミノ-4-ペンタフルオロエチルベンゼン、1,3-ジアミノ-5-ペンタフルオロエチルベンゼン、1,4-ジアミノ-2-パーフルオロヘキシルベンゼン、1,4--ジアミノ-2-パーフルオロブチルベンゼン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、オクタフルオロベンジジン、4,4’-ジアミノジフェニルエーテル、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,3-ビス(4-アミノフェニル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェニル)オクタフルオロブタン、1,5-ビス(4-アミノフェニル)デカフルオロペンタン、1,7-ビス(4-アミノフェニル)テトラデカフルオロヘプタン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、3,3’,5,5’-テトラキス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)-2,5-ビス(トリフルオロメチル)ベンゼン、1,4-ビス(4-アミノフェノキシ)-2,3-ビス(トリフルオロメチル)ベンゼン、1,4-ビス(4-アミノフェノキシ)-2,6-ビス(トリフルオロメチル)ベンゼン、1,4-ビス(4-アミノフェノキシ)テトラキス(トリフルオロメチル)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノ-2-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノ-3-トリフルオロメチルフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジトリフルオロメチルフェニル]ヘキサフルオロプロパン、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-3-トリフルオロメチルフェノキシ)ビフェニル、4,4’-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’-ビス(3-アミノ-5-トリフルオロメチルフェノキシ)ジフェニルスルホン、1,4-ビス{2-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン-2-イル}ベンゼン、4,4’-ビス(4-アミノフェノキシ)オクタフルオロビフェニル、3,4,5,6-テトラフルオロ-1,2-フェニレンジアミン、2,4,5,6-テトラフルオロ-1,3-フェニレンジアミン、2,3,5,6-テトラフルオロ-1,4-フェニレンジアミン、4,4’-ジアミノオクタフルオロビフェニル、ビス(2,3,5,6-テトラフルオロ-4-アミノフェニル)エーテル、ビス(2,3,5,6-テトラフルオロ-4-アミノフェニル)スルホン、及びヘキサフルオロ-2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル等が挙げられる。 Examples of the diamine containing a fluorine atom used when the polyimide resin contains a structural unit containing a fluorine atom include 4-(1H,1H,11H-eicosafluoroundecanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-butanoxy)-1,3-diaminobenzene, 4-(1H,1H-perfluoro-1-heptanoxy)-1,3-diaminobenzene, 4-(1H,1H -perfluoro-1-octanoxy)-1,3-diaminobenzene, 4-pentafluorophenoxy-1,3-diaminobenzene, 4-(2,3,5,6-tetrafluorophenoxy)-1,3-diamino Benzene, 4-(4-fluorophenoxy)-1,3-diaminobenzene, 4-(1H,1H,2H,2H-perfluoro-1-hexanoxy)-1,3-diaminobenzene, 4-(1H,1H ,2H,2H-perfluoro-1-dodecanoxy)-1,3-diaminobenzene, 2,5-diaminobenzotrifluoride, 2,5-bis(trifluoromethyl)-1,4-phenylenediamine, 2,3 -bis(trifluoromethyl)-1,4-phenylenediamine, 2,6-bis(trifluoromethyl)-1,4-phenylenediamine, 4,6-bis(trifluoromethyl)-1,3-phenylenediamine , 4,5-bis(trifluoromethyl)-1,3-phenylenediamine, 2,4-bis(trifluoromethyl)-1,3-phenylenediamine, 2,5-bis(trifluoromethyl)-1, 3-phenylenediamine, 1,4-diaminotetra(trifluoromethyl)benzene, 1,3-diaminotetra(trifluoromethyl)benzene, 1,4-diamino-2-pentafluoroethylbenzene, 1,3-diamino-4 -pentafluoroethylbenzene, 1,3-diamino-5-pentafluoroethylbenzene, 1,4-diamino-2-perfluorohexylbenzene, 1,4-diamino-2-perfluorobutylbenzene, 2,2'-bis (trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, octafluorobenzidine, 4,4'-diaminodiphenyl ether, 2,2- Bis(4-aminophenyl)hexafluoropropane, 1,3-bis(4-aminophenyl)hexafluoropropane, 1,4-bis(4-aminophenyl) ) octafluorobutane, 1,5-bis(4-aminophenyl)decafluoropentane, 1,7-bis(4-aminophenyl)tetradecafluoroheptane, 2,2′-bis(trifluoromethyl)-4, 4'-diaminodiphenyl ether, 3,3'-bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 3,3',5,5'-tetrakis(trifluoromethyl)-4,4'-diaminodiphenyl ether , 3,3′-bis(trifluoromethyl)-4,4′-diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,4-bis(4-amino-2-trifluoromethylphenoxy ) benzene, 1,4-bis(4-aminophenoxy)-2,5-bis(trifluoromethyl)benzene, 1,4-bis(4-aminophenoxy)-2,3-bis(trifluoromethyl)benzene , 1,4-bis(4-aminophenoxy)-2,6-bis(trifluoromethyl)benzene, 1,4-bis(4-aminophenoxy)tetrakis(trifluoromethyl)benzene, 2,2-bis[ 4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(2-aminophenoxy)phenyl] Hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)-3,5-dimethylphenyl]hexafluoropropane, 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy) Phenyl]hexafluoropropane, 2,2-bis[4-(4-amino-3-trifluoromethylphenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)-3,5 -ditrifluoromethylphenyl]hexafluoropropane, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-amino-3-trifluoromethylphenoxy)biphenyl, 4,4'-bis(4-amino-2-trifluoromethylphenoxy)diphenylsulfone, 4,4'-bis(3-amino-5-trifluoromethylphenoxy)diphenylsulfone, 1,4-bis{2- [4-(4-aminophenoxy)phenyl]hexafluoropropan-2-yl}benzene, 4,4'-bis(4-aminophenoxy)octafluorobiphenyl , 3,4,5,6-tetrafluoro-1,2-phenylenediamine, 2,4,5,6-tetrafluoro-1,3-phenylenediamine, 2,3,5,6-tetrafluoro-1, 4-phenylenediamine, 4,4′-diaminooctafluorobiphenyl, bis(2,3,5,6-tetrafluoro-4-aminophenyl) ether, bis(2,3,5,6-tetrafluoro-4- aminophenyl)sulfone, hexafluoro-2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl and the like.
 ポリアミド酸を製造する手段に特に制限はない。例えば、溶剤中で酸、ジアミン成分を反応させる方法等の公知の手法を用いることができる。 There are no particular restrictions on the means of producing polyamic acid. For example, a known technique such as a method of reacting an acid and a diamine component in a solvent can be used.
 テトラカルボン酸二無水物とジアミンとの反応は、通常、溶剤中で行われる。テトラカルボン酸二無水物とジアミンとの反応に使用される溶剤は、テトラカルボン酸二無水物及びジアミンを溶解させることができ、テトラカルボン酸二無水物及びジアミンと反応しない溶剤であれば特に限定されない。溶剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The reaction of tetracarboxylic dianhydride and diamine is usually carried out in a solvent. The solvent used for the reaction of the tetracarboxylic dianhydride and the diamine is particularly limited as long as it can dissolve the tetracarboxylic dianhydride and the diamine and does not react with the tetracarboxylic dianhydride and the diamine. not. A solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
 テトラカルボン酸二無水物とジアミンとの反応に用いる溶剤の例としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤;β-プロピオラクトン、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン等のラクトン系極性溶剤;ジメチルスルホキシド;アセトニトリル;乳酸エチル、乳酸ブチル等の脂肪酸エステル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジオキサン、テトラヒドロフラン、メチルセルソルブアセテート、エチルセルソルブアセテート等のエーテル類;クレゾール類、キシレン系混合溶媒等のフェノール系溶剤が挙げられる。
 これらの溶剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。溶剤の使用量に特に制限はない。溶剤は、反応液における、生成したポリアミド酸の含有量が5質量%以上50質量%以下である量使用されるのが望ましい。
Examples of solvents used for the reaction of tetracarboxylic dianhydride and diamine include N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N, Nitrogen-containing polar solvents such as N-diethylformamide, N-methylcaprolactam, N,N,N',N'-tetramethylurea; β-propiolactone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, Lactone-based polar solvents such as γ-caprolactone and ε-caprolactone; dimethyl sulfoxide; acetonitrile; fatty acid esters such as ethyl lactate and butyl lactate; and ethers; cresols, and phenolic solvents such as xylene mixed solvents.
These solvents may be used individually by 1 type, and may be used in combination of 2 or more type. There are no particular restrictions on the amount of solvent used. The solvent is desirably used in such an amount that the content of the produced polyamic acid in the reaction solution is 5% by mass or more and 50% by mass or less.
 これらの溶剤の中では、生成するポリアミド酸の溶解性から、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルカプロラクタム、N,N,N’,N’-テトラメチルウレア等の含窒素極性溶剤が好ましい。 Among these solvents, N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide, N,N-diethyl Nitrogen-containing polar solvents such as formamide, N-methylcaprolactam and N,N,N',N'-tetramethylurea are preferred.
 重合温度は、一般的には、-10℃以上120℃以下が好ましく、5℃以上30℃以下がより好ましい。重合時間は使用する原料組成により異なるが、通常は3時間以上24時間以下が好ましい。
 ポリアミド酸は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The polymerization temperature is generally preferably −10° C. or higher and 120° C. or lower, more preferably 5° C. or higher and 30° C. or lower. Although the polymerization time varies depending on the raw material composition used, it is usually preferably 3 hours or more and 24 hours or less.
Polyamic acid may be used alone or in combination of two or more.
[ポリイミド樹脂]
 ポリイミド樹脂は、その構造や分子量が限定されない。公知の種々のポリイミド樹脂を使用できる。ポリイミド樹脂は、カルボキシ基等の縮合可能な官能基、又は焼成時に架橋反応等を促進させる官能基を、側鎖中に有していてもよい。多孔質膜製造用組成物が溶剤を含有する場合、当該溶剤に溶解可能な可溶性ポリイミド樹脂が好ましい。
[Polyimide resin]
The structure and molecular weight of the polyimide resin are not limited. Various known polyimide resins can be used. The polyimide resin may have a condensable functional group such as a carboxyl group or a functional group that promotes a cross-linking reaction or the like during baking in the side chain. When the porous film-producing composition contains a solvent, a soluble polyimide resin that is soluble in the solvent is preferred.
 溶剤に可溶なポリイミド樹脂を得るためには、主鎖に柔軟な屈曲構造を導入するのが有効である。主鎖に柔軟な屈曲構造を導入し得る単量体としては、例えば、エチレジアミン、ヘキサメチレンジアミン、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン等の脂肪族ジアミン;2-メチル-1,4-フェニレンジアミン、o-トリジン、m-トリジン、3,3’-ジメトキシベンジジン、4,4’-ジアミノベンズアニリド等の芳香族ジアミン;ポリオキシエチレンジアミン、ポリオキシプロピレンジアミン、ポリオキシブチレンジアミン等のポリオキシアルキレンジアミン;ポリシロキサンジアミン;2,3,3’,4’-オキシジフタル酸無水物、3,4,3’,4’-オキシジフタル酸無水物、2,2-ビス(4-ヒドロキシフェニル)プロパンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物等が挙げられる。また、溶剤への溶解性を向上する官能基を有する単量体の使用も有効である。溶剤への溶解性を向上する官能基を有する単量体としては、例えば、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2-トリフルオロメチル-1,4-フェニレンジアミン等のフッ素化ジアミンが挙げられる。さらに、上記ポリイミド樹脂の溶解性を向上するための単量体に加えて、溶解性を阻害しない範囲で、上記ポリアミド酸の欄に記載された単量体を併用することができる。
 ポリイミド樹脂及びその単量体の各々は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In order to obtain a solvent-soluble polyimide resin, it is effective to introduce a flexible bent structure into the main chain. Examples of monomers capable of introducing a flexible bent structure into the main chain include fatty acids such as ethylenediamine, hexamethylenediamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, and 4,4′-diaminodicyclohexylmethane. aromatic diamines such as 2-methyl-1,4-phenylenediamine, o-tolidine, m-tolidine, 3,3'-dimethoxybenzidine, 4,4'-diaminobenzanilide; polyoxyethylenediamine, polyoxy Polyoxyalkylene diamines such as propylene diamine and polyoxybutylene diamine; polysiloxane diamines; 2,3,3',4'-oxydiphthalic anhydride, 3,4,3',4'-oxydiphthalic anhydride, 2, 2-bis(4-hydroxyphenyl)propane dibenzoate-3,3',4,4'-tetracarboxylic dianhydride and the like. It is also effective to use a monomer having a functional group that improves solubility in solvents. Examples of monomers having functional groups that improve solubility in solvents include 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl, 2-trifluoromethyl-1,4- Fluorinated diamines such as phenylenediamine are included. Furthermore, in addition to the monomer for improving the solubility of the polyimide resin, the monomers described in the polyamic acid section above can be used in combination within a range that does not impair the solubility.
Each of the polyimide resin and its monomer may be used alone or in combination of two or more.
 ポリイミド樹脂を製造する手段に特に制限はない。例えば、ポリアミド酸を化学イミド化又は加熱イミド化させる方法等の公知の手法を用いることができる。そのようなポリイミド樹脂としては、脂肪族ポリイミド樹脂(全脂肪族ポリイミド樹脂)、芳香族ポリイミド樹脂等を挙げることができ、芳香族ポリイミド樹脂が好ましい。芳香族ポリイミド樹脂としては、式(1)で示す繰り返し単位を有するポリアミド酸の、熱又は化学的な手段での閉環反応により得られるポリイミド樹脂、若しくは式(2)で示す繰り返し単位を有するポリイミド樹脂等が挙げられる。式中、Arはアリール基を示す。多孔質膜製造用組成物が溶剤を含有する場合、これらのポリイミド樹脂は、次いで、使用する溶剤に溶解させるとよい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
There is no particular limitation on the means for producing the polyimide resin. For example, known techniques such as chemical imidization or thermal imidization of polyamic acid can be used. Examples of such polyimide resins include aliphatic polyimide resins (full-aliphatic polyimide resins), aromatic polyimide resins, and the like, with aromatic polyimide resins being preferred. The aromatic polyimide resin is a polyimide resin obtained by a ring closure reaction of a polyamic acid having a repeating unit represented by formula (1) by thermal or chemical means, or a polyimide resin having a repeating unit represented by formula (2). etc. In the formula, Ar represents an aryl group. When the porous film-producing composition contains a solvent, these polyimide resins are preferably dissolved in the solvent to be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
[微粒子]
 微粒子の材質は、多孔質膜製造用組成物に含まれる溶剤に不溶で、後にポリイミド樹脂-微粒子複合膜から除去可能であれば、特に限定されない。微粒子の材質としては、前述の条件を満たす種々の公知の材質を採用可能である。例えば、無機材料としては、シリカ(二酸化珪素);酸化チタン、アルミナ(Al)等の金属酸化物が挙げられる。有機材料としては、高分子量オレフィン重合体(ポリプロピレン,ポリエチレン等)、ポリスチレン、エポキシ樹脂、セルロース、ポリビニルアルコール、ポリビニルブチラール、ポリエステル、ポリエーテル等の有機高分子が挙げられる。
[Fine particles]
The material of the fine particles is not particularly limited as long as it is insoluble in the solvent contained in the composition for producing a porous film and can be removed from the polyimide resin-fine particle composite film later. Various known materials that satisfy the above conditions can be used as the material of the fine particles. Examples of inorganic materials include silica (silicon dioxide); metal oxides such as titanium oxide and alumina (Al 2 O 3 ). Organic materials include organic polymers such as high-molecular-weight olefin polymers (polypropylene, polyethylene, etc.), polystyrene, epoxy resins, cellulose, polyvinyl alcohol, polyvinyl butyral, polyesters, and polyethers.
 具体的に微粒子としては、例えば、コロイダルシリカが挙げられる。コロイダルシリカの中では、単分散球状シリカ粒子が、均一な孔を形成できるため好ましい。 Specific examples of fine particles include colloidal silica. Among colloidal silica, monodisperse spherical silica particles are preferable because uniform pores can be formed.
 また、微粒子について、真球率が高く、粒径分布指数が小さいのが好ましい。これらの条件を備えた微粒子は、多孔質膜製造用組成物中での分散性に優れ、互いに凝集しない状態で使用することができる。微粒子の平均粒径は、多孔質膜の表面における開口径や多孔質膜の膜厚を勘案して適宜選択される。微粒子の平均粒径は、例えば、50nm以上が好ましく、100nm以上2000nm以下がより好ましく、200nm以上1000nm以下がさらに好ましい。これらの条件を満たすことで、微粒子を取り除いて得られる多孔質膜の孔径を揃えることができる。
 微粒子は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Further, the fine particles preferably have a high sphericity and a small particle size distribution index. Fine particles satisfying these conditions are excellent in dispersibility in the composition for producing a porous film, and can be used in a state in which they do not aggregate with each other. The average particle diameter of the fine particles is appropriately selected in consideration of the opening diameter on the surface of the porous membrane and the thickness of the porous membrane. For example, the average particle diameter of the fine particles is preferably 50 nm or more, more preferably 100 nm or more and 2000 nm or less, and even more preferably 200 nm or more and 1000 nm or less. By satisfying these conditions, the pore size of the porous membrane obtained by removing fine particles can be made uniform.
Fine particles may be used singly or in combination of two or more.
[溶剤]
 溶剤としては、溶剤が、ポリアミド酸及び/又はポリイミド樹脂を溶解させ、微粒子を溶解させなければ、特に限定されない。溶剤の好適な例としては、テトラカルボン酸二無水物とジアミンとの反応について例示した溶剤が挙げられる。溶剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[solvent]
The solvent is not particularly limited as long as it dissolves the polyamic acid and/or polyimide resin and does not dissolve the fine particles. Suitable examples of the solvent include the solvents exemplified for the reaction of the tetracarboxylic dianhydride and the diamine. A solvent may be used independently and may be used in combination of 2 or more type.
[分散剤]
 多孔質膜製造用組成物中での微粒子の均一な分散を目的に、微粒子とともに分散剤を用いてもよい。多孔質膜製造用組成物に分散剤を添加することにより、微粒子を多孔質膜製造用組成物中に一層均一に混合でき、さらには、多孔質膜製造用組成物を成膜した膜中で、微粒子を均一に分布させることができる。その結果、最終的に得られる多孔質膜の表面に稠密な開口を設け、且つ、多孔質膜の表面と裏面とを効率よく連通させることができ、多孔質膜の透気度が向上する。さらに、分散剤の使用により、多孔質膜製造用組成物の乾燥性が向上しやすく、また、形成された未焼成複合膜の基板等からの剥離性が向上しやすい。
[Dispersant]
A dispersant may be used together with the fine particles for the purpose of uniformly dispersing the fine particles in the composition for producing a porous film. By adding a dispersant to the composition for producing a porous film, the fine particles can be more uniformly mixed in the composition for producing a porous film, and furthermore, the fine particles can be mixed more uniformly in the film formed from the composition for producing a porous film. , fine particles can be uniformly distributed. As a result, dense openings can be provided on the surface of the finally obtained porous membrane, and the front and back surfaces of the porous membrane can be efficiently communicated with each other, thereby improving the air permeability of the porous membrane. Furthermore, the use of a dispersant facilitates improvement in the drying property of the composition for producing a porous film, and also facilitates improvement in the peelability of the formed unfired composite film from a substrate or the like.
 分散剤は、特に限定されない。公知の分散剤を使用することができる。分散剤の具体例としては、やし脂肪酸塩、ヒマシ硫酸化油塩、ラウリルサルフェート塩、ポリオキシアルキレンアリルフェニルエーテルサルフェート塩、アルキルベンゼンスルホン酸、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホサクシネート塩、イソプロピルホスフェート、ポリオキシエチレンアルキルエーテルホスフェート塩、ポリオキシエチレンアリルフェニルエーテルホスフェート塩等のアニオン界面活性剤;オレイルアミン酢酸塩、ラウリルピリジニウムクロライド、セチルピリジニウムクロライド、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド等のカチオン界面活性剤;ヤシアルキルジメチルアミンオキサイド、脂肪酸アミドプロピルジメチルアミンオキサイド、アルキルポリアミノエチルグリシン塩酸塩、アミドベタイン型活性剤、アラニン型活性剤、ラウリルイミノジプロピオン酸等の両性界面活性剤;ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンポリスチリルフェニルエーテル、ポリオキシアルキレンポリスチリルフェニルエーテル等、ポリオキシアルキレン一級アルキルエーテル又はポリオキシアルキレン二級アルキルエーテルのノニオン界面活性剤、ポリオキシエチレンジラウレート、ポリオキシエチレンラウレート、ポリオキシエチレン化ヒマシ油、ポリオキシエチレン化硬化ヒマシ油、ソルビタンラウリン酸エステル、ポリオキシエチレンソルビタンラウリン酸エステル、脂肪酸ジエタノールアミド等のその他のポリオキアルキレン系のノニオン界面活性剤;オクチルステアレート、トリメチロールプロパントリデカノエート等の脂肪酸アルキルエステル;ポリオキシアルキレンブチルエーテル、ポリオキシアルキレンオレイルエーテル、トリメチロールプロパントリス(ポリオキシアルキレン)エーテル等のポリエーテルポリオールが挙げられる。上記分散剤は、2種以上を混合して使用することもできる。 The dispersant is not particularly limited. Known dispersants can be used. Specific examples of dispersants include coconut fatty acid salts, castor sulfated oil salts, lauryl sulfate salts, polyoxyalkylene allylphenyl ether sulfate salts, alkylbenzenesulfonic acids, alkylbenzenesulfonates, alkyldiphenyletherdisulfonates, and alkylnaphthalenesulfones. Anionic surfactants such as acid salts, dialkyl sulfosuccinate salts, isopropyl phosphate, polyoxyethylene alkyl ether phosphate salts, polyoxyethylene allylphenyl ether phosphate salts; oleylamine acetate, laurylpyridinium chloride, cetylpyridinium chloride, lauryltrimethylammonium cationic surfactants such as chloride, stearyltrimethylammonium chloride, behenyltrimethylammonium chloride, didecyldimethylammonium chloride; coconut alkyldimethylamine oxide, fatty acid amidopropyldimethylamine oxide, alkylpolyaminoethylglycine hydrochloride, amidobetaine type active agent, Amphoteric surfactants such as alanine-type active agents and lauryliminodipropionic acid; Styryl phenyl ether, polyoxyalkylene polystyryl phenyl ether, etc., polyoxyalkylene primary alkyl ether or polyoxyalkylene secondary alkyl ether nonionic surfactant, polyoxyethylene dilaurate, polyoxyethylene laurate, polyoxyethylenated castor oil , polyoxyethylenated hydrogenated castor oil, sorbitan laurate, polyoxyethylene sorbitan laurate, other polyoxyalkylene-based nonionic surfactants such as fatty acid diethanolamide; octyl stearate, trimethylolpropane tridecanoate, etc. and polyether polyols such as polyoxyalkylene butyl ether, polyoxyalkylene oleyl ether, and trimethylolpropane tris(polyoxyalkylene) ether. Two or more of the above dispersants may be mixed and used.
 多孔質膜製造用組成物において、分散剤の含有量は、例えば、成膜性の点で、上記微粒子の質量に対し0.01質量%以上5質量%以下が好ましく、0.05質量%以上1質量%以下がより好ましく、0.1質量%以上0.5質量%がさらにより好ましい。 In the porous film-producing composition, the content of the dispersant is preferably 0.01% by mass or more and 5% by mass or less, and preferably 0.05% by mass or more, based on the mass of the fine particles, from the viewpoint of film-forming properties. 1% by mass or less is more preferable, and 0.1% by mass or more and 0.5% by mass is even more preferable.
〔多孔質膜の好適な製造方法〕
[未焼成複合膜成膜工程]
 未焼成複合膜成膜工程では、例えば、基板上に上述した多孔質膜製造用組成物を塗布し、常圧又は真空下で0℃以上100℃以下、好ましくは常圧下10℃以上100℃以下で乾燥することにより、未焼成複合膜を形成することができる。基板としては、例えば、PETフィルム、SUS基板、ガラス基板等が挙げられる。
[Suitable method for producing porous membrane]
[Unfired Composite Film Forming Step]
In the unfired composite film-forming step, for example, the above-described composition for producing a porous film is applied onto a substrate, and the temperature is 0° C. or higher and 100° C. or lower under normal pressure or vacuum, preferably 10° C. or higher and 100° C. or less under normal pressure. An unfired composite film can be formed by drying at . Examples of substrates include PET films, SUS substrates, and glass substrates.
 また、未焼成複合膜を基板から剥離する場合、膜の剥離性をさらに高めるために、離型層を備える基板を使用することもできる。基板に予め離型層を設ける場合は、多孔質膜製造用組成物の塗布の前に、基板上に離型剤を塗布して乾燥あるいは焼き付けを行う。離型剤としては、アルキルリン酸アンモニウム塩系、フッ素系又はシリコーン等の公知の離型剤が特に制限なく使用可能である。上記乾燥した未焼成複合膜を基板から剥離する際、未焼成複合膜の剥離面にわずかながら離型剤が残存する。剥離面に残存する離型剤は、焼成中の複合膜の変色や、最終的に得られる多孔質膜の電気特性への悪影響の原因となり得る。このため、剥離面に残存する離型剤を極力取り除くことが好ましい。離型剤を取り除くことを目的として、基板より剥離した未焼成複合膜を、有機溶剤を用いて洗浄する洗浄工程を導入してもよい。 In addition, when peeling the unfired composite film from the substrate, a substrate provided with a release layer can be used in order to further improve the peelability of the film. When the release layer is provided on the substrate in advance, the release agent is applied onto the substrate and dried or baked before the porous film-producing composition is applied. As the mold release agent, known mold release agents such as alkyl phosphate ammonium salt type, fluorine type or silicone can be used without particular limitation. When the dried unfired composite film is peeled off from the substrate, a slight release agent remains on the peeled surface of the unfired composite film. The release agent remaining on the peeled surface can cause discoloration of the composite film during firing and adversely affect the electrical properties of the finally obtained porous film. Therefore, it is preferable to remove the release agent remaining on the release surface as much as possible. For the purpose of removing the release agent, a washing step may be introduced in which the unfired composite film separated from the substrate is washed with an organic solvent.
 一方、未焼成複合膜の成膜に、離型層を備えない基板を使用する場合は、上記離型層形成の工程や上記洗浄工程を省くことができる。また、未焼成複合膜の製造において、後述の焼成工程の前に、水を含む溶剤への浸漬工程、プレス工程、当該浸漬工程後の乾燥工程をそれぞれ任意の工程として設けてもよい。 On the other hand, when a substrate without a release layer is used for forming the unfired composite film, the process of forming the release layer and the cleaning process can be omitted. Moreover, in the production of the unfired composite film, a step of immersing in a solvent containing water, a pressing step, and a drying step after the immersing step may be provided as optional steps before the firing step described later.
[焼成工程]
 未焼成複合膜に加熱による後処理(焼成)を行ってポリイミド樹脂と微粒子とからなる複合膜(ポリイミド樹脂-微粒子複合膜)を形成する。焼成工程における焼成温度は、未焼成複合膜の構造や縮合剤の有無によっても異なるが、120℃以上450℃以下が好ましく、150℃以上400℃以下がより好ましい。また、有機材料からなる微粒子を使用するときは、焼成温度を有機材料の熱分解温度よりも低い温度に設定する必要がある。焼成工程においてはイミド化を完結させることが好ましい。
[Baking process]
The unbaked composite film is subjected to post-treatment (baking) by heating to form a composite film (polyimide resin-fine particle composite film) composed of polyimide resin and fine particles. The firing temperature in the firing step is preferably 120° C. or higher and 450° C. or lower, more preferably 150° C. or higher and 400° C. or lower, although it varies depending on the structure of the unsintered composite film and the presence or absence of a condensing agent. Moreover, when using fine particles made of an organic material, it is necessary to set the firing temperature to a temperature lower than the thermal decomposition temperature of the organic material. It is preferable to complete the imidization in the firing step.
 焼成条件は、例えば、室温~400℃までを3時間で昇温させた後、400℃で20分間保持させる方法や室温から50℃刻みで段階的に400℃まで昇温(各ステップ20分保持)し、最終的に400℃で20分保持させる等の段階的な乾燥-熱イミド化法を用いることもできる。基板上に未焼成複合膜を成膜し、上記基板から上記未焼成複合膜を一旦剥離する場合は、未焼成複合膜の端部をSUS製の型枠等に固定し変形を防ぐ方法を採ることもできる。 The firing conditions are, for example, a method of raising the temperature from room temperature to 400 ° C. in 3 hours and then holding it at 400 ° C. for 20 minutes, or raising the temperature from room temperature to 400 ° C. in steps of 50 ° C. (holding for 20 minutes at each step) ) and finally holding at 400° C. for 20 minutes. When an unsintered composite film is formed on a substrate and the unsintered composite film is once peeled off from the substrate, a method is adopted in which the ends of the unsintered composite film are fixed to a SUS formwork or the like to prevent deformation. can also
[微粒子除去工程]
 以上のようにして形成された、ポリイミド樹脂-微粒子複合膜から、微粒子を適切な方法を選択して除去することにより、所望する構造の多孔質膜を再現性よく製造することができる。
 微粒子の材質として、例えば、シリカを採用した場合、ポリイミド樹脂-微粒子複合膜を低濃度のフッ化水素水等により処理して、シリカを溶解除去することが可能である。
 微粒子が有機微粒子である場合、有機微粒子を熱分解させることにより、ポリイミド樹脂-微粒子複合膜から微粒子を除去することができる。
 微粒子が有機微粒子である場合、微粒子を溶解させるが、ポリイミド樹脂を溶解させない処理液を選択して、当該処理液による処理を行い、有機離微粒子を除去することができる。典型的には、処理液としては有機溶剤が使用される。有機微粒子が、酸又はアルカリに可溶である場合、酸性水溶液やアルカリ性水溶液も処理液として使用できる。
[Particulate matter removal step]
By selecting an appropriate method to remove the fine particles from the polyimide resin-fine particle composite film formed as described above, a porous membrane having a desired structure can be produced with good reproducibility.
For example, when silica is used as the material of the fine particles, the silica can be dissolved and removed by treating the polyimide resin-fine particle composite film with a low-concentration hydrogen fluoride solution or the like.
When the fine particles are organic fine particles, the fine particles can be removed from the polyimide resin-fine particle composite film by thermally decomposing the organic fine particles.
When the microparticles are organic microparticles, a treatment liquid that dissolves the microparticles but does not dissolve the polyimide resin can be selected and treated with the treatment liquid to remove the organic microparticles. Typically, an organic solvent is used as the processing liquid. If the organic fine particles are soluble in acid or alkali, an acidic aqueous solution or an alkaline aqueous solution can also be used as the treatment liquid.
[樹脂除去工程]
 微粒子除去工程前に、ポリイミド樹脂-微粒子複合膜の樹脂部分の少なくとも一部を除去するか、又は、微粒子除去工程後に多孔質膜の少なくとも一部を除去する樹脂除去工程を有していてもよい。
 微粒子除去工程前に、ポリイミド樹脂-微粒子複合膜の樹脂部分の少なくとも一部を除去するか、微粒子除去工程後に多孔質膜の少なくとも一部を除去することにより、除去が行われない場合と比較し、最終製品である多孔質膜の開孔率を向上させることが可能となる。
[Resin removal step]
It may have a resin removing step of removing at least part of the resin portion of the polyimide resin-fine particle composite film before the fine particle removing step, or removing at least part of the porous film after the fine particle removing step. .
By removing at least part of the resin portion of the polyimide resin-fine particle composite film before the fine particle removal step, or by removing at least part of the porous membrane after the fine particle removal step, compared to the case where no removal is performed. , it is possible to improve the porosity of the porous membrane, which is the final product.
 ポリイミド樹脂-微粒子複合膜の樹脂部分の少なくとも一部を除去する工程、又は、ポリイミド樹脂-微粒子複合膜の樹脂部分の少なくとも一部を除去する工程は、通常のケミカルエッチング法、物理的除去方法、又は、これらを組み合わせた方法により行うことができる。 The step of removing at least a portion of the resin portion of the polyimide resin-fine particle composite film, or the step of removing at least a portion of the resin portion of the polyimide resin-fine particle composite film can be performed by a normal chemical etching method, physical removal method, Alternatively, it can be carried out by a method combining these.
 ケミカルエッチング法としては、無機アルカリ溶液又は有機アルカリ溶液等のケミカルエッチング液による処理が挙げられる。無機アルカリ溶液が好ましい。無機アルカリ溶液として、例えば、ヒドラジンヒドラートとエチレンジアミンを含むヒドラジン溶液;水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム等のアルカリ金属水酸化物の溶液;アンモニア溶液;水酸化アルカリとヒドラジンと1,3-ジメチル-2-イミダゾリジノンとを主成分とするエッチング液等が挙げられる。有機アルカリ溶液としては、エチルアミン、n-プロピルアミン等の第一級アミン類;ジエチルアミン、ジ-n-ブチルアミン等の第二級アミン類;トリエチルアミン、メチルジエチルアミン等の第三級アミン類;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の第四級アンモニウム塩;ピロール、ピヘリジン等の環状アミン類等のアルカリ性溶液が挙げられる。 The chemical etching method includes treatment with a chemical etchant such as an inorganic alkaline solution or an organic alkaline solution. Inorganic alkaline solutions are preferred. Examples of inorganic alkaline solutions include hydrazine hydrate and ethylenediamine containing hydrazine hydrate; solutions of alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, sodium carbonate, sodium silicate and sodium metasilicate; ammonia solution; Etching solutions containing alkali, hydrazine, and 1,3-dimethyl-2-imidazolidinone as main components are included. Examples of organic alkaline solutions include primary amines such as ethylamine and n-propylamine; secondary amines such as diethylamine and di-n-butylamine; tertiary amines such as triethylamine and methyldiethylamine; and dimethylethanolamine. alcohol amines such as , triethanolamine; quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; alkaline solutions such as cyclic amines such as pyrrole and pyreridine.
 上記の各溶液の溶媒については、純水、アルコール類を適宜選択できる。上記の各溶液に界面活性剤を適当量添加することもできる。アルカリ濃度は、例えば0.01質量%以上20質量%以下である。 Pure water and alcohols can be appropriately selected as the solvent for each of the above solutions. An appropriate amount of surfactant can also be added to each of the above solutions. The alkali concentration is, for example, 0.01% by mass or more and 20% by mass or less.
 物理的な方法としては、例えば、プラズマ(酸素、アルゴン等)、コロナ放電等によるドライエッチング、研磨剤(例えば、アルミナ(硬度9)等)の分散液を多孔質膜の表面に30m/s以上100m/s以下の速度で吐出することで膜表面を処理する方法等が使用できる。 Physical methods include, for example, plasma (oxygen, argon, etc.), dry etching using corona discharge, etc., and dispersion of abrasives (e.g., alumina (hardness 9), etc.) on the surface of the porous film at 30 m/s or more. A method of treating the film surface by discharging at a speed of 100 m/s or less can be used.
 一方、微粒子除去工程後に行う樹脂除去工程にのみ適用可能な物理的方法として、液体で濡らした台紙フィルム(例えばPETフィルム等のポリエステルフィルム)を、積層体の処理対象表面に圧着後、台紙フィルムの乾燥前、又は台紙フィルムの乾燥後に、積層体を台紙フィルムから引きはがす方法を採用することもできる。液体の表面張力あるいは静電付着力に起因して、処理対象表面に存在する多孔質膜の表面層のみが台紙フィルム上に残された状態で、多孔質膜が台紙フィルムから引きはがされる。 On the other hand, as a physical method that can be applied only to the resin removal step that is performed after the fine particle removal step, a base film (for example, a polyester film such as a PET film) wetted with a liquid is pressed against the surface of the laminate to be treated, and then the backing film is removed. A method of peeling off the laminate from the mount film before drying or after drying the mount film can also be adopted. Due to the surface tension or electrostatic adhesion force of the liquid, the porous membrane is peeled off from the backing film while only the surface layer of the porous membrane existing on the surface to be treated remains on the backing film. .
<第1の多孔質膜>
 第1の多孔質膜は、前述したポリイミド多孔質膜であって、少なくとも一方の主面において、水の接触角が100°以上である多孔質膜である。
 第1の多孔質膜が、少なくとも一方の主面において、上記の水の接触角を示すことにより、多孔質膜が優れた気体の通過速度を示す。
 水の接触角は、105°以上が好ましく、110°以上がより好ましい。水の接触角の上限は特に限定されないが、現実的には、例えば150°以下であり、130°以下でもよい。
<First porous film>
The first porous membrane is the polyimide porous membrane described above and has a water contact angle of 100° or more on at least one main surface.
Since the first porous membrane exhibits the above water contact angle on at least one main surface, the porous membrane exhibits an excellent gas passage rate.
The contact angle of water is preferably 105° or more, more preferably 110° or more. Although the upper limit of the contact angle of water is not particularly limited, it is realistically, for example, 150° or less, and may be 130° or less.
 ここで、上記の水の接触角は、静的接触角である。水の静的接触角は、例えば、Dropmaster 700(協和界面化学株式会社製)を用い、多孔質膜の表面に純水の液滴2.0μLを適した後に、滴下10秒後における接触角として測定可能である。 Here, the above water contact angle is a static contact angle. For the static contact angle of water, for example, using Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.), after applying 2.0 μL of pure water droplets to the surface of the porous membrane, the contact angle after 10 seconds of dropping It is measurable.
 また、第1の多孔質膜において、水の接触角が100℃以上である主面の水の動的接触角が30°以上であるのが好ましい。水の動的接触角は、40°以上であってもよく、50°以上であってもよい。水の動的接触角の上限は特に限定されないが、現実的には、例えば120°以下であり、100°以下であってもよい。 In addition, in the first porous membrane, it is preferable that the dynamic contact angle of water on the main surface where the contact angle of water is 100°C or more is 30° or more. The dynamic contact angle of water may be 40° or more, or 50° or more. Although the upper limit of the dynamic contact angle of water is not particularly limited, in reality it is, for example, 120° or less, and may be 100° or less.
 水の動的接触角は、例えば、Dropmaster 700(協和界面科学株式会社製)を用いて以下のように測定できる。まず、多孔質膜の表面に純水の液滴2.0μLを滴下する。次いで、シリンジ針から純水の総量が50.0μLになるまで液滴に純水を供給して純水の液滴を拡張させる。液滴が拡張した状態を3秒保持した時点を測定開始時とし、測定開始時より、6.0μL/秒の速度で、液滴から純水を吸引した。純水の吸引により、測定開始時の液滴端部より、端部が10dot収縮した際の後退角の値を、水の動的接触角として測定する。 The dynamic contact angle of water can be measured as follows using, for example, Dropmaster 700 (manufactured by Kyowa Interface Science Co., Ltd.). First, 2.0 μL of pure water droplets are dropped on the surface of the porous membrane. Next, pure water is supplied to the droplet from the syringe needle until the total amount of pure water reaches 50.0 μL, and the droplet of pure water is expanded. The measurement was started when the expanded state of the droplet was maintained for 3 seconds, and pure water was sucked from the droplet at a rate of 6.0 μL/sec from the start of the measurement. The value of the receding angle when the edge shrinks by 10 dots from the edge of the droplet at the start of measurement due to suction of pure water is measured as the dynamic contact angle of water.
 第1の多孔質膜において、主面の水の接触角を100°以上とする方法は特に限定されない。かかる方法としては、例えば、前述の方法により調製される未処理の多孔質膜に対して、主面に撥水化剤を付着又は結合させる方法、第1の多孔質膜を構成する多孔質材料に含まれるポリイミド樹脂にフッ素原子を含む構成単位を含有させる方法、及び第1の多孔質膜を構成するポリイミド樹脂組成物に撥水性材料を含有させる方法が挙げられる。 In the first porous membrane, the method for making the contact angle of water on the main surface 100° or more is not particularly limited. Such methods include, for example, a method of adhering or bonding a water repellent agent to the main surface of the untreated porous membrane prepared by the above method, and a method of incorporating a water-repellent material into the polyimide resin composition constituting the first porous film.
 主面に撥水化剤を付着又は結合させる方法において使用される撥水化剤は、ポリイミド樹脂に付着又は結合可能であって、多孔質膜の主面の水の接触角を100°以上に高められる限り、特に限定されない。好ましい撥水化剤としては、シリコーン系撥水化剤と、フッ素系撥水化剤とが挙げられる。撥水化の効果の点で、フッ素系撥水化剤がより好ましい。 The water repellent agent used in the method of adhering or bonding the water repellent agent to the main surface is capable of adhering or bonding to the polyimide resin, and is capable of increasing the contact angle of water on the main surface of the porous membrane to 100° or more. It is not particularly limited as long as it can be increased. Preferred water repellent agents include silicone water repellent agents and fluorine-based water repellent agents. A fluorine-based water repellent agent is more preferable in terms of the water repellent effect.
 フッ素系撥水化剤としては、典型的には、含フッ素有機化合物そのもの、又は含フッ素有機化合物を含む液状組成物が用いられる。
 含フッ素有機化合物は、フッ素原子を含有する有機化合物であれば特に限定されない。含フッ素有機化合物は、低分子化合物であってもよく、オリゴマーやポリマーであってもよい。また、含フッ素有機化合物は、脂肪族化合物であっても、芳香族化合物であっても、脂肪族部分と芳香族部分とを含む化合物であってもよい。
As the fluorine-based water repellent agent, a fluorine-containing organic compound itself or a liquid composition containing a fluorine-containing organic compound is typically used.
The fluorine-containing organic compound is not particularly limited as long as it is an organic compound containing a fluorine atom. The fluorine-containing organic compound may be a low-molecular-weight compound, an oligomer, or a polymer. Moreover, the fluorine-containing organic compound may be an aliphatic compound, an aromatic compound, or a compound containing an aliphatic portion and an aromatic portion.
 含フッ素有機化合物の例としては、フルオロアルカン、フルオロアルカノール、ビスフルオロアルキルエーテル、フルオロアルキルアルキルエーテル、フッ素化脂肪族ケトン、フッ素化脂肪族カルボン酸、フッ素化脂肪族カルボン酸アルキルエステル、フッ素化脂肪族カルボン酸フルオロアルキルエステル、脂肪族カルボン酸フルオロアルキルエステル、フルオロアルキルベンゼンカルボン酸、フルオロアルキルベンゼンカルボン酸塩、フルオロアルキルベンゼンスルホン酸、及びフルオロアルキルベンゼンスルホン酸塩等が挙げられる。 Examples of fluorine-containing organic compounds include fluoroalkanes, fluoroalkanols, bisfluoroalkyl ethers, fluoroalkyl alkyl ethers, fluorinated aliphatic ketones, fluorinated aliphatic carboxylic acids, fluorinated aliphatic carboxylic acid alkyl esters, fluorinated fatty group carboxylic acid fluoroalkyl esters, aliphatic carboxylic acid fluoroalkyl esters, fluoroalkylbenzene carboxylic acids, fluoroalkylbenzene carboxylates, fluoroalkylbenzene sulfonic acids, fluoroalkylbenzene sulfonates, and the like.
 含フッ素シランカップリング剤も、含フッ素有機化合物として好適に使用される。含フッ素有機化合物で処理されていない多孔質膜の表面には、水酸基、アミノ基、カルボキシ基等の活性水素原子を含む官能基が存在することが多い。
 フッ素含有シランカップリング剤は、かかる活性水素原子を含む官能基と反応して結合可能である。
A fluorine-containing silane coupling agent is also suitably used as the fluorine-containing organic compound. Functional groups containing active hydrogen atoms such as hydroxyl groups, amino groups and carboxyl groups are often present on the surface of porous membranes that are not treated with a fluorine-containing organic compound.
A fluorine-containing silane coupling agent can react and bond with such functional groups containing active hydrogen atoms.
 フッ素含有シランカップリング剤としては、フッ素を含有する官能基を含むシランカップリング剤であれば特に限定されない。フッ素含有シランカップリング剤としては、フルオロアルキルトリアルコキシシラン、ジフルオロアルキルジアルコキシシラン、フルオロアルキルアルキルジアルコキシシラン、ビス(トリアルコキシシリル)フルオロアルカン、フルオロアルキルトリイソシアネートシラン、ビス(トリクロロシリル)フルオロアルカン、及びビス(トリイソシアネートシリル)フッ素化鎖状脂肪族化合物等が挙げられる。
 フッ素含有シランカップリング剤の好適な具体例としては、パーフルオロデシルトリメトキシシラン、パーフルオロデシルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、パーフルオロオクチルトリメトキシシラン、パーフルオロオクチルトリエトキシシラン、パーフルオロドデシルトリメトキシシラン、パーフルオロドデシルトリエトキシシラン、パーフルオロペンチルトリエトキシシラン、パーフルオロペンチルトリメトキシシラン、及び1H,1H,2H,2H-ヘプタデカフルオロデシルトリメトキシシラン等のフルオロアルキルアルコキシシラン;
1H,1H,2H,2H-ヘプタデカフルオロデシルトリイソシアネートシラン等のフルオロアルキルトリイソシアネートシラン;
1,6-ビス(トリクロロシリル)-2,5-ジトリフルオロメチル-2,3,3,4,4,5-ヘキサフルオロプロパン等のビス(トリクロロシリル)フルオロアルカン;
1,10-ビス(トリイソシアネートシリル)-1H,1H,2H,2H,9H,9H,10H,10H-ドデカフルオロデカン、1,8-ビス(トリイソシアネートシリル)-3,6-ジトリフルオロメチル-3,4,4,5,5,6-ヘキサフルオロオクタン、N,N’-ジ(2-トリイソシアネートシリルエチル)-1,8-ドデカフルオロオクタンニ酸ジアミド、1,4-ジ(2-トリイソシアネートシリルエトキシ)-1,4-ジトリフルオロメチルヘキサフルオロブタン、1,2-ジ(2-トリイソシアネートシリルエトキシ)テトラフルオロエタン、1,2-ジ(2-トリイソシアネートシリルエチルチオ)テトラフルオロエタン等のビス(トリイソシアネートシリル)フッ素化鎖状脂肪族化合物が挙げられる。
The fluorine-containing silane coupling agent is not particularly limited as long as it is a silane coupling agent containing a fluorine-containing functional group. Fluorine-containing silane coupling agents include fluoroalkyltrialkoxysilanes, difluoroalkyldialkoxysilanes, fluoroalkylalkyldialkoxysilanes, bis(trialkoxysilyl)fluoroalkanes, fluoroalkyltriisocyanatesilanes, and bis(trichlorosilyl)fluoroalkanes. , and bis(triisocyanatosilyl) fluorinated linear aliphatic compounds.
Preferred specific examples of fluorine-containing silane coupling agents include perfluorodecyltrimethoxysilane, perfluorodecyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, perfluorooctyltrimethoxysilane, perfluorooctyltrimethoxysilane, fluorooctyltriethoxysilane, perfluorododecyltrimethoxysilane, perfluorododecyltriethoxysilane, perfluoropentyltriethoxysilane, perfluoropentyltrimethoxysilane, and 1H,1H,2H,2H-heptadecafluorodecyltrimethoxysilane fluoroalkylalkoxysilanes such as
fluoroalkyl triisocyanate silanes such as 1H,1H,2H,2H-heptadecafluorodecyltriisocyanate silane;
bis(trichlorosilyl)fluoroalkanes such as 1,6-bis(trichlorosilyl)-2,5-ditrifluoromethyl-2,3,3,4,4,5-hexafluoropropane;
1,10-bis(triisocyanatosilyl)-1H,1H,2H,2H,9H,9H,10H,10H-dodecafluorodecane, 1,8-bis(triisocyanatosilyl)-3,6-ditrifluoromethyl- 3,4,4,5,5,6-hexafluorooctane, N,N'-di(2-triisocyanatosilylethyl)-1,8-dodecafluorooctane diamide, 1,4-di(2- triisocyanatosilylethoxy)-1,4-ditrifluoromethylhexafluorobutane, 1,2-di(2-triisocyanatosilylethoxy)tetrafluoroethane, 1,2-di(2-triisocyanatosilylethylthio)tetrafluoro Bis(triisocyanatosilyl) fluorinated linear aliphatic compounds such as ethane can be mentioned.
 フッ素樹脂も、含フッ素有機化合物として好適に使用される。フッ素樹脂の種類は特に限定されず、フッ素原子を含む種々の樹脂を用いることができる。
 好適なフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、ポリフッ化ビニリデン(PVDF)及びその共重合体、ポリフッ化ビニル(PVA)、及びエチレン/テトラフルオロエチレン共重合体(ETFE)等が挙げられる。これらの中では、耐摩耗性向上の点からポリフッ化ビニリデン(PVDF)及びその共重合体が好ましい。共重合体の場合、共重合させるモノマーとしては、テトラフロロエチレン、ヘキサフロロプロピレン、トリフロロエチレン、トリクロロエチレン、フッ化ビニル等が挙げられる。
 また、上述した含フッ素有機化合物そのもの、又は含フッ素有機化合物を含む液状組成物を用いて、特開平10-140144号公報に記載のように微粒子を調製し、調製された微粒子をブラスト装置等により大気中で多孔質膜に衝突させることにより、撥水化処理を行ってもよい。
A fluororesin is also suitably used as the fluorine-containing organic compound. The type of fluororesin is not particularly limited, and various resins containing fluorine atoms can be used.
Suitable fluororesins include, for example, polytetrafluoroethylene (PTFE), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), tetrafluoroethylene/perfluoro(alkyl vinyl ether) copolymer (PFA), polyfluoride Examples include vinylidene (PVDF) and its copolymer, polyvinyl fluoride (PVA), and ethylene/tetrafluoroethylene copolymer (ETFE). Among these, polyvinylidene fluoride (PVDF) and its copolymer are preferable from the viewpoint of improving wear resistance. In the case of a copolymer, monomers to be copolymerized include tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, vinyl fluoride and the like.
Further, fine particles are prepared as described in JP-A-10-140144 using the fluorine-containing organic compound itself or a liquid composition containing the fluorine-containing organic compound, and the prepared fine particles are subjected to a blasting apparatus or the like. The water-repellent treatment may be performed by colliding against the porous membrane in the atmosphere.
 以上説明した、撥水化剤を多孔質膜の主面に接触させることにより、主面に、撥水化剤に含まれる含フッ素有機化合物のような撥水化成分が付着又は結合する。
 主面に対する撥水化成分の付着量又は結合量を調整することにより、主面の水の接触角を調整できる。撥水化成分の付着量又は結合量は、主面と撥水化剤の接触時間を調整したり、撥水化剤における撥水化成分の濃度を調整したりすることにより調整できる。
By bringing the above-described water repellent agent into contact with the main surface of the porous film, a water repellent component such as a fluorine-containing organic compound contained in the water repellent agent adheres or bonds to the main surface.
The contact angle of water on the main surface can be adjusted by adjusting the adhesion amount or bonding amount of the water repellent component to the main surface. The amount of adhesion or bonding of the water repellent component can be adjusted by adjusting the contact time between the main surface and the water repellent agent or by adjusting the concentration of the water repellent component in the water repellent agent.
 第1の多孔質膜を構成する多孔質材料に含まれるポリイミド樹脂にフッ素原子を含む構成単位を含有させる方法では、前述のフッ素原子を含むテトラカルボン酸二無水物、及び前述のフッ素原子を含むジアミンの少なくとも一方を用いて調製されたポリイミド樹脂を用いる。 In the method of including structural units containing a fluorine atom in the polyimide resin contained in the porous material constituting the first porous film, the above-mentioned tetracarboxylic dianhydride containing a fluorine atom and the above-mentioned fluorine atom-containing A polyimide resin prepared using at least one of diamines is used.
 ポリイミド樹脂における、前述のフッ素原子を含むテトラカルボン酸二無水物に由来する構成単位の量と、前述のフッ素原子を含むジアミンに由来する構成単位の量とは、第1の多孔質膜の主面の水の接触角が所望の値である限り特に限定されない。
 一般的に、多孔質膜の主面におけるフッ素原子量が多いほど、水の接触角が高まる傾向がある。このため、ポリイミド樹脂の製造に使用される単量体における、フッ素原子を含む単量体の比率を調整したり、単量体中のフッ素原子含有量を調整したりすることにより、多孔質膜の主面の水の接触角を調整できる。
In the polyimide resin, the amount of structural units derived from the above-mentioned tetracarboxylic dianhydride containing a fluorine atom and the amount of the structural units derived from the above-mentioned diamine containing a fluorine atom are the main components of the first porous film. There is no particular limitation as long as the contact angle of water on the surface is a desired value.
Generally, the contact angle of water tends to increase as the amount of fluorine atoms on the main surface of the porous membrane increases. Therefore, by adjusting the ratio of the fluorine atom-containing monomer in the monomer used for the production of the polyimide resin, or by adjusting the fluorine atom content in the monomer, the porous membrane can adjust the contact angle of water on the main surface of
 第1の多孔質膜を構成するポリイミド樹脂組成物に撥水性材料を含有させる方法では、例えば、多孔質膜を形成する際に、多孔質膜製造用組成物に撥水性材料を含有させる方法が採用される。 In the method of including a water-repellent material in the polyimide resin composition that constitutes the first porous film, for example, a method of including a water-repellent material in the composition for producing a porous film when forming the porous film. Adopted.
 撥水性材料としては、撥水化剤について前述した成分を使用し得る。前述の通り、多孔質膜を形成する際に、未焼成複合膜が高温で焼成される。このため、耐熱性の点で、撥水性材料としては、前述のフッ素樹脂が好ましい。フッ素樹脂の形態は特に限定されない。ポリイミド樹脂組成物中にフッ素樹脂を均一に分散させやすい点で、フッ素樹脂粒子が、多孔質膜製造用組成物に添加されるのが好ましい。 As the water-repellent material, the components described above for the water-repellent agent can be used. As mentioned above, the green composite membrane is fired at a high temperature in forming the porous membrane. For this reason, the aforementioned fluororesin is preferable as the water-repellent material in terms of heat resistance. The form of the fluororesin is not particularly limited. The fluororesin particles are preferably added to the porous film-producing composition in order to facilitate uniform dispersion of the fluororesin in the polyimide resin composition.
 フッ素樹脂粒子の粒子径は、均一に分散したフッ素樹脂粒子を含むポリアミド樹脂組成物からなる多孔質膜を形成できる限り特に限定されない。フッ素樹脂粒子の体積平均粒径は、10nm以上1000nm以下が好ましく、50nm以上700nm以下がより好ましく、100nm以上500nm以下がさらに好ましい。 The particle size of the fluororesin particles is not particularly limited as long as a porous film comprising a polyamide resin composition containing uniformly dispersed fluororesin particles can be formed. The volume average particle diameter of the fluororesin particles is preferably 10 nm or more and 1000 nm or less, more preferably 50 nm or more and 700 nm or less, and even more preferably 100 nm or more and 500 nm or less.
 第1の多孔質膜において、水の接触角が100°以上である主面におけるフッ素原子の量は、5atm%以上が好ましく、10atm%以上がより好ましく、20atm%以上がさらに好ましく、30atm%以上が特に好ましい。
 主面におけるフッ素原子の量の上限は、水の接触角が100°以上である限り特に限定されない。フッ素原子の量の上限は、例えば、68atm%以下であり、50atm%以下であってもよい。
In the first porous membrane, the amount of fluorine atoms on the main surface having a water contact angle of 100° or more is preferably 5 atm% or more, more preferably 10 atm% or more, further preferably 20 atm% or more, and 30 atm% or more. is particularly preferred.
The upper limit of the amount of fluorine atoms on the main surface is not particularly limited as long as the contact angle of water is 100° or more. The upper limit of the amount of fluorine atoms is, for example, 68 atm % or less, and may be 50 atm % or less.
 主面におけるフッ素原子の量は、フッ素系撥水化剤の使用量、ポリイミド樹脂を調整する際のフッ素原子を含む単量体の使用量の調整や、フッ素原子を含む単量体におけるフッ素原子の含有量の調整や、ポリイミド樹脂組成物へのフッ素原子を含む撥水化剤の添加量の調整等によって調整できる。 The amount of fluorine atoms on the main surface is determined by adjusting the amount of fluorine-based water repellent agent used, adjusting the amount of monomers containing fluorine atoms when preparing polyimide resin, and adjusting the amount of fluorine atoms in monomers containing fluorine atoms. can be adjusted by adjusting the content of the polyimide resin composition or by adjusting the amount of the fluorine atom-containing water repellent agent added to the polyimide resin composition.
 多孔質膜の主面におけるフッ素原子の量は、X線光電子分光法により測定できる。 The amount of fluorine atoms on the main surface of the porous film can be measured by X-ray photoelectron spectroscopy.
 優れた気体の通過速度と、多孔質膜の強度との両立の点で、多孔質膜において、
 空隙率が60%以上であり、
 水の接触角が100°以上である主面における開口の平均直径が50nm以上3000nm以下であり、
 膜厚が30μm以上であるのが好ましい。
In terms of achieving both excellent gas passage speed and strength of the porous membrane,
The porosity is 60% or more,
The average diameter of the openings on the main surface where the contact angle of water is 100° or more is 50 nm or more and 3000 nm or less,
It is preferable that the film thickness is 30 μm or more.
 また、第1の多孔質膜の破断時の応力は、10MPa以上が好ましく、15MPa以上がより好ましく、20MPa以上がさらに好ましい。第1の多孔質膜の破断伸度は、5%GL以上が好ましく、10%GL以上がより好ましく、15%GL以上がさらに好ましく、20%GL以上が特に好ましい。 In addition, the stress at breakage of the first porous membrane is preferably 10 MPa or more, more preferably 15 MPa or more, and even more preferably 20 MPa or more. The elongation at break of the first porous membrane is preferably 5% GL or more, more preferably 10% GL or more, still more preferably 15% GL or more, and particularly preferably 20% GL or more.
<第2の多孔質膜>
 第2の多孔質膜は、前述したポリイミド多孔質膜であって、少なくとも一方の主面において、フッ素原子の量が5atm%以上である。
 第2の多孔質膜において、少なくとも一方の主面のフッ素原子の量が上記の量であると、多孔質膜が優れた気体の通過速度を示す。
 主面におけるフッ素原子の量は、5atm%以上が好ましく、10atm%以上がより好ましく、20atm%以上がさらに好ましく、30atm%以上が特に好ましい。
 主面におけるフッ素原子の量の上限は、例えば、68atm%以下であり、50atm%以下であってもよい。
<Second porous membrane>
The second porous film is the polyimide porous film described above, and has a fluorine atom content of 5 atm % or more on at least one main surface.
In the second porous membrane, when the amount of fluorine atoms on at least one main surface is within the above range, the porous membrane exhibits an excellent gas passage rate.
The amount of fluorine atoms in the main surface is preferably 5 atm % or more, more preferably 10 atm % or more, still more preferably 20 atm % or more, and particularly preferably 30 atm % or more.
The upper limit of the amount of fluorine atoms in the main surface is, for example, 68 atm % or less, and may be 50 atm % or less.
 主面におけるフッ素原子の量は、第1の多孔質膜について説明した方法と同様の方法により調整される。 The amount of fluorine atoms on the main surface is adjusted by a method similar to the method described for the first porous film.
 優れた気体の通過速度と、多孔質膜の強度との両立の点で、多孔質膜において、
 空隙率が60%以上であり、
 フッ素原子の量が5atm%以上である主面における開口の平均直径が50nm以上3000nm以下であり、
 膜厚が30μm以上であるのが好ましい。
In terms of achieving both excellent gas passage speed and strength of the porous membrane,
The porosity is 60% or more,
The average diameter of the openings in the main surface where the amount of fluorine atoms is 5 atm % or more is 50 nm or more and 3000 nm or less,
It is preferable that the film thickness is 30 μm or more.
 また、第2の多孔質膜の破断時の応力は、10MPa以上が好ましく、15MPa以上がより好ましく、20MPa以上がさらに好ましい。第2の多孔質膜の破断伸度は、5%GL以上が好ましく、10%GL以上がより好ましく、15%GL以上がさらに好ましく、20%GL以上が特に好ましい。 In addition, the stress when the second porous membrane breaks is preferably 10 MPa or more, more preferably 15 MPa or more, and even more preferably 20 MPa or more. The elongation at break of the second porous membrane is preferably 5% GL or more, more preferably 10% GL or more, still more preferably 15% GL or more, and particularly preferably 20% GL or more.
 以下、実施例を示して本発明をさらに具体的に説明する。本発明の範囲は、下記の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples. The scope of the invention is not limited to the examples below.
〔実施例1〕
 シリカ微粒子70質量部と、分散剤としてノニオン界面活性剤0.35質量部と、ジメチルアセトアミド70質量部とを含むスラリーAを容量200mLの容器中で、撹拌羽により400rpmで15分撹拌した。その後、撹拌後のスラリーAに対して、分散装置(吉田機械興業株式会社製、NVL-S008)を用いて、200MPaにて、分散処理を5回行った。シリカ微粒子としては、平均粒子径300nmのシリカを用いた。
[Example 1]
Slurry A containing 70 parts by mass of fine silica particles, 0.35 parts by mass of a nonionic surfactant as a dispersant, and 70 parts by mass of dimethylacetamide was stirred in a 200 mL vessel at 400 rpm for 15 minutes with a stirring blade. Thereafter, the slurry A after stirring was subjected to dispersion treatment five times at 200 MPa using a dispersion device (NVL-S008, manufactured by Yoshida Kikai Kogyo Co., Ltd.). Silica having an average particle diameter of 300 nm was used as the silica fine particles.
 分散処理後のスラリーAと、ポリアミド酸30質量部とを混合して、スラリーBを得た。なお、ポリアミド酸は、固形分濃度20質量%のジメチルアセトアミド溶液として用いた。また、ポリアミド酸としては、2、2-ビス(3、4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(以下6FDA)と、2、2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(以下HFBAPP))とを等モルで重合させた重合体を用いた。
 スラリーBは、ジメチルアセトアミドとガンマブチロラクトンとを固形分濃度が29質量%であるように含んだ。スラリーBにおける、ジメチルアセトアミドとガンマブチロラクトンとの質量比は、ジメチルアセトアミド:ガンマブチロラクトンとして90:10であった。
Slurry A after dispersion treatment and 30 parts by mass of polyamic acid were mixed to obtain slurry B. Polyamic acid was used as a dimethylacetamide solution with a solid concentration of 20% by mass. Further, as the polyamic acid, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (hereinafter referred to as 6FDA) and 2,2-bis[4-(4-aminophenoxy)phenyl]hexa A polymer obtained by polymerizing equimolar fluoropropane (hereinafter referred to as HFBAPP) was used.
Slurry B contained dimethylacetamide and gamma-butyrolactone at a solids concentration of 29% by weight. The mass ratio of dimethylacetamide and gamma-butyrolactone in slurry B was 90:10 as dimethylacetamide:gamma-butyrolactone.
 得られたスラリーBを、容量200mLの容器中で、撹拌羽により400rpmで30分撹拌して分散させ多孔質膜製造用組成物を調製した。多孔質膜製造用組成物をPETフィルム上に塗布した後、90℃で300秒間加熱して溶剤を除去して膜厚約40μmの塗布膜を形成した。 The resulting slurry B was dispersed in a container with a capacity of 200 mL by stirring with a stirring blade at 400 rpm for 30 minutes to prepare a composition for producing a porous film. After coating the composition for producing a porous film on a PET film, the film was heated at 90° C. for 300 seconds to remove the solvent and form a coating film having a thickness of about 40 μm.
 形成された塗布膜を、380℃で15分間加熱処理(焼成)することにより、イミド化させ、ポリイミド樹脂-微粒子複合膜を得た。得られたポリイミド樹脂-微粒子複合膜について、10%HF溶液中に10分間浸漬することで、膜中に含まれるシリカ微粒子を除去した。シリカ微粒子の除去後、水洗及び乾燥を行い、多孔質膜を得た。 The formed coating film was imidized by heat treatment (baking) at 380° C. for 15 minutes to obtain a polyimide resin-fine particle composite film. The resulting polyimide resin-fine particle composite film was immersed in a 10% HF solution for 10 minutes to remove silica fine particles contained in the film. After removing the silica fine particles, the porous film was obtained by washing with water and drying.
〔比較例1〕
 ポリアミド酸を、ピロメリット酸無水物(以下PMDA)と4,4’-ジアミノジフェニルエーテル(以下ODA)とを等モルで重合させた重合体に変えることの他は、実施例1と同様にして多孔質膜を得た。
[Comparative Example 1]
A porous polymer was prepared in the same manner as in Example 1, except that the polyamic acid was changed to a polymer obtained by polymerizing pyromellitic anhydride (hereinafter PMDA) and 4,4′-diaminodiphenyl ether (hereinafter ODA) in equimolar amounts. A membrane was obtained.
〔実施例2〕
 ポリアミド酸の使用量を30質量から25質量部に変えることと、ポリアミド酸とともに、平均粒子径300nmのポリテトラフルオロエチレン(PTFE)の微粒子5質量部を加えることとの他は、比較例1におけるスラリーBの調製方法と同様の方法によりスラリーDを得た。PTFEの微粒子は、固形分濃度として40質量%のPTFEの微粒子がN-メチル-2-ピロリドン中に分散した分散液として用いた。
 スラリーDにおける、ジメチルアセトアミドとガンマブチロラクトンとN-メチル-2-ピロリドンとの質量比は、ジメチルアセトアミド:ガンマブチロラクトン:N-メチル-2-ピロリドンとして87:10:3であった。
 スラリーBをスラリーDに変えることの他は、比較例1と同様にして多孔質膜を得た。
[Example 2]
Except for changing the amount of polyamic acid used from 30 parts by mass to 25 parts by mass and adding 5 parts by mass of fine particles of polytetrafluoroethylene (PTFE) having an average particle size of 300 nm together with the polyamic acid, in Comparative Example 1 A slurry D was obtained in the same manner as the slurry B preparation method. The PTFE microparticles were used as a dispersion liquid in which PTFE microparticles having a solid concentration of 40% by mass were dispersed in N-methyl-2-pyrrolidone.
The mass ratio of dimethylacetamide, gamma-butyrolactone and N-methyl-2-pyrrolidone in Slurry D was 87:10:3 as dimethylacetamide:gamma-butyrolactone:N-methyl-2-pyrrolidone.
A porous membrane was obtained in the same manner as in Comparative Example 1, except that slurry B was changed to slurry D.
〔実施例3〕
 比較例1と同様の方法で得られた多孔質膜を、アルカリ性のエッチング液に180秒間浸漬してポリイミド樹脂の表面の一部を除去することで、ケミカルエッチングを行った。具体的には、濃度10質量%のイソプロパノール水溶液に多孔質膜を浸漬してプリウェットを行った後に、濃度1.00質量%のテトラメチルアンモニウムヒドロキシド(TMAH)水溶液に多孔質膜を浸漬させ、次いで多孔質膜を水洗及び乾燥することによりケミカルエッチングを行った。
 ケミカルエッチングされた多孔質膜を、再度380℃で10分間加熱処理(焼成)することにより、アルカリにより開環した部分を再びイミド化させて多孔質膜を得た。得られた多孔質膜の主面に、フッ素樹脂を含む撥水化剤(アドロン(登録商標)L-4614CR、フロロコート社製)を用いて、フッ素樹脂を付着させる撥水化処理を行い、多孔質膜を得た。
[Example 3]
Chemical etching was performed by immersing the porous film obtained in the same manner as in Comparative Example 1 in an alkaline etching solution for 180 seconds to partially remove the surface of the polyimide resin. Specifically, after pre-wetting the porous membrane by immersing it in an isopropanol aqueous solution with a concentration of 10% by mass, the porous membrane is immersed in an aqueous tetramethylammonium hydroxide (TMAH) solution with a concentration of 1.00% by mass. Then, chemical etching was performed by washing and drying the porous membrane.
The chemically etched porous film was again heat-treated (baked) at 380° C. for 10 minutes to re-imidize the ring-opened portion with alkali to obtain a porous film. The main surface of the obtained porous film is subjected to a water-repellent treatment to attach the fluororesin using a water repellent agent containing fluororesin (Adlon (registered trademark) L-4614CR, manufactured by Fluorocoat). A porous membrane was obtained.
〔比較例2〕
 比較例1と同様の方法で得た多孔質膜を、ポリフッ化ビニリデンの濃度0.25質量%のN-メチル-2-ピロリドン溶液に1分間浸漬させた後に、多孔質膜を100℃5分で乾燥して主面にポリフッ化ビニリデンが付着した多孔質膜を得た。
[Comparative Example 2]
A porous membrane obtained in the same manner as in Comparative Example 1 was immersed in an N-methyl-2-pyrrolidone solution having a polyvinylidene fluoride concentration of 0.25% by mass for 1 minute, and then the porous membrane was heated at 100° C. for 5 minutes. to obtain a porous membrane having polyvinylidene fluoride attached to its main surface.
 以上のようにして得られた、実施例1~3、比較例1、及び比較例2の多孔質膜について、透気度、水の接触角(静的接触角、及び動的接触角)、破断時の応力、破断伸度、及び主面のフッ素原子含有量を測定した。透気度、破断時の応力、破断伸度、及び主面のフッ素原子含有量については、以下の方法に従い測定した。水の接触角については、前述の方法により測定した。水の接触角について、空気側の面は、多孔質膜の作製時に、PETフィルムに接していなかった面であり、基材側の面は、多孔質膜の作製時に、PETフィルムに接していた面である。これらの測定結果を、表1に記す Regarding the porous membranes of Examples 1 to 3, Comparative Example 1, and Comparative Example 2 obtained as described above, the air permeability, the contact angle of water (static contact angle and dynamic contact angle), The stress at break, elongation at break, and fluorine atom content on the main surface were measured. The air permeability, stress at break, elongation at break, and fluorine atom content on the main surface were measured according to the following methods. The contact angle of water was measured by the method described above. Regarding the contact angle of water, the surface on the air side was the surface that was not in contact with the PET film when the porous membrane was produced, and the surface on the substrate side was in contact with the PET film when the porous membrane was produced. It is the surface. These measurement results are shown in Table 1.
<透気度の測定>
 5cm×5cmのサイズの多孔質膜のサンプルを用い、ガーレー式デンソメーター(東洋精機製)を用いて、JIS P 8117に準じて、100mLの空気が上記サンプルを通過する時間を測定した。透気度の値が小さいほど、100mLの空気の通過時間が短いことを意味し、サンプルの気体の通過速度が速い。
<Measurement of air permeability>
Using a porous membrane sample with a size of 5 cm×5 cm, the time required for 100 mL of air to pass through the sample was measured according to JIS P 8117 using a Gurley densometer (manufactured by Toyo Seiki Co., Ltd.). The smaller the air permeability value, the shorter the passage time of 100 mL of air, and the higher the gas passage speed of the sample.
<破断時の応力、及び破断伸度の測定>
 3cm×3mmのサイズの短冊状の多孔質膜のサンプルを用いた。サンプルの破断時の応力(MPa;引張強度)及び破断伸度(%GL)を、EZ Test((株)島津製作所社製)を用いて評価した。
<Measurement of stress at break and elongation at break>
A strip-shaped porous membrane sample with a size of 3 cm×3 mm was used. The stress at break (MPa; tensile strength) and elongation at break (%GL) of the sample were evaluated using EZ Test (manufactured by Shimadzu Corporation).
<主面のフッ素原子量の測定> <Measurement of Fluorine Atomic Weight on Main Surface>
 K-アルファ(登録商標)XPSシステム(サーモフィッシャーサイエンティフィック社製)を用いて、多孔質膜のサンプルの主面におけるフッ素原子量を測定した。
Figure JPOXMLDOC01-appb-T000003
A K-Alpha (registered trademark) XPS system (manufactured by Thermo Fisher Scientific) was used to measure the fluorine atomic weight on the main surface of the sample of the porous membrane.
Figure JPOXMLDOC01-appb-T000003
 実施例1~3によれば、多孔質膜の少なくとも一方の主面において、水の接触角が100°以上であるか、フッ素原子の量が5atm%以上である場合、多孔質膜の気体の通過速度が優れることが分かる。
 他方、比較例1及び2によれば、多孔質膜の主面において、水の接触角が100°未満であるか、フッ素原子の量が5atm%未満である場合、多孔質膜の気体の通過速度が劣ることが分かる。
According to Examples 1 to 3, when the contact angle of water on at least one main surface of the porous membrane is 100° or more, or the amount of fluorine atoms is 5 atm% or more, the gas of the porous membrane It can be seen that the passing speed is excellent.
On the other hand, according to Comparative Examples 1 and 2, when the contact angle of water is less than 100° or the amount of fluorine atoms is less than 5 atm % on the main surface of the porous membrane, the passage of gas through the porous membrane It can be seen that the speed is inferior.

Claims (11)

  1.  ポリイミド樹脂、又はポリイミド樹脂を含有するポリイミド樹脂組成物からなる多孔質材料からなり、
     前記多孔質材料が通気性を有し、
     少なくとも一方の主面において、水の接触角が100°以上である、ポリイミド多孔質膜。
    Made of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin,
    The porous material has air permeability,
    A polyimide porous membrane having a water contact angle of 100° or more on at least one main surface.
  2.  少なくとも一方の主面において、水の接触角が100°以上であり、且つ水の動的接触角が30°以上である、請求項1に記載のポリイミド多孔質膜。 The porous polyimide membrane according to claim 1, wherein the contact angle of water is 100° or more and the dynamic contact angle of water is 30° or more on at least one main surface.
  3.  前記水の接触角が100°以上である前記主面に含フッ素有機化合物が付着又は結合している、請求項1又は2に記載のポリイミド多孔質膜。 3. The polyimide porous membrane according to claim 1 or 2, wherein a fluorine-containing organic compound is adhered or bonded to the main surface having a water contact angle of 100° or more.
  4.  前記ポリイミド樹脂が、フッ素原子を含む構成単位を含む、請求項1又は2に記載のポリイミド多孔質膜。 The polyimide porous membrane according to claim 1 or 2, wherein the polyimide resin contains structural units containing fluorine atoms.
  5.  前記多孔質材料がポリイミド樹脂組成物からなり、前記ポリイミド樹脂組成物がフッ素樹脂を含む、請求項1又は2に記載のポリイミド多孔質膜。 The polyimide porous membrane according to claim 1 or 2, wherein the porous material comprises a polyimide resin composition, and the polyimide resin composition contains a fluororesin.
  6.  前記水の接触角が100°以上である前記主面におけるフッ素原子の量が、5atm%以上である、請求項4又は5に記載のポリイミド多孔質膜。 The polyimide porous membrane according to claim 4 or 5, wherein the amount of fluorine atoms on the main surface having a water contact angle of 100° or more is 5 atm% or more.
  7.  空隙率が60%以上であり、
     前記水の接触角が100°以上である前記主面における開口の平均直径が50nm以上3000nm以下であり、
     膜厚が30μm以上である、請求項1~6のいずれか1項に記載のポリイミド多孔質膜。
    The porosity is 60% or more,
    The average diameter of the openings on the main surface where the water contact angle is 100° or more is 50 nm or more and 3000 nm or less,
    The polyimide porous membrane according to any one of claims 1 to 6, which has a thickness of 30 µm or more.
  8.  ポリイミド樹脂、又はポリイミド樹脂を含有するポリイミド樹脂組成物からなる多孔質材料からなり、
     前記多孔質材料が通気性を有し、
     少なくとも一方の主面において、フッ素原子の量が5atm%以上である、ポリイミド多孔質膜。
    Made of a porous material made of a polyimide resin or a polyimide resin composition containing a polyimide resin,
    The porous material has air permeability,
    A polyimide porous membrane having a fluorine atom content of 5 atm % or more on at least one main surface.
  9.  空隙率が60%以上であり、
     前記フッ素原子の量が5atm%以上である前記主面における開口の平均直径が50nm以上3000nm以下であり、
     膜厚が30μm以上である、請求項8に記載のポリイミド多孔質膜。
    The porosity is 60% or more,
    The average diameter of the openings in the main surface where the amount of fluorine atoms is 5 atm % or more is 50 nm or more and 3000 nm or less,
    9. The polyimide porous membrane according to claim 8, which has a thickness of 30 μm or more.
  10.  破断時の応力が、10MPa以上である、請求項7又は9に記載のポリイミド多孔質膜。 The polyimide porous membrane according to claim 7 or 9, which has a stress at break of 10 MPa or more.
  11.  破断伸度が、5%GL以上である、請求項7又は9に記載のポリイミド多孔質膜。 The polyimide porous membrane according to claim 7 or 9, which has a breaking elongation of 5% GL or more.
PCT/JP2022/015189 2021-04-28 2022-03-28 Porous polyimide film WO2022230546A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237028683A KR20230174209A (en) 2021-04-28 2022-03-28 Polyimide porous membrane
CN202280030410.3A CN117202984A (en) 2021-04-28 2022-03-28 Polyimide porous film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021076284A JP2022170261A (en) 2021-04-28 2021-04-28 Porous polyimide film
JP2021-076284 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022230546A1 true WO2022230546A1 (en) 2022-11-03

Family

ID=83848059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015189 WO2022230546A1 (en) 2021-04-28 2022-03-28 Porous polyimide film

Country Status (4)

Country Link
JP (1) JP2022170261A (en)
KR (1) KR20230174209A (en)
CN (1) CN117202984A (en)
WO (1) WO2022230546A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852332A (en) * 1994-06-08 1996-02-27 Nitto Denko Corp Composite gas separation membrane and production thereof
JPH119974A (en) * 1997-06-19 1999-01-19 Nitto Denko Corp Composite hollow-yarn membrane for external pressure gas separation and method for producing the same
JP2012115778A (en) * 2010-12-01 2012-06-21 Asahi Kasei Chemicals Corp Method of obtaining purified water, and apparatus for the same
JP2017127992A (en) * 2016-01-18 2017-07-27 東京応化工業株式会社 Porous film
JP2018114491A (en) * 2017-01-16 2018-07-26 セントラル硝子株式会社 Gas separation membrane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605566B2 (en) 2010-11-18 2014-10-15 公立大学法人首都大学東京 Method for producing porous polyimide membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852332A (en) * 1994-06-08 1996-02-27 Nitto Denko Corp Composite gas separation membrane and production thereof
JPH119974A (en) * 1997-06-19 1999-01-19 Nitto Denko Corp Composite hollow-yarn membrane for external pressure gas separation and method for producing the same
JP2012115778A (en) * 2010-12-01 2012-06-21 Asahi Kasei Chemicals Corp Method of obtaining purified water, and apparatus for the same
JP2017127992A (en) * 2016-01-18 2017-07-27 東京応化工業株式会社 Porous film
JP2018114491A (en) * 2017-01-16 2018-07-26 セントラル硝子株式会社 Gas separation membrane

Also Published As

Publication number Publication date
JP2022170261A (en) 2022-11-10
CN117202984A (en) 2023-12-08
KR20230174209A (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP6426209B2 (en) Polyimide and / or polyamide imide porous body and method for producing the same, method for producing the same, method for performing separation and / or adsorption, separating material, adsorbent, filter media, laminate, and filter device
JP6999764B2 (en) Liquid purification method, chemical or cleaning solution manufacturing method, filter media, and filter device
JP6807317B2 (en) Method for manufacturing a porous membrane
US11713383B2 (en) Method for producing porous film, method for producing composition for producing porous film, and porous film
JP6883393B2 (en) Polyimide-based resin film cleaning solution, method for cleaning polyimide-based resin film, method for manufacturing polyimide film, method for manufacturing filter, filter media or filter device, and method for manufacturing chemical solution for lithography
US10155185B2 (en) Polyimide-based resin film cleaning liquid, method for cleaning polyimide-based resin film, method for producing polyimide coating, method for producing filter, filter medium, or filter device, and method for producing chemical solution for lithography
WO2022230546A1 (en) Porous polyimide film
JP7119147B2 (en) Method for purifying liquid and method for producing porous membrane
CN117839447A (en) Porous film
JP2022190407A (en) Polyimide porous membrane and method for producing the same
WO2016136673A1 (en) Method for purifying liquid, method for producing chemical solution or cleaning solution, filter medium, and filter device
JP2024030266A (en) porous membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22795463

Country of ref document: EP

Kind code of ref document: A1