WO2024062850A1 - Optical film, method for producing optical film, polarizing plate, and image display device - Google Patents

Optical film, method for producing optical film, polarizing plate, and image display device Download PDF

Info

Publication number
WO2024062850A1
WO2024062850A1 PCT/JP2023/031117 JP2023031117W WO2024062850A1 WO 2024062850 A1 WO2024062850 A1 WO 2024062850A1 JP 2023031117 W JP2023031117 W JP 2023031117W WO 2024062850 A1 WO2024062850 A1 WO 2024062850A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optical film
optically anisotropic
anisotropic layer
liquid crystal
Prior art date
Application number
PCT/JP2023/031117
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 福島
智則 三村
慎平 吉田
勇太 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024062850A1 publication Critical patent/WO2024062850A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optical film, a method for manufacturing an optical film, a polarizing plate, and an image display device.
  • Optical films such as optical compensatory sheets and retardation films are used in various image display devices to eliminate image coloration or expand viewing angles.
  • a stretched birefringent film has been used as an optical film, but in recent years, it has been proposed to use an optical film having an optically anisotropic layer made of a liquid crystal compound instead of the stretched birefringent film.
  • Patent Document 1 describes an embodiment in which an optically anisotropic layer is formed on an alignment film formed using a coating liquid containing polyvinyl alcohol having a specific group ([Claim 1] [ Claim 2] [Example]).
  • the present inventors applied a rubbing treatment to the support (base material) and created an optical structure in which the support and the optically anisotropic layer were adjacent to each other without using an alignment film.
  • a rubbing treatment to the support (base material) and created an optical structure in which the support and the optically anisotropic layer were adjacent to each other without using an alignment film.
  • an object of the present invention is to provide an optical film in which the orientation of a liquid crystal compound in an optically anisotropic layer is improved and the occurrence of bright spot defects is suppressed.
  • Another object of the present invention is to provide a method for manufacturing an optical film, a polarizing plate, and an image display device.
  • the present inventors found that by using a support containing a surfactant having a hydrophilic group and a specific hydrophobic group, the liquid crystal compound in the optically anisotropic layer can be improved.
  • the present inventors have discovered that the orientation of the optical film can be improved and the occurrence of bright spot defects in optical films can be suppressed, and the present invention has been completed. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • An optical film having a support and an optically anisotropic layer adjacent to each other The optically anisotropic layer is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound, the support contains a surfactant having a hydrophilic group and a hydrophobic group,
  • the optically anisotropic layer is a layer in which the orientation state of the polymerizable liquid crystal compound is fixed, The optical film according to [1], wherein the orientation state is homogeneous orientation or twisted orientation.
  • the optical film according to [1] or [2], wherein the support is a cellulose acylate film.
  • the hydrophilic group possessed by the surfactant is an anionic hydrophilic group.
  • a method for producing an optical film comprising: [9] The method for producing an optical film according to [8], wherein the support preparation step includes a step of casting a dope containing the surfactant according to [1]. [10] The optical film according to [8] or [9], wherein the support preparation step includes a step of impregnating the surface of the polymer film with the composition containing the surfactant and solvent according to [1].
  • a polarizing plate comprising the optical film according to any one of [1] to [7] and a polarizer.
  • An image display device comprising the optical film according to any one of [1] to [7].
  • the image display device according to [12] which is a liquid crystal display device.
  • an optical film in which the alignment of the liquid crystal compound in the optically anisotropic layer is excellent and the occurrence of bright spot defects is suppressed. Furthermore, according to the present invention, it is possible to provide a method for producing an optical film, a polarizing plate, and an image display device.
  • each component may be used alone or in combination of two or more substances corresponding to each component.
  • the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
  • (meth)acrylate is a notation representing “acrylate” or “methacrylate”
  • (meth)acrylic is a notation representing “acrylic” or “methacrylic”
  • (meth)acryloyl is a notation representing "acryloyl” or “methacryloyl”.
  • the optical film of the present invention has a support and an optically anisotropic layer adjacent to each other.
  • the optically anisotropic layer included in the optical film of the present invention is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound.
  • the support of the optical film of the present invention contains a surfactant having a hydrophilic group and a hydrophobic group, and the hydrophobic group of the surfactant has 5 to 29 carbon atoms. It is at least one group selected from the group consisting of an alkyl group, a silicon-containing group, and a fluorine-containing group (hereinafter also abbreviated as "specific hydrophobic group").
  • the surfactant having a hydrophilic group and a specific hydrophobic group is also abbreviated as "specific surfactant.”
  • the present invention as described above, by using a support containing a specific surfactant, the orientation of the liquid crystal compound in the optically anisotropic layer is improved, and the occurrence of bright spot defects in the optical film is suppressed. can.
  • the reason why these effects occur is not clear in detail, but the present inventors speculate as follows.
  • the friction between the pile of the rubbing cloth used when rubbing the support and the support is reduced, and the amount of dust generated from the support is reduced. It is thought that the occurrence of bright spot defects could be suppressed because the bright spot defects could be reduced.
  • the specific surfactant since the specific surfactant has a specific hydrophobic group, compatibility with the main component of the support is maintained, and while the specific surfactant is uniformly present on the support surface, Since the surface is not completely covered with the specific surfactant and can be left in a moderately exposed state, the orientation of the liquid crystal compound in the optically anisotropic layer formed on the support is improved. It is thought that Hereinafter, the alignment film and the optically anisotropic layer included in the optical film of the present invention will be explained in detail.
  • the support possessed by the optical film of the present invention is a support containing a specific surfactant.
  • the support refers to a base material containing the components of the support, and for example, when forming the optically anisotropic layer described later, some of the components of the optically anisotropic layer are When the mixture penetrates into the support and forms a mixed layer of the components of the support and the components of the optically anisotropic layer, the mixed layer is a layer included in the support.
  • the type of support is not particularly limited, and any known support can be used.
  • a transparent support is preferred.
  • the transparent support is intended to be a support having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
  • a polymer film is preferred as the support.
  • polymer films include cellulose acylate films (e.g., cellulose triacetate films, cellulose diacetate films, cellulose acetate butyrate films, cellulose acetate propionate films), polyacrylic resin films such as polymethyl methacrylate, polyethylene, polypropylene, etc.
  • polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, polyether sulfone films, polyurethane resin films, polyester films, polycarbonate films, polysulfone films, polyether films, polymethyl pentene films, polyether ketone films,
  • meth acrylonitrile film
  • polyolefin polymers with alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation), amorphous polyolefin (Zeonex: trade name, manufactured by Nippon Zeon Corporation)), etc. It will be done.
  • cellulose acylate film is preferred as the support because it provides better orientation of the liquid crystal compound in the optically anisotropic layer. Further, the support may be removable.
  • the thickness of the support is preferably 20 to 100 ⁇ m, more preferably 25 to 60 ⁇ m.
  • the specific surfactant contained in the support is a surfactant having a hydrophilic group and a specific hydrophobic group.
  • the specific hydrophobic group possessed by the specific surfactant is at least one group selected from the group consisting of an alkyl group having 5 to 29 carbon atoms, a silicon-containing group, and a fluorine-containing group.
  • alkyl group examples include pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, hexadecyl group (cetyl group), Examples include octadecyl group, icosyl group, docosyl group, tetracosyl group, hexacosyl group, nonacosyl group, and the like.
  • the said alkyl group may be a linear alkyl group and a branched alkyl group may be sufficient as it, it is preferable that it is a linear alkyl group.
  • Examples of the silicon-containing group include a group represented by the following formula (S-1).
  • Formula (S-1) -Si(Ra)x(Rb)y Here, Ra represents a hydroxyl group or a hydrolyzable group.
  • Rb represents a non-hydrolyzable group.
  • x represents an integer from 1 to 3
  • y represents an integer from 0 to 2
  • the hydrolyzable group represents a group that can generate a silanol group or a group that can form a siloxane condensate, and specifically includes a halogen group, an alkoxy group, an acyloxy group, an isocyanate group, etc. .
  • an alkoxy group (preferably having 1 to 2 carbon atoms) is preferred.
  • the non-hydrolyzable group include a hydrogen atom, an aliphatic hydrocarbon group such as an alkyl group, an alkenyl group, and an alkynyl group, an aromatic hydrocarbon group such as an aryl group, or a combination thereof.
  • the fluorine-containing group may, for example, be an alkyl group containing a fluorine atom, and specifically, a suitable example is a group represented by the following formula (F-1).
  • Formula (F-1) -La-Cf Cf represents a fluorine atom-containing alkyl group.
  • the fluorine atom-containing alkyl group represents an alkyl group containing a fluorine atom, and is preferably a perfluoroalkyl group.
  • the number of carbon atoms in the fluorine atom-containing alkyl group is not particularly limited, and is preferably 1 to 30, more preferably 3 to 20, and even more preferably 5 to 10, for the reason that the alignment of the liquid crystal compound in the optically anisotropic layer is improved.
  • the number of fluorine atoms contained in the fluorine atom-containing alkyl group is not particularly limited, and is preferably 1 to 30, more preferably 5 to 25, and even more preferably 10 to 20, because this improves the alignment of the liquid crystal compound in the optically anisotropic layer.
  • La represents a single bond or a divalent linking group.
  • the divalent linking group represented by one embodiment of La include a divalent hydrocarbon group which may have a substituent, a divalent heterocyclic group which may have a substituent, -O-, -S-, -N(Q)-, -CO-, or a combination thereof.
  • Q represents a hydrogen atom or a substituent.
  • divalent hydrocarbon group examples include divalent aliphatic hydrocarbon groups such as alkylene groups having 1 to 10 carbon atoms, alkenylene groups having 1 to 10 carbon atoms, and alkynylene groups having 1 to 10 carbon atoms, and divalent aromatic hydrocarbon groups such as arylene groups.
  • divalent heterocyclic group examples include a divalent aromatic heterocyclic group, and specific examples thereof include a pyridylene group (pyridine-diyl group), a pyridazine-diyl group, an imidazole-diyl group, a thienylene group (thiophene-diyl group), and a quinolylene group (quinoline-diyl group).
  • groups combining these include groups combining at least two or more selected from the group consisting of the above-mentioned divalent hydrocarbon groups, divalent heterocyclic groups, -O-, -S-, -N(Q)-, and -CO-. Examples include -O-divalent hydrocarbon group-, -divalent hydrocarbon group -O-, and -divalent hydrocarbon group -N(Q)-.
  • L 1 is preferably a divalent linking group combining at least two or more groups selected from the group consisting of a linear alkylene group having 1 to 10 carbon atoms which may have a substituent, a branched alkylene group having 3 to 10 carbon atoms which may have a substituent, a cyclic alkylene group having 3 to 10 carbon atoms which may have a substituent, an arylene group having 6 to 12 carbon atoms which may have a substituent, -O-, and -N(Q)-, and more preferably a divalent linking group combining at least two or more groups selected from the group consisting of a linear alkylene group having 1 to 10 carbon atoms which may have a substituent, a cyclic alkylene group having 3 to 10 carbon atoms which may have a substituent, -O-, and -NH-.
  • examples of the substituent that the above-mentioned divalent hydrocarbon group (including an alkylene group) and divalent heterocyclic group may have, as well as the substituent represented by one embodiment of Q, include a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a cyano group, a carboxy group, an alkoxycarbonyl group, and a hydroxyl group.
  • the specific hydrophobic group is preferably an alkyl group having 5 to 29 carbon atoms, more preferably an alkyl group having 10 to 25 carbon atoms. For the reason that it is suppressed, an alkyl group having 12 to 18 carbon atoms is more preferable.
  • hydrophilic group The hydrophilic group possessed by the specific surfactant is not particularly limited, and both ionic hydrophilic groups (anionic hydrophilic groups, cationic hydrophilic groups, amphoteric hydrophilic groups) and nonionic hydrophilic groups can be used.
  • anionic hydrophilic group include a hydroxy group, a carboxy group, a carboxylate, a sulfonic acid group, a sulfonate, a sulfate, a phosphoric acid group, and a phosphoric acid ester salt.
  • the cationic hydrophilic group include an amino group and a quaternary ammonium salt.
  • the nonionic hydrophilic group may be any of an ester type, an ether type, an ester-ether type, and an alkanolamide type, and is preferably an ether type, and more preferably a polyoxyalkylene group (e.g., a polyoxyethylene group, a polyoxypropylene group, a polyoxyalkylene group in which an oxyethylene group and an oxypropylene group are blocked or randomly bonded, etc.).
  • a polyoxyalkylene group e.g., a polyoxyethylene group, a polyoxypropylene group, a polyoxyalkylene group in which an oxyethylene group and an oxypropylene group are blocked or randomly bonded, etc.
  • hydrophilic groups the reason why the orientation of the liquid crystal compound in the optically anisotropic layer is better and the generation of bright spot defects in the optical film can be further suppressed (hereinafter referred to as “the effect of the present invention is better”) (also abbreviated as “excellent reason"), an ionic hydrophilic group is preferable, and an anionic hydrophilic group is more preferable.
  • the specific surfactant may be a low molecular compound or a high molecular compound.
  • the term “low molecular compound” refers to a specific surfactant having a molecular weight of 100 or more and less than 2,000.
  • the term “polymer compound” refers to a specific surfactant with a molecular weight of 2000 or more, and the weight average molecular weight (Mw) is preferably 5000 to 40000, more preferably 8000 to 39000. , more preferably from 10,000 to 35,000.
  • the weight average molecular weight is 10,000 or more, unevenness is suppressed during formation of the optically anisotropic layer, and when the weight average molecular weight is 40,000 or less, the orientation of the liquid crystal compound in the optically anisotropic layer becomes better.
  • the specific surfactant is preferably a polymer compound because the effects of the present invention are more excellent.
  • specific examples of low molecular weight compounds include sodium dodecyl sulfate, polyoxyethylene (10) cetyl ether, polyoxyethylene (20) docosyl ether, tetrahexylammonium bromide, and tetra- Examples include n-octylammonium bromide, trimethylstearylammonium bromide, melisic acid, and the like.
  • examples of high molecular compounds include polymers having the above-mentioned specific hydrophobic group and hydrophilic group in the side chains of (meth)acrylic polymers.
  • Such polymers include a side chain having the above-mentioned specific hydrophobic group (hereinafter also abbreviated as "hydrophobic part”) and a side chain having the above-mentioned hydrophilic group (hereinafter also abbreviated as "hydrophilic part”). ) in separate repeating units is preferred.
  • the hydrophobic part is not particularly limited as long as it has the above-mentioned specific hydrophobic group, but it has a polyoxyalkylene group as a linking group on the main chain side and an alkyl group having 12 to 22 carbon atoms on the terminal side. Those having groups are preferred.
  • the hydrophilic part is not particularly limited as long as it has the above-mentioned hydrophilic group, but it is preferably a side chain having a polyoxyalkylene group, more preferably a side chain having a polyoxyethylene group. preferable.
  • n an integer of 2 to 50.
  • n an integer of 2 to 50.
  • the content of the specific surfactant contained in the support is preferably 0.1 to 20% by mass, and preferably 0.2 to 10% by mass based on the total mass of the support. is more preferable, and even more preferably 0.3 to 5% by mass.
  • the specific surfactant contained in the support is contained in a region (hereinafter referred to as (abbreviated as "surface layer region”) is preferable.
  • the presence of the specific surfactant in the surface layer region of the support can be confirmed by, for example, time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the TOF-SIMS method the method described in "Surface Analysis Technology Selection - Secondary Ion Mass Spectrometry” edited by the Japan Surface Science Society, Maruzen Co., Ltd. (published in 1999) can be adopted.
  • analysis is performed by repeating ion beam irradiation and TOF-SIMS measurement from the interface on the optically anisotropic layer side of the support.
  • ion beam irradiation and TOF-SIMS measurements are performed after component analysis of a region from the surface to 1 to 2 nm in the thickness direction (hereinafter referred to as the "surface region"), and then 1 to several hundred nm in the thickness direction. Dig deeper and repeat the series of operations to analyze the composition of the next surface area. Then, the distribution of the specific surfactant in the thickness direction of the support is analyzed by measuring the secondary ion strength derived from the hydrophilic group and the specific hydrophobic group.
  • the type of ion beam include an ion beam using an argon gas cluster ion gun (Ar-GCIB gun).
  • the optically anisotropic layer of the optical film of the present invention is a layer provided adjacent to the above-mentioned support, and in the present invention, it is a layer formed by using an optically anisotropic layer-forming composition containing a polymerizable liquid crystal compound. More specifically, as described in detail in the optically anisotropic layer-forming step of the optically anisotropic layer-forming method of the present invention described later, it is preferable that the layer is formed by orienting the polymerizable liquid crystal compound in the coating film formed by applying the optically anisotropic layer-forming composition and fixing the state, and in this case, it is no longer necessary to show liquid crystallinity after becoming a layer.
  • the polymerizable liquid crystal compound contained in the composition for forming an optically anisotropic layer is a liquid crystal compound having a polymerizable group.
  • the polymerizable group is not particularly limited, but preferably a polymerizable group capable of radical polymerization or cationic polymerization.
  • a known radically polymerizable group can be used, and preferred examples include an acryloyloxy group or a methacryloyloxy group.
  • an acryloyloxy group generally has a high polymerization rate, and an acryloyloxy group is preferred from the viewpoint of improving productivity, but a methacryloyloxy group can also be used as a polymerizable group.
  • a known cationic polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro-orthoester group, and a vinyloxy Examples include groups.
  • polymerizable groups include polymerizable groups represented by any of the following formulas (P-1) to (P-20).
  • the polymerizable liquid crystal compound is not particularly limited, and includes, for example, a compound capable of homeotropic alignment, homogeneous alignment, twisted alignment, hybrid alignment, and cholesteric alignment.
  • liquid crystal compounds can be classified into rod-like types and disc-like types based on their shapes. Furthermore, there are low-molecular and high-molecular types, respectively.
  • Polymers generally refer to those with a degree of polymerization of 100 or more (Polymer Physics/Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-like liquid crystal compound or a discotic liquid crystal compound (discotic liquid crystal compound) is preferable.
  • a monomer or a relatively low molecular weight liquid crystal compound having a degree of polymerization of less than 100 is preferable.
  • rod-shaped liquid crystal compound for example, those described in claim 1 of Japanese Patent Publication No. 11-513019 or paragraphs [0026] to [0098] of JP-A-2005-289980 are preferable, and as the discotic liquid crystal compound, For example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-244038 are preferred.
  • a reverse wavelength dispersion liquid crystal compound As the polymerizable liquid crystal compound, a reverse wavelength dispersion liquid crystal compound can be used.
  • a liquid crystal compound with "reverse wavelength dispersion” refers to the in-plane retardation (Re) value measured at a specific wavelength (visible light range) of a retardation film produced using this compound. In other words, as the measurement wavelength becomes larger, the Re value becomes the same or becomes higher.
  • the reverse wavelength dispersion liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersion film as described above. (especially the compounds described in paragraphs [0034] to [0039]), the compounds represented by the general formula (1) described in JP-A-2010-084032 (especially the compounds described in paragraphs [0067] to [0073]) ), and the compound represented by the general formula (1) described in JP-A-2016-081035 (particularly the compounds described in paragraphs [0043] to [0055]). Furthermore, paragraphs [0027] to [0100] of JP2011-006360, paragraphs [0028] to [0125] of JP2011-006361, and paragraphs [0034] to [0034] of JP2012-207765.
  • the composition for forming an optically anisotropic layer preferably contains a polymerization initiator.
  • the polymerization initiator include those explained in connection with the composition for forming an alignment film mentioned above.
  • the composition for forming an optically anisotropic layer preferably contains a solvent from the viewpoint of workability when forming an optically anisotropic layer.
  • solvents include ketones (e.g., acetone, 2-butanone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone), ethers (e.g., dioxane, and tetrahydrofuran), aliphatic hydrocarbons (e.g., hexane), cycloaliphatic hydrocarbons (e.g. cyclohexane), aromatic hydrocarbons (e.g.
  • toluene, xylene, and trimethylbenzene halogenated carbons
  • esters e.g. methyl acetate, ethyl acetate, and butyl acetate
  • water alcohols
  • alcohols e.g. ethanol, isopropanol, butanol, and cyclohexanol
  • cellosolves e.g. methyl cellosolve, and ethyl cellosolve
  • cellosolve acetates sulfoxides (eg, dimethyl sulfoxide), amides (eg, dimethylformamide, and dimethylacetamide).
  • the composition for forming an optically anisotropic layer preferably contains a leveling agent from the viewpoint of keeping the surface of the optically anisotropic layer smooth and facilitating orientation control.
  • a leveling agent a fluorine-based leveling agent or a silicon-based leveling agent is preferable because it has a high leveling effect with respect to the amount added, and a fluorine-based leveling agent is more preferable because it is less likely to cause weeping (bloom, bleed).
  • Examples of the leveling agent include compounds described in paragraphs [0079] to [0102] of JP-A No. 2007-069471, and compounds represented by the general formula (I) described in JP-A No. 2013-047204.
  • leveling agent may also have a function as an alignment control agent, which will be described later.
  • the composition for forming an optically anisotropic layer may contain an alignment control agent, if necessary.
  • an orientation control agent various orientation states such as homogeneous orientation, homeotropic orientation, tilted orientation, twisted orientation, hybrid orientation, and cholesteric orientation can be formed, and specific orientation states can be controlled more uniformly and more precisely. It can be realized by
  • a low-molecular alignment control agent and a polymeric alignment control agent can be used as the alignment control agent that promotes homogeneous alignment.
  • low-molecular orientation control agents include paragraphs [0009] to [0083] of JP-A No. 2002-20363, paragraphs [0111] to [0120] of JP-A No. 2006-106662, and paragraphs [0111] to [0120] of JP-A No. 2006-106662, and JP-A No. 2012-2012.
  • the descriptions in paragraphs [0021] to [0029] of Publication No.-211306 can be referred to, and the contents thereof are incorporated into the present specification.
  • examples of the alignment control agent that forms or promotes homeotropic alignment include boronic acid compounds and onium salt compounds.
  • Examples of this alignment control agent include paragraphs [0023] to [0032] of JP-A No. 2008-225281, paragraphs [0052]-[0058] of JP-A No. 2012-208397, and paragraphs [0052] to [0058] of JP-A No. 2008-026730.
  • the compounds described in paragraphs [0024] to [0055] and paragraphs [0043] to [0055] of JP-A-2016-193869 can be referred to, and the contents thereof are incorporated into the present specification.
  • cholesteric alignment can be achieved by adding a chiral agent to the composition for forming an optically anisotropic layer, and the direction of rotation of the cholesteric alignment can be controlled depending on the direction of the chirality.
  • the pitch of cholesteric alignment may be controlled depending on the alignment regulating force of the chiral agent.
  • the content is preferably 0.01 to 10% by mass, and 0.05 to 5% by mass based on the total solid mass in the composition. More preferred. When the content is within this range, precipitation, phase separation, orientation defects, etc. can be suppressed while realizing a desired orientation state, and a uniform and highly transparent cured product can be obtained.
  • composition for forming an optically anisotropic layer may contain components other than those mentioned above.
  • Other components include, for example, surfactants, tilt angle control agents, alignment aids, plasticizers, and crosslinking agents.
  • the optically anisotropic layer is a film formed using the composition for forming an optically anisotropic layer described above, and the manufacturing procedure thereof will be described later in the optically anisotropic layer of the method for manufacturing an optical film of the present invention. This will be explained in detail in the forming process.
  • the thickness of the optically anisotropic layer is not particularly limited, but from the viewpoint of making the device thinner, it is preferably 0.7 to 2.5 ⁇ m, more preferably 0.9 to 2.2 ⁇ m.
  • the alignment state of the polymerizable liquid crystal compound in the optically anisotropic layer may be any of homogeneous alignment (horizontal alignment), homeotropic alignment (vertical alignment), tilted alignment, and twisted alignment.
  • the optically anisotropic layer is a layer in which the homogeneous orientation or twisted orientation of the polymerizable liquid crystal compound is fixed because the orientation of the liquid crystal compound in the optically anisotropic layer is better.
  • homogeneous alignment means that the main surface of the optically anisotropic layer and the long axis direction of the polymerizable liquid crystal compound are parallel.
  • the orientation is such that the angle between the long axis direction of the polymerizable liquid crystal compound and the main surface of the optically anisotropic layer is less than 10°. shall mean.
  • the angle between the long axis direction of the polymerizable liquid crystal compound and the main surface of the optically anisotropic layer is preferably 0 to 5°, more preferably 0 to 3°, and preferably 0 to 2°. More preferred.
  • the optically anisotropic layer is more preferably a positive A plate or a positive C plate, and even more preferably a positive A plate.
  • the positive A plate (positive A plate) and the positive C plate (positive C plate) are defined as follows.
  • the refractive index in the in-plane slow axis direction (direction where the in-plane refractive index is maximum) is nx
  • the refractive index in the direction orthogonal to the in-plane slow axis is ny
  • the refraction in the thickness direction is
  • the ratio is nz
  • the positive A plate satisfies the relationship of formula (A1)
  • the positive C plate satisfies the relationship of formula (C1).
  • the positive A plate has a positive Rth value
  • the positive C plate has a negative Rth value.
  • nx ⁇ ny also includes cases where (nx - ny) x d (where d is the thickness of the film) is 0 to 10 nm, preferably 0 to 5 nm. .
  • Re(550) is preferably 100 to 180 nm, more preferably 120 to 160 nm, and 130 to 150 nm. More preferably, the wavelength is from 130 to 145 nm, particularly preferably from 130 to 145 nm.
  • the " ⁇ /4 plate” is a plate that has a ⁇ /4 function, specifically, the function of converting linearly polarized light of a certain wavelength into circularly polarized light (or from circularly polarized light to linearly polarized light). It is a board with
  • the method for producing an optical film of the present invention includes a support production step of producing a support containing the above-mentioned specific surfactant, a rubbing step of subjecting the support to a rubbing treatment, and an optical film production method containing a polymerizable liquid crystal compound.
  • This manufacturing method includes an optically anisotropic layer forming step of forming an optically anisotropic layer on a support that has been subjected to a rubbing treatment using a composition for forming an optically anisotropic layer.
  • the support preparation step is a step of preparing a support containing the above-mentioned specific surfactant.
  • the support produced in this step is the one described as a support included in the optical film of the present invention.
  • the method for producing the support is not particularly limited, but includes, for example, a method including a step of casting a dope containing the above-mentioned specific surfactant.
  • a method including a step of casting a dope containing the above-mentioned specific surfactant includes, for example, a method including a step of casting a dope containing the above-mentioned specific surfactant.
  • conventionally known methods can be suitably employed, except for incorporating the above-mentioned specific surfactant into the dope.
  • Other methods for producing the support include a method that includes a step of impregnating the surface of a polymer film with a composition containing the above-mentioned specific surfactant and solvent.
  • the solvent used together with the above-mentioned specific surfactant include the solvents described in the composition for forming an optically anisotropic layer.
  • the solvent used can be appropriately selected depending on the properties of the base material used, such as the ease with which it penetrates.
  • examples of the polymer film include those similar to those described in connection with the support included in the optical film of the present invention, and among them, it is preferable to use a cellulose acylate film.
  • the method of impregnating the composition onto the polymer film is not particularly limited, and examples thereof include coating methods, and specifically, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, and die coating method.
  • the rubbing step is a step in which a support containing the above-mentioned specific surfactant is subjected to a rubbing treatment.
  • a treatment method that is widely adopted as a liquid crystal alignment treatment process for liquid crystal display devices can be applied. That is, a method is used to obtain orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber, or the like.
  • the optically anisotropic layer forming step is a step of forming an optically anisotropic layer on a rubbed support using an optically anisotropic layer forming composition.
  • One embodiment of the specific procedure for forming an optically anisotropic layer is to apply a composition for forming an optically anisotropic layer onto a support, form a coating film on the support, and apply the composition in the coating film.
  • the coating film may be subjected to a curing treatment to form an optically anisotropic layer.
  • methods for applying the composition for forming an optically anisotropic layer onto the support include wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, and die coating method. .
  • the support coated with the composition for forming an optically anisotropic layer is subjected to a drying treatment to remove the solvent. May be implemented.
  • the method for orienting the polymerizable liquid crystal compound in the coating film is not particularly limited, and examples thereof include a method of heating the coating film and a method of drying the coating film at room temperature.
  • the liquid crystal phase formed by the alignment treatment can generally be transformed by a change in temperature.
  • the transition can also be caused by changing the composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 150°C, and the heating time is preferably 10 seconds to 5 minutes.
  • the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment to form an optically anisotropic layer.
  • the method of curing treatment is not particularly limited, and includes light irradiation treatment and heat treatment, with light irradiation being more preferred.
  • the type of light used during exposure is not particularly limited, but ultraviolet light is preferred.
  • the irradiation amount during exposure is not particularly limited, and is preferably 10 mJ/cm 2 to 50 J/cm 2 , more preferably 20 mJ/cm 2 to 5 J/cm 2 .
  • it may be carried out under heating conditions.
  • the polarizing plate of the present invention is a polarizing plate having the optical film of the present invention and a polarizer.
  • the polarizer included in the polarizing plate of the present invention is not particularly limited as long as it is a member that has the function of converting light into specific linearly polarized light, and conventionally known absorption type polarizers and reflection type polarizers can be used. .
  • absorption type polarizer an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, etc. are used.
  • Iodine-based polarizers and dye-based polarizers include coating-type polarizers and stretched-type polarizers, and both can be applied, but polarized light produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching it Child is preferred.
  • a method for obtaining a polarizer by stretching and dyeing a laminated film in which a polyvinyl alcohol layer is formed on a base material Japanese Patent No. 5048120, Japanese Patent No. 5143918, Japanese Patent No. 4691205, Publication No. 4751481 and Japanese Patent No. 4751486 are mentioned, and known techniques regarding these polarizers can also be preferably used.
  • WO2018/124198, WO2018/186503, WO2019/132020, WO2019/132018, WO2019/189345, JP 2019-197168, JP 2019-194685, and JP 2019-139 No. 222 Publications are listed, and known techniques related to these polarizers can also be preferably used.
  • the reflective polarizer a polarizer in which thin films with different birefringences are laminated, a wire grid polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a quarter-wave plate are combined, etc. are used.
  • polyvinyl alcohol-based resins (polymer containing -CH 2 -CHOH- as a repeating unit; in particular, at least one selected from the group consisting of polyvinyl alcohol and ethylene-vinyl alcohol copolymer) have better adhesion. 1) is preferred.
  • the polarizer may have depolarization portions formed along opposing edges. Examples of the depolarization unit include Japanese Patent Application Laid-Open No. 2014-240970. Further, the polarizer may have non-polarizing portions arranged at predetermined intervals in the longitudinal direction and/or the width direction. The non-polarized portion is a partially bleached portion. The arrangement pattern of the non-polarizing portions can be appropriately set depending on the purpose.
  • the non-polarizing portion is placed at a position corresponding to the camera portion of the image display device.
  • Examples of the arrangement pattern of the non-polarizing portion include Japanese Patent Application Laid-open No. 2016-27392.
  • the thickness of the polarizer is not particularly limited, but is preferably 3 to 60 ⁇ m, more preferably 3 to 30 ⁇ m, and even more preferably 3 to 10 ⁇ m.
  • the polarizing plate of the invention may have other optical films, a protective film described below, and other functional layers.
  • the function of the functional layer is not particularly limited, and for example, it may be a layer having functions such as an adhesive layer, a stress relaxation layer, a flattening layer, an antireflection layer, a refractive index adjustment layer, and an ultraviolet absorption layer.
  • the protective film may be used on both sides of the polarizer, or may be used only on one side of the polarizer.
  • the protective film when the protective film is on the same side as the optical film of the present invention, it can be placed between the polarizer and the optical film, or on the opposite side of the optical film from the polarizer, via an adhesive or an adhesive.
  • the polarizing plate can be used as a circularly polarizing plate when the optically anisotropic layer of the optical film of the invention described above or the optically anisotropic layer of the invention is a ⁇ /4 plate (positive A plate).
  • the optically anisotropic layer described above is a ⁇ /4 plate (positive A plate)
  • the angle between the slow axis of the ⁇ /4 plate and the absorption axis of the polarizer described later is preferably 30 to 60°, more preferably 40 to 50°, even more preferably 42 to 48°, and particularly preferably 45°.
  • the "slow axis" of the ⁇ /4 plate means the direction in which the refractive index is maximum within the plane of the ⁇ /4 plate
  • the "absorption axis" of the polarizer means the direction in which the absorbance is highest.
  • the polarizing plate can also be used as an optical compensation film of an IPS (In-Plane-Switching) type or FFS (Fringe-Field-Switching) type liquid crystal display device.
  • the above-mentioned optically anisotropic layer is used as at least one plate of a laminate of a positive A plate and a positive C plate.
  • the angle between the slow axis of the plate layer and the absorption axis of the polarizer be perpendicular or parallel.
  • the angle between the slow axis of the positive A plate layer and the absorption axis of the polarizer is preferably More preferably, the angle is 0-5° or 85-95°.
  • the angle between the slow axis of the positive A plate and the absorption axis of the polarizer is parallel to each other.
  • the angle between the slow axis of the positive A plate and the absorption axis of the polarizer is More preferably, they are orthogonal.
  • the angle between the slow axis of the optically anisotropic layer and the absorption axis of the polarizer be parallel or orthogonal.
  • parallel does not require strictly parallel, but means that the angle formed by one side and the other side is less than 10 degrees.
  • orthogonal does not necessarily require that they be strictly orthogonal, but means that the angle between one and the other is more than 80° and less than 100°.
  • the material for the protective film is not particularly limited, and includes, for example, the same polymer films as described in the support of the optical film of the present invention, and among them, it is preferable to use cellulose acylate film.
  • optical properties of the protective film are not particularly limited, but when the protective film is on the same side as the optical film of the present invention, it is preferable that the following formula is satisfied. 0nm ⁇ Re(550) ⁇ 10nm -40nm ⁇ Rth(550) ⁇ 40nm
  • an adhesive layer may be disposed between the optical film of the present invention and the polarizer.
  • the adhesive include, but are not limited to, polyvinyl alcohol adhesives.
  • an adhesive layer may be disposed between the optical film of the present invention and the polarizer.
  • a curable adhesive composition that is cured by irradiation with active energy rays or heating is preferable.
  • the curable adhesive composition include a curable adhesive composition containing a cationically polymerizable compound and a curable adhesive composition containing a radically polymerizable compound.
  • the thickness of the adhesive layer is preferably 0.01 to 20 ⁇ m, more preferably 0.01 to 10 ⁇ m, and even more preferably 0.05 to 5 ⁇ m.
  • the thickness of the adhesive layer is within this range, no lifting or peeling will occur between the protective layer or optically anisotropic layer to be laminated and the polarizer, and adhesive strength without any practical problems can be obtained.
  • the thickness of the adhesive layer is preferably 0.4 ⁇ m or more.
  • the bulk water absorption rate of the adhesive layer may be adjusted to 10% by mass or less, preferably 2% by mass or less. The bulk water absorption rate is measured according to the water absorption rate test method described in JIS K 7209.
  • paragraphs [0062] to [0080] of JP-A-2016-35579 can be referred to, and the contents thereof are incorporated into the present specification.
  • an easily adhesive layer may be disposed between the optical film of the present invention and the polarizer.
  • the storage modulus of the easy-adhesive layer at 85°C is 1.0 ⁇ 10 6 Pa or more. It is preferable that it is 1.0 ⁇ 10 7 Pa.
  • constituent materials of the easily adhesive layer include polyolefin components and polyvinyl alcohol components.
  • the thickness of the adhesive layer is preferably 500 nm to 1 ⁇ m.
  • the image display device of the present invention is an image display device having the optical film of the present invention or the optically anisotropic layer of the present invention.
  • the display element used in the image display device is not particularly limited, and includes, for example, a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as "EL (Electro Luminescence)”) display panel, a plasma display panel, and the like.
  • EL Organic electroluminescence
  • liquid crystal cells and organic EL display panels are preferred, and liquid crystal cells are more preferred. That is, as the image display device, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL display panel as a display element is preferable, and a liquid crystal display device is more preferable.
  • a liquid crystal display device which is an example of an image display device, includes the above-mentioned polarizing plate and a liquid crystal cell. Note that among the polarizing plates provided on both sides of the liquid crystal cell, it is preferable to use the above-described polarizing plate as the front-side polarizing plate, and it is more preferable to use the above-mentioned polarizing plates as the front-side and rear-side polarizing plates.
  • the liquid crystal cell constituting the liquid crystal display device will be described in detail below.
  • liquid crystal cells used in liquid crystal display devices are in VA (Vertical Alignment) mode, OCB (Optically Compensated Bend) mode, IPS (In-Plane-Switching) mode, FFS (Fringe-Field-Switching) mode, or TN (Twisted) mode.
  • VA Vertical Alignment
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • FFS Feringe-Field-Switching
  • TN Transmission
  • Nematic mode is preferable, but is not limited thereto.
  • rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are further twisted at an angle of 60 to 120°.
  • TN mode liquid crystal cells are most commonly used as color TFT liquid crystal display devices, and are described in numerous documents.
  • VA mode liquid crystal cells In a VA mode liquid crystal cell, rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied.
  • VA mode liquid crystal cells include (1) narrowly defined VA mode liquid crystal cells in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when voltage is applied (Japanese Patent Application Laid-Open No. 2002-2002); In addition to (2) a multi-domain (MVA mode) liquid crystal cell (SID97, described in Digest of tech.Papers (Proceedings) 28 (1997) 845) in which VA mode is multi-domained to expand the viewing angle (described in Publication No.
  • MVA mode multi-domain liquid crystal cell
  • VA mode liquid crystal cell may be any of the PVA (Patterned Vertical Alignment) type, the optical alignment type (Optical Alignment), and the PSA (Polymer-Sustained Alignment) type. Details of these modes are described in Japanese Patent Application Laid-open No. 2006-215326 and Japanese Patent Application Publication No.
  • An organic EL display device which is an example of an image display device, includes, for example, a polarizer, a ⁇ /4 plate (positive A plate) made of the above-mentioned optically anisotropic layer, and an organic EL display panel from the viewing side. Examples include embodiments in which the elements are arranged in this order. Furthermore, an organic EL display panel is a display panel constructed using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode). The structure of the organic EL display panel is not particularly limited, and a known structure may be employed.
  • Example 1 [Preparation of cellulose acylate film (support)] A cellulose acylate dope having the following composition was put into a mixing tank, stirred, and further heated at 90° C. for 10 minutes. Thereafter, the resulting composition was filtered through a filter paper with an average pore size of 34 ⁇ m and a sintered metal filter with an average pore size of 10 ⁇ m to prepare a dope.
  • the solid content concentration of the dope is 23.5% by mass
  • the amount of plasticizer added is the ratio to cellulose acylate
  • Cellulose acylate dope Cellulose acylate (degree of acetyl substitution 2.86, viscosity average degree of polymerization 310) 100 parts by weight Sugar ester compound 1 (shown in chemical formula (S4)) 6.0 parts by weight Sugar ester compound 2 (shown in chemical formula (S5)) 2.0 parts by weight Silica particle dispersion (AEROSIL R972, Nippon Aerosil Co., Ltd.) made) 0.1 parts by mass Sodium dodecyl sulfate 0.75 parts by mass Solvent (methylene chloride/methanol/butanol) ⁇
  • AEROSIL R972 Nippon Aerosil Co., Ltd.
  • the dope prepared above was cast using a drum film forming machine. Specifically, the dope was cast from a die so as to be in contact with a metal support cooled to 0° C., and then the obtained web (film) was peeled off. Note that the drum was made of SUS (Stainless Used Steel). Next, the web (film) obtained by casting is peeled from the drum, and then heated at 30 to 40°C during film transport in a tenter equipment that clips both ends of the web with clips and transports it. Dry for a minute. Subsequently, the web was post-dried by zone heating while being rolled. Next, the obtained web was subjected to knurling, and then a winding support S-1 was produced.
  • SUS Stainless Used Steel
  • the wound support S-1 produced above was continuously subjected to a rubbing treatment.
  • the longitudinal direction of the long film was parallel to the transport direction, and the angle between the film longitudinal direction (transport direction) and the rotation axis of the rubbing roller was 80°. If the longitudinal direction of the film (conveyance direction) is 90°, and the clockwise direction is expressed as a positive value with the film width direction as the reference (0°) when observed from the film side, the rotation axis of the rubbing roller is at 10°. .
  • the position of the rotation axis of the rubbing roller is a position rotated 80 degrees counterclockwise with respect to the longitudinal direction of the film.
  • a composition for forming an optically anisotropic layer (1) containing a rod-like liquid crystal compound having the following composition was applied using a Giesser coating machine to form a composition layer. Formed. Next, the obtained composition layer was heated at 80° C. for 60 seconds. By this heating, the rod-like liquid crystal compound of the composition layer was oriented in a predetermined direction. Thereafter, the composition layer was irradiated with ultraviolet rays (irradiation amount: 35 mJ/ cm2 ). Subsequently, the obtained composition layer was heated at 80° C. for 10 seconds.
  • composition layer was irradiated with ultraviolet rays at 80°C with an oxygen concentration of 100 volume ppm using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) (irradiation amount: 500 mJ/cm).
  • a metal halide lamp manufactured by Eye Graphics Co., Ltd.
  • irradiation amount 500 mJ/cm.
  • composition for forming optically anisotropic layer (1) ⁇ - 80 parts by mass of the following rod-like liquid crystal compound (A) - 17 parts by mass of the following rod-like liquid crystal compound (B) - 3 parts by mass of the following polymerizable compound (C) - Ethylene oxide-modified trimethylolpropane triacrylate (V#360, Osaka Organic Chemical) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure 819, manufactured by BASF) 3 parts by mass 0.46 parts by mass of the following left-handed chiral agent (L2) 0.41 parts by mass of the following right-handed chiral agent (R2) 0.08 parts by mass of the following polymer (A) 0.38 parts by mass of the following polymer (B) 117 parts by mass of methyl isobutyl ketone 23 parts by mass of ethyl propionate 16 parts by mass of cyclohexane ⁇
  • Rod-like liquid crystal compound (A) [a mixture of the following liquid crystal compounds (RA), (RB), and (RC) in a mass ratio of 84:14:2]
  • the optical film (F-1) prepared above was cut parallel to the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope.
  • the thickness of the optically anisotropic layer was 2.7 ⁇ m
  • the region (second region) of the optically anisotropic layer with a thickness (d2) of 1.3 ⁇ m on the substrate side was homogeneous alignment without twist angle
  • the region (first region) of the optically anisotropic layer with a thickness (d1) of 1.4 ⁇ m on the air side (opposite to the substrate) was twist alignment of the liquid crystal compound.
  • the optical properties of the optical film (F-1) were determined using Axoscan from Axometrics and its analysis software (Multi-Layer Analysis).
  • the product ( ⁇ n2d2) of ⁇ n2 and thickness d2 at a wavelength of 550 nm in the second region was 173 nm
  • the twist angle of the liquid crystal compound was 0°
  • the alignment axis angle of the liquid crystal compound relative to the long length direction was ⁇ 10° on the side in contact with the substrate and ⁇ 10° on the side in contact with the first region.
  • the product ( ⁇ n1d1) of ⁇ n1 and thickness d1 at a wavelength of 550 nm in the first region was 184 nm
  • the twist angle of the liquid crystal compound was 75°
  • the alignment axis angle of the liquid crystal compound relative to the longitudinal direction was -10° on the side in contact with the second region and -85° on the air side.
  • Examples 2 to 13 and Comparative Examples 1 to 3 An optical film was produced in the same manner as in Example 1, except that the type and amount of the surfactant were changed as shown in Table 1 below. Note that Comparative Example 1 is an example in which no surfactant was blended, and is indicated as "-" in Table 1 below. Furthermore, the structures of copolymer A, copolymer B, and copolymer C used as surfactants in Examples 11 to 13 are as follows.
  • Example 14 Example 2 except that the composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (2) shown below, and the optically anisotropic layer was formed under the following conditions.
  • An optical film was prepared in the same manner as above.
  • ⁇ Composition for forming optically anisotropic layer (2) ⁇ - 80 parts by mass of the rod-like liquid crystal compound (A) - 17 parts by mass of the rod-like liquid crystal compound (B) - 3 parts by mass of the polymerizable compound (C) - Ethylene oxide-modified trimethylolpropane triacrylate (V#360, Osaka Organic Chemical) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure 819, manufactured by BASF) 3 parts by mass - The above left-handed chiral agent (L2) 0.46 parts by mass - The above right-handed chiral agent (R2) 0.41 parts by mass parts ⁇ 0.08 parts by mass of the above polymer (A) ⁇ 156 parts by mass of o-xylene ⁇ ---
  • Example 15 No surfactant (sodium dodecyl sulfate) was added to the cellulose acylate dope, and before rubbing, the following surfactant-containing composition was applied with a #8 bar and then dried at 80°C for 1 minute. An optical film was produced in the same manner as in Example 1, except for the following steps.
  • ⁇ Surfactant-containing composition ⁇ ⁇ Sodium dodecyl sulfate 0.5 parts by mass ⁇ Isopropyl alcohol 90.0 parts by mass ⁇ Water 10.0 parts by mass ⁇ ⁇
  • Example 16 The composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (3) shown below, and the position of the rotation axis of the rubbing roller was changed from -10° to +12.5°.
  • An optical film was produced in the same manner as in Example 2 except for the following.
  • the thickness of the optically anisotropic layer obtained was 1.0 ⁇ m.
  • the average inclination angle of the long axis of the rod-like liquid crystal compound with respect to the film plane was 0°, and it was confirmed that the liquid crystal compound was oriented horizontally with respect to the film plane.
  • the angle of the slow axis is perpendicular to the rotation axis of the rubbing roller, and the film width direction is 0° (film longitudinal direction is 90°, clockwise with respect to the film width direction when observed from the optically anisotropic layer C side).
  • the direction is expressed as a positive value.), it was -77.5°.
  • the in-plane retardation of the optically anisotropic layer at a wavelength of 550 nm is 116 nm, and the optically anisotropic layer exhibits normal wavelength dispersion.
  • composition for forming optically anisotropic layer (3) ⁇ - 100 parts by mass of the above rod-shaped liquid crystal compound (A) - 6 parts by mass of photopolymerization initiator (Irgacure 907, manufactured by BASF) - 0.25 parts by mass of the following fluorine-containing compound (F-1) - 0.25 parts by mass of the following fluorine-containing compound (F-1) 2) 0.1 parts by mass 4 parts by mass of ethylene oxide-modified trimethylol propane triacrylate 337 parts by mass of methyl isobutyl ketone ⁇ ⁇
  • Example 5 A (meth)acrylic resin film having a lactone ring structure and having an easily adhesive layer on one side and having a thickness of 58 ⁇ m was prepared in the same manner as in Example 4 of JP-A-2012-93703. An optical film was produced in the same manner as in Example 1, except that the (meth)acrylic resin film produced above was used in place of the winding support S-1.
  • the produced optical film was evaluated as follows. The results are shown in Table 1 below.
  • Table 1 When the produced optical film was analyzed for components in the depth direction using a time-of-flight secondary ion mass spectrometer (TOF-SIMS) (“SIMS5” manufactured by IONTOF), Examples 1 to 16, Regarding the optical films prepared in Comparative Examples 2, 3, and 5, it was confirmed that the surfactant was present in the region from the optically anisotropic layer side surface of the support to 10% of the thickness of the support, and Comparative Example 1 Regarding the optical films prepared in 4 and 4, it was confirmed that the support did not contain a surfactant.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the optically anisotropic layer in the obtained optical film was randomly observed under a polarizing microscope in a crossed nicol state at a magnification of 50 times (field size: 1715 x 1280 ⁇ m), and each field was classified into the following three categories.
  • the 10 visual fields were evaluated in the following five stages. A: All 10 fields are I or II, and the number of II fields is 0 to 2 fields. B: All 10 fields are I or II, and the number of II fields is 3 to 5.
  • C All 10 visual fields are I or II, and the number of II visual fields is 6 to 10.
  • the optical films produced in Comparative Examples 4 and 5 had poor orientation and bright spot defects could not be evaluated accurately, so they were not evaluated and were indicated as "-" in Table 1 below.
  • the orientation of the liquid crystal compound in the optically anisotropic layer will be good, and bright spot defects will occur. It was also found that this can be suppressed (Examples 1 to 16).
  • the specific surfactant has an ionic hydrophilic group (Examples 1 to 4 and 7)
  • Example 1 and Example 10 In addition, from the comparison between Example 1 and Example 10 and the comparison between Example 2 and Example 7, it was found that when the specific surfactant has an anionic hydrophilic group, the optically anisotropic layer It was found that the alignment of the liquid crystal compound was further improved, and the occurrence of bright spot defects in the optical film could be further suppressed. Furthermore, from a comparison between Examples 1 to 3 and Example 11, when the specific surfactant is a polymer compound, the orientation of the liquid crystal compound in the optically anisotropic layer is better, and the brightness in the optical film is improved. It was found that the occurrence of point defects could be further suppressed. Further, from comparison with Examples 1 to 7, it was found that when the hydrophobic group of the specific surfactant is an alkyl group having 12 to 18 carbon atoms, the occurrence of bright spot defects in the optical film can be further suppressed.

Abstract

The present invention addresses the problem of providing: an optical film which has improved alignment of a liquid crystal compound in an optically anisotropic layer and which is prevented from the occurrence of bright spot defects; a method for producing an optical film; a polarizing plate; and an image display device. The optical film according to the present invention comprises a support and an optically anisotropic layer which are located adjacent to each other, in which the optically anisotropic layer is a layer formed using an optically anisotropic layer-forming composition containing a polymerizable liquid crystal compound, the support contains a surfactant having a hydrophilic group and a hydrophobic group, and the hydrophobic group is at least one group selected from the group consisting of an alkyl group having 5 to 29 carbon atoms, a silicon-containing group, and a fluorine-containing group.

Description

光学フィルム、光学フィルムの製造方法、偏光板および画像表示装置Optical film, optical film manufacturing method, polarizing plate, and image display device
 本発明は、光学フィルム、光学フィルムの製造方法、偏光板および画像表示装置に関する。 The present invention relates to an optical film, a method for manufacturing an optical film, a polarizing plate, and an image display device.
 光学補償シートおよび位相差フィルム等の光学フィルムは、画像着色解消または視野角拡大のために、様々な画像表示装置で用いられている。
 光学フィルムとしては延伸複屈折フィルムが使用されていたが、近年、延伸複屈折フィルムに代えて、液晶化合物からなる光学異方性層を有する光学フィルムを使用することが提案されている。
Optical films such as optical compensatory sheets and retardation films are used in various image display devices to eliminate image coloration or expand viewing angles.
A stretched birefringent film has been used as an optical film, but in recent years, it has been proposed to use an optical film having an optically anisotropic layer made of a liquid crystal compound instead of the stretched birefringent film.
 このような光学異方性層を形成する際には、通常、配向膜が用いられている。
 例えば、特許文献1では、特定の基を有するポリビニルアルコールを含む塗布液を用いて形成された配向膜上に、光学異方性層を形成する態様が記載されている([請求項1][請求項2][実施例])。
When forming such an optically anisotropic layer, an alignment film is usually used.
For example, Patent Document 1 describes an embodiment in which an optically anisotropic layer is formed on an alignment film formed using a coating liquid containing polyvinyl alcohol having a specific group ([Claim 1] [ Claim 2] [Example]).
特開平9-152509号公報Japanese Patent Application Publication No. 9-152509
 本発明者らは、薄型化、作製プロセス簡略化の観点から、支持体(基材)にラビング処理を施し、配向膜を用いずに、支持体と光学異方性層とを隣接させた光学フィルムの作製を検討したところ、光学異方性層における液晶化合物の配向性は良好であったが、ラビング処理の過程で支持体の屑が飛散し、その屑が原因となって、光学異方性層を有する光学フィルムに輝点欠陥が発生する場合があることを明らかとした。 In order to reduce the thickness and simplify the manufacturing process, the present inventors applied a rubbing treatment to the support (base material) and created an optical structure in which the support and the optically anisotropic layer were adjacent to each other without using an alignment film. When we investigated the production of the film, it was found that the orientation of the liquid crystal compound in the optically anisotropic layer was good, but debris from the support was scattered during the rubbing process, and the debris caused optical anisotropy. It was clarified that bright spot defects may occur in optical films having a transparent layer.
 そこで、本発明は、光学異方性層における液晶化合物の配向性が良好となり、かつ、輝点欠陥の発生が抑制された光学フィルムを提供することを課題とする。
 また、本発明は、光学フィルムの製造方法、偏光板および画像表示装置を提供することも課題とする。
Therefore, an object of the present invention is to provide an optical film in which the orientation of a liquid crystal compound in an optically anisotropic layer is improved and the occurrence of bright spot defects is suppressed.
Another object of the present invention is to provide a method for manufacturing an optical film, a polarizing plate, and an image display device.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、親水性基と特定の疎水性基とを有する界面活性剤を含有する支持体を用いることにより、光学異方性層における液晶化合物の配向性が良好となり、かつ、光学フィルムにおける輝点欠陥の発生を抑制できることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題を解決できることを見出した。
As a result of intensive studies to achieve the above object, the present inventors found that by using a support containing a surfactant having a hydrophilic group and a specific hydrophobic group, the liquid crystal compound in the optically anisotropic layer can be improved. The present inventors have discovered that the orientation of the optical film can be improved and the occurrence of bright spot defects in optical films can be suppressed, and the present invention has been completed.
That is, the present inventors have found that the above problem can be solved by the following configuration.
 [1] 支持体と、光学異方性層とを隣接して有する光学フィルムであって、
 光学異方性層が、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層であり、
 支持体が、親水性基および疎水性基を有する界面活性剤を含有し、
 疎水性基が、炭素数5~29のアルキル基、ケイ素含有基およびフッ素含有基からなる群から選択される少なくとも1種の基である、光学フィルム。
 [2] 光学異方性層が、重合性液晶化合物の配向状態を固定化した層であり、
 配向状態が、ホモジニアス配向またはツイスト配向である、[1]に記載の光学フィルム。
 [3] 支持体が、セルロースアシレートフィルムである、[1]または[2]に記載の光学フィルム。
 [4] 界面活性剤が有する親水性基が、イオン性の親水性基である、[1]~[3]のいずれかに記載の光学フィルム。
 [5] 界面活性剤が有する親水性基が、アニオン性の親水性基である、[1]~[4]のいずれかに記載の光学フィルム。
 [6] 界面活性剤が、高分子化合物である、[1]~[5]のいずれかに記載の光学フィルム。
 [7] 界面活性剤が有する疎水性基が、炭素数12~18のアルキル基である、[1]~[6]のいずれかに記載の光学フィルム。
 [8] [1]に記載の支持体を作製する支持体作製工程と、
 支持体にラビング処理を施すラビング工程と、
 重合性液晶化合物を含有する光学異方性層形成用組成物を用いて、ラビング処理を施した支持体上に光学異方性層を形成する光学異方性層形成工程と、
 を有する、光学フィルムの製造方法。
 [9] 支持体作製工程が、[1]に記載の界面活性剤を含有するドープを流延する工程を有する、[8]に記載の光学フィルムの製造方法。
 [10] 支持体作製工程が、[1]に記載の界面活性剤および溶媒を含む組成物を、ポリマーフィルムの表面に染み込ませる工程を有する、[8]または[9]に記載の光学フィルムの製造方法。
 [11] [1]~[7]のいずれかに記載の光学フィルムと、偏光子とを有する、偏光板。
 [12] [1]~[7]のいずれかに記載の光学フィルムを有する、画像表示装置。
 [13] 液晶表示装置である、[12]に記載の画像表示装置。
 [14] 有機エレクトロルミネッセンス表示装置である、[12]に記載の画像表示装置。
[1] An optical film having a support and an optically anisotropic layer adjacent to each other,
The optically anisotropic layer is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound,
the support contains a surfactant having a hydrophilic group and a hydrophobic group,
An optical film in which the hydrophobic group is at least one group selected from the group consisting of an alkyl group having 5 to 29 carbon atoms, a silicon-containing group, and a fluorine-containing group.
[2] The optically anisotropic layer is a layer in which the orientation state of the polymerizable liquid crystal compound is fixed,
The optical film according to [1], wherein the orientation state is homogeneous orientation or twisted orientation.
[3] The optical film according to [1] or [2], wherein the support is a cellulose acylate film.
[4] The optical film according to any one of [1] to [3], wherein the hydrophilic group possessed by the surfactant is an ionic hydrophilic group.
[5] The optical film according to any one of [1] to [4], wherein the hydrophilic group possessed by the surfactant is an anionic hydrophilic group.
[6] The optical film according to any one of [1] to [5], wherein the surfactant is a polymer compound.
[7] The optical film according to any one of [1] to [6], wherein the hydrophobic group of the surfactant is an alkyl group having 12 to 18 carbon atoms.
[8] A support production step of producing the support according to [1],
a rubbing process of applying a rubbing treatment to the support;
an optically anisotropic layer forming step of forming an optically anisotropic layer on a rubbed support using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound;
A method for producing an optical film, comprising:
[9] The method for producing an optical film according to [8], wherein the support preparation step includes a step of casting a dope containing the surfactant according to [1].
[10] The optical film according to [8] or [9], wherein the support preparation step includes a step of impregnating the surface of the polymer film with the composition containing the surfactant and solvent according to [1]. Production method.
[11] A polarizing plate comprising the optical film according to any one of [1] to [7] and a polarizer.
[12] An image display device comprising the optical film according to any one of [1] to [7].
[13] The image display device according to [12], which is a liquid crystal display device.
[14] The image display device according to [12], which is an organic electroluminescence display device.
 本発明によれば、光学異方性層における液晶化合物の配向性が良好となり、かつ、輝点欠陥の発生が抑制された光学フィルムを提供することができる。
 また、本発明によれば、光学フィルムの製造方法、偏光板および画像表示装置を提供できる。
According to the present invention, it is possible to provide an optical film in which the alignment of the liquid crystal compound in the optically anisotropic layer is excellent and the occurrence of bright spot defects is suppressed.
Furthermore, according to the present invention, it is possible to provide a method for producing an optical film, a polarizing plate, and an image display device.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に制限されない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独で用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
The present invention will be described in detail below.
The following description of the components may be based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits.
In the present specification, each component may be used alone or in combination of two or more substances corresponding to each component. When two or more substances are used in combination for each component, the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
In addition, in this specification, "(meth)acrylate" is a notation representing "acrylate" or "methacrylate", "(meth)acrylic" is a notation representing "acrylic" or "methacrylic", and "(meth)acryloyl" is a notation representing "acryloyl" or "methacryloyl".
[光学フィルム]
 本発明の光学フィルムは、支持体と、光学異方性層とを隣接して有する。
 また、本発明の光学フィルムが有する光学異方性層は、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層である。
 また、本発明の光学フィルムが有する支持体は、親水性基および疎水性基を有する界面活性剤を含有しており、界面活性剤が有している疎水性基は、炭素数5~29のアルキル基、ケイ素含有基およびフッ素含有基からなる群から選択される少なくとも1種の基(以下、「特定疎水性基」とも略す。)である。なお、以下の説明においては、親水性基および特定疎水性基を有する界面活性剤を「特定界面活性剤」とも略す。
[Optical film]
The optical film of the present invention has a support and an optically anisotropic layer adjacent to each other.
Further, the optically anisotropic layer included in the optical film of the present invention is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound.
Further, the support of the optical film of the present invention contains a surfactant having a hydrophilic group and a hydrophobic group, and the hydrophobic group of the surfactant has 5 to 29 carbon atoms. It is at least one group selected from the group consisting of an alkyl group, a silicon-containing group, and a fluorine-containing group (hereinafter also abbreviated as "specific hydrophobic group"). In addition, in the following description, the surfactant having a hydrophilic group and a specific hydrophobic group is also abbreviated as "specific surfactant."
 本発明においては、上述した通り、特定界面活性剤を含有する支持体を用いることにより、光学異方性層における液晶化合物の配向性が良好となり、かつ、光学フィルムにおける輝点欠陥の発生を抑制できる。
 これらの効果が発現する理由は、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、特定界面活性剤を含有する支持体を用いることにより、支持体にラビング処理を施す際に用いるラビング布のパイルと支持体との摩擦が低減し、支持体から生じる屑の発塵量を低減できるため、輝点欠陥の発生を抑制できたと考えられる。
 また、特定界面活性剤が特定疎水性基を有していることにより、支持体の主成分との相溶性が保たれ、支持体表面に特定界面活性剤が均一に存在しつつ、支持体の表面が特定界面活性剤によって完全に覆われることなく、適度に露出した状態を形成することが可能なため、支持体上に形成される光学異方性層における液晶化合物の配向性が良好になったと考えられる。
 以下、本発明の光学フィルムが有する配向膜および光学異方性層について詳細に説明する。
In the present invention, as described above, by using a support containing a specific surfactant, the orientation of the liquid crystal compound in the optically anisotropic layer is improved, and the occurrence of bright spot defects in the optical film is suppressed. can.
The reason why these effects occur is not clear in detail, but the present inventors speculate as follows.
In other words, by using a support containing a specific surfactant, the friction between the pile of the rubbing cloth used when rubbing the support and the support is reduced, and the amount of dust generated from the support is reduced. It is thought that the occurrence of bright spot defects could be suppressed because the bright spot defects could be reduced.
In addition, since the specific surfactant has a specific hydrophobic group, compatibility with the main component of the support is maintained, and while the specific surfactant is uniformly present on the support surface, Since the surface is not completely covered with the specific surfactant and can be left in a moderately exposed state, the orientation of the liquid crystal compound in the optically anisotropic layer formed on the support is improved. It is thought that
Hereinafter, the alignment film and the optically anisotropic layer included in the optical film of the present invention will be explained in detail.
 〔支持体〕
 本発明の光学フィルムが有する支持体は、特定界面活性剤を含有する支持体である。
 ここで、本発明において、支持体とは、支持体の成分が含まれている基材をいい、例えば、後述する光学異方性層の形成時に、光学異方性層の成分の一部が支持体に染み込み、支持体の成分と光学異方性層の成分との混合層が形成された場合、混合層は、支持体に含まれる層である。
[Support]
The support possessed by the optical film of the present invention is a support containing a specific surfactant.
Here, in the present invention, the support refers to a base material containing the components of the support, and for example, when forming the optically anisotropic layer described later, some of the components of the optically anisotropic layer are When the mixture penetrates into the support and forms a mixed layer of the components of the support and the components of the optically anisotropic layer, the mixed layer is a layer included in the support.
 支持体の種類は特に制限されず、公知の支持体が使用できる。特に、透明支持体であることが好ましい。なお、透明支持体とは、可視光の透過率が60%以上である支持体を意図し、その透過率は80%以上が好ましく、90%以上がより好ましい。 The type of support is not particularly limited, and any known support can be used. In particular, a transparent support is preferred. Note that the transparent support is intended to be a support having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
 支持体としては、ポリマーフィルムが好ましい。
 ポリマーフィルムとしては、セルロースアシレートフィルム(例えば、セルローストリアセテートフィルム、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂フィルム、ポリエーテルスルホンフィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、ポリオレフィン、脂環式構造を有するポリマー(ノルボルネン系樹脂(アートン:商品名、JSR社製)、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))、などが挙げられる。
 これらのうち、支持体としては、光学異方性層における液晶化合物の配向性がより良好となる理由から、セルロースアシレートフィルムが好ましい。
 また、支持体は、剥離可能なものであってもよい。
A polymer film is preferred as the support.
Examples of polymer films include cellulose acylate films (e.g., cellulose triacetate films, cellulose diacetate films, cellulose acetate butyrate films, cellulose acetate propionate films), polyacrylic resin films such as polymethyl methacrylate, polyethylene, polypropylene, etc. Polyolefins, polyester resin films such as polyethylene terephthalate and polyethylene naphthalate, polyether sulfone films, polyurethane resin films, polyester films, polycarbonate films, polysulfone films, polyether films, polymethyl pentene films, polyether ketone films, ( Examples include meth) acrylonitrile film, polyolefin, polymers with alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation), amorphous polyolefin (Zeonex: trade name, manufactured by Nippon Zeon Corporation)), etc. It will be done.
Among these, cellulose acylate film is preferred as the support because it provides better orientation of the liquid crystal compound in the optically anisotropic layer.
Further, the support may be removable.
 支持体の厚みは、20~100μmであることが好ましく、25~60μmであることがより好ましい。 The thickness of the support is preferably 20 to 100 μm, more preferably 25 to 60 μm.
 <特定界面活性剤>
 支持体が含有している特定界面活性剤は、親水性基および特定疎水性基を有する界面活性剤である。
<Specific surfactant>
The specific surfactant contained in the support is a surfactant having a hydrophilic group and a specific hydrophobic group.
 (特定疎水性基)
 特定界面活性剤が有する特定疎水性基は、上述した通り、炭素数5~29のアルキル基、ケイ素含有基およびフッ素含有基からなる群から選択される少なくとも1種の基である。
(Specific hydrophobic group)
As mentioned above, the specific hydrophobic group possessed by the specific surfactant is at least one group selected from the group consisting of an alkyl group having 5 to 29 carbon atoms, a silicon-containing group, and a fluorine-containing group.
 上記アルキル基としては、例えば、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ヘキサデシル基(セチル基)、オクタデシル基、イコシル基、ドコシル基、テトラコシル基、ヘキサコシル基、ノナコシル基等が挙げられる。
 なお、上記アルキル基は、直鎖状のアルキル基であってもよく、分岐鎖状のアルキル基であってもよいが、直鎖状のアルキル基であることが好ましい。
Examples of the alkyl group include pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, hexadecyl group (cetyl group), Examples include octadecyl group, icosyl group, docosyl group, tetracosyl group, hexacosyl group, nonacosyl group, and the like.
In addition, although the said alkyl group may be a linear alkyl group and a branched alkyl group may be sufficient as it, it is preferable that it is a linear alkyl group.
 上記ケイ素含有基としては、例えば、下記式(S-1)で表される基が挙げられる。
 式(S-1)   -Si(Ra)x(Rb)y
 ここで、Raは、水酸基または加水分解性基を表す。Rbは、非加水分解性基を表す。xは1~3の整数を表し、yは0~2の整数を表し、x+y=3の関係を満たす。
 加水分解性基は、シラノール基を生成することができる基や、シロキサン縮合物を形成することができる基を表し、具体的には、ハロゲン基、アルコキシ基、アシルオキシ基、イソシアネート基などが挙げられる。なかでも、アルコキシ基(炭素数1~2が好ましい)が好ましく挙げられる。
 非加水分解性基としては、例えば、水素原子、アルキル基、アルケニル基、アルキニル基などの脂肪族炭化水素基や、アリール基などの芳香族炭化水素基、またはそれらを組み合わせた基などが挙げられる。
Examples of the silicon-containing group include a group represented by the following formula (S-1).
Formula (S-1) -Si(Ra)x(Rb)y
Here, Ra represents a hydroxyl group or a hydrolyzable group. Rb represents a non-hydrolyzable group. x represents an integer from 1 to 3, y represents an integer from 0 to 2, and the relationship x+y=3 is satisfied.
The hydrolyzable group represents a group that can generate a silanol group or a group that can form a siloxane condensate, and specifically includes a halogen group, an alkoxy group, an acyloxy group, an isocyanate group, etc. . Among these, an alkoxy group (preferably having 1 to 2 carbon atoms) is preferred.
Examples of the non-hydrolyzable group include a hydrogen atom, an aliphatic hydrocarbon group such as an alkyl group, an alkenyl group, and an alkynyl group, an aromatic hydrocarbon group such as an aryl group, or a combination thereof. .
 上記フッ素含有基としては、例えば、フッ素原子を含むアルキル基が挙げられ、具体的には、下記式(F-1)で表される基が好適に挙げられる。
 式(F-1)   -La-Cf
 ここで、Cfは、フッ素原子含有アルキル基を表す。フッ素原子含有アルキル基とは、フッ素原子を含むアルキル基を表し、パーフルオロアルキル基が好ましい。
 フッ素原子含有アルキル基の炭素数は特に限定されず、光学異方性層における液晶化合物の配向性がより良好となる理由から、1~30が好ましく、3~20がより好ましく、5~10がさらに好ましい。
 フッ素原子含有アルキル基に含まれるフッ素原子の数は特に限定されず、光学異方性層における液晶化合物の配向性がより良好となる理由から、1~30が好ましく、5~25がより好ましく、10~20がさらに好ましい。
 また、Laは、単結合または2価の連結基を表す。
 Laの一態様が表す2価の連結基としては、例えば、置換基を有していてもよい2価の炭化水素基、置換基を有していてもよい2価の複素環基、-O-、-S-、-N(Q)-、-CO-、または、これらを組み合わせた基が挙げられる。Qは、水素原子または置換基を表す。
 2価の炭化水素基としては、例えば、炭素数1~10のアルキレン基、炭素数1~10のアルケニレン基、および、炭素数1~10のアルキニレン基などの2価の脂肪族炭化水素基、アリーレン基などの2価の芳香族炭化水素基、が挙げられる。
 2価の複素環基としては、例えば、2価の芳香族複素環基が挙げられ、具体的には、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)などが挙げられる。
 また、これらを組み合わせた基としては、上述した、2価の炭化水素基、2価の複素環基、-O-、-S-、-N(Q)-、および、-CO-からなる群から選択される少なくとも2種以上を組み合わせた基が挙げられ、例えば、-O-2価の炭化水素基-、-2価の炭化水素基-O-、および、-2価の炭化水素基-N(Q)-などが挙げられる。
 Lとしては、置換基を有していてもよい炭素数1~10の直鎖状のアルキレン基、置換基を有していてもよい炭素数3~10の分岐鎖状のアルキレン基、置換基を有していてもよい炭素数3~10の環状のアルキレン基、置換基を有していてもよい炭素数6~12のアリーレン基、-O-、および、-N(Q)-からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基であることが好ましく、置換基を有していてもよい炭素数1~10の直鎖状のアルキレン基、置換基を有していてもよい炭素数3~10の環状のアルキレン基、-O-、および、-NH-からなる群から選択される少なくとも2以上の基を組み合わせた2価の連結基であることがより好ましい。
 なお、上述した2価の炭化水素基(アルキレン基などを含む)および2価の複素環基が有していてもよい置換基、ならびに、Qの一態様が表す置換基としては、例えば、ハロゲン原子、アルキル基、アルコキシ基、アリール基、アリールオキシ基、シアノ基、カルボキシ基、アルコキシカルボニル基、および、水酸基が挙げられる。
The fluorine-containing group may, for example, be an alkyl group containing a fluorine atom, and specifically, a suitable example is a group represented by the following formula (F-1).
Formula (F-1) -La-Cf
Here, Cf represents a fluorine atom-containing alkyl group. The fluorine atom-containing alkyl group represents an alkyl group containing a fluorine atom, and is preferably a perfluoroalkyl group.
The number of carbon atoms in the fluorine atom-containing alkyl group is not particularly limited, and is preferably 1 to 30, more preferably 3 to 20, and even more preferably 5 to 10, for the reason that the alignment of the liquid crystal compound in the optically anisotropic layer is improved.
The number of fluorine atoms contained in the fluorine atom-containing alkyl group is not particularly limited, and is preferably 1 to 30, more preferably 5 to 25, and even more preferably 10 to 20, because this improves the alignment of the liquid crystal compound in the optically anisotropic layer.
Furthermore, La represents a single bond or a divalent linking group.
Examples of the divalent linking group represented by one embodiment of La include a divalent hydrocarbon group which may have a substituent, a divalent heterocyclic group which may have a substituent, -O-, -S-, -N(Q)-, -CO-, or a combination thereof. Q represents a hydrogen atom or a substituent.
Examples of the divalent hydrocarbon group include divalent aliphatic hydrocarbon groups such as alkylene groups having 1 to 10 carbon atoms, alkenylene groups having 1 to 10 carbon atoms, and alkynylene groups having 1 to 10 carbon atoms, and divalent aromatic hydrocarbon groups such as arylene groups.
Examples of the divalent heterocyclic group include a divalent aromatic heterocyclic group, and specific examples thereof include a pyridylene group (pyridine-diyl group), a pyridazine-diyl group, an imidazole-diyl group, a thienylene group (thiophene-diyl group), and a quinolylene group (quinoline-diyl group).
Examples of groups combining these include groups combining at least two or more selected from the group consisting of the above-mentioned divalent hydrocarbon groups, divalent heterocyclic groups, -O-, -S-, -N(Q)-, and -CO-. Examples include -O-divalent hydrocarbon group-, -divalent hydrocarbon group -O-, and -divalent hydrocarbon group -N(Q)-.
L 1 is preferably a divalent linking group combining at least two or more groups selected from the group consisting of a linear alkylene group having 1 to 10 carbon atoms which may have a substituent, a branched alkylene group having 3 to 10 carbon atoms which may have a substituent, a cyclic alkylene group having 3 to 10 carbon atoms which may have a substituent, an arylene group having 6 to 12 carbon atoms which may have a substituent, -O-, and -N(Q)-, and more preferably a divalent linking group combining at least two or more groups selected from the group consisting of a linear alkylene group having 1 to 10 carbon atoms which may have a substituent, a cyclic alkylene group having 3 to 10 carbon atoms which may have a substituent, -O-, and -NH-.
In addition, examples of the substituent that the above-mentioned divalent hydrocarbon group (including an alkylene group) and divalent heterocyclic group may have, as well as the substituent represented by one embodiment of Q, include a halogen atom, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a cyano group, a carboxy group, an alkoxycarbonyl group, and a hydroxyl group.
 本発明においては、特定疎水性基は、炭素数5~29のアルキル基であることが好ましく、炭素数10~25のアルキル基であることがより好ましく、光学フィルムにおける輝点欠陥の発生がより抑制される理由から、炭素数12~18のアルキル基であることがさらに好ましい。 In the present invention, the specific hydrophobic group is preferably an alkyl group having 5 to 29 carbon atoms, more preferably an alkyl group having 10 to 25 carbon atoms. For the reason that it is suppressed, an alkyl group having 12 to 18 carbon atoms is more preferable.
 (親水性基)
 特定界面活性剤が有する親水性基特に限定されず、イオン性の親水性基(アニオン性の親水性基、カチオン性の親水性基、両性の親水性基)およびノニオン性の親水性基のいずれも用いることができる。
 アニオン性の親水性基としては、例えば、ヒドロキシ基、カルボキシ基、カルボン酸塩、スルホン酸基、スルホン酸塩、硫酸エステル塩、リン酸基、リン酸エステル塩などが挙げられる。
 カチオン性の親水性基としては、例えば、アミノ基、第4級アンモニウム塩などが挙げられる。
 ノニオン性の親水性基としては、エステル型、エーテル型、エステル・エーテル型、および、アルカノールアミド型のいずれであってもよく、エーテル型であることが好ましく、ポリオキシアルキレン基(例えば、ポリオキシエチレン基、ポリオキシプロピレン基、オキシエチレン基とオキシプロピレン基とがブロックまたはランダム結合したポリオキシアルキレン基など)がより好ましい。
(hydrophilic group)
The hydrophilic group possessed by the specific surfactant is not particularly limited, and both ionic hydrophilic groups (anionic hydrophilic groups, cationic hydrophilic groups, amphoteric hydrophilic groups) and nonionic hydrophilic groups can be used.
Examples of the anionic hydrophilic group include a hydroxy group, a carboxy group, a carboxylate, a sulfonic acid group, a sulfonate, a sulfate, a phosphoric acid group, and a phosphoric acid ester salt.
Examples of the cationic hydrophilic group include an amino group and a quaternary ammonium salt.
The nonionic hydrophilic group may be any of an ester type, an ether type, an ester-ether type, and an alkanolamide type, and is preferably an ether type, and more preferably a polyoxyalkylene group (e.g., a polyoxyethylene group, a polyoxypropylene group, a polyoxyalkylene group in which an oxyethylene group and an oxypropylene group are blocked or randomly bonded, etc.).
 このような親水性基のうち、光学異方性層における液晶化合物の配向性がより良好となり、かつ、光学フィルムにおける輝点欠陥の発生をより抑制できる理由(以下、「本発明の効果がより優れる理由」とも略す。)から、イオン性の親水性基であることが好ましく、アニオン性の親水性基であることがより好ましい。 Among these hydrophilic groups, the reason why the orientation of the liquid crystal compound in the optically anisotropic layer is better and the generation of bright spot defects in the optical film can be further suppressed (hereinafter referred to as "the effect of the present invention is better") (also abbreviated as "excellent reason"), an ionic hydrophilic group is preferable, and an anionic hydrophilic group is more preferable.
 本発明においては、特定界面活性剤は、低分子化合物であってもよく、高分子化合物であってもよい。
 ここで、「低分子化合物」とは、分子量が100以上2000未満の特定界面活性剤のことをいう。
 また、「高分子化合物」とは、分子量が2000以上の特定界面活性剤のことをいい、重量平均分子量(Mw)は、5000~40000であることが好ましく、8000~39000であることがより好ましく、10000~35000であることがさらに好ましい。重量平均分子量が10000以上であると、光学異方性層の形成時にムラが抑制され、重量平均分子量が40000以下であると、光学異方性層における液晶化合物の配向性がより良好となる。
In the present invention, the specific surfactant may be a low molecular compound or a high molecular compound.
Here, the term "low molecular compound" refers to a specific surfactant having a molecular weight of 100 or more and less than 2,000.
Furthermore, the term "polymer compound" refers to a specific surfactant with a molecular weight of 2000 or more, and the weight average molecular weight (Mw) is preferably 5000 to 40000, more preferably 8000 to 39000. , more preferably from 10,000 to 35,000. When the weight average molecular weight is 10,000 or more, unevenness is suppressed during formation of the optically anisotropic layer, and when the weight average molecular weight is 40,000 or less, the orientation of the liquid crystal compound in the optically anisotropic layer becomes better.
 また、本発明においては、特定界面活性剤は、本発明の効果がより優れる理由から、高分子化合物であることが好ましい。 Furthermore, in the present invention, the specific surfactant is preferably a polymer compound because the effects of the present invention are more excellent.
 特定界面活性剤のうち、低分子化合物としては、具体的には、例えば、ドデシル硫酸ナトリウム、ポリオキシエチレン(10)セチルエーテル、ポリオキシエチレン(20)ドコシルエーテル、テトラヘキシルアンモニウムブロミド、テトラ-n-オクチルアンモニウムブロミド、トリメチルステアリルアンモニウムブロミド、メリシン酸などが挙げられる。 Among the specific surfactants, specific examples of low molecular weight compounds include sodium dodecyl sulfate, polyoxyethylene (10) cetyl ether, polyoxyethylene (20) docosyl ether, tetrahexylammonium bromide, and tetra- Examples include n-octylammonium bromide, trimethylstearylammonium bromide, melisic acid, and the like.
 特定界面活性剤のうち、高分子化合物としては、例えば、(メタ)アクリル系ポリマーの側鎖に、上述した特定疎水性基および親水性基を有するポリマーが挙げられる。
 このようなポリマーとしては、上述した特定疎水性基を有する側鎖(以下、「疎水性パート」とも略す。)と、上述した親水性基を有する側鎖(以下、「親水性パート」とも略す。)とを別々の繰り返し単位に有する共重合体が好ましい。
 ここで、疎水性パートは、上述した特定疎水性基を有するものであれば特に限定されないが、主鎖側にポリオキシアルキレン基を連結基として有し、末端側に炭素数12~22のアルキル基を有するものが好ましい。
 また、親水性パートは、上述した親水性基を有するものであれば特に限定されないが、ポリオキシアルキレン基を有する側鎖であることが好ましく、ポリオキシエチレン基を有する側鎖であることがより好ましい。
Among the specific surfactants, examples of high molecular compounds include polymers having the above-mentioned specific hydrophobic group and hydrophilic group in the side chains of (meth)acrylic polymers.
Such polymers include a side chain having the above-mentioned specific hydrophobic group (hereinafter also abbreviated as "hydrophobic part") and a side chain having the above-mentioned hydrophilic group (hereinafter also abbreviated as "hydrophilic part"). ) in separate repeating units is preferred.
Here, the hydrophobic part is not particularly limited as long as it has the above-mentioned specific hydrophobic group, but it has a polyoxyalkylene group as a linking group on the main chain side and an alkyl group having 12 to 22 carbon atoms on the terminal side. Those having groups are preferred.
Further, the hydrophilic part is not particularly limited as long as it has the above-mentioned hydrophilic group, but it is preferably a side chain having a polyoxyalkylene group, more preferably a side chain having a polyoxyethylene group. preferable.
 このような疎水性パートを形成するモノマーとしては、例えば、以下に示すものが挙げられる。なお、下記式中、nは、2~50の整数を表す。
Examples of monomers that form such a hydrophobic part include those shown below. In addition, in the following formula, n represents an integer of 2 to 50.
 また、このような親水性パートを形成するモノマーとしては、例えば、以下に示すものが挙げられる。なお、下記式中、nは、2~50の整数を表す。
Furthermore, examples of monomers that form such a hydrophilic part include those shown below. In addition, in the following formula, n represents an integer of 2 to 50.
 本発明においては、支持体に含まれる特定界面活性剤の含有量は、支持体の全質量に対して0.1~20質量%であることが好ましく、0.2~10質量%であることがより好ましく、0.3~5質量%であることがさらに好ましい。 In the present invention, the content of the specific surfactant contained in the support is preferably 0.1 to 20% by mass, and preferably 0.2 to 10% by mass based on the total mass of the support. is more preferable, and even more preferably 0.3 to 5% by mass.
 また、本発明においては、支持体に含まれる特定界面活性剤の少なくとも一部は、支持体の光学異方性層側の表面から光学異方性層の厚みの10%までの領域(以下、「表層領域」と略す。)に存在していることが好ましい。
 ここで、支持体の表層領域における特定界面活性剤の存在は、例えば、飛行時間型二次イオン質量分析法(TOF-SIMS)により確認することができる。なお、TOF-SIMS法は、日本表面科学会編「表面分析技術選書 2次イオン質量分析法」丸善株式会社(1999年発行)に記載されている方法を採用することができる。
 具体的には、支持体の光学異方性層側の界面から、イオンビームの照射とTOF-SIMSでの測定を繰り返すことで分析する。なお、イオンビームの照射とTOF-SIMSでの測定は、表面から厚み方向に1~2nmまでの領域(以下、「表面領域」)の成分分析を行った後、さらに厚み方向に1~数100nm掘り進んで、次の表面領域の成分分析を行う一連の操作を繰り返す。
 そして、支持体の厚み方向における特定界面活性剤の分布は、親水性基および特定疎水性基に由来する二次イオン強度を測定することで分析する。
 イオンビームの種類としては、例えば、アルゴンガスクラスターイオン銃(Ar-GCIB銃)によるイオンビームが挙げられる。
Furthermore, in the present invention, at least a part of the specific surfactant contained in the support is contained in a region (hereinafter referred to as (abbreviated as "surface layer region") is preferable.
Here, the presence of the specific surfactant in the surface layer region of the support can be confirmed by, for example, time-of-flight secondary ion mass spectrometry (TOF-SIMS). As the TOF-SIMS method, the method described in "Surface Analysis Technology Selection - Secondary Ion Mass Spectrometry" edited by the Japan Surface Science Society, Maruzen Co., Ltd. (published in 1999) can be adopted.
Specifically, analysis is performed by repeating ion beam irradiation and TOF-SIMS measurement from the interface on the optically anisotropic layer side of the support. In addition, ion beam irradiation and TOF-SIMS measurements are performed after component analysis of a region from the surface to 1 to 2 nm in the thickness direction (hereinafter referred to as the "surface region"), and then 1 to several hundred nm in the thickness direction. Dig deeper and repeat the series of operations to analyze the composition of the next surface area.
Then, the distribution of the specific surfactant in the thickness direction of the support is analyzed by measuring the secondary ion strength derived from the hydrophilic group and the specific hydrophobic group.
Examples of the type of ion beam include an ion beam using an argon gas cluster ion gun (Ar-GCIB gun).
 〔光学異方性層〕
 本発明の光学フィルムが有する光学異方性層は、上述した支持体に隣接して設けられる層であり、本発明においては、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層である。より具体的には、後述する本発明の光学フィルムの製造方法の光学異方性層形成工程で詳述するように、光学異方性層形成用組成物を塗布して形成される塗膜中の重合性液晶化合物を配向させて、その状態を固定することにより形成された層であることが好ましく、この場合、層となった後はもはや液晶性を示す必要はない。
[Optical anisotropic layer]
The optically anisotropic layer of the optical film of the present invention is a layer provided adjacent to the above-mentioned support, and in the present invention, it is a layer formed by using an optically anisotropic layer-forming composition containing a polymerizable liquid crystal compound. More specifically, as described in detail in the optically anisotropic layer-forming step of the optically anisotropic layer-forming method of the present invention described later, it is preferable that the layer is formed by orienting the polymerizable liquid crystal compound in the coating film formed by applying the optically anisotropic layer-forming composition and fixing the state, and in this case, it is no longer necessary to show liquid crystallinity after becoming a layer.
 <重合性液晶化合物>
 光学異方性層形成用組成物に含まれる重合性液晶化合物とは、重合性基を有する液晶化合物である。
 ここで、重合性基は、特に限定されないが、ラジカル重合またはカチオン重合可能な重合性基が好ましい。
 ラジカル重合性基としては、公知のラジカル重合性基を用いることができ、好適なものとして、アクリロイルオキシ基またはメタクリロイルオキシ基を挙げることができる。この場合、重合速度はアクリロイルオキシ基が一般的に速いことが知られており、生産性向上の観点からアクリロイルオキシ基が好ましいが、メタクリロイルオキシ基も重合性基として同様に使用することができる。
 カチオン重合性基としては、公知のカチオン重合性基を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などを挙げることができる。中でも、脂環式エーテル基、または、ビニルオキシ基が好適であり、エポキシ基、オキセタニル基、または、ビニルオキシ基が特に好ましい。
 特に好ましい重合性基の例としては、下記式(P-1)~(P-20)のいずれかで表される重合性基が挙げられる。
<Polymerizable liquid crystal compound>
The polymerizable liquid crystal compound contained in the composition for forming an optically anisotropic layer is a liquid crystal compound having a polymerizable group.
Here, the polymerizable group is not particularly limited, but preferably a polymerizable group capable of radical polymerization or cationic polymerization.
As the radically polymerizable group, a known radically polymerizable group can be used, and preferred examples include an acryloyloxy group or a methacryloyloxy group. In this case, it is known that an acryloyloxy group generally has a high polymerization rate, and an acryloyloxy group is preferred from the viewpoint of improving productivity, but a methacryloyloxy group can also be used as a polymerizable group.
As the cationic polymerizable group, a known cationic polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro-orthoester group, and a vinyloxy Examples include groups. Among these, an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is particularly preferred.
Particularly preferred examples of polymerizable groups include polymerizable groups represented by any of the following formulas (P-1) to (P-20).
 重合性液晶化合物は特に限定されず、例えば、ホメオトロピック配向、ホモジニアス配向、ツイスト配向、ハイブリッド配向およびコレステリック配向のいずれかの配向が可能な化合物が挙げられる。
 ここで、一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプとに分類できる。さらに、それぞれ低分子と高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物(円盤状液晶化合物)が好ましい。また、モノマーであるか、重合度が100未満の比較的低分子量な液晶化合物が好ましい。
The polymerizable liquid crystal compound is not particularly limited, and includes, for example, a compound capable of homeotropic alignment, homogeneous alignment, twisted alignment, hybrid alignment, and cholesteric alignment.
Generally, liquid crystal compounds can be classified into rod-like types and disc-like types based on their shapes. Furthermore, there are low-molecular and high-molecular types, respectively. Polymers generally refer to those with a degree of polymerization of 100 or more (Polymer Physics/Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used, but a rod-like liquid crystal compound or a discotic liquid crystal compound (discotic liquid crystal compound) is preferable. Further, a monomer or a relatively low molecular weight liquid crystal compound having a degree of polymerization of less than 100 is preferable.
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1または特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]または特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましい。 As the rod-shaped liquid crystal compound, for example, those described in claim 1 of Japanese Patent Publication No. 11-513019 or paragraphs [0026] to [0098] of JP-A-2005-289980 are preferable, and as the discotic liquid crystal compound, For example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-244038 are preferred.
 上記重合性液晶化合物として、逆波長分散性の液晶化合物を用いることができる。
 ここで、本明細書において「逆波長分散性」の液晶化合物とは、これを用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
As the polymerizable liquid crystal compound, a reverse wavelength dispersion liquid crystal compound can be used.
Here, in this specification, a liquid crystal compound with "reverse wavelength dispersion" refers to the in-plane retardation (Re) value measured at a specific wavelength (visible light range) of a retardation film produced using this compound. In other words, as the measurement wavelength becomes larger, the Re value becomes the same or becomes higher.
 逆波長分散性の液晶化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に限定されず、例えば、特開2008-297210号公報に記載の一般式(I)で表される化合物(特に、段落[0034]~[0039]に記載の化合物)、特開2010-084032号公報に記載の一般式(1)で表される化合物(特に、段落[0067]~[0073]に記載の化合物)、および、特開2016-081035号公報に記載の一般式(1)で表される化合物(特に、段落[0043]~[0055]に記載の化合物)が挙げられる。
 さらに、特開2011-006360号公報の段落[0027]~[0100]、特開2011-006361号公報の段落[0028]~[0125]、特開2012-207765号公報の段落[0034]~[0298]、特開2012-077055号公報の段落[0016]~[0345]、WO12/141245号公報の段落[0017]~[0072]、WO12/147904号公報の段落[0021]~[0088]、WO14/147904号公報の段落[0028]~[0115]に記載の化合物が挙げられる。
The reverse wavelength dispersion liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersion film as described above. (especially the compounds described in paragraphs [0034] to [0039]), the compounds represented by the general formula (1) described in JP-A-2010-084032 (especially the compounds described in paragraphs [0067] to [0073]) ), and the compound represented by the general formula (1) described in JP-A-2016-081035 (particularly the compounds described in paragraphs [0043] to [0055]).
Furthermore, paragraphs [0027] to [0100] of JP2011-006360, paragraphs [0028] to [0125] of JP2011-006361, and paragraphs [0034] to [0034] of JP2012-207765. 0298], paragraphs [0016] to [0345] of JP2012-077055, paragraphs [0017] to [0072] of WO12/141245, paragraphs [0021] to [0088] of WO12/147904, Examples include compounds described in paragraphs [0028] to [0115] of WO14/147904.
 <重合開始剤>
 光学異方性層形成用組成物は、重合開始剤を含有していることが好ましい。
 重合開始剤としては、上述した配向膜形成用組成物において説明したものが挙げられる。
<Polymerization initiator>
The composition for forming an optically anisotropic layer preferably contains a polymerization initiator.
Examples of the polymerization initiator include those explained in connection with the composition for forming an alignment film mentioned above.
 <溶媒>
 光学異方性層形成用組成物は、光学異方性層を形成する際の作業性等の観点から、溶媒を含有していることが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、および、シクロヘキサノン)、エーテル類(例えば、ジオキサン、および、テトラヒドロフラン)、脂肪族炭化水素類(例えば、ヘキサン)、脂環式炭化水素類(例えば、シクロヘキサン)、芳香族炭化水素類(例えば、トルエン、キシレン、および、トリメチルベンゼン)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、および、クロロトルエン)、エステル類(例えば、酢酸メチル、酢酸エチル、および、酢酸ブチル)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、および、シクロヘキサノール)、セロソルブ類(例えば、メチルセロソルブ、および、エチルセロソルブ)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシド)、アミド類(例えば、ジメチルホルムアミド、および、ジメチルアセトアミド)が挙げられる。
<Solvent>
The composition for forming an optically anisotropic layer preferably contains a solvent from the viewpoint of workability when forming an optically anisotropic layer.
Examples of solvents include ketones (e.g., acetone, 2-butanone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone), ethers (e.g., dioxane, and tetrahydrofuran), aliphatic hydrocarbons (e.g., hexane), cycloaliphatic hydrocarbons (e.g. cyclohexane), aromatic hydrocarbons (e.g. toluene, xylene, and trimethylbenzene), halogenated carbons (e.g. dichloromethane, dichloroethane, dichlorobenzene, and chloro toluene), esters (e.g. methyl acetate, ethyl acetate, and butyl acetate), water, alcohols (e.g. ethanol, isopropanol, butanol, and cyclohexanol), cellosolves (e.g. methyl cellosolve, and ethyl cellosolve), cellosolve acetates, sulfoxides (eg, dimethyl sulfoxide), amides (eg, dimethylformamide, and dimethylacetamide).
 <レベリング剤>
 光学異方性層形成用組成物は、光学異方性層の表面を平滑に保ち、配向制御を容易にする観点から、レベリング剤を含むことが好ましい。
 このようなレベリング剤としては、添加量に対するレベリング効果が高い理由から、フッ素系レベリング剤またはケイ素系レベリング剤が好ましく、泣き出し(ブルーム、ブリード)を起こしにくい点から、フッ素系レベリング剤がより好ましい。
 レベリング剤としては、例えば、特開2007-069471号公報の[0079]~[0102]段落の記載に記載された化合物、特開2013-047204号公報に記載された一般式(I)で表される化合物(特に[0020]~[0032]段落に記載された化合物)、特開2012-211306号公報に記載された一般式(I)で表される化合物(特に[0022]~[0029]段落に記載された化合物)、特開2002-129162号公報に記載された一般式(I)で表される液晶配向促進剤(特に[0076]~[0078]および[0082]~[0084]段落に記載された化合物)、ならびに、特開2005-099248号公報に記載された一般式(I)、(II)および(III)で表される化合物(特に[0092]~[0096]段落に記載された化合物)等が挙げられる。なお、レベリング剤は、後述する配向制御剤としての機能を兼ね備えてもよい。
<Leveling agent>
The composition for forming an optically anisotropic layer preferably contains a leveling agent from the viewpoint of keeping the surface of the optically anisotropic layer smooth and facilitating orientation control.
As such a leveling agent, a fluorine-based leveling agent or a silicon-based leveling agent is preferable because it has a high leveling effect with respect to the amount added, and a fluorine-based leveling agent is more preferable because it is less likely to cause weeping (bloom, bleed). .
Examples of the leveling agent include compounds described in paragraphs [0079] to [0102] of JP-A No. 2007-069471, and compounds represented by the general formula (I) described in JP-A No. 2013-047204. (especially the compounds described in paragraphs [0020] to [0032]), compounds represented by the general formula (I) described in JP-A-2012-211306 (especially the compounds described in paragraphs [0022] to [0029]) (compounds described in JP-A No. 2002-129162), liquid crystal alignment promoters represented by general formula (I) described in JP-A No. 2002-129162 (particularly in paragraphs [0076] to [0078] and [0082] to [0084] compounds represented by general formulas (I), (II) and (III) described in JP-A No. 2005-099248 (particularly those described in paragraphs [0092] to [0096] compounds), etc. Note that the leveling agent may also have a function as an alignment control agent, which will be described later.
 <配向制御剤>
 光学異方性層形成用組成物は、必要に応じて、配向制御剤を含んでいてもよい。
 配向制御剤により、ホモジニアス配向の他、ホメオトロピック配向、傾斜配向、ツイスト配向、ハイブリッド配向、およびコレステリック配向等の種々の配向状態を形成でき、また、特定の配向状態をより均一且つより精密に制御して実現できる。
<Orientation control agent>
The composition for forming an optically anisotropic layer may contain an alignment control agent, if necessary.
By using an orientation control agent, various orientation states such as homogeneous orientation, homeotropic orientation, tilted orientation, twisted orientation, hybrid orientation, and cholesteric orientation can be formed, and specific orientation states can be controlled more uniformly and more precisely. It can be realized by
 ホモジニアス配向を促進する配向制御剤としては、例えば、低分子の配向制御剤、および、高分子の配向制御剤を用いることができる。
 低分子の配向制御剤としては、例えば、特開2002-20363号公報の[0009]~[0083]段落、特開2006-106662号公報の[0111]~[0120]段落、および、特開2012-211306号公報の[0021]~[0029]段落の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 また、高分子の配向制御剤としては、例えば、特開2004-198511号公報の[0021]~[0057]段落、および、特開2006-106662号公報の[0121]~[0167]段落を参酌でき、これらの内容は本願明細書に組み込まれる。
As the alignment control agent that promotes homogeneous alignment, for example, a low-molecular alignment control agent and a polymeric alignment control agent can be used.
Examples of low-molecular orientation control agents include paragraphs [0009] to [0083] of JP-A No. 2002-20363, paragraphs [0111] to [0120] of JP-A No. 2006-106662, and paragraphs [0111] to [0120] of JP-A No. 2006-106662, and JP-A No. 2012-2012. The descriptions in paragraphs [0021] to [0029] of Publication No.-211306 can be referred to, and the contents thereof are incorporated into the present specification.
For polymer alignment control agents, please refer to paragraphs [0021] to [0057] of JP-A No. 2004-198511 and paragraphs [0121] to [0167] of JP-A No. 2006-106662, for example. and the contents thereof are incorporated herein.
 また、ホメオトロピック配向を形成または促進する配向制御剤としては、例えば、ボロン酸化合物、およびオニウム塩化合物が挙げられる。この配向制御剤としては、特開2008-225281号公報の[0023]~[0032]段落、特開2012-208397号公報の[0052]~[0058]段落、特開2008-026730号公報の[0024]~[0055]段落、および、特開2016-193869号公報の[0043]~[0055]段落に記載された化合物を参酌でき、これらの内容は本願明細書に組み込まれる。 Furthermore, examples of the alignment control agent that forms or promotes homeotropic alignment include boronic acid compounds and onium salt compounds. Examples of this alignment control agent include paragraphs [0023] to [0032] of JP-A No. 2008-225281, paragraphs [0052]-[0058] of JP-A No. 2012-208397, and paragraphs [0052] to [0058] of JP-A No. 2008-026730. The compounds described in paragraphs [0024] to [0055] and paragraphs [0043] to [0055] of JP-A-2016-193869 can be referred to, and the contents thereof are incorporated into the present specification.
 一方、コレステリック配向は、光学異方性層形成用組成物にキラル剤を加えることにより実現でき、そのキラル性の向きによりコレステリック配向の旋回方向を制御できる。
 なお、キラル剤の配向規制力に応じてコレステリック配向のピッチを制御してもよい。
On the other hand, cholesteric alignment can be achieved by adding a chiral agent to the composition for forming an optically anisotropic layer, and the direction of rotation of the cholesteric alignment can be controlled depending on the direction of the chirality.
Note that the pitch of cholesteric alignment may be controlled depending on the alignment regulating force of the chiral agent.
 光学異方性層形成用組成物が配向制御剤を含む場合の含有量は、組成物中の全固形分質量に対して0.01~10質量%が好ましく、0.05~5質量%がより好ましい。含有量がこの範囲であると、望む配向状態を実現しつつ、析出、相分離、および配向欠陥等が抑制され、均一で透明性の高い硬化物を得ることができる。 When the composition for forming an optically anisotropic layer contains an alignment control agent, the content is preferably 0.01 to 10% by mass, and 0.05 to 5% by mass based on the total solid mass in the composition. More preferred. When the content is within this range, precipitation, phase separation, orientation defects, etc. can be suppressed while realizing a desired orientation state, and a uniform and highly transparent cured product can be obtained.
 <他の成分>
 光学異方性層形成用組成物は、上述した成分以外の他の成分を含んでいてもよい。他の成分としては、例えば、界面活性剤、チルト角制御剤、配向助剤、可塑剤、および、架橋剤が挙げられる。
<Other ingredients>
The composition for forming an optically anisotropic layer may contain components other than those mentioned above. Other components include, for example, surfactants, tilt angle control agents, alignment aids, plasticizers, and crosslinking agents.
 光学異方性層は、上述した光学異方性層形成用組成物を用いて形成された膜であるが、その製造手順については後述する本発明の光学フィルムの製造方法の光学異方性層形成工程において詳述する。 The optically anisotropic layer is a film formed using the composition for forming an optically anisotropic layer described above, and the manufacturing procedure thereof will be described later in the optically anisotropic layer of the method for manufacturing an optical film of the present invention. This will be explained in detail in the forming process.
 光学異方性層の厚みは特に制限されないが、装置の薄型化の点で、0.7~2.5μmが好ましく、0.9~2.2μmがより好ましい。 The thickness of the optically anisotropic layer is not particularly limited, but from the viewpoint of making the device thinner, it is preferably 0.7 to 2.5 μm, more preferably 0.9 to 2.2 μm.
 光学異方性層における重合性液晶化合物の配向状態としては、ホモジニアス配向(水平配向)、ホメオトロピック配向(垂直配向)、傾斜配向、およびツイスト配向のいずれの状態であってもよい。
 なかでも、光学異方性層における液晶化合物の配向性がより良好となる理由から、光学異方性層が、重合性液晶化合物のホモジニアス配向またはツイスト配向の状態を固定化した層であることが好ましい。
 なお、本明細書において「ホモジニアス配向」とは、光学異方性層の主面と、重合性液晶化合物の長軸方向とが平行であることをいう。なお、厳密に平行であることを要求するものではなく、本明細書では、重合性液晶化合物の長軸方向と光学異方性層の主面とのなす角度が10°未満の配向であることを意味するものとする。
 光学異方性層において、重合性液晶化合物の長軸方向と光学異方性層の主面とのなす角度は、0~5°が好ましく、0~3°がより好ましく、0~2°がさらに好ましい。
The alignment state of the polymerizable liquid crystal compound in the optically anisotropic layer may be any of homogeneous alignment (horizontal alignment), homeotropic alignment (vertical alignment), tilted alignment, and twisted alignment.
In particular, it is preferable that the optically anisotropic layer is a layer in which the homogeneous orientation or twisted orientation of the polymerizable liquid crystal compound is fixed because the orientation of the liquid crystal compound in the optically anisotropic layer is better. preferable.
Note that in this specification, "homogeneous alignment" means that the main surface of the optically anisotropic layer and the long axis direction of the polymerizable liquid crystal compound are parallel. Note that it is not required that they be strictly parallel, and in this specification, the orientation is such that the angle between the long axis direction of the polymerizable liquid crystal compound and the main surface of the optically anisotropic layer is less than 10°. shall mean.
In the optically anisotropic layer, the angle between the long axis direction of the polymerizable liquid crystal compound and the main surface of the optically anisotropic layer is preferably 0 to 5°, more preferably 0 to 3°, and preferably 0 to 2°. More preferred.
 光学異方性層は、ポジティブAプレートまたはポジティブCプレートであることがより好ましく、ポジティブAプレートであることがさらに好ましい。 The optically anisotropic layer is more preferably a positive A plate or a positive C plate, and even more preferably a positive A plate.
 ここで、ポジティブAプレート(正のAプレート)とポジティブCプレート(正のCプレート)は以下のように定義される。
 フィルム面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ポジティブCプレートは式(C1)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ポジティブCプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(C1)  nz>nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。
 この「実質的に同一」について、ポジティブAプレートでは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmである場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmである場合も「nx≒nz」に含まれる。また、ポジティブCプレートでは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmである場合も「nx≒ny」に含まれる。
Here, the positive A plate (positive A plate) and the positive C plate (positive C plate) are defined as follows.
The refractive index in the in-plane slow axis direction (direction where the in-plane refractive index is maximum) is nx, the refractive index in the direction orthogonal to the in-plane slow axis is ny, and the refraction in the thickness direction is When the ratio is nz, the positive A plate satisfies the relationship of formula (A1), and the positive C plate satisfies the relationship of formula (C1). Note that the positive A plate has a positive Rth value, and the positive C plate has a negative Rth value.
Formula (A1) nx>ny≒nz
Formula (C1) nz>nx≒ny
Note that the above "≒" includes not only the case where both are completely the same, but also the case where both are substantially the same.
Regarding this "substantially the same", for the positive A plate, for example, when (ny-nz) x d (where d is the thickness of the film) is -10 to 10 nm, preferably -5 to 5 nm. is also included in "ny≈nz", and a case where (nx-nz)×d is -10 to 10 nm, preferably -5 to 5 nm is also included in "nx≈nz". In addition, for positive C plates, for example, "nx≒ny" also includes cases where (nx - ny) x d (where d is the thickness of the film) is 0 to 10 nm, preferably 0 to 5 nm. .
 光学異方性層がポジティブAプレートである場合、λ/4板として機能する観点から、Re(550)が100~180nmであることが好ましく、120~160nmであることがより好ましく、130~150nmであることがさらに好ましく、130~145nmであること特に好ましい。
 ここで、「λ/4板」とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
When the optically anisotropic layer is a positive A plate, from the viewpoint of functioning as a λ/4 plate, Re(550) is preferably 100 to 180 nm, more preferably 120 to 160 nm, and 130 to 150 nm. More preferably, the wavelength is from 130 to 145 nm, particularly preferably from 130 to 145 nm.
Here, the "λ/4 plate" is a plate that has a λ/4 function, specifically, the function of converting linearly polarized light of a certain wavelength into circularly polarized light (or from circularly polarized light to linearly polarized light). It is a board with
[光学フィルムの製造方法]
 本発明の光学フィルムの製造方法は、上述した特定界面活性剤を含有する支持体を作製する支持体作製工程と、支持体にラビング処理を施すラビング工程と、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて、ラビング処理を施した支持体上に光学異方性層を形成する光学異方性層形成工程とを有する製造方法である。
 以下、各工程の手順について詳述する。
[Method for manufacturing optical film]
The method for producing an optical film of the present invention includes a support production step of producing a support containing the above-mentioned specific surfactant, a rubbing step of subjecting the support to a rubbing treatment, and an optical film production method containing a polymerizable liquid crystal compound. This manufacturing method includes an optically anisotropic layer forming step of forming an optically anisotropic layer on a support that has been subjected to a rubbing treatment using a composition for forming an optically anisotropic layer.
Below, the procedure of each step will be explained in detail.
 〔支持体作製工程〕
 支持体作製工程は、上述した特定界面活性剤を含有する支持体を作製する工程である。
 ここで、本工程で作製される支持体は、本発明の光学フィルムが有する支持体として説明したものである。
[Support production process]
The support preparation step is a step of preparing a support containing the above-mentioned specific surfactant.
Here, the support produced in this step is the one described as a support included in the optical film of the present invention.
 支持体を作製する方法は特に限定されないが、例えば、上述した特定界面活性剤を含有するドープを流延する工程を有する方法が挙げられる。
 なお、ドープの調製および流延する方法は、ドープに上述した特定界面活性剤を配合させる以外は、従来公知の方法を適宜採用することができる。
The method for producing the support is not particularly limited, but includes, for example, a method including a step of casting a dope containing the above-mentioned specific surfactant.
In addition, as for the method of preparing and casting the dope, conventionally known methods can be suitably employed, except for incorporating the above-mentioned specific surfactant into the dope.
 また、支持体を作製する他の方法としては、上述した特定界面活性剤および溶媒を含む組成物を、ポリマーフィルムの表面に染み込ませる工程を有する方法が挙げられる。
 ここで、上述した特定界面活性剤とともに用いる溶媒としては、例えば、光学異方性層形成用組成物において説明した溶媒が挙げられる。なお、使用する溶剤は、使用する基材の染み込みやすさ等の性質に合わせて適宜選択することができる。
 また、ポリマーフィルムとしては、例えば、本発明の光学フィルムが有する支持体において説明したポリマーフィルムと同様のものが挙げられ、なかでも、セルロースアシレートフィルムを用いることが好ましい。
 また、ポリマーフィルム上に組成物を染み込ませる方法は特に制限されず、例えば、塗布する方法挙げられ、具体的には、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法などが挙げられる。
Other methods for producing the support include a method that includes a step of impregnating the surface of a polymer film with a composition containing the above-mentioned specific surfactant and solvent.
Here, examples of the solvent used together with the above-mentioned specific surfactant include the solvents described in the composition for forming an optically anisotropic layer. The solvent used can be appropriately selected depending on the properties of the base material used, such as the ease with which it penetrates.
Further, examples of the polymer film include those similar to those described in connection with the support included in the optical film of the present invention, and among them, it is preferable to use a cellulose acylate film.
Further, the method of impregnating the composition onto the polymer film is not particularly limited, and examples thereof include coating methods, and specifically, wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, and die coating method.
 〔ラビング工程〕
 ラビング工程は、上述した特定界面活性剤を含有する支持体にラビング処理を施す工程である。
 ここで、ラビング処理は、液晶表示装置の液晶配向処理工程として広く採用されている処理方法を適用することができる。すなわち、配向膜の表面を、紙やガーゼ、フェルト、ゴム、ナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法が用いられる。
[Rubbing process]
The rubbing step is a step in which a support containing the above-mentioned specific surfactant is subjected to a rubbing treatment.
Here, for the rubbing treatment, a treatment method that is widely adopted as a liquid crystal alignment treatment process for liquid crystal display devices can be applied. That is, a method is used to obtain orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber, or the like.
 〔光学異方性層形成工程〕
 光学異方性層形成工程は、光学異方性層形成用組成物を用いて、ラビング処理を施した支持体上に光学異方性層を形成する工程である。
[Optically anisotropic layer formation process]
The optically anisotropic layer forming step is a step of forming an optically anisotropic layer on a rubbed support using an optically anisotropic layer forming composition.
 光学異方性層を形成する具体的な手順の一態様としては、支持体上に光学異方性層形成用組成物を塗布して、支持体上に塗膜を形成して、塗膜中の重合性液晶化合物を配向させた後、塗膜に対して硬化処理を施して光学異方性層を形成する方法が挙げられる。
 支持体上に光学異方性層形成用組成物を塗布する方法としては、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法などが挙げられる。
 光学異方性層形成用組成物を支持体上に塗布後、必要に応じて、光学異方性層形成用組成物が塗布された支持体に対して乾燥処理を施して、溶媒の除去を実施してもよい。
One embodiment of the specific procedure for forming an optically anisotropic layer is to apply a composition for forming an optically anisotropic layer onto a support, form a coating film on the support, and apply the composition in the coating film. After aligning the polymerizable liquid crystal compound, the coating film may be subjected to a curing treatment to form an optically anisotropic layer.
Examples of methods for applying the composition for forming an optically anisotropic layer onto the support include wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, and die coating method. .
After applying the composition for forming an optically anisotropic layer onto the support, if necessary, the support coated with the composition for forming an optically anisotropic layer is subjected to a drying treatment to remove the solvent. May be implemented.
 塗膜中の重合性液晶化合物を配向させる方法(配向処理)は特に制限されず、例えば、塗膜を加熱する方法、および、室温により塗膜を乾燥させる方法が挙げられる。配向処理で形成される液晶相は、サーモトロピック性液晶化合物の場合、一般に温度の変化により転移させることができる。リオトロピック性液晶化合物の場合には、溶媒量などの組成比によっても転移させることができる。
 なお、塗膜を加熱する場合の条件は特に制限されないが、加熱温度としては50~150℃が好ましく、加熱時間としては10秒間~5分間が好ましい。
The method for orienting the polymerizable liquid crystal compound in the coating film (orientation treatment) is not particularly limited, and examples thereof include a method of heating the coating film and a method of drying the coating film at room temperature. In the case of a thermotropic liquid crystal compound, the liquid crystal phase formed by the alignment treatment can generally be transformed by a change in temperature. In the case of a lyotropic liquid crystal compound, the transition can also be caused by changing the composition ratio such as the amount of solvent.
Note that the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 150°C, and the heating time is preferably 10 seconds to 5 minutes.
 次に、重合性液晶化合物が配向している塗膜に対して硬化処理を施して、光学異方性層を形成する。
 硬化処理の方法は特に制限されず、光照射処理および加熱処理が挙げられ、光照射よりが好ましい。
 露光の際の光の種類は特に制限されないが、紫外光が好ましい。
 露光の際の照射量は特に制限されず、10mJ/cm~50J/cmが好ましく、20mJ/cm~5J/cmがより好ましい。また、重合反応を促進するため、加熱条件下で実施してもよい。
Next, the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment to form an optically anisotropic layer.
The method of curing treatment is not particularly limited, and includes light irradiation treatment and heat treatment, with light irradiation being more preferred.
The type of light used during exposure is not particularly limited, but ultraviolet light is preferred.
The irradiation amount during exposure is not particularly limited, and is preferably 10 mJ/cm 2 to 50 J/cm 2 , more preferably 20 mJ/cm 2 to 5 J/cm 2 . Moreover, in order to promote the polymerization reaction, it may be carried out under heating conditions.
[偏光板]
 本発明の偏光板は、本発明の光学フィルムと、偏光子とを有する偏光板である。
[Polarizer]
The polarizing plate of the present invention is a polarizing plate having the optical film of the present invention and a polarizer.
 〔偏光子〕
 本発明の偏光板が有する偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に制限されず、従来公知の吸収型偏光子および反射型偏光子を利用することができる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子等が用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第4691205号公報、特許第4751481号公報、および特許第4751486号公報が挙げられ、これらの偏光子に関する公知の技術も好ましく利用できる。
 塗布型偏光子としては、WO2018/124198、WO2018/186503、WO2019/132020、WO2019/132018、WO2019/189345、特開2019-197168号公報、特開2019-194685号公報、および特開2019-139222号公報が挙げられ、これらの偏光子に関する公知の技術も好ましく利用できる。
 反射型偏光子としては、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド型偏光子、および、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子等が用いられる。
 これらのうち、密着性がより優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子が好ましい。
 また、耐クラック性を付与できる観点から、偏光子は対向する端辺に沿って偏光解消部が形成されていてもよい。偏光解消部としては、特開2014-240970号公報が挙げられる。
 また、偏光子は、長尺方向および/または幅方向に所定の間隔で配置された非偏光部を有していてもよい。非偏光部は、部分的に脱色された脱色部である。非偏光部の配置パターンは、目的に応じて適切に設定され得る。例えば、非偏光部は、偏光子を所定サイズの画像表示装置に取り付けるために所定サイズに裁断(切断、打ち抜き等)した際に、画像表示装置のカメラ部に対応する位置に配置される。非偏光部の配置パターンとしては、特開2016-27392号公報が挙げられる。
[Polarizer]
The polarizer included in the polarizing plate of the present invention is not particularly limited as long as it is a member that has the function of converting light into specific linearly polarized light, and conventionally known absorption type polarizers and reflection type polarizers can be used. .
As the absorption type polarizer, an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, etc. are used. Iodine-based polarizers and dye-based polarizers include coating-type polarizers and stretched-type polarizers, and both can be applied, but polarized light produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching it Child is preferred.
In addition, as a method for obtaining a polarizer by stretching and dyeing a laminated film in which a polyvinyl alcohol layer is formed on a base material, Japanese Patent No. 5048120, Japanese Patent No. 5143918, Japanese Patent No. 4691205, Publication No. 4751481 and Japanese Patent No. 4751486 are mentioned, and known techniques regarding these polarizers can also be preferably used.
As a coating type polarizer, WO2018/124198, WO2018/186503, WO2019/132020, WO2019/132018, WO2019/189345, JP 2019-197168, JP 2019-194685, and JP 2019-139 No. 222 Publications are listed, and known techniques related to these polarizers can also be preferably used.
As the reflective polarizer, a polarizer in which thin films with different birefringences are laminated, a wire grid polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a quarter-wave plate are combined, etc. are used.
Among these, polyvinyl alcohol-based resins (polymer containing -CH 2 -CHOH- as a repeating unit; in particular, at least one selected from the group consisting of polyvinyl alcohol and ethylene-vinyl alcohol copolymer) have better adhesion. 1) is preferred.
Further, from the viewpoint of imparting crack resistance, the polarizer may have depolarization portions formed along opposing edges. Examples of the depolarization unit include Japanese Patent Application Laid-Open No. 2014-240970.
Further, the polarizer may have non-polarizing portions arranged at predetermined intervals in the longitudinal direction and/or the width direction. The non-polarized portion is a partially bleached portion. The arrangement pattern of the non-polarizing portions can be appropriately set depending on the purpose. For example, when the polarizer is cut to a predetermined size (cutting, punching, etc.) in order to attach it to an image display device of a predetermined size, the non-polarizing portion is placed at a position corresponding to the camera portion of the image display device. Examples of the arrangement pattern of the non-polarizing portion include Japanese Patent Application Laid-open No. 2016-27392.
 偏光子の厚みは特に制限されないが、3~60μmが好ましく、3~30μmがより好ましく、3~10μmがさらに好ましい。 The thickness of the polarizer is not particularly limited, but is preferably 3 to 60 μm, more preferably 3 to 30 μm, and even more preferably 3 to 10 μm.
 本発明の偏光板は、本発明の光学フィルムと偏光子以外に、他の光学フィルムや、後述する保護フィルム、その他の機能層を有してもよい。機能層の機能は特に限定されず、例えば、接着層、応力緩和層、平坦化層、反射防止層、屈折率調整層、紫外線吸収層などの機能を有する層であってもよい。
 保護フィルムは、偏光子を挟んで両側に用いても、偏光子の片側のみに用いてもよい。
 また、保護フィルムを、本発明の光学フィルムと同じ側に有する場合は、偏光子と光学フィルムとの間や、光学フィルムの偏光子とは反対側等に、粘着剤または接着剤を介して配置してもよい。
 偏光板は、上述した本発明の光学フィルムが有する光学異方性層または本発明の光学異方性層がλ/4板(ポジティブAプレート)である場合、円偏光板として用いることができる。
 偏光板を円偏光板として用いる場合は、上述した光学異方性層をλ/4板(ポジティブAプレート)とし、λ/4板の遅相軸と後述する偏光子の吸収軸とのなす角が30~60°であることが好ましく、40~50°であることがより好ましく、42~48°であることがさらに好ましく、45°であることが特に好ましい。
 ここで、λ/4板の「遅相軸」は、λ/4板の面内において屈折率が最大となる方向を意味し、偏光子の「吸収軸」は、吸光度の最も高い方向を意味する。
 また、偏光板は、IPS(In-Plane-Switching)方式またはFFS(Fringe-Field-Switching)方式の液晶表示装置の光学補償フィルムとして用いることもできる。
 偏光板をIPS方式またはFFS方式の液晶表示装置の光学補償フィルムとして用いる場合は、上述した光学異方性層を、ポジティブAプレートとポジティブCプレートとの積層体の少なくとも一方のプレートとし、ポジティブAプレート層の遅相軸と、偏光子の吸収軸とのなす角を直交または平行とすることが好ましく、具体的には、ポジティブAプレート層の遅相軸と、偏光子の吸収軸とのなす角が0~5°または85~95°であることがより好ましい。
 また、上記光学補償フィルムが、偏光子、ポジティブCプレート、および、ポジティブAプレートをこの順に積層している場合は、ポジティブAプレートの遅相軸と、偏光子の吸収軸とのなす角は平行であることがさらに好ましい。
 同様に、上記光学補償フィルムが、偏光子、ポジティブAプレート、および、ポジティブCプレートをこの順に積層している場合は、ポジティブAプレートの遅相軸と、偏光子の吸収軸とのなす角は直交であることがさらに好ましい。
 後述する液晶表示装置に、本発明の偏光板を用いる場合には、光学異方性層の遅相軸と、偏光子の吸収軸とのなす角が、平行または直交であることが好ましい。
 なお、本明細書において「平行」とは、厳密に平行であることを要求するものではなく、一方と他方とのなす角度が10°未満であることを意味するものとする。また、本明細書において「直交」とは、厳密に直交していることを要求するものではなく、一方と他方とのなす角度が80°超100°未満であることを意味するものとする。
In addition to the optical film and polarizer of the invention, the polarizing plate of the invention may have other optical films, a protective film described below, and other functional layers. The function of the functional layer is not particularly limited, and for example, it may be a layer having functions such as an adhesive layer, a stress relaxation layer, a flattening layer, an antireflection layer, a refractive index adjustment layer, and an ultraviolet absorption layer.
The protective film may be used on both sides of the polarizer, or may be used only on one side of the polarizer.
In addition, when the protective film is on the same side as the optical film of the present invention, it can be placed between the polarizer and the optical film, or on the opposite side of the optical film from the polarizer, via an adhesive or an adhesive. You may.
The polarizing plate can be used as a circularly polarizing plate when the optically anisotropic layer of the optical film of the invention described above or the optically anisotropic layer of the invention is a λ/4 plate (positive A plate).
When using the polarizing plate as a circularly polarizing plate, the optically anisotropic layer described above is a λ/4 plate (positive A plate), and the angle between the slow axis of the λ/4 plate and the absorption axis of the polarizer described later is is preferably 30 to 60°, more preferably 40 to 50°, even more preferably 42 to 48°, and particularly preferably 45°.
Here, the "slow axis" of the λ/4 plate means the direction in which the refractive index is maximum within the plane of the λ/4 plate, and the "absorption axis" of the polarizer means the direction in which the absorbance is highest. do.
Further, the polarizing plate can also be used as an optical compensation film of an IPS (In-Plane-Switching) type or FFS (Fringe-Field-Switching) type liquid crystal display device.
When the polarizing plate is used as an optical compensation film for an IPS mode or FFS mode liquid crystal display device, the above-mentioned optically anisotropic layer is used as at least one plate of a laminate of a positive A plate and a positive C plate. It is preferable that the angle between the slow axis of the plate layer and the absorption axis of the polarizer be perpendicular or parallel. Specifically, the angle between the slow axis of the positive A plate layer and the absorption axis of the polarizer is preferably More preferably, the angle is 0-5° or 85-95°.
In addition, when the above optical compensation film has a polarizer, a positive C plate, and a positive A plate laminated in this order, the angle between the slow axis of the positive A plate and the absorption axis of the polarizer is parallel to each other. It is more preferable that
Similarly, when the optical compensation film has a polarizer, a positive A plate, and a positive C plate laminated in this order, the angle between the slow axis of the positive A plate and the absorption axis of the polarizer is More preferably, they are orthogonal.
When the polarizing plate of the present invention is used in a liquid crystal display device to be described later, it is preferable that the angle between the slow axis of the optically anisotropic layer and the absorption axis of the polarizer be parallel or orthogonal.
In addition, in this specification, "parallel" does not require strictly parallel, but means that the angle formed by one side and the other side is less than 10 degrees. Further, in this specification, "orthogonal" does not necessarily require that they be strictly orthogonal, but means that the angle between one and the other is more than 80° and less than 100°.
 〔保護フィルム〕
 保護フィルムの材料としては特に限定されず、例えば、本発明の光学フィルムが有する支持体において説明したポリマーフィルムと同様のものが挙げられ、なかでも、セルロースアシレートフィルムを用いることが好ましい。
〔Protective film〕
The material for the protective film is not particularly limited, and includes, for example, the same polymer films as described in the support of the optical film of the present invention, and among them, it is preferable to use cellulose acylate film.
 保護フィルムの光学特性としては、特に限定されないが、保護フィルムを、本発明の光学フィルムと同じ側に有する場合は、下記式を満たすことが好ましい。
 0nm≦Re(550)≦10nm
 -40nm≦Rth(550)≦40nm
The optical properties of the protective film are not particularly limited, but when the protective film is on the same side as the optical film of the present invention, it is preferable that the following formula is satisfied.
0nm≦Re(550)≦10nm
-40nm≦Rth(550)≦40nm
 〔粘着剤層〕
 偏光板において、本発明の光学フィルムと偏光子との間に、粘着剤層が配置されていてもよい。
 粘着剤層を形成する材料としては、例えば、動的粘弾性測定装置で測定した貯蔵弾性率G’と損失弾性率G”との比(tanδ=G”/G’)が0.001~1.5である物質で形成された部材が挙げられ、いわゆる、粘着剤、およびクリープしやすい物質等が含まれる。粘着剤としては、例えば、ポリビニルアルコール系粘着剤が挙げられるが、これに制限されない。
[Adhesive layer]
In the polarizing plate, an adhesive layer may be disposed between the optical film of the present invention and the polarizer.
As for the material forming the adhesive layer, for example, the ratio of storage elastic modulus G' to loss elastic modulus G'' (tan δ=G''/G') measured with a dynamic viscoelasticity measuring device is 0.001 to 1. .5, including so-called adhesives and substances that tend to creep. Examples of the adhesive include, but are not limited to, polyvinyl alcohol adhesives.
 〔接着剤層〕
 偏光板は、本発明の光学フィルムと偏光子との間に、接着剤層が配置されていてもよい。
 接着剤層としては、活性エネルギー線の照射または加熱により硬化する硬化性接着剤組成物が好ましい。
 硬化性接着剤組成物としては、カチオン重合性化合物を含有する硬化性接着剤組成物、および、ラジカル重合性化合物を含有する硬化性接着剤組成物等が挙げられる。
 接着剤層の厚さは、0.01~20μmが好ましく、0.01~10μmがより好ましく、0.05~5μmがさらに好ましい。接着剤層の厚さがこの範囲にあれば、積層される保護層または光学異方性層と偏光子との間に浮きまたは剥がれが生じず、実用上問題のない接着力が得られる。また、気泡の発生を抑制できる観点から接着剤層の厚さは0.4μm以上が好ましい。
 また、耐久性の観点から接着剤層のバルク吸水率を10質量%以下に調整してもよく、2質量%以下が好ましい。バルク吸水率は、JIS K 7209に記載の吸水率試験方法に準じて測定される。
 接着剤層としては、例えば、特開2016-35579号公報の[0062]~[0080]段落を参酌でき、これらの内容は本願明細書に組み込まれる。
[Adhesive layer]
In the polarizing plate, an adhesive layer may be disposed between the optical film of the present invention and the polarizer.
As the adhesive layer, a curable adhesive composition that is cured by irradiation with active energy rays or heating is preferable.
Examples of the curable adhesive composition include a curable adhesive composition containing a cationically polymerizable compound and a curable adhesive composition containing a radically polymerizable compound.
The thickness of the adhesive layer is preferably 0.01 to 20 μm, more preferably 0.01 to 10 μm, and even more preferably 0.05 to 5 μm. If the thickness of the adhesive layer is within this range, no lifting or peeling will occur between the protective layer or optically anisotropic layer to be laminated and the polarizer, and adhesive strength without any practical problems can be obtained. Further, from the viewpoint of suppressing the generation of bubbles, the thickness of the adhesive layer is preferably 0.4 μm or more.
Further, from the viewpoint of durability, the bulk water absorption rate of the adhesive layer may be adjusted to 10% by mass or less, preferably 2% by mass or less. The bulk water absorption rate is measured according to the water absorption rate test method described in JIS K 7209.
As for the adhesive layer, for example, paragraphs [0062] to [0080] of JP-A-2016-35579 can be referred to, and the contents thereof are incorporated into the present specification.
 〔易接着層〕
 偏光板は、本発明の光学フィルムと偏光子との間に、易接着層が配置されていてもよい。
 本発明の光学フィルムと偏光子との密着性に優れ、さらに、偏光子へのクラックの発生を抑止する観点から、易接着層の85℃での貯蔵弾性率が1.0×10Pa~1.0×10Paであることが好ましい。易接着層の構成材料としては、ポリオレフィン系成分およびポリビニルアルコール系成分が挙げられる。易接着層の厚さは、500nm~1μmが好ましい。
 易接着層としては、例えば、特開2018-36345号公報の[0048]~[0053]段落を参酌でき、これらの内容は本願明細書に組み込まれる。
[Easy adhesive layer]
In the polarizing plate, an easily adhesive layer may be disposed between the optical film of the present invention and the polarizer.
In order to have excellent adhesion between the optical film of the present invention and the polarizer, and to prevent cracks from forming in the polarizer, the storage modulus of the easy-adhesive layer at 85°C is 1.0×10 6 Pa or more. It is preferable that it is 1.0×10 7 Pa. Examples of constituent materials of the easily adhesive layer include polyolefin components and polyvinyl alcohol components. The thickness of the adhesive layer is preferably 500 nm to 1 μm.
As for the easy-adhesive layer, for example, paragraphs [0048] to [0053] of JP-A-2018-36345 can be referred to, and the contents thereof are incorporated into the present specification.
[画像表示装置]
 本発明の画像表示装置は、本発明の光学フィルムまたは本発明の光学異方性層を有する、画像表示装置である。
 画像表示装置に用いられる表示素子は特に制限されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL(Electro Luminescence)」と略す。)表示パネル、および、プラズマディスプレイパネル等が挙げられる。これらのうち、液晶セル、および有機EL表示パネルが好ましく、液晶セルがより好ましい。
 すなわち、画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、または、表示素子として有機EL表示パネルを用いた有機EL表示装置が好ましく、液晶表示装置がより好ましい。
[Image display device]
The image display device of the present invention is an image display device having the optical film of the present invention or the optically anisotropic layer of the present invention.
The display element used in the image display device is not particularly limited, and includes, for example, a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as "EL (Electro Luminescence)") display panel, a plasma display panel, and the like. Among these, liquid crystal cells and organic EL display panels are preferred, and liquid crystal cells are more preferred.
That is, as the image display device, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL display panel as a display element is preferable, and a liquid crystal display device is more preferable.
 〔液晶表示装置〕
 画像表示装置の一例である液晶表示装置は、上述した偏光板と、液晶セルとを有する液晶表示装置である。
 なお、液晶セルの両側に設けられる偏光板のうち、フロント側の偏光板として上述した偏光板を用いることが好ましく、フロント側およびリア側の偏光板として上述した偏光板を用いることがより好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
[Liquid crystal display device]
A liquid crystal display device, which is an example of an image display device, includes the above-mentioned polarizing plate and a liquid crystal cell.
Note that among the polarizing plates provided on both sides of the liquid crystal cell, it is preferable to use the above-described polarizing plate as the front-side polarizing plate, and it is more preferable to use the above-mentioned polarizing plates as the front-side and rear-side polarizing plates.
The liquid crystal cell constituting the liquid crystal display device will be described in detail below.
 <液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、FFS(Fringe-Field-Switching)モード、またはTN(Twisted Nematic)モードであることが好ましいが、これらに制限されない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、さらに60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)、および(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、VAモードの液晶セルは、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、および特開平10-307291号公報等に開示されている。
<Liquid crystal cell>
The liquid crystal cells used in liquid crystal display devices are in VA (Vertical Alignment) mode, OCB (Optically Compensated Bend) mode, IPS (In-Plane-Switching) mode, FFS (Fringe-Field-Switching) mode, or TN (Twisted) mode. Nematic) mode is preferable, but is not limited thereto.
In a TN mode liquid crystal cell, rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are further twisted at an angle of 60 to 120°. TN mode liquid crystal cells are most commonly used as color TFT liquid crystal display devices, and are described in numerous documents.
In a VA mode liquid crystal cell, rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied. VA mode liquid crystal cells include (1) narrowly defined VA mode liquid crystal cells in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when voltage is applied (Japanese Patent Application Laid-Open No. 2002-2002); In addition to (2) a multi-domain (MVA mode) liquid crystal cell (SID97, described in Digest of tech.Papers (Proceedings) 28 (1997) 845) in which VA mode is multi-domained to expand the viewing angle (described in Publication No. 176625) ), (3) Liquid crystal cell in a mode (n-ASM mode) in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and twisted and multi-domain aligned when a voltage is applied (Proceedings of the Japan Liquid Crystal Conference 58-59) (1998)), and (4) SURVIVAL mode liquid crystal cell (presented at LCD International 98). Further, the VA mode liquid crystal cell may be any of the PVA (Patterned Vertical Alignment) type, the optical alignment type (Optical Alignment), and the PSA (Polymer-Sustained Alignment) type. Details of these modes are described in Japanese Patent Application Laid-open No. 2006-215326 and Japanese Patent Application Publication No. 2008-538819.
In an IPS mode liquid crystal cell, rod-shaped liquid crystal molecules are aligned substantially parallel to the substrate, and when an electric field parallel to the substrate surface is applied, the liquid crystal molecules respond in a planar manner. In the IPS mode, a black display occurs when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are perpendicular to each other. A method of using an optical compensatory sheet to reduce leakage light during black display in an oblique direction and improve the viewing angle is disclosed in JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522. JP-A-11-133408, JP-A-11-305217, and JP-A-10-307291.
 〔有機EL表示装置〕
 画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、偏光子と、上述した光学異方性層からなるλ/4板(ポジティブAプレート)と、有機EL表示パネルとをこの順で有する態様が挙げられる。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
[Organic EL display device]
An organic EL display device, which is an example of an image display device, includes, for example, a polarizer, a λ/4 plate (positive A plate) made of the above-mentioned optically anisotropic layer, and an organic EL display panel from the viewing side. Examples include embodiments in which the elements are arranged in this order.
Furthermore, an organic EL display panel is a display panel constructed using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode). The structure of the organic EL display panel is not particularly limited, and a known structure may be employed.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on Examples. The materials, usage amounts, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the Examples shown below.
[実施例1]
 〔セルロースアシレートフィルム(支持体)の作製〕
 下記組成物のセルロースアシレートドープをミキシングタンクに投入し、撹拌して、さらに90℃で10分間加熱した。
 その後、得られた組成物を、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過して、ドープを調製した。
 ドープの固形分濃度は23.5質量%であり、可塑剤の添加量はセルロースアシレートに対する割合であり、ドープの溶剤は塩化メチレン/メタノール/ブタノール=81/18/1(質量比)である。
[Example 1]
[Preparation of cellulose acylate film (support)]
A cellulose acylate dope having the following composition was put into a mixing tank, stirred, and further heated at 90° C. for 10 minutes.
Thereafter, the resulting composition was filtered through a filter paper with an average pore size of 34 μm and a sintered metal filter with an average pore size of 10 μm to prepare a dope.
The solid content concentration of the dope is 23.5% by mass, the amount of plasticizer added is the ratio to cellulose acylate, and the solvent of the dope is methylene chloride/methanol/butanol = 81/18/1 (mass ratio). .
――――――――――――――――――――――――――――――――――
セルロースアシレートドープ
――――――――――――――――――――――――――――――――――
セルロースアシレート(アセチル置換度2.86、粘度平均重合度310)
                            100質量部
糖エステル化合物1(化学式(S4)に示す)       6.0質量部
糖エステル化合物2(化学式(S5)に示す)       2.0質量部
シリカ粒子分散液(AEROSIL R972、日本アエロジル(株)製)
                            0.1質量部
ドデシル硫酸ナトリウム                0.75質量部
溶剤(塩化メチレン/メタノール/ブタノール)
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Cellulose acylate dope――――――――――――――――――――――――――――――――
Cellulose acylate (degree of acetyl substitution 2.86, viscosity average degree of polymerization 310)
100 parts by weight Sugar ester compound 1 (shown in chemical formula (S4)) 6.0 parts by weight Sugar ester compound 2 (shown in chemical formula (S5)) 2.0 parts by weight Silica particle dispersion (AEROSIL R972, Nippon Aerosil Co., Ltd.) made)
0.1 parts by mass Sodium dodecyl sulfate 0.75 parts by mass Solvent (methylene chloride/methanol/butanol)
――――――――――――――――――――――――――――――――
 上記で調製したドープを、ドラム製膜機を用いて流延した。
 具体的には、0℃に冷却された金属支持体上に接するようにドープをダイから流延し、その後、得られたウェブ(フィルム)を剥ぎ取った。なお、ドラムはSUS(Stainless Used Steel)製であった。
 次いで、流延されて得られたウェブ(フィルム)を、ドラムから剥離後、フィルム搬送時に30~40℃で、クリップでウェブの両端をクリップして搬送するテンター装置を用いてテンター装置内で20分間乾燥した。引き続き、ウェブをロール搬送しながらゾーン加熱により後乾燥した。
 次いで、得られたウェブにナーリングを施した後、巻取り支持体S-1を作製した。
The dope prepared above was cast using a drum film forming machine.
Specifically, the dope was cast from a die so as to be in contact with a metal support cooled to 0° C., and then the obtained web (film) was peeled off. Note that the drum was made of SUS (Stainless Used Steel).
Next, the web (film) obtained by casting is peeled from the drum, and then heated at 30 to 40°C during film transport in a tenter equipment that clips both ends of the web with clips and transports it. Dry for a minute. Subsequently, the web was post-dried by zone heating while being rolled.
Next, the obtained web was subjected to knurling, and then a winding support S-1 was produced.
 〔光学異方性層の形成〕
 上記で作製した巻取り支持体S-1に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は80°とした。フィルム長手方向(搬送方向)を90°とし、フィルム側から観察してフィルム幅手方向を基準(0°)に時計回り方向を正の値で表すと、ラビングローラーの回転軸は10°にある。言い換えれば、ラビングローラーの回転軸の位置は、フィルム長手方向を基準に、反時計回りに80°回転させた位置である。
[Formation of optically anisotropic layer]
The wound support S-1 produced above was continuously subjected to a rubbing treatment. At this time, the longitudinal direction of the long film was parallel to the transport direction, and the angle between the film longitudinal direction (transport direction) and the rotation axis of the rubbing roller was 80°. If the longitudinal direction of the film (conveyance direction) is 90°, and the clockwise direction is expressed as a positive value with the film width direction as the reference (0°) when observed from the film side, the rotation axis of the rubbing roller is at 10°. . In other words, the position of the rotation axis of the rubbing roller is a position rotated 80 degrees counterclockwise with respect to the longitudinal direction of the film.
 上記ラビング処理したセルロースアシレートフィルムを支持体として、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層形成用組成物(1)を塗布して、組成物層を形成した。
 次に、得られた組成物層を80℃で60秒間加熱した。この加熱により組成物層の棒状液晶化合物が所定の方向に配向した。
 その後、酸素を含む空気(酸素濃度:約20体積%)下、30℃にて、365nmLEDランプ(アクロエッジ(株)製)を使用して紫外線を組成物層に照射した(照射量:35mJ/cm)。
 続いて、得られた組成物層を80℃で10秒間加熱した。
 その後、窒素パージを行って、酸素濃度100体積ppmとして、80℃にて、メタルハライドランプ(アイグラフィックス(株)製)を使用して紫外線を組成物層に照射し(照射量:500mJ/cm)、液晶化合物の配向状態を固定した光学異方性層を形成した。このようにして光学フィルム(F-1)を作製した。
Using the rubbed cellulose acylate film as a support, a composition for forming an optically anisotropic layer (1) containing a rod-like liquid crystal compound having the following composition was applied using a Giesser coating machine to form a composition layer. Formed.
Next, the obtained composition layer was heated at 80° C. for 60 seconds. By this heating, the rod-like liquid crystal compound of the composition layer was oriented in a predetermined direction.
Thereafter, the composition layer was irradiated with ultraviolet rays (irradiation amount: 35 mJ/ cm2 ).
Subsequently, the obtained composition layer was heated at 80° C. for 10 seconds.
Thereafter, a nitrogen purge was performed, and the composition layer was irradiated with ultraviolet rays at 80°C with an oxygen concentration of 100 volume ppm using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) (irradiation amount: 500 mJ/cm). 2 ) An optically anisotropic layer in which the alignment state of the liquid crystal compound was fixed was formed. In this way, an optical film (F-1) was produced.
―――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(1)
―――――――――――――――――――――――――――――――――
・下記棒状液晶化合物(A)               80質量部
・下記棒状液晶化合物(B)               17質量部
・下記重合性化合物(C)                 3質量部
・エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)          4質量部
・光重合開始剤(Irgacure819、BASF社製)  3質量部
・下記左捩れキラル剤(L2)            0.46質量部
・下記右捩れキラル剤(R2)            0.41質量部
・下記ポリマー(A)                0.08質量部
・下記ポリマー(B)                0.38質量部
・メチルイソブチルケトン               117質量部
・プロピオン酸エチル                  23質量部
・シクロヘキサン                    16質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition for forming optically anisotropic layer (1)
――――――――――――――――――――――――――――――――
- 80 parts by mass of the following rod-like liquid crystal compound (A) - 17 parts by mass of the following rod-like liquid crystal compound (B) - 3 parts by mass of the following polymerizable compound (C) - Ethylene oxide-modified trimethylolpropane triacrylate (V#360, Osaka Organic Chemical) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure 819, manufactured by BASF) 3 parts by mass 0.46 parts by mass of the following left-handed chiral agent (L2) 0.41 parts by mass of the following right-handed chiral agent (R2) 0.08 parts by mass of the following polymer (A) 0.38 parts by mass of the following polymer (B) 117 parts by mass of methyl isobutyl ketone 23 parts by mass of ethyl propionate 16 parts by mass of cyclohexane ――――――――――――――――――――――――
 棒状液晶化合物(A)〔下記液晶化合物(RA)(RB)(RC)の84:14:2(質量比)の混合物〕
Rod-like liquid crystal compound (A) [a mixture of the following liquid crystal compounds (RA), (RB), and (RC) in a mass ratio of 84:14:2]
 棒状液晶化合物(B)
Rod-shaped liquid crystal compound (B)
 重合性化合物(C)
Polymerizable compound (C)
 左捩れキラル剤(L2)
Left-handed chiral agent (L2)
 右捩れキラル剤(R2)
Right-handed chiral agent (R2)
 ポリマー(A)〔フッ素パート:39質量%,メソゲンパート:61質量%〕
Polymer (A) [Fluorine part: 39% by mass, Mesogen part: 61% by mass]
 ポリマー(B)〔式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(質量%)を表す。〕
Polymer (B) [In the formula, the numerical value described in each repeating unit represents the content (mass%) of each repeating unit with respect to all repeating units. ]
 上記で作製した光学フィルム(F-1)をラビング方向と平行に切削し、偏光顕微鏡で光学異方性層を断面方向から観察した。光学異方性層の厚みは2.7μmであり、光学異方性層の基板側の厚み(d2)1.3μmの領域(第2領域)は捩れ角の無いホモジニアス配向であり、光学異方性層の空気側(基板と反対側)の厚み(d1)1.4μmの領域(第1領域)は液晶化合物が捩れ配向していた。
 なお、Axometrics社のAxoscan、および、同社の解析ソフトウェア(Multi-Layer Analysis)を用いて、光学フィルム(F-1)の光学特性を求めた。第2領域の波長550nmにおけるΔn2と厚みd2との積(Δn2d2)は173nm、液晶化合物の捩れ角は0°であり、長尺長手方向に対する液晶化合物の配向軸角度は、基板に接する側が-10°、第1領域に接する側が-10°であった。
 また、第1領域の波長550nmにおけるΔn1と厚みd1との積(Δn1d1)は184nm、液晶化合物の捩れ角度は75°であり、長尺長手方向に対する液晶化合物の配向軸角度は、第2領域に接する側が-10°、空気側が-85°であった。
The optical film (F-1) prepared above was cut parallel to the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction with a polarizing microscope. The thickness of the optically anisotropic layer was 2.7 μm, and the region (second region) of the optically anisotropic layer with a thickness (d2) of 1.3 μm on the substrate side was homogeneous alignment without twist angle, and the region (first region) of the optically anisotropic layer with a thickness (d1) of 1.4 μm on the air side (opposite to the substrate) was twist alignment of the liquid crystal compound.
The optical properties of the optical film (F-1) were determined using Axoscan from Axometrics and its analysis software (Multi-Layer Analysis). The product (Δn2d2) of Δn2 and thickness d2 at a wavelength of 550 nm in the second region was 173 nm, the twist angle of the liquid crystal compound was 0°, and the alignment axis angle of the liquid crystal compound relative to the long length direction was −10° on the side in contact with the substrate and −10° on the side in contact with the first region.
In addition, the product (Δn1d1) of Δn1 and thickness d1 at a wavelength of 550 nm in the first region was 184 nm, the twist angle of the liquid crystal compound was 75°, and the alignment axis angle of the liquid crystal compound relative to the longitudinal direction was -10° on the side in contact with the second region and -85° on the air side.
[実施例2~13および比較例1~3]
 界面活性剤の種類および配合量を下記表1に示すように変更した以外は、実施例1と同様の方法で、光学フィルムを作製した。なお、比較例1は、界面活性剤を配合しなかった例であり、下記表1中においては、「-」と表記している。
 また、実施例11~13で用いた界面活性剤としての共重合体A、共重合体Bおよび共重合体Cの構造は以下の通りである。
[Examples 2 to 13 and Comparative Examples 1 to 3]
An optical film was produced in the same manner as in Example 1, except that the type and amount of the surfactant were changed as shown in Table 1 below. Note that Comparative Example 1 is an example in which no surfactant was blended, and is indicated as "-" in Table 1 below.
Furthermore, the structures of copolymer A, copolymer B, and copolymer C used as surfactants in Examples 11 to 13 are as follows.
 共重合体A
Copolymer A
 共重合体B
Copolymer B
 共重合体C
Copolymer C
[実施例14]
 光学異方性層形成用組成物(1)を以下に示す光学異方性層形成用組成物(2)に変更し、以下の条件で光学異方性層を形成した以外は、実施例2と同様の方法で、光学フィルムを作製した。
[Example 14]
Example 2 except that the composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (2) shown below, and the optically anisotropic layer was formed under the following conditions. An optical film was prepared in the same manner as above.
―――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(2)
―――――――――――――――――――――――――――――――――
・上記棒状液晶化合物(A)               80質量部
・上記棒状液晶化合物(B)               17質量部
・上記重合性化合物(C)                 3質量部
・エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)          4質量部
・光重合開始剤(Irgacure819、BASF社製)  3質量部
・上記左捩れキラル剤(L2)            0.46質量部
・上記右捩れキラル剤(R2)            0.41質量部
・上記ポリマー(A)                0.08質量部
・o-キシレン                    156質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition for forming optically anisotropic layer (2)
――――――――――――――――――――――――――――――――
- 80 parts by mass of the rod-like liquid crystal compound (A) - 17 parts by mass of the rod-like liquid crystal compound (B) - 3 parts by mass of the polymerizable compound (C) - Ethylene oxide-modified trimethylolpropane triacrylate (V#360, Osaka Organic Chemical) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure 819, manufactured by BASF) 3 parts by mass - The above left-handed chiral agent (L2) 0.46 parts by mass - The above right-handed chiral agent (R2) 0.41 parts by mass parts・0.08 parts by mass of the above polymer (A)・156 parts by mass of o-xylene―――――――――――――――――――――――――――― ---
[実施例15]
 界面活性剤(ドデシル硫酸ナトリウム)をセルロースアシレートドープに配合せず、また、ラビング処理を施す前に、下記の界面活性剤含有組成物を#8バーで塗布した後、80℃で1分間乾燥させた以外は、実施例1と同様の方法で、光学フィルムを作製した。
―――――――――――――――――――――――――――――――――
界面活性剤含有組成物
―――――――――――――――――――――――――――――――――
・ドデシル硫酸ナトリウム               0.5質量部
・イソプロピルアルコール              90.0質量部
・水                        10.0質量部
―――――――――――――――――――――――――――――――――
[Example 15]
No surfactant (sodium dodecyl sulfate) was added to the cellulose acylate dope, and before rubbing, the following surfactant-containing composition was applied with a #8 bar and then dried at 80°C for 1 minute. An optical film was produced in the same manner as in Example 1, except for the following steps.
――――――――――――――――――――――――――――――――
Surfactant-containing composition――――――――――――――――――――――――――――――
・Sodium dodecyl sulfate 0.5 parts by mass ・Isopropyl alcohol 90.0 parts by mass ・Water 10.0 parts by mass―――――――――――――――――――――――― ――――――――
[実施例16]
 光学異方性層形成用組成物(1)を以下に示す光学異方性層形成用組成物(3)に変更し、ラビングローラーの回転軸の位置を-10°から+12.5°に変更した以外は、実施例2と同様の方法で、光学フィルムを作製した。
 得られた光学異方性層の厚みは1.0μmであった。棒状液晶化合物の長軸のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°、光学異方性層C側から観察してフィルム幅方向を基準に時計回り方向を正の値で表す。)とすると、-77.5°であった。光学異方性層の波長550nmにおける面内レターデーションは116nmであり、光学異方性層は順波長分散性を示す。
[Example 16]
The composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (3) shown below, and the position of the rotation axis of the rubbing roller was changed from -10° to +12.5°. An optical film was produced in the same manner as in Example 2 except for the following.
The thickness of the optically anisotropic layer obtained was 1.0 μm. The average inclination angle of the long axis of the rod-like liquid crystal compound with respect to the film plane was 0°, and it was confirmed that the liquid crystal compound was oriented horizontally with respect to the film plane. In addition, the angle of the slow axis is perpendicular to the rotation axis of the rubbing roller, and the film width direction is 0° (film longitudinal direction is 90°, clockwise with respect to the film width direction when observed from the optically anisotropic layer C side). (The direction is expressed as a positive value.), it was -77.5°. The in-plane retardation of the optically anisotropic layer at a wavelength of 550 nm is 116 nm, and the optically anisotropic layer exhibits normal wavelength dispersion.
―――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(3)
―――――――――――――――――――――――――――――――――
・上記棒状液晶化合物(A)              100質量部
・光重合開始剤(イルガキュア907、BASF社製)    6質量部
・下記含フッ素化合物(F-1)           0.25質量部
・下記含フッ素化合物(F-2)            0.1質量部
・エチレンオキサイド変性トリメチロール
 プロパントリアクリレート                4質量部
・メチルイソブチルケトン               337質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition for forming optically anisotropic layer (3)
――――――――――――――――――――――――――――――――
- 100 parts by mass of the above rod-shaped liquid crystal compound (A) - 6 parts by mass of photopolymerization initiator (Irgacure 907, manufactured by BASF) - 0.25 parts by mass of the following fluorine-containing compound (F-1) - 0.25 parts by mass of the following fluorine-containing compound (F-1) 2) 0.1 parts by mass 4 parts by mass of ethylene oxide-modified trimethylol propane triacrylate 337 parts by mass of methyl isobutyl ketone―――――――――――――――――――――― ――――――――――
 含フッ素化合物(F-1)
Fluorine-containing compound (F-1)
 含フッ素化合物(F-2)
Fluorine-containing compound (F-2)
[比較例4]
 巻取り支持体S-1に代えて、東洋紡(株)製の支持体であるA4160(片面易接着タイプ、厚み50μm)を用いた以外は、実施例1と同様の方法で、光学フィルムを作製した。
[Comparative example 4]
An optical film was produced in the same manner as in Example 1, except that instead of the winding support S-1, A4160 (one-sided easily adhesive type, thickness 50 μm), a support manufactured by Toyobo Co., Ltd., was used. did.
[比較例5]
 特開2012-93703号公報の実施例4と同様の方法で、片面に易接着層を有する、厚み58μmのラクトン環構造を有する(メタ)アクリル樹脂フィルムを作製した。
 巻取り支持体S-1に代えて、上記で作製した(メタ)アクリル樹脂フィルムを用いた以外は、実施例1と同様の方法で、光学フィルムを作製した。
[Comparative example 5]
A (meth)acrylic resin film having a lactone ring structure and having an easily adhesive layer on one side and having a thickness of 58 μm was prepared in the same manner as in Example 4 of JP-A-2012-93703.
An optical film was produced in the same manner as in Example 1, except that the (meth)acrylic resin film produced above was used in place of the winding support S-1.
[評価]
 作製した光学フィルムについて、以下の評価を行った。結果を下記表1に示す。
 また、作製した光学フィルムについて、飛行時間型二次イオン質量分析計(TOF-SIMS)(IONTOF社製「SIMS5」)によって、深さ方向の成分の分析を行ったところ、実施例1~16、比較例2、3および5で作製した光学フィルムについては、支持体における光学異方性層側表面から支持体の厚みの10%までの領域に界面活性剤があることを確認し、比較例1および4で作製した光学フィルムについては、支持体に界面活性剤が含まれていないことを確認した。
 また、上記成分分析から、実施例1~16および比較例1~3で作製した光学フィルムについては、光学異方性層と支持体とが隣接していることを確認し、比較例4および5で作製した光学フィルムについては、光学異方性層と支持体との間に易接着層を有していることを確認した。
[evaluation]
The produced optical film was evaluated as follows. The results are shown in Table 1 below.
In addition, when the produced optical film was analyzed for components in the depth direction using a time-of-flight secondary ion mass spectrometer (TOF-SIMS) (“SIMS5” manufactured by IONTOF), Examples 1 to 16, Regarding the optical films prepared in Comparative Examples 2, 3, and 5, it was confirmed that the surfactant was present in the region from the optically anisotropic layer side surface of the support to 10% of the thickness of the support, and Comparative Example 1 Regarding the optical films prepared in 4 and 4, it was confirmed that the support did not contain a surfactant.
Furthermore, from the above component analysis, it was confirmed that the optical anisotropic layer and the support were adjacent to each other in the optical films produced in Examples 1 to 16 and Comparative Examples 1 to 3, and It was confirmed that the optical film produced in the above had an easily adhesive layer between the optically anisotropic layer and the support.
 〔動摩擦係数〕
 支持体表面に100g荷重をかけながらSUS球を転がした時にかかる荷重を測定し、動摩擦係数を測定した。
[Dynamic friction coefficient]
The load applied when the SUS ball was rolled while applying a 100 g load to the surface of the support was measured, and the coefficient of dynamic friction was measured.
 〔配向性〕
 偏光顕微鏡においてクロスニコル状態で、得られた光学フィルム中の光学異方性層を倍率50倍でランダムに10視野(視野サイズ1715×1280μm)観察し、それぞれの視野を下記3つに分類した。
 I:光学的欠陥が観察されない。
 II:光学的欠点がわずかに観察されるが、実用上問題がないレベルである。
 III:光学的欠陥が多く観察され、実用上問題があるレベルである。
 10視野について下記5段階で評価した。
 A:10視野ともIまたはIIで、IIの視野数が0~2視野。
 B:10視野ともIまたはIIで、IIの視野数が3~5視野。
 C:10視野ともIまたはIIで、IIの視野数が6~10視野。
 D:10視野にIIIが含まれ、IIIの視野数が1~5視野。
 E:10視野にIIIが含まれ、IIIの視野数が6~10視野。
[Orientation]
The optically anisotropic layer in the obtained optical film was randomly observed under a polarizing microscope in a crossed nicol state at a magnification of 50 times (field size: 1715 x 1280 μm), and each field was classified into the following three categories.
I: No optical defects observed.
II: Slight optical defects are observed, but at a level that causes no practical problems.
III: Many optical defects were observed, which was at a level that would pose a practical problem.
The 10 visual fields were evaluated in the following five stages.
A: All 10 fields are I or II, and the number of II fields is 0 to 2 fields.
B: All 10 fields are I or II, and the number of II fields is 3 to 5.
C: All 10 visual fields are I or II, and the number of II visual fields is 6 to 10.
D: 10 visual fields include III, and the number of III visual fields is 1 to 5.
E: 10 visual fields include III, and the number of III visual fields is 6 to 10.
 〔輝点欠陥〕
 シャーカステンの上に2枚の偏光板をクロスニコル状態で重ね、上記2枚の偏光板の間に得られた光学フィルム(観察面積:1×1m)を挟み、シャーカステンから光を透過させた。偏光板の上からルーペを用いて光学フィルムを観察し、直径100μm以上の欠陥をマーキングした。マーキングした欠陥の中心を通るようにミクロトームで断面切削し、断面方向から光学顕微鏡観察を実施した。光学異方性層中に異物が観察される欠陥をカウントし、以下の基準に従って評価した。なお、比較例4および5で作製した光学フィルムについては、配向性が悪く、輝点欠陥を正確に評価できない理由から評価不可とし、下記表1中においては「-」と表記した。
 A:欠陥数が2個以下
 B:欠陥数が3~4個
 C:欠陥数が5~8個
 D:欠陥数が8~20個
 E:欠陥数が21個以上
[Bright spot defect]
Two polarizing plates were placed on top of the Scherkasten in a crossed nicol state, and the obtained optical film (observation area: 1×1 m) was sandwiched between the two polarizing plates to allow light to pass through the Scherkasten. The optical film was observed from above the polarizing plate using a magnifying glass, and defects with a diameter of 100 μm or more were marked. A cross-section was cut using a microtome so as to pass through the center of the marked defect, and optical microscopic observation was performed from the cross-sectional direction. Defects in which foreign matter was observed in the optically anisotropic layer were counted and evaluated according to the following criteria. The optical films produced in Comparative Examples 4 and 5 had poor orientation and bright spot defects could not be evaluated accurately, so they were not evaluated and were indicated as "-" in Table 1 below.
A: 2 or less defects B: 3 to 4 defects C: 5 to 8 defects D: 8 to 20 defects E: 21 or more defects
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1に示す結果から、支持体に特定界面活性剤を配合しない場合や、特定界面活性剤に該当しない界面活性剤を配合した場合には、光学異方性層における液晶化合物の配向性は良好であったが、輝点欠陥の発生が抑制できないことが分かった(比較例1~3)。
 また、支持体と光学異方性層とが隣接していない態様については、光学異方性層における液晶化合物の配向性が劣ることが分かった(比較例4~5)。
 これに対し、光学異方性層に隣接している支持体が特定界面活性剤を含有していると、光学異方性層における液晶化合物の配向性が良好となり、かつ、輝点欠陥の発生も抑制できることが分かった(実施例1~16)。
 特に、実施例1~4および7と、実施例5~6との対比から、特定界面活性剤がイオン性の親水性基を有していると(実施例1~4および7は)、光学異方性層における液晶化合物の配向性がより良好となり、かつ、光学フィルムにおける輝点欠陥の発生をより抑制できることが分かった。
 また、実施例1と実施例10との対比や、実施例2と実施例7との対比から、特定界面活性剤がアニオン性の親水性基を有していると、光学異方性層における液晶化合物の配向性がさらに良好となり、かつ、光学フィルムにおける輝点欠陥の発生をさらに抑制できることが分かった。
 また、実施例1~3と実施例11との対比から、特定界面活性剤が高分子化合物であると、光学異方性層における液晶化合物の配向性がより良好となり、かつ、光学フィルムにおける輝点欠陥の発生をより抑制できることが分かった。
 また、実施例1~7との対比から、特定界面活性剤が有する疎水性基が炭素数12~18のアルキル基であると、光学フィルムにおける輝点欠陥の発生をより抑制できることが分かった。
From the results shown in Table 1, the orientation of the liquid crystal compound in the optically anisotropic layer is good when no specific surfactant is blended into the support or when a surfactant that does not fall under the specific surfactant is blended. However, it was found that the occurrence of bright spot defects could not be suppressed (Comparative Examples 1 to 3).
Furthermore, it was found that in embodiments where the support and the optically anisotropic layer were not adjacent to each other, the orientation of the liquid crystal compound in the optically anisotropic layer was poor (Comparative Examples 4 and 5).
On the other hand, if the support adjacent to the optically anisotropic layer contains a specific surfactant, the orientation of the liquid crystal compound in the optically anisotropic layer will be good, and bright spot defects will occur. It was also found that this can be suppressed (Examples 1 to 16).
In particular, from the comparison between Examples 1 to 4 and 7 and Examples 5 to 6, when the specific surfactant has an ionic hydrophilic group (Examples 1 to 4 and 7), optical It was found that the orientation of the liquid crystal compound in the anisotropic layer was improved, and the occurrence of bright spot defects in the optical film could be further suppressed.
In addition, from the comparison between Example 1 and Example 10 and the comparison between Example 2 and Example 7, it was found that when the specific surfactant has an anionic hydrophilic group, the optically anisotropic layer It was found that the alignment of the liquid crystal compound was further improved, and the occurrence of bright spot defects in the optical film could be further suppressed.
Furthermore, from a comparison between Examples 1 to 3 and Example 11, when the specific surfactant is a polymer compound, the orientation of the liquid crystal compound in the optically anisotropic layer is better, and the brightness in the optical film is improved. It was found that the occurrence of point defects could be further suppressed.
Further, from comparison with Examples 1 to 7, it was found that when the hydrophobic group of the specific surfactant is an alkyl group having 12 to 18 carbon atoms, the occurrence of bright spot defects in the optical film can be further suppressed.

Claims (14)

  1.  支持体と、光学異方性層とを隣接して有する光学フィルムであって、
     前記光学異方性層が、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層であり、
     前記支持体が、親水性基および疎水性基を有する界面活性剤を含有し、
     前記疎水性基が、炭素数5~29のアルキル基、ケイ素含有基およびフッ素含有基からなる群から選択される少なくとも1種の基である、光学フィルム。
    An optical film having a support and an optically anisotropic layer adjacent to each other,
    The optically anisotropic layer is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound,
    The support contains a surfactant having a hydrophilic group and a hydrophobic group,
    The optical film, wherein the hydrophobic group is at least one group selected from the group consisting of an alkyl group having 5 to 29 carbon atoms, a silicon-containing group, and a fluorine-containing group.
  2.  前記光学異方性層が、前記重合性液晶化合物の配向状態を固定化した層であり、
     前記配向状態が、ホモジニアス配向またはツイスト配向である、請求項1に記載の光学フィルム。
    The optically anisotropic layer is a layer in which the alignment state of the polymerizable liquid crystal compound is fixed,
    The optical film according to claim 1, wherein the orientation state is a homogeneous orientation or a twisted orientation.
  3.  前記支持体が、セルロースアシレートフィルムである、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the support is a cellulose acylate film.
  4.  前記界面活性剤が有する前記親水性基が、イオン性の親水性基である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the hydrophilic group of the surfactant is an ionic hydrophilic group.
  5.  前記界面活性剤が有する前記親水性基が、アニオン性の親水性基である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the hydrophilic group of the surfactant is an anionic hydrophilic group.
  6.  前記界面活性剤が、高分子化合物である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the surfactant is a polymer compound.
  7.  前記界面活性剤が有する前記疎水性基が、炭素数12~18のアルキル基である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the hydrophobic group of the surfactant is an alkyl group having 12 to 18 carbon atoms.
  8.  請求項1に記載の支持体を作製する支持体作製工程と、
     前記支持体にラビング処理を施すラビング工程と、
     重合性液晶化合物を含有する光学異方性層形成用組成物を用いて、前記ラビング処理を施した前記支持体上に光学異方性層を形成する光学異方性層形成工程と、
     を有する、光学フィルムの製造方法。
    A support production step of producing the support according to claim 1;
    a rubbing step of applying a rubbing treatment to the support;
    an optically anisotropic layer forming step of forming an optically anisotropic layer on the rubbed support using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound;
    A method for producing an optical film, comprising:
  9.  前記支持体作製工程が、請求項1に記載の界面活性剤を含有するドープを流延する工程を有する、請求項8に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 8, wherein the support production step includes a step of casting a dope containing the surfactant according to claim 1.
  10.  前記支持体作製工程が、請求項1に記載の界面活性剤および溶媒を含む組成物を、ポリマーフィルムの表面に染み込ませる工程を有する、請求項8に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 8, wherein the support preparation step includes a step of impregnating the surface of the polymer film with a composition containing the surfactant and solvent according to claim 1.
  11.  請求項1~7のいずれか1項に記載の光学フィルムと、偏光子とを有する、偏光板。 A polarizing plate comprising the optical film according to any one of claims 1 to 7 and a polarizer.
  12.  請求項1~7のいずれか1項に記載の光学フィルムを有する、画像表示装置。 An image display device comprising the optical film according to any one of claims 1 to 7.
  13.  液晶表示装置である、請求項12に記載の画像表示装置。 The image display device according to claim 12, which is a liquid crystal display device.
  14.  有機エレクトロルミネッセンス表示装置である、請求項12に記載の画像表示装置。 The image display device according to claim 12, which is an organic electroluminescence display device.
PCT/JP2023/031117 2022-09-22 2023-08-29 Optical film, method for producing optical film, polarizing plate, and image display device WO2024062850A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151111 2022-09-22
JP2022151111 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062850A1 true WO2024062850A1 (en) 2024-03-28

Family

ID=90454114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031117 WO2024062850A1 (en) 2022-09-22 2023-08-29 Optical film, method for producing optical film, polarizing plate, and image display device

Country Status (1)

Country Link
WO (1) WO2024062850A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148745A (en) * 2014-02-07 2015-08-20 大日本印刷株式会社 Transfer laminate for optical film
WO2016043087A1 (en) * 2014-09-19 2016-03-24 Dic株式会社 Polymerizable composition and film using same
WO2016171041A1 (en) * 2015-04-24 2016-10-27 日本ゼオン株式会社 Multilayer film manufacturing method and multilayer film
WO2017057005A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Optical film and method for producing same
WO2018003653A1 (en) * 2016-06-27 2018-01-04 Dic株式会社 Polymerizable liquid-crystal composition, and optically anisotropic object and liquid-crystal display element both obtained using same
WO2020071169A1 (en) * 2018-10-01 2020-04-09 富士フイルム株式会社 Display
JP2021015188A (en) * 2019-07-11 2021-02-12 住友化学株式会社 Long film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148745A (en) * 2014-02-07 2015-08-20 大日本印刷株式会社 Transfer laminate for optical film
WO2016043087A1 (en) * 2014-09-19 2016-03-24 Dic株式会社 Polymerizable composition and film using same
WO2016171041A1 (en) * 2015-04-24 2016-10-27 日本ゼオン株式会社 Multilayer film manufacturing method and multilayer film
WO2017057005A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Optical film and method for producing same
WO2018003653A1 (en) * 2016-06-27 2018-01-04 Dic株式会社 Polymerizable liquid-crystal composition, and optically anisotropic object and liquid-crystal display element both obtained using same
WO2020071169A1 (en) * 2018-10-01 2020-04-09 富士フイルム株式会社 Display
JP2021015188A (en) * 2019-07-11 2021-02-12 住友化学株式会社 Long film

Similar Documents

Publication Publication Date Title
KR102443875B1 (en) Retardation film, production method of retardation film, laminate, composition, polarizing plate and liquid crystal display device
JP4802409B2 (en) Optical compensation film, polarizing plate and liquid crystal display device using the same
JP4328205B2 (en) Transmission type liquid crystal display device
JP4328243B2 (en) Liquid crystal display
US11243436B2 (en) Liquid crystal display device
TWI391757B (en) Optical functional film, retardation film, optical functional layer forming composition, and manufacturing method of optical functional film
WO2005116741A1 (en) Liquid crystal display
JP6677722B2 (en) Horizontal alignment type liquid crystal display
WO2006067916A1 (en) Elliptic polarizing plate and image display employing it
US10739641B2 (en) Liquid crystal display device
JP2010072516A (en) Optical film, polarizing plate, and liquid crystal display device
JP3935489B2 (en) Liquid crystal display
WO2018174194A1 (en) Optical film, optical film layered body, polarizing plate, and image display device
WO2018030449A1 (en) Optical film, polarizing plate, and image display device
JP2002207125A (en) Optical compensation sheet and liquid crystal display device
WO2005116700A1 (en) Elliptical polarizing plate and image display
JP2009036860A (en) Liquid crystal display
WO2022030308A1 (en) Optically anisotropic layer
JP7434336B2 (en) Method for manufacturing an optically anisotropic layer, method for manufacturing a laminate, method for manufacturing an optically anisotropic layer with a polarizer, method for manufacturing a laminate with a polarizer, composition, optically anisotropic layer
WO2024062850A1 (en) Optical film, method for producing optical film, polarizing plate, and image display device
JP5036209B2 (en) Liquid crystal display
WO2023171518A1 (en) Optical film, optically anisotropic layer, alignment film-forming composition, method for producing optical film, polarizing plate, and image display device
JP2006323348A (en) Manufacturing method of optical film, optical film, and image display apparatus using optical film
JP7434573B2 (en) optically anisotropic layer
JP7217369B2 (en) Optical film, circularly polarizing plate, organic electroluminescence display