WO2023171518A1 - Optical film, optically anisotropic layer, alignment film-forming composition, method for producing optical film, polarizing plate, and image display device - Google Patents

Optical film, optically anisotropic layer, alignment film-forming composition, method for producing optical film, polarizing plate, and image display device Download PDF

Info

Publication number
WO2023171518A1
WO2023171518A1 PCT/JP2023/007741 JP2023007741W WO2023171518A1 WO 2023171518 A1 WO2023171518 A1 WO 2023171518A1 JP 2023007741 W JP2023007741 W JP 2023007741W WO 2023171518 A1 WO2023171518 A1 WO 2023171518A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
anisotropic layer
film
alignment film
liquid crystal
Prior art date
Application number
PCT/JP2023/007741
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 福島
慎平 吉田
智則 三村
駿 北脇
勇太 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023171518A1 publication Critical patent/WO2023171518A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to an optical film, an optically anisotropic layer, a composition for forming an alignment film, a method for producing an optical film, a polarizing plate, and an image display device.
  • Optical films such as optical compensatory sheets and retardation films are used in various image display devices to eliminate image coloration or expand viewing angles.
  • a stretched birefringent film has been used as an optical film, but in recent years, it has been proposed to use an optical film having an optically anisotropic layer made of a liquid crystal compound in place of the stretched birefringent film.
  • Patent Document 1 describes an embodiment in which an optically anisotropic layer is formed on an alignment film formed using a coating liquid containing polyvinyl alcohol having a specific group ([Claim 1] [ Claim 2] [Example]).
  • the alignment film is generally used after imparting an alignment regulating force through a rubbing process, but the alignment film debris generated during the rubbing process may cause the optically anisotropic layer to It is known that bright-spot defects may occur in optical films containing the same. Therefore, the present inventors investigated the alignment film described in Patent Document 1 and found that the alignment of the liquid crystal compound in the optically anisotropic layer was good. Considering the standards for bright spot defects accompanying the diversification of uses for display devices, it was found that there is room for improvement in suppressing bright spot defects.
  • an object of the present invention is to provide an optical film in which the orientation of a liquid crystal compound in an optically anisotropic layer is improved and the occurrence of bright spot defects is suppressed.
  • Another object of the present invention is to provide an optically anisotropic layer, a composition for forming an alignment film, a method for producing an optical film, a polarizing plate, and an image display device.
  • an alignment film containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms It has been discovered that by using an alignment film formed using a forming composition, the alignment of the liquid crystal compound in the optically anisotropic layer can be improved, and the occurrence of bright spot defects in the optical film can be suppressed, and the present invention has been achieved. completed. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • An optical film having an alignment film and an optically anisotropic layer is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound
  • the alignment film is a film formed using an alignment film-forming composition containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms. , optical film.
  • optical film according to any one of [1] to [3], wherein the polymer is polyvinyl alcohol or modified polyvinyl alcohol.
  • An optically anisotropic layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound, In the optically anisotropic layer, there are 1 to 80 bright spot defects/10 m2 of 100 ⁇ m or more, and the nucleus of the bright spot defects is formed by an additive having an alkyl group with a carbon number of 5 to 29 and a carbon number of 1 to 80/10 m2.
  • a method for producing an optical film comprising: [14] A polarizing plate comprising the optical film according to any one of [1] to [4] or the optically anisotropic layer according to any one of [5] to [8], and a polarizer.
  • An image display device comprising the optical film according to any one of [1] to [4] or the optically anisotropic layer according to any one of [5] to [8].
  • the image display device according to [15] which is a liquid crystal display device.
  • an optical film in which the orientation of the liquid crystal compound in the optically anisotropic layer is improved and the occurrence of bright spot defects is suppressed. Further, according to the present invention, an optically anisotropic layer, a composition for forming an alignment film, a method for producing an optical film, a polarizing plate, and an image display device can be provided.
  • each component may be a substance corresponding to each component, which may be used alone or in combination of two or more.
  • the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
  • (meth)acrylate is a notation representing “acrylate” or “methacrylate”
  • (meth)acrylic is a notation representing "acrylic” or “methacrylic”
  • (meth)acrylate” is a notation representing "acrylic” or “methacrylic”
  • (Meth)acryloyl” is a notation representing "acryloyl” or “methacryloyl.”
  • the bonding direction of the divalent group is not particularly limited unless the bonding position is specified, and for example, XL- If L in Y is -COO-, the position bonded to the X side is *1 and the position bonded to the Y side is *2, then L is *1-O-CO-*2. It may be *1-CO-O-*2.
  • the optical film of the present invention has an alignment film and an optically anisotropic layer.
  • the optically anisotropic layer included in the optical film of the present invention is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound.
  • the alignment film of the optical film of the present invention is a composition for forming an alignment film containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms. This is a film formed using
  • an additive having an alkyl group having 5 to 29 carbon atoms (hereinafter also referred to as "specific additive") and a polymer having no alkyl group having 5 to 29 carbon atoms (hereinafter referred to as "specific additive”) are used.
  • specific additive an additive having an alkyl group having 5 to 29 carbon atoms
  • specific additive a polymer having no alkyl group having 5 to 29 carbon atoms
  • an alignment film formed using an alignment film-forming composition containing also abbreviated as “specific polymer”
  • the alignment of the liquid crystal compound in the optically anisotropic layer is improved, and the optical The occurrence of bright spot defects in the film can be suppressed. The reason why these effects occur is not clear in detail, but the present inventors speculate as follows.
  • the specific additive since the specific additive has an alkyl group having 5 to 29 carbon atoms, it has good compatibility with the specific polymer, suppresses aggregation of the specific additives, and as a result, the surface of the alignment film It is thought that because the specific polymer could be exposed appropriately, the alignment of the liquid crystal compound in the optically anisotropic layer formed on the alignment film was improved.
  • the alignment film and the optically anisotropic layer included in the optical film of the present invention will be explained in detail.
  • the alignment film of the optical film of the present invention contains an additive having an alkyl group having 5 to 29 carbon atoms (specific additive) and a polymer having no alkyl group having 5 to 29 carbon atoms (specific polymer). This is a film formed using a composition for forming an alignment film.
  • the specific additive contained in the composition for forming an alignment film is an additive having an alkyl group having 5 to 29 carbon atoms.
  • the alkyl group include pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, hexadecyl group (cetyl group), octadecyl group, icosyl group, docosyl group, tetracosyl group, hexacosyl group, nonacosyl group, and the like.
  • the alkyl group may be a linear alkyl group or a branched alkyl group, but is preferably a linear alkyl group.
  • the number of carbon atoms in the alkyl group is preferably 10 to 25, more preferably 12 to 22, because the alignment of the liquid crystal compound in the optically anisotropic layer is better. .
  • the specific additive preferably has a hydrophilic group in addition to the alkyl group, since this improves the alignment of the liquid crystal compound in the optically anisotropic layer.
  • the hydrophilic group is not particularly limited, and both ionic hydrophilic groups (anionic hydrophilic groups, cationic hydrophilic groups, and amphoteric hydrophilic groups) and nonionic hydrophilic groups can be used. can.
  • examples of the anionic hydrophilic group include a hydroxy group, a carboxy group, a carboxylate, a sulfonic acid group, a sulfonate, a sulfuric acid ester salt, a phosphoric acid group, and a phosphoric acid ester salt.
  • Examples of the cationic hydrophilic group include an amino group and a quaternary ammonium salt.
  • the nonionic hydrophilic group may be any of the ester type, ether type, ester-ether type, and alkanolamide type, preferably the ether type, and the nonionic hydrophilic group (e.g., polyoxyalkylene group) (ethylene group, polyoxypropylene group, polyoxyalkylene group in which an oxyethylene group and an oxypropylene group are block or randomly bonded) are more preferable.
  • hydrophilic groups ionic hydrophilic groups (limited to neutralized products such as carboxylic acid salts) and nonionic hydrophilic groups are used because they can further suppress the occurrence of bright spot defects in optical films. It is preferable that it is a group.
  • the specific additive may be a low molecular compound or a high molecular compound.
  • the term “low molecular compound” refers to a specific additive having a molecular weight of 100 or more and less than 2,000.
  • the term “polymer compound” refers to a specific additive having a molecular weight of 2000 or more, and the weight average molecular weight (Mw) is preferably 10000 to 40000, more preferably 11000 to 39000, More preferably, it is 13,000 to 35,000.
  • Mw weight average molecular weight
  • the weight average molecular weight is 10,000 or more, unevenness is suppressed during formation of the liquid crystal cured layer, and when the weight average molecular weight is 40,000 or less, the orientation of the liquid crystal cured layer becomes better.
  • the specific additive is preferably a polymer compound because it has a lower coefficient of friction, that is, can maintain orientation while suppressing bright spot defects.
  • the clear mechanism by which the above effects are obtained by being a high molecular compound is not clear, but because high molecular compounds form entanglements while being compatible with specific polymers described below, they tend to aggregate more easily than low molecular compounds. It is assumed that this is because it is difficult to coat the surface of the alignment film and can coat the surface of the alignment film uniformly. Further, a high molecular compound is preferable to a low molecular compound in that it is more robust in the process of forming an alignment film, that is, the change in the coefficient of dynamic friction with respect to the drying temperature is smaller.
  • the low-molecular compound having the above-mentioned alkyl group and any hydrophilic group include sodium dodecyl sulfate, polyoxyethylene (10) cetyl ether, polyoxyethylene (20) docosyl ether, and tetrahexyl ether.
  • examples include ammonium bromide, tetra-n-octylammonium bromide, trimethylstearylammonium bromide, melisic acid, and the like.
  • Examples of the polymer compound having the above-mentioned alkyl group and any hydrophilic group include a polymer having the above-mentioned alkyl group and hydrophilic group in the side chain of a (meth)acrylic polymer.
  • Such polymers include a side chain having the above-mentioned alkyl group (hereinafter also abbreviated as "hydrophobic part”) and a side chain having the above-mentioned hydrophilic group (hereinafter also abbreviated as "hydrophilic part”).
  • a copolymer having these in separate repeating units is preferred.
  • the hydrophobic part is not particularly limited as long as it has the above-mentioned alkyl group, but it has a polyoxyalkylene group as a linking group on the main chain side and an alkyl group having 12 to 22 carbon atoms on the terminal side. It is preferable to have one.
  • the hydrophilic part is not particularly limited as long as it has the above-mentioned hydrophilic group, but it is preferably a side chain having a polyoxyalkylene group, more preferably a side chain having a polyoxyethylene group. preferable.
  • Examples of monomers that form such a hydrophobic part include those shown below.
  • examples of monomers that form such a hydrophilic part include those shown below.
  • the content of the specific additive contained in the composition for forming an alignment film is preferably 0.1 to 10% by mass, and preferably 0.15 to 8% by mass based on the mass of the specific polymer described below. %, and even more preferably 0.20 to 5% by mass.
  • the content of the specific additive contained in the alignment film to be formed is preferably 0.1 to 10% by mass, and preferably 0.15 to 8% by mass, based on the mass of the specific polymer described below. The amount is more preferably 0.20 to 5% by mass.
  • the specific polymer contained in the composition for forming an alignment film is a polymer having 5 to 29 carbon atoms and having no alkyl group.
  • the specific polymer is not particularly limited as long as it does not have an alkyl group having 5 to 29 carbon atoms, and includes, for example, polyvinyl alcohol (polyvinyl acetate), polystyrene, polyester, polyamide, polysulfone, polyethersulfone, polyimide, Examples include polyacrylic acid, poly(meth)acrylate, polyacetal, polycarbonate, and modified polymers thereof.
  • the weight average molecular weight of the specific polymer is not particularly limited, and is preferably from 5,000 to 200,000, more preferably from 10,000 to 70,000.
  • the weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) under the conditions shown below.
  • the specific polymer is preferably polyvinyl alcohol or modified polyvinyl alcohol because the orientation of the liquid crystal compound in the optically anisotropic layer is better and the generation of bright spot defects in the optical film can be further suppressed.
  • polyvinyl alcohol is obtained by hydrolyzing all the acetyl groups that a vinyl acetate polymer has with a strong base such as sodium hydroxide to convert them into hydroxyl groups (saponification).
  • modified polyvinyl alcohol is obtained by substituting the above-mentioned hydroxyl group with another substituent (for example, an acetyl group, a carboxy group, an amide group, etc.).
  • modified polyvinyl alcohols include polymers having repeating units represented by the following formula (1) and repeating units represented by the following formula (2), and polymers having repeating units represented by the following formula (1) and repeating units represented by the following formula (1).
  • examples include polymers having a repeating unit represented by the following formula (2) and a repeating unit represented by the following formula (3).
  • R represents an alkyl group having 1 to 5 carbon atoms, a phenyl group, a heteroaryl group, a polymerizable group, or a combination of two or more of these groups.
  • the alkyl group may be linear or branched. Further, the alkyl group may have a cyclic structure. The number of carbon atoms in the alkyl group is not particularly limited as long as it is 1 to 5, but 2 to 4 is preferred.
  • the alkyl group may have a hydroxyl group. That is, the alkyl group may have a hydroxyl group as a substituent.
  • the alkyl group may contain a heteroatom. Examples of the heteroatom include an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the alkyl group contains a heteroatom, for example, -O-, -CO-O-, -CO-NH-, -SO 2 -, -SO 2 -O-, and -SO 2 -NH
  • examples include embodiments containing divalent linking groups such as -.
  • the heteroaryl group a heteroaryl group consisting of a 5-, 6-, or 7-membered ring or a condensed ring thereof is preferred.
  • the heteroatom contained in the heteroaryl group include an oxygen atom, a sulfur atom, and a nitrogen atom.
  • rings constituting the heteroaryl group include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, and imidazoline ring.
  • the polymerizable group include polymerizable groups represented by any of the following formulas (P-1) to (P-20) explained in the polymerizable liquid crystal compound described below.
  • the content of the repeating unit represented by the above formula (1) is not particularly limited, it is preferably 76.0 to 95.0 mol%, and 78.0 to 91.0% by mole, based on the total repeating units in the modified polyvinyl alcohol. 0 mol% is more preferred.
  • the content of the repeating unit represented by the above formula (2) is not particularly limited, but it is preferably more than 0 mol% and 25.0 mol% or less, and 1.0 to 21% by mole, based on the total repeating units in the modified polyvinyl alcohol. .0 mol% is more preferred.
  • the content of the repeating unit represented by the above formula (3) is not particularly limited, but all repeating units in the modified polyvinyl alcohol It is preferably 0.5 to 14.0 mol%.
  • composition for forming an alignment film may contain components other than the above-mentioned specific additives and specific polymers.
  • the composition for forming an alignment film must contain a polymerization initiator.
  • the polymerization initiator is not particularly limited, and examples thereof include thermal polymerization initiators and photopolymerization initiators depending on the type of polymerization reaction.
  • a photopolymerization initiator that can initiate a polymerization reaction by ultraviolet irradiation is preferred.
  • photopolymerization initiators include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, combinations of triarylimidazole dimer and p-aminophenyl ketone, acridine and phenazine compounds. , oxadiazole compounds, and acylphosphine oxide compounds.
  • the composition for forming an alignment film may contain a curing agent in addition to the above-mentioned specific additives.
  • a curing agent include carboxylic acid compounds (eg, citric acid esters, etc.), aldehyde compounds (eg, glutaraldehyde, glyoxal, etc.), and the like.
  • the composition for forming an alignment film preferably contains a solvent from the viewpoint of workability when forming an alignment film.
  • solvents include ketones (e.g., acetone, 2-butanone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone), ethers (e.g., dioxane, and tetrahydrofuran), aliphatic hydrocarbons (e.g., hexane), cycloaliphatic hydrocarbons (e.g. cyclohexane), aromatic hydrocarbons (e.g. toluene, xylene, and trimethylbenzene), halogenated carbons (e.g.
  • One type of solvent may be used alone, or two or more types may be used in combination.
  • the alignment film is a film formed using the composition for forming an alignment film containing the above-mentioned specific additive and specific polymer, and the manufacturing procedure thereof will be described later in the alignment film formation method of the optical film manufacturing method of the present invention. The process will be explained in detail.
  • the thickness of the alignment film is not particularly limited, but is preferably 0.2 to 1.0 ⁇ m, more preferably 0.4 to 0.8 ⁇ m.
  • the optically anisotropic layer of the optical film of the present invention is a layer disposed on the above-mentioned alignment film, and in the present invention, an optically anisotropic layer-forming composition containing a polymerizable liquid crystal compound is used.
  • This is a layer formed by More specifically, in the coating film formed by applying the composition for forming an optically anisotropic layer, as detailed in the optically anisotropic layer forming step of the method for producing an optical film of the present invention described later. It is preferable that the layer be formed by aligning the polymerizable liquid crystal compound and fixing that state. In this case, it is no longer necessary to exhibit liquid crystallinity after forming the layer.
  • the polymerizable liquid crystal compound contained in the composition for forming an optically anisotropic layer is a liquid crystal compound having a polymerizable group.
  • the polymerizable group is not particularly limited, but preferably a polymerizable group capable of radical polymerization or cationic polymerization.
  • a known radically polymerizable group can be used, and preferred examples include an acryloyloxy group or a methacryloyloxy group.
  • an acryloyloxy group generally has a high polymerization rate, and an acryloyloxy group is preferred from the viewpoint of improving productivity, but a methacryloyloxy group can also be used as a polymerizable group.
  • a known cationic polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro-orthoester group, and a vinyloxy Examples include groups.
  • polymerizable groups include polymerizable groups represented by any of the following formulas (P-1) to (P-20).
  • the polymerizable liquid crystal compound is not particularly limited, and includes, for example, a compound capable of homeotropic alignment, homogeneous alignment, hybrid alignment, and cholesteric alignment.
  • liquid crystal compounds can be classified into rod-like types and disc-like types based on their shapes. Furthermore, there are low-molecular and high-molecular types, respectively.
  • Polymers generally refer to those with a degree of polymerization of 100 or more (Polymer Physics/Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992).
  • any liquid crystal compound can be used, but a rod-shaped liquid crystal compound or a discotic liquid crystal compound (discotic liquid crystal compound) is preferable.
  • a monomer or a relatively low molecular weight liquid crystal compound having a degree of polymerization of less than 100 is preferable.
  • rod-shaped liquid crystal compound for example, those described in claim 1 of Japanese Patent Publication No. 11-513019 or paragraphs [0026] to [0098] of JP-A-2005-289980 are preferable, and as the discotic liquid crystal compound, For example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-244038 are preferred.
  • a reverse wavelength dispersion liquid crystal compound As the polymerizable liquid crystal compound, a reverse wavelength dispersion liquid crystal compound can be used.
  • a liquid crystal compound with "reverse wavelength dispersion” refers to the in-plane retardation (Re) value measured at a specific wavelength (visible light range) of a retardation film made using this compound. In other words, as the measurement wavelength becomes larger, the Re value becomes the same or becomes higher.
  • the reverse wavelength dispersion liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersion film as described above. (especially the compounds described in paragraphs [0034] to [0039]), the compounds represented by the general formula (1) described in JP-A-2010-084032 (especially the compounds described in paragraphs [0067] to [0073]) ), and the compound represented by the general formula (1) described in JP-A-2016-081035 (particularly the compounds described in paragraphs [0043] to [0055]). Additionally, paragraphs [0027] to [0100] of JP2011-006360, paragraphs [0028] to [0125] of JP2011-006361, and paragraphs [0034] to [0034] of JP2012-207765.
  • the composition for forming an optically anisotropic layer preferably contains a polymerization initiator.
  • the polymerization initiator include those explained in connection with the composition for forming an alignment film mentioned above.
  • the composition for forming an optically anisotropic layer preferably contains a solvent from the viewpoint of workability when forming an optically anisotropic layer.
  • the solvent include those explained in connection with the composition for forming an alignment film mentioned above.
  • the composition for forming an optically anisotropic layer preferably contains a leveling agent from the viewpoint of keeping the surface of the optically anisotropic layer smooth and facilitating orientation control.
  • a leveling agent a fluorine-based leveling agent or a silicon-based leveling agent is preferable because it has a high leveling effect with respect to the amount added, and a fluorine-based leveling agent is more preferable because it is less likely to cause weeping (bloom, bleed).
  • Examples of the leveling agent include compounds described in paragraphs [0079] to [0102] of JP-A No. 2007-069471, and compounds represented by the general formula (I) described in JP-A No. 2013-047204.
  • leveling agent may also have a function as an alignment control agent, which will be described later.
  • the composition for forming an optically anisotropic layer may contain an alignment control agent, if necessary.
  • an alignment control agent it is possible to form various alignment states such as homogeneous alignment, homeotropic alignment (vertical alignment), tilted alignment, hybrid alignment, and cholesteric alignment, and it is also possible to form a specific alignment state more uniformly and precisely. It can be controlled and realized.
  • a low-molecular alignment control agent and a polymeric alignment control agent can be used as the alignment control agent that promotes homogeneous alignment.
  • low-molecular alignment control agents include paragraphs [0009] to [0083] of JP-A No. 2002-20363, paragraphs [0111] to [0120] of JP-A No. 2006-106662, and paragraphs [0111] to [0120] of JP-A No. 2006-106662, and JP-A No. 2012-2012.
  • the descriptions in paragraphs [0021] to [0029] of Publication No.-211306 can be referred to, and the contents thereof are incorporated into the present specification.
  • examples of the alignment control agent that forms or promotes homeotropic alignment include boronic acid compounds and onium salt compounds.
  • Examples of this alignment control agent include paragraphs [0023] to [0032] of JP-A No. 2008-225281, paragraphs [0052]-[0058] of JP-A No. 2012-208397, and paragraphs [0052] to [0058] of JP-A No. 2008-026730.
  • the compounds described in paragraphs [0024] to [0055] and paragraphs [0043] to [0055] of JP-A-2016-193869 can be referred to, and the contents thereof are incorporated into the present specification.
  • cholesteric alignment can be achieved by adding a chiral agent to the composition for forming an optically anisotropic layer, and the direction of rotation of the cholesteric alignment can be controlled depending on the direction of the chirality.
  • the pitch of cholesteric alignment may be controlled depending on the alignment regulating force of the chiral agent.
  • the content is preferably 0.01 to 10% by mass, and 0.05 to 5% by mass based on the total solid mass in the composition. More preferred. When the content is within this range, precipitation, phase separation, orientation defects, etc. can be suppressed while realizing a desired orientation state, and a uniform and highly transparent cured product can be obtained.
  • composition for forming an optically anisotropic layer may contain components other than those mentioned above.
  • Other components include, for example, surfactants, tilt angle control agents, alignment aids, plasticizers, and crosslinking agents.
  • an ionic compound, a conductive polymer, etc. may be included as an antistatic agent.
  • the optically anisotropic layer is a film formed using the composition for forming an optically anisotropic layer described above, and the manufacturing procedure thereof will be described later in the optically anisotropic layer of the method for manufacturing an optical film of the present invention. This will be explained in detail in the forming process.
  • the thickness of the optically anisotropic layer is not particularly limited, but from the viewpoint of making the device thinner, it is preferably 0.7 to 2.5 ⁇ m, more preferably 0.9 to 2.2 ⁇ m.
  • the orientation state of the polymerizable liquid crystal compound in the optically anisotropic layer may be any of horizontal orientation, vertical orientation, tilted orientation, and twisted orientation, and the orientation state is horizontal to the main surface of the optically anisotropic layer. It is preferable that it is immobilized in an oriented state.
  • horizontal alignment means that the main surface of the optically anisotropic layer and the long axis direction of the polymerizable liquid crystal compound are parallel. Note that it is not required that they be strictly parallel, and in this specification, the orientation is such that the angle between the long axis direction of the polymerizable liquid crystal compound and the main surface of the optically anisotropic layer is less than 10°. shall mean.
  • the angle between the long axis direction of the polymerizable liquid crystal compound and the main surface of the optically anisotropic layer is preferably 0 to 5°, more preferably 0 to 3°, and preferably 0 to 2°. More preferred.
  • the optically anisotropic layer is more preferably a positive A plate or a positive C plate, and even more preferably a positive A plate.
  • the positive A plate (positive A plate) and the positive C plate (positive C plate) are defined as follows.
  • the refractive index in the in-plane slow axis direction (direction where the in-plane refractive index is maximum) is nx
  • the refractive index in the direction orthogonal to the in-plane slow axis is ny
  • the refraction in the thickness direction is
  • the ratio is nz
  • the positive A plate satisfies the relationship of formula (A1)
  • the positive C plate satisfies the relationship of formula (C1).
  • the positive A plate has a positive Rth value
  • the positive C plate has a negative Rth value.
  • Re (550) is preferably 100 to 180 nm, more preferably 120 to 160 nm, and 130 to 150 nm.
  • the wavelength is more preferably 130 to 145 nm, particularly preferably 130 to 145 nm.
  • the " ⁇ /4 plate” is a plate that has a ⁇ /4 function, specifically, the function of converting linearly polarized light of a certain wavelength into circularly polarized light (or from circularly polarized light to linearly polarized light). It is a board with
  • the optical film of the present invention may have a support for supporting the above-mentioned alignment film.
  • the type of support is not particularly limited, and any known support can be used.
  • a transparent support is preferred.
  • the transparent support is intended to be a support having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
  • the support examples include glass substrates and polymer films.
  • Materials for the polymer film include cellulose polymers; acrylic polymers containing acrylic acid ester polymers such as polymethyl methacrylate and lactone ring-containing polymers; thermoplastic norbornene polymers; polycarbonate polymers; polyethylene terephthalate, and polyethylene ester polymers; Polyester polymers such as phthalates; Styrenic polymers such as polystyrene and acrylonitrile styrene copolymers; Polyolefin polymers such as polyethylene, polypropylene, and ethylene-propylene copolymers; Vinyl chloride polymers; Nylon, aromatic polyamides, etc.
  • Amide polymer Imide polymer; Sulfone polymer; Polyether sulfone polymer; Polyether ether ketone polymer; Polyphenylene sulfide polymer; Vinylidene chloride polymer; Vinyl alcohol polymer; Vinyl butyral polymer; Arylate polymer; Examples include oxymethylene polymers; epoxy polymers; and polymers obtained by mixing these polymers.
  • the support is preferably one that is removable.
  • the optically anisotropic layer of the present invention is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound. Further, in the optically anisotropic layer of the present invention, there are 1 to 80 bright spot defects/10 m2 with a diameter of 100 ⁇ m or more, and the nucleus of the bright spot defects has an alkyl group having 5 to 29 carbon atoms. It contains an additive and a polymer having 5 to 29 carbon atoms and no alkyl group.
  • the number of bright spot defects of 100 ⁇ m or more existing in the optically anisotropic layer can be confirmed by the following method.
  • the optical film is observed from above the polarizing plate using a magnifying glass, and defects with a diameter of 100 ⁇ m or more are marked.
  • a cross section is cut with a microtome so as to pass through the center of the marked defect, and an optical microscope observation is performed from the cross-sectional direction to count defects in which foreign matter is observed in the optically anisotropic layer.
  • the nucleus of the bright spot defect existing in the optically anisotropic layer of the present invention is caused by the additive having an alkyl group having 5 to 29 carbon atoms and the polymer having no alkyl group having 5 to 29 carbon atoms. Contains.
  • the above-mentioned additive and the above-mentioned polymer are respectively the same as the specific additive and specific polymer explained in the above-mentioned alignment film.
  • the nucleus of the bright spot defect existing in the optically anisotropic layer of the present invention is caused by the slight amount of debris of the alignment film generated when the alignment film is rubbed. It is thought that it has shifted to the tropic layer side.
  • composition for forming alignment film of the present invention is a composition containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms.
  • the above-mentioned additive and the above-mentioned polymer are respectively the same as the specific additive and specific polymer explained in the above-mentioned alignment film.
  • the method for producing an optical film of the present invention includes an alignment film forming step of forming an alignment film on a support using the composition for forming an alignment film of the present invention, and a rubbing step of subjecting the alignment film to a rubbing treatment.
  • a manufacturing method comprising an optically anisotropic layer forming step of forming an optically anisotropic layer on an alignment film subjected to a rubbing treatment using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound. It is. Below, the procedure of each step will be explained in detail.
  • the alignment film forming step is a step of forming an alignment film on a support using a composition for forming an alignment film.
  • the composition for forming an alignment film and the support used in this step are as described above.
  • One aspect of the specific procedure for forming an alignment film is to apply a composition for forming an alignment film onto a support, form a coating film on the support, and then subject the coating film to a rubbing treatment.
  • An example of this method is to form an alignment film using the following method.
  • the method of applying the composition for forming an alignment film onto the support is not particularly limited, and examples thereof include wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, and die coating method. .
  • the support coated with the composition for forming an alignment film may be subjected to a drying treatment to remove the solvent, if necessary.
  • the rubbing process is a process of subjecting the alignment film to a rubbing process.
  • a treatment method that is widely adopted as a liquid crystal alignment treatment process for liquid crystal display devices can be applied. That is, a method is used to obtain orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber, or the like.
  • the optically anisotropic layer forming step is a step of forming an optically anisotropic layer on an alignment film that has been subjected to a rubbing treatment using a composition for forming an optically anisotropic layer.
  • One aspect of the specific procedure for forming an optically anisotropic layer is to apply a composition for forming an optically anisotropic layer onto an alignment film, form a coating film on the alignment film, and apply the composition in the coating film.
  • the coating film may be subjected to a curing treatment to form an optically anisotropic layer.
  • Examples of the method for applying the composition for forming an optically anisotropic layer on the alignment film include the same method as the method for applying the composition for forming an alignment film described above.
  • the support coated with the composition for forming an optically anisotropic layer is subjected to a drying treatment to remove the solvent. May be implemented.
  • the method for orienting the polymerizable liquid crystal compound in the coating film is not particularly limited, and examples thereof include a method of heating the coating film and a method of drying the coating film at room temperature.
  • the liquid crystal phase formed by the alignment treatment can generally be transformed by a change in temperature.
  • the transition can also be caused by changing the composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 150°C, and the heating time is preferably 10 seconds to 5 minutes.
  • the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment to form an optically anisotropic layer.
  • the method of curing treatment is not particularly limited, and includes light irradiation treatment and heat treatment, with light irradiation being more preferred.
  • the type of light used during exposure is not particularly limited, but ultraviolet light is preferred.
  • the irradiation amount during exposure is not particularly limited, and is preferably 10 mJ/cm 2 to 50 J/cm 2 , more preferably 20 mJ/cm 2 to 5 J/cm 2 .
  • it may be carried out under heating conditions.
  • the polarizing plate of the present invention includes the optical film of the present invention or the optically anisotropic layer of the present invention (hereinafter, in the description of the polarizing plate of the present invention, it will be abbreviated as "the optical film of the present invention, etc.”), a polarizer, It is a polarizing plate having
  • the polarizer included in the polarizing plate of the present invention is not particularly limited as long as it is a member that has the function of converting light into specific linearly polarized light, and conventionally known absorption type polarizers and reflection type polarizers can be used. .
  • absorption type polarizer an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, etc. are used.
  • Iodine-based polarizers and dye-based polarizers include coating-type polarizers and stretched-type polarizers, and both can be applied, but polarized light produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching it Child is preferred.
  • a method for obtaining a polarizer by stretching and dyeing a laminated film in which a polyvinyl alcohol layer is formed on a base material Japanese Patent No. 5048120, Japanese Patent No. 5143918, Japanese Patent No. 4691205, and Publication No. 4751481 and Japanese Patent No. 4751486 are mentioned, and known techniques regarding these polarizers can also be preferably used.
  • WO2018/124198, WO2018/186503, WO2019/132020, WO2019/132018, WO2019/189345, JP 2019-197168, JP 2019-194685, and JP 2019-1 No. 39222 Publications are listed, and known techniques related to these polarizers can also be preferably used.
  • the reflective polarizer a polarizer in which thin films with different birefringences are laminated, a wire grid polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a quarter-wave plate are combined, etc. are used.
  • polyvinyl alcohol-based resins (polymer containing -CH 2 -CHOH- as a repeating unit; in particular, at least one selected from the group consisting of polyvinyl alcohol and ethylene-vinyl alcohol copolymers) have better adhesion. 1) is preferred.
  • the polarizer may have depolarization portions formed along opposing edges. Examples of the depolarization unit include Japanese Patent Application Laid-Open No. 2014-240970. Further, the polarizer may have non-polarizing portions arranged at predetermined intervals in the longitudinal direction and/or the width direction. The non-polarized portion is a partially bleached portion. The arrangement pattern of the non-polarizing portions can be appropriately set depending on the purpose.
  • the non-polarizing portion is placed at a position corresponding to the camera portion of the image display device.
  • Examples of the arrangement pattern of the non-polarizing portion include Japanese Patent Application Laid-open No. 2016-27392.
  • the thickness of the polarizer is not particularly limited, but is preferably 3 to 60 ⁇ m, more preferably 3 to 30 ⁇ m, and even more preferably 3 to 10 ⁇ m.
  • the polarizing plate of the present invention may have other optical films, a protective film described below, and other functional layers in addition to the optical film of the present invention and the polarizer.
  • the function of the functional layer is not particularly limited, and for example, it may be a layer having functions such as an adhesive layer, a stress relaxation layer, a flattening layer, an antireflection layer, a refractive index adjustment layer, and an ultraviolet absorption layer.
  • the protective film may be used on both sides of the polarizer, or may be used only on one side of the polarizer. In addition, when the protective film is on the same side as the optical film, etc. of the present invention, an adhesive or adhesive may be applied between the polarizer and the optical film, or on the opposite side of the optical film, etc.
  • the polarizing plate can be used as a circularly polarizing plate when the optically anisotropic layer of the optical film of the invention described above or the optically anisotropic layer of the invention is a ⁇ /4 plate (positive A plate).
  • the optically anisotropic layer described above is a ⁇ /4 plate (positive A plate)
  • the angle between the slow axis of the ⁇ /4 plate and the absorption axis of the polarizer described later is is preferably 30 to 60°, more preferably 40 to 50°, even more preferably 42 to 48°, and particularly preferably 45°.
  • the "slow axis" of the ⁇ /4 plate means the direction in which the refractive index is maximum within the plane of the ⁇ /4 plate
  • the "absorption axis" of the polarizer means the direction in which the absorbance is highest.
  • the polarizing plate can also be used as an optical compensation film of an IPS (In-Plane-Switching) type or FFS (Fringe-Field-Switching) type liquid crystal display device.
  • the above-mentioned optically anisotropic layer is used as at least one plate of a laminate of a positive A plate and a positive C plate.
  • the angle between the slow axis of the plate layer and the absorption axis of the polarizer be perpendicular or parallel.
  • the angle between the slow axis of the positive A plate layer and the absorption axis of the polarizer is preferably More preferably, the angle is 0-5° or 85-95°.
  • the angle between the slow axis of the positive A plate and the absorption axis of the polarizer is parallel to each other.
  • the angle between the slow axis of the positive A plate and the absorption axis of the polarizer is More preferably, they are orthogonal.
  • the angle between the slow axis of the optically anisotropic layer and the absorption axis of the polarizer be parallel or orthogonal. Note that in this specification, “parallel” does not necessarily require strict parallelism, but means that the angle formed by one side and the other side is less than 10 degrees. Further, in this specification, “orthogonal” does not necessarily require that they be strictly orthogonal, but means that the angle between one and the other is more than 80° and less than 100°.
  • the material for the protective film is not particularly limited, and examples include cellulose acylate film (e.g., cellulose triacetate film, cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyacrylics such as polymethyl methacrylate, etc.
  • cellulose acylate film e.g., cellulose triacetate film, cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film
  • polyacrylics such as polymethyl methacrylate, etc.
  • Resin film polyolefin such as polyethylene and polypropylene, polyester resin film such as polyethylene terephthalate and polyethylene naphthalate, polyether sulfone film, polyurethane resin film, polyester film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film , polyetherketone film, (meth)acrylonitrile film, polyolefin, polymer with alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation), amorphous polyolefin (Zeonex: trade name, manufactured by Nippon Zeon Co., Ltd.) )), etc.
  • cellulose acylate film is preferred.
  • optical properties of the protective film are not particularly limited, but when the protective film is on the same side as the optical film of the present invention, it is preferable that the following formula is satisfied. 0nm ⁇ Re(550) ⁇ 10nm -40nm ⁇ Rth(550) ⁇ 40nm
  • an adhesive layer may be disposed between the optical film or the like of the present invention and the polarizer.
  • the adhesive include, but are not limited to, polyvinyl alcohol adhesives.
  • an adhesive layer may be disposed between the optical film or the like of the present invention and the polarizer.
  • a curable adhesive composition that is cured by irradiation with active energy rays or heating is preferable.
  • the curable adhesive composition include a curable adhesive composition containing a cationically polymerizable compound and a curable adhesive composition containing a radically polymerizable compound.
  • the thickness of the adhesive layer is preferably 0.01 to 20 ⁇ m, more preferably 0.01 to 10 ⁇ m, and even more preferably 0.05 to 5 ⁇ m.
  • the thickness of the adhesive layer is within this range, no lifting or peeling will occur between the protective layer or optically anisotropic layer to be laminated and the polarizer, and adhesive strength with no practical problems can be obtained. Further, from the viewpoint of suppressing the generation of bubbles, the thickness of the adhesive layer is preferably 0.4 ⁇ m or more. Further, from the viewpoint of durability, the bulk water absorption rate of the adhesive layer may be adjusted to 10% by mass or less, preferably 2% by mass or less. The bulk water absorption rate is measured according to the water absorption rate test method described in JIS K 7209. As for the adhesive layer, for example, paragraphs [0062] to [0080] of JP-A-2016-35579 can be referred to, and the contents thereof are incorporated into the present specification.
  • an easily adhesive layer may be disposed between the optical film of the present invention and the polarizer.
  • the storage elastic modulus of the easy-adhesive layer at 85°C is 1.0 ⁇ 10 6 Pa. It is preferably 1.0 ⁇ 10 7 Pa.
  • constituent materials of the easily adhesive layer include polyolefin components and polyvinyl alcohol components.
  • the thickness of the adhesive layer is preferably 500 nm to 1 ⁇ m.
  • the image display device of the present invention is an image display device having the optical film of the present invention or the optically anisotropic layer of the present invention.
  • the display element used in the image display device is not particularly limited, and includes, for example, a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as "EL (Electro Luminescence)”) display panel, a plasma display panel, and the like.
  • EL Organic electroluminescence
  • liquid crystal cells and organic EL display panels are preferred, and liquid crystal cells are more preferred. That is, as the image display device, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL display panel as a display element is preferable, and a liquid crystal display device is more preferable.
  • a liquid crystal display device which is an example of an image display device, includes the above-mentioned polarizing plate and a liquid crystal cell. Note that among the polarizing plates provided on both sides of the liquid crystal cell, it is preferable to use the above-described polarizing plate as the front-side polarizing plate, and it is more preferable to use the above-mentioned polarizing plates as the front-side and rear-side polarizing plates.
  • the liquid crystal cell constituting the liquid crystal display device will be described in detail below.
  • liquid crystal cells used in liquid crystal display devices are in VA (Vertical Alignment) mode, OCB (Optically Compensated Bend) mode, IPS (In-Plane-Switching) mode, FFS (Fringe-Field-Switching) mode, or TN (Twisted) mode.
  • VA Vertical Alignment
  • OCB Optically Compensated Bend
  • IPS In-Plane-Switching
  • FFS Feringe-Field-Switching
  • TN Transmission
  • Nematic mode is preferable, but is not limited thereto.
  • rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are further twisted at an angle of 60 to 120 degrees.
  • TN mode liquid crystal cells are most commonly used as color TFT liquid crystal display devices, and are described in numerous documents.
  • VA mode liquid crystal cells In a VA mode liquid crystal cell, rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied.
  • VA mode liquid crystal cells include (1) narrowly defined VA mode liquid crystal cells in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when voltage is applied (Japanese Patent Application Laid-Open No. 2002-2002); In addition to (2) a multi-domain (MVA mode) liquid crystal cell (SID97, described in Digest of tech.Papers (Proceedings) 28 (1997) 845) in which VA mode is multi-domained to expand the viewing angle (described in Publication No.
  • MVA mode multi-domain liquid crystal cell
  • VA mode liquid crystal cell may be any of the PVA (Patterned Vertical Alignment) type, the optical alignment type (Optical Alignment), and the PSA (Polymer-Sustained Alignment) type. Details of these modes are described in Japanese Patent Application Laid-open No. 2006-215326 and Japanese Patent Application Publication No.
  • An organic EL display device which is an example of an image display device, includes, from the viewing side, a polarizer, a ⁇ /4 plate (positive A plate) made of the above-mentioned optically anisotropic layer, and an organic EL display panel. Examples include embodiments in which the elements are arranged in this order. Furthermore, an organic EL display panel is a display panel constructed using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode). The structure of the organic EL display panel is not particularly limited, and a known structure may be employed.
  • Example 1 [Preparation of cellulose acylate film (support)] A cellulose acylate dope having the following composition was placed in a mixing tank, stirred, and further heated at 90° C. for 10 minutes. Thereafter, the resulting composition was filtered through a filter paper with an average pore size of 34 ⁇ m and a sintered metal filter with an average pore size of 10 ⁇ m to prepare a dope.
  • the solid content concentration of the dope is 23.5% by mass
  • the amount of plasticizer added is the ratio to cellulose acylate
  • Cellulose acylate dope Cellulose acylate (degree of acetyl substitution 2.86, viscosity average degree of polymerization 310) 100 parts by weight Sugar ester compound 1 (shown in chemical formula (S4)) 6.0 parts by weight Sugar ester compound 2 (shown in chemical formula (S5)) 2.0 parts by weight Silica particle dispersion (AEROSIL R972, Nippon Aerosil Co., Ltd.) made) 0.1 part by mass solvent (methylene chloride/methanol/butanol) ⁇
  • the dope prepared above was cast using a drum film forming machine. Specifically, the dope was cast from a die so as to be in contact with a metal support cooled to 0° C., and then the obtained web (film) was peeled off. Note that the drum was made of SUS. Next, the web (film) obtained by casting is peeled from the drum, and then heated at 30 to 40°C during film transport, using a tenter machine that clips both ends of the web with clips and transports it. Dry for a minute. Subsequently, the web was post-dried by zone heating while being rolled. Next, the obtained web was knurled and then wound up.
  • alkali saponification treatment The wound web was passed through a dielectric heating roll at a temperature of 60°C to raise the film surface temperature to 40°C, and then an alkaline solution having the composition shown below was applied to the band surface of the film using a bar coater. It was coated at a coating amount of 14 ml/m 2 and conveyed for 10 seconds under a steam-type far-infrared heater manufactured by Noritake Company Limited, which was heated to 110°C. Subsequently, 3 ml/m 2 of pure water was applied using the same bar coater. Next, washing with water using a fountain coater and draining using an air knife were repeated three times, and then the film was transported to a drying zone at 70° C. for 10 seconds to dry, thereby producing a cellulose acylate film subjected to alkali saponification treatment.
  • a composition for forming an alignment film having the following composition was continuously applied to the surface of the cellulose acylate film that had been subjected to the alkali saponification treatment using a #14 wire bar. It was dried with warm air at 60°C for 60 seconds and then with warm air at 100°C for 120 seconds to obtain an alignment film.
  • composition for forming alignment film ⁇ Modified polyvinyl alcohol-1 below 100 parts by mass ⁇ Specific additive: Sodium dodecyl sulfate 1.0 parts by mass ⁇ Photopolymerization initiator below 7.5 parts by mass ⁇ Curing agent below 1.75 parts by mass ⁇ Water 2620 parts by mass 873 parts by mass of methanol ⁇
  • Modified polyvinyl alcohol-1 [In the following formula, the numerical value written for each repeating unit represents the content (mol%) of each repeating unit with respect to all repeating units. ]
  • a composition for forming an optically anisotropic layer (1) containing a rod-like liquid crystal compound having the following composition was applied using a Giesser coating machine to form a composition. formed a layer.
  • the absolute value of the weighted average helical inducing force of the chiral agent in the composition layer was 0.0 ⁇ m ⁇ 1 .
  • the obtained composition layer was heated at 95° C. for 60 seconds. By this heating, the rod-like liquid crystal compound of the composition layer was oriented in a predetermined direction. Thereafter, the composition layer was irradiated with ultraviolet rays (irradiation amount: 25 mJ/ cm2 ).
  • composition layer was heated at 95° C. for 10 seconds. Thereafter, a nitrogen purge was performed, and the composition layer was irradiated with ultraviolet rays at 80°C with an oxygen concentration of 100 volume ppm using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) (irradiation amount: 500 mJ/cm). 2 ) An optically anisotropic layer in which the alignment state of the liquid crystal compound was fixed was formed. In this way, an optical film (F-1) was produced.
  • Rod-shaped liquid crystal compound (A) Matture of the following liquid crystal compounds (RA) (RB) (RC) at a ratio of 84:14:2 (mass ratio)]
  • the optical film (F-1) produced above was cut parallel to the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction using a polarizing microscope.
  • the thickness of the optically anisotropic layer is 2.7 ⁇ m
  • the region (second region) with a thickness (d2) of 1.3 ⁇ m on the substrate side of the optically anisotropic layer has a homogeneous orientation with no twist angle, and is optically anisotropic.
  • the liquid crystal compound was twisted and oriented.
  • the optical properties of the optical film (F-1) were determined using Axoscan from Axometrics and the company's analysis software (Multi-Layer Analysis).
  • the product ( ⁇ n2d2) of ⁇ n2 and thickness d2 at a wavelength of 550 nm in the second region is 177 nm
  • the twist angle of the liquid crystal compound is 0°
  • the alignment axis angle of the liquid crystal compound with respect to the long longitudinal direction is -11 on the side in contact with the substrate. °
  • the side in contact with the first region was ⁇ 11°.
  • the product ( ⁇ n1d1) of ⁇ n1 and thickness d1 at a wavelength of 550 nm in the first region is 180 nm
  • the twist angle of the liquid crystal compound is 80°
  • the orientation axis angle of the liquid crystal compound with respect to the long longitudinal direction is The contact side was -11° and the air side was -91°.
  • Example 2 to 15 and Comparative Examples 1 to 3 An optical film was produced in the same manner as in Example 1, except that the types and amounts of additives were changed as shown in Table 1 below.
  • Example 16 An optical film was produced in the same manner as in Example 2, except that modified polyvinyl alcohol-1 was changed to modified polyvinyl alcohol-2 shown below. Next, the support and alignment film of the produced optical film were peeled off to isolate the optically anisotropic layer.
  • Modified polyvinyl alcohol-2 [In the following formula, the numerical value written for each repeating unit represents the content (mol%) of each repeating unit with respect to all repeating units. ]
  • Example 17 An optical film was produced in the same manner as in Example 2, except that modified polyvinyl alcohol-1 was changed to modified polyvinyl alcohol-3 shown below. Next, the adhesive side of the adhesive with a separator on one side and the optically anisotropic layer side of the prepared optical film are bonded together, and the optical anisotropic layer is peeled off from the optical film. The layer was transferred to the adhesive.
  • Modified polyvinyl alcohol-3 [In the following formula, the numerical value written for each repeating unit represents the content (mol%) of each repeating unit with respect to all repeating units. ]
  • Example 18 and 19 An optical film was produced in the same manner as in Example 2, except that modified polyvinyl alcohol-1 was changed to those shown in Table 1 below.
  • the details of the polymers used in Examples 18 and 19 are as follows. ⁇ Polyacrylic acid: Aqualic (registered trademark) HL (manufactured by Nippon Shokubai Co., Ltd.) ⁇ Modified polyamide: AQ nylon P70 (manufactured by Toray Industries)
  • Example 20 Example 2 except that the composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (2) shown below, and the optically anisotropic layer was formed under the following conditions.
  • An optical film was prepared in the same manner as above. Specifically, if the longitudinal direction of the film (conveyance direction) is 90° and the clockwise direction is expressed as a positive value with the width direction of the film as the reference (0°) when observed from the alignment film side, then the rotation of the rubbing roller The axis was set at -17.5°, and rubbing treatment was performed to obtain an alignment film.
  • the composition for forming an optically anisotropic layer (2) was continuously applied onto the alignment film using a Giesser coating machine.
  • the transport speed of the film was 26 m/min.
  • the coating film on the alignment film was heated with hot air at 130°C for 90 seconds, then heated with hot air at 100°C for 60 seconds, and then heated at 80°C.
  • UV (ultraviolet) irradiation was performed at 300 mJ/cm 2 to fix the orientation of the liquid crystal compound, forming an optically anisotropic layer with a thickness of 2.0 ⁇ m.
  • the average inclination angle of the disc surface of the discotic liquid crystal compound with respect to the film surface was 90°, and it was confirmed that the discotic liquid crystal compound was oriented perpendicularly to the film surface.
  • the angle of the slow axis is parallel to the rotation axis of the rubbing roller, 0° in the film width direction (90° in the longitudinal direction of the film, clockwise with respect to the film width direction when observed from the optically anisotropic layer side). (expressed as a positive value), it was -17.5°.
  • the in-plane retardation of the optically anisotropic layer at a wavelength of 550 nm is 240 nm, and the optically anisotropic layer exhibits forward wavelength dispersion.
  • composition for forming optically anisotropic layer (2) ⁇ ⁇ The following discotic liquid crystal compound-1 80 parts by mass ⁇ The following discotic liquid crystal compound-2 20 parts by mass ⁇ The following alignment film interface alignment agent-1 1.6 parts by mass ⁇ The following fluorine-containing compound (F-1) 0.21 parts by mass 0.075 parts by mass of the following fluorine-containing compound (F-2) 0.1 parts by mass of the following fluorine-containing compound (F-3) 5 parts by mass of ethylene oxide-modified trimethylolpropane triacrylate 5 parts by mass of photopolymerization initiator (Irgacure) 907, manufactured by BASF) 4 parts by mass ⁇ Methyl ethyl ketone 200 parts by mass ⁇
  • Irgacure photopolymerization initiator
  • Example 21 Except that the composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (3) shown below, and the thickness of the optically anisotropic layer formed was changed to 2.6 ⁇ m. An optical film was produced in the same manner as in Example 2.
  • composition for forming optically anisotropic layer (3) ⁇ - 80 parts by mass of the above rod-like liquid crystal compound (A) - 17 parts by mass of the above-mentioned rod-like liquid crystal compound (B) - 3 parts by mass of the above polymerizable compound (C) - Ethylene oxide-modified trimethylolpropane triacrylate (V#360, 4 parts by mass of photopolymerization initiator (Irgacure 819, manufactured by BASF) 0.46 parts by mass of the above left-handed chiral agent (L2) 0.46 parts by mass of the above right-handed chiral agent (R2) ) 0.41 parts by mass - 0.08 parts by mass of the above polymer (A) - 0.38 parts by mass of the following polymer (B) - 117 parts by mass of methyl isobutyl ketone - 23 parts by mass of ethyl propionate - 16 parts by mass of cyclohexane --- ⁇
  • Example 22 The composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (4) shown below, and the position of the rotation axis of the rubbing roller was changed from -17.5° to +12.5°.
  • An optical film was produced in the same manner as in Example 20, except that the following was changed.
  • the thickness of the optically anisotropic layer obtained was 1.0 ⁇ m.
  • the average inclination angle of the long axis of the rod-like liquid crystal compound with respect to the film plane was 0°, and it was confirmed that the liquid crystal compound was oriented horizontally with respect to the film plane.
  • the angle of the slow axis is perpendicular to the rotation axis of the rubbing roller, 0° in the film width direction (90° in the longitudinal direction of the film, clockwise with respect to the film width direction when observed from the optically anisotropic layer C side).
  • the direction is expressed as a positive value.), it was -77.5°.
  • the in-plane retardation of the optically anisotropic layer at a wavelength of 550 nm is 116 nm, and the optically anisotropic layer exhibits normal wavelength dispersion.
  • composition for forming optically anisotropic layer (4) ⁇ - 100 parts by mass of the above rod-shaped liquid crystal compound (A) - 6 parts by mass of photopolymerization initiator (Irgacure 907, manufactured by BASF) - 0.25 parts by mass of the above fluorine-containing compound (F-1) - 0.25 parts by mass of the above fluorine-containing compound (F-1) -2) 0.1 parts by mass 4 parts by mass of ethylene oxide-modified trimethylol propane triacrylate 337 parts by mass of methyl ethyl ketone ⁇ ⁇
  • Example 23 and 24 An optical film was produced in the same manner as in Example 1, except that the types and amounts of additives were changed as shown in Table 2 below.
  • Examples 25 to 30 and Comparative Example 4 An optical film was produced in the same manner as in Example 1, except that the types and amounts of additives were changed as shown in Table 2 below.
  • the synthesis method and structure of copolymer A, copolymer B, polymer C, copolymer D, and copolymer E used as additives in Examples 25 to 30 and Comparative Example 4 are as follows. It is.
  • ⁇ Synthesis method of copolymer B> A copolymer represented by the following formula was prepared in the same manner as for copolymer A, except that NK ester M-230G used in the synthesis of copolymer A was changed to methacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Polymer B was obtained. Copolymer B had a weight average molecular weight of 10,800 and a molecular weight distribution of 3.1. Copolymer B was obtained by neutralizing with sodium hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
  • Polymer C represented by the following formula was obtained in the same manner as Copolymer A except that Blenmar PSE-1300 used in the synthesis of Copolymer A was not used.
  • Polymer C had a weight average molecular weight of 14,800 and a molecular weight distribution of 2.3.
  • Copolymer D A copolymer represented by the following formula was prepared in the same manner as for copolymer A, except that Blenmar PSE-1300 used in the synthesis of copolymer A was changed to stearyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Combined D was obtained. Copolymer D had a weight average molecular weight of 14,200 and a molecular weight distribution of 2.5.
  • Copolymer E represented by the following formula was obtained in the same manner as Copolymer B, except that neutralization was eliminated in the synthesis of Copolymer B.
  • Copolymer E had a weight average molecular weight of 10,800 and a molecular weight distribution of 3.1.
  • Example 31 An optical film was produced in the same manner as in Example 26, except that the composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (5).
  • ⁇ Composition for forming an optically anisotropic layer (5) ⁇ - 80 parts by mass of the rod-like liquid crystal compound (A) - 17 parts by mass of the rod-like liquid crystal compound (B) - 3 parts by mass of the polymerizable compound (C) - Ethylene oxide-modified trimethylolpropane triacrylate (V#360, Osaka Organic Chemical) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure 819, manufactured by BASF) 3 parts by mass - The above left-handed chiral agent (L2) 0.47 parts by mass - The above right-handed chiral agent (R2) 0.42 parts by mass 0.08 parts by mass of the above polymer (A) 0.10 parts by mass of lithium bis(trifluoromethan
  • Example 32 An optical film was produced in the same manner as in Example 26, except that the composition for forming an alignment film was changed as follows.
  • ⁇ Composition for forming alignment film
  • ⁇ Specific polymer 100 parts by mass of the above modified polyvinyl alcohol-1
  • ⁇ Specific additive 2.0 parts by mass of the above copolymer A ⁇ 7.5 parts by mass of the above photopolymerization initiator ⁇ 1.75 parts by mass of the above curing agent
  • ⁇ Lithium Bis(trifluoromethanesulfonyl)imide manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. 1.00 parts by mass, water 2620 parts by mass, methanol 873 parts by mass ⁇ ⁇
  • the composition for forming an alignment film was visually observed by transmitting light, and was observed according to the following criteria.
  • the dynamic friction coefficient was measured by measuring the load applied when rolling the SUS ball while applying a 100 g load to the surface of the alignment film.
  • the optically anisotropic layer in the obtained optical film was randomly observed under a polarizing microscope in a crossed nicol state at a magnification of 50 times (field size: 1715 x 1280 ⁇ m), and each field was classified into the following three categories.
  • the 10 visual fields were evaluated in the following five stages. A: All 10 fields are I or II, and the number of II fields is 0 to 2 fields. B: All 10 fields are I or II, and the number of II fields is 3 to 5.
  • C All 10 visual fields are I or II, and the number of II visual fields is 6 to 10.
  • a cross-section was cut using a microtome so as to pass through the center of the marked defect, and optical microscopic observation was performed from the cross-sectional direction. Defects in which foreign matter was observed in the optically anisotropic layer were counted and evaluated according to the following criteria.
  • Example 1 From a comparison between Example 1 and Example 14, when the alkyl group of the specific additive has 12 to 22 carbon atoms, the orientation of the liquid crystal compound in the optically anisotropic layer can be improved. Do you get it. Further, from a comparison between Example 1 and Example 15, it was found that when the specific additive has a hydrophilic group, the orientation of the liquid crystal compound in the optically anisotropic layer becomes better. Moreover, from the comparison of Examples 2, 18, and 19, when the specific polymer is polyvinyl alcohol or modified polyvinyl alcohol, the orientation of the liquid crystal compound in the optically anisotropic layer is better, and bright spot defects in the optical film are reduced. It was found that the outbreak could be further suppressed.
  • Example 1 and Example 25 In addition, from the comparison between Example 1 and Example 25 and the comparison between Example 4 and Example 26, it was found that when the specific additive is a polymer compound, bright spot defects can be reduced while maintaining excellent orientation. It was found that the outbreak could be further suppressed. Furthermore, from a comparison between Example 23 and Example 24, it was found that the occurrence of bright spot defects can be further suppressed when the arbitrary hydrophilic group of the specific additive is a neutralized product such as an ionic carboxylate. I understand. Although not shown in Table 2, it was found that Examples 31 and 32 also had good orientation of the liquid crystal compound in the optically anisotropic layer, and also suppressed the occurrence of bright spot defects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention addresses the problem of providing: an optical film which has improved orientation of a liquid crystal compound in an optical anisotropic layer while suppressing the occurrence of bright spot defects; an optically anisotropic layer; an alignment film-forming composition; a method for producing an optical film; a polarizing plate; and an image display device. An optical film according to the present invention has an alignment film and an optically anisotropic layer, wherein: the optically anisotropic layer is a layer formed using an optically anisotropic layer-forming composition containing a polymerizable liquid crystal compound; and the alignment film is a film formed using an alignment film-forming composition containing an additive having a C5-C29 alkyl group and a polymer having no C5-C29 alkyl group.

Description

光学フィルム、光学異方性層、配向膜形成用組成物、光学フィルムの製造方法、偏光板および画像表示装置Optical film, optically anisotropic layer, alignment film forming composition, optical film manufacturing method, polarizing plate, and image display device
 本発明は、光学フィルム、光学異方性層、配向膜形成用組成物、光学フィルムの製造方法、偏光板および画像表示装置に関する。 The present invention relates to an optical film, an optically anisotropic layer, a composition for forming an alignment film, a method for producing an optical film, a polarizing plate, and an image display device.
 光学補償シートおよび位相差フィルム等の光学フィルムは、画像着色解消または視野角拡大のために、様々な画像表示装置で用いられている。
 光学フィルムとしては延伸複屈折フィルムが使用されていたが、近年、延伸複屈折フィルムに代えて、液晶化合物からなる光学異方性層を有する光学フィルムを使用することが提案されている。
Optical films such as optical compensatory sheets and retardation films are used in various image display devices to eliminate image coloration or expand viewing angles.
A stretched birefringent film has been used as an optical film, but in recent years, it has been proposed to use an optical film having an optically anisotropic layer made of a liquid crystal compound in place of the stretched birefringent film.
 このような光学異方性層を形成する際には、通常、配向膜が用いられている。
 例えば、特許文献1では、特定の基を有するポリビニルアルコールを含む塗布液を用いて形成された配向膜上に、光学異方性層を形成する態様が記載されている([請求項1][請求項2][実施例])。
When forming such an optically anisotropic layer, an alignment film is usually used.
For example, Patent Document 1 describes an embodiment in which an optically anisotropic layer is formed on an alignment film formed using a coating liquid containing polyvinyl alcohol having a specific group ([Claim 1] [ Claim 2] [Example]).
特開平9-152509号公報Japanese Patent Application Publication No. 9-152509
 ところで、配向膜は、ラビング処理によって配向規制力を付与した後に使用されるのが一般的であるが、ラビング処理の過程で発生する配向膜の屑が原因となって、光学異方性層を有する光学フィルムに輝点欠陥が発生する場合があることが知られている。
 そこで、本発明者らは、特許文献1に記載された配向膜について検討したところ、光学異方性層における液晶化合物の配向性は良好であったが、近年の各種装置の表示性能の向上や表示装置の用途の多様化に伴う輝点欠陥の基準を考慮すると、輝点欠陥の抑制には改善の余地があることが分かった。
Incidentally, the alignment film is generally used after imparting an alignment regulating force through a rubbing process, but the alignment film debris generated during the rubbing process may cause the optically anisotropic layer to It is known that bright-spot defects may occur in optical films containing the same.
Therefore, the present inventors investigated the alignment film described in Patent Document 1 and found that the alignment of the liquid crystal compound in the optically anisotropic layer was good. Considering the standards for bright spot defects accompanying the diversification of uses for display devices, it was found that there is room for improvement in suppressing bright spot defects.
 そこで、本発明は、光学異方性層における液晶化合物の配向性が良好となり、かつ、輝点欠陥の発生が抑制された光学フィルムを提供することを課題とする。
 また、本発明は、光学異方性層、配向膜形成用組成物、光学フィルムの製造方法、偏光板および画像表示装置を提供することも課題とする。
Therefore, an object of the present invention is to provide an optical film in which the orientation of a liquid crystal compound in an optically anisotropic layer is improved and the occurrence of bright spot defects is suppressed.
Another object of the present invention is to provide an optically anisotropic layer, a composition for forming an alignment film, a method for producing an optical film, a polarizing plate, and an image display device.
 本発明者らは、上記課題を達成すべく鋭意検討した結果、炭素数5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する配向膜形成用組成物を用いて形成された配向膜を用いることにより、光学異方性層における液晶化合物の配向性が良好となり、かつ、光学フィルムにおける輝点欠陥の発生を抑制できることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題を解決できることを見出した。
As a result of intensive studies to achieve the above object, the present inventors found that an alignment film containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms. It has been discovered that by using an alignment film formed using a forming composition, the alignment of the liquid crystal compound in the optically anisotropic layer can be improved, and the occurrence of bright spot defects in the optical film can be suppressed, and the present invention has been achieved. completed.
That is, the present inventors have found that the above problem can be solved by the following configuration.
 [1] 配向膜と、光学異方性層とを有する光学フィルムであって、
 光学異方性層が、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層であり、
 配向膜が、炭素数5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する配向膜形成用組成物を用いて形成された膜である、光学フィルム。
 [2] 添加剤が親水性基を有する、[1]に記載の光学フィルム。
 [3] 添加剤が、炭素数12~22のアルキル基を有する、[1]または[2]に記載の光学フィルム。
 [4] ポリマーが、ポリビニルアルコールまたは変性ポリビニルアルコールである、[1]~[3]のいずれかに記載の光学フィルム。
 [5] 重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された光学異方性層であって、
 光学異方性層に、100μm以上の輝点欠陥が1~80個/10m存在しており、輝点欠陥の核が、炭素数が5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する、光学異方性層。
 [6] 添加剤が親水性基を有する、[5]に記載の光学異方性層。
 [7] 添加剤が、炭素数12~22のアルキル基を有する、[5]または[6]に記載の光学異方性層。
 [8] ポリマーが、ポリビニルアルコールまたは変性ポリビニルアルコールである、[5]~[7]のいずれかに記載の光学異方性層。
 [9] 炭素数が5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する、配向膜形成用組成物。
 [10] 添加剤が親水性基を有する、[9]に記載の配向膜形成用組成物。
 [11] 添加剤が、炭素数12~22のアルキル基を有する、[9]または[10]に記載の配向膜形成用組成物。
 [12] ポリマーが、ポリビニルアルコールまたは変性ポリビニルアルコールである、[9]~[11]のいずれかに記載の配向膜形成用組成物。
 [13] [9]~[12]のいずれかに記載の配向膜形成用組成物を用いて、支持体上に配向膜を形成する配向膜形成工程と、
 配向膜にラビング処理を施すラビング工程と、
 重合性液晶化合物を含有する光学異方性層形成用組成物を用いて、ラビング処理を施した配向膜上に光学異方性層を形成する光学異方性層形成工程と、
 を有する、光学フィルムの製造方法。
 [14] [1]~[4]のいずれかに記載の光学フィルム、または、[5]~[8]のいずれかに記載の光学異方性層と、偏光子とを有する、偏光板。
 [15] [1]~[4]のいずれかに記載の光学フィルム、または、[5]~[8]のいずれかに記載の光学異方性層を有する、画像表示装置。
 [16] 液晶表示装置である、[15]に記載の画像表示装置。
 [17] 有機EL表示装置である、[15]に記載の画像表示装置。
[1] An optical film having an alignment film and an optically anisotropic layer,
The optically anisotropic layer is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound,
The alignment film is a film formed using an alignment film-forming composition containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms. , optical film.
[2] The optical film according to [1], wherein the additive has a hydrophilic group.
[3] The optical film according to [1] or [2], wherein the additive has an alkyl group having 12 to 22 carbon atoms.
[4] The optical film according to any one of [1] to [3], wherein the polymer is polyvinyl alcohol or modified polyvinyl alcohol.
[5] An optically anisotropic layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound,
In the optically anisotropic layer, there are 1 to 80 bright spot defects/10 m2 of 100 μm or more, and the nucleus of the bright spot defects is formed by an additive having an alkyl group with a carbon number of 5 to 29 and a carbon number of 1 to 80/10 m2. An optically anisotropic layer containing a polymer having 5 to 29 alkyl groups.
[6] The optically anisotropic layer according to [5], wherein the additive has a hydrophilic group.
[7] The optically anisotropic layer according to [5] or [6], wherein the additive has an alkyl group having 12 to 22 carbon atoms.
[8] The optically anisotropic layer according to any one of [5] to [7], wherein the polymer is polyvinyl alcohol or modified polyvinyl alcohol.
[9] A composition for forming an alignment film containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms.
[10] The composition for forming an alignment film according to [9], wherein the additive has a hydrophilic group.
[11] The composition for forming an alignment film according to [9] or [10], wherein the additive has an alkyl group having 12 to 22 carbon atoms.
[12] The composition for forming an alignment film according to any one of [9] to [11], wherein the polymer is polyvinyl alcohol or modified polyvinyl alcohol.
[13] An alignment film forming step of forming an alignment film on a support using the composition for forming an alignment film according to any one of [9] to [12];
a rubbing process in which the alignment film is rubbed;
an optically anisotropic layer forming step of forming an optically anisotropic layer on an alignment film subjected to a rubbing treatment using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound;
A method for producing an optical film, comprising:
[14] A polarizing plate comprising the optical film according to any one of [1] to [4] or the optically anisotropic layer according to any one of [5] to [8], and a polarizer.
[15] An image display device comprising the optical film according to any one of [1] to [4] or the optically anisotropic layer according to any one of [5] to [8].
[16] The image display device according to [15], which is a liquid crystal display device.
[17] The image display device according to [15], which is an organic EL display device.
 本発明によれば、光学異方性層における液晶化合物の配向性が良好となり、かつ、輝点欠陥の発生が抑制された光学フィルムを提供することができる。
 また、本発明によれば、光学異方性層、配向膜形成用組成物、光学フィルムの製造方法、偏光板および画像表示装置を提供できる。
According to the present invention, it is possible to provide an optical film in which the orientation of the liquid crystal compound in the optically anisotropic layer is improved and the occurrence of bright spot defects is suppressed.
Further, according to the present invention, an optically anisotropic layer, a composition for forming an alignment film, a method for producing an optical film, a polarizing plate, and an image display device can be provided.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に制限されない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、各成分は、各成分に該当する物質を1種単独で用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
 また、本明細書において、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
 また、本明細書において、表記される2価の基(例えば、-CO-O-)の結合方向は、結合位置を明記している場合を除き、特に制限されず、例えば、X-L-Y中のLが-COO-である場合、X側に結合している位置を*1、Y側に結合している位置を*2とすると、Lは*1-O-CO-*2であってもよく、*1-CO-O-*2であってもよい。
The present invention will be explained in detail below.
Although the description of the constituent elements described below may be made based on typical embodiments of the present invention, the present invention is not limited to such embodiments.
Note that in this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower limit and upper limit.
Moreover, in this specification, each component may be a substance corresponding to each component, which may be used alone or in combination of two or more. Here, when two or more types of substances are used together for each component, the content of the component refers to the total content of the substances used in combination, unless otherwise specified.
Further, in this specification, "(meth)acrylate" is a notation representing "acrylate" or "methacrylate", "(meth)acrylic" is a notation representing "acrylic" or "methacrylic", and "(meth)acrylate" is a notation representing "acrylic" or "methacrylic";(Meth)acryloyl" is a notation representing "acryloyl" or "methacryloyl."
In addition, in this specification, the bonding direction of the divalent group (for example, -CO-O-) is not particularly limited unless the bonding position is specified, and for example, XL- If L in Y is -COO-, the position bonded to the X side is *1 and the position bonded to the Y side is *2, then L is *1-O-CO-*2. It may be *1-CO-O-*2.
[光学フィルム]
 本発明の光学フィルムは、配向膜と、光学異方性層とを有する。
 また、本発明の光学フィルムが有する光学異方性層は、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層である。
 また、本発明の光学フィルムが有する配向膜は、炭素数5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する配向膜形成用組成物を用いて形成された膜である。
[Optical film]
The optical film of the present invention has an alignment film and an optically anisotropic layer.
Further, the optically anisotropic layer included in the optical film of the present invention is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound.
Further, the alignment film of the optical film of the present invention is a composition for forming an alignment film containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms. This is a film formed using
 本発明においては、上述した通り、炭素数5~29のアルキル基を有する添加剤(以下、「特定添加剤」とも略す。)と、炭素数5~29のアルキル基を有さないポリマー(以下、「特定ポリマー」とも略す。)とを含有する配向膜形成用組成物を用いて形成された配向膜を用いることにより、光学異方性層における液晶化合物の配向性が良好となり、かつ、光学フィルムにおける輝点欠陥の発生を抑制できる。
 これらの効果が発現する理由は、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、配向膜形成用組成物の成分として特定添加剤を用いることにより、配向膜にラビング処理を施す際に用いるラビング布のパイルと配向膜との摩擦が低減し、配向膜から生じる屑の発塵量を低減できるため、輝点欠陥の発生を抑制できたと考えられる。このことは、後述する実施例の表1に示す配向膜の動摩擦係数の実測値からも推察することができる。
 また、特定添加剤が、炭素数5~29のアルキル基を有していることにより、特定ポリマーとの相溶性が良好となり、特定添加剤同士の凝集が抑制され、その結果、配向膜表面に特定ポリマーを適度に露出させることができたため、配向膜上に形成される光学異方性層における液晶化合物の配向性が良好になったと考えられる。
 以下、本発明の光学フィルムが有する配向膜および光学異方性層について詳細に説明する。
In the present invention, as described above, an additive having an alkyl group having 5 to 29 carbon atoms (hereinafter also referred to as "specific additive") and a polymer having no alkyl group having 5 to 29 carbon atoms (hereinafter referred to as "specific additive") are used. By using an alignment film formed using an alignment film-forming composition containing (also abbreviated as "specific polymer"), the alignment of the liquid crystal compound in the optically anisotropic layer is improved, and the optical The occurrence of bright spot defects in the film can be suppressed.
The reason why these effects occur is not clear in detail, but the present inventors speculate as follows.
In other words, by using a specific additive as a component of the composition for forming an alignment film, the friction between the alignment film and the pile of the rubbing cloth used when rubbing the alignment film is reduced, and the generation of debris from the alignment film is reduced. It is thought that because the amount of dust could be reduced, the occurrence of bright spot defects could be suppressed. This can also be inferred from the measured values of the dynamic friction coefficient of the alignment film shown in Table 1 of Examples described later.
In addition, since the specific additive has an alkyl group having 5 to 29 carbon atoms, it has good compatibility with the specific polymer, suppresses aggregation of the specific additives, and as a result, the surface of the alignment film It is thought that because the specific polymer could be exposed appropriately, the alignment of the liquid crystal compound in the optically anisotropic layer formed on the alignment film was improved.
Hereinafter, the alignment film and the optically anisotropic layer included in the optical film of the present invention will be explained in detail.
 〔配向膜〕
 本発明の光学フィルムが有する配向膜は、炭素数5~29のアルキル基を有する添加剤(特定添加剤)と、炭素数5~29のアルキル基を有さないポリマー(特定ポリマー)とを含有する配向膜形成用組成物を用いて形成された膜である。
[Alignment film]
The alignment film of the optical film of the present invention contains an additive having an alkyl group having 5 to 29 carbon atoms (specific additive) and a polymer having no alkyl group having 5 to 29 carbon atoms (specific polymer). This is a film formed using a composition for forming an alignment film.
 <特定添加剤>
 配向膜形成用組成物に含まれる特定添加剤は、炭素数5~29のアルキル基を有する添加剤である。
 ここで、上記アルキル基としては、例えば、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ヘキサデシル基(セチル基)、オクタデシル基、イコシル基、ドコシル基、テトラコシル基、ヘキサコシル基、ノナコシル基等が挙げられる。
 また、上記アルキル基は、直鎖状のアルキル基であってもよく、分岐鎖状のアルキル基であってもよいが、直鎖状のアルキル基であることが好ましい。
<Specific additives>
The specific additive contained in the composition for forming an alignment film is an additive having an alkyl group having 5 to 29 carbon atoms.
Here, examples of the alkyl group include pentyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, hexadecyl group (cetyl group), octadecyl group, icosyl group, docosyl group, tetracosyl group, hexacosyl group, nonacosyl group, and the like.
Further, the alkyl group may be a linear alkyl group or a branched alkyl group, but is preferably a linear alkyl group.
 本発明においては、上記アルキル基の炭素数は、光学異方性層における液晶化合物の配向性がより良好となる理由から、10~25であることが好ましく、12~22であることがより好ましい。 In the present invention, the number of carbon atoms in the alkyl group is preferably 10 to 25, more preferably 12 to 22, because the alignment of the liquid crystal compound in the optically anisotropic layer is better. .
 特定添加剤は、光学異方性層における液晶化合物の配向性がより良好となる理由から、上記アルキル基とは別に、親水性基を有していることが好ましい。
 親水性基としては特に限定されず、イオン性の親水性基(アニオン性の親水性基、カチオン性の親水性基、両性の親水性基)およびノニオン性の親水性基のいずれも用いることができる。
 アニオン性の親水性基としては、例えば、ヒドロキシ基、カルボキシ基、カルボン酸塩、スルホン酸基、スルホン酸塩、硫酸エステル塩、リン酸基、リン酸エステル塩などが挙げられる。
 カチオン性の親水性基としては、例えば、アミノ基、第4級アンモニウム塩などが挙げられる。
 ノニオン性の親水性基としては、エステル型、エーテル型、エステル・エーテル型、および、アルカノールアミド型のいずれであってもよく、エーテル型であることが好ましく、ポリオキシアルキレン基(例えば、ポリオキシエチレン基、ポリオキシプロピレン基、オキシエチレン基とオキシプロピレン基とがブロックまたはランダム結合したポリオキシアルキレン基など)がより好ましい。
The specific additive preferably has a hydrophilic group in addition to the alkyl group, since this improves the alignment of the liquid crystal compound in the optically anisotropic layer.
The hydrophilic group is not particularly limited, and both ionic hydrophilic groups (anionic hydrophilic groups, cationic hydrophilic groups, and amphoteric hydrophilic groups) and nonionic hydrophilic groups can be used. can.
Examples of the anionic hydrophilic group include a hydroxy group, a carboxy group, a carboxylate, a sulfonic acid group, a sulfonate, a sulfuric acid ester salt, a phosphoric acid group, and a phosphoric acid ester salt.
Examples of the cationic hydrophilic group include an amino group and a quaternary ammonium salt.
The nonionic hydrophilic group may be any of the ester type, ether type, ester-ether type, and alkanolamide type, preferably the ether type, and the nonionic hydrophilic group (e.g., polyoxyalkylene group) (ethylene group, polyoxypropylene group, polyoxyalkylene group in which an oxyethylene group and an oxypropylene group are block or randomly bonded) are more preferable.
 このような親水性基のうち、光学フィルムにおける輝点欠陥の発生をより抑制できる理由から、イオン性の親水性基(ただし、カルボン酸塩などの中和物に限る)およびノニオン性の親水性基であることが好ましい。 Among these hydrophilic groups, ionic hydrophilic groups (limited to neutralized products such as carboxylic acid salts) and nonionic hydrophilic groups are used because they can further suppress the occurrence of bright spot defects in optical films. It is preferable that it is a group.
 本発明においては、特定添加剤は、低分子化合物であってもよく、高分子化合物であってもよい。
 ここで、「低分子化合物」とは、分子量が100以上2000未満の特定添加剤のことをいう。
 また、「高分子化合物」とは、分子量が2000以上の特定添加剤のことをいい、重量平均分子量(Mw)は、10000~40000であることが好ましく、11000~39000であることがより好ましく、13000~35000であることが更に好ましい。重量平均分子量が10000以上であると、液晶硬化層の形成時にムラが抑制され、重量平均分子量が40000以下であると、液晶硬化層の配向性がより良好となる。
In the present invention, the specific additive may be a low molecular compound or a high molecular compound.
Here, the term "low molecular compound" refers to a specific additive having a molecular weight of 100 or more and less than 2,000.
Further, the term "polymer compound" refers to a specific additive having a molecular weight of 2000 or more, and the weight average molecular weight (Mw) is preferably 10000 to 40000, more preferably 11000 to 39000, More preferably, it is 13,000 to 35,000. When the weight average molecular weight is 10,000 or more, unevenness is suppressed during formation of the liquid crystal cured layer, and when the weight average molecular weight is 40,000 or less, the orientation of the liquid crystal cured layer becomes better.
 また、本発明においては、特定添加剤は、より低い摩擦係数、すなわち輝点欠陥を抑制しながらでも配向を維持できるという理由から、高分子化合物であることが好ましい。高分子化合物であることにより上記効果が得られる明確なメカニズムは明らかになっていないが、高分子化合物は、後述する特定ポリマーと相溶しながら絡み合いを形成するため、低分子化合物よりも凝集しにくく、均一に配向膜表面を被覆することができるためと推察している。さらに、高分子化合物は、低分子化合物よりも、配向膜の形成プロセスにおけるロバスト、すなわち、乾燥温度に対する動摩擦係数の変化が小さい点も好ましい。これは、後述の特定ポリマーとの相溶性が良好な高分子化合物では、乾燥温度による特定ポリマーとの相溶性変化が小さいため、乾燥温度による表面被覆量の変化が小さいためと推察している。 Furthermore, in the present invention, the specific additive is preferably a polymer compound because it has a lower coefficient of friction, that is, can maintain orientation while suppressing bright spot defects. The clear mechanism by which the above effects are obtained by being a high molecular compound is not clear, but because high molecular compounds form entanglements while being compatible with specific polymers described below, they tend to aggregate more easily than low molecular compounds. It is assumed that this is because it is difficult to coat the surface of the alignment film and can coat the surface of the alignment film uniformly. Further, a high molecular compound is preferable to a low molecular compound in that it is more robust in the process of forming an alignment film, that is, the change in the coefficient of dynamic friction with respect to the drying temperature is smaller. This is presumed to be because, in the case of a polymer compound that has good compatibility with the specific polymer described below, the change in compatibility with the specific polymer due to the drying temperature is small, and therefore the change in the amount of surface coverage due to the drying temperature is small.
 上述したアルキル基および任意の親水性基を有する低分子化合物としては、具体的には、例えば、ドデシル硫酸ナトリウム、ポリオキシエチレン(10)セチルエーテル、ポリオキシエチレン(20)ドコシルエーテル、テトラヘキシルアンモニウムブロミド、テトラ-n-オクチルアンモニウムブロミド、トリメチルステアリルアンモニウムブロミド、メリシン酸などが挙げられる。 Specific examples of the low-molecular compound having the above-mentioned alkyl group and any hydrophilic group include sodium dodecyl sulfate, polyoxyethylene (10) cetyl ether, polyoxyethylene (20) docosyl ether, and tetrahexyl ether. Examples include ammonium bromide, tetra-n-octylammonium bromide, trimethylstearylammonium bromide, melisic acid, and the like.
 上述したアルキル基および任意の親水性基を有する高分子化合物としては、例えば、(メタ)アクリル系ポリマーの側鎖に、上述したアルキル基および親水性基を有するポリマーが挙げられる。
 このようなポリマーとしては、上述したアルキル基を有する側鎖(以下、「疎水性パート」とも略す。)と、上述した親水性基を有する側鎖(以下、「親水性パート」とも略す。)とを別々の繰り返し単位に有する共重合体が好ましい。
 ここで、疎水性パートは、上述したアルキル基を有するものであれば特に限定されないが、主鎖側にポリオキシアルキレン基を連結基として有し、末端側に炭素数12~22のアルキル基を有するものが好ましい。
 また、親水性パートは、上述した親水性基を有するものであれば特に限定されないが、ポリオキシアルキレン基を有する側鎖であることが好ましく、ポリオキシエチレン基を有する側鎖であることがより好ましい。
Examples of the polymer compound having the above-mentioned alkyl group and any hydrophilic group include a polymer having the above-mentioned alkyl group and hydrophilic group in the side chain of a (meth)acrylic polymer.
Such polymers include a side chain having the above-mentioned alkyl group (hereinafter also abbreviated as "hydrophobic part") and a side chain having the above-mentioned hydrophilic group (hereinafter also abbreviated as "hydrophilic part"). A copolymer having these in separate repeating units is preferred.
Here, the hydrophobic part is not particularly limited as long as it has the above-mentioned alkyl group, but it has a polyoxyalkylene group as a linking group on the main chain side and an alkyl group having 12 to 22 carbon atoms on the terminal side. It is preferable to have one.
Further, the hydrophilic part is not particularly limited as long as it has the above-mentioned hydrophilic group, but it is preferably a side chain having a polyoxyalkylene group, more preferably a side chain having a polyoxyethylene group. preferable.
 このような疎水性パートを形成するモノマーとしては、例えば、以下に示すものが挙げられる。
Examples of monomers that form such a hydrophobic part include those shown below.
 また、このような親水性パートを形成するモノマーとしては、例えば、以下に示すものが挙げられる。
Furthermore, examples of monomers that form such a hydrophilic part include those shown below.
 本発明においては、配向膜形成用組成物に含まれる特定添加剤の含有量は、後述する特定ポリマーの質量に対して0.1~10質量%であることが好ましく、0.15~8質量%であることがより好ましく、0.20~5質量%であることが更に好ましい。
 同様に、形成される配向膜に含まれる特定添加剤の含有量は、後述する特定ポリマーの質量に対して0.1~10質量%であることが好ましく、0.15~8質量%であることがより好ましく、0.20~5質量%であることが更に好ましい。
In the present invention, the content of the specific additive contained in the composition for forming an alignment film is preferably 0.1 to 10% by mass, and preferably 0.15 to 8% by mass based on the mass of the specific polymer described below. %, and even more preferably 0.20 to 5% by mass.
Similarly, the content of the specific additive contained in the alignment film to be formed is preferably 0.1 to 10% by mass, and preferably 0.15 to 8% by mass, based on the mass of the specific polymer described below. The amount is more preferably 0.20 to 5% by mass.
 <特定ポリマー>
 配向膜形成用組成物に含まれる特定ポリマーは、炭素数5~29のアルキル基を有さないポリマーである。
 ここで、特定ポリマーは、炭素数5~29のアルキル基を有していなければ特に限定されず、例えば、ポリビニルアルコール(ポリ酢酸ビニル)、ポリスチレン、ポリエステル、ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリアクリル酸、ポリ(メタ)アクリレート、ポリアセタール、ポリカーボネート、および、これらの変性ポリマーなどが挙げられる。
<Specific polymer>
The specific polymer contained in the composition for forming an alignment film is a polymer having 5 to 29 carbon atoms and having no alkyl group.
Here, the specific polymer is not particularly limited as long as it does not have an alkyl group having 5 to 29 carbon atoms, and includes, for example, polyvinyl alcohol (polyvinyl acetate), polystyrene, polyester, polyamide, polysulfone, polyethersulfone, polyimide, Examples include polyacrylic acid, poly(meth)acrylate, polyacetal, polycarbonate, and modified polymers thereof.
 また、特定ポリマーの重量平均分子量は特に限定されず、5000~200000であることが好ましく、10000~70000であることがより好ましい。
 ここで、本発明における重量平均分子量は、以下に示す条件でゲル浸透クロマトグラフ(GPC)法により測定された値である。
 ・溶媒(溶離液):THF(テトラヒドロフラン)
 ・装置名:TOSOH HLC-8320GPC
 ・カラム:TOSOH TSKgel Super HZM-H(4.6mm×15cm)を3本接続して使用
 ・カラム温度:40℃
 ・試料濃度:0.1質量%
 ・流速:1.0ml/min
 ・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
Further, the weight average molecular weight of the specific polymer is not particularly limited, and is preferably from 5,000 to 200,000, more preferably from 10,000 to 70,000.
Here, the weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) under the conditions shown below.
・Solvent (eluent): THF (tetrahydrofuran)
・Device name: TOSOH HLC-8320GPC
・Column: 3 TOSOH TSKgel Super HZM-H (4.6 mm x 15 cm) connected together ・Column temperature: 40°C
・Sample concentration: 0.1% by mass
・Flow rate: 1.0ml/min
・Calibration curve: Use the calibration curve of 7 samples of TOSOH TSK standard polystyrene Mw=2800000 to 1050 (Mw/Mn=1.03 to 1.06)
 本発明においては、特定ポリマーは、光学異方性層における液晶化合物の配向性がより良好となり、光学フィルムにおける輝点欠陥の発生をより抑制できる理由から、ポリビニルアルコールまたは変性ポリビニルアルコールであることが好ましい。
 ここで、ポリビニルアルコールは、酢酸ビニルポリマーが有する全てのアセチル基を、水酸化ナトリウム等の強塩基で加水分解し、水酸基にすること(鹸化)によって得られるものである。
 また、変性ポリビニルアルコールは、上記水酸基を他の置換基(例えば、アセチル基、カルボキシ基、アミド基など)で置換することによって得られるものである。
In the present invention, the specific polymer is preferably polyvinyl alcohol or modified polyvinyl alcohol because the orientation of the liquid crystal compound in the optically anisotropic layer is better and the generation of bright spot defects in the optical film can be further suppressed. preferable.
Here, polyvinyl alcohol is obtained by hydrolyzing all the acetyl groups that a vinyl acetate polymer has with a strong base such as sodium hydroxide to convert them into hydroxyl groups (saponification).
Moreover, modified polyvinyl alcohol is obtained by substituting the above-mentioned hydroxyl group with another substituent (for example, an acetyl group, a carboxy group, an amide group, etc.).
 変性ポリビニルアルコールとしては、例えば、下記式(1)で表される繰り返し単位と下記式(2)で表される繰り返し単位とを有するポリマー、および、下記式(1)で表される繰り返し単位と下記式(2)で表される繰り返し単位と下記式(3)で表される繰り返し単位とを有するポリマーなどが挙げられる。 Examples of modified polyvinyl alcohols include polymers having repeating units represented by the following formula (1) and repeating units represented by the following formula (2), and polymers having repeating units represented by the following formula (1) and repeating units represented by the following formula (1). Examples include polymers having a repeating unit represented by the following formula (2) and a repeating unit represented by the following formula (3).
 上記式(3)中、Lは、-CO-、-O-、-S-、-C(=S)-、-CR-、-CR=CR-、-NR-、もしくは、これらの2つ以上の組み合わせからなる2価の連結基を表し、R~Rは、それぞれ独立に、水素原子、フッ素原子、または、炭素数1~5のアルキル基を表す。 In the above formula (3), L is -CO-, -O-, -S-, -C(=S)-, -CR 1 R 2 -, -CR 3 =CR 4 -, -NR 5 -, Alternatively, it represents a divalent linking group consisting of a combination of two or more of these, and R 1 to R 5 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 5 carbon atoms.
 Rは、炭素数1~5のアルキル基、フェニル基、ヘテロアリール基、重合性基、または、これらの基のうち2種以上を組み合わせた基を表す。
 アルキル基は、直鎖状であっても、分岐鎖状であってもよい。また、アルキル基は、環状構造を有していてもよい。
 アルキル基中の炭素数は1~5であれば特に制限されないが、2~4が好ましい。
 アルキル基は、水酸基を有していてもよい。つまり、アルキル基は、置換基として水酸基を有していてもよい。
 また、アルキル基は、ヘテロ原子を含んでいてもよい。ヘテロ原子としては、例えば、酸素原子、窒素原子、および、硫黄原子などが挙げられる。アルキル基がヘテロ原子を含む場合、例えば、アルキル基中に-O-、-CO-O-、-CO-NH-、-SO2-、-SO2-O-、および、-SO2-NH-などの2価の連結基が含まれる態様が挙げられる。
 ヘテロアリール基としては、5員、6員もしくは7員の環またはその縮合環からなるヘテロアリール基が好ましい。ヘテロアリール基に含まれるヘテロ原子としては、酸素原子、硫黄原子、および、窒素原子などが挙げられる。ヘテロアリール基を構成する環の具体例としては、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、および、イミダゾリン環などが挙げられる。
 重合性基としては、後述する重合性液晶化合物において説明する下記式(P-1)~(P-20)のいずれかで表される重合性基などが挙げられる。
R represents an alkyl group having 1 to 5 carbon atoms, a phenyl group, a heteroaryl group, a polymerizable group, or a combination of two or more of these groups.
The alkyl group may be linear or branched. Further, the alkyl group may have a cyclic structure.
The number of carbon atoms in the alkyl group is not particularly limited as long as it is 1 to 5, but 2 to 4 is preferred.
The alkyl group may have a hydroxyl group. That is, the alkyl group may have a hydroxyl group as a substituent.
Furthermore, the alkyl group may contain a heteroatom. Examples of the heteroatom include an oxygen atom, a nitrogen atom, and a sulfur atom. When the alkyl group contains a heteroatom, for example, -O-, -CO-O-, -CO-NH-, -SO 2 -, -SO 2 -O-, and -SO 2 -NH Examples include embodiments containing divalent linking groups such as -.
As the heteroaryl group, a heteroaryl group consisting of a 5-, 6-, or 7-membered ring or a condensed ring thereof is preferred. Examples of the heteroatom contained in the heteroaryl group include an oxygen atom, a sulfur atom, and a nitrogen atom. Specific examples of rings constituting the heteroaryl group include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, and imidazoline ring. can be mentioned.
Examples of the polymerizable group include polymerizable groups represented by any of the following formulas (P-1) to (P-20) explained in the polymerizable liquid crystal compound described below.
 上記式(1)で表される繰り返し単位の含有量は特に制限されないが、変性ポリビニルアルコール中の全繰り返し単位に対して、76.0~95.0モル%が好ましく、78.0~91.0モル%がより好ましい。 Although the content of the repeating unit represented by the above formula (1) is not particularly limited, it is preferably 76.0 to 95.0 mol%, and 78.0 to 91.0% by mole, based on the total repeating units in the modified polyvinyl alcohol. 0 mol% is more preferred.
 上記式(2)で表される繰り返し単位の含有量は特に制限されないが、変性ポリビニルアルコール中の全繰り返し単位に対して、0モル%超25.0モル%以下が好ましく、1.0~21.0モル%がより好ましい。 The content of the repeating unit represented by the above formula (2) is not particularly limited, but it is preferably more than 0 mol% and 25.0 mol% or less, and 1.0 to 21% by mole, based on the total repeating units in the modified polyvinyl alcohol. .0 mol% is more preferred.
 変性ポリビニルアルコールが上記式(3)で表される繰り返し単位を有している場合、上記式(3)で表される繰り返し単位の含有量は特に制限されないが、変性ポリビニルアルコール中の全繰り返し単位に対して、0.5~14.0モル%が好ましい。 When the modified polyvinyl alcohol has a repeating unit represented by the above formula (3), the content of the repeating unit represented by the above formula (3) is not particularly limited, but all repeating units in the modified polyvinyl alcohol It is preferably 0.5 to 14.0 mol%.
 <他の成分>
 配向膜形成用組成物には、上述した特定添加剤および特定ポリマー以外の他の成分を含有していてもよい。
<Other ingredients>
The composition for forming an alignment film may contain components other than the above-mentioned specific additives and specific polymers.
 (重合開始剤)
 配向膜形成用組成物は、上述した特定ポリマー(例えば、変性ポリビニルアルコールなど)が重合性基(例えば、(メタ)アクリロイル基など)を有している場合、重合開始剤を含有していることが好ましい。
 重合開始剤は特に限定されず、重合反応の形式に応じて、熱重合開始剤および光重合開始剤が挙げられる。
 重合開始剤としては、紫外線照射によって重合反応を開始可能な光重合開始剤が好ましい。
 光重合開始剤としては、例えば、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ、アクリジンおよびフェナジン化合物、オキサジアゾール化合物、および、アシルフォスフィンオキシド化合物が挙げられる。
(Polymerization initiator)
When the above-mentioned specific polymer (e.g., modified polyvinyl alcohol, etc.) has a polymerizable group (e.g., (meth)acryloyl group, etc.), the composition for forming an alignment film must contain a polymerization initiator. is preferred.
The polymerization initiator is not particularly limited, and examples thereof include thermal polymerization initiators and photopolymerization initiators depending on the type of polymerization reaction.
As the polymerization initiator, a photopolymerization initiator that can initiate a polymerization reaction by ultraviolet irradiation is preferred.
Examples of photopolymerization initiators include α-carbonyl compounds, acyloin ethers, α-hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, combinations of triarylimidazole dimer and p-aminophenyl ketone, acridine and phenazine compounds. , oxadiazole compounds, and acylphosphine oxide compounds.
 (硬化剤)
 配向膜形成用組成物は、上述した特定添加剤とは別に、硬化剤を含有していてもよい。
 硬化剤としては、例えば、カルボン酸化合物(例えば、クエン酸エステルなど)、アルデヒド化合物(例えば、グルタルアルデヒド、グリオキサールなど)等が挙げられる。
(hardening agent)
The composition for forming an alignment film may contain a curing agent in addition to the above-mentioned specific additives.
Examples of the curing agent include carboxylic acid compounds (eg, citric acid esters, etc.), aldehyde compounds (eg, glutaraldehyde, glyoxal, etc.), and the like.
 (溶媒)
 配向膜形成用組成物は、配向膜を形成する際の作業性等の観点から、溶媒を含有していることが好ましい。
 溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、および、シクロヘキサノン)、エーテル類(例えば、ジオキサン、および、テトラヒドロフラン)、脂肪族炭化水素類(例えば、ヘキサン)、脂環式炭化水素類(例えば、シクロヘキサン)、芳香族炭化水素類(例えば、トルエン、キシレン、および、トリメチルベンゼン)、ハロゲン化炭素類(例えば、ジクロロメタン、ジクロロエタン、ジクロロベンゼン、および、クロロトルエン)、エステル類(例えば、酢酸メチル、酢酸エチル、および、酢酸ブチル)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、および、シクロヘキサノール)、セロソルブ類(例えば、メチルセロソルブ、および、エチルセロソルブ)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシド)、アミド類(例えば、ジメチルホルムアミド、および、ジメチルアセトアミド)が挙げられる。
 溶媒を1種単独で用いてもよく、2種以上を併用してもよい。
(solvent)
The composition for forming an alignment film preferably contains a solvent from the viewpoint of workability when forming an alignment film.
Examples of solvents include ketones (e.g., acetone, 2-butanone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone), ethers (e.g., dioxane, and tetrahydrofuran), aliphatic hydrocarbons (e.g., hexane), cycloaliphatic hydrocarbons (e.g. cyclohexane), aromatic hydrocarbons (e.g. toluene, xylene, and trimethylbenzene), halogenated carbons (e.g. dichloromethane, dichloroethane, dichlorobenzene, and chloro toluene), esters (e.g. methyl acetate, ethyl acetate, and butyl acetate), water, alcohols (e.g. ethanol, isopropanol, butanol, and cyclohexanol), cellosolves (e.g. methyl cellosolve, and ethyl cellosolve), cellosolve acetates, sulfoxides (eg, dimethyl sulfoxide), amides (eg, dimethylformamide, and dimethylacetamide).
One type of solvent may be used alone, or two or more types may be used in combination.
 配向膜は、上述した特定添加剤および特定ポリマーを含む配向膜形成用組成物を用いて形成された膜であるが、その製造手順については後述する本発明の光学フィルムの製造方法の配向膜形成工程において詳述する。 The alignment film is a film formed using the composition for forming an alignment film containing the above-mentioned specific additive and specific polymer, and the manufacturing procedure thereof will be described later in the alignment film formation method of the optical film manufacturing method of the present invention. The process will be explained in detail.
 配向膜の厚みは特に制限されないが、0.2~1.0μmが好ましく、0.4~0.8μmがより好ましい。 The thickness of the alignment film is not particularly limited, but is preferably 0.2 to 1.0 μm, more preferably 0.4 to 0.8 μm.
 〔光学異方性層〕
 本発明の光学フィルムが有する光学異方性層は、上述した配向膜上に配置される層であり、本発明においては、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層である。より具体的には、後述する本発明の光学フィルムの製造方法の光学異方性層形成工程で詳述するように、光学異方性層形成用組成物を塗布して形成される塗膜中の重合性液晶化合物を配向させて、その状態を固定することにより形成された層であることが好ましく、この場合、層となった後はもはや液晶性を示す必要はない。
[Optically anisotropic layer]
The optically anisotropic layer of the optical film of the present invention is a layer disposed on the above-mentioned alignment film, and in the present invention, an optically anisotropic layer-forming composition containing a polymerizable liquid crystal compound is used. This is a layer formed by More specifically, in the coating film formed by applying the composition for forming an optically anisotropic layer, as detailed in the optically anisotropic layer forming step of the method for producing an optical film of the present invention described later. It is preferable that the layer be formed by aligning the polymerizable liquid crystal compound and fixing that state. In this case, it is no longer necessary to exhibit liquid crystallinity after forming the layer.
 <重合性液晶化合物>
 光学異方性層形成用組成物に含まれる重合性液晶化合物とは、重合性基を有する液晶化合物である。
 ここで、重合性基は、特に限定されないが、ラジカル重合またはカチオン重合可能な重合性基が好ましい。
 ラジカル重合性基としては、公知のラジカル重合性基を用いることができ、好適なものとして、アクリロイルオキシ基またはメタクリロイルオキシ基を挙げることができる。この場合、重合速度はアクリロイルオキシ基が一般的に速いことが知られており、生産性向上の観点からアクリロイルオキシ基が好ましいが、メタクリロイルオキシ基も重合性基として同様に使用することができる。
 カチオン重合性基としては、公知のカチオン重合性基を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などを挙げることができる。中でも、脂環式エーテル基、または、ビニルオキシ基が好適であり、エポキシ基、オキセタニル基、または、ビニルオキシ基が特に好ましい。
 特に好ましい重合性基の例としては、下記式(P-1)~(P-20)のいずれかで表される重合性基が挙げられる。
<Polymerizable liquid crystal compound>
The polymerizable liquid crystal compound contained in the composition for forming an optically anisotropic layer is a liquid crystal compound having a polymerizable group.
Here, the polymerizable group is not particularly limited, but preferably a polymerizable group capable of radical polymerization or cationic polymerization.
As the radically polymerizable group, a known radically polymerizable group can be used, and preferred examples include an acryloyloxy group or a methacryloyloxy group. In this case, it is known that an acryloyloxy group generally has a high polymerization rate, and an acryloyloxy group is preferred from the viewpoint of improving productivity, but a methacryloyloxy group can also be used as a polymerizable group.
As the cationic polymerizable group, a known cationic polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro-orthoester group, and a vinyloxy Examples include groups. Among these, an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is particularly preferred.
Particularly preferred examples of polymerizable groups include polymerizable groups represented by any of the following formulas (P-1) to (P-20).
 重合性液晶化合物は特に限定されず、例えば、ホメオトロピック配向、ホモジニアス配向、ハイブリッド配向およびコレステリック配向のいずれかの配向が可能な化合物が挙げられる。
 ここで、一般的に、液晶化合物はその形状から、棒状タイプと円盤状タイプとに分類できる。さらに、それぞれ低分子と高分子タイプとがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶化合物を用いることもできるが、棒状液晶化合物またはディスコティック液晶化合物(円盤状液晶化合物)が好ましい。また、モノマーであるか、重合度が100未満の比較的低分子量な液晶化合物が好ましい。
The polymerizable liquid crystal compound is not particularly limited, and includes, for example, a compound capable of homeotropic alignment, homogeneous alignment, hybrid alignment, and cholesteric alignment.
Generally, liquid crystal compounds can be classified into rod-like types and disc-like types based on their shapes. Furthermore, there are low-molecular and high-molecular types, respectively. Polymers generally refer to those with a degree of polymerization of 100 or more (Polymer Physics/Phase Transition Dynamics, Masao Doi, p. 2, Iwanami Shoten, 1992). In the present invention, any liquid crystal compound can be used, but a rod-shaped liquid crystal compound or a discotic liquid crystal compound (discotic liquid crystal compound) is preferable. Further, a monomer or a relatively low molecular weight liquid crystal compound having a degree of polymerization of less than 100 is preferable.
 棒状液晶化合物としては、例えば、特表平11-513019号公報の請求項1または特開2005-289980号公報の段落[0026]~[0098]に記載のものを好ましく、ディスコティック液晶化合物としては、例えば、特開2007-108732号公報の段落[0020]~[0067]または特開2010-244038号公報の段落[0013]~[0108]に記載のものを好ましい。 As the rod-shaped liquid crystal compound, for example, those described in claim 1 of Japanese Patent Publication No. 11-513019 or paragraphs [0026] to [0098] of JP-A-2005-289980 are preferable, and as the discotic liquid crystal compound, For example, those described in paragraphs [0020] to [0067] of JP-A-2007-108732 or paragraphs [0013] to [0108] of JP-A-2010-244038 are preferred.
 上記重合性液晶化合物として、逆波長分散性の液晶化合物を用いることができる。
 ここで、本明細書において「逆波長分散性」の液晶化合物とは、これを用いて作製された位相差フィルムの特定波長(可視光範囲)における面内のレターデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
As the polymerizable liquid crystal compound, a reverse wavelength dispersion liquid crystal compound can be used.
Here, in this specification, a liquid crystal compound with "reverse wavelength dispersion" refers to the in-plane retardation (Re) value measured at a specific wavelength (visible light range) of a retardation film made using this compound. In other words, as the measurement wavelength becomes larger, the Re value becomes the same or becomes higher.
 逆波長分散性の液晶化合物は、上記のように逆波長分散性のフィルムを形成できるものであれば特に限定されず、例えば、特開2008-297210号公報に記載の一般式(I)で表される化合物(特に、段落[0034]~[0039]に記載の化合物)、特開2010-084032号公報に記載の一般式(1)で表される化合物(特に、段落[0067]~[0073]に記載の化合物)、および、特開2016-081035号公報に記載の一般式(1)で表される化合物(特に、段落[0043]~[0055]に記載の化合物)が挙げられる。
 さらに、特開2011-006360号公報の段落[0027]~[0100]、特開2011-006361号公報の段落[0028]~[0125]、特開2012-207765号公報の段落[0034]~[0298]、特開2012-077055号公報の段落[0016]~[0345]、WO12/141245号公報の段落[0017]~[0072]、WO12/147904号公報の段落[0021]~[0088]、WO14/147904号公報の段落[0028]~[0115]に記載の化合物が挙げられる。
The reverse wavelength dispersion liquid crystal compound is not particularly limited as long as it can form a reverse wavelength dispersion film as described above. (especially the compounds described in paragraphs [0034] to [0039]), the compounds represented by the general formula (1) described in JP-A-2010-084032 (especially the compounds described in paragraphs [0067] to [0073]) ), and the compound represented by the general formula (1) described in JP-A-2016-081035 (particularly the compounds described in paragraphs [0043] to [0055]).
Additionally, paragraphs [0027] to [0100] of JP2011-006360, paragraphs [0028] to [0125] of JP2011-006361, and paragraphs [0034] to [0034] of JP2012-207765. 0298], paragraphs [0016] to [0345] of JP2012-077055, paragraphs [0017] to [0072] of WO12/141245, paragraphs [0021] to [0088] of WO12/147904, Examples include compounds described in paragraphs [0028] to [0115] of WO14/147904.
 <重合開始剤>
 光学異方性層形成用組成物は、重合開始剤を含有していることが好ましい。
 重合開始剤としては、上述した配向膜形成用組成物において説明したものが挙げられる。
<Polymerization initiator>
The composition for forming an optically anisotropic layer preferably contains a polymerization initiator.
Examples of the polymerization initiator include those explained in connection with the composition for forming an alignment film mentioned above.
 <溶媒>
 光学異方性層形成用組成物は、光学異方性層を形成する際の作業性等の観点から、溶媒を含有していることが好ましい。
 溶媒としては、上述した配向膜形成用組成物において説明したものが挙げられる。
<Solvent>
The composition for forming an optically anisotropic layer preferably contains a solvent from the viewpoint of workability when forming an optically anisotropic layer.
Examples of the solvent include those explained in connection with the composition for forming an alignment film mentioned above.
 <レベリング剤>
 光学異方性層形成用組成物は、光学異方性層の表面を平滑に保ち、配向制御を容易にする観点から、レベリング剤を含むことが好ましい。
 このようなレベリング剤としては、添加量に対するレベリング効果が高い理由から、フッ素系レベリング剤またはケイ素系レベリング剤が好ましく、泣き出し(ブルーム、ブリード)を起こしにくい点から、フッ素系レベリング剤がより好ましい。
 レベリング剤としては、例えば、特開2007-069471号公報の[0079]~[0102]段落の記載に記載された化合物、特開2013-047204号公報に記載された一般式(I)で表される化合物(特に[0020]~[0032]段落に記載された化合物)、特開2012-211306号公報に記載された一般式(I)で表される化合物(特に[0022]~[0029]段落に記載された化合物)、特開2002-129162号公報に記載された一般式(I)で表される液晶配向促進剤(特に[0076]~[0078]および[0082]~[0084]段落に記載された化合物)、ならびに、特開2005-099248号公報に記載された一般式(I)、(II)および(III)で表される化合物(特に[0092]~[0096]段落に記載された化合物)等が挙げられる。なお、レベリング剤は、後述する配向制御剤としての機能を兼ね備えてもよい。
<Leveling agent>
The composition for forming an optically anisotropic layer preferably contains a leveling agent from the viewpoint of keeping the surface of the optically anisotropic layer smooth and facilitating orientation control.
As such a leveling agent, a fluorine-based leveling agent or a silicon-based leveling agent is preferable because it has a high leveling effect with respect to the amount added, and a fluorine-based leveling agent is more preferable because it is less likely to cause weeping (bloom, bleed). .
Examples of the leveling agent include compounds described in paragraphs [0079] to [0102] of JP-A No. 2007-069471, and compounds represented by the general formula (I) described in JP-A No. 2013-047204. (especially the compounds described in paragraphs [0020] to [0032]), compounds represented by the general formula (I) described in JP-A-2012-211306 (especially the compounds described in paragraphs [0022] to [0029]) (compounds described in JP-A No. 2002-129162), liquid crystal alignment promoters represented by general formula (I) described in JP-A No. 2002-129162 (particularly in paragraphs [0076] to [0078] and [0082] to [0084] compounds represented by general formulas (I), (II) and (III) described in JP-A No. 2005-099248 (particularly those described in paragraphs [0092] to [0096] compounds), etc. Note that the leveling agent may also have a function as an alignment control agent, which will be described later.
 <配向制御剤>
 光学異方性層形成用組成物は、必要に応じて、配向制御剤を含んでいてもよい。
 配向制御剤により、ホモジニアス配向の他、ホメオトロピック配向(垂直配向)、傾斜配向、ハイブリッド配向、およびコレステリック配向等の種々の配向状態を形成でき、また、特定の配向状態をより均一且つより精密に制御して実現できる。
<Orientation control agent>
The composition for forming an optically anisotropic layer may contain an alignment control agent, if necessary.
By using an alignment control agent, it is possible to form various alignment states such as homogeneous alignment, homeotropic alignment (vertical alignment), tilted alignment, hybrid alignment, and cholesteric alignment, and it is also possible to form a specific alignment state more uniformly and precisely. It can be controlled and realized.
 ホモジニアス配向を促進する配向制御剤としては、例えば、低分子の配向制御剤、および、高分子の配向制御剤を用いることができる。
 低分子の配向制御剤としては、例えば、特開2002-20363号公報の[0009]~[0083]段落、特開2006-106662号公報の[0111]~[0120]段落、および、特開2012-211306号公報の[0021]~[0029]段落の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
 また、高分子の配向制御剤としては、例えば、特開2004-198511号公報の[0021]~[0057]段落、および、特開2006-106662号公報の[0121]~[0167]段落を参酌でき、これらの内容は本願明細書に組み込まれる。
As the alignment control agent that promotes homogeneous alignment, for example, a low-molecular alignment control agent and a polymeric alignment control agent can be used.
Examples of low-molecular alignment control agents include paragraphs [0009] to [0083] of JP-A No. 2002-20363, paragraphs [0111] to [0120] of JP-A No. 2006-106662, and paragraphs [0111] to [0120] of JP-A No. 2006-106662, and JP-A No. 2012-2012. The descriptions in paragraphs [0021] to [0029] of Publication No.-211306 can be referred to, and the contents thereof are incorporated into the present specification.
In addition, for polymer alignment control agents, please refer to paragraphs [0021] to [0057] of JP-A No. 2004-198511 and paragraphs [0121] to [0167] of JP-A No. 2006-106662, for example. and the contents thereof are incorporated herein.
 また、ホメオトロピック配向を形成または促進する配向制御剤としては、例えば、ボロン酸化合物、およびオニウム塩化合物が挙げられる。この配向制御剤としては、特開2008-225281号公報の[0023]~[0032]段落、特開2012-208397号公報の[0052]~[0058]段落、特開2008-026730号公報の[0024]~[0055]段落、および、特開2016-193869号公報の[0043]~[0055]段落に記載された化合物を参酌でき、これらの内容は本願明細書に組み込まれる。 Furthermore, examples of the alignment control agent that forms or promotes homeotropic alignment include boronic acid compounds and onium salt compounds. Examples of this alignment control agent include paragraphs [0023] to [0032] of JP-A No. 2008-225281, paragraphs [0052]-[0058] of JP-A No. 2012-208397, and paragraphs [0052] to [0058] of JP-A No. 2008-026730. The compounds described in paragraphs [0024] to [0055] and paragraphs [0043] to [0055] of JP-A-2016-193869 can be referred to, and the contents thereof are incorporated into the present specification.
 一方、コレステリック配向は、光学異方性層形成用組成物にキラル剤を加えることにより実現でき、そのキラル性の向きによりコレステリック配向の旋回方向を制御できる。
 なお、キラル剤の配向規制力に応じてコレステリック配向のピッチを制御してもよい。
On the other hand, cholesteric alignment can be achieved by adding a chiral agent to the composition for forming an optically anisotropic layer, and the direction of rotation of the cholesteric alignment can be controlled depending on the direction of the chirality.
Note that the pitch of cholesteric alignment may be controlled depending on the alignment regulating force of the chiral agent.
 光学異方性層形成用組成物が配向制御剤を含む場合の含有量は、組成物中の全固形分質量に対して0.01~10質量%が好ましく、0.05~5質量%がより好ましい。含有量がこの範囲であると、望む配向状態を実現しつつ、析出、相分離、および配向欠陥等が抑制され、均一で透明性の高い硬化物を得ることができる。 When the composition for forming an optically anisotropic layer contains an alignment control agent, the content is preferably 0.01 to 10% by mass, and 0.05 to 5% by mass based on the total solid mass in the composition. More preferred. When the content is within this range, precipitation, phase separation, orientation defects, etc. can be suppressed while realizing a desired orientation state, and a uniform and highly transparent cured product can be obtained.
 <他の成分>
 光学異方性層形成用組成物は、上述した成分以外の他の成分を含んでいてもよい。他の成分としては、例えば、界面活性剤、チルト角制御剤、配向助剤、可塑剤、および、架橋剤が挙げられる。また、帯電防止剤として、イオン性化合物や導電性ポリマーなどを含んでいてもよい。
<Other ingredients>
The composition for forming an optically anisotropic layer may contain components other than those mentioned above. Other components include, for example, surfactants, tilt angle control agents, alignment aids, plasticizers, and crosslinking agents. Moreover, an ionic compound, a conductive polymer, etc. may be included as an antistatic agent.
 光学異方性層は、上述した光学異方性層形成用組成物を用いて形成された膜であるが、その製造手順については後述する本発明の光学フィルムの製造方法の光学異方性層形成工程において詳述する。 The optically anisotropic layer is a film formed using the composition for forming an optically anisotropic layer described above, and the manufacturing procedure thereof will be described later in the optically anisotropic layer of the method for manufacturing an optical film of the present invention. This will be explained in detail in the forming process.
 光学異方性層の厚みは特に制限されないが、装置の薄型化の点で、0.7~2.5μmが好ましく、0.9~2.2μmがより好ましい。 The thickness of the optically anisotropic layer is not particularly limited, but from the viewpoint of making the device thinner, it is preferably 0.7 to 2.5 μm, more preferably 0.9 to 2.2 μm.
 光学異方性層における重合性液晶化合物の配向状態としては、水平配向、垂直配向、傾斜配向、およびねじれ配向のいずれの状態であってもよく、光学異方性層の主面に対して水平配向した状態で固定化されていることが好ましい。
 なお、本明細書において「水平配向」とは、光学異方性層の主面と、重合性液晶化合物の長軸方向とが平行であることをいう。なお、厳密に平行であることを要求するものではなく、本明細書では、重合性液晶化合物の長軸方向と光学異方性層の主面とのなす角度が10°未満の配向であることを意味するものとする。
 光学異方性層において、重合性液晶化合物の長軸方向と光学異方性層の主面とのなす角度は、0~5°が好ましく、0~3°がより好ましく、0~2°が更に好ましい。
The orientation state of the polymerizable liquid crystal compound in the optically anisotropic layer may be any of horizontal orientation, vertical orientation, tilted orientation, and twisted orientation, and the orientation state is horizontal to the main surface of the optically anisotropic layer. It is preferable that it is immobilized in an oriented state.
In this specification, "horizontal alignment" means that the main surface of the optically anisotropic layer and the long axis direction of the polymerizable liquid crystal compound are parallel. Note that it is not required that they be strictly parallel, and in this specification, the orientation is such that the angle between the long axis direction of the polymerizable liquid crystal compound and the main surface of the optically anisotropic layer is less than 10°. shall mean.
In the optically anisotropic layer, the angle between the long axis direction of the polymerizable liquid crystal compound and the main surface of the optically anisotropic layer is preferably 0 to 5°, more preferably 0 to 3°, and preferably 0 to 2°. More preferred.
 光学異方性層は、ポジティブAプレートまたはポジティブCプレートであることがより好ましく、ポジティブAプレートであることが更に好ましい。 The optically anisotropic layer is more preferably a positive A plate or a positive C plate, and even more preferably a positive A plate.
 ここで、ポジティブAプレート(正のAプレート)とポジティブCプレート(正のCプレート)は以下のように定義される。
 フィルム面内の遅相軸方向(面内での屈折率が最大となる方向)の屈折率をnx、面内の遅相軸と面内で直交する方向の屈折率をny、厚み方向の屈折率をnzとしたとき、ポジティブAプレートは式(A1)の関係を満たすものであり、ポジティブCプレートは式(C1)の関係を満たすものである。なお、ポジティブAプレートはRthが正の値を示し、ポジティブCプレートはRthが負の値を示す。
 式(A1)  nx>ny≒nz
 式(C1)  nz>nx≒ny
 なお、上記「≒」とは、両者が完全に同一である場合だけでなく、両者が実質的に同一である場合も包含する。
 この「実質的に同一」について、ポジティブAプレートでは、例えば、(ny-nz)×d(ただし、dはフィルムの厚みである)が、-10~10nm、好ましくは-5~5nmである場合も「ny≒nz」に含まれ、(nx-nz)×dが、-10~10nm、好ましくは-5~5nmである場合も「nx≒nz」に含まれる。また、ポジティブCプレートでは、例えば、(nx-ny)×d(ただし、dはフィルムの厚みである)が、0~10nm、好ましくは0~5nmである場合も「nx≒ny」に含まれる。
Here, the positive A plate (positive A plate) and the positive C plate (positive C plate) are defined as follows.
The refractive index in the in-plane slow axis direction (direction where the in-plane refractive index is maximum) is nx, the refractive index in the direction orthogonal to the in-plane slow axis is ny, and the refraction in the thickness direction is When the ratio is nz, the positive A plate satisfies the relationship of formula (A1), and the positive C plate satisfies the relationship of formula (C1). Note that the positive A plate has a positive Rth value, and the positive C plate has a negative Rth value.
Formula (A1) nx>ny≒nz
Formula (C1) nz>nx≒ny
In addition, the above-mentioned "≒" includes not only the case where both are completely the same, but also the case where both are substantially the same.
Regarding this "substantially the same", for the positive A plate, for example, when (ny-nz) x d (where d is the thickness of the film) is -10 to 10 nm, preferably -5 to 5 nm. is also included in "ny≈nz", and a case where (nx-nz)×d is -10 to 10 nm, preferably -5 to 5 nm is also included in "nx≈nz". Furthermore, in the case of a positive C plate, for example, the case where (nx - ny) x d (where d is the thickness of the film) is 0 to 10 nm, preferably 0 to 5 nm is also included in "nx≒ny". .
 光学異方性層がポジティブAプレートである場合、λ/4板として機能する観点から、Re(550)が100~180nmであることが好ましく、120~160nmであることがより好ましく、130~150nmであることが更に好ましく、130~145nmであること特に好ましい。
 ここで、「λ/4板」とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
When the optically anisotropic layer is a positive A plate, from the viewpoint of functioning as a λ/4 plate, Re (550) is preferably 100 to 180 nm, more preferably 120 to 160 nm, and 130 to 150 nm. The wavelength is more preferably 130 to 145 nm, particularly preferably 130 to 145 nm.
Here, the "λ/4 plate" is a plate that has a λ/4 function, specifically, the function of converting linearly polarized light of a certain wavelength into circularly polarized light (or from circularly polarized light to linearly polarized light). It is a board with
 〔支持体〕
 本発明の光学フィルムは、上述した配向膜を支持するための支持体を有していてもよい。
 支持体の種類は特に制限されず、公知の支持体が使用できる。特に、透明支持体であることが好ましい。なお、透明支持体とは、可視光の透過率が60%以上である支持体を意図し、その透過率は80%以上が好ましく、90%以上がより好ましい。
[Support]
The optical film of the present invention may have a support for supporting the above-mentioned alignment film.
The type of support is not particularly limited, and any known support can be used. In particular, a transparent support is preferred. Note that the transparent support is intended to be a support having a visible light transmittance of 60% or more, and the transmittance is preferably 80% or more, more preferably 90% or more.
 支持体としては、例えば、ガラス基板およびポリマーフィルムが挙げられる。
 ポリマーフィルムの材料としては、セルロース系ポリマー;ポリメチルメタクリレート、ラクトン環含有重合体などのアクリル酸エステル重合体を有するアクリル系ポリマー;熱可塑性ノルボルネン系ポリマー;ポリカーボネート系ポリマー;ポリエチレンテレフタレート、および、ポリエチレンナフタレートなどのポリエステル系ポリマー;ポリスチレン、アクリロニトリルスチレン共重合体などのスチレン系ポリマー;ポリエチレン、ポリプロピレン、および、エチレン・プロピレン共重合体などのポリオレフィン系ポリマー;塩化ビニル系ポリマー;ナイロン、芳香族ポリアミドなどのアミド系ポリマー;イミド系ポリマー;スルホン系ポリマー;ポリエーテルスルホン系ポリマー;ポリエーテルエーテルケトン系ポリマー;ポリフェニレンスルフィド系ポリマー;塩化ビニリデン系ポリマー;ビニルアルコール系ポリマー;ビニルブチラール系ポリマー;アリレート系ポリマー;ポリオキシメチレン系ポリマー;エポキシ系ポリマー;またはこれらのポリマーを混合したポリマーが挙げられる。
 また、支持体は、剥離可能なものが好ましい。
Examples of the support include glass substrates and polymer films.
Materials for the polymer film include cellulose polymers; acrylic polymers containing acrylic acid ester polymers such as polymethyl methacrylate and lactone ring-containing polymers; thermoplastic norbornene polymers; polycarbonate polymers; polyethylene terephthalate, and polyethylene ester polymers; Polyester polymers such as phthalates; Styrenic polymers such as polystyrene and acrylonitrile styrene copolymers; Polyolefin polymers such as polyethylene, polypropylene, and ethylene-propylene copolymers; Vinyl chloride polymers; Nylon, aromatic polyamides, etc. Amide polymer; Imide polymer; Sulfone polymer; Polyether sulfone polymer; Polyether ether ketone polymer; Polyphenylene sulfide polymer; Vinylidene chloride polymer; Vinyl alcohol polymer; Vinyl butyral polymer; Arylate polymer; Examples include oxymethylene polymers; epoxy polymers; and polymers obtained by mixing these polymers.
Further, the support is preferably one that is removable.
[光学異方性層]
 本発明の光学異方性層は、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層である。
 また、本発明の光学異方性層は、100μm以上の輝点欠陥が1~80個/10m存在しており、この輝点欠陥の核が、炭素数が5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する。
[Optically anisotropic layer]
The optically anisotropic layer of the present invention is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound.
Further, in the optically anisotropic layer of the present invention, there are 1 to 80 bright spot defects/10 m2 with a diameter of 100 μm or more, and the nucleus of the bright spot defects has an alkyl group having 5 to 29 carbon atoms. It contains an additive and a polymer having 5 to 29 carbon atoms and no alkyl group.
 ここで、光学異方性層に存在する100μm以上の輝点欠陥の個数は、以下の方法で存在を確認することができる。
 まず、シャーカステンの上に2枚の偏光板をクロスニコル状態で重ね、上記2枚の偏光板の間に、光学異方性層を有する光学フィルム(観察面積:100×130cm)を挟み、シャーカステンから光を透過させる。
 次いで、偏光板の上からルーペを用いて光学フィルムを観察し、直径100μm以上の欠陥をマーキングする。
 次いで、マーキングした欠陥の中心を通るようにミクロトームで断面切削し、断面方向から光学顕微鏡観察を実施し、光学異方性層中に異物が観察される欠陥をカウントする。
Here, the number of bright spot defects of 100 μm or more existing in the optically anisotropic layer can be confirmed by the following method.
First, two polarizing plates are stacked on the Scherkasten in a crossed nicol state, and an optical film (observation area: 100 x 130 cm) having an optically anisotropic layer is sandwiched between the two polarizing plates, and light is emitted from the Scherkasten. Transmit.
Next, the optical film is observed from above the polarizing plate using a magnifying glass, and defects with a diameter of 100 μm or more are marked.
Next, a cross section is cut with a microtome so as to pass through the center of the marked defect, and an optical microscope observation is performed from the cross-sectional direction to count defects in which foreign matter is observed in the optically anisotropic layer.
 本発明の光学異方性層に存在する輝点欠陥の核は、上述した通り、炭素数が5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有している。
 ここで、上記添加剤および上記ポリマーは、それぞれ、上述した配向膜において説明した特定添加剤および特定ポリマーと同じものである。
 すなわち、本発明の光学異方性層に存在する輝点欠陥の核は、配向膜にラビング処理を施した際に僅かに発生した配向膜の屑が、光学異方性層の形成時に光学異方性層側に移行してきたものと考えられる。
As mentioned above, the nucleus of the bright spot defect existing in the optically anisotropic layer of the present invention is caused by the additive having an alkyl group having 5 to 29 carbon atoms and the polymer having no alkyl group having 5 to 29 carbon atoms. Contains.
Here, the above-mentioned additive and the above-mentioned polymer are respectively the same as the specific additive and specific polymer explained in the above-mentioned alignment film.
In other words, the nucleus of the bright spot defect existing in the optically anisotropic layer of the present invention is caused by the slight amount of debris of the alignment film generated when the alignment film is rubbed. It is thought that it has shifted to the tropic layer side.
[配向膜形成用組成物]
 本発明の配向膜形成用組成物は、炭素数が5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する組成物である。
 ここで、上記添加剤および上記ポリマーは、それぞれ、上述した配向膜において説明した特定添加剤および特定ポリマーと同じものである。
[Composition for forming alignment film]
The composition for forming an alignment film of the present invention is a composition containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms.
Here, the above-mentioned additive and the above-mentioned polymer are respectively the same as the specific additive and specific polymer explained in the above-mentioned alignment film.
[光学フィルムの製造方法]
 本発明の光学フィルムの製造方法は、上述した本発明の配向膜形成用組成物を用いて、支持体上に配向膜を形成する配向膜形成工程と、配向膜にラビング処理を施すラビング工程と、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて、ラビング処理を施した配向膜上に光学異方性層を形成する光学異方性層形成工程とを有する製造方法である。
 以下、各工程の手順について詳述する。
[Optical film manufacturing method]
The method for producing an optical film of the present invention includes an alignment film forming step of forming an alignment film on a support using the composition for forming an alignment film of the present invention, and a rubbing step of subjecting the alignment film to a rubbing treatment. , a manufacturing method comprising an optically anisotropic layer forming step of forming an optically anisotropic layer on an alignment film subjected to a rubbing treatment using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound. It is.
Below, the procedure of each step will be explained in detail.
 〔配向膜形成工程〕
 配向膜形成工程は、配向膜形成用組成物を用いて、支持体上に配向膜を形成する工程である。
 本工程で使用される配向膜形成用組成物および支持体については、上述した通りである。
[Alignment film formation process]
The alignment film forming step is a step of forming an alignment film on a support using a composition for forming an alignment film.
The composition for forming an alignment film and the support used in this step are as described above.
 配向膜を形成する具体的な手順の一態様としては、支持体上に配向膜形成用組成物を塗布して、支持体上に塗膜を形成して、塗膜に対してラビング処理を施して配向膜を形成する方法が挙げられる。
 支持体上に配向膜形成用組成物を塗布する方法は特に制限されず、例えば、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、および、ダイコーティング法などが挙げられる。
 配向膜形成用組成物を支持体上に塗布後、必要に応じて、配向膜形成用組成物が塗布された支持体に対して乾燥処理を施して、溶媒の除去を実施してもよい。
One aspect of the specific procedure for forming an alignment film is to apply a composition for forming an alignment film onto a support, form a coating film on the support, and then subject the coating film to a rubbing treatment. An example of this method is to form an alignment film using the following method.
The method of applying the composition for forming an alignment film onto the support is not particularly limited, and examples thereof include wire bar coating method, extrusion coating method, direct gravure coating method, reverse gravure coating method, and die coating method. .
After applying the composition for forming an alignment film onto a support, the support coated with the composition for forming an alignment film may be subjected to a drying treatment to remove the solvent, if necessary.
 〔ラビング工程〕
 ラビング工程は、配向膜にラビング処理を施す工程である。
 ここで、ラビング処理は、液晶表示装置の液晶配向処理工程として広く採用されている処理方法を適用することができる。すなわち、配向膜の表面を、紙やガーゼ、フェルト、ゴム、ナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより、配向を得る方法が用いられる。
[Rubbing process]
The rubbing process is a process of subjecting the alignment film to a rubbing process.
Here, for the rubbing treatment, a treatment method that is widely adopted as a liquid crystal alignment treatment process for liquid crystal display devices can be applied. That is, a method is used to obtain orientation by rubbing the surface of the orientation film in a certain direction using paper, gauze, felt, rubber, nylon, polyester fiber, or the like.
 〔光学異方性層形成工程〕
 光学異方性層形成工程は、光学異方性層形成用組成物を用いて、ラビング処理を施した配向膜上に光学異方性層を形成する工程である。
[Optically anisotropic layer formation process]
The optically anisotropic layer forming step is a step of forming an optically anisotropic layer on an alignment film that has been subjected to a rubbing treatment using a composition for forming an optically anisotropic layer.
 光学異方性層を形成する具体的な手順の一態様としては、配向膜上に光学異方性層形成用組成物を塗布して、配向膜上に塗膜を形成して、塗膜中の重合性液晶化合物を配向させた後、塗膜に対して硬化処理を施して光学異方性層を形成する方法が挙げられる。
 配向膜上に光学異方性層形成用組成物を塗布する方法としては、上述した配向膜形成用組成物を塗布する方法と同様の方法が挙げられる。
 光学異方性層形成用組成物を配向膜上に塗布後、必要に応じて、光学異方性層形成用組成物が塗布された支持体に対して乾燥処理を施して、溶媒の除去を実施してもよい。
One aspect of the specific procedure for forming an optically anisotropic layer is to apply a composition for forming an optically anisotropic layer onto an alignment film, form a coating film on the alignment film, and apply the composition in the coating film. After aligning the polymerizable liquid crystal compound, the coating film may be subjected to a curing treatment to form an optically anisotropic layer.
Examples of the method for applying the composition for forming an optically anisotropic layer on the alignment film include the same method as the method for applying the composition for forming an alignment film described above.
After coating the composition for forming an optically anisotropic layer on the alignment film, if necessary, the support coated with the composition for forming an optically anisotropic layer is subjected to a drying treatment to remove the solvent. May be implemented.
 塗膜中の重合性液晶化合物を配向させる方法(配向処理)は特に制限されず、例えば、塗膜を加熱する方法、および、室温により塗膜を乾燥させる方法が挙げられる。配向処理で形成される液晶相は、サーモトロピック性液晶化合物の場合、一般に温度の変化により転移させることができる。リオトロピック性液晶化合物の場合には、溶媒量などの組成比によっても転移させることができる。
 なお、塗膜を加熱する場合の条件は特に制限されないが、加熱温度としては50~150℃が好ましく、加熱時間としては10秒間~5分間が好ましい。
The method for orienting the polymerizable liquid crystal compound in the coating film (orientation treatment) is not particularly limited, and examples thereof include a method of heating the coating film and a method of drying the coating film at room temperature. In the case of a thermotropic liquid crystal compound, the liquid crystal phase formed by the alignment treatment can generally be transformed by a change in temperature. In the case of a lyotropic liquid crystal compound, the transition can also be caused by changing the composition ratio such as the amount of solvent.
Note that the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 150°C, and the heating time is preferably 10 seconds to 5 minutes.
 次に、重合性液晶化合物が配向している塗膜に対して硬化処理を施して、光学異方性層を形成する。
 硬化処理の方法は特に制限されず、光照射処理および加熱処理が挙げられ、光照射よりが好ましい。
 露光の際の光の種類は特に制限されないが、紫外光が好ましい。
 露光の際の照射量は特に制限されず、10mJ/cm~50J/cmが好ましく、20mJ/cm~5J/cmがより好ましい。また、重合反応を促進するため、加熱条件下で実施してもよい。
Next, the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment to form an optically anisotropic layer.
The method of curing treatment is not particularly limited, and includes light irradiation treatment and heat treatment, with light irradiation being more preferred.
The type of light used during exposure is not particularly limited, but ultraviolet light is preferred.
The irradiation amount during exposure is not particularly limited, and is preferably 10 mJ/cm 2 to 50 J/cm 2 , more preferably 20 mJ/cm 2 to 5 J/cm 2 . Moreover, in order to promote the polymerization reaction, it may be carried out under heating conditions.
[偏光板]
 本発明の偏光板は、本発明の光学フィルムまたは本発明の光学異方性層(以下、本発明の偏光板の説明においては「本発明の光学フィルム等」と略す。)と、偏光子とを有する偏光板である。
[Polarizer]
The polarizing plate of the present invention includes the optical film of the present invention or the optically anisotropic layer of the present invention (hereinafter, in the description of the polarizing plate of the present invention, it will be abbreviated as "the optical film of the present invention, etc."), a polarizer, It is a polarizing plate having
 〔偏光子〕
 本発明の偏光板が有する偏光子は、光を特定の直線偏光に変換する機能を有する部材であれば特に制限されず、従来公知の吸収型偏光子および反射型偏光子を利用することができる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子等が用いられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子があり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことで偏光子を得る方法として、特許第5048120号公報、特許第5143918号公報、特許第4691205号公報、特許第4751481号公報、および特許第4751486号公報が挙げられ、これらの偏光子に関する公知の技術も好ましく利用できる。
 塗布型偏光子としては、WO2018/124198、WO2018/186503、WO2019/132020、WO2019/132018、WO2019/189345、特開2019-197168号公報、特開2019-194685号公報、および特開2019-139222号公報が挙げられ、これらの偏光子に関する公知の技術も好ましく利用できる。
 反射型偏光子としては、複屈折の異なる薄膜を積層した偏光子、ワイヤーグリッド型偏光子、および、選択反射域を有するコレステリック液晶と1/4波長板とを組み合わせた偏光子等が用いられる。
 これらのうち、密着性がより優れる点で、ポリビニルアルコール系樹脂(-CH-CHOH-を繰り返し単位として含むポリマー。特に、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体からなる群から選択される少なくとも1つ)を含む偏光子が好ましい。
 また、耐クラック性を付与できる観点から、偏光子は対向する端辺に沿って偏光解消部が形成されていてもよい。偏光解消部としては、特開2014-240970号公報が挙げられる。
 また、偏光子は、長尺方向および/または幅方向に所定の間隔で配置された非偏光部を有していてもよい。非偏光部は、部分的に脱色された脱色部である。非偏光部の配置パターンは、目的に応じて適切に設定され得る。例えば、非偏光部は、偏光子を所定サイズの画像表示装置に取り付けるために所定サイズに裁断(切断、打ち抜き等)した際に、画像表示装置のカメラ部に対応する位置に配置される。非偏光部の配置パターンとしては、特開2016-27392号公報が挙げられる。
[Polarizer]
The polarizer included in the polarizing plate of the present invention is not particularly limited as long as it is a member that has the function of converting light into specific linearly polarized light, and conventionally known absorption type polarizers and reflection type polarizers can be used. .
As the absorption type polarizer, an iodine polarizer, a dye polarizer using a dichroic dye, a polyene polarizer, etc. are used. Iodine-based polarizers and dye-based polarizers include coating-type polarizers and stretched-type polarizers, and both can be applied, but polarized light produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching it Child is preferred.
In addition, as a method for obtaining a polarizer by stretching and dyeing a laminated film in which a polyvinyl alcohol layer is formed on a base material, Japanese Patent No. 5048120, Japanese Patent No. 5143918, Japanese Patent No. 4691205, and Publication No. 4751481 and Japanese Patent No. 4751486 are mentioned, and known techniques regarding these polarizers can also be preferably used.
As a coating type polarizer, WO2018/124198, WO2018/186503, WO2019/132020, WO2019/132018, WO2019/189345, JP 2019-197168, JP 2019-194685, and JP 2019-1 No. 39222 Publications are listed, and known techniques related to these polarizers can also be preferably used.
As the reflective polarizer, a polarizer in which thin films with different birefringences are laminated, a wire grid polarizer, a polarizer in which a cholesteric liquid crystal having a selective reflection region and a quarter-wave plate are combined, etc. are used.
Among these, polyvinyl alcohol-based resins (polymer containing -CH 2 -CHOH- as a repeating unit; in particular, at least one selected from the group consisting of polyvinyl alcohol and ethylene-vinyl alcohol copolymers) have better adhesion. 1) is preferred.
Further, from the viewpoint of imparting crack resistance, the polarizer may have depolarization portions formed along opposing edges. Examples of the depolarization unit include Japanese Patent Application Laid-Open No. 2014-240970.
Further, the polarizer may have non-polarizing portions arranged at predetermined intervals in the longitudinal direction and/or the width direction. The non-polarized portion is a partially bleached portion. The arrangement pattern of the non-polarizing portions can be appropriately set depending on the purpose. For example, when the polarizer is cut to a predetermined size (cutting, punching, etc.) in order to attach it to an image display device of a predetermined size, the non-polarizing portion is placed at a position corresponding to the camera portion of the image display device. Examples of the arrangement pattern of the non-polarizing portion include Japanese Patent Application Laid-open No. 2016-27392.
 偏光子の厚みは特に制限されないが、3~60μmが好ましく、3~30μmがより好ましく、3~10μmが更に好ましい。 The thickness of the polarizer is not particularly limited, but is preferably 3 to 60 μm, more preferably 3 to 30 μm, and even more preferably 3 to 10 μm.
 本発明の偏光板は、本発明の光学フィルム等と偏光子以外に、他の光学フィルムや、後述する保護フィルム、その他の機能層を有してもよい。機能層の機能は特に限定されず、例えば、接着層、応力緩和層、平坦化層、反射防止層、屈折率調整層、紫外線吸収層などの機能を有する層であってもよい。
 保護フィルムは、偏光子を挟んで両側に用いても、偏光子の片側のみに用いてもよい。
 また、保護フィルムを、本発明の光学フィルム等と同じ側に有する場合は、偏光子と光学フィルム等との間や、光学フィルム等の偏光子とは反対側等に、粘着剤または接着剤を介して配置してもよい。
 偏光板は、上述した本発明の光学フィルムが有する光学異方性層または本発明の光学異方性層がλ/4板(ポジティブAプレート)である場合、円偏光板として用いることができる。
 偏光板を円偏光板として用いる場合は、上述した光学異方性層をλ/4板(ポジティブAプレート)とし、λ/4板の遅相軸と後述する偏光子の吸収軸とのなす角が30~60°であることが好ましく、40~50°であることがより好ましく、42~48°であることが更に好ましく、45°であることが特に好ましい。
 ここで、λ/4板の「遅相軸」は、λ/4板の面内において屈折率が最大となる方向を意味し、偏光子の「吸収軸」は、吸光度の最も高い方向を意味する。
 また、偏光板は、IPS(In-Plane-Switching)方式またはFFS(Fringe-Field-Switching)方式の液晶表示装置の光学補償フィルムとして用いることもできる。
 偏光板をIPS方式またはFFS方式の液晶表示装置の光学補償フィルムとして用いる場合は、上述した光学異方性層を、ポジティブAプレートとポジティブCプレートとの積層体の少なくとも一方のプレートとし、ポジティブAプレート層の遅相軸と、偏光子の吸収軸とのなす角を直交または平行とすることが好ましく、具体的には、ポジティブAプレート層の遅相軸と、偏光子の吸収軸とのなす角が0~5°または85~95°であることがより好ましい。
 また、上記光学補償フィルムが、偏光子、ポジティブCプレート、および、ポジティブAプレートをこの順に積層している場合は、ポジティブAプレートの遅相軸と、偏光子の吸収軸とのなす角は平行であることが更に好ましい。
 同様に、上記光学補償フィルムが、偏光子、ポジティブAプレート、および、ポジティブCプレートをこの順に積層している場合は、ポジティブAプレートの遅相軸と、偏光子の吸収軸とのなす角は直交であることが更に好ましい。
 後述する液晶表示装置に、本発明の偏光板を用いる場合には、光学異方性層の遅相軸と、偏光子の吸収軸とのなす角が、平行または直交であることが好ましい。
 なお、本明細書において「平行」とは、厳密に平行であることを要求するものではなく、一方と他方とのなす角度が10°未満であることを意味するものとする。また、本明細書において「直交」とは、厳密に直交していることを要求するものではなく、一方と他方とのなす角度が80°超100°未満であることを意味するものとする。
The polarizing plate of the present invention may have other optical films, a protective film described below, and other functional layers in addition to the optical film of the present invention and the polarizer. The function of the functional layer is not particularly limited, and for example, it may be a layer having functions such as an adhesive layer, a stress relaxation layer, a flattening layer, an antireflection layer, a refractive index adjustment layer, and an ultraviolet absorption layer.
The protective film may be used on both sides of the polarizer, or may be used only on one side of the polarizer.
In addition, when the protective film is on the same side as the optical film, etc. of the present invention, an adhesive or adhesive may be applied between the polarizer and the optical film, or on the opposite side of the optical film, etc. from the polarizer. It may also be placed through the
The polarizing plate can be used as a circularly polarizing plate when the optically anisotropic layer of the optical film of the invention described above or the optically anisotropic layer of the invention is a λ/4 plate (positive A plate).
When using the polarizing plate as a circularly polarizing plate, the optically anisotropic layer described above is a λ/4 plate (positive A plate), and the angle between the slow axis of the λ/4 plate and the absorption axis of the polarizer described later is is preferably 30 to 60°, more preferably 40 to 50°, even more preferably 42 to 48°, and particularly preferably 45°.
Here, the "slow axis" of the λ/4 plate means the direction in which the refractive index is maximum within the plane of the λ/4 plate, and the "absorption axis" of the polarizer means the direction in which the absorbance is highest. do.
Further, the polarizing plate can also be used as an optical compensation film of an IPS (In-Plane-Switching) type or FFS (Fringe-Field-Switching) type liquid crystal display device.
When the polarizing plate is used as an optical compensation film for an IPS mode or FFS mode liquid crystal display device, the above-mentioned optically anisotropic layer is used as at least one plate of a laminate of a positive A plate and a positive C plate. It is preferable that the angle between the slow axis of the plate layer and the absorption axis of the polarizer be perpendicular or parallel. Specifically, the angle between the slow axis of the positive A plate layer and the absorption axis of the polarizer is preferably More preferably, the angle is 0-5° or 85-95°.
In addition, when the above optical compensation film has a polarizer, a positive C plate, and a positive A plate laminated in this order, the angle between the slow axis of the positive A plate and the absorption axis of the polarizer is parallel to each other. It is more preferable that
Similarly, when the optical compensation film has a polarizer, a positive A plate, and a positive C plate laminated in this order, the angle between the slow axis of the positive A plate and the absorption axis of the polarizer is More preferably, they are orthogonal.
When the polarizing plate of the present invention is used in a liquid crystal display device to be described later, it is preferable that the angle between the slow axis of the optically anisotropic layer and the absorption axis of the polarizer be parallel or orthogonal.
Note that in this specification, "parallel" does not necessarily require strict parallelism, but means that the angle formed by one side and the other side is less than 10 degrees. Further, in this specification, "orthogonal" does not necessarily require that they be strictly orthogonal, but means that the angle between one and the other is more than 80° and less than 100°.
 〔保護フィルム〕
 保護フィルムの材料としては特に限定されず、例えばセルロースアシレートフィルム(例えば、セルローストリアセテートフィルム、セルロースジアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム)、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂フィルム、ポリエーテルスルホンフィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルム、ポリオレフィン、脂環式構造を有するポリマー(ノルボルネン系樹脂(アートン:商品名、JSR社製、非晶質ポリオレフィン(ゼオネックス:商品名、日本ゼオン社製))、などが挙げられる。このうちセルロースアシレートフィルムが好ましい。
〔Protective film〕
The material for the protective film is not particularly limited, and examples include cellulose acylate film (e.g., cellulose triacetate film, cellulose diacetate film, cellulose acetate butyrate film, cellulose acetate propionate film), polyacrylics such as polymethyl methacrylate, etc. Resin film, polyolefin such as polyethylene and polypropylene, polyester resin film such as polyethylene terephthalate and polyethylene naphthalate, polyether sulfone film, polyurethane resin film, polyester film, polycarbonate film, polysulfone film, polyether film, polymethylpentene film , polyetherketone film, (meth)acrylonitrile film, polyolefin, polymer with alicyclic structure (norbornene resin (Arton: trade name, manufactured by JSR Corporation), amorphous polyolefin (Zeonex: trade name, manufactured by Nippon Zeon Co., Ltd.) )), etc. Among these, cellulose acylate film is preferred.
 保護フィルムの光学特性としては、特に限定されないが、保護フィルムを、本発明の光学フィルム等と同じ側に有する場合は、下記式を満たすことが好ましい。
 0nm≦Re(550)≦10nm
 -40nm≦Rth(550)≦40nm
The optical properties of the protective film are not particularly limited, but when the protective film is on the same side as the optical film of the present invention, it is preferable that the following formula is satisfied.
0nm≦Re(550)≦10nm
-40nm≦Rth(550)≦40nm
 〔粘着剤層〕
 偏光板において、本発明の光学フィルム等と偏光子との間に、粘着剤層が配置されていてもよい。
 粘着剤層を形成する材料としては、例えば、動的粘弾性測定装置で測定した貯蔵弾性率G’と損失弾性率G”との比(tanδ=G”/G’)が0.001~1.5である物質で形成された部材が挙げられ、いわゆる、粘着剤、およびクリープしやすい物質等が含まれる。粘着剤としては、例えば、ポリビニルアルコール系粘着剤が挙げられるが、これに制限されない。
[Adhesive layer]
In the polarizing plate, an adhesive layer may be disposed between the optical film or the like of the present invention and the polarizer.
As for the material forming the adhesive layer, for example, the ratio of storage elastic modulus G' to loss elastic modulus G'' (tan δ=G''/G') measured with a dynamic viscoelasticity measuring device is 0.001 to 1. .5, including so-called adhesives and substances that tend to creep. Examples of the adhesive include, but are not limited to, polyvinyl alcohol adhesives.
 〔接着剤層〕
 偏光板は、本発明の光学フィルム等と偏光子との間に、接着剤層が配置されていてもよい。
 接着剤層としては、活性エネルギー線の照射または加熱により硬化する硬化性接着剤組成物が好ましい。
 硬化性接着剤組成物としては、カチオン重合性化合物を含有する硬化性接着剤組成物、および、ラジカル重合性化合物を含有する硬化性接着剤組成物等が挙げられる。
 接着剤層の厚さは、0.01~20μmが好ましく、0.01~10μmがより好ましく、0.05~5μmが更に好ましい。接着剤層の厚さがこの範囲にあれば、積層される保護層または光学異方性層と偏光子との間に浮きまたは剥がれが生じず、実用上問題のない接着力が得られる。また、気泡の発生を抑制できる観点から接着剤層の厚さは0.4μm以上が好ましい。
 また、耐久性の観点から接着剤層のバルク吸水率を10質量%以下に調整してもよく、2質量%以下が好ましい。バルク吸水率は、JIS K 7209に記載の吸水率試験方法に準じて測定される。
 接着剤層としては、例えば、特開2016-35579号公報の[0062]~[0080]段落を参酌でき、これらの内容は本願明細書に組み込まれる。
[Adhesive layer]
In the polarizing plate, an adhesive layer may be disposed between the optical film or the like of the present invention and the polarizer.
As the adhesive layer, a curable adhesive composition that is cured by irradiation with active energy rays or heating is preferable.
Examples of the curable adhesive composition include a curable adhesive composition containing a cationically polymerizable compound and a curable adhesive composition containing a radically polymerizable compound.
The thickness of the adhesive layer is preferably 0.01 to 20 μm, more preferably 0.01 to 10 μm, and even more preferably 0.05 to 5 μm. If the thickness of the adhesive layer is within this range, no lifting or peeling will occur between the protective layer or optically anisotropic layer to be laminated and the polarizer, and adhesive strength with no practical problems can be obtained. Further, from the viewpoint of suppressing the generation of bubbles, the thickness of the adhesive layer is preferably 0.4 μm or more.
Further, from the viewpoint of durability, the bulk water absorption rate of the adhesive layer may be adjusted to 10% by mass or less, preferably 2% by mass or less. The bulk water absorption rate is measured according to the water absorption rate test method described in JIS K 7209.
As for the adhesive layer, for example, paragraphs [0062] to [0080] of JP-A-2016-35579 can be referred to, and the contents thereof are incorporated into the present specification.
 〔易接着層〕
 偏光板は、本発明の光学フィルム等と偏光子との間に、易接着層が配置されていてもよい。
 本発明の光学フィルム等と偏光子との密着性に優れ、さらに、偏光子へのクラックの発生を抑止する観点から、易接着層の85℃での貯蔵弾性率が1.0×10Pa~1.0×10Paであることが好ましい。易接着層の構成材料としては、ポリオレフィン系成分およびポリビニルアルコール系成分が挙げられる。易接着層の厚さは、500nm~1μmが好ましい。
 易接着層としては、例えば、特開2018-36345号公報の[0048]~[0053]段落を参酌でき、これらの内容は本願明細書に組み込まれる。
[Easy adhesive layer]
In the polarizing plate, an easily adhesive layer may be disposed between the optical film of the present invention and the polarizer.
From the viewpoint of excellent adhesion between the optical film, etc. of the present invention and the polarizer, and furthermore, from the viewpoint of suppressing the occurrence of cracks in the polarizer, the storage elastic modulus of the easy-adhesive layer at 85°C is 1.0 × 10 6 Pa. It is preferably 1.0×10 7 Pa. Examples of constituent materials of the easily adhesive layer include polyolefin components and polyvinyl alcohol components. The thickness of the adhesive layer is preferably 500 nm to 1 μm.
As for the easy-adhesive layer, for example, paragraphs [0048] to [0053] of JP-A No. 2018-36345 can be referred to, and the contents thereof are incorporated into the specification of the present application.
[画像表示装置]
 本発明の画像表示装置は、本発明の光学フィルムまたは本発明の光学異方性層を有する、画像表示装置である。
 画像表示装置に用いられる表示素子は特に制限されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL(Electro Luminescence)」と略す。)表示パネル、および、プラズマディスプレイパネル等が挙げられる。これらのうち、液晶セル、および有機EL表示パネルが好ましく、液晶セルがより好ましい。
 すなわち、画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、または、表示素子として有機EL表示パネルを用いた有機EL表示装置が好ましく、液晶表示装置がより好ましい。
[Image display device]
The image display device of the present invention is an image display device having the optical film of the present invention or the optically anisotropic layer of the present invention.
The display element used in the image display device is not particularly limited, and includes, for example, a liquid crystal cell, an organic electroluminescence (hereinafter abbreviated as "EL (Electro Luminescence)") display panel, a plasma display panel, and the like. Among these, liquid crystal cells and organic EL display panels are preferred, and liquid crystal cells are more preferred.
That is, as the image display device, a liquid crystal display device using a liquid crystal cell as a display element or an organic EL display device using an organic EL display panel as a display element is preferable, and a liquid crystal display device is more preferable.
 〔液晶表示装置〕
 画像表示装置の一例である液晶表示装置は、上述した偏光板と、液晶セルとを有する液晶表示装置である。
 なお、液晶セルの両側に設けられる偏光板のうち、フロント側の偏光板として上述した偏光板を用いることが好ましく、フロント側およびリア側の偏光板として上述した偏光板を用いることがより好ましい。
 以下に、液晶表示装置を構成する液晶セルについて詳述する。
[Liquid crystal display device]
A liquid crystal display device, which is an example of an image display device, includes the above-mentioned polarizing plate and a liquid crystal cell.
Note that among the polarizing plates provided on both sides of the liquid crystal cell, it is preferable to use the above-described polarizing plate as the front-side polarizing plate, and it is more preferable to use the above-mentioned polarizing plates as the front-side and rear-side polarizing plates.
The liquid crystal cell constituting the liquid crystal display device will be described in detail below.
 <液晶セル>
 液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、FFS(Fringe-Field-Switching)モード、またはTN(Twisted Nematic)モードであることが好ましいが、これらに制限されない。
 TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT液晶表示装置として最も多く利用されており、多数の文献に記載がある。
 VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)、および(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、VAモードの液晶セルは、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および特表2008-538819号公報に詳細な記載がある。
 IPSモードの液晶セルは、棒状液晶分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、および特開平10-307291号公報等に開示されている。
<Liquid crystal cell>
The liquid crystal cells used in liquid crystal display devices are in VA (Vertical Alignment) mode, OCB (Optically Compensated Bend) mode, IPS (In-Plane-Switching) mode, FFS (Fringe-Field-Switching) mode, or TN (Twisted) mode. Nematic) mode is preferable, but is not limited thereto.
In a TN mode liquid crystal cell, rod-like liquid crystal molecules are substantially horizontally aligned when no voltage is applied, and are further twisted at an angle of 60 to 120 degrees. TN mode liquid crystal cells are most commonly used as color TFT liquid crystal display devices, and are described in numerous documents.
In a VA mode liquid crystal cell, rod-like liquid crystal molecules are aligned substantially vertically when no voltage is applied. VA mode liquid crystal cells include (1) narrowly defined VA mode liquid crystal cells in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and substantially horizontally when voltage is applied (Japanese Patent Application Laid-Open No. 2002-2002); In addition to (2) a multi-domain (MVA mode) liquid crystal cell (SID97, described in Digest of tech.Papers (Proceedings) 28 (1997) 845) in which VA mode is multi-domained to expand the viewing angle (described in Publication No. 176625) ), (3) Liquid crystal cell in a mode (n-ASM mode) in which rod-shaped liquid crystal molecules are aligned substantially vertically when no voltage is applied, and twisted and multi-domain aligned when a voltage is applied (Proceedings of the Japan Liquid Crystal Conference 58-59) (1998)), and (4) SURVIVAL mode liquid crystal cell (presented at LCD International 98). Further, the VA mode liquid crystal cell may be any of the PVA (Patterned Vertical Alignment) type, the optical alignment type (Optical Alignment), and the PSA (Polymer-Sustained Alignment) type. Details of these modes are described in Japanese Patent Application Laid-open No. 2006-215326 and Japanese Patent Application Publication No. 2008-538819.
In an IPS mode liquid crystal cell, rod-shaped liquid crystal molecules are aligned substantially parallel to the substrate, and when an electric field parallel to the substrate surface is applied, the liquid crystal molecules respond in a planar manner. In the IPS mode, a black display occurs when no electric field is applied, and the absorption axes of the pair of upper and lower polarizing plates are perpendicular to each other. A method of using an optical compensatory sheet to reduce leakage light during black display in an oblique direction and improve the viewing angle is disclosed in JP-A-10-54982, JP-A-11-202323, and JP-A-9-292522. JP-A-11-133408, JP-A-11-305217, and JP-A-10-307291.
 〔有機EL表示装置〕
 画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、偏光子と、上述した光学異方性層からなるλ/4板(ポジティブAプレート)と、有機EL表示パネルとをこの順で有する態様が挙げられる。
 また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
[Organic EL display device]
An organic EL display device, which is an example of an image display device, includes, from the viewing side, a polarizer, a λ/4 plate (positive A plate) made of the above-mentioned optically anisotropic layer, and an organic EL display panel. Examples include embodiments in which the elements are arranged in this order.
Furthermore, an organic EL display panel is a display panel constructed using an organic EL element in which an organic light emitting layer (organic electroluminescence layer) is sandwiched between electrodes (between a cathode and an anode). The structure of the organic EL display panel is not particularly limited, and a known structure may be employed.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on Examples. The materials, usage amounts, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the Examples shown below.
[実施例1]
 〔セルロースアシレートフィルム(支持体)の作製〕
 下記組成物のセルロースアシレートドープをミキシングタンクに投入し、攪拌して、さらに90℃で10分間加熱した。
 その後、得られた組成物を、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過して、ドープを調製した。
 ドープの固形分濃度は23.5質量%であり、可塑剤の添加量はセルロースアシレートに対する割合であり、ドープの溶剤は塩化メチレン/メタノール/ブタノール=81/18/1(質量比)である。
[Example 1]
[Preparation of cellulose acylate film (support)]
A cellulose acylate dope having the following composition was placed in a mixing tank, stirred, and further heated at 90° C. for 10 minutes.
Thereafter, the resulting composition was filtered through a filter paper with an average pore size of 34 μm and a sintered metal filter with an average pore size of 10 μm to prepare a dope.
The solid content concentration of the dope is 23.5% by mass, the amount of plasticizer added is the ratio to cellulose acylate, and the solvent of the dope is methylene chloride/methanol/butanol = 81/18/1 (mass ratio). .
――――――――――――――――――――――――――――――――――
セルロースアシレートドープ
――――――――――――――――――――――――――――――――――
セルロースアシレート(アセチル置換度2.86、粘度平均重合度310)
                            100質量部
糖エステル化合物1(化学式(S4)に示す)       6.0質量部
糖エステル化合物2(化学式(S5)に示す)       2.0質量部
シリカ粒子分散液(AEROSIL R972、日本アエロジル(株)製)
                            0.1質量部
溶剤(塩化メチレン/メタノール/ブタノール)
――――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Cellulose acylate dope――――――――――――――――――――――――――――――――
Cellulose acylate (degree of acetyl substitution 2.86, viscosity average degree of polymerization 310)
100 parts by weight Sugar ester compound 1 (shown in chemical formula (S4)) 6.0 parts by weight Sugar ester compound 2 (shown in chemical formula (S5)) 2.0 parts by weight Silica particle dispersion (AEROSIL R972, Nippon Aerosil Co., Ltd.) made)
0.1 part by mass solvent (methylene chloride/methanol/butanol)
――――――――――――――――――――――――――――――――
 上記で調製したドープを、ドラム製膜機を用いて流延した。
 具体的には、0℃に冷却された金属支持体上に接するようにドープをダイから流延し、その後、得られたウェブ(フィルム)を剥ぎ取った。なお、ドラムはSUS製であった。
 次いで、流延されて得られたウェブ(フィルム)を、ドラムから剥離後、フィルム搬送時に30~40℃で、クリップでウェブの両端をクリップして搬送するテンター装置を用いてテンター装置内で20分間乾燥した。引き続き、ウェブをロール搬送しながらゾーン加熱により後乾燥した。
 次いで、得られたウェブにナーリングを施した後、巻き取った。
The dope prepared above was cast using a drum film forming machine.
Specifically, the dope was cast from a die so as to be in contact with a metal support cooled to 0° C., and then the obtained web (film) was peeled off. Note that the drum was made of SUS.
Next, the web (film) obtained by casting is peeled from the drum, and then heated at 30 to 40°C during film transport, using a tenter machine that clips both ends of the web with clips and transports it. Dry for a minute. Subsequently, the web was post-dried by zone heating while being rolled.
Next, the obtained web was knurled and then wound up.
 (アルカリ鹸化処理)
 巻取り後のウェブを、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理したセルロースアシレートフィルムを作製した。
(alkali saponification treatment)
The wound web was passed through a dielectric heating roll at a temperature of 60°C to raise the film surface temperature to 40°C, and then an alkaline solution having the composition shown below was applied to the band surface of the film using a bar coater. It was coated at a coating amount of 14 ml/m 2 and conveyed for 10 seconds under a steam-type far-infrared heater manufactured by Noritake Company Limited, which was heated to 110°C. Subsequently, 3 ml/m 2 of pure water was applied using the same bar coater. Next, washing with water using a fountain coater and draining using an air knife were repeated three times, and then the film was transported to a drying zone at 70° C. for 10 seconds to dry, thereby producing a cellulose acylate film subjected to alkali saponification treatment.
―――――――――――――――――――――――――――――――――
アルカリ溶液
―――――――――――――――――――――――――――――――――
・水酸化カリウム                   4.7質量部
・水                        15.8質量部
・イソプロパノール                 63.7質量部
・界面活性剤SF-1:C1429O(CH2CH2O)20H    1.0質量部
・プロピレングリコール               14.8質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Alkaline solution――――――――――――――――――――――――――――――――
- Potassium hydroxide 4.7 parts by mass - Water 15.8 parts by mass - Isopropanol 63.7 parts by mass - Surfactant SF-1: C 14 H 29 O (CH 2 CH 2 O) 20 H 1.0 parts by mass・Propylene glycol 14.8 parts by mass――――――――――――――――――――――――――――――
 〔配向膜の形成〕
 セルロースアシレートフィルムのアルカリ鹸化処理を行った面に、下記組成の配向膜形成用組成物を#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥し、配向膜を得た。
[Formation of alignment film]
A composition for forming an alignment film having the following composition was continuously applied to the surface of the cellulose acylate film that had been subjected to the alkali saponification treatment using a #14 wire bar. It was dried with warm air at 60°C for 60 seconds and then with warm air at 100°C for 120 seconds to obtain an alignment film.
―――――――――――――――――――――――――――――――――
配向膜形成用組成物
―――――――――――――――――――――――――――――――――
・特定ポリマー:下記変性ポリビニルアルコール-1   100質量部
・特定添加剤:ドデシル硫酸ナトリウム         1.0質量部
・下記光重合開始剤                  7.5質量部
・下記硬化剤                    1.75質量部
・水                        2620質量部
・メタノール                     873質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition for forming alignment film――――――――――――――――――――――――――――――
・Specific polymer: Modified polyvinyl alcohol-1 below 100 parts by mass ・Specific additive: Sodium dodecyl sulfate 1.0 parts by mass ・Photopolymerization initiator below 7.5 parts by mass ・Curing agent below 1.75 parts by mass ・Water 2620 parts by mass 873 parts by mass of methanol――――――――――――――――――――――――――――――
 変性ポリビニルアルコール-1〔下記式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(mol%)を表す。〕
Modified polyvinyl alcohol-1 [In the following formula, the numerical value written for each repeating unit represents the content (mol%) of each repeating unit with respect to all repeating units. ]
 光重合開始剤
Photoinitiator
 硬化剤
hardening agent
 〔光学異方性層の形成〕
 上記で作製した配向膜に連続的にラビング処理を施した。このとき、長尺状のフィルムの長手方向と搬送方向は平行であり、フィルム長手方向(搬送方向)とラビングローラーの回転軸とのなす角度は78°とした。フィルム長手方向(搬送方向)を90°とし、フィルム側から観察してフィルム幅手方向を基準(0°)に時計回り方向を正の値で表すと、ラビングローラーの回転軸は12°にある。言い換えれば、ラビングローラーの回転軸の位置は、フィルム長手方向を基準に、反時計回りに78°回転させた位置である。
[Formation of optically anisotropic layer]
The alignment film produced above was continuously subjected to rubbing treatment. At this time, the longitudinal direction of the long film was parallel to the transport direction, and the angle between the film longitudinal direction (transport direction) and the rotation axis of the rubbing roller was 78°. If the longitudinal direction of the film (conveyance direction) is 90°, and the clockwise direction is expressed as a positive value with the film width direction as the reference (0°) when observed from the film side, the rotation axis of the rubbing roller is at 12°. . In other words, the position of the rotation axis of the rubbing roller is a position rotated 78 degrees counterclockwise with respect to the longitudinal direction of the film.
 上記ラビング処理した配向膜付きセルロースアシレートフィルムを基板として、ギーサー塗布機を用いて、下記の組成の棒状液晶化合物を含む光学異方性層形成用組成物(1)を塗布して、組成物層を形成した。なお、組成物層中のキラル剤の加重平均螺旋誘起力の絶対値は、0.0μm-1であった。
 次に、得られた組成物層を95℃で60秒間加熱した。この加熱により組成物層の棒状液晶化合物が所定の方向に配向した。
 その後、酸素を含む空気(酸素濃度:約20体積%)下、30℃にて、365nmLEDランプ(アクロエッジ(株)製)を使用して紫外線を組成物層に照射した(照射量:25mJ/cm)。
 続いて、得られた組成物層を95℃で10秒間加熱した。
 その後、窒素パージを行って、酸素濃度100体積ppmとして、80℃にて、メタルハライドランプ(アイグラフィックス(株)製)を使用して紫外線を組成物層に照射し(照射量:500mJ/cm)、液晶化合物の配向状態を固定した光学異方性層を形成した。このようにして光学フィルム(F-1)を作製した。
Using the rubbed cellulose acylate film with an alignment film as a substrate, a composition for forming an optically anisotropic layer (1) containing a rod-like liquid crystal compound having the following composition was applied using a Giesser coating machine to form a composition. formed a layer. The absolute value of the weighted average helical inducing force of the chiral agent in the composition layer was 0.0 μm −1 .
Next, the obtained composition layer was heated at 95° C. for 60 seconds. By this heating, the rod-like liquid crystal compound of the composition layer was oriented in a predetermined direction.
Thereafter, the composition layer was irradiated with ultraviolet rays (irradiation amount: 25 mJ/ cm2 ).
Subsequently, the obtained composition layer was heated at 95° C. for 10 seconds.
Thereafter, a nitrogen purge was performed, and the composition layer was irradiated with ultraviolet rays at 80°C with an oxygen concentration of 100 volume ppm using a metal halide lamp (manufactured by Eye Graphics Co., Ltd.) (irradiation amount: 500 mJ/cm). 2 ) An optically anisotropic layer in which the alignment state of the liquid crystal compound was fixed was formed. In this way, an optical film (F-1) was produced.
―――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(1)
―――――――――――――――――――――――――――――――――
・下記棒状液晶化合物(A)               80質量部
・下記棒状液晶化合物(B)               17質量部
・下記重合性化合物(C)                 3質量部
・エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)          4質量部
・光重合開始剤(Irgacure819、BASF社製)  3質量部
・下記左捩れキラル剤(L2)            0.47質量部
・下記右捩れキラル剤(R2)            0.42質量部
・下記ポリマー(A)                0.08質量部
・メチルイソブチルケトン                78質量部
・プロピオン酸エチル                  78質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition for forming optically anisotropic layer (1)
――――――――――――――――――――――――――――――――
・The following rod-like liquid crystal compound (A) 80 parts by mass ・The following rod-like liquid crystal compound (B) 17 parts by mass ・The following polymerizable compound (C) 3 parts by mass ・Ethylene oxide modified trimethylolpropane triacrylate (V#360, Osaka Organic Chemical) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure 819, manufactured by BASF) 3 parts by mass 0.47 parts by mass of the following left-handed chiral agent (L2) 0.42 parts by mass of the following right-handed chiral agent (R2) parts・Polymer (A) below 0.08 parts by mass・Methyl isobutyl ketone 78 parts by mass・Ethyl propionate 78 parts by mass―――――――――――――――――――― ――――――――――
 棒状液晶化合物(A)〔下記液晶化合物(RA)(RB)(RC)の84:14:2(質量比)の混合物〕
Rod-shaped liquid crystal compound (A) [Mixture of the following liquid crystal compounds (RA) (RB) (RC) at a ratio of 84:14:2 (mass ratio)]
 棒状液晶化合物(B)
Rod-shaped liquid crystal compound (B)
 重合性化合物(C)
Polymerizable compound (C)
 左捩れキラル剤(L2)
Left-handed chiral agent (L2)
 右捩れキラル剤(R2)
Right-handed chiral agent (R2)
 ポリマー(A)〔フッ素パート:39質量%,メソゲンパート:61質量%〕
Polymer (A) [Fluorine part: 39% by mass, Mesogen part: 61% by mass]
 上記で作製した光学フィルム(F-1)をラビング方向と平行に切削し、偏光顕微鏡で光学異方性層を断面方向から観察した。光学異方性層の厚みは2.7μmであり、光学異方性層の基板側の厚み(d2)1.3μmの領域(第2領域)は捩れ角の無いホモジニアス配向であり、光学異方性層の空気側(基板と反対側)の厚み(d1)1.4μmの領域(第1領域)は液晶化合物が捩れ配向していた。
 なお、Axometrics社のAxoscan、および、同社の解析ソフトウェア(Multi-Layer Analysis)を用いて、光学フィルム(F-1)の光学特性を求めた。第2領域の波長550nmにおけるΔn2と厚みd2との積(Δn2d2)は177nm、液晶化合物の捩れ角は0°であり、長尺長手方向に対する液晶化合物の配向軸角度は、基板に接する側が-11°、第1領域に接する側が-11°であった。
 また、第1領域の波長550nmにおけるΔn1と厚みd1との積(Δn1d1)は180nm、液晶化合物の捩れ角度は80°であり、長尺長手方向に対する液晶化合物の配向軸角度は、第2領域に接する側が-11°、空気側が-91°であった。
The optical film (F-1) produced above was cut parallel to the rubbing direction, and the optically anisotropic layer was observed from the cross-sectional direction using a polarizing microscope. The thickness of the optically anisotropic layer is 2.7 μm, and the region (second region) with a thickness (d2) of 1.3 μm on the substrate side of the optically anisotropic layer has a homogeneous orientation with no twist angle, and is optically anisotropic. In a region (first region) with a thickness (d1) of 1.4 μm on the air side (opposite side to the substrate) of the liquid crystal layer, the liquid crystal compound was twisted and oriented.
The optical properties of the optical film (F-1) were determined using Axoscan from Axometrics and the company's analysis software (Multi-Layer Analysis). The product (Δn2d2) of Δn2 and thickness d2 at a wavelength of 550 nm in the second region is 177 nm, the twist angle of the liquid crystal compound is 0°, and the alignment axis angle of the liquid crystal compound with respect to the long longitudinal direction is -11 on the side in contact with the substrate. °, and the side in contact with the first region was −11°.
Further, the product (Δn1d1) of Δn1 and thickness d1 at a wavelength of 550 nm in the first region is 180 nm, the twist angle of the liquid crystal compound is 80°, and the orientation axis angle of the liquid crystal compound with respect to the long longitudinal direction is The contact side was -11° and the air side was -91°.
[実施例2~15および比較例1~3]
 添加剤の種類および配合量を下記表1に示すように変更した以外は、実施例1と同様の方法で、光学フィルムを作製した。
[Examples 2 to 15 and Comparative Examples 1 to 3]
An optical film was produced in the same manner as in Example 1, except that the types and amounts of additives were changed as shown in Table 1 below.
[実施例16]
 変性ポリビニルアルコール-1を以下に示す変性ポリビニルアルコール-2に変更した以外は、実施例2と同様の方法で、光学フィルムを作製した。
 次いで、作製した光学フィルムの支持体および配向膜を剥離し、光学異方性層を単離した。
[Example 16]
An optical film was produced in the same manner as in Example 2, except that modified polyvinyl alcohol-1 was changed to modified polyvinyl alcohol-2 shown below.
Next, the support and alignment film of the produced optical film were peeled off to isolate the optically anisotropic layer.
 変性ポリビニルアルコール-2〔下記式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(mol%)を表す。〕
Modified polyvinyl alcohol-2 [In the following formula, the numerical value written for each repeating unit represents the content (mol%) of each repeating unit with respect to all repeating units. ]
[実施例17]
 変性ポリビニルアルコール-1を以下に示す変性ポリビニルアルコール-3に変更した以外は、実施例2と同様の方法で、光学フィルムを作製した。
 次いで、片面にセパレータ―のついた粘着剤の粘着剤側と、作製した光学フィルムの光学異方性層側を貼り合わせ、光学フィルムから支持体および配向膜を剥離することで、光学異方性層を粘着剤に転写した。
[Example 17]
An optical film was produced in the same manner as in Example 2, except that modified polyvinyl alcohol-1 was changed to modified polyvinyl alcohol-3 shown below.
Next, the adhesive side of the adhesive with a separator on one side and the optically anisotropic layer side of the prepared optical film are bonded together, and the optical anisotropic layer is peeled off from the optical film. The layer was transferred to the adhesive.
 変性ポリビニルアルコール-3〔下記式中、各繰り返し単位に記載の数値は、全繰り返し単位に対する各繰り返しの含有量(mol%)を表す。〕
Modified polyvinyl alcohol-3 [In the following formula, the numerical value written for each repeating unit represents the content (mol%) of each repeating unit with respect to all repeating units. ]
[実施例18および19]
 変性ポリビニルアルコール-1を下記表1に示すものに変更した以外は、実施例2と同様の方法で、光学フィルムを作製した。なお、実施例18および19で用いたポリマーの詳細は以下の通りである。
 ・ポリアクリル酸:アクアリック(登録商標)HL(日本触媒社製)
 ・変性ポリアミド:AQナイロン P70(東レ社製)
[Example 18 and 19]
An optical film was produced in the same manner as in Example 2, except that modified polyvinyl alcohol-1 was changed to those shown in Table 1 below. The details of the polymers used in Examples 18 and 19 are as follows.
・Polyacrylic acid: Aqualic (registered trademark) HL (manufactured by Nippon Shokubai Co., Ltd.)
・Modified polyamide: AQ nylon P70 (manufactured by Toray Industries)
[実施例20]
 光学異方性層形成用組成物(1)を以下に示す光学異方性層形成用組成物(2)に変更し、以下の条件で光学異方性層を形成した以外は、実施例2と同様の方法で、光学フィルムを作製した。
 具体的には、フィルム長手方向(搬送方向)を90°とし、配向膜側から観察してフィルム幅手方向を基準(0°)に時計回り方向を正の値で表すと、ラビングローラーの回転軸は-17.5°として、ラビング処理を施し、配向膜を得た。光学異方性層形成用組成物(2)を、配向膜上にギーサー塗布機を用いて連続的に塗布した。フィルムの搬送速度は26m/minとした。溶媒の乾燥およびディスコティック液晶化合物の配向熟成のために、配向膜上の塗膜を、130℃の温風で90秒間、続いて、100℃の温風で60秒間加熱し、80℃にて300mJ/cm2のUV(紫外線)照射を行い、液晶化合物の配向を固定化し、厚み2.0μmの光学異方性層を形成した。ディスコティック液晶化合物の円盤面のフィルム面に対する平均傾斜角は90°であり、ディスコティック液晶化合物がフィルム面に対して、垂直に配向していることを確認した。
 また、遅相軸の角度はラビングローラーの回転軸と平行で、フィルム幅方向を0°(フィルム長手方向を90°、光学異方性層側から観察してフィルム幅方向を基準に時計回り方向を正の値で表す。)とすると、-17.5°であった。光学異方性層の波長550nmにおける面内レターデーションは240nmであり、光学異方性層は順波長分散性を示す。
[Example 20]
Example 2 except that the composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (2) shown below, and the optically anisotropic layer was formed under the following conditions. An optical film was prepared in the same manner as above.
Specifically, if the longitudinal direction of the film (conveyance direction) is 90° and the clockwise direction is expressed as a positive value with the width direction of the film as the reference (0°) when observed from the alignment film side, then the rotation of the rubbing roller The axis was set at -17.5°, and rubbing treatment was performed to obtain an alignment film. The composition for forming an optically anisotropic layer (2) was continuously applied onto the alignment film using a Giesser coating machine. The transport speed of the film was 26 m/min. To dry the solvent and ripen the discotic liquid crystal compound for orientation, the coating film on the alignment film was heated with hot air at 130°C for 90 seconds, then heated with hot air at 100°C for 60 seconds, and then heated at 80°C. UV (ultraviolet) irradiation was performed at 300 mJ/cm 2 to fix the orientation of the liquid crystal compound, forming an optically anisotropic layer with a thickness of 2.0 μm. The average inclination angle of the disc surface of the discotic liquid crystal compound with respect to the film surface was 90°, and it was confirmed that the discotic liquid crystal compound was oriented perpendicularly to the film surface.
In addition, the angle of the slow axis is parallel to the rotation axis of the rubbing roller, 0° in the film width direction (90° in the longitudinal direction of the film, clockwise with respect to the film width direction when observed from the optically anisotropic layer side). (expressed as a positive value), it was -17.5°. The in-plane retardation of the optically anisotropic layer at a wavelength of 550 nm is 240 nm, and the optically anisotropic layer exhibits forward wavelength dispersion.
―――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(2)
―――――――――――――――――――――――――――――――――
・下記ディスコティック液晶化合物-1          80質量部
・下記ディスコティック液晶化合物-2          20質量部
・下記配向膜界面配向剤-1              1.6質量部
・下記含フッ素化合物(F-1)           0.21質量部
・下記含フッ素化合物(F-2)          0.075質量部
・下記含フッ素化合物(F-3)            0.1質量部
・エチレンオキサイド変性トリメチロールプロパントリアクリレート
                             5質量部
・光重合開始剤(イルガキュア907、BASF社製)    4質量部
・メチルエチルケトン                 200質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition for forming optically anisotropic layer (2)
――――――――――――――――――――――――――――――――
・The following discotic liquid crystal compound-1 80 parts by mass ・The following discotic liquid crystal compound-2 20 parts by mass ・The following alignment film interface alignment agent-1 1.6 parts by mass ・The following fluorine-containing compound (F-1) 0.21 parts by mass 0.075 parts by mass of the following fluorine-containing compound (F-2) 0.1 parts by mass of the following fluorine-containing compound (F-3) 5 parts by mass of ethylene oxide-modified trimethylolpropane triacrylate 5 parts by mass of photopolymerization initiator (Irgacure) 907, manufactured by BASF) 4 parts by mass ・Methyl ethyl ketone 200 parts by mass ――――――――――――――――――――――――――――――
 ディスコティック液晶化合物-1
Discotic liquid crystal compound-1
 ディスコティック液晶化合物-2
Discotic liquid crystal compound-2
 配向膜界面配向剤-1
Alignment film interface alignment agent-1
 含フッ素化合物(F-1)
Fluorine-containing compound (F-1)
 含フッ素化合物(F-2)
Fluorine-containing compound (F-2)
 含フッ素化合物(F-3)
Fluorine-containing compound (F-3)
 なお、上記含フッ素化合物(F-1)~(F-3)において、各繰り返し単位の横に記載の数値(例えば、含フッ素化合物(F-1)では、「25」、「25」、および、「50」)は、全繰り返し単位に対する、各繰り返し単位の含有量(モル%)を表す。 In addition, in the above fluorine-containing compounds (F-1) to (F-3), the numerical value written next to each repeating unit (for example, in the fluorine-containing compound (F-1), "25", "25", and , "50") represents the content (mol%) of each repeating unit with respect to all repeating units.
[実施例21]
 光学異方性層形成用組成物(1)を以下に示す光学異方性層形成用組成物(3)に変更し、形成される光学異方性層の厚みを2.6μmに変更した以外は、実施例2と同様の方法で、光学フィルムを作製した。
[Example 21]
Except that the composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (3) shown below, and the thickness of the optically anisotropic layer formed was changed to 2.6 μm. An optical film was produced in the same manner as in Example 2.
―――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(3)
―――――――――――――――――――――――――――――――――
・上記の棒状液晶化合物(A)              80質量部
・上記の棒状液晶化合物(B)              17質量部
・上記の重合性化合物(C)                3質量部
・エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)          4質量部
・光重合開始剤(Irgacure819、BASF社製)  3質量部
・上記の左捩れキラル剤(L2)           0.46質量部
・上記の右捩れキラル剤(R2)           0.41質量部
・上記のポリマー(A)               0.08質量部
・下記ポリマー(B)                0.38質量部
・メチルイソブチルケトン               117質量部
・プロピオン酸エチル                  23質量部
・シクロヘキサン                    16質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition for forming optically anisotropic layer (3)
――――――――――――――――――――――――――――――――
- 80 parts by mass of the above rod-like liquid crystal compound (A) - 17 parts by mass of the above-mentioned rod-like liquid crystal compound (B) - 3 parts by mass of the above polymerizable compound (C) - Ethylene oxide-modified trimethylolpropane triacrylate (V#360, 4 parts by mass of photopolymerization initiator (Irgacure 819, manufactured by BASF) 0.46 parts by mass of the above left-handed chiral agent (L2) 0.46 parts by mass of the above right-handed chiral agent (R2) ) 0.41 parts by mass - 0.08 parts by mass of the above polymer (A) - 0.38 parts by mass of the following polymer (B) - 117 parts by mass of methyl isobutyl ketone - 23 parts by mass of ethyl propionate - 16 parts by mass of cyclohexane --- ――――――――――――――――――――――――――――――
 ポリマーB
Polymer B
[実施例22]
 光学異方性層形成用組成物(1)を以下に示す光学異方性層形成用組成物(4)に変更し、ラビングローラーの回転軸の位置を-17.5°から+12.5°に変更した以外は、実施例20と同様の方法で、光学フィルムを作製した。
 得られた光学異方性層の厚みは1.0μmであった。棒状液晶化合物の長軸のフィルム面に対する平均傾斜角は0°であり、液晶化合物がフィルム面に対して、水平に配向していることを確認した。また、遅相軸の角度はラビングローラーの回転軸と直交で、フィルム幅方向を0°(フィルム長手方向を90°、光学異方性層C側から観察してフィルム幅方向を基準に時計回り方向を正の値で表す。)とすると、-77.5°であった。光学異方性層の波長550nmにおける面内レターデーションは116nmであり、光学異方性層は順波長分散性を示す。
[Example 22]
The composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (4) shown below, and the position of the rotation axis of the rubbing roller was changed from -17.5° to +12.5°. An optical film was produced in the same manner as in Example 20, except that the following was changed.
The thickness of the optically anisotropic layer obtained was 1.0 μm. The average inclination angle of the long axis of the rod-like liquid crystal compound with respect to the film plane was 0°, and it was confirmed that the liquid crystal compound was oriented horizontally with respect to the film plane. In addition, the angle of the slow axis is perpendicular to the rotation axis of the rubbing roller, 0° in the film width direction (90° in the longitudinal direction of the film, clockwise with respect to the film width direction when observed from the optically anisotropic layer C side). (The direction is expressed as a positive value.), it was -77.5°. The in-plane retardation of the optically anisotropic layer at a wavelength of 550 nm is 116 nm, and the optically anisotropic layer exhibits normal wavelength dispersion.
―――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(4)
―――――――――――――――――――――――――――――――――
・上記の棒状液晶化合物(A)             100質量部
・光重合開始剤(イルガキュア907、BASF社製)    6質量部
・上記含フッ素化合物(F-1)           0.25質量部
・上記含フッ素化合物(F-2)            0.1質量部
・エチレンオキサイド変性トリメチロール
 プロパントリアクリレート                4質量部
・メチルエチルケトン                 337質量部
―――――――――――――――――――――――――――――――――
――――――――――――――――――――――――――――――――
Composition for forming optically anisotropic layer (4)
――――――――――――――――――――――――――――――――
- 100 parts by mass of the above rod-shaped liquid crystal compound (A) - 6 parts by mass of photopolymerization initiator (Irgacure 907, manufactured by BASF) - 0.25 parts by mass of the above fluorine-containing compound (F-1) - 0.25 parts by mass of the above fluorine-containing compound (F-1) -2) 0.1 parts by mass 4 parts by mass of ethylene oxide-modified trimethylol propane triacrylate 337 parts by mass of methyl ethyl ketone ―――――――――――――――――――――― ――――――――
[実施例23および24]
 添加剤の種類および配合量を下記表2に示すように変更した以外は、実施例1と同様の方法で、光学フィルムを作製した。
[Examples 23 and 24]
An optical film was produced in the same manner as in Example 1, except that the types and amounts of additives were changed as shown in Table 2 below.
[実施例25~30および比較例4]
 添加剤の種類および配合量を下記表2に示すように変更した以外は、実施例1と同様の方法で、光学フィルムを作製した。なお、実施例25~30および比較例4で用いた添加剤としての共重合体A、共重合体B、重合体C、共重合体D、共重合体Eの合成方法および構造は以下の通りである。
[Examples 25 to 30 and Comparative Example 4]
An optical film was produced in the same manner as in Example 1, except that the types and amounts of additives were changed as shown in Table 2 below. The synthesis method and structure of copolymer A, copolymer B, polymer C, copolymer D, and copolymer E used as additives in Examples 25 to 30 and Comparative Example 4 are as follows. It is.
 <共重合体Aの合成方法>
 攪拌機、冷却管、窒素導入管、温度計を取り付けた200mL三口フラスコに、エタノール(富士フイルム和光純薬社製)17.5gを入れて70℃に加熱した。
 次いで、窒素フロー下にて、NKエステルM-230G(新中村化学工業社製)を21.0g、ブレンマーPSE-1300(日油化学社製)を9.0g、2,2’-アゾビス(イソブチロニトリル)(富士フイルム和光純薬社製)1.4g、および、エタノール50.4gの混合溶液を3時間かけて滴下した。
 滴下後、2,2’-アゾビス(イソブチロニトリル)0.1gをエタノール5.7gに溶解させた溶液を加えた。その後70℃で3時間熟成させた。内温を78℃にしてさらに8時間熟成させることで、下記式で表される共重合体Aを得た。得られた共重合体Aの重量平均分子量は12600、分子量分布は3.3であった。
<Synthesis method of copolymer A>
17.5 g of ethanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was placed in a 200 mL three-necked flask equipped with a stirrer, a cooling tube, a nitrogen introduction tube, and a thermometer, and heated to 70°C.
Next, under a nitrogen flow, 21.0 g of NK Ester M-230G (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), 9.0 g of Blenmar PSE-1300 (manufactured by NOF Chemical Co., Ltd.), and 2,2'-azobis(iso) A mixed solution of 1.4 g of butyronitrile (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 50.4 g of ethanol was added dropwise over 3 hours.
After the dropwise addition, a solution of 0.1 g of 2,2'-azobis(isobutyronitrile) dissolved in 5.7 g of ethanol was added. Thereafter, it was aged at 70°C for 3 hours. Copolymer A represented by the following formula was obtained by raising the internal temperature to 78° C. and aging for further 8 hours. The weight average molecular weight of the obtained copolymer A was 12,600, and the molecular weight distribution was 3.3.
 <共重合体Bの合成方法>
 共重合体Aの合成で用いたNKエステルM-230Gをメタクリル酸(富士フイルム和光純薬社製)に変更したこと以外は、共重合体Aと同様の方法で、下記式で表される共重合体Bを得た。共重合体Bの重量平均分子量は10800、分子量分布は3.1であった。水酸化ナトリウム(富士フイルム和光純薬社製)で中和することで共重合体Bを得た。
<Synthesis method of copolymer B>
A copolymer represented by the following formula was prepared in the same manner as for copolymer A, except that NK ester M-230G used in the synthesis of copolymer A was changed to methacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Polymer B was obtained. Copolymer B had a weight average molecular weight of 10,800 and a molecular weight distribution of 3.1. Copolymer B was obtained by neutralizing with sodium hydroxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.).
 <重合体Cの合成方法>
 共重合体Aの合成で用いたブレンマーPSE-1300を用いなかった以外は、共重合体Aと同様の方法で、下記式で表される重合体Cを得た。重合体Cの重量平均分子量は14800、分子量分布は2.3であった。
<Synthesis method of polymer C>
Polymer C represented by the following formula was obtained in the same manner as Copolymer A except that Blenmar PSE-1300 used in the synthesis of Copolymer A was not used. Polymer C had a weight average molecular weight of 14,800 and a molecular weight distribution of 2.3.
 <共重合体Dの合成方法>
 共重合体Aの合成で用いたブレンマーPSE-1300をステアリルメタクリレート(富士フイルム和光純薬社製)に変更したこと以外は、共重合体Aと同様の方法で、下記式で表される共重合体Dを得た。共重合体Dの重量平均分子量は14200、分子量分布は2.5であった。
<Synthesis method of copolymer D>
A copolymer represented by the following formula was prepared in the same manner as for copolymer A, except that Blenmar PSE-1300 used in the synthesis of copolymer A was changed to stearyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). Combined D was obtained. Copolymer D had a weight average molecular weight of 14,200 and a molecular weight distribution of 2.5.
 <共重合体Eの合成方法>
 共重合体Bの合成で中和をなくすこと以外は、共重合体Bと同様の方法で、下記式で表される共重合体Eを得た。共重合体Eの重量平均分子量は10800、分子量分布は3.1であった。
<Synthesis method of copolymer E>
Copolymer E represented by the following formula was obtained in the same manner as Copolymer B, except that neutralization was eliminated in the synthesis of Copolymer B. Copolymer E had a weight average molecular weight of 10,800 and a molecular weight distribution of 3.1.
[実施例31]
 光学異方性層形成用組成物(1)を、光学異方性層形成用組成物(5)に変更した以外は、実施例26と同様の方法で、光学フィルムを作製した。
―――――――――――――――――――――――――――――――――
光学異方性層形成用組成物(5)
―――――――――――――――――――――――――――――――――
・上記棒状液晶化合物(A)               80質量部
・上記棒状液晶化合物(B)               17質量部
・上記重合性化合物(C)                 3質量部
・エチレンオキサイド変性トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)          4質量部
・光重合開始剤(Irgacure819、BASF社製)  3質量部
・上記左捩れキラル剤(L2)            0.47質量部
・上記右捩れキラル剤(R2)            0.42質量部
・上記ポリマー(A)                0.08質量部
・リチウムビス(トリフルオロメタンスルホニル)イミド
 (富士フイルム和光純薬(株)製)         0.10質量部
・メチルイソブチルケトン                78質量部
・プロピオン酸エチル                  78質量部
―――――――――――――――――――――――――――――――――
[Example 31]
An optical film was produced in the same manner as in Example 26, except that the composition for forming an optically anisotropic layer (1) was changed to the composition for forming an optically anisotropic layer (5).
――――――――――――――――――――――――――――――――
Composition for forming an optically anisotropic layer (5)
――――――――――――――――――――――――――――――――
- 80 parts by mass of the rod-like liquid crystal compound (A) - 17 parts by mass of the rod-like liquid crystal compound (B) - 3 parts by mass of the polymerizable compound (C) - Ethylene oxide-modified trimethylolpropane triacrylate (V#360, Osaka Organic Chemical) Co., Ltd.) 4 parts by mass Photopolymerization initiator (Irgacure 819, manufactured by BASF) 3 parts by mass - The above left-handed chiral agent (L2) 0.47 parts by mass - The above right-handed chiral agent (R2) 0.42 parts by mass 0.08 parts by mass of the above polymer (A) 0.10 parts by mass of lithium bis(trifluoromethanesulfonyl)imide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) 78 parts by mass of methyl isobutyl ketone 78 parts by mass of ethyl propionate Department――――――――――――――――――――――――――――――――
[実施例32]
 配向膜形成用組成物を、以下に変更した以外は、実施例26と同様の方法で、光学フィルムを作製した。
―――――――――――――――――――――――――――――――――
配向膜形成用組成物
―――――――――――――――――――――――――――――――――
・特定ポリマー:上記変性ポリビニルアルコール-1   100質量部
・特定添加剤:上記共重合体A             2.0質量部
・上記光重合開始剤                  7.5質量部
・上記硬化剤                    1.75質量部
・リチウムビス(トリフルオロメタンスルホニル)イミド
 (富士フイルム和光純薬(株)製)         1.00質量部
・水                        2620質量部
・メタノール                     873質量部
―――――――――――――――――――――――――――――――――
[Example 32]
An optical film was produced in the same manner as in Example 26, except that the composition for forming an alignment film was changed as follows.
――――――――――――――――――――――――――――――――
Composition for forming alignment film――――――――――――――――――――――――――――――
・Specific polymer: 100 parts by mass of the above modified polyvinyl alcohol-1 ・Specific additive: 2.0 parts by mass of the above copolymer A ・7.5 parts by mass of the above photopolymerization initiator ・1.75 parts by mass of the above curing agent ・Lithium Bis(trifluoromethanesulfonyl)imide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 1.00 parts by mass, water 2620 parts by mass, methanol 873 parts by mass―――――――――――――――― ――――――――――――――――
[評価]
 作製した光学フィルムまたは光学異方性層、および、作製途中の配向膜などについて、以下の評価を行った。結果を下記表1および表2に示す。
[evaluation]
The following evaluations were performed on the produced optical film or optically anisotropic layer, the alignment film in the middle of production, and the like. The results are shown in Tables 1 and 2 below.
 〔濁り〕
 配向膜形成用組成物を光に透過させて目視観察し、下記基準で観察した。
 A:塗布液が透明である。
 B:塗布液が濁っている。
[Muddy]
The composition for forming an alignment film was visually observed by transmitting light, and was observed according to the following criteria.
A: The coating liquid is transparent.
B: The coating liquid is cloudy.
 〔動摩擦係数〕
 配向膜表面に100g荷重をかけながらSUS球を転がした時にかかる荷重を測定し、動摩擦係数を測定した。
[Dynamic friction coefficient]
The dynamic friction coefficient was measured by measuring the load applied when rolling the SUS ball while applying a 100 g load to the surface of the alignment film.
 〔配向性〕
 偏光顕微鏡においてクロスニコル状態で、得られた光学フィルム中の光学異方性層を倍率50倍でランダムに10視野(視野サイズ1715×1280μm)観察し、それぞれの視野を下記3つに分類した。
 I:光学的欠陥が観察されない。
 II:光学的欠点がわずかに観察されるが、実用上問題がないレベルである。
 III:光学的欠陥が多く観察され、実用上問題があるレベルである。
 10視野について下記5段階で評価した。
 A:10視野ともIまたはIIで、IIの視野数が0~2視野。
 B:10視野ともIまたはIIで、IIの視野数が3~5視野。
 C:10視野ともIまたはIIで、IIの視野数が6~10視野。
 D:10視野にIIIが含まれ、IIIの視野数が1~5視野。
 E:10視野にIIIが含まれ、IIIの視野数が6~10視野。
[Orientation]
The optically anisotropic layer in the obtained optical film was randomly observed under a polarizing microscope in a crossed nicol state at a magnification of 50 times (field size: 1715 x 1280 μm), and each field was classified into the following three categories.
I: No optical defects observed.
II: Slight optical defects are observed, but at a level that causes no practical problems.
III: Many optical defects were observed, and the level was problematic in practice.
The 10 visual fields were evaluated in the following five stages.
A: All 10 fields are I or II, and the number of II fields is 0 to 2 fields.
B: All 10 fields are I or II, and the number of II fields is 3 to 5.
C: All 10 visual fields are I or II, and the number of II visual fields is 6 to 10.
D: III is included in 10 visual fields, and the number of III visual fields is 1 to 5.
E: 10 visual fields include III, and the number of III visual fields is 6 to 10.
 〔輝点欠陥〕
 シャーカステンの上に2枚の偏光板をクロスニコル状態で重ね、上記2枚の偏光板の間に得られた光学フィルム(観察面積:1×1m)を挟み、シャーカステンから光を透過させた。なお、実施例16および17についてはセパレータを剥した粘着剤付き光学異方性層の粘着剤側を偏光板に貼り合わせ、もう1枚の偏光板クロスニコル状態に配置することで同様の状態にさせた。偏光板の上からルーペを用いて光学フィルムを観察し、直径100μm以上の欠陥をマーキングした。マーキングした欠陥の中心を通るようにミクロトームで断面切削し、断面方向から光学顕微鏡観察を実施した。光学異方性層中に異物が観察される欠陥をカウントし、以下の基準に従って評価した。
 A:欠陥数が2個以下
 B:欠陥数が3~4個
 C:欠陥数が5~8個
 D:欠陥数が8~20個
 E:欠陥数が21個以上
[Bright spot defect]
Two polarizing plates were placed on top of the Scherkasten in a crossed nicol state, and the obtained optical film (observation area: 1×1 m) was sandwiched between the two polarizing plates to allow light to pass through the Scherkasten. For Examples 16 and 17, the adhesive side of the adhesive-attached optically anisotropic layer with the separator removed was pasted on a polarizing plate, and the same state was obtained by placing another polarizing plate in a crossed nicol state. I let it happen. The optical film was observed from above the polarizing plate using a magnifying glass, and defects with a diameter of 100 μm or more were marked. A cross-section was cut using a microtome so as to pass through the center of the marked defect, and optical microscopic observation was performed from the cross-sectional direction. Defects in which foreign matter was observed in the optically anisotropic layer were counted and evaluated according to the following criteria.
A: 2 or less defects B: 3 to 4 defects C: 5 to 8 defects D: 8 to 20 defects E: 21 or more defects
 〔輝点欠陥の成分解析〕
 実施例16および17については、上記輝点欠陥を10個集め、輝点の中心部をAr+クラスター銃で光学異方性層の深さ方向に膜をエッチングしながら、飛行時間型2次イオン質量分析計(TOF-SIMS)(IONTOF社製「SIMS5」)によって、深さ方向の成分の分析を行い、発生したフラグメントイオンからアルキル基を有する添加剤とアルキル基を有さないポリマーの有無を確認した。4個以上の欠陥で上記成分が検出された場合に上記成分が検出されたと判断した。
[Component analysis of bright spot defects]
For Examples 16 and 17, ten bright spot defects were collected, and the central part of the bright spot was etched in the depth direction of the optically anisotropic layer using an Ar+ cluster gun, while time-of-flight secondary ion mass was etched. Analyze the components in the depth direction using an analyzer (TOF-SIMS) (IONTOF's "SIMS5"), and check the presence of additives with alkyl groups and polymers without alkyl groups from the generated fragment ions. did. It was determined that the component was detected when the component was detected in four or more defects.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表1および表2に示す結果から、配向膜形成用組成物に特定添加剤を配合しない場合や、特定添加剤に該当しない添加剤を配合した場合には、光学異方性層における液晶化合物の配向性は良好であったが、輝点欠陥の発生が抑制できないことが分かった(比較例1~4)。
 これに対し、特定添加剤と特定ポリマーとを含有する配向膜形成用組成物を用いて配向膜を形成すると、光学異方性層における液晶化合物の配向性が良好となり、かつ、輝点欠陥の発生も抑制できることが分かった(実施例1~30)。
 特に、実施例1と実施例14との対比から、特定添加剤が有するアルキル基の炭素数が12~22であると、光学異方性層における液晶化合物の配向性がより良好となることが分かった。
 また、実施例1と実施例15との対比から、特定添加剤が親水性基を有していると、光学異方性層における液晶化合物の配向性がより良好となることが分かった。
 また、実施例2、18および19の対比から、特定ポリマーが、ポリビニルアルコールまたは変性ポリビニルアルコールであると、光学異方性層における液晶化合物の配向性がより良好となり、光学フィルムにおける輝点欠陥の発生をより抑制できることが分かった。
 また、実施例1と実施例25との対比や、実施例4と実施例26との対比から、特定添加剤が高分子化合物であると、優れた配向性を維持しつつ、輝点欠陥の発生をより抑制できることが分かった。
 また、実施例23と実施例24との対比から、特定添加剤が有する任意の親水性基が、イオン性のカルボン酸塩などの中和物であると、輝点欠陥の発生をより抑制できることが分かった。
 また、表2には示されていないが、実施例31および32についても、光学異方性層における液晶化合物の配向性が良好となり、かつ、輝点欠陥の発生も抑制できることが分かった。
From the results shown in Tables 1 and 2, it can be seen that when specific additives are not blended into the composition for forming an alignment film, or when additives that do not fall under the category of specific additives are blended, the liquid crystal compound in the optically anisotropic layer is Although the orientation was good, it was found that the occurrence of bright spot defects could not be suppressed (Comparative Examples 1 to 4).
On the other hand, when an alignment film is formed using a composition for forming an alignment film containing a specific additive and a specific polymer, the alignment of the liquid crystal compound in the optically anisotropic layer is improved, and the bright spot defects are reduced. It was also found that the occurrence of the disease could be suppressed (Examples 1 to 30).
In particular, from a comparison between Example 1 and Example 14, when the alkyl group of the specific additive has 12 to 22 carbon atoms, the orientation of the liquid crystal compound in the optically anisotropic layer can be improved. Do you get it.
Further, from a comparison between Example 1 and Example 15, it was found that when the specific additive has a hydrophilic group, the orientation of the liquid crystal compound in the optically anisotropic layer becomes better.
Moreover, from the comparison of Examples 2, 18, and 19, when the specific polymer is polyvinyl alcohol or modified polyvinyl alcohol, the orientation of the liquid crystal compound in the optically anisotropic layer is better, and bright spot defects in the optical film are reduced. It was found that the outbreak could be further suppressed.
In addition, from the comparison between Example 1 and Example 25 and the comparison between Example 4 and Example 26, it was found that when the specific additive is a polymer compound, bright spot defects can be reduced while maintaining excellent orientation. It was found that the outbreak could be further suppressed.
Furthermore, from a comparison between Example 23 and Example 24, it was found that the occurrence of bright spot defects can be further suppressed when the arbitrary hydrophilic group of the specific additive is a neutralized product such as an ionic carboxylate. I understand.
Although not shown in Table 2, it was found that Examples 31 and 32 also had good orientation of the liquid crystal compound in the optically anisotropic layer, and also suppressed the occurrence of bright spot defects.

Claims (17)

  1.  配向膜と、光学異方性層とを有する光学フィルムであって、
     前記光学異方性層が、重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された層であり、
     前記配向膜が、炭素数5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する配向膜形成用組成物を用いて形成された膜である、光学フィルム。
    An optical film having an alignment film and an optically anisotropic layer,
    The optically anisotropic layer is a layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound,
    The alignment film is a film formed using an alignment film forming composition containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms. An optical film.
  2.  前記添加剤が親水性基を有する、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the additive has a hydrophilic group.
  3.  前記添加剤が、炭素数12~22のアルキル基を有する、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the additive has an alkyl group having 12 to 22 carbon atoms.
  4.  前記ポリマーが、ポリビニルアルコールまたは変性ポリビニルアルコールである、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the polymer is polyvinyl alcohol or modified polyvinyl alcohol.
  5.  重合性液晶化合物を含有する光学異方性層形成用組成物を用いて形成された光学異方性層であって、
     前記光学異方性層に、100μm以上の輝点欠陥が1~80個/10m存在しており、前記輝点欠陥の核が、炭素数が5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する、光学異方性層。
    An optically anisotropic layer formed using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound,
    In the optically anisotropic layer, there are 1 to 80 bright spot defects/10 m 2 of 100 μm or more, and the nucleus of the bright spot defects has an alkyl group having a carbon number of 5 to 29; An optically anisotropic layer containing a polymer having 5 to 29 carbon atoms and having no alkyl group.
  6.  前記添加剤が親水性基を有する、請求項5に記載の光学異方性層。 The optically anisotropic layer according to claim 5, wherein the additive has a hydrophilic group.
  7.  前記添加剤が、炭素数12~22のアルキル基を有する、請求項5に記載の光学異方性層。 The optically anisotropic layer according to claim 5, wherein the additive has an alkyl group having 12 to 22 carbon atoms.
  8.  前記ポリマーが、ポリビニルアルコールまたは変性ポリビニルアルコールである、請求項5に記載の光学異方性層。 The optically anisotropic layer according to claim 5, wherein the polymer is polyvinyl alcohol or modified polyvinyl alcohol.
  9.  炭素数が5~29のアルキル基を有する添加剤と、炭素数5~29のアルキル基を有さないポリマーとを含有する、配向膜形成用組成物。 A composition for forming an alignment film containing an additive having an alkyl group having 5 to 29 carbon atoms and a polymer having no alkyl group having 5 to 29 carbon atoms.
  10.  前記添加剤が親水性基を有する、請求項9に記載の配向膜形成用組成物。 The composition for forming an alignment film according to claim 9, wherein the additive has a hydrophilic group.
  11.  前記添加剤が、炭素数12~22のアルキル基を有する、請求項9に記載の配向膜形成用組成物。 The composition for forming an alignment film according to claim 9, wherein the additive has an alkyl group having 12 to 22 carbon atoms.
  12.  前記ポリマーが、ポリビニルアルコールまたは変性ポリビニルアルコールである、請求項9に記載の配向膜形成用組成物。 The composition for forming an alignment film according to claim 9, wherein the polymer is polyvinyl alcohol or modified polyvinyl alcohol.
  13.  請求項9~12のいずれか1項に記載の配向膜形成用組成物を用いて、支持体上に配向膜を形成する配向膜形成工程と、
     前記配向膜にラビング処理を施すラビング工程と、
     重合性液晶化合物を含有する光学異方性層形成用組成物を用いて、前記ラビング処理を施した前記配向膜上に光学異方性層を形成する光学異方性層形成工程と、
     を有する、光学フィルムの製造方法。
    An alignment film forming step of forming an alignment film on a support using the composition for forming an alignment film according to any one of claims 9 to 12;
    a rubbing step of applying a rubbing treatment to the alignment film;
    an optically anisotropic layer forming step of forming an optically anisotropic layer on the alignment film subjected to the rubbing treatment using an optically anisotropic layer forming composition containing a polymerizable liquid crystal compound;
    A method for producing an optical film, comprising:
  14.  請求項1~4のいずれか1項に記載の光学フィルム、または、請求項5~8のいずれか1項に記載の光学異方性層と、偏光子とを有する、偏光板。 A polarizing plate comprising the optical film according to any one of claims 1 to 4, or the optically anisotropic layer according to any one of claims 5 to 8, and a polarizer.
  15.  請求項1~4のいずれか1項に記載の光学フィルム、または、請求項5~8のいずれか1項に記載の光学異方性層を有する、画像表示装置。 An image display device comprising the optical film according to any one of claims 1 to 4 or the optically anisotropic layer according to any one of claims 5 to 8.
  16.  液晶表示装置である、請求項15に記載の画像表示装置。 The image display device according to claim 15, which is a liquid crystal display device.
  17.  有機EL表示装置である、請求項15に記載の画像表示装置。 The image display device according to claim 15, which is an organic EL display device.
PCT/JP2023/007741 2022-03-09 2023-03-02 Optical film, optically anisotropic layer, alignment film-forming composition, method for producing optical film, polarizing plate, and image display device WO2023171518A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022036023 2022-03-09
JP2022-036023 2022-03-09
JP2022202103 2022-12-19
JP2022-202103 2022-12-19

Publications (1)

Publication Number Publication Date
WO2023171518A1 true WO2023171518A1 (en) 2023-09-14

Family

ID=87935305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007741 WO2023171518A1 (en) 2022-03-09 2023-03-02 Optical film, optically anisotropic layer, alignment film-forming composition, method for producing optical film, polarizing plate, and image display device

Country Status (1)

Country Link
WO (1) WO2023171518A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354962A (en) * 2003-05-02 2004-12-16 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display using the same
JP2009173841A (en) * 2008-01-28 2009-08-06 Fujifilm Corp Alkali saponification method for polymer film, cellulose acylate film, optical film, polarizing plate, and liquid crystal display device
US20160238886A1 (en) * 2015-02-13 2016-08-18 Xiamen Tianma Micro-Electronics Co., Ltd. Liquid crystal display panel and fabrication method
JP2019148745A (en) * 2018-02-28 2019-09-05 富士フイルム株式会社 Optical film, alignment film forming composition, and optical film manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354962A (en) * 2003-05-02 2004-12-16 Fuji Photo Film Co Ltd Optical compensation sheet, polarizing plate and liquid crystal display using the same
JP2009173841A (en) * 2008-01-28 2009-08-06 Fujifilm Corp Alkali saponification method for polymer film, cellulose acylate film, optical film, polarizing plate, and liquid crystal display device
US20160238886A1 (en) * 2015-02-13 2016-08-18 Xiamen Tianma Micro-Electronics Co., Ltd. Liquid crystal display panel and fabrication method
JP2019148745A (en) * 2018-02-28 2019-09-05 富士フイルム株式会社 Optical film, alignment film forming composition, and optical film manufacturing method

Similar Documents

Publication Publication Date Title
KR102443875B1 (en) Retardation film, production method of retardation film, laminate, composition, polarizing plate and liquid crystal display device
US11243436B2 (en) Liquid crystal display device
JP4328243B2 (en) Liquid crystal display
JP6375381B2 (en) Optical film, illumination device and image display device
JP2008242467A (en) Optical film, polarizing film using the same, and method for improving view angle of polarizing film
JP7386256B2 (en) Polymerizable liquid crystal compositions, cured products, optical films, polarizing plates, and image display devices
US10739641B2 (en) Liquid crystal display device
WO2018186500A1 (en) Polarizing element, circularly polarizing plate and image display device
KR102429339B1 (en) Optical films, polarizers and image display devices
CN113272690B (en) Polarizing plate, liquid crystal display device, and organic electroluminescent device
CN110431457A (en) Optical thin film, optical film laminate, polarizing film and image display device
US20210175438A1 (en) Laminate, liquid crystal display device, and organic electroluminescent device
WO2023171518A1 (en) Optical film, optically anisotropic layer, alignment film-forming composition, method for producing optical film, polarizing plate, and image display device
JP5036209B2 (en) Liquid crystal display
WO2024062850A1 (en) Optical film, method for producing optical film, polarizing plate, and image display device
JP2006323348A (en) Manufacturing method of optical film, optical film, and image display apparatus using optical film
US20230176269A1 (en) Laminated film, circularly polarizing plate, and display device
WO2024128186A1 (en) Liquid crystal composition, liquid crystal cured layer, optical film, polarizing plate, and image display device
CN111868581B (en) Optical film, polarizing plate, and image display device
WO2022044500A1 (en) Polarizing plate, retardation-layer-equipped polarizing plate, and image display device
US20240004235A1 (en) Optical display device module and optical display device comprising same
JP7434573B2 (en) optically anisotropic layer
CN117355775A (en) Retardation film, circularly polarizing plate, and display device
KR20230124716A (en) Liquid crystal composition, cured film, polarizing plate, image display device
JP2008083547A (en) Liquid crystal display device reduced in generation of thermal nonuniformity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766694

Country of ref document: EP

Kind code of ref document: A1