WO2024062559A1 - Cantilever-type probe for probe card - Google Patents

Cantilever-type probe for probe card Download PDF

Info

Publication number
WO2024062559A1
WO2024062559A1 PCT/JP2022/035188 JP2022035188W WO2024062559A1 WO 2024062559 A1 WO2024062559 A1 WO 2024062559A1 JP 2022035188 W JP2022035188 W JP 2022035188W WO 2024062559 A1 WO2024062559 A1 WO 2024062559A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
cantilever
section
probe card
high resistance
Prior art date
Application number
PCT/JP2022/035188
Other languages
French (fr)
Japanese (ja)
Inventor
章平 田島
Original Assignee
日本電子材料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子材料株式会社 filed Critical 日本電子材料株式会社
Priority to PCT/JP2022/035188 priority Critical patent/WO2024062559A1/en
Priority to TW112134916A priority patent/TW202422077A/en
Publication of WO2024062559A1 publication Critical patent/WO2024062559A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes

Definitions

  • This application relates to a cantilever probe for a probe card.
  • Probe cards are used to test the operation of individual semiconductor devices formed on a wafer by bringing probes into contact with the electrode pads of semiconductor devices for power supply, signal input/output, and grounding. It is an electrical connection device.
  • the probe is provided on the surface of the probe card, and is configured such that its tip is pressed against the electrode pad of the semiconductor device with a predetermined pressing force.
  • the electrode pads of semiconductor devices are designed to be small, and the distance (pitch) between the electrode pads is designed to be small. Therefore, as semiconductor devices become smaller, probes need to be made smaller. However, when the probe is made finer, there is a problem in that the mechanical strength of the probe becomes weaker.
  • Patent Document 1 proposes a configuration in which a multilayer metal sheet is used for the probe.
  • the probe shown in Patent Document 1 has at least one multilayer structure including a superposition of a core and a first inner coating layer, and a material harder than the core completely covering the multilayer structure.
  • a contact probe is disclosed that is fabricated and has an outer coating layer that completely covers the multilayer structure.
  • Patent Document 1 in order to achieve good electrical contact and mechanical contact, a configuration in which multiple layers of different materials are stacked is preferable, but the cross-sectional thickness of the probe is reduced. There were limits to meeting this demand, and further breakthroughs were needed.
  • the probe card In the semiconductor device inspection process using the above-mentioned probe card, in order to ensure contact with the electrode pad of the semiconductor device, the probe card is moved closer to the semiconductor wafer after the probe contacts the electrode pad (overdrive). The probe is pressed against the electrode pad of the semiconductor device.
  • the probe is required to have a strength that will not be mechanically destroyed even if a contact pressure of a predetermined value or more is applied.
  • it is necessary to prevent local stress concentration from occurring on the probe.
  • a probe with a surface as smooth and free from scratches as possible has been desired.
  • An object of the present invention is to provide a cantilever type probe for a probe card that has strength.
  • the cantilever probe for the probe card of the present application has a mechanical structure that can withstand large stress by intentionally dispersing the locations where stress concentration occurs, rather than preventing stress concentration from occurring.
  • This is a high-strength cantilever type probe for probe cards.
  • the cantilever type probe for a probe card disclosed in this application includes: Comprising a base part, a needle tip part, and a beam part between the base part and the needle tip part,
  • the beam portion includes a plurality of stress dispersion portions in the longitudinal direction where stress concentration occurs more than in other portions of the beam portion.
  • the cantilever type probe for a probe card disclosed in the present application even if the plate thickness is reduced, the positions where stress concentration occurs can be dispersed, and a cantilever type probe for a probe card with high mechanical strength can be provided.
  • FIG. 1 is a perspective view of a cantilever type probe for a probe card according to Embodiment 1.
  • FIG. 2 is a plan view of a portion surrounded by a broken line in FIG. 1.
  • FIG. 2A is a sectional view taken along line AA in FIG. 2A.
  • FIG. 2 is a cross-sectional view showing a state in which a sacrificial layer is arranged and a portion surrounded by a broken line in FIG. 1 is manufactured.
  • 3B is a diagram showing the manufacturing of the cross-sectional portion BB of FIG. 3A.
  • 7 is a sectional view of a modified example of the probe according to the second embodiment.
  • FIG. FIG. 7 is a plan view of a modified example of the probe according to Embodiment 2; FIG.
  • FIG. 5A is a sectional view taken along line CC in FIG. 5A.
  • FIG. 11 is a plan view of a modified example of the probe according to the second embodiment.
  • FIG. 6A is a sectional view taken along line DD in FIG. 6A.
  • FIG. 7 is a plan view of a modified example of the probe according to Embodiment 2;
  • FIG. 7A is a sectional view taken along line EE in FIG. 7A.
  • FIG. 7 is a sectional view of a modified example of the probe according to Embodiment 3;
  • FIG. 8A is a sectional view taken along line FF in FIG. 8A.
  • FIG. 7 is a plan view of a modified example of the probe according to Embodiment 4;
  • 9A is a cross-sectional view taken along line GG in FIG. 9A.
  • FIG. 1 is a perspective view of a cantilever probe 20 for a probe card (hereinafter simply referred to as probe 20).
  • probe 20 the upper side of the page in FIG. 1 will be referred to as "top” and the lower side of the page will be referred to as "bottom”.
  • the direction in which the probe 20 buckles (elastically deforms) during overdrive is defined as a buckling direction X
  • the thickness direction of the probe 20 is defined as a plate thickness direction Y.
  • the longitudinal direction of the beam portion 21B of the probe 20 is defined as the longitudinal direction Z.
  • the probe 20 is a component used in a probe card (not shown).
  • a probe card is a device used to test the electrical characteristics of electronic circuits formed on semiconductor wafers. To test the characteristics of an electronic circuit, bring the semiconductor wafer close to the probe card, bring the tip 22 of the probe 20 into contact with the electrode on the electronic circuit, and connect the tester connection electrode between the tester device and the wiring board of the probe card via the probe 20. This is done by conducting electricity between the two.
  • the probe 20 is a cantilever type probe arranged so that the beam part 21B is substantially horizontal with respect to the object to be inspected (electronic circuit formed on a semiconductor wafer). Although the probe 20 is shown as having two beam parts 21B in FIG. 1, the number of the beam parts 21B may be one, or three or more.
  • the probe 20 has a thin plate-like main body 21 and a needle tip 22 that projects upward from the upper end of the main body.
  • the main body part 21 has a terminal part 21T connected to a wiring land of a wiring board (not shown), a pedestal part 21D rising upward from the terminal part 21T, and a part between the needle tip part 22 on the inspection target side and the pedestal part 21D.
  • a certain elastic deformation part 21U is provided.
  • Two elongated holes 21UH extending in the longitudinal direction Z and penetrating in the plate thickness direction Y are formed in the elastically deformable portion 21U, and the elongated holes 21UH allow the elastically deformable portion 21U to form two beam portions 21B. It is divided into
  • the probe 20 is easily buckled in the buckling direction X in response to the reaction force from the test object due to the application of compressive force in the vertical direction in FIG. 1 .
  • stress is generated inside the probe 20.
  • the probe 20 is provided with a plurality of depressions 21R as stress dispersion portions on a surface 21BS perpendicular to the buckling direction X of the beam portion 21B, which disperses stress generated internally during overdrive.
  • the plurality of depressions 21R are arranged in a line in the longitudinal direction Z of the beam portion 21B.
  • FIG. 2A is a plan view of a portion surrounded by a broken line in FIG. 1.
  • FIG. It is a figure which looked at the beam part 21B in the buckling direction X.
  • FIG. 2B is a sectional view taken along line AA in FIG. 2A.
  • the probe 20 is made of two types of metals that are electrically conductive and have different resistivities.
  • One is the inner metal (first metal) constituting the low resistance part L, which is made of a metal with low resistivity such as copper, gold, silver (Cu, Au, Ag).
  • the low resistance portion L has high conductivity and functions to improve current withstand performance.
  • the other is an outer metal such as palladium cobalt (PdCo) alloy, which has higher resistivity and lower conductivity than the low resistance part L, but has high mechanical strength and spring properties. (second metal).
  • the high resistance portion H functions to maintain the mechanical strength of the probe 20.
  • a plurality of quadrangular prism-shaped depressions 21R are arranged at intervals in the longitudinal direction Z on the surface 21BS (top surface) perpendicular to the buckling direction X of the beam portion 21B.
  • This depression 21R is formed in the high resistance portion H.
  • the probe 20 with the recess 21R has a smaller stylus pressure in terms of the relationship between the overdrive amount and the stylus pressure.
  • the maximum stress of the probe was determined based on the finite element method (FEM) for probe A without the depression 21R and probe 20 with the quadrangular prism-shaped depression 21R. It was found that stress was concentrated on the ridgeline 10 formed by each vertex 10B of the depression 21R and two adjacent surfaces forming the depression 21R shown in FIG. 2B.
  • FEM finite element method
  • the recess 21R does not penetrate the high resistance part H (in other words, the high resistance part H exists between the recess 21R and the low resistance part L), the recess 21R It may be provided so that it passes through the high resistance part H and reaches the low resistance part L (in other words, the low resistance part L is exposed from the depression 21R), but when the depression 21R does not penetrate the high resistance part H By lengthening the ridgeline 10 of the depression 21R, stress concentration on the depression 21R can be further increased.
  • FIG. 3A is a cross-sectional view showing a state in which the sacrificial layer G is arranged and the part surrounded by the broken line in FIG. 1 is manufactured. Arrow R indicates the lamination direction during manufacturing.
  • FIG. 3B is a diagram showing the manufacturing process of the BB cross section in FIG. 3A. However, the state shown in FIG. 3A is obtained by further plating the high resistance part from the state shown in FIG. 3B. Furthermore, for convenience of explanation, the scales of FIG. 3A and FIG. 3B are different.
  • the probe 20 is manufactured using so-called MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS technology is a technology for creating fine three-dimensional structures using photolithography technology and sacrificial layer etching technology.
  • the photolithography technique is a fine pattern processing technique using a photoresist F used in semiconductor manufacturing processes and the like.
  • the sacrificial layer etching technique forms a lower layer called the sacrificial layer G, forms a layer constituting the structure on top of it, and then removes only the sacrificial layer G by etching, thereby creating a three-dimensional structure. It is a technology to create.
  • a well-known plating technique can be used to form the high resistance part H and the low resistance part L.
  • metal ions in the electrolyte can be attached to the substrate surface by immersing a substrate as a cathode and a metal piece as an anode in an electrolyte and applying a voltage between the two electrodes.
  • Such a process is called an electroplating process, and since it is a wet process in which the substrate is immersed in an electrolytic solution, a drying process is performed after the plating process. After the drying process, the needle tip portion 22 is polished by a polishing process.
  • the lowest layer of the high resistance part H is formed between the sacrificial layers G.
  • a low resistance portion L is formed thereon, and then a sacrificial layer G is formed in a portion that will become the recess 21R.
  • the photoresist F and the sacrificial layer G are removed.
  • the probe 20 in which the recess 21R is formed in the surface 21BS perpendicular to the buckling direction X of the beam portion 21B is obtained.
  • an example is shown in which two types of metals are used for the high resistance part H and the low resistance part L, but they may be manufactured using one type of metal.
  • the elastic deformation portion 21U is divided into a plurality of beam portions 21B, it may not be divided.
  • the stress generated inside the probe 20 during inspection can be evenly distributed to each vertex 10B of the recess 21R and each ridgeline 10, so that mechanical strength can be maintained and the needle Can reduce pressure at the same time.
  • FIG. 4 is a sectional view of a modified example of the probe 20.
  • the recess 21R is provided only on one surface (upper surface) of the surface 21BS perpendicular to the buckling direction X of the beam portion 21B of the probe 20 has been described. It may be provided only on the other surface 21BS (lower surface) perpendicular to the bending direction X, or may be provided on both sides as shown in FIG.
  • FIG. 5A is a plan view of a modified example of the probe 20.
  • FIG. 5B is a cross-sectional view taken along the line CC in FIG. 5A.
  • FIG. 6A is a plan view of a modified example of the probe 20.
  • FIG. 6B is a sectional view taken along line DD in FIG. 6A.
  • the depression 21R may have a truncated quadrangular pyramid shape, or may have a truncated cone shape as shown in FIGS. 6A and 6B.
  • FIG. 7A is a plan view of a modified example of the probe 20.
  • FIG. 7B is a sectional view taken along line EE in FIG. 7A.
  • FIGS. 7A is a plan view of a modified example of the probe 20.
  • FIG. 7B is a sectional view taken along line EE in FIG. 7A.
  • the depression 21R may have a shape obtained by cutting a cylinder in the axial direction.
  • the distance between adjacent depressions 21R becomes narrower, and the strength of the partition wall 9 between the depressions 21R decreases. Therefore, the strength of the partition wall 9 between the adjacent depressions 21R is ensured by adding an inclination to the side surfaces of the depressions 21R.
  • the cantilever type probe for a probe card according to the second embodiment even if a large number of depressions 21R are provided, the strength between adjacent depressions 21R can be ensured.
  • FIG. 8A is a cross-sectional view of a modified example of the probe 20.
  • FIG. 8B is a sectional view taken along line FF in FIG. 8A.
  • the recess 21R is provided in the surface 21BS perpendicular to the buckling direction X of the beam portion 21B of the probe 20 has been described. It may be provided.
  • FIG. 9A is a plan view of a modified example of the probe 20.
  • FIG. 9B is a cross-sectional view taken along line GG in FIG. 9A.
  • the recess 21R may penetrate through the high resistance part H, and the low resistance part L may be exposed from the recess 21R.
  • Probes 21 -main part, 22 needle tip, 21B beam portion, 21BH penetration hole, 21 BS, 21D pedestal, 21U elastic deformation, 21 -wander, 21 -hole, 21UH hole, 21t terminal, 10 ridge, 10B Vertex, F photoresist, G sacrificial layer, H high resistance part, L low resistance part, X buckling direction, Y thickness direction, Z longitudinal direction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

This cantilever-type probe (20) for a probe card comprises a seat part (21D), a needle point part (22), and a beam part (21B) between the seat part (21D) and the needle point part (22). The beam part (21B) comprises, in the longitudinal direction (Z) thereof, a plurality of stress distribution sections (21R, 21Bh) where greater stress concentration occurs than in other portions of the beam part (21B).

Description

プローブカード用カンチレバー型プローブCantilever probe for probe card
 本願は、プローブカード用カンチレバー型プローブに関するものである。 This application relates to a cantilever probe for a probe card.
 プローブカードは、ウエハ上に形成された個々の半導体デバイスの動作テストを行うために、半導体デバイスの電極パッドにプローブを接触させて、電力の供給、信号の入出力、および接地を行うために使用される電気的な接続装置である。
 プローブは、プローブカードの表面に設けられ、所定の押圧力で先端が半導体デバイスの電極パッドに押し付けられるように構成されている。
Probe cards are used to test the operation of individual semiconductor devices formed on a wafer by bringing probes into contact with the electrode pads of semiconductor devices for power supply, signal input/output, and grounding. It is an electrical connection device.
The probe is provided on the surface of the probe card, and is configured such that its tip is pressed against the electrode pad of the semiconductor device with a predetermined pressing force.
 ウエハ上に形成される半導体デバイスの数量を増加させるためには、半導体デバイスのサイズを小さくすることが必要である。このため、半導体デバイスの電極パッドが小さく設計されるとともに、電極パッド間の距離(ピッチ)が小さく設計されている。したがって、半導体デバイスの微小化に応じて、プローブを微細にする必要がある。しかし、プローブを微細にすると、プローブの機械的強度が弱くなるという問題がある。 In order to increase the number of semiconductor devices formed on a wafer, it is necessary to reduce the size of the semiconductor devices. For this reason, the electrode pads of semiconductor devices are designed to be small, and the distance (pitch) between the electrode pads is designed to be small. Therefore, as semiconductor devices become smaller, probes need to be made smaller. However, when the probe is made finer, there is a problem in that the mechanical strength of the probe becomes weaker.
 このため、半導体デバイスの電極パッドとの良好な電気的接触および機械的接触を保証するために、例えば、特許文献1では、プローブに多層金属シートを使用する構成が提案されている。 For this reason, in order to ensure good electrical and mechanical contact with the electrode pads of the semiconductor device, for example, Patent Document 1 proposes a configuration in which a multilayer metal sheet is used for the probe.
特表2018-501490号公報Special table 2018-501490 publication
 特許文献1に示されているプローブは、コアと第1の内側コーティング層との重ね合わせを含む少なくとも1つの多層構造と、この多層構造を完全に被覆する、上記コアよりも硬度が高い材料で作られ、上記多層構造を完全に被覆する外側コーティング層を有するコンタクトプローブが開示されている。 The probe shown in Patent Document 1 has at least one multilayer structure including a superposition of a core and a first inner coating layer, and a material harder than the core completely covering the multilayer structure. A contact probe is disclosed that is fabricated and has an outer coating layer that completely covers the multilayer structure.
 特許文献1に示されているように、良好な電気的接触および機械的接触を果たすためには、材質の異なる複数の層を重ね合わせた構成が好ましいが、プローブの断面の厚さを薄くするという要求に応えるには限界があり、さらなるブレークスルーが必要であった。 As shown in Patent Document 1, in order to achieve good electrical contact and mechanical contact, a configuration in which multiple layers of different materials are stacked is preferable, but the cross-sectional thickness of the probe is reduced. There were limits to meeting this demand, and further breakthroughs were needed.
 上述のプローブカードを用いる半導体デバイスの検査工程では、半導体デバイスの電極パッドへの接触を確実にするために、プローブが電極パッドに接触した後に、さらにプローブカードを半導体ウエハに近づけること(オーバードライブ)によって、プローブを半導体デバイスの電極パッドに押し付けることが行われる。 In the semiconductor device inspection process using the above-mentioned probe card, in order to ensure contact with the electrode pad of the semiconductor device, the probe card is moved closer to the semiconductor wafer after the probe contacts the electrode pad (overdrive). The probe is pressed against the electrode pad of the semiconductor device.
 このため、プローブには、所定値以上の接触圧を加えても機械的に破壊されない強度が必要とされる。プローブが破壊されないために、プローブに局部的な応力集中が生じないようにする必要がある。そして、この応力集中が生じないようにするためには、できるだけ、表面が滑らかで、傷の無いプローブが求められていた。 Therefore, the probe is required to have a strength that will not be mechanically destroyed even if a contact pressure of a predetermined value or more is applied. In order to prevent the probe from being destroyed, it is necessary to prevent local stress concentration from occurring on the probe. In order to prevent this stress concentration from occurring, a probe with a surface as smooth and free from scratches as possible has been desired.
 しかし、金属表面を滑らかにするにも限界があり、プローブの断面における厚さが薄くなるほど外力に対して変形し易くなる(機械的強度が小さくなる)という問題があった。 However, there is a limit to how smooth a metal surface can be, and the thinner the cross-section of the probe is, the more easily it is deformed by external forces (the lower the mechanical strength).
 本願は、上述の問題を解決する技術を開示するものであり、プローブを微細にしても、半導体デバイスの電極パッドに適切な針圧で接触し、所定値以上の接触圧を加えても破壊されない強度を備えたプローブカード用カンチレバー型プローブを提供することを目的とする。 This application discloses a technology to solve the above-mentioned problem, and even if the probe is made fine, it can contact the electrode pad of a semiconductor device with an appropriate needle pressure, and will not be destroyed even if a contact pressure of more than a predetermined value is applied. An object of the present invention is to provide a cantilever type probe for a probe card that has strength.
 すなわち、本願のプローブカード用カンチレバー型プローブは、応力集中が生じないようにするのではなく、応力集中が発生する位置を意図的に分散させる構造とすることによって大きな応力に耐えることのできる機械的強度の高いプローブカード用カンチレバー型プローブである。 In other words, the cantilever probe for the probe card of the present application has a mechanical structure that can withstand large stress by intentionally dispersing the locations where stress concentration occurs, rather than preventing stress concentration from occurring. This is a high-strength cantilever type probe for probe cards.
 本願に開示されるプローブカード用カンチレバー型プローブは、
台座部と、針先部と、台座部と針先部との間にあるビーム部とを備え、
前記ビーム部は、前記ビーム部の他の部位よりも応力集中が生じる応力分散部を、長手方向に複数個備えるものである。
The cantilever type probe for a probe card disclosed in this application includes:
Comprising a base part, a needle tip part, and a beam part between the base part and the needle tip part,
The beam portion includes a plurality of stress dispersion portions in the longitudinal direction where stress concentration occurs more than in other portions of the beam portion.
 本願に開示されるプローブカード用カンチレバー型プローブによれば、板厚を薄くしたとしても応力集中が発生する位置を分散させて機械的強度の高いプローブカード用カンチレバー型プローブを提供できる。 According to the cantilever type probe for a probe card disclosed in the present application, even if the plate thickness is reduced, the positions where stress concentration occurs can be dispersed, and a cantilever type probe for a probe card with high mechanical strength can be provided.
実施の形態1によるプローブカード用カンチレバー型プローブの斜視図である。1 is a perspective view of a cantilever type probe for a probe card according to Embodiment 1. FIG. 図1の破線で囲んだ部分の平面図である。2 is a plan view of a portion surrounded by a broken line in FIG. 1. FIG. 図2AのA-A断面図である。FIG. 2A is a sectional view taken along line AA in FIG. 2A. 犠牲層を配置して図1の破線で囲んだ部分を製造している状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state in which a sacrificial layer is arranged and a portion surrounded by a broken line in FIG. 1 is manufactured. 図3AのB-B断面部分を製造する図である。3B is a diagram showing the manufacturing of the cross-sectional portion BB of FIG. 3A. 実施の形態2によるプローブの変形例の断面図である。7 is a sectional view of a modified example of the probe according to the second embodiment. FIG. 実施の形態2によるプローブの変形例の平面図である。FIG. 7 is a plan view of a modified example of the probe according to Embodiment 2; 図5AのC-C断面図である。FIG. 5A is a sectional view taken along line CC in FIG. 5A. 実施の形態2によるプローブの変形例の平面図である。FIG. 11 is a plan view of a modified example of the probe according to the second embodiment. 図6AのD-D断面図である。FIG. 6A is a sectional view taken along line DD in FIG. 6A. 実施の形態2によるプローブの変形例の平面図である。FIG. 7 is a plan view of a modified example of the probe according to Embodiment 2; 図7AのE-E断面図である。FIG. 7A is a sectional view taken along line EE in FIG. 7A. 実施の形態3によるプローブの変形例の断面図である。FIG. 7 is a sectional view of a modified example of the probe according to Embodiment 3; 図8AのF-F断面図である。FIG. 8A is a sectional view taken along line FF in FIG. 8A. 実施の形態4によるプローブの変形例の平面図である。FIG. 7 is a plan view of a modified example of the probe according to Embodiment 4; 図9AのG-G断面図である。9A is a cross-sectional view taken along line GG in FIG. 9A.
実施の形態1.
 以下、実施の形態1によるプローブカード用カンチレバー型プローブを、図を用いて説明する。
図1は、プローブカード用カンチレバー型プローブ20(以下、単にプローブ20という)の斜視図である。
本明細書においては、図1の紙面上方を「上」、同紙面下方を「下」として説明する。プローブ20がオーバードライブ時に座屈(弾性変形)する方向を座屈方向Xとし、座屈方向Xに直交する方向であって、プローブ20の厚み方向を板厚方向Yとする。また、プローブ20のビーム部21Bの長手方向を長手方向Zとする。
Embodiment 1.
Hereinafter, a cantilever type probe for a probe card according to Embodiment 1 will be explained using the drawings.
FIG. 1 is a perspective view of a cantilever probe 20 for a probe card (hereinafter simply referred to as probe 20).
In this specification, the upper side of the page in FIG. 1 will be referred to as "top" and the lower side of the page will be referred to as "bottom". The direction in which the probe 20 buckles (elastically deforms) during overdrive is defined as a buckling direction X, and the direction perpendicular to the buckling direction X, and the thickness direction of the probe 20 is defined as a plate thickness direction Y. Further, the longitudinal direction of the beam portion 21B of the probe 20 is defined as the longitudinal direction Z.
 プローブ20は、図示しないプローブカードに用いられる部品である。プローブカードは、半導体ウエハに形成された電子回路の電気的特性を検査するために用いられる装置である。電子回路の特性検査は、半導体ウエハをプローブカードに近づけて、プローブ20の針先部22を電子回路上の電極に接触させ、プローブ20を介してテスタ装置とプローブカードの配線基板のテスタ接続電極とを導通させて行われる。 The probe 20 is a component used in a probe card (not shown). A probe card is a device used to test the electrical characteristics of electronic circuits formed on semiconductor wafers. To test the characteristics of an electronic circuit, bring the semiconductor wafer close to the probe card, bring the tip 22 of the probe 20 into contact with the electrode on the electronic circuit, and connect the tester connection electrode between the tester device and the wiring board of the probe card via the probe 20. This is done by conducting electricity between the two.
 プローブ20は、検査対象(半導体ウエハに形成された電子回路)に対してビーム部21Bが略水平になるように配置されるカンチレバー型プローブである。なお、プローブ20は、図1においては2本のビーム部21Bを備える例を図示するが、ビーム部21Bは、1本でも良いし、3本以上であっても良い。 The probe 20 is a cantilever type probe arranged so that the beam part 21B is substantially horizontal with respect to the object to be inspected (electronic circuit formed on a semiconductor wafer). Although the probe 20 is shown as having two beam parts 21B in FIG. 1, the number of the beam parts 21B may be one, or three or more.
 プローブ20は、薄板状の本体部21と、本体部の上端から上方に突出する針先部22とを有する。本体部21は、図示しない配線基板の配線ランドに接続される端子部21Tと、端子部21Tから上方に立ち上がる台座部21Dと、検査対象側にある針先部22と台座部21Dとの間にある弾性変形部21Uと、を備える。 The probe 20 has a thin plate-like main body 21 and a needle tip 22 that projects upward from the upper end of the main body. The main body part 21 has a terminal part 21T connected to a wiring land of a wiring board (not shown), a pedestal part 21D rising upward from the terminal part 21T, and a part between the needle tip part 22 on the inspection target side and the pedestal part 21D. A certain elastic deformation part 21U is provided.
 弾性変形部21Uには、その長手方向Zに伸長し、かつ板厚方向Yに貫通する2つの長穴21UHが形成されており、長穴21UHによって弾性変形部21Uは、2本のビーム部21Bに分かれている。 Two elongated holes 21UH extending in the longitudinal direction Z and penetrating in the plate thickness direction Y are formed in the elastically deformable portion 21U, and the elongated holes 21UH allow the elastically deformable portion 21U to form two beam portions 21B. It is divided into
 プローブ20は、オーバードライブ時に、図1の上下方向の圧縮力が加えられることにより、検査対象からの反力に応じて容易に座屈方向Xに座屈変形する。このとき、プローブ20の内部には応力が発生する。プローブ20は、ビーム部21Bの座屈方向Xに垂直な面21BSに、オーバードライブ時に内部に生じる応力を分散させる、応力分散部としての複数の窪み21Rを備える。複数の窪み21Rは、ビーム部21Bの長手方向Zに並ぶように配置されている。 During overdrive, the probe 20 is easily buckled in the buckling direction X in response to the reaction force from the test object due to the application of compressive force in the vertical direction in FIG. 1 . At this time, stress is generated inside the probe 20. The probe 20 is provided with a plurality of depressions 21R as stress dispersion portions on a surface 21BS perpendicular to the buckling direction X of the beam portion 21B, which disperses stress generated internally during overdrive. The plurality of depressions 21R are arranged in a line in the longitudinal direction Z of the beam portion 21B.
 図2Aは、図1の破線で囲んだ部分の平面図である。ビーム部21Bを座屈方向Xに見た図である。
図2Bは、図2AのA-A断面図である。
2A is a plan view of a portion surrounded by a broken line in FIG. 1. FIG. It is a figure which looked at the beam part 21B in the buckling direction X.
FIG. 2B is a sectional view taken along line AA in FIG. 2A.
 プローブ20は、導電性を有し、抵抗率の異なる2種類の金属によって構成されている。1つは、銅、金、銀(Cu、Au、Ag)等の抵抗率が低い金属からなる低抵抗部Lを構成する内側の金属(第1金属)である。低抵抗部Lは、導電性が高く耐電流性能の向上のために機能する。もう1つは、パラジウムコバルト(PdCo)合金等の、低抵抗部Lよりも抵抗率が高く、導電性が低いが、機械的強度が高くバネ性のある高抵抗部Hを構成する外側の金属(第2金属)である。高抵抗部Hは、プローブ20の機械的強度を維持するために機能する。 The probe 20 is made of two types of metals that are electrically conductive and have different resistivities. One is the inner metal (first metal) constituting the low resistance part L, which is made of a metal with low resistivity such as copper, gold, silver (Cu, Au, Ag). The low resistance portion L has high conductivity and functions to improve current withstand performance. The other is an outer metal such as palladium cobalt (PdCo) alloy, which has higher resistivity and lower conductivity than the low resistance part L, but has high mechanical strength and spring properties. (second metal). The high resistance portion H functions to maintain the mechanical strength of the probe 20.
 図2Aに示すように、ビーム部21Bの座屈方向Xに垂直な面21BS(上面)には、複数の四角柱形状の窪み21Rが、長手方向Zに間隔を開けて配置されている。この窪み21Rは、高抵抗部Hに形成されている。ここで、窪み21Rを設けないプローブAと、窪み21Rを設けたプローブ20とを比較すると、オーバードライブ量に対する針圧の関係では、窪み21Rを設けたプローブ20の方が、針圧が小さい。 As shown in FIG. 2A, a plurality of quadrangular prism-shaped depressions 21R are arranged at intervals in the longitudinal direction Z on the surface 21BS (top surface) perpendicular to the buckling direction X of the beam portion 21B. This depression 21R is formed in the high resistance portion H. Here, when comparing the probe A without the recess 21R and the probe 20 with the recess 21R, the probe 20 with the recess 21R has a smaller stylus pressure in terms of the relationship between the overdrive amount and the stylus pressure.
 さらに、窪み21Rによって、どのような効果を得ることができるのかについて分析した。窪み21Rを設けないプローブA、四角柱形状の窪み21Rを設けたプローブ20について、有限要素法(FEM:Finite Element Method)に基づいて、プローブの最大応力を求めた結果は、外部から力が加えられた場合、応力は、図2Bに示す窪み21Rの各頂点10Bおよび窪み21Rを構成する隣接する2面によって形成される稜線10に集中していることが分かった。 Furthermore, we analyzed what kind of effects can be obtained by the depressions 21R. The maximum stress of the probe was determined based on the finite element method (FEM) for probe A without the depression 21R and probe 20 with the quadrangular prism-shaped depression 21R. It was found that stress was concentrated on the ridgeline 10 formed by each vertex 10B of the depression 21R and two adjacent surfaces forming the depression 21R shown in FIG. 2B.
 したがって、応力分散部として四角柱形状の窪み21Rを、プローブ20のビーム部21Bの長手方向Zに均等に並べて配置することによって、オーバードライブ時に内部に作用する応力を窪み21Rの各頂点10Bおよび各稜線10に均等に分散できる。
 なお、図2Bでは、窪み21Rは、高抵抗部Hを貫通しない(言い換えれば、窪み21Rと低抵抗部Lとの間に高抵抗部Hが存在する)例を示したが、窪み21Rは、高抵抗部Hを貫通し、低抵抗部Lに到達する(言い換えれば、窪み21Rから低抵抗部Lが露出している)ように設けても良く、窪み21Rが高抵抗部Hを貫通しない場合と比べて、窪み21Rの稜線10を長くすることにより、窪み21Rへの応力集中をより高めることができる。
Therefore, by arranging the rectangular prism-shaped depressions 21R as stress dispersion parts evenly in the longitudinal direction Z of the beam part 21B of the probe 20, the stress acting internally during overdrive can be distributed to each vertex 10B of the depression 21R and each It can be evenly distributed along the ridgeline 10.
Although FIG. 2B shows an example in which the recess 21R does not penetrate the high resistance part H (in other words, the high resistance part H exists between the recess 21R and the low resistance part L), the recess 21R It may be provided so that it passes through the high resistance part H and reaches the low resistance part L (in other words, the low resistance part L is exposed from the depression 21R), but when the depression 21R does not penetrate the high resistance part H By lengthening the ridgeline 10 of the depression 21R, stress concentration on the depression 21R can be further increased.
 図3Aは、犠牲層Gを配置して図1の破線で囲んだ部分を製造している状態を示す断面図である。矢印Rは、製造時の積層方向を示す。
図3Bは、図3AのB-B断面部分を製造する図である。ただし、図3Bの状態から高抵抗部をさらにメッキ加工した状態が図3Aとなる。また説明の都合上、図3Aと図3Bの縮尺は異なる。
FIG. 3A is a cross-sectional view showing a state in which the sacrificial layer G is arranged and the part surrounded by the broken line in FIG. 1 is manufactured. Arrow R indicates the lamination direction during manufacturing.
FIG. 3B is a diagram showing the manufacturing process of the BB cross section in FIG. 3A. However, the state shown in FIG. 3A is obtained by further plating the high resistance part from the state shown in FIG. 3B. Furthermore, for convenience of explanation, the scales of FIG. 3A and FIG. 3B are different.
 プローブ20は、いわゆるMEMS(Micro Electro Mechanical Systems)技術を用いて作製される。MEMS技術は、フォトリソグラフィ技術及び犠牲層エッチング技術を利用して、微細な立体的構造物を作成する技術である。フォトリソグラフィ技術は、半導体製造工程などで利用されるフォトレジストFを用いた微細パターンの加工技術である。また、犠牲層エッチング技術は、犠牲層Gと呼ばれる下層を形成し、その上に構造物を構成する層を形成した後、犠牲層Gのみをエッチングによって除去することにより、立体的な構造物を作成する技術である。 The probe 20 is manufactured using so-called MEMS (Micro Electro Mechanical Systems) technology. MEMS technology is a technology for creating fine three-dimensional structures using photolithography technology and sacrificial layer etching technology. The photolithography technique is a fine pattern processing technique using a photoresist F used in semiconductor manufacturing processes and the like. In addition, the sacrificial layer etching technique forms a lower layer called the sacrificial layer G, forms a layer constituting the structure on top of it, and then removes only the sacrificial layer G by etching, thereby creating a three-dimensional structure. It is a technology to create.
 高抵抗部Hおよび低抵抗部Lの形成処理には、周知のめっき技術を利用することができる。例えば、陰極としての基板と、陽極としての金属片とを電解液に浸し、両電極間に電圧を印加することにより、電解液中の金属イオンを基板表面に付着させることができる。この様な処理は、電気めっき処理と呼ばれ、基板を電解液に浸すウエットプロセスであることから、めっき処理後には、乾燥処理が行われる。そして乾燥処理後、研磨処理によって針先部22を研磨する。 A well-known plating technique can be used to form the high resistance part H and the low resistance part L. For example, metal ions in the electrolyte can be attached to the substrate surface by immersing a substrate as a cathode and a metal piece as an anode in an electrolyte and applying a voltage between the two electrodes. Such a process is called an electroplating process, and since it is a wet process in which the substrate is immersed in an electrolytic solution, a drying process is performed after the plating process. After the drying process, the needle tip portion 22 is polished by a polishing process.
 具体的には、図3Bに示すように、まず、犠牲層Gの間に高抵抗部Hの最下層を形成する。次に、その上に低抵抗部Lを形成してから、窪み21Rとなる部分に犠牲層Gを形成する。さらに、高抵抗部Hの残りの部分を形成してからフォトレジストFおよび犠牲層Gを除去する。以上の工程によって、ビーム部21Bの座屈方向Xに垂直な面21BSに窪み21Rが形成されたプローブ20を得る。なお、本実施の形態では、高抵抗部Hと低抵抗部Lの二種類の金属を使用する例を示したが、一種類の金属で製造してもよい。また、弾性変形部21Uが複数のビーム部21Bに分割されている例について説明したが、分割されていなくてもよい。 Specifically, as shown in FIG. 3B, first, the lowest layer of the high resistance part H is formed between the sacrificial layers G. Next, a low resistance portion L is formed thereon, and then a sacrificial layer G is formed in a portion that will become the recess 21R. Further, after forming the remaining portions of the high resistance portion H, the photoresist F and the sacrificial layer G are removed. Through the above steps, the probe 20 in which the recess 21R is formed in the surface 21BS perpendicular to the buckling direction X of the beam portion 21B is obtained. In this embodiment, an example is shown in which two types of metals are used for the high resistance part H and the low resistance part L, but they may be manufactured using one type of metal. Further, although an example has been described in which the elastic deformation portion 21U is divided into a plurality of beam portions 21B, it may not be divided.
 実施の形態1によるプローブカード用カンチレバー型プローブによれば、検査時にプローブ20の内部に発生する応力を、窪み21Rの各頂点10Bおよび各稜線10に均等に分散できるので機械的強度の維持と針圧の低減を両立できる。 According to the cantilever type probe for a probe card according to the first embodiment, the stress generated inside the probe 20 during inspection can be evenly distributed to each vertex 10B of the recess 21R and each ridgeline 10, so that mechanical strength can be maintained and the needle Can reduce pressure at the same time.
実施の形態2.
 以下、実施の形態2によるプローブカード用カンチレバー型プローブを、実施の形態1と異なる部分を中心に説明する。
図4は、プローブ20の変形例の断面図である。
実施の形態1では、プローブ20のビーム部21Bの座屈方向Xに垂直な面21BSの一方の面(上面)のみに窪み21Rを設ける例を説明したが、窪み21Rは、ビーム部21Bの座屈方向Xに垂直な他方の面21BS(下面)のみに設けてもよいし、図4に示すように双方に設けてもよい。
Embodiment 2.
The cantilever type probe for a probe card according to the second embodiment will be described below, focusing on the differences from the first embodiment.
FIG. 4 is a sectional view of a modified example of the probe 20.
In the first embodiment, an example in which the recess 21R is provided only on one surface (upper surface) of the surface 21BS perpendicular to the buckling direction X of the beam portion 21B of the probe 20 has been described. It may be provided only on the other surface 21BS (lower surface) perpendicular to the bending direction X, or may be provided on both sides as shown in FIG.
 図5Aは、プローブ20の変形例の平面図である。
図5Bは、図5AのC-C断面図である。
図6Aは、プローブ20の変形例の平面図である。
図6Bは、図6AのD-D断面図である。
また、図5A、図5Bに示すように、窪み21Rは、四角錐台形状でもよいし、図6A、図6Bに示すように円錐台形状でもよい。
図7Aは、プローブ20の変形例の平面図である。
図7Bは、図7AのE-E断面図である。
さらに、図7A、図7Bに示すように、窪み21Rは、円筒を軸方向に切断した形状でもよい。窪みを多く配置すると、隣り合う窪み21Rの間の間隔が狭くなり、窪み21R間の隔壁9の強度が落ちてしまう。そこで、窪み21Rの側面に傾斜を付けて隣り合う窪み21Rの間の隔壁9の強度を確保する。
FIG. 5A is a plan view of a modified example of the probe 20.
FIG. 5B is a cross-sectional view taken along the line CC in FIG. 5A.
FIG. 6A is a plan view of a modified example of the probe 20.
FIG. 6B is a sectional view taken along line DD in FIG. 6A.
Further, as shown in FIGS. 5A and 5B, the depression 21R may have a truncated quadrangular pyramid shape, or may have a truncated cone shape as shown in FIGS. 6A and 6B.
FIG. 7A is a plan view of a modified example of the probe 20.
FIG. 7B is a sectional view taken along line EE in FIG. 7A.
Furthermore, as shown in FIGS. 7A and 7B, the depression 21R may have a shape obtained by cutting a cylinder in the axial direction. When many depressions are arranged, the distance between adjacent depressions 21R becomes narrower, and the strength of the partition wall 9 between the depressions 21R decreases. Therefore, the strength of the partition wall 9 between the adjacent depressions 21R is ensured by adding an inclination to the side surfaces of the depressions 21R.
 実施の形態2によるプローブカード用カンチレバー型プローブによれば、多数の窪み21Rを設けても隣り合う窪み21R間の強度を確保できる。 According to the cantilever type probe for a probe card according to the second embodiment, even if a large number of depressions 21R are provided, the strength between adjacent depressions 21R can be ensured.
実施の形態3.
 以下、実施の形態3によるプローブカード用カンチレバー型プローブを、実施の形態1と異なる部分を中心に説明する。
図8Aは、プローブ20の変形例の断面図である。
図8Bは、図8AのF-F断面図である。
実施の形態1、2では、プローブ20のビーム部21Bの座屈方向Xに垂直な面21BSに窪み21Rを設ける例を説明したが、ビーム部21Bの板厚方向Yに貫通する貫通穴21Bhを設けてもよい。
Embodiment 3.
The cantilever type probe for a probe card according to the third embodiment will be described below, focusing on the differences from the first embodiment.
FIG. 8A is a cross-sectional view of a modified example of the probe 20.
FIG. 8B is a sectional view taken along line FF in FIG. 8A.
In the first and second embodiments, an example in which the recess 21R is provided in the surface 21BS perpendicular to the buckling direction X of the beam portion 21B of the probe 20 has been described. It may be provided.
 実施の形態3によるプローブカード用カンチレバー型プローブによれば、実施の形態1と同様の効果を奏する。 According to the cantilever type probe for a probe card according to Embodiment 3, the same effects as in Embodiment 1 are achieved.
実施の形態4.
 以下、実施の形態4によるプローブカード用カンチレバー型プローブを、実施の形態1と異なる部分を中心に説明する。
 図9Aは、プローブ20の変形例の平面図である。
 図9Bは、図9AのG-G断面図である。
Embodiment 4.
The cantilever type probe for a probe card according to the fourth embodiment will be described below, focusing on the differences from the first embodiment.
FIG. 9A is a plan view of a modified example of the probe 20.
FIG. 9B is a cross-sectional view taken along line GG in FIG. 9A.
 図9A、図9Bに示すように窪み21Rが、高抵抗部Hを貫通し、窪み21Rから低抵抗部Lが露出する構成としてもよい。この場合、実施の形態1から実施の形態3に比べて製造工程を省略できる利点がある。 As shown in FIGS. 9A and 9B, the recess 21R may penetrate through the high resistance part H, and the low resistance part L may be exposed from the recess 21R. In this case, there is an advantage that manufacturing steps can be omitted compared to Embodiments 1 to 3.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Although this application describes various exemplary embodiments and examples, various features, aspects, and functions described in one or more embodiments may be applicable to a particular embodiment. The present invention is not limited to, and can be applied to the embodiments alone or in various combinations.
Therefore, countless variations not illustrated are envisioned within the scope of the technology disclosed herein. For example, this includes cases where at least one component is modified, added, or omitted, and cases where at least one component is extracted and combined with components of other embodiments.
 20 プローブ、21 本体部、22 針先部、21B ビーム部、21Bh 貫通穴、21BS 面、21D 台座部、21U 弾性変形部、9 隔壁、21R 窪み、21UH 長穴、21T 端子部、10 稜線、10B 頂点、F フォトレジスト、G 犠牲層、H 高抵抗部、L 低抵抗部、X 座屈方向、Y 板厚方向、Z 長手方向。 20 Probes, 21 -main part, 22 needle tip, 21B beam portion, 21BH penetration hole, 21 BS, 21D pedestal, 21U elastic deformation, 21 -wander, 21 -hole, 21UH hole, 21t terminal, 10 ridge, 10B Vertex, F photoresist, G sacrificial layer, H high resistance part, L low resistance part, X buckling direction, Y thickness direction, Z longitudinal direction.

Claims (5)

  1. プローブカード用カンチレバー型プローブであって、
    台座部と、針先部と、台座部と針先部との間にあるビーム部とを備え、
    前記ビーム部は、前記ビーム部の他の部位よりも応力集中が生じる応力分散部を、長手方向に複数個備えるプローブカード用カンチレバー型プローブ。
    A cantilever-type probe for a probe card, comprising:
    The probe has a base portion, a tip portion, and a beam portion between the base portion and the tip portion,
    The beam portion is a cantilever-type probe for a probe card, the beam portion having a plurality of stress dispersion portions in the longitudinal direction, where stress is concentrated more than in other portions of the beam portion.
  2. 前記応力分散部は、前記ビーム部の長手方向に垂直な少なくとも一面に設けられた窪みである請求項1に記載のプローブカード用カンチレバー型プローブ。 2. The cantilever probe for a probe card according to claim 1, wherein the stress dispersion section is a depression provided on at least one surface perpendicular to the longitudinal direction of the beam section.
  3. 前記応力分散部は、前記ビーム部を厚み方向に貫通する貫通穴である請求項1に記載のプローブカード用カンチレバー型プローブ。 The cantilever type probe for a probe card according to claim 1, wherein the stress dispersion section is a through hole that penetrates the beam section in the thickness direction.
  4. 前記ビーム部は、電気的に低抵抗である金属層からなる低抵抗部と、
    前記低抵抗部よりも電気的に高抵抗であり、バネ性を有する金属層からなる高抵抗部とを備え、
    前記応力分散部は、前記高抵抗部に形成されている請求項1から請求項3のいずれか1項に記載のプローブカード用カンチレバー型プローブ。
    The beam part includes a low resistance part made of a metal layer having low electrical resistance;
    a high resistance part that is electrically higher in resistance than the low resistance part and made of a metal layer having spring properties;
    The cantilever type probe for a probe card according to any one of claims 1 to 3, wherein the stress dispersion section is formed in the high resistance section.
  5. 前記ビーム部は、積層された前記低抵抗部と前記高抵抗部とを備え、
    前記応力分散部は、前記高抵抗部に設けられた窪みであって、前記窪みからは前記低抵抗部が露出している請求項4に記載のプローブカード用カンチレバー型プローブ。
    The beam section includes the low resistance section and the high resistance section that are stacked,
    5. The cantilever probe for a probe card according to claim 4, wherein the stress dispersion section is a depression provided in the high resistance section, and the low resistance section is exposed from the depression.
PCT/JP2022/035188 2022-09-21 2022-09-21 Cantilever-type probe for probe card WO2024062559A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/035188 WO2024062559A1 (en) 2022-09-21 2022-09-21 Cantilever-type probe for probe card
TW112134916A TW202422077A (en) 2022-09-21 2023-09-13 Cantilever probe for probe card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035188 WO2024062559A1 (en) 2022-09-21 2022-09-21 Cantilever-type probe for probe card

Publications (1)

Publication Number Publication Date
WO2024062559A1 true WO2024062559A1 (en) 2024-03-28

Family

ID=90454044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035188 WO2024062559A1 (en) 2022-09-21 2022-09-21 Cantilever-type probe for probe card

Country Status (2)

Country Link
TW (1) TW202422077A (en)
WO (1) WO2024062559A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123173A (en) * 1996-10-22 1998-05-15 Micronics Japan Co Ltd Probe unit for inspecting flat specimen
JP2006189370A (en) * 2005-01-07 2006-07-20 Micronics Japan Co Ltd Probe for electrification test
CN1822341A (en) * 2005-02-16 2006-08-23 旺矽科技股份有限公司 Suspension arm probe
JP2006284292A (en) * 2005-03-31 2006-10-19 Kanai Hiroaki Contact probe structure
JP2008503734A (en) * 2004-06-21 2008-02-07 カプレス・アクティーゼルスカブ How to align the probe
JP2010513870A (en) * 2006-12-17 2010-04-30 フォームファクター, インコーポレイテッド Reinforced contact parts
JP2010534851A (en) * 2008-06-30 2010-11-11 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Cantilever type micro contact probe with hinge structure
JP2012052887A (en) * 2010-08-31 2012-03-15 Advantest Corp Probe manufacturing method, probe structure, probe device and test apparatus
US20130082729A1 (en) * 2011-09-30 2013-04-04 Formfactor, Inc. Probe With Cantilevered Beam Having Solid And Hollow Sections
JP2014013184A (en) * 2012-07-04 2014-01-23 Micronics Japan Co Ltd Cantilever type probe assembly and probe card or probe unit equipped with the same
US20190064215A1 (en) * 2017-08-23 2019-02-28 Leeno Industrial Inc. Mems probe and test device using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123173A (en) * 1996-10-22 1998-05-15 Micronics Japan Co Ltd Probe unit for inspecting flat specimen
JP2008503734A (en) * 2004-06-21 2008-02-07 カプレス・アクティーゼルスカブ How to align the probe
JP2006189370A (en) * 2005-01-07 2006-07-20 Micronics Japan Co Ltd Probe for electrification test
CN1822341A (en) * 2005-02-16 2006-08-23 旺矽科技股份有限公司 Suspension arm probe
JP2006284292A (en) * 2005-03-31 2006-10-19 Kanai Hiroaki Contact probe structure
JP2010513870A (en) * 2006-12-17 2010-04-30 フォームファクター, インコーポレイテッド Reinforced contact parts
JP2010534851A (en) * 2008-06-30 2010-11-11 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Cantilever type micro contact probe with hinge structure
JP2012052887A (en) * 2010-08-31 2012-03-15 Advantest Corp Probe manufacturing method, probe structure, probe device and test apparatus
US20130082729A1 (en) * 2011-09-30 2013-04-04 Formfactor, Inc. Probe With Cantilevered Beam Having Solid And Hollow Sections
JP2014013184A (en) * 2012-07-04 2014-01-23 Micronics Japan Co Ltd Cantilever type probe assembly and probe card or probe unit equipped with the same
US20190064215A1 (en) * 2017-08-23 2019-02-28 Leeno Industrial Inc. Mems probe and test device using the same

Also Published As

Publication number Publication date
TW202422077A (en) 2024-06-01

Similar Documents

Publication Publication Date Title
KR101962644B1 (en) A test probe and test device using the same
US6938338B2 (en) Method of making an electronic contact
CN100511853C (en) Small array contact with precision working range
KR102015798B1 (en) Probe for the test device
US7217139B2 (en) Interconnect assembly for a probe card
JP5103566B2 (en) Electrical contact and inspection jig having the same
US8287286B2 (en) Electrical interposer connection body
US20050009386A1 (en) Compliant electrical probe device incorporating anisotropically conductive elastomer and flexible circuits
WO2024062559A1 (en) Cantilever-type probe for probe card
KR101160846B1 (en) Spring Probe Pin Made of Conductive Rubber and Manufacturing Method Thereof
WO2024062561A1 (en) Probe for probe card
WO2024062560A1 (en) Probe for probe cards
WO2024062562A1 (en) Cantilever-type probe for probe card, and probe card
JP4611367B2 (en) Socket for semiconductor integrated circuit
JP4359196B2 (en) Convex spiral contact, connection terminal for electronic component using the same, connector, and manufacturing method thereof
WO2023188369A1 (en) Probe pin and probe card
JP2009193710A (en) Anisotropic connector, and apparatus for inspecting circuit device using the same
JP4494396B2 (en) Connecting member
JP2016217856A (en) Electrical contact
KR20080044800A (en) Electrical connection structure
WO2024014231A1 (en) Probe device
WO2023188166A1 (en) Probe, probe card, and probe manufacturing method
WO2024101224A1 (en) Probe and electrical connecting device
JP2024135537A (en) Electrical contact and method for manufacturing the same
KR20240153361A (en) Probes, probe cards and methods of manufacturing probes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959523

Country of ref document: EP

Kind code of ref document: A1