WO2024061386A1 - 一种基于高精度时钟采样的转子动平衡检测方法 - Google Patents

一种基于高精度时钟采样的转子动平衡检测方法 Download PDF

Info

Publication number
WO2024061386A1
WO2024061386A1 PCT/CN2023/140698 CN2023140698W WO2024061386A1 WO 2024061386 A1 WO2024061386 A1 WO 2024061386A1 CN 2023140698 W CN2023140698 W CN 2023140698W WO 2024061386 A1 WO2024061386 A1 WO 2024061386A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
vibration
sampling
clock sampling
dynamic balance
Prior art date
Application number
PCT/CN2023/140698
Other languages
English (en)
French (fr)
Inventor
贾兆旻
马壮
巩诚
薛雅丽
Original Assignee
唐山学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山学院 filed Critical 唐山学院
Publication of WO2024061386A1 publication Critical patent/WO2024061386A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining imbalance
    • G01M1/16Determining imbalance by oscillating or rotating the body to be tested

Definitions

  • the invention relates to a rotor dynamic balance detection method based on high-precision clock sampling, which utilizes the high-resolution and stable gradient relationship of the phase difference between the clock sampling signal and the rotational speed pulse signal to form a high-precision sampling gate that eliminates ⁇ 1 pulse error.
  • the digital amplitude of the vibration signal after analog-to-digital conversion in this sampling gate presents a complete high-resolution gradient characteristic. Using this characteristic to obtain the high-precision peak value and phase of the vibration signal belongs to the use of speed sensors and vibration sensors for rotor movement. Balance measurement technology field.
  • Dynamic balancing testing is an indispensable equipment in high-end manufacturing and plays an important role in the fields of automobiles, robots, aerospace and other fields.
  • the country has increasingly supported the intelligent manufacturing industry, and then put forward the digitalization and informatization of dynamic balancing testing. Therefore, the present invention proposes a new digital method for dynamic balance detection and establishes a stable relationship between digital sampling values and sampling frequency control.
  • the basic principle of dynamic balancing is that the support system is excited by the unbalanced centrifugal force of the rotor, which then produces vibrations that are proportional to the unbalance of the rotor. Therefore, by measuring the vibration at the support, the amplitude and phase of the unbalance on the rotor correction surface are obtained, and finally the rotor is corrected. The mass restores the balance of the rotor, and this process is called dynamic balancing of the rotor.
  • the prerequisite for dynamic balance correction is to accurately extract the amplitude and phase of the imbalance through effective measurement methods.
  • the size and position of the correction compensation mass must be calculated and determined based on the imbalance quantity information, so accurately obtaining the imbalance measurement information is crucial for the dynamic balancing process.
  • the vibration signal is a relatively regular sine wave.
  • the vibration sensor obtains the magnitude of the unbalanced vibration amplitude, indicating the magnitude of the imbalance; affix a strip-shaped reflective label to the side of the rotor. Every time the rotor rotates, the speed sensor receives the reflected light and outputs a pulse signal. The speed sensor will rotate the label attached. As the initial phase of the unbalanced vibration, the phase with the maximum amplitude of the unbalance is obtained, indicating the position of the unbalanced amount.
  • Frequency domain extraction method is commonly used for dynamic balance measurement.
  • the number of rotation speed pulses is measured within the sampling time to obtain the rotation speed. Since general counters have ⁇ 1 pulse counting error, which affects the accuracy of rotation speed measurement, the frequency domain extraction method requires obtaining the vibration signal spectrum.
  • the spectral line with the same frequency as the rotational speed signal is used to obtain the amplitude and phase information of this spectral line, so the accuracy of the frequency domain extraction method in dynamic balance measurement is affected.
  • the time domain extraction method and frequency domain extraction method of dynamic balance measurement commonly use analog-to-digital converters to sample vibration signals. However, when the analog-to-digital converter increases the number of quantization bits, the sampling rate decreases accordingly, and the commonly used time domain extraction method does not fully utilize the rotational speed.
  • the stable phase change characteristics between pulse signals, clock sampling signals and vibration signals make the phase measurement corresponding to rotational speed pulse counting, vibration amplitude sampling and vibration peak independent measurement processes, resulting in superposition of measurement errors and greatly reducing the accuracy of time domain
  • the purpose of the present invention is to provide a rotor dynamic balance detection method based on high-precision clock sampling.
  • the control clock sampling signal and the rotation speed pulse signal have the same nominal frequency value and a small frequency difference. At this time, the start and end of sampling can be accurately determined. Gate, thereby greatly eliminating the counting error of ⁇ 1 pulse, making the vibration signal in the sampling gate a high-precision full-cycle signal, and after each vibration cycle, the sampling clock signal and vibration signal will produce a high-resolution stable signal. Phase difference and its corresponding amplitude change.
  • the invention has high measurement accuracy, simple circuit structure and is easy to implement, and solves the problem in the background technology of rotor dynamic balance measurement caused by the superposition error of ⁇ 1 pulse counting error, vibration amplitude sampling error and phase measurement error corresponding to the vibration peak.
  • the problem of low accuracy is a problem of low accuracy.
  • a rotor dynamic balance detection method based on high-precision clock sampling includes the following steps:
  • the purpose is to ensure that the rotational speed pulse signal and the clock sampling signal have the same frequency nominal value and a slight frequency deviation during the measurement process.
  • the phase difference between the two pulse signals is Stable and periodic changes, and by changing the small frequency deviation value through the computer, this stable changing phase difference value and vibration signal sampling gate length can be accurately controlled.
  • the small frequency deviation value can be 1Hz, that is, the difference between the frequency of the rotational speed pulse signal and the frequency of the clock sampling signal is 1Hz.
  • the rising edge of the speed pulse signal and the clock sampling signal is the comparison moment of the phase difference.
  • a 0 and b 0 are in phase, that is, the phase difference is 0.
  • the phase difference between the two signals is The phase differences are 0, (a 1 -b 1 ), (a 2 -b 2 ), (a 3 -b 3 ), (a 4 -b 4 ), b 5 in sequence.
  • the two The phases of the signals coincide again, and the phase difference changes are 0 again, (a 1 -b 1 ), (a 2 -b 2 ), (a 3 -b 3 ), (a 4 -b 4 ), b 5 .
  • the frequency value of the rotational speed pulse signal is 1001Hz
  • the frequency value of the computer control clock sampling signal is 1000Hz
  • the period of the rotational speed pulse signal is The period of the clock pulse signal is The phase of the two signals coincides with the initial moment.
  • a phase comparison is performed, and the phase difference is in turn The phase difference is
  • the rotational speed pulse signal has 1001 full cycles
  • the clock pulse signal has 1000 full cycles. Because the vibration signal and the rotational speed have the same frequency, the above analysis also applies to the vibration signal and the rotational speed pulse signal. The phase difference between them changes, and the vibration signal also has 1001 complete cycles.
  • This stable periodic changing phase difference is used to form a sampling gate switch, which overcomes the counting error of ⁇ 1 pulse.
  • the clock pulse signal, rotational speed pulse signal and vibration signal are full cycles.
  • Points 4 and b 5 correspond to the initial phase of each single-cycle vibration signal.
  • the vibration peak point and its corresponding phase are stored in the computer as the digital value of the vibration signal to obtain the phase with the maximum amplitude of the imbalance.
  • the main innovation point of this invention is to use the high-resolution stable gradient phase difference between the rotational speed pulse signal and the clock sampling signal to form a sampling gate of the vibration signal, and then use the sampled vibration
  • the digital value of the signal restores the single-cycle vibration signal waveform, and then obtains the phase difference between the initial phase and the phase corresponding to the vibration peak point, that is, the phase with the maximum amplitude of the imbalance.
  • the present invention can have a wide dynamic balance measurement range of tens of Hz to Several thousand Hz, high-precision dynamic balance measurement can be performed on changing vibration signals.
  • the instrument has a simple structure and is easy to implement. It uses the same frequency nominal value and a slight frequency deviation relationship between the rotational speed pulse signal and the clock sampling signal to produce a phase difference that changes stably and periodically. This phase difference constitutes the sampling
  • the gate switch overcomes the counting error of ⁇ 1 pulse.
  • the clock pulse signal, rotation speed pulse signal and vibration signal are full cycles.
  • the clock sampling signal samples the vibration signal through the analog/digital converter. The phase changes during the vibration signal sampling period. Amplitude change information is fully sampled.
  • Figure 1 is a schematic diagram of the entire cycle sampling of vibration signals according to the present invention.
  • Figure 2 is a block diagram of the dynamic balance detection system of the present invention.
  • the computer controls the frequency converter to generate the clock sampling signal.
  • the phase difference detector detects the phase difference between the clock sampling signal and the rotational speed pulse signal. The same phase difference is used to form the sampling gate control signal.
  • the internal analog/digital converter samples the vibration signal and generates a digital value of the vibration signal. This digital value is stored in the computer, and the computer uses These sampled values are used to digitally restore the vibration signal in a single cycle, and finally the phase difference between the initial phase and the vibration peak phase is obtained through the restored digital vibration signal.
  • phase difference constitutes the sampling gate switch.
  • the phase change and amplitude change information within the vibration signal sampling period are completely sampled, thereby improving the measurement resolution.
  • the present invention utilizes the high-resolution stable gradual phase difference between the speed pulse signal and the clock sampling signal to form a sampling gate for the vibration signal.
  • the clock sampling signal has an integer synchronization relationship with the speed pulse signal and the vibration signal, which greatly eliminates the counting error of ⁇ 1 pulse.
  • the dynamic balancing measurement accuracy thus performed is also higher, and the present invention has a wide measurement range.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

一种基于高精度时钟采样的转子动平衡检测方法,属于利用转速传感器、振动传感器进行转子动平衡测量技术领域。技术方案:利用转速传感器、振动传感器分别测量转子转速及振动,生成转速脉冲信号及振动信号,计算机控制时钟采样信号与转速脉冲信号具有相同频率标称值且带小频差的关系,两信号间的高分辨率稳定渐变相位差形成振动信号的采样闸门,克服了±1个脉冲的计数误差,时钟采样信号通过模/数转换器对振动信号采样,在振动信号采样周期内相位变化、幅值变化信息被完整采样。方法可以有很宽的动平衡测量范围几十Hz到几千Hz,对变化的振动信号可以进行高精度动平衡测量。

Description

一种基于高精度时钟采样的转子动平衡检测方法
本申请要求于2023年07月11日提交中国专利局、申请号为202310845660.9、发明名称为“一种基于高精度时钟采样的转子动平衡检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种基于高精度时钟采样的转子动平衡检测方法,利用时钟采样信号与转速脉冲信号间相位差的高分辨率稳定渐变关系,形成高精度的消除±1个脉冲误差的采样闸门,此采样闸门内经过模数转换后的振动信号的数字化幅值呈现完整的高分辨率渐变特性,利用此特性求取高精度的振动信号峰值及其相位,属于利用转速传感器、振动传感器进行转子动平衡测量技术领域。
背景技术
动平衡检测是高端制造中不可或缺的装备,在汽车、机器人、航空航天等领域发挥着重要作用,国家对智能制造产业扶持力度越来越大,进而对动平衡检测提出了数字化、信息化的需求,因此本发明提出了新的动平衡检测数字化方法,建立了数字化采样值与采样频率控制的稳定关系。
动平衡基本原理为支承系统受到转子不平衡离心力的激励,进而产生与转子不平衡量成正比的振动,因此通过测量支承处的振动而获得转子校正面上不平衡量的幅值与相位,最后校正转子质量使转子重新恢复平衡,此过程即为转子动平衡。
进行动平衡校正的前提是通过有效的测量方法准确提取不平衡量的幅值与相位。校正补偿质量的大小与位置要根据不平衡量信息来计算确定,所以准确获取不平衡测量信息对于动平衡过程至关重要。
转子由于质量分布不均引起的不平衡振动具有以下特征:
(1)引起的振动频率与转速相等;
(2)振动信号是一个比较规则的正弦波。
在获取不平衡量时,需要同时用振动传感器和转速传感器在校正平面处测量不平衡振动与相位。振动传感器获取不平衡振动幅值的大小,表示不平衡量的大小;在转子侧边粘贴条形反光标签,转子每转一周,转速传感器接收反射光而输出一个脉冲信号,转速传感器将转动时所贴标签作为不平衡振动初始相位,以获取不平衡最大幅值的相位,表示不平衡量的位置。
常用动平衡测量的频域提取法,在采样时间内计量转速脉冲个数得转速,由于一般计数器存在±1个脉冲计数误差,进而影响转速测量的精度,频域提取法需要求取振动信号频谱与转速信号相同频率的谱线以获得此谱线的幅值和相位信息,所以动平衡测量中的频域提取法精度受到影响。动平衡测量的时域提取法和频域提取法常用模数转化器采样振动信号,而模数转换器在提高量化位数时,采样率相应降低,并且常用的时域提取法没有充分利用转速脉冲信号、时钟采样信号及振动信号间的稳定相位变化特性,使得转速脉冲计数、振动幅值采样及振动峰值对应的相位测量为独立测量过程,导致测量误差叠加,大大降低时域提取精度。
发明内容
本发明目的是提供一种基于高精度时钟采样的转子动平衡检测方法,控制时钟采样信号与转速脉冲信号具有相同频率标称值且带小频差的关系,此时可精准确定采样开始和结束闸门,以此大大消除±1个脉冲的计数误差,使得在采样闸门内的振动信号为高精度整周期信号,并且每经过一个振动周期,采样时钟信号和振动信号就会产生一个高分辨的稳定相位差及其相对应的幅值变化量。本发明测量精度高,电路结构简单、易于实现,解决背景技术中存在的因±1个脉冲计数误差、振动幅值采样误差与振动峰值对应的相位测量误差形成的叠加误差而导致转子动平衡测量精度不高的问题。
本发明的技术方案是:
一种基于高精度时钟采样的转子动平衡检测方法,包含如下步骤:
①利用转速传感器、振动传感器分别测量转子转速及振动,生成转速脉冲信号及振动信号。
②利用计算机控制频率变换器,生成可控的时钟采样信号,使得转速脉冲信号和时钟采样信号间具有相同频率标称值且有微小频率偏差。
③利用转速脉冲信号和时钟采样信号之间的高分辨率稳定渐变相位差形成振动信号的采样闸门。
本发明的转子动平衡检测方法中,针对的是测量过程中使得转速脉冲信号和时钟采样信号间具有相同频率标称值且有微小频率偏差,这种情况下,两脉冲信号间的相位差是稳定周期性变化的,而且通过计算机改变微小频率偏差值,可精准控制这种稳定变化的相位差值和振动信号采样闸门长度。微小频率偏差值可以为1Hz,即转速脉冲信号的频率与时钟采样信号的频率之间的差值为1Hz。
简单举例,如图1所示,以转速脉冲信号和时钟采样信号的上升沿为相位差的比较时刻,假设a0、b0相位重合即相位差为0,此时为初始时刻,两信号间的相位差依次为0,(a1-b1),(a2-b2),(a3-b3),(a4-b4),b5,经过振动信号采样周期后,两信号的相位再次重合,相位差变化又是0,(a1-b1),(a2-b2),(a3-b3),(a4-b4),b5。如转速脉冲信号的频率值为1001Hz时,计算机控制时钟采样信号的频率值为1000Hz,转速脉冲信号的周期为时钟脉冲信号的周期为两信号相位重合为初始时刻,每经过一个转速脉冲信号的周期便进行一次相位比较,相位差依次为 相位差以 为单位渐变时间变化,在振动信号采样周期内,转速脉冲信号有1001个整周期,时钟脉冲信号有1000个整周期,因为振动信号与转速同频,上述分析也适用于振动信号与转速脉冲信号间的相位差变化,振动信号也有1001个整周期。
利用这种稳定周期性变化的相位差构成采样闸门开关,克服了±1个脉冲的计数误差,时钟脉冲信号、转速脉冲信号和振动信号为整周期。
④利用时钟采样信号通过模/数转换器对振动信号进行相位差渐变式的数字化采样。
时钟采样信号和振动信号每经过一个振动信号周期时间,会产生Δt时间的相位差变化,相对应的两个采样点变化为Δu的幅值量,初始相位经过若干个Δt时间后达到振动峰值所对应相位,同理经过其它若干个Δt时间后达到其它振动幅值所对应相位,如图1中的c0,c1,c2,c3,c4所示,因此时钟采样信号通过模/数转换器对振动信号采样,在振动信号采样周期内相位变化、幅值变化信息被完整采样,如图1所示,转速脉冲信号上升沿的b0,b1,b2,b3,b4,b5点对应每个单周期振动信号的初始相位,振动峰值点及其所对应相位都以振动信号数字化值存储到计算机中,以获取不平衡最大幅值的相位。
⑤利用采样到的振动信号数字化值还原单周期振动信号波形,进而求得初始相位与振动峰值点所对应相位的相位差,即不平衡最大幅值的相位。
本发明的主要创新点是:利用转速脉冲信号和时钟采样信号之间的高分辨率稳定渐变相位差形成振动信号的采样闸门,然后利用采样到的振动 信号数字化值还原单周期振动信号波形,进而求得初始相位与振动峰值点所对应相位的相位差,即不平衡最大幅值的相位,本发明可以有很宽的动平衡测量范围几十Hz到几千Hz,对变化的振动信号可以进行高精度动平衡测量。
本发明的积极效果是:仪器结构简单、易于实现,利用转速脉冲信号和时钟采样信号之间的相同频率标称值且有微小频率偏差关系产生稳定周期性变化的相位差,此相位差构成采样闸门开关,克服了±1个脉冲的计数误差,时钟脉冲信号、转速脉冲信号和振动信号为整周期,时钟采样信号通过模/数转换器对振动信号采样,在振动信号采样周期内相位变化、幅值变化信息被完整采样。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的振动信号整周期采样示意图;
图2是本发明的动平衡检测系统框图。
具体实施方式
下面通过实施例对本发明作进一步说明
如图2所示:
在此动平衡测量系统中,由计算机控制频率变换器生成时钟采样信号,相位差检测器检测时钟采样信号和转速脉冲信号间的相位差,利用相同的相位差构成采样闸门控制信号,在采样闸门内模/数转换器对振动信号采样,进而生成振动信号数字化值,此数字化值存储到计算机中,计算机利 用这些被采样值对振动信号进行单周期数字化还原,最后通过还原的数字化振动信号求取初始相位与振动峰值相位间的相位差。
在动平衡检测期间,由于转速脉冲信号和时钟采样信号之间具有相同频率标称值且有微小频率偏差关系,两信号间产生稳定周期性变化的相位差,此相位差构成采样闸门开关,在振动信号采样周期内相位变化、幅值变化信息被完整采样,进而提高了测量分辨率。
经过本发明利用转速脉冲信号与时钟采样信号间的高分辨率稳定渐变相位差形成振动信号的采样闸门,在此采样闸门内时钟采样信号与转速脉冲信号及振动信号具有整数同步关系,大大消除±1个脉冲的计数误差,由此进行的动平衡测量精度也更高,而且本发明有很宽的测量范围。

Claims (4)

  1. 一种基于高精度时钟采样的转子动平衡检测方法,其特征在于,包括:
    ①利用计算机控制频率变换器,生成可控的时钟采样信号,使得转速脉冲信号和时钟采样信号间具有相同频率标称值且有微小频率偏差;
    ②利用转速脉冲信号和时钟采样信号之间的高分辨率稳定渐变相位差形成振动信号的采样闸门;
    ③利用时钟采样信号通过模/数转换器对振动信号进行相位差渐变式的数字化采样;
    ④利用采样到的振动信号数字化值还原单周期振动信号波形,进而求得初始相位与振动峰值点所对应相位的相位差,即不平衡最大幅值的相位。
  2. 根据权利要求1所述的基于高精度时钟采样的转子动平衡检测方法,其特征在于,采用转速传感器测量转子转速得到转速脉冲信号。
  3. 根据权利要求1所述的基于高精度时钟采样的转子动平衡检测方法,其特征在于,采用振动传感器测量转子振动得到振动信号。
  4. 根据权利要求1所述的基于高精度时钟采样的转子动平衡检测方法,其特征在于,利用时钟采样信号通过模/数转换器对振动信号进行相位差渐变式的数字化采样,具体包括:
    利用时钟采样信号根据振动信号的采样闸门通过模/数转换器对振动信号进行相位差渐变式的数字化采样,得到采样到的振动信号数字化值。
PCT/CN2023/140698 2023-07-11 2023-12-21 一种基于高精度时钟采样的转子动平衡检测方法 WO2024061386A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310845660.9A CN116929635A (zh) 2023-07-11 2023-07-11 一种基于高精度时钟采样的转子动平衡检测方法
CN202310845660.9 2023-07-11

Publications (1)

Publication Number Publication Date
WO2024061386A1 true WO2024061386A1 (zh) 2024-03-28

Family

ID=88375023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/140698 WO2024061386A1 (zh) 2023-07-11 2023-12-21 一种基于高精度时钟采样的转子动平衡检测方法

Country Status (2)

Country Link
CN (1) CN116929635A (zh)
WO (1) WO2024061386A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116929635A (zh) * 2023-07-11 2023-10-24 唐山学院 一种基于高精度时钟采样的转子动平衡检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138230A (ja) * 1986-11-29 1988-06-10 Anritsu Corp 自動車の振動解析装置
CN112729441A (zh) * 2020-12-21 2021-04-30 唐山学院 一种基于脉冲型流量传感器的高精度流量测量方法
CN113791268A (zh) * 2021-09-17 2021-12-14 西安宏泰时频技术有限公司 一种高频交流电压有效值测量的方法、装置及存储介质
CN114563131A (zh) * 2022-03-21 2022-05-31 江苏大学 一种单测点多滚筒同时动平衡方法和系统
CN115166346A (zh) * 2022-08-11 2022-10-11 张建宏 一种数字化精密电压测量和波形取样的方法
CN115932390A (zh) * 2022-10-26 2023-04-07 中电科蓝天科技股份有限公司 一种电池脉冲充电的高精度数字化测量方法及测量系统
CN116299566A (zh) * 2022-12-06 2023-06-23 南京师范大学 一种基于相位累加器的授时型接收机高精度频率同步方法
CN116929635A (zh) * 2023-07-11 2023-10-24 唐山学院 一种基于高精度时钟采样的转子动平衡检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138230A (ja) * 1986-11-29 1988-06-10 Anritsu Corp 自動車の振動解析装置
CN112729441A (zh) * 2020-12-21 2021-04-30 唐山学院 一种基于脉冲型流量传感器的高精度流量测量方法
CN113791268A (zh) * 2021-09-17 2021-12-14 西安宏泰时频技术有限公司 一种高频交流电压有效值测量的方法、装置及存储介质
CN114563131A (zh) * 2022-03-21 2022-05-31 江苏大学 一种单测点多滚筒同时动平衡方法和系统
CN115166346A (zh) * 2022-08-11 2022-10-11 张建宏 一种数字化精密电压测量和波形取样的方法
CN115932390A (zh) * 2022-10-26 2023-04-07 中电科蓝天科技股份有限公司 一种电池脉冲充电的高精度数字化测量方法及测量系统
CN116299566A (zh) * 2022-12-06 2023-06-23 南京师范大学 一种基于相位累加器的授时型接收机高精度频率同步方法
CN116929635A (zh) * 2023-07-11 2023-10-24 唐山学院 一种基于高精度时钟采样的转子动平衡检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHUI-JUN XV, JIANG ZHI-NONG: "Study on full period re-sampling technology for vibration signal on rotating machinery", JOURNAL OF MECHANICAL & ELECTRICAL ENGINEERING, vol. 28, no. 2, 20 February 2011 (2011-02-20), pages 153 - 156, 161, XP093149950 *

Also Published As

Publication number Publication date
CN116929635A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2024061386A1 (zh) 一种基于高精度时钟采样的转子动平衡检测方法
CN111609790B (zh) 激光偏频锁定中高精度鉴频鉴相信号处理方法与装置
CN109945819B (zh) 一种永磁同步电机转子位置测量方法
CN107356266B (zh) 基于偶倍本征频率锯齿波调制的光纤陀螺本征频率测量方法
WO2021114419A1 (zh) 一种旋转磁电编码器的校准方法、装置及设备
CN107209028B (zh) 分析器装置
CN110108299B (zh) 一种硅微机械陀螺仪标度因数在线自校准系统
CN102645585A (zh) 一种超低频正弦信号相位差的同步快速测量方法及装置
CN111121819B (zh) 硅微陀螺仪振动状态角位移误差测试方法
NO864053L (no) Krets for frembringelse av et flerfaset sinusformet utsignal.
US8327705B2 (en) Frequency modulated micro-gyro signal processing method and device
KR910008826B1 (ko) 고정도 위치 및 속도검출장치
CN101033970A (zh) 光纤陀螺渡越时间测试方法
JP3446031B2 (ja) タイムインターバルカウンタ装置
CN105091789B (zh) 一种高精度测角装置及其安装标定方法
JPS6263885A (ja) 時間幅計測装置
JP3053002B2 (ja) 周波数測定方法及び装置
He et al. High precision measurement of dynamic angular rate for turntable in the calibration application of airborne inertial sensor
CN104089626A (zh) 一种光纤陀螺中整流误差的实时补偿方法
JP2011012993A (ja) 計量装置
Liu et al. Research on a novel high-precision intelligent displacement sensor
CN110672121B (zh) 一种控制力矩陀螺框架动态响应测试方法及系统
US20140107969A1 (en) Frequency-Modulated Micro-Gyro Half-Period Signal Processing Method
JPH0454198B2 (zh)
CN114964312A (zh) 一种基于高动态离心机的惯性器件动态误差指标评估方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867671

Country of ref document: EP

Kind code of ref document: A1