WO2024061225A1 - 一种射频私密治疗仪 - Google Patents

一种射频私密治疗仪 Download PDF

Info

Publication number
WO2024061225A1
WO2024061225A1 PCT/CN2023/119765 CN2023119765W WO2024061225A1 WO 2024061225 A1 WO2024061225 A1 WO 2024061225A1 CN 2023119765 W CN2023119765 W CN 2023119765W WO 2024061225 A1 WO2024061225 A1 WO 2024061225A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
temperature
radio frequency
target
handle
Prior art date
Application number
PCT/CN2023/119765
Other languages
English (en)
French (fr)
Inventor
曲振林
金燕
姜李龙
Original Assignee
南京伟思医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211142910.4A external-priority patent/CN115220496B/zh
Priority claimed from CN202222499498.3U external-priority patent/CN219783542U/zh
Priority claimed from CN202310788849.9A external-priority patent/CN117065204A/zh
Priority claimed from CN202310793524.XA external-priority patent/CN116712674A/zh
Priority claimed from CN202310793569.7A external-priority patent/CN116637296A/zh
Application filed by 南京伟思医疗科技股份有限公司 filed Critical 南京伟思医疗科技股份有限公司
Publication of WO2024061225A1 publication Critical patent/WO2024061225A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation

Definitions

  • the present invention relates to the technical field of medical equipment, specifically a radio frequency private treatment instrument.
  • Basin rehabilitation passive treatment methods mainly include energy source treatment technologies such as electrical stimulation, magnetic stimulation, radio frequency, and ultrasound.
  • Temperature sensors are currently used for temperature collection and control. Since heat is transferred layer by layer from the outside to the inside, there is a thermal gradient difference, but it can be regarded as a constant after thermal stability; the electrode sheet and the electrode (except the electrode sheet The outer plastic part) accumulates heat, causing the temperature sensor to delay the acquisition of the electrode surface temperature; in addition, the temperature sensor collects the skin surface temperature, but the maximum heat (or the highest temperature point) is the subcutaneous tissue, because when radio frequency acts on the target tissue , it is the high-speed oscillation or rotation of charged ions inside the target tissue that generates heat, so the internal temperature of the target tissue is higher than the surface temperature, which leads to inaccurate temperature collection, resulting in burns to the target tissue; existing temperature sensors are generally located on the back of the treatment electrode, and the temperature The collection is conducted from the surface of the target tissue to the treatment electrode, and then from the treatment electrode to the temperature sensor.
  • the human hand needs to hold the handle all the time, including intermittent rotating treatment head, forward and backward feeding treatment head, multi-tilt angle rotating treatment head or pressing treatment head. It will be tiring to hold the handle manually for a long time, and you need to maintain the same posture. It is also more difficult; in addition, it is difficult to manually control the specific angle, depth, position and pressing force of rotation, and cannot achieve high accuracy. It relies entirely on subjective judgment, and the same operator's single treatment process lengthens over time.
  • the outer diameter of the electrode treatment head of current products on the market is fixed and cannot match patients with different sized cavities, resulting in poor patient experience during treatment and poor treatment effects. If we produce a variety of specifications and sizes according to customer needs, Cavalry treatment equipment will increase costs for medical companies.
  • a radio frequency private treatment instrument including a host and a treatment device.
  • the treatment device includes a treatment electrode.
  • the treatment electrode includes a treatment head, a rotating body, and a handle.
  • a sleeve is rotatably connected to the inner cavity of the top of the rotating body.
  • the inside of the rotating body is provided with a
  • the driving device of the sleeve transmission connection, the driving device and the handle are respectively connected to the host through cables.
  • the bottom of the rotating body is equipped with an assembly port.
  • the assembly opening is used to fix the rotating body in the on-site environment of treatment.
  • the inner side of the sleeve It is movably connected with the handle, and the side of the handle located in the sleeve is movably connected with the treatment head.
  • the treatment head, handle and sleeve are respectively arranged coaxially.
  • the invention also introduces a temperature control method for segmented radio frequency treatment equipment, which includes:
  • Step 1 Establish a temperature control model for radiofrequency treatment equipment, including
  • Step 2 Perform segmented temperature control simulation based on the radio frequency temperature control model and the set target temperature to obtain the stage temperature control parameter value of the radio frequency treatment device;
  • Step 3 The radiofrequency treatment equipment performs segmented work according to the stage temperature control parameter values.
  • the invention also relates to a temperature control device for segmented radio frequency treatment equipment, which device includes:
  • Communicator the communicator is used to obtain data
  • a processor coupled to the communicator, for:
  • the radiofrequency treatment equipment works in stages according to the stage temperature control parameter values.
  • the invention also introduces a follow-up radio frequency private treatment device, which includes:
  • a workbench the workbench is provided with treatment electrodes
  • the treatment bed is used for patient treatment.
  • a visual camera is installed on the side of the workbench close to the treatment bed. The visual camera is used to detect the position coordinates of the treatment target and the axis direction of the patient's treatment cavity.
  • the treatment electrode is inserted into Treatment is performed in the treatment cavity.
  • the invention also introduces a control method for a follow-up radio frequency private therapy device, which includes the following specific steps:
  • Step 1 Select the target location through the identification mechanism
  • Step 2 Control the displacement mechanism to move the treatment electrode to the target position according to the target position
  • Step 3 When the target position changes, the follow-up algorithm is used to calculate and control the displacement mechanism to follow the target position to achieve automatic follow-up treatment.
  • the recognition mechanism uses a visual camera
  • the displacement mechanism uses a roller assembly plus a mechanical arm.
  • Step 1 The vision camera acquires the image of the patient's treatment area in real time, finds the treatment target, and uses the vision camera to determine whether the treatment target has moved;
  • Step 2 The vision camera outputs the change information of the treatment target coordinates and normal direction to the control and communication module;
  • Step 3 After processing the information input by the vision camera, control the roller assembly to clamp the treatment electrode and move it, and then feed it back to step 1 for real-time shooting by the vision camera for comparison, and then recycle the above steps to achieve dynamic adjustment.
  • the identification mechanism uses the force sensor built into the treatment electrode, and the displacement mechanism uses a robotic arm.
  • the specific steps are as follows:
  • the force sensor obtains the force and torque of the treatment electrode in the x, y, and z axes of the rectangular coordinate system in the cavity in real time, and transmits them to the control system through the communication mechanism;
  • the system processes the output results of the force sensor and calculates the changes in the entrance coordinates of the cavity and the direction of the cavity axis when the patient moves;
  • the displacement mechanism is controlled to control the movement of the treatment electrode.
  • step S2 If yes, continue the real-time detection of the force sensor in step S2, and repeat the dynamic adjustment of the force and torque changes of the force sensor in multiple directions and angles in steps S3-6;
  • step S5 If not, return to step S5 to control the movement of the treatment electrode.
  • control method for the servo force control system of the mechanical arm is as follows:
  • D(q) is an n ⁇ n order positive definite inertia matrix, are n ⁇ n order centrifugal and Coriolis force terms;
  • the PID algorithm of the servo system is used to make the system have better speed and acceleration performance.
  • the tachometer signal is introduced as speed feedback to directly form an analog speed loop, and a high-precision circular induction synchronizer and a digital conversion device form a digital speed loop.
  • Angular position servo loop (Yd is the frame reference angular position input model, ⁇ is the output angular position signal).
  • the target cavity introduction method for robot-guided treatment electrodes includes the following steps:
  • ⁇ 1 is a rotation angle of the first movable joint
  • ⁇ 2 is a rotation angle of the second movable joint
  • ⁇ 3 is a rotation angle of the third movable joint
  • ⁇ 4 is the distance between the normal line of the target cavity and the horizontal plane. intersecting acute angles
  • ⁇ 1 is calculated based on ⁇ 3 and ⁇ 2 , and based on the same principle, the corresponding rotation angles ⁇ 10 , ⁇ 20 , ⁇ 30 of the three active joints when the end P of the introduction instrument enters the preset position along the normal direction of the target cavity are calculated, and the difference calculation is performed with the primary rotation angles of the three active joints to obtain the corresponding secondary rotation angles ⁇ 11 , ⁇ 22 , ⁇ 33 ;
  • the three movable joints are driven to move and introduce the end P of the instrument to overlap with the first end C of the target cavity and introduce it into the target cavity.
  • the invention also introduces a multi-means combined private treatment device, which includes a robotic arm, a treatment handle electrode connected to the tail end of the robotic arm, and a controller.
  • the robotic arm is equivalent to three movable joints
  • the treatment handle electrode is equivalent to the introduction instrument; among them, the first movable joint is equivalent to the first arm of the robotic arm, and the second movable joint is equivalent to the second arm of the robotic arm.
  • the third movable joint is equivalent to the third arm of the mechanical arm.
  • the first arm and the trolley are connected through a rotating shaft with a motor. The same connection method is used for the connection between the second arm and the third arm and the connection between the third arm and the treatment handle motor.
  • the multi-method private treatment device also includes a treatment head and a handle.
  • the treatment head and the handle are detachably connected.
  • the handle includes a handle shell and a transmission component, a driver, and a circuit board installed in the handle shell.
  • the input end of the handle shell is provided with a There is a handle harness connected to the circuit board.
  • the circuit board is electrically connected to the driver through lines.
  • the output end of the driver is fixedly connected to the transmission component, and the transmission component is transmission connected to the treatment head.
  • the treatment electrode includes a treatment head, a rotary body, a handle and a main machine.
  • a sleeve is rotatably connected to the inner cavity of the top of the rotary body.
  • a driving device connected to the sleeve is provided inside the rotary body. The driving device and the handle pass through The cable is connected to the host.
  • the bottom of the rotating body is provided with an assembly port. The assembly port is used to fix the rotating body in the on-site treatment environment.
  • the inner side of the sleeve is movably connected to the handle, and the side of the handle located in the sleeve is connected to the The treatment head is movablely connected, and the treatment head, handle and sleeve are respectively arranged coaxially.
  • the present invention also introduces an intelligent pelvic floor automated treatment device;
  • the automated treatment device includes a treatment device, a treatment The device is used to determine the treatment plan and emit energy for treatment;
  • the treatment device is electrically connected to the intelligent motion drive module and the treatment execution module, and the intelligent motion drive module includes a clamping mechanism, a control circuit system and a multi-dimensional and multi-angle drive mechanism;
  • the clamping mechanism is detachably connected to the treatment execution module, and the multi-dimensional and multi-angle drive mechanism is connected to the clamping mechanism;
  • the control circuit system is used to control the multi-dimensional and multi-angle drive mechanism to drive the treatment execution module to perform multi-dimensional and multi-angle movements.
  • the beneficial effects of the present invention include:
  • the present invention uses a combination of a robotic arm and a visual camera to monitor the patient's posture in real time through the visual camera, calculate the axis direction and coordinate changes of the cavity, and control the treatment electrode through the robotic arm, so that the treatment cavity can be accurately determined in real time.
  • a robotic arm and a visual camera to monitor the patient's posture in real time through the visual camera, calculate the axis direction and coordinate changes of the cavity, and control the treatment electrode through the robotic arm, so that the treatment cavity can be accurately determined in real time.
  • Following the movement of the patient's posture can improve the patient's sense of treatment, and the treatment electrode follows the movement. Therefore, it effectively solves the problem of inconvenient fixation of the treatment electrode, and thus enables the visual positioning system to accurately determine the posture of the treatment cavity in real time. Following movement can improve the patient's therapeutic experience, and following movement of the treatment electrode can greatly improve the treatment effect.
  • the present invention uses a combination of a robotic arm and a sensor.
  • the sensor obtains the force and torque change values of the treatment electrode in the x, y, and z-axis directions of the rectangular coordinate system in the cavity in real time, and outputs the change values of the force and torque to the system.
  • the PID algorithm is used to control the robotic arm to move according to the movement trend of the cavity until the force and torque return to zero. In the initial static state, the force and torque of the sensor are cleared. Therefore, the problem of inconvenient fixation of the treatment electrode is effectively solved. This further enables hand-held treatment, frees the operator's hands, improves hospital treatment efficiency, and eliminates the need for the patient to remain immobile in the lithotomy position, alleviating the patient's waist discomfort.
  • the present invention uses the temperature characteristics of biological tissue impedance to indicate the temperature of subcutaneous tissue, thereby realizing non-invasive method to collect the internal temperature of target tissue, and real-time control of the output power parameters of radio frequency treatment equipment, making subcutaneous tissue treatment more effective and safer; using biological transmission
  • the thermal model introduces factors such as blood perfusion rate, which can obtain more accurate energy output values through active calculation; combined with the collected temperature sensor and biological tissue impedance data, the treatment temperature is more reliable; staged control, based on the biological tissue at each stage
  • the heating characteristics set the temperature control parameter values at each stage, making treatment safer without safety risks such as overheating; the temperature maintenance stage uses PID algorithm and temperature maintenance boundary power to make the treatment temperature more accurate and stable.
  • the present invention uses the rotating body to fix the rotating body in the on-site treatment environment through the assembly port, and then drives the sleeve to rotate inside the rotating body through the driving device, and then the sleeve treatment head and the handle are rotated together, and the output rotation is
  • the effect acts on the female pelvic floor treatment area, thereby avoiding privacy issues during manual operation. Because this intelligent rotating device can automatically start, stop and rotate under the electrical connection of the driving device, thereby improving the treatment effect and feeling, compared with using Manual operation, more precise treatment and easier control.
  • the present invention drives the treatment execution module to perform multi-dimensional and multi-angle movements by controlling the intelligent motion drive module.
  • the invention intelligently controls the depth, position and pressing force with high accuracy; even if the treatment is continued for a long time, there will be no deviation, the treatment is accurate and consistent, and the treatment effect is guaranteed to be reliable. Sex, and at the same time, it has a good protective effect on the user's private parts.
  • the present invention controls the three movable joints to rotate twice to position the introduction instrument first with the target cavity and then introduce it. Compared with the existing manual introduction, it does not require labor and achieves precise positioning, ensuring the efficiency of the introduction while also reducing the cost. Introduce discomfort; the private treatment device that combines multiple methods replaces the manual hand-held treatment electrode introduction, which can improve the introduction efficiency and ensure the accuracy of the introduction while reducing the discomfort of the person being introduced. It can also satisfy the relevant personnel's consideration of other aspects during the introduction process. matter, and the improvement of introduction accuracy can also improve the treatment effect.
  • Figure 1 is a schematic structural diagram of a radio frequency private therapy device introduced in Embodiment 1 of the present invention.
  • Figure 2 is a flow chart of the visual motion module in the follow-up control method introduced in Embodiment 1 of the present invention
  • Figure 3 is a follow-up control flow chart in the follow-up control method introduced in Embodiment 2 of the present invention.
  • FIG. 4 is a block diagram of functional modules in the servo system introduced in Embodiment 1 of the present invention.
  • FIG5 is a block diagram of a servo system of a follower device according to Embodiment 1 of the present invention.
  • Figure 6 is a schematic flow chart of a temperature control method for segmented radio frequency treatment equipment according to Embodiment 3 of the present invention.
  • Figure 7 is a schematic diagram of the connection structure between the electrode and the temperature sensor based on Figure 6;
  • Figure 8 is a system block diagram based on the radio frequency treatment equipment in Figure 6;
  • Figure 9 is a schematic diagram of the external structure of the transmission treatment device introduced in Embodiment 4 of the present invention.
  • FIG10 is a schematic diagram of the internal structure of the transmission treatment device introduced in Example 4 of the present invention.
  • Figure 11 is a schematic structural diagram of the combination of the transmission component and the driver in Embodiment 4.
  • Figure 12 is a schematic diagram of the internal structure of Figure 11;
  • Figure 13 is a schematic diagram of the exploded structure of Figure 11;
  • FIG14 is a schematic diagram of the connection structure between the treatment head and the handle in Example 4.
  • Figure 15 is a schematic diagram of the connection structure between the driver and the treatment head in Embodiment 5;
  • FIG16 is a schematic diagram of the connection structure between the driver and the treatment head in another viewing angle in Example 5;
  • Figure 17 is a schematic diagram of the exploded structure of the driver and treatment head in Embodiment 5;
  • Figure 18 is a schematic diagram of the installation structure in Embodiment 6;
  • Figure 19 is a schematic structural diagram during implementation in Embodiment 6;
  • Figure 20 is a schematic diagram of the overall structure of Embodiment 7 of the present invention.
  • Figure 21 is a schematic diagram of the internal structure of the rotating body based on Figure 20;
  • Figure 22 is a schematic diagram of the external structure of the rotating body based on Figure 20;
  • Figure 23 is a schematic diagram of the working principle based on Figure 20;
  • Figure 24 is a schematic structural diagram of the combined treatment head and handle based on Figure 20;
  • Figure 25 is a schematic structural diagram of the installation end of the treatment head based on Figure 20;
  • Figure 26 is a schematic structural diagram of the installation end of the handle based on Figure 20;
  • Figure 27 is a schematic diagram of the internal structure of the treatment head, rotary body and handle after installation based on Figure 20;
  • Figure 28 is an enlarged view of the structure of part A in Figure 27;
  • Figure 29 is a structural schematic diagram of the treatment electrode fixed on the bracket.
  • Figure 30 is a schematic structural diagram of the treatment electrode fixed on the treatment bed
  • Figure 31 is a system block diagram of an intelligent pelvic floor automated treatment device introduced in Embodiment 9 of the present invention.
  • Figure 32 is a schematic diagram of the partial structure of the combined arm in an embodiment of the present invention.
  • Figure 33 is a schematic structural diagram of the entire combined arm in an embodiment of the present invention.
  • Figure 34 is a schematic structural diagram of the combined arm in use according to the embodiment of the present invention.
  • Figure 35 is a schematic structural diagram of different treatment actuators after installation in the embodiment of the present invention.
  • Figure 36 is a schematic diagram of the comparative structure before and after driving the first linear drive assembly in the embodiment of the present invention.
  • Figure 37 is a schematic structural diagram of a robotic arm in an embodiment of the present invention.
  • Figure 38 is a schematic flow chart of the control method of the automated treatment device of the present invention.
  • Figure 39 is a schematic flow chart of the control method of the automated treatment device of the present invention during treatment
  • Figure 40 is a flow chart of a method for introducing a target cavity introduced in Embodiment 10 of the present invention.
  • Figure 41 is a schematic diagram based on Figure 40 in which the end P of the introduction instrument overlaps the first end C of the target tract;
  • Figure 42 is a schematic diagram of the introduction of the end P of the instrument along the normal direction of the target cavity for a distance n based on Figure 40;
  • Figure 43 is a schematic structural diagram of a multi-method private treatment device introduced in Embodiment 11 of the present invention.
  • Figure 44 is a schematic diagram of the working process of the multi-method combined private treatment device based on Figure 43;
  • Figure 45 is a schematic diagram of the internal structure of the fully-fitting treatment device introduced in Embodiment 12 of the present invention.
  • Figure 46 is an enlarged view of part A in Figure 45;
  • FIG47 is a schematic diagram of the internal structure of the electrode treatment head based on FIG45;
  • Figure 48 is an enlarged view of part B in Figure 47;
  • Figure 49 is a schematic structural diagram of the electrode housing based on Figure 45;
  • Figure 50 is a schematic diagram of the exploded structure of the electrode treatment head based on Figure 45;
  • FIG51 is a schematic diagram of the external structure based on FIG45;
  • Figure 52 is an enlarged view of part C in Figure 51;
  • Figure 53 is a schematic diagram of the installation position of the sealing cover in the electrode treatment head based on Figure 45.
  • Control and communication module 2. Robotic arm; 3. Treatment cavity; 4. Treatment bed; 5. Vision camera; 6. Treatment electrode; 2-1. Treatment head; 2-11. Treatment Head shell; 2-12, treatment head electrode; 2-13, assembly slot; 2-14, microneedle module; 2-2, handle; 2-21, switch button; 2-22, transmission components; 2-221, Active connecting parts; 2-222, transmission part shell; 2-223, driven connection piece; 2-224, transmission part end cover; 2-225, fastener; 2-226, push rod; 2-227, convex Starting; 2-23. Driver; 2-24. Circuit board; 2-25. Handle housing; 2-26. Handle harness; 2-27. Hand-held part; 2-3. Adjustment bracket; 2-31. Clamp; 2 -32.
  • Insertion Installation indicator mark; 6-34 induction block; 6-4, host; 5-1, treatment equipment; 5-11, interactive system; 5-12, control system; 5-13, energy source emission system; 5-2 , Intelligent motion drive module; 5-21, clamping mechanism; 5-22, control circuit system; 5-23, multi-dimensional and multi-angle drive mechanism; 5-3, treatment execution module; 5-4, combination arm; 5- 41. Horizontal moving component; 5-411, fixed frame; 5-412, first gear; 5-413, first motor; 5-414, slider; 5-42, protective cover; 5-43, fixed shell; 5-44. First linear drive assembly; 5-45. Rotary drive assembly; 5-451. Second motor; 5-452. Second gear; 5-453. Third gear; 5-46. Push ring; 5-47. Limit ring; 5-5.
  • Pipe joint 3-111, pipe joint sealing ring; 3-112, contact PCBA; 3-113, electrode end cover; 3-114, shell hard rubber; 3-115, flexible corrugated connector; 3-116, electrode sheet; 3-117. Temperature sensor; 3-2. Handle; 3-201. Handle shell; 3-202. Handle end cover; 3-203. Handle PCBA; 3-204. Cable; 3-205. Handle air pipe; 3 -206, end cap air pipe joint; 3-207, wing; 3-208, card slot.
  • this embodiment introduces a radio frequency private therapy device.
  • the treatment head used for female pelvic floor treatment generally adopts the method of hand-held shooting handle + radio frequency treatment head.
  • the human hand needs to hold the handle all the time and rotate the handle intermittently. It will be tiring for the human hand to hold the handle for a long time, and it is difficult to maintain the same posture.
  • the specific angle of the human hand rotation is difficult to judge and control, and it is difficult to operate for a long time. Human hands inevitably shake, which affects the treatment experience and effect; moreover, the method of hand-held handle plus treatment head does not protect the patient's privacy very well.
  • this embodiment introduces a treatment electrode that can rotate.
  • the treatment electrode includes a treatment head 6-1, a rotating body 6-2, a handle 6-3 and a main unit 6-4.
  • a sleeve 6-22 is rotatably connected to the top inner cavity of the rotating body 6-2.
  • the driving device and the handle 6-3 are respectively connected to the host 6-4 through cables.
  • the driving device drives the sleeve 6-22 inside the rotating body 6-2. Rotate.
  • the rotating body 6-2 includes a housing 6-21 and a motor 6-25, and the sleeve 6-22 is installed at the top of the inner cavity of the housing 6-21 through a bearing 6-23.
  • the installation grooves can be respectively opened on both sides of the inner cavity top of the housing 6-21, and then the drive device and other components are installed in the grooves.
  • the bearings 6-23 are first fixed on both sides of the sleeve 6-22, and then the sleeve 6-22 is placed on the top of the inner cavity of the housing 6-21, and the bearings 6-23 are limited by the installation groove.
  • the outer periphery of the sleeve 6-22 is fixed with a driven gear 6-24, and the motor 6-25 is installed at the bottom of the inner cavity of the housing 6-21.
  • the motor 6-25 constitutes the drive device of the sleeve 6-22, and the output end of the motor 6-25 is connected to the driving gear 6-26, and the driving gear 6-26 is meshed with the driven gear 6-24.
  • Motor 6-25 adopts a servo, model RX-U50H-M, which can realize 360° forward and reverse rotation. During the treatment, the rotation angle can be realized in forward and reverse directions. The rotation angle is accurate and adjustable.
  • the treatment duration can be set to turn on and off the motor 6-25 according to needs, so that the treatment duration is accurate and convenient.
  • the host 6-4 performs data processing through the internal control system and controls the rotation of the motor 6-25 in the rotating body 6-2.
  • the driving gear 6-26 is fixed to the rotating shaft of the motor 6-25. When the motor 6-25 rotates, it drives the active gear 6-25.
  • the gear 6-26 rotates, the driving gear 6-26 meshes with the driven gear 6-24 for transmission, the driven gear 6-24 is fixed to the sleeve 6-22, and the rotating body 6-22 drives the handle 6-3 and the treatment head 6- 1 spin.
  • a display panel is installed on the top of the host 6-4.
  • the screen interface will Displays the treatment module targeted by handle 6-3.
  • the intelligent plan can only be selected after the handle 6-3 is transferred to the device of the intelligent rotating body 6-2, the host 6-4 senses the intelligent device, and the intelligent treatment plan is displayed on the screen interface.
  • the interface After entering the smart plan of the host 6-4, there are corresponding indication treatment options on the interface, and the treatment plan for each indication has a preset treatment plan.
  • the interface will display the corresponding treatment time, temperature feedback and electrical control data.
  • a temperature feedback device is installed in the treatment head 6-1, and the intelligent rotation scheme frees the doctor's hands in clinical practice.
  • the host 6-4 When this treatment is selected on the host 6-4, the host 6-4 will start treatment according to the set treatment plan.
  • the host 6-4 emits radio frequency energy, and emits therapeutic energy through the treatment head 6-1 to treat the vagina.
  • Treatment indications include: vaginal laxity, sexual dysfunction, stress urinary incontinence, nocturia, uterine/vaginal vault prolapse, posterior vaginal wall bulge, anterior vaginal wall bulge, chronic pelvic pain and other pelvic floor diseases.
  • the transmission ratio of the driven gear 6-24 and the driving gear 6-26 is 1:1, thereby driving the sleeve 6-22 to rotate at the same level, and the motor 6-25
  • the output shaft rotates one circle, driving the driving gear 6-26 to rotate one circle, the driving gear 6-26 drives the driven gear 6-24 to rotate one circle, and then drives the sleeve 6-22 to rotate one circle.
  • the outer bottom of the rotating body 6-2 is provided with an assembly port 6-27.
  • the assembly port 6-27 is used to fix the rotating body 6-2 in the on-site environment of treatment. Please refer to Figure 29. It can be directly fixed on the bracket and then fixed in the on-site environment of the treatment. Please refer to Figure 30.
  • a fixed structure that is fixed to the treatment bed in the on-site environment can also be installed inside the assembly port 6-27.
  • the fixed structure can be a fixed screw, a fixed bracket, a fixed base, a telescopic rod, a flip plate and other structures, or it can be a movable and adjustable bracket, so as to facilitate the adjustment of the height of the device during treatment and the output direction of the treatment.
  • the fixing structure can be simpler, such as installing a locknut inside the assembly port 6-27, and the rotating body 6-2 is used to connect the threaded rod on the treatment bed in the on-site environment through the locking nut, and the rotating body 6-2 is connected to the threaded rod on the treatment bed in the field environment. 6-2 is fixed on the treatment bed, and finally the treatment head 6-1 and handle 6-3 are installed, and treatment can be performed.
  • the inner side of the sleeve 6-22 is movably connected to the handle 6-3, and the working end of the handle 6-3, that is, the side of the handle 6-3 located in the sleeve 6-22 is movably connected to the treatment head 6-1.
  • the head 6-1, the handle 6-3, and the sleeve 6-22 are respectively arranged coaxially to facilitate the output of the rotation effect on the female pelvic floor treatment area.
  • the driving device drives the sleeve 6-22 to rotate inside the rotating body 6-2, and then The sleeve 6-22, the treatment head 6-1 and the handle 6-3 rotate together, and the output rotation effect is applied to the female pelvic floor treatment area, thereby avoiding privacy issues during manual operation, because the instrument of this embodiment is operated by The driving device connected to the main unit 6-4 can automatically start, stop and rotate when electrically connected, thereby improving the treatment effect and experience. Compared with manual operation, it is more precise in treatment and easier to control.
  • the inner cavity outer wall of the sleeve 6-22 is evenly provided with limit strips 6-221.
  • the limit strips 6-221 can be provided in one or more groups as needed, and each group is provided with one or more. When the two are inserted and fixed, the limit is firmly prevented from loosening, which is convenient for rotation treatment.
  • a limit ring 6-223 is provided on the side of the inner cavity of the sleeve 6-22 close to the limit strip 6-221 to limit the depth of the inserted handle 6-3.
  • the outer peripheral surface of the handle 6-3 is evenly provided with slots 6-32 that match the limit strips 6-221.
  • the handle 6-3 is inserted and connected to the sleeve 6-22 through the cooperation of the limit strip 6-221 and the slot 6-32.
  • the installation and fixing method is simple, which is convenient for saving treatment time.
  • a sensing block 6-34 is installed inside the installation end of the handle 6-3 close to the treatment head 6-1, and a sensing hole is provided in the inner cavity of the sleeve 6-22. 6-222, an induction switch 6-28 is installed inside the induction hole 6-222, and the induction switch 6-28 is inductively connected to the induction block 6-34, so as to determine whether the handle 6-3 is inserted into the sleeve 6-22, or whether Is it inserted in place? Further, the induction block 6-34 is a magnet, and the induction switch 6-28 is a Hall sensor to perform displacement measurement.
  • the induction switch 6-28 on the instrument of this embodiment sends out a signal under the action of the magnet in the handle 6-3 to recognize the handle. Its working principle is: when the handle 6-3 is inserted, the induction switch 6-28 senses the approach of the induction block 6-34, and the Hall sensor in the housing 6-21 converts the change in the magnetic field into an electrical signal output, which is fed back to the processing Center, the insertion of handle 6-3 is recognized, and the magnetic field has the greatest influence when handle 6-3 is inserted into the designated position.
  • the induction device composed of the induction switch 6-28 and the induction block 6-34 mainly senses that the handle 6-3 is installed in the rotating body 6-2, so as to prepare for pelvic floor treatment.
  • the installation end of the handle 6-3 is provided with an insertion indicator mark 6-33, which facilitates correct insertion into the rotating body 6-2.
  • the protective cover 6-11 is provided with a rotation indicator mark 6-33. 14. Marked to facilitate correct installation to handle 6-3.
  • a connector 6-12 connected to the handle 6-3 is provided on the side of the treatment head 6-1 away from the treatment end.
  • a pin hole 6-13 is provided on the inner wall of the connector 6-12.
  • a fixing pin 6-31 matching the pin hole 6-13 is provided inside the connection end of the handle 6-3 close to the treatment head 6-1.
  • the handle 6-3 is connected to the treatment head 6-1 through the matching of the pin hole 6-13 and the fixing pin 6-31. After the treatment head 6-1 is inserted into the handle 6-3 according to the position of the rotation indication mark 6-14, it is rotated in a specified direction by a fixed angle. The two fixing pins 6-31 rotate to the set position, and the treatment head 6-1 and the handle 6-3 are locked.
  • the treatment head 6-1 and the handle 6-3 can also be installed and used separately by hand.
  • the pin holes 6-13 can be set in an oblique shape according to the direction of rotation, and the fixing pins 6-31 are also arranged in an oblique strip shape, so that they can be directly screwed in during rotation instead of needing to be inserted.
  • This assembly will be more convenient. It is convenient and will not cause looseness during rotation treatment.
  • the treatment head 6-1 and the handle 6-3 are fixed by rotation and positioning, and are detachably connected. After treating the female pelvic floor, the treatment head 6-1 can be rotated or pulled off the handle 6-3 for replacement to avoid cross-infection caused by repeated use.
  • the non-treatment end of the treatment head 6-1 is provided with a shield 6-11, and the shield 6-11 is an umbrella-shaped curved surface structure.
  • the distance into the female pelvic floor can be judged through the shield 6-11, and the maximum distance will be limited by the shield 6-11 to avoid accidents caused by improper operation.
  • This embodiment solves the problem of position control of cavity treatment electrodes in the prior art by providing a follow-up radio frequency private treatment device.
  • a visual or sensor positioning system the posture of the treatment cavity can be accurately determined in real time and followed by movement, thereby improving the patient's treatment sensation.
  • the treatment electrode follows the movement, and the technology liberates the operator's hands, thereby improving the hospital's treatment efficiency.
  • the patient does not need to maintain the lithotomy position and cannot move, thereby alleviating the patient's waist discomfort and greatly improving the treatment effect.
  • This embodiment introduces a follow-up radio frequency private treatment device, which includes a workbench, and the workbench is provided with treatment electrodes 6.
  • the treatment bed 4 is used for patient treatment.
  • a visual camera 5 is provided on the side of the workbench close to the treatment bed 4. The visual camera 5 is used to detect the position coordinates of the treatment target point and the axis of the treatment cavity 3 of the patient. direction, the treatment electrode 6 is inserted into the treatment cavity 3 for treatment.
  • a control and communication module 1 is provided in the workbench.
  • the control and communication module 1 is used to operate the control and communication mechanism.
  • a mechanical arm 2 is provided above the workbench. The end of the mechanical arm 2 is provided with a treatment electrode 6, wherein A force sensor is provided at the end of the treatment electrode 6 to determine the force and torque in the treatment cavity 3. The mechanical arm 2 is used to adjust the specific treatment position of the treatment electrode 6.
  • a movement component 7 is provided at the bottom of the workbench.
  • the movement component 7 adjusts the position of the workbench according to the points measured by the vision camera 5 .
  • the robotic arm 2 adopts a six-axis structure, which can adjust the treatment electrode 6 at multiple angles.
  • the force sensor at the end of the treatment electrode 6 can measure the force and torque in the treatment cavity 3 in the directions of the rectangular coordinate system x, y, and z axes.
  • this embodiment also introduces a follow-up radio frequency private treatment control system, including:
  • Computing processing module identification mechanism, displacement mechanism, servo mechanism and communication mechanism.
  • the computing processing module connects and transmits signals with the identification mechanism, displacement mechanism and servo mechanism through the communication mechanism.
  • the computing processing module moves the servo mechanism through the follow-up algorithm. The path is calculated and transmitted from the communication mechanism to the displacement mechanism for execution.
  • this embodiment also introduces a control method for a follow-up radio frequency private therapy device, including the following specific steps:
  • Step 1 Select the target location through the identification mechanism
  • Step 2 Control the displacement mechanism to move the treatment electrode 6 to the target position according to the target position
  • Step 3 When the target position changes, the follow-up algorithm is used to calculate and control the displacement mechanism to follow the target position to achieve automatic follow-up treatment.
  • the recognition mechanism uses a visual camera 5, and the displacement mechanism uses a roller assembly plus a mechanical arm 2.
  • the specific steps are as follows:
  • Step 1 The vision camera acquires the image of the patient's treatment area in real time, finds the treatment target, and uses the vision camera to determine whether the treatment target has moved;
  • Step 2 The vision camera outputs the change information of the treatment target coordinates and normal direction to the control and communication module;
  • Step 3 After processing the information input by the vision camera, control the roller assembly to clamp the treatment electrode and move it, and then feed it back to step 1 for real-time shooting by the vision camera for comparison, and then recycle the above steps to achieve dynamic adjustment.
  • the robotic arm 2 Combining the robotic arm 2 and the visual camera 5, the patient's posture is monitored in real time through the visual camera 5, the direction and coordinate changes of the cavity axis are calculated, and the robotic arm 2 is controlled to hold the treatment electrode 6 and follow it, eliminating the need for hand-held treatment, freeing the operator's hands, and improving the hospital's Treatment efficiency, the patient does not need to maintain the lithotomy position and cannot move, which relieves the patient's waist discomfort.
  • this embodiment can perform real-time control of the angle and rotation of the motor treatment.
  • the general idea is as follows:
  • the identification mechanism uses the force sensor built in the treatment electrode 6, and the displacement mechanism uses the robotic arm 2.
  • the specific steps are as follows:
  • the force sensor obtains the force and torque of the treatment electrode in the x, y, and z-axis directions of the rectangular coordinate system in the cavity in real time, and transmits it to the control system through the communication mechanism;
  • the system processes the output results of the force sensor and calculates the changes in the entrance coordinates of the cavity and the direction of the cavity axis when the patient moves;
  • step S2 If so, continue the real-time detection of the force sensor in step S2, and repeat the dynamic adjustment of the force and torque changes in multiple directions and angles of the force sensor in step S3-6;
  • step S5 control the treatment electrode to move.
  • control method for the robot arm and the private force control system is as follows:
  • the equation of the n-joint manipulator is:
  • D(q) is an n ⁇ n order positive definite inertia matrix
  • n ⁇ n order centrifugal and Coriolis force terms are the n ⁇ n order centrifugal and Coriolis force terms, and the Lyapunov function is:
  • the servo system PID algorithm is used to make the system have better speed and acceleration performance.
  • the tachometer signal is introduced as speed feedback to directly form an analog speed loop, which is composed of a high-precision circular induction synchronizer and a digital
  • the conversion device forms a digital angular position servo loop (Yd is the frame reference angular position input model, ⁇ is the output angular position signal).
  • the force sensor Combined with the robot arm 2 and the force sensor, the force sensor obtains the x, y, and z axes of the rectangular coordinate system of the treatment electrode 6 in the treatment cavity 3 in real time, and outputs the change values of the force and torque to the calculation processing module, through the PID algorithm Control the robot arm 2 to move according to the follow-up trend until the force and torque return to zero (in the initial stationary state, clear the force and torque of the sensor to zero).
  • the posture of the treatment channel 3 can be accurately determined in real time and followed by movement, which can improve the patient's treatment experience.
  • the treatment electrode 6 can follow the movement, which can greatly improve the treatment effect.
  • Radio frequency technology mainly uses high-frequency current to heat target tissues, coagulate biological tissues, and produce changes in physical and chemical properties to achieve therapeutic purposes. It has been widely used in general surgery. , gynecology, dermatology, plastic surgery, urology and other fields; when performing radiofrequency treatment, the temperature of the target tissue is an important indicator that determines the therapeutic effect; therefore, if the temperature of the target tissue cannot be reached, the therapeutic effect cannot be guaranteed, but if the temperature of the target tissue exceeds If it is high, burns will occur;
  • a temperature sensor as shown in Figure 8
  • 1-1 is a temperature sensor
  • 1-2 is a treatment electrode
  • the temperature sensor is usually placed on the back of the treatment electrode and connected by materials such as high thermal conductivity thermal grease
  • the area in contact with human tissue is the other side, because radio frequency heating is internal heating of the subcutaneous tissue, and the heat is first transferred to the electrode sheet, so that the temperature of the entire electrode sheet rises, and then the heat is transferred to the temperature sensor, and the temperature sensor collects the temperature data and converts it into an electrical signal to transmit to the control system; however, the temperature sensor cannot immediately collect the accurate and real-time target tissue temperature, resulting in target tissue burns, so the simple use of temperature sensors and PID methods to achieve temperature control, temperature detection and control There are large errors, and there are certain safety hazards.
  • This embodiment introduces a temperature control method for a segmented radio frequency treatment device, as shown in Figure 7, including
  • Step 1 Establish a temperature control model for radiofrequency treatment equipment, including
  • the calculation formula of the input energy E value of the radiofrequency treatment equipment is:
  • Equation (2) is a biological heat transfer model, where T is the target temperature, ⁇ 0 is the density of biological tissue, C t represents the specific heat capacity of biological tissue, k represents the thermal conductivity coefficient, w b represents the perfusion rate of blood flow, and C b represents The specific heat capacity of blood flow, T 0 represents the initial blood flow temperature of the heating area, here is the biological body temperature, Q is the biological basic metabolic heat production, which is related to the person's weight, height and age, and can be considered as a constant in a very short time. , E is the input energy of the radiofrequency treatment equipment.
  • Z T is the impedance of biological tissue.
  • f(Z T ) is the power curve function of the radiofrequency treatment equipment
  • N is the gear of the radiofrequency treatment equipment.
  • the value of N is 1-5, that is, N has five gears.
  • E is the input energy of the radiofrequency treatment equipment, and t is the time required to reach T.
  • Step 2 Perform segmented temperature control simulation based on the radio frequency temperature control model and the set target temperature to obtain the stage temperature control parameter values of the radio frequency treatment equipment;
  • the segmented temperature control simulation includes: a rapid heating stage in the first stage of the segmented temperature control simulation, a slow heating stage in the second stage of the segmented temperature control simulation, and a temperature maintenance stage in the third stage of the segmented temperature control simulation. Specifically, is: set the final treatment target temperature of biological tissue to T treat and the initial gear N, the initial temperature is T 0 , set the temperature difference t 1 , the value is 0 ⁇ (T treat -T 0 ), and the temperature allowable error t t ;
  • the temperature changes from temperature T 0 to T treat -t 1 ;
  • the temperature is maintained at T treat ;
  • the temperature sensor on the side of the treatment electrode is used to collect the tissue surface temperature T C (R), as shown in Figure 8, where 1-1 is the temperature sensor and 1-2 is the treatment electrode; the system of radio frequency treatment equipment during radio frequency treatment
  • the block diagram is shown in Figure 9, including treatment electrodes.
  • the treatment electrodes are connected to the radio frequency board.
  • the radio frequency board is connected to the switching power supply 1 and the control board.
  • the control board is connected to the temperature sensor and the switching power supply 2.
  • the characteristic function of the temperature sensor is:
  • the B value is the material constant of the selected temperature sensor
  • T C (R) is the temperature collected by the internal temperature sensor of the electrode in the radiofrequency treatment equipment
  • R 0 is the resistance value of the electrode at 0°C
  • R is T The resistance value of the electrode at temperature.
  • the final treatment target temperature of the biological tissue is set to T treat and the initial gear N
  • the initial temperature is T 0
  • the set temperature difference t 1 is 0 ⁇ (T treat -T 0 )
  • the temperature allowable error t t additionally, formula (4) can determine Regarding the relationship function between N and t, you can set the value of N, and the value of N is an integer; or you can set the value of t to calculate the value of N, and when the calculated value of N is a non-integer, round up, for example, calculate the value of N If it is 4.1, then the N value after rounding will be 5; if the calculated N value is 1.9, then the N value after rounding will be 2.
  • the first stage of segmented temperature control simulation heat up from the initial temperature T 0 to T treat -t 1 and obtain the temperature data of T C (R) in real time.
  • T C (R) value reaches the first stage target temperature T treat -t 1 , stop heating; according to the radio frequency temperature control model, calculate the P(Z T ) and t S1 values of the radio frequency treatment equipment when it is heated to the target temperature of T treat -t 1 , and divide P(Z T ), t
  • the S1 value is compared with the empirical value to determine the actual working temperature control parameter value of the radiofrequency treatment equipment in the first stage; specifically, when the target temperature T is determined to be T treat -t 1 , it can be obtained according to Equation (2)
  • the value of E is obtained according to formula (1).
  • f(Z T ) is obtained according to formula (3).
  • P( Z T ) by substituting the E value and P(Z T ) value into equation (4), the value of t S1 can be obtained, and then the radio frequency at the target temperature of T treat -t 1 can be calculated according to the temperature control model.
  • the P(Z T ) and t S1 values of the treatment equipment are determined based on the P(Z T ), t S1 values and relevant experience values to determine the temperature control parameter values of the radio frequency treatment equipment in the first stage; the relevant experience values are to ensure The data of the radio frequency treatment equipment when the machine is running normally and the human body can receive treatment.
  • P j is the empirical output power
  • t j is the empirical output time
  • the empirical data obtained through many experiments take P j1 and t j1 as related data;
  • the Z T value and T C (R) value are collected in real time during this process.
  • the first stage is ended when the T C (R) value reaches T treat -t 1 first, and then the current When Z T reaches Z T-t1 , the first stage of heating process ends.
  • the output power is set to P(Z T ) according to the equation calculation.
  • the treatment time reaches t S1 , the first stage of heating process ends.
  • the second stage of segmented temperature control simulation increase the temperature from T treat -t 1 to T treat , and obtain the temperature data of T C (R) in real time.
  • T C (R) reaches the target temperature T treat of the second stage when, stop heating; control according to the temperature model, calculate the P(Z T ) and t S2 values of the radiofrequency treatment equipment when the temperature is raised to the target temperature of Ttreat , compare and judge the P(Z T ), tS2 values with the empirical values, and determine the second stage of radiofrequency treatment.
  • the actual working temperature control parameter value of the equipment specifically, the value of E can be obtained according to formula (2), and Z T can be obtained according to formula (1).
  • f (Z T ) can be obtained according to formula (3)
  • f (Z T ) the value of P(Z T ) is obtained according to equation (5) when N is determined in the second stage.
  • t can be obtained
  • the value of S2 is then used to calculate the P(Z T ) and t S2 values of the radio frequency treatment equipment when the temperature is raised to the target temperature of T treat based on the temperature control model.
  • the first value is determined based on the P(Z T ), t S2 values and related empirical values.
  • Temperature control parameter values of the two-stage radiofrequency treatment equipment for example, take P j2 and t j2 as relevant data, where P j2 is the output power threshold and t j2 is the output time threshold. This value is obtained through experience in many experiments. data;
  • the third stage of segmented temperature control simulation the temperature is maintained at T treat , and the temperature data of T C (R) is obtained in real time.
  • P(Z T ) is calculated using the PID algorithm, specifically:
  • ⁇ T n is the difference between the current target temperature and the real-time temperature
  • K p is the proportional coefficient
  • K i is the integral coefficient
  • K d is the differential coefficient
  • ⁇ T n-1 is the difference between the current temperature and the previous moment. temperature difference
  • Step 3 The radiofrequency treatment device operates in sections according to the temperature control parameter values of the stages;
  • step 2 is used to obtain the stage temperature control parameter values that need to be heated to the target temperature, and these parameter values can be used to perform actual treatment work of the radiofrequency treatment equipment.
  • this embodiment also introduces a temperature control device for segmented radio frequency treatment equipment.
  • the device includes:
  • Communicator the communicator is used to obtain data
  • a processor coupled to the communicator, for:
  • the radiofrequency treatment equipment performs segmented work according to the temperature control parameter values of the stages.
  • the electronic device includes a processor and a memory.
  • the memory is used to store instructions.
  • the processor is used to call instructions in the memory so that the electronic device executes the above temperature control. The steps of the control method.
  • This embodiment also introduces a computer-readable storage medium.
  • the computer-readable storage medium stores computer-readable instructions. When the computer-readable instructions are executed by a processor, the steps of the above temperature control method are implemented.
  • the present invention utilizes the temperature characteristics of biological tissue impedance to indicate the temperature of subcutaneous tissue, thereby realizing non-invasive method of collecting the internal temperature of target tissue and real-time control of the output power parameters of radio frequency treatment equipment, making subcutaneous tissue treatment more effective and safer;
  • Staged control the temperature control parameter values of each stage are set according to the heating characteristics of biological tissues at each stage, making the treatment safer and without safety risks such as overheating;
  • the temperature maintenance stage uses PID algorithm and temperature maintenance boundary power to make the treatment temperature more accurate and stable.
  • This embodiment introduces a follow-up radio frequency private treatment device, specifically a transmission treatment device. Because no matter Whether it is pelvic floor treatment or micro-needle radiofrequency treatment, manual treatment is generally performed by medical staff holding a handle + treatment head. During the treatment process, the hand needs to be held by the handle to perform treatment operations. On the one hand, holding the handle for a long time will be tiring, and sometimes it is necessary to maintain the same posture for a long time, which will be tiring for the medical staff who operate it; on the other hand, only one medical staff can deal with one patient during the holding treatment, which is not conducive to improvement Hospital treatment efficiency. To this end, this embodiment introduces a transmission treatment device.
  • It includes a treatment head 2-11 and a handle 2-2, and the treatment head 2-11 and the handle 2-2 are detachably connected.
  • An assembly groove 2-13 is provided inside the installation end of the treatment head 2-11, and an assembly groove 2-13 is provided outside the installation end of the handle 2-2 to match the assembly groove 2-13.
  • the protrusion 2-227, the treatment head 2-11 is snap-fastened with the handle 2-2 through the cooperation of the assembly groove 2-13 and the protrusion 2-227.
  • the assembly groove 2-13 can be an L-shaped groove, and the protrusion 2-227 can be a circular bump.
  • the reusable treatment head 2-11 can be made integral with the handle 2-2, and the consumable treatment head 2-1 needs to be made detachable.
  • the handle 2-2 must have components that can be connected to the treatment head 2-11 as consumables, and are not limited to screw connections, snap connections, magnetic connections, etc.
  • the handle 2-2 includes a handle housing 2-25 and a transmission component 2-22, a driver 2-23, and a circuit board 2-24 installed in the handle housing 2-25.
  • the input end of the handle shell 2-25 is provided with a handle harness 2-26 connected to the circuit board 2-24.
  • the handle harness 2-26 is used to connect the power supply and the host device.
  • the circuit board 2-24 is electrically connected to the driver 2-23 through lines.
  • the output end of the driver 2-23 is fixedly connected to the transmission component 2-22.
  • the transmission component 2-22 is transmission connected to the treatment head 2-11, which is connected to the treatment head 2-11. 11 movements are controlled to make it convenient for treatment, which includes pelvic floor treatment and microneedle radiofrequency treatment.
  • the driver 2-23 may be a linear drive device, such as a push cylinder, a cylinder, etc., which is mainly used to push the microneedle module 2-14 linearly during microneedle radiofrequency treatment.
  • the driver 2-23 may also be a rotary drive device, such as a DC motor, which is mainly used to rotate the handle housing 2-25 during pelvic floor treatment, and drive the treatment head electrode 2-12 on the outer wall of the handle housing 2-25 to rotate together during rotation, so as to better stimulate the pelvic cavity.
  • the treatment head 2-11 is the treatment head 2-1 of the pelvic floor treatment device.
  • the treatment head 2-11 includes a treatment head shell 2-11 and a treatment head electrode 2-12.
  • the treatment head electrode 2-12 is provided with There are multiple and protruding from the treatment head shell 2-11.
  • the driver 2-23 is rotationally connected with the treatment head shell 2-11 through the transmission component 2-22, drives the treatment head shell 2-11 to rotate, and drives the treatment head electrode 2-11. 12 turn together.
  • the transmission component 2-22 includes an active connection component 2-221, a transmission component housing 2-222, a driven connection component 2-223 and a transmission component end cover 2-224.
  • the active connection component 2 -221 and driven connector 2-223 is installed in the transmission component housing 2-222, and the transmission component housing 2-222 is installed in the handle housing 2-25.
  • the active connection component 2-221 is fixedly connected to the output end of the driver 2-23, and the active connection component 2-223 is installed in the transmission component housing 2-222.
  • 221 is drivingly connected to the driven connecting piece 2-223, which is drivingly connected to the treatment head 2-11.
  • the outer periphery of the transmission component end cover 2-224 is connected to the transmission component shell 2-2 through the fastener 2-225. 222 fixed connection.
  • the transmission component housing 2-222 is fixed on the handle housing. When the driver 2-23 moves, the transmission component housing 2-222 is stationary relative to the handle housing.
  • a transmission component end cover 2-224 is provided at the upper end of the transmission component.
  • the transmission component end cover 2-222 is fixed on the handle housing. 224 is fixed with the transmission component housing 2-222 to prevent axial movement of the driven connection member 2-223.
  • the driver 2-23 When the driver 2-23 works, it drives the active connecting part 2-221 to rotate together, and the active connecting part 2-221 is transmission connected with the driven connecting part 2-223, so the driven connecting part 2-223 will also rotate together, and then Drive the treatment heads 2-11 to rotate together.
  • the active connecting component 2-221 is one of a gear, a pulley, and a sprocket.
  • the active connecting part 2-221 When the active connecting part 2-221 is a gear, it is a driving gear, and the driven connecting part 2-223 is a passive gear, and the two are meshed and connected; when the active connecting part 2-221 is a pulley, it is the first pulley , and the driven connecting part 2-223 is the second pulley, and the two are connected through belt transmission; when the active connecting part 2-221 is a sprocket, it is the first sprocket, and the driven connecting part 2-223 is It is the second sprocket, and the two are connected through chain transmission.
  • a switch button 2-21 is provided on the upper outer side of the handle housing 2-25.
  • the switch button 2-21 is electrically connected to the driver 2-23 and is used to control the start and stop of the driver 2-23.
  • the switch button 2-21 is any one of a push switch, a touch switch, and a push-pull switch.
  • a hand-held portion 2-27 is provided on the lower outer side of the handle housing 2-25.
  • the hand-held portion 2-27 is a straight cylindrical structure.
  • the outer wall of the hand-held portion 2-27 is provided with anti-slip grooves to facilitate medical personnel to hold it tightly and connect the treatment head 2-11.
  • the driver 2-23 selects a linear drive device, and the treatment head 2-11 is the treatment head 2-1 of the microneedle treatment device.
  • the treatment head 2-11 includes a treatment head shell 2-11 and a microneedle module 2-14.
  • the microneedle module 2-14 is installed inside the treatment head shell 2-11.
  • the driver 2-23 is connected to the microneedle module 2-14 through a linear transmission component 2-22.
  • the transmission component 2-22 can be replaced by a push rod 2-226, or the push rod 2-226 is fixed on the outer output surface of the transmission component 2-22.
  • the skin is stimulated by the microneedles in the microneedle module 2-14, and the radio frequency energy is connected through the cables in the handle harness 2-26. The radio frequency energy is released during stimulation to repair the skin.
  • the transmission treatment device introduced in this embodiment includes a treatment head 2-11 and a handle 2-2, and also includes an adjustment bracket 2-3.
  • the adjustment bracket 2-3 includes a clamp 2-31 and a folding frame 2 -32, the base of the folding frame 2-32 is installed Installed on the workbench at the treatment site, the end of the folding frame 2-32 is fixedly connected to the clamp 2-31, and the clamp 2-31 is fixed on the outer wall of the handle 2-2.
  • the handle 2-2 is clamped by the clamp 2-31, and bent to adjust a certain angle by the folding frame 2-32.
  • the clamp 2-31 can be a clamp or a rubber ring with elastic expansion.
  • the folding frame 2-32 can use a common folding adjustment bracket, such as a bracket for a mobile phone selfie stick, a bracket for a desk lamp, etc. that can have folding, telescopic, and rotating functions. stand.
  • the handle harness 2-26 in the handle 2-2 is connected to the host device.
  • the host device is equipped with a display screen to display the current treatment status. There is also a display screen installed inside the host device.
  • the power supply device is used to power the transmission treatment device and the host.
  • the control PCBA inside the host is connected to the display screen, the host and the circuit board 2-24 to facilitate better control of the transmission treatment device.
  • the host recognizes the handle 2-2 and the treatment head 2-11 through the circuit board 2-24 in the handle 2-2, and the switch button 2 on the handle 2-2 -21 is in standby mode, and the output position of driver 2-23 automatically returns to the origin and reaches the set position.
  • the switch button 2-21 triggers the driver 2-23 to drive the treatment head 2-11 to move (rotating or linear).
  • the rotation speed, intermittent time, and the frequency and depth of the linear motion are controlled by the host.
  • the driver 2-23 drives the treatment head 2-11 back to the origin to complete a treatment cycle.
  • the driver 2-23 of the transmission treatment device is arranged inside the handle 2-2, and the overall volume is small, and the treatment space occupied during the treatment process is small, which is convenient for actual treatment application.
  • the treatment head 2-11 in the overall structure uses fewer parts, so the cost is lower, the application prospect is better, and the cost can be saved when used as consumables.
  • the transmission treatment device does not require medical staff to hold the treatment, freeing the operator's hands and improving medical efficiency.
  • This embodiment introduces an intelligent pelvic floor automatic treatment device. Since the human hand is required to hold the handle all the time during the treatment process, including intermittent rotating treatment head, forward and backward feeding treatment head, multi-tilt angle rotating treatment head or pressing treatment head, it will be tiring to hold the handle manually for a long time, and it is necessary to maintain the same posture. It is relatively difficult; in addition, it is difficult to manually control the specific angle, depth, position and pressing force of rotation, and it cannot achieve high accuracy. It relies entirely on subjective judgment, and the same operator's single treatment process will increase as time goes by, causing fatigue.
  • the intelligent pelvic floor automated treatment device introduced in this embodiment includes treatment equipment 5-1, which 5-1 is used to determine the treatment plan and transmit energy for treatment; specifically, the treatment equipment 5-1 includes an interactive system 5-11, a control system 5-12 and an energy source emission system 5-13;
  • the interactive system 5-11 and the energy source emission system 5-13 are connected to the control system 5-12; the interactive interface of the interactive system 5-11 is used to set a treatment plan, and the energy source emission system 5-13 Used to emit any energy from radio frequency, electrical stimulation, ultrasound, magnetic stimulation, light, and shock waves.
  • the treatment device 5-1 is electrically connected to an intelligent motion drive module 5-2 and a treatment execution module 5-3.
  • the intelligent motion drive module 5-2 includes a clamping mechanism 5-21, a control circuit system 5-22 and a multi-dimensional Multi-angle driving mechanism 5-23; the clamping mechanism 5-21 is detachably connected to the treatment execution module 5-3.
  • the treatment execution module 5-3 is provided with multiple types. Various types of the treatment execution module 5-3 are provided.
  • the tilt angle (relative to the clamping mechanism 5-21) is different.
  • the axial angle between the treatment execution module 5-3 and the clamping mechanism 5-21 ranges from 0 to 30°; for example, as shown in Figure 35,
  • a indicates that the treatment head part of the treatment execution module 5-3 is vertical
  • b indicates that the treatment head part of the treatment execution module 5-3 is deflected at a certain angle (for example, part b in Figure 35 indicates that the treatment execution module 5-3 30° deflection relative to the clamping mechanism 5-21), so the treatment execution module 5-3 with different tilt angles can be replaced according to different needs.
  • the treatment execution module 5-3 deflected at a certain angle can be controlled at the moment of coordination with the rotation movement. Angle of cone rotation movement to meet treatment needs.
  • the multi-dimensional and multi-angle driving mechanism 5-23 is connected to the clamping mechanism 5-21; the control circuit system 5-22 is electrically connected to the control system 5-12, and the control circuit system 5-22 is used to control multi-dimensional and multi-angle
  • the driving mechanism 5-23 drives the treatment execution module 5-3 to perform multi-dimensional and multi-angle motion; the multi-dimensional and multi-angle motion includes but is not limited to rotational motion, linear motion, fixed-point pressing, and controllable tilt angle rotational motion.
  • the treatment execution module 5-3 includes an energy delivery part, an energy bearing part, a feedback sensor and a support body.
  • the side of the support body is provided with an energy delivery part, an energy bearing part and a feedback sensor.
  • the energy delivery part is used to The energy emitted by the energy source emission system 5-13 is transported to the energy carrying part for treatment.
  • the energy carrying part includes one of electrode sheets, coils, ultrasonic transducers or shock wave energy converters.
  • the specific energy The load-bearing part is determined according to the energy source of the energy source emission system 5-13, and the feedback sensor includes a temperature sensor and a pressure sensor.
  • the multi-dimensional multi-angle driving mechanism 5-23 includes a combination arm 5-4, and the combination arm 5-4 includes a horizontal moving component 5-41 , protective cover 5-42, fixed shell 5-43, first linear drive assembly 5-44, rotary drive assembly 5-45, push ring 5-46 and limit ring 5-47;
  • the rotary drive assembly 5- 45 is connected to the clamping mechanism 5-21, and the rotation drive assembly 5-45 is used to drive the clamping mechanism 5-21 to rotate;
  • the rotation drive assembly 5-45 includes a second motor 5-451, a second Gear 5-452 and third gear 5-453, wherein third gear 5-453 is provided on the outside of the clamping mechanism 5-21, and the third gear 5-453 meshes with the second gear 5-452,
  • the second gear 5-452 is connected to the second motor 5-451, and the second motor 5-451 drives the second gear 5-452 to rotate and then drives the third gear 5-453 to rotate, so that the clamping mechanism 5 -21 can drive the treatment execution module 5-3 to rotate;
  • the horizontal moving assembly 5-41 is used to drive the clamping mechanism 5-21 to move horizontally; for example,
  • the horizontal moving assembly 5-41 includes a fixed frame 5-411, a first gear 5-412, a first motor 5-413 and a slider 5-414; a chute is provided on the side of the protective cover 5-42.
  • the block 5-414 is slidably connected to the chute.
  • the top end of the slide block 5-414 is fixed with a fixed shell 5-43.
  • the bottom end of the slide block 5-414 is provided with plate teeth.
  • the first gear 5-412 rotates, it can drive the slider 5-414 to move in the protective cover 5-42, thereby driving the treatment execution module 5-3 Carry out horizontal movement;
  • the outer side of the protective cover 5-42 is provided with a push ring 5-46, and the outer side of the push ring 5-46 is provided with a limit ring 5-47.
  • the limit ring 5-47 can cooperate with the support base.
  • the space between the push ring 5-46 and the limiting ring 5-47 is filled with elastic material.
  • the push ring 5-46 acts on the elastic material.
  • the lower part is concentric with the limiting ring 5-47.
  • the outer surface of the limiting ring 5-47 is provided with a plurality of through holes in an annular array.
  • Each through hole corresponds to a first linear drive component 5-44.
  • the first linear drive component 5-44 can contact the push ring 5-46 through the through hole, and push the push ring 5-46 to drive
  • the overall internal structure moves to one side, as shown in Figure 34.
  • the leftmost first linear drive assembly 5-44 in Figure 34 pushes the entire interior of the push ring 5-46 to move to the right, completing the treatment execution module 5-3.
  • Figure 36 is an overall top view. It can be seen that the first linear drive assembly 5-44 changes from before (c) to after pushing (d); in addition, the first linear drive assembly 5-44 44 includes one of electric push rods, hydraulic push rods, and pneumatic push rods, but is not limited thereto. Anything that can be driven to perform linear motion is within the protection scope of the present invention.
  • One of the application scenarios of the present invention is intra-canal treatment of the pelvic floor, which is suitable for full-canal segmentation treatment (rotary movement), full-canal treatment at different depths (linear motion + rotational movement), and fixed-point treatment within the cavity (linear motion + rotational movement). , fixed-point compression therapy in the cavity (linear motion + rotational motion + compression) and controllable tilt rotation motion (rotational motion + compression + mass execution module tilted at a certain angle).
  • the doctor selects a treatment plan on the treatment device based on the user's symptoms; after entering the treatment plan, the intelligent motion drive module will be activated and drive the treatment execution module to perform corresponding movements according to the selected treatment plan.
  • the treatment execution module is electrically connected to the treatment equipment and delivers energy.
  • the treatment execution module is equipped with a feedback sensor. When the set value is reached, the treatment equipment will control the output of energy. At the same time, the device display interface will display the location area being treated, the trajectory of movement and real-time sensor values.
  • the present invention also introduces a control method for an automated treatment device, as shown in Figure 38, which includes the following steps:
  • Step 1 Determine the treatment plan on the treatment device based on the user’s symptoms and basic information
  • the symptoms include physical examination symptoms and chief complaint symptoms
  • the basic information includes the user's age and vaginal size.
  • the treatment plan is determined from the interface of the interactive system of the treatment device, that is, treatment location, treatment energy intensity, treatment time, etc. .
  • Step 2 The treatment equipment determines the operating parameters of the intelligent motion drive module according to the treatment plan
  • the treatment equipment calculates based on the user's age m, vaginal internal space dimensions a, b, c, physical examination symptoms and main complaint symptoms, and obtains the parameter values x, y, z and angles for the operation of each motion mechanism of the intelligent motion drive module.
  • x 0 , y 0 , and z 0 are all infinite rigidity constants
  • f 1 , f 2 , f 3 , and f 4 are motion control algorithm functions.
  • Step 3 The intelligent motion driving module drives the treatment execution module to perform multi-dimensional and multi-angle motion according to the operating parameters until the treatment execution module reaches a preset position;
  • the intelligent motion drive module adjusts the position of the treatment execution module according to the treatment plan until it reaches the treatment site; specifically, after determining the treatment site and treatment plan, the intelligent motion drive module drives the treatment execution module to linearly move and/or press, so that the treatment execution module After reaching the preset position, the treatment execution module is rotated through a rotational movement.
  • Step 4 Start the treatment equipment and treatment execution module for energy output, and adjust the treatment equipment energy and time according to the feedback sensor feedback; for example, combine the real-time temperature value temp value obtained by the feedback sensor to calculate the treatment energy P and time of the treatment equipment t adjustment.
  • P f 5 (Z t , temp)
  • Z T a 0 +a 1 *cos(T*w)+b 1 *sin(T*w)
  • a 0 , a 1 , b 1 , w are all infinite rigid constants
  • T is the target temperature
  • Z T is the impedance of biological tissue.
  • the treatment equipment and the treatment execution module are started, so that the energy emitted by the energy source emission system is transmitted to the treatment execution module for treatment; the treatment process is shown in Figure 39.
  • the temperature value is detected by a temperature sensor to determine whether it reaches the predetermined temperature; if the preset value is not reached, the energy delivery continues; if the preset value is reached , then maintain low power, and determine whether the preset time is reached. If not, continue to maintain low power. If so, the energy output ends, the automated treatment device exits the treatment site, and the treatment is completed.
  • the multi-dimensional and multi-angle driving mechanism 5-23 includes a robotic arm 5-5, which is exemplarily described by two sections of the robotic arm 5-5;
  • the robotic arm 5-5 includes a support arm 5-51, a second linear drive component 5-52, a third linear drive component 5-53, a rotating disk 5-54, a base 5-55 and a third motor 5-56, one end of the rotating disk 5-54 is connected to the clamping mechanism 5-21, and the other end of the rotating disk 5-54 is connected to the third motor 5-56;
  • the rotating disk 5-54 is driven to rotate by the third motor 5-56, thereby driving the treatment execution module 5-3 to rotate;
  • the rotating disk 5-54 is rotatably connected to the third linear drive component 5-53, and the third linear drive component 5-53 is used to drive
  • the treatment execution module 5-3 is moved horizontally; and the third linear drive component 5-53 is rotatably connected to the support arm 5-51; a second linear drive component 5-52 is provided between the support arm 5-51 and the third linear drive component 5-53, and the second
  • the present invention provides a control method for an automated treatment device, comprising the following steps:
  • Step 1 Determine the treatment plan on the treatment device based on the user's symptoms and basic information
  • the symptoms include physical examination symptoms and chief complaint symptoms
  • the basic information includes the user's age and vaginal size.
  • the treatment plan is determined from the interactive interface of the interactive system of the treatment device, that is, treatment location, treatment energy intensity, and treatment time. wait.
  • Step 2 The treatment equipment determines the operating parameters of the intelligent motion drive module according to the treatment plan
  • the treatment plan is set according to the user's physical examination symptoms, main symptoms, age, and vaginal size.
  • the treatment device can calculate according to the user's age m, vaginal size a, b, c and the robot arm origin position x 1 , y 1 , z 1 and symptoms to obtain the posture control parameters and position control parameters of the multi-axis robot arm:
  • the control principle based on joint motion is a joint-based motion control principle, which decomposes the complex spatial motion of the robot arm into the motion of each joint in order to control the robot arm to reach a specified position. In joint motion control, precise control of the joint is required.
  • represents the angle of each joint of the robotic arm
  • x, y, z represent the position of the end of the robotic arm
  • a, ⁇ , ⁇ represent the attitude of the end of the robotic arm
  • x a , y b , z b are the positions B of the robotic arm.
  • the spatial coordinates; f -1 (x) is the inverse kinematics calculation formula.
  • Step 3 The intelligent motion drive module drives the treatment execution module to perform multi-dimensional and multi-angle movements according to the operating parameters until the treatment execution module reaches the preset position;
  • the intelligent motion drive module adjusts the position of the treatment execution module according to the treatment plan until it reaches the treatment site; specifically, after determining the treatment site and treatment plan, the intelligent motion drive module drives the treatment execution module to linearly move and/or press at a controllable inclination angle. After the treatment execution module reaches the preset position, the treatment execution module is rotated through rotational motion.
  • Step 4 Start the treatment equipment and treatment execution module for energy output, and adjust the energy and time of the treatment equipment according to the feedback from the feedback sensor.
  • the automated treatment device in this embodiment drives the treatment execution module to perform multi-dimensional and multi-angle movements by controlling the intelligent motion drive module, so that the treatment execution module can enter a predetermined position on the pelvic floor.
  • This embodiment uses intelligent control to rotate a specific angle and depth. , position and pressing force, with high accuracy; even after a long period of treatment, there is no deviation, the treatment is accurate and consistent, ensuring the reliability of the treatment effect, and at the same time, it has a good protection effect on the user's private parts.
  • This embodiment introduces a control method of a follow-up radio frequency private therapy device, which is hereinafter referred to as the target channel introduction method.
  • the existing energy source technology treatment for the basin generally uses manual hand-held treatment electrodes, and the treatment electrodes are placed directly inside the cavity; after manually introducing the treatment electrodes, always hold the treatment electrodes to keep them in the treatment target area or intermittently rotate the treatment electrodes.
  • the treatment electrode fully contacts the treatment target area.
  • it is difficult to accurately determine the normal direction of the cavity during manual import resulting in a poor import experience.
  • an operator can only perform a single import operation and cannot perform other operations at the same time, which is more labor-intensive and has low import efficiency.
  • the main purpose of this embodiment is to introduce the introduction instrument into the target cavity along the normal direction of the target cavity.
  • the implementation of the method in this embodiment relies on three movable joints.
  • the three movable joints mainly include the integration of the first movable joint, the second movable joint and the third movable joint which are connected by rotation in sequence.
  • the introduction instrument is installed at the rear end of the third movable joint and the two are kept on the same straight line.
  • the specific steps of the target cavity introduction method are introduced based on the connection between the three movable joints and the introduction instrument:
  • Step 1 Obtain the normal direction of the target cavity and the position information of the first end C of the target cavity, and determine whether the introduction instrument is on the vertical plane determined by the normal line and gravity line of the target cavity. Otherwise, move the introduction instrument to On this vertical plane; among them, point C is the center point of the first end of the target channel, and the position information includes the level between the first end C of the target channel and the introduction instrument. spacing.
  • the vertical plane of the target cavity is determined according to the normal and gravity line of the target cavity. Since the introduction instrument and the target cavity are in a spatial relationship, in order to facilitate subsequent operations, the spatial relationship between the two needs to be converted into a planar relationship. Therefore, the introduction instrument needs to be moved to the vertical plane determined by the normal and gravity line of the target cavity. Only on this vertical plane can the introduction instrument be moved to the head end of the target cavity through two-dimensional movement, because this vertical plane is the vertical plane where the normal line of the target cavity is located.
  • Step 2 Based on the horizontal distance between the target cavity and the introduction instrument, determine whether the horizontal distance is greater than the movement distance of the introduction instrument towards the target cavity. If so, make the introduction instrument move towards the target cavity until the horizontal distance is smaller than the movement distance of the introduction instrument. The moving distance of the target cavity.
  • the spatial relationship between the imported instrument and the target cavity can be transformed into a planar relationship.
  • the head end of the three movable joints as the starting point, since the range of movement of the three movable joints is limited, it is necessary to ensure that the horizontal distance between the introduction instrument and the target cavity is within the range that the three movable joints can move. If the three movable joints cannot move the introduction When the instrument moves from its current position to the target cavity, the introduction instrument needs to be moved to shorten the distance between the introduction instrument and the target cavity.
  • Step 3 Otherwise, based on the state of the three movable joints when the end P of the introduction instrument overlaps with the first end C of the target cavity, the following relationship is obtained: Among them, ⁇ 1 is a rotation angle of the first movable joint, ⁇ 2 is a rotation angle of the second movable joint, ⁇ 3 is a rotation angle of the third movable joint, ⁇ 4 is the distance between the normal line of the target cavity and the horizontal plane. Intersect at acute angles.
  • the end of the introduction instrument is defined as point P, and the acute angle ⁇ 4 of the intersection between the normal and the horizontal plane is obtained based on the pre-known normal direction of the target cavity.
  • the three movable joints need to rotate at corresponding angles.
  • One rotation angle of the first movable joint is defined as ⁇ 1
  • one rotation angle of the second movable joint is defined as ⁇ 2
  • one rotation angle of the third movable joint is defined as ⁇ 3 .
  • One rotation angle can be obtained through the bending state of the three movable joints.
  • the relationship between the rotation angle and the acute angle ⁇ 4 between the normal line of the target cavity and the horizontal plane. This embodiment explains how the three movable joints rotate from a linear state to a bending state.
  • the angle ⁇ 1 is actually formed by the head end of the second movable joint through the tail end to the head end of the first movable joint.
  • the angle ⁇ 11 is formed by the tail end of the third joint through the head end to the first movable joint.
  • the angle formed by the head end of the joint is ⁇ 12 .
  • L 1 2 ((y c -(r 3 +r 4 )cos ⁇ 4 ) 2 +(z c +(r 3 +r 4 )sin ⁇ 4 ) 2 .
  • L 1 is the distance between the tail end of the second movable joint and the The distance between the first end of a movable joint
  • y c is the horizontal distance between the first end of the first movable joint and the first end C of the target tract when the end P of the introduction instrument overlaps the first end C of the target tract
  • z c is the longitudinal distance
  • r 1 is the length of the first movable joint
  • r 2 is the length of the second movable joint
  • r 3 is the length of the third movable joint
  • r 4 is the length of the introduction part of the introduction instrument.
  • the calculation formula of the included angle ⁇ 12 is: in, is the distance L 2 between the head end C of the target cavity and the head end of the first movable joint.
  • Step 6 Calculate ⁇ 1 based on ⁇ 3 and ⁇ 2 , and based on the same principle, calculate the corresponding rotation angles ⁇ 10 , ⁇ 20 , and ⁇ 30 , and the difference is calculated corresponding to the primary rotation angle of the three movable joints, and the corresponding secondary rotation angles ⁇ 11 , ⁇ 22 , and ⁇ 33 are obtained.
  • ⁇ 1 can be known.
  • ⁇ 1 , ⁇ 2 and ⁇ 3 respectively correspond to the rotation angles of the first movable joint, the second movable joint and the third movable joint. Rotation based on this angle can make the end P of the introduction instrument overlap with the first end C of the target cavity.
  • the depth of the introduction can be preset. Based on the calculation method based on the same principle from the third to sixth steps, it is assumed that after the end P of the introduction instrument moves to the specified position, according to The required bending angles of the three movable joints from a straight state are the corresponding rotation angles ⁇ 10 , ⁇ 20 , and ⁇ 30 . By calculating the difference between the rotation angles ⁇ 10 , ⁇ 20 , ⁇ 30 and ⁇ 1 , ⁇ 2 and ⁇ 3 , we can know the angle required to rotate the end P of the introduction instrument from the first end C of the target cavity to the preset distance, that is Secondary rotation angles ⁇ 11 , ⁇ 22 , ⁇ 33 .
  • Step 7 Drive the three movable joints according to the primary rotation angle and the secondary rotation angle to introduce the end P of the instrument to overlap with the first end C of the target cavity and introduce it into the target cavity.
  • the three movable joints are rotated according to the primary rotation angle, and the end P of the introduction instrument overlaps the first end C of the target cavity, and then the three movable joints are rotated according to the secondary rotation angle, so that Introduce the end of the instrument P into the target cavity to a preset distance.
  • this embodiment controls the three movable joints to rotate twice to achieve the positioning of the introduction instrument with the target cavity. Compared with the existing manual import, re-import does not require manpower and can achieve precise positioning. It ensures import efficiency while also reducing import discomfort.
  • This embodiment introduces a multi-method private treatment device, which includes a robotic arm 4-13, a treatment handle electrode 4-14, a controller, a trolley 4-11, a visual camera 4-12, and a distance sensor or pressure sensor.
  • the robotic arm 4-13 includes a first arm 4-131, a second arm 4-132 and a third arm 4-133.
  • the tail end of the third arm 4-133 is connected to the treatment handle electrode 4-14 and is located on the same in a straight line.
  • the first arm 4-131 is connected to the trolley 4-11 through a rotating shaft with a motor, the second arm 4-132 and the third arm 4-133 are connected, and the third arm 4-133 is connected to the treatment handle motor.
  • the connection adopts the same connection method.
  • the first arm 4-131 is installed on the top of the front side of the trolley 4-11.
  • the trolley 4-11 is used to move the robotic arm 4- 13 and the treatment handle electrodes 4-14 to the same vertical plane as the target cavity, thereby converting the spatial relationship between the target cavity and the treatment handle electrodes 4-14 into a planar relationship.
  • the vision camera 4-12 is arranged adjacent to the first end of the first arm 4-131, and its lens faces the target lumen, and is used to collect images of the target lumen.
  • a distance sensor or a pressure sensor is placed at the tail end of the third arm 4-133, and is used to sense the introduction depth of the treatment handle electrode 4-14 and the pressure at the tail end of the robotic arm 4-13 respectively.
  • the controller is used to define the first end of the first arm 4-131 as the origin O, the opposite direction of gravity of the trolley 4-11 as the z-axis, and in the initial state the front side of the trolley 4-11 faces the level of the first end C of the target cavity.
  • the direction is the y-axis
  • the direction perpendicular to the z-axis and the y-axis is the x-axis
  • the image of the target cavity is processed to obtain the coordinates of the target cavity head end C and the normal direction of the target cavity head end C. .
  • console car 4-11 moves x c along the x-axis direction
  • control car 4-11 moves along the y-axis direction y c -(r 1 +r 2 +r 3 );
  • the purpose of the above operation is to make the robotic arm 4-13, the treatment handle electrode 4-14 and the target cavity all located on the same y-z plane, and their x-coordinates are relatively 0.
  • the head end of the first arm 4-131 is the coordinate origin O
  • the coordinate origin O is in the positive direction of the z-axis along the opposite direction of gravity of the trolley 4-11.
  • point A the point on the y-z plane of the connecting axis of the first arm 4-131 and the second arm 4-132 as point A
  • point B the point on the plane.
  • Point C at the head end of the target cavity and point P at the end of the treatment handle electrode 4-14 are both located on the y-z plane.
  • the intersection angle between the horizontal plane and the normal line C at the first end of the target cavity is ⁇ 4 .
  • the one rotation angle that needs to be calculated is the one rotation angle ⁇ 1 of the first arm 4-131
  • the second arm 4-132 has a primary rotation angle ⁇ 2
  • the third arm 4-133 has a primary rotation angle ⁇ 3 .
  • the primary rotation angle ⁇ 1 is the angle between the positive direction of the z-axis and the first arm 4-131.
  • the primary rotation angle ⁇ 2 is ⁇ - ⁇ OAB.
  • ⁇ OAB is the first arm 4-131 and the second arm 4-
  • the angle between 132 and one rotation angle ⁇ 3 is ⁇ - ⁇ ABC
  • ⁇ ABC is the angle between the second arm 4-132 and the third arm 4-133
  • ⁇ ABC ⁇ ABO+ ⁇ OBC.
  • ⁇ ABC in this embodiment is ⁇ 1 introduced in Embodiment 1
  • ⁇ ABO is ⁇ 11 introduced in Embodiment 1
  • ⁇ OBC is ⁇ 12 introduced in Embodiment
  • ⁇ OAB is is ⁇ 2 introduced in Example 1.
  • r 3 in the formula is the length of the third arm 4-133, and r 4 is the length of the treatment handle electrode 4-14.
  • the lead-in distance n is the preset distance.
  • the robot arm 4-13 rotates directly from the initial state, so that the treatment handle electrode 4-14 enters the target cavity, and moves the introduction distance n along the normal direction.
  • the coordinates of point P on the yz plane can be It is calculated based on the known coordinates of point C, the intersection angle between the normal of the target cavity head end C and the horizontal plane is ⁇ 4 and the lead-in distance n.
  • the first arm 4-131, the second arm 4-132 and the third arm 4-133 of the robotic arm 4-13 are virtually connected into different triangles based on the plane.
  • the functional relationship calculates the actual value of the secondary rotation angle.
  • the first calculation is the angle required by the mechanical arm 4-13 to rotate the end P of the treatment handle electrode 4-14 from the first end C of the target cavity to the introduction distance n. That is, the ideal rotation angle ⁇ 10 of the first arm 4-131, the ideal rotation angle ⁇ 20 of the second arm 4-132, and the ideal rotation angle ⁇ 30 of the second arm 4-132.
  • This embodiment adopts the method of first positioning and then importing, and then importing after precise positioning, which improves the import accuracy and can also reduce the existence of errors.
  • this embodiment also provides a distance sensor, a pressure sensor, or other sensors. It has the function of safety assistance.
  • the distance sensor can sense the distance moved by the treatment handle electrode 4-14 after the end P of the treatment handle electrode 4-14 overlaps the first end C of the target cavity. If it exceeds the preset introduction distance n, the distance sensor can send a signal to the controller. , the controller controls the robotic arm 4-13 to stop moving. Or when the treatment handle electrode 4-14 is introduced into the target cavity, it will encounter resistance, and the robotic arm 4-13 needs to apply more force to introduce it.
  • the pressure threshold needs to be set in advance.
  • the pressure sensor sends a signal to the controller, and the controller receives After the signal, the robot arm 4-13 is controlled to stop moving.
  • the overall principle of this embodiment is to combine the movement of the trolley 4-11 and simplify the space manipulator 4-13
  • a planar robotic arm 4-13 is formed. Through the plane functional relationship, the operating angles of each joint of the robotic arm 4-13 are obtained, so that the handle electrode is introduced into the cavity along the normal direction of the target point (target cavity).
  • one medical staff can perform induction operations on multiple patients at the same time, and the device of this embodiment can be used for private treatment, which can avoid direct contact between medical staff and patients and avoid embarrassment during treatment. Make the person being introduced feel more comfortable. In addition, by accurately locating the target cavity and introducing the depth of the target cavity, the treatment is more targeted and the treatment effect is better.
  • This embodiment introduces a fully-fitting treatment device for the cavity. Since the outer diameter of the electrode treatment head of current products on the market is fixed, it cannot match patients with different sized cavities, resulting in poor patient experience during treatment and poor treatment effects. If the cavity treatment equipment of various specifications and sizes is produced according to the needs of customers, it will increase the cost of the medical company. This embodiment introduces the cavity full-fitting treatment device.
  • the cavity full-fitting treatment instrument includes an electrode treatment head 3-1 and a handle 3-2 connected to the electrode treatment head 3-1.
  • the fin 3-207 is a convex structure, protruding from the outside of the connecting end of the handle 3-2.
  • the electrode treatment head 3-1 is provided with a fin.
  • 3-207 matches the card slot 3-208.
  • the card slot 3-208 has a groove-like structure.
  • the electrode treatment head 3-1 is clamped with the handle 3-2 through the cooperation of the wing 3-207 and the card slot 3-208. .
  • the fins 3-207 of the electrode treatment head 3-1 are inserted through the slot 3-208 of the handle 3-2, and then rotated at a certain angle to complete the clamping connection between the handle 3-2 and the electrode treatment head 3-1.
  • the handheld handle 3-2 can be connected by inserting the card slot 3-208 into the card slot 3-208.
  • the two can also be connected in the conventional way of snap connection, or in the way of threaded connection.
  • the electrode treatment head 3-1 and the handle 3-2 are designed to be detachable, making it easy to make them into dedicated electrodes or disposable electrodes to prevent cross-infection. After use, the electrode treatment head 3-1 can be thrown away for one-time use or can be dedicated to a dedicated person after disinfection, while the handle 3-2 can be reused, reducing the cost of cavity treatment.
  • the electrode treatment head 3-1 includes an upper and lower electrode shell 3-101 that are sealed and connected.
  • An electrode end cover 3-113 is provided at the connection between the electrode shell 3-101 and the handle 3-2.
  • the electrode An electrode sheet 3-116 is installed on the outer wall of the housing 3-101, for the electrode sheet 3-116 to act in the patient's cavity to perform radiofrequency stimulation treatment.
  • the outer periphery of each electrode piece 3-116 is elastically connected to the shell hard glue 3-114 of the electrode shell 3-101 through a flexible corrugated connector 3-115.
  • the flexible corrugated connector 3-115 is encapsulated or bonded. Sealed and fixed with electrode housing 3-101.
  • the flexible corrugated connector 3-115 is made of plastic and has elastic folds. When inflated, it can expand and support the electrode sheet 3-116, thereby increasing the outer diameter contact surface of the electrode treatment head 3-1. .
  • a cavity 3-107 is provided inside the electrode shell 3-101 on one side close to the electrode sheet 3-116.
  • the shell of the cavity 3-107 It can be integrated with the electrode housing 3-101.
  • the cavity 3-107 seals the electrode sheet 3-116 through the sealing cover 3-104, and the inner sides of the electrode sheet 3-116 are located in the cavity 3-107.
  • the gas delivery port 3-108 is installed on the sealing cover 3-104.
  • the gas delivery port 3-108 is connected to a pipe joint 3-110 through the electrode pipe 3-109.
  • the pipe joint 3-110 is installed on the electrode end cover 3-113.
  • And its outer port is connected to an external inflating device for inflating the inside of the cavity 3-107.
  • the inflating device can be an air bag or an air pump, or other inflatable devices.
  • the sealing cover 3-104 is installed on the electrode end cover 3-113.
  • the flexible wave The connector 3-115 will expand to support all the electrode pieces 3-116, making them protrude from the outer wall of the electrode housing 3-101, thereby increasing the overall outer diameter treatment size of the electrode treatment head 3-1.
  • the cavity 3-107 is provided inside each electrode shell 3-101, and surrounds all the electrode sheets 3-116 on the electrode shell 3-101.
  • the sealing cover 3-104 is sealed on the end face of the cavity 3-107. That is, the cavity 3-107 surrounds all the electrode pieces 3-116 where each piece is located, and then installs a sealing cover 3-104 to seal all the electrode pieces 3-116 on each electrode shell 3-101, so that It forms a closed cavity 3-107.
  • the flexible corrugated connector 3-115 will expand to support the electrode piece 3-116 on each electrode housing 3-101, making it protrude beyond the electrode housing 3-101. outer wall, thereby increasing the overall outer diameter treatment size of the electrode treatment head 3-1.
  • the cavity 3-107 is provided on the outer periphery of each electrode sheet 3-116 and surrounds the electrode sheet 3-116, and the sealing cover 3-104 is provided with There are a plurality of them, and they are sealingly connected to the end face of each cavity 3-107. That is, each electrode piece 3-116 is individually wrapped in the cavity 3-107, and then a sealing cover 3-104 is installed to seal each electrode piece 3-116 to form a sealed cavity 3-107 .
  • the inflatable device inflates into the cavity 3-107, the flexible wave connector 3-115 will expand to support each electrode piece 3-116, making it protrude from the outer wall of the electrode shell 3-101, thereby increasing the number of electrode treatments. Overall outer diameter treatment size of head 3-1.
  • a follower PCBA 3-102 is installed inside each electrode piece 3-116 through screws 3-103, and the sealing cover 3-104 is sealingly connected to an adapter PCBA 3- through a cavity sealing ring 3-105. 106, to prevent the leakage of gas in the cavity 3-107, and the PCBA3-106 is electrically connected to the follower PCBA3-102 to facilitate the transmission of radio frequency energy.
  • a contact PCBA3-112 is installed on the electrode end cover 3-113, and the contact PCBA3-112 is electrically connected to the transfer PCBA3-106, thereby facilitating the transmission of radio frequency energy.
  • the pipe joint 3-110 is installed on the electrode end cover 3-113 through the pipe joint sealing ring 3-111 to seal the inflated pipeline.
  • Each follower PCBA3-102 is equipped with a temperature sensor 3-117.
  • Multi-piece electrode pieces 3-116, each electrode piece 3-116 is equipped with a temperature sensor 3-117, which can accurately measure the temperature of the area where each electrode piece 3-116 is located, and adjust the corresponding electrode piece 3-116 through temperature The amount of radio frequency energy can prevent local burns and achieve the best therapeutic effect.
  • the follower PCBA 3-102 with the temperature sensor 3-117 is fixed on the electrode sheet 3-116 of the electrode housing 3-101 through screws 3-103, and the treatment energy is transmitted to the electrode sheet 3-116 through the screws 3-103.
  • the sealing cover 3-104 is sealed and fixed on the electrode housing 3-101 through ultrasonic welding, bonding or sealing ring, etc., the sealing ring 105 is placed outside the sealing cover 3-104, and then an adapter PCBA3-106 is pressed , forming a cavity.
  • the signal and energy on the follower PCBA3-102 are sent to the switching PCBA3-106 through the cable.
  • the gas delivery port of the sealing cover 3-104 is connected to the pipe joint 3-110 covered with the pipe joint sealing ring 3-111 through the electrode pipe 3-109.
  • the pipe joint 3-110 and the contact PCBA 3-112 are fixed on the electrode end cover 104, and then the electrode end cover 104 is clamped with two shells, and the installation of the electrode treatment head 3-1 is completed. Among them, the model and energy on the transfer PCBA3-106 are connected to the contact PCBA3-112 through the cable 3-204.
  • the handle 3-2 includes a handle shell 3-201, and a handle end cover 3-202 is installed at the connection end of the handle shell 3-201.
  • a handle PCBA3-203 is installed on the inner side of the cover 3-202.
  • the handle PCBA3-203 transmits radio frequency energy through the wire connection contact point PCBA3-112.
  • a cable 3- connected to the handle PCBA3-203 is installed inside the handle shell 3-201. 204.
  • the input end of cable 3-204 is connected to the radio frequency device.
  • the handle air pipe 3-205 is also installed inside the handle shell 3-201.
  • the handle air pipe 3-205 is connected to the pipe joint 3-110 through the end cover air pipe joint 3-206, which has a good sealing effect.
  • the input of the handle air pipe 3-205 The end is connected to the external inflation device to facilitate the inflation operation.
  • the handle PCBA3-203 is fixed on the handle end cover 3-202, the handle air pipe 3-205 is plugged into the end cover air pipe joint 3-206, and the cable 3-204 is connected to the handle PCBA3-203. Then fasten the handle end cover 3-202 with the two shells, and the handle 3-2 is installed.
  • the electrode shell 3-101, the sealing cover 3-104 and the adapter PCBA 3-106 form a cavity, and the inflating device is connected to the cavity from the gas port through a pipeline to inflate or pump the cavity 3-107.
  • the inflatable device When the inflatable device is inflated, the electric
  • the flexible corrugated connector 3-115 on the electrode housing 3-101 deforms, and the electrode sheet 3-116 can expand outward to adapt to a cavity with a larger diameter for full fit treatment.
  • the electrode sheet 3-116 is installed on the flexible corrugated connector 3-115, and can be expanded when inflated, and the electrode sheet 3-116 is pushed out, which can adapt to the treatment of different sized cavities.
  • the flexible corrugated connector 3-115 of the multiple electrode sheets 3-116 is a separate component. After inflating, it can adapt to the treatment of different diameter cavities (the electrode sheets protrude to different heights).
  • the flexible corrugated connector 3-115 has a fixed shape when not inflated, making it convenient to deflate and pull out the electrode treatment head 3-1 after the treatment is completed. This structure is different from the integral air bag structure. When the electrode treatment head 3-1 is inserted, the overall structure of the electrode treatment head 1 will not change.
  • the parameters such as the spacing of the electrode pieces 3-116 are more stable and the treatment effect is better.
  • the cavity 3-107 is inflated and deflated automatically by the inflating device. On the one hand, it frees the user's hands, and on the other hand, it solves the frustration of manual inflation and deflation, and provides a better patient experience.

Abstract

本发明提供一种射频私密治疗仪。该射频私密治疗仪包括主机和治疗装置,治疗装置包括治疗电极,治疗电极包括治疗头、旋转体、手柄,旋转体的顶部内腔中转动连接有套筒,旋转体的内部设有与套筒传动连接的驱动装置,驱动装置和手柄分别通过电缆线与主机连接,旋转体的底部设有装配口,装配口用于将旋转体固定在治疗的现场环境中,套筒的内部一侧与手柄活动连接,手柄位于套筒中的一侧与治疗头活动连接,治疗头、手柄、套筒分别同轴设置。旋转体通过装配口将旋转体固定在治疗的现场环境中后,通过驱动装置驱动套筒在旋转体的内部旋转,再由套筒治疗头和手柄一起旋转,从而提高治疗效果和感受,相比于采用人工操作,更加精确治疗和便于控制。

Description

一种射频私密治疗仪 技术领域
本发明涉及医疗设备技术领域,具体为一种射频私密治疗仪。
背景技术
随着医疗技术的发展,经腔道治疗技术的应用越来越普遍。盆底功能障碍性疾病是成年女性常见的综合疾病,已列为严重威胁女性健康的常见慢性疾病,严重影响生活质量。盆地康复被动治疗手段主要包括电刺激、磁刺激、射频、超声等能量源治疗技术。
但在腔道进行治疗的过程中,发现至少存在如下技术问题:
1.将治疗电极导入治疗腔道内进行治疗时,若需要旋转治疗电极进行治疗时,人手旋转特定的角度比较难以判断和控制,若需要在治疗面的垂直方向精准控制,人手操作难免对长度的控制比较难把握,且长时间操作人手难免抖动,影响治疗感受和效果。
2.目前采用的是使用温度传感器进行温度采集和控制,由于热量一层一层由外向内传递,所以有热度梯度差,但是在热稳定后可视为常量;电极片和电极(除电极片外的塑料部分)蓄热,导致温度传感器获得电极表面温度时间延后;另外温度传感器采集到的是皮肤表面温度,但是热量最大(或者温度最高点)是皮下组织,因为射频作用于靶组织时,是靶组织内部的带电离子高速震荡或自转产热,所以靶组织内部温度高于表面温度,因此导致温度采集不准确,导致的靶组织烫伤问题;现有温度传感器一般位于治疗电极背面,温度采集由靶组织表面传导至治疗电极,再由治疗电极传导至温度传感器,用时较长,而射频能量加热速度很快,所以导致靶组织温度已经很高,但是温度传感器无法即时采集到准确实时的靶组织温度,导致的靶组织烫伤,所以简单使用温度传感器+PID的方法来实现控温,温度检测和控制存在很大的误差,存在一定的安全隐患。
3.治疗过程中需人手一直握住手柄,间歇式旋转治疗头、前后进给治疗头、多倾角角度旋转治疗头或按压治疗头,人工长时间握持手柄会比较累,且需要保持同一姿势也比较困难;另外,人工控制旋转特定的角度、深度、位置和按压力度难度较大,无法达到较高的精准度,全依靠主观判断,且同一个操作师单次治疗过程随着时间加长,疲惫度加大,导致后期偏差加大,无法做到治疗的精准性、一致性,因而无法保证治疗效果的可靠性;并且,手持式手柄加治疗头的方法对用户的私密性没有很好的保护。
4.目前市面产品的电极治疗头外径尺寸固定,无法匹配不同尺寸腔道的患者,导致治疗时患者体验感觉较差,治疗效果也不好。假如根据客源需要,生产多种规格尺寸的 腔道治疗设备则将增加医疗公司的成本。
发明内容
基于此,有必要针对现有盆地治疗对于治疗角度和距离难以把控的问题,提供一种射频私密治疗仪。
为实现上述目的,本发明采用了以下技术方案:
一种射频私密治疗仪,包括主机和治疗装置,治疗装置包括治疗电极,治疗电极包括治疗头、旋转体、手柄,旋转体的顶部内腔中转动连接有套筒,旋转体的内部设有与套筒传动连接的驱动装置,驱动装置和手柄分别通过电缆线与主机连接,旋转体的底部设有装配口,装配口用于将旋转体固定在治疗的现场环境中,套筒的内部一侧与手柄活动连接,手柄位于套筒中的一侧与治疗头活动连接,治疗头、手柄、套筒分别同轴设置。
本发明还介绍一种分段式射频治疗设备的温度控制方法,包括:
步骤一:建立射频治疗设备的温度控制模型,包括
确定生物组织阻抗值和射频治疗设备输入能量值;
确定射频治疗设备的功率曲线函数;
基于射频治疗设备输入能量值、射频治疗设备的功率曲线函数建立射频温度控制模型;
步骤二:基于射频温度控制模型和设定的目标温度进行分段温控模拟,得到射频治疗设备的阶段温控参数值;
步骤三:射频治疗设备根据阶段温控参数值进行分段工作。
本发明还涉及一种分段式射频治疗设备的温度控制装置,装置包括:
通信器,通信器用于获取数据;
处理器,耦接于通信器,用于:
建立射频治疗设备的温度控制模型,包括
确定生物组织阻抗值和射频治疗设备输入能量值;
确定射频治疗设备的功率曲线函数;
基于射频治疗设备输入能量值、射频治疗设备的功率曲线函数建立射频温度控制模型;
基于射频温度控制模型和设定的目标温度进行分段温控模拟,得到射频治疗设备的阶段温控参数值;
射频治疗设备根据阶段温控参数值进行分段工作。
本发明还介绍一种随动射频私密治疗仪,包括:
工作台,工作台设置有治疗电极;
治疗床,治疗床上方用于患者治疗使用,工作台靠近治疗床的侧面设有视觉相机,视觉相机用于探测患者的治疗腔道的治疗靶点位置坐标和腔道轴线方向,治疗电极插入到治疗腔道中进行治疗。
本发明还介绍了一种随动射频私密治疗仪的控制方法,包括具体步骤如下:
步骤一:通过识别机构选取靶点位置;
步骤二:根据靶点位置来控制位移机构将治疗电极移动到靶点位置;
步骤三:靶点位置变化时,通过随动算法来计算并控制位移机构跟随靶点位置移动,实现自动跟随治疗。
优选的,识别机构采用视觉相机,位移机构采用滚轮组件加上机械臂,具体步骤如下:
步骤一:视觉相机实时获取患者治疗区图像,找到治疗靶点,通过视觉相机判断治疗靶点是否移动;
步骤二:视觉相机输出治疗靶点坐标及法线方向的变化信息至控制与通讯模块;
步骤三:将视觉相机输入的信息处理之后,控制滚轮组件夹持治疗电极移动,再反馈至步骤一中进行视觉相机进行实时拍摄进行对比,再循环上述步骤实现动态调整。
在腔道治疗电极随动控制方法中,识别机构采用治疗电极内置的力值传感器,位移机构采用机械臂,具体步骤如下:
S1.静止状态下,将力值传感器获取的作用力及扭矩清零(治疗电极在腔道内直角坐标系x、y、z轴方向的作用力及扭矩);
S2.力值传感器实时获取治疗电极在腔道内直角坐标系x、y、z轴方向的作用力及扭矩,并通过通讯机构将输送到控制系统;
S3.探测作用力及扭矩是否变化,如不发生变化,不输出数据,保持力值传感器的实时监控,如发生变化,则力值传感器输出直角坐标系x、y、z轴方向的作用力及扭矩变化值;
S4.系统处理力值传感器的输出结果,计算患者移动时,腔道的入口坐标及腔道轴线方向的变化;
S5.根据腔道的入口坐标及腔道轴线方向的变化值,控制位移机构控制治疗电极移动。
S6.判断作用力及扭矩是否恢复零值,
若是,继续步骤S2中的力值传感器实时检测,重复步骤S3-6中对于力值传感器多个方向角度的受力和扭矩变化的动态调整;
若否,则返回步骤S5中控制治疗电极进行移动。
优选的,其中对于机械臂对于伺服力控制系统的控制方法如下:
n关节机械臂的PID控制律为:
e为跟踪误差,e=qd-q,采用定点控制时,qd为常数,
n关节机械手方程为:
D(q)为n×n阶正定惯性矩阵,为n×n阶离心和哥氏力项;
取Lyapunov函数为:
由D(q)、Kp的正定性知,V是全局正定的,利用的斜对称性知,则:
优选的,伺服系统PID算法应用于使系统具有较好的速度和加速度性能,采用引入测速机信号作为速度反馈,直接构成模拟式速度回路,由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路(Yd是框架参考角位置输入型号,θ是输出角位置信号)。
对于机械手导入治疗电极的目标腔道导入方法,包括以下步骤:
获取目标腔道的法线方向及目标腔道首端C的位置信息,判断导入仪器是否在由目标腔道的法线和重力线确定的竖直面上,否则移动导入仪器至该竖直面上;其中,C点为目标腔道首端中心点,位置信息包括目标腔道首端C与导入仪器之间的水平间距;
是则根据目标腔道与导入仪器之间的水平间距判断水平间距是否大于导入仪器向目标腔道的活动距离,是则令导入仪器向目标腔道移动至水平间距小于导入仪器向目标 腔道的活动距离;
否则依据导入仪器末端P与目标腔道首端C重叠状态下三活动关节的状态得到如下关系式:其中,β1为第一活动关节的一次旋转角度,β2为第二活动关节的一次旋转角度,β3为第三活动关节的一次旋转角度,β4为目标腔道的法线与水平面的相交锐角;
获取第二活动关节和第三活动关节的夹角γ1,根据第二活动关节和第三活动关节由线性活动至相交得到如下关系式:β3=π-γ1
获取第一活动关节和第二活动关节的夹角γ2,根据第一活动关节和第二活动关节由线性活动至相交得到如下关系式:β2=π-γ2
根据β3和β2计算出β1,并基于相同原理计算出导入仪器末端P沿目标腔道法线方向进入至预设位置时三活动关节对应转动角度β10、β20、β30,并对应与三活动关节的一次旋转角度进行差值计算,得到对应的二次旋转角度β11、β22、β33
根据一次旋转角度和二次旋转角度驱动三活动关节移动导入仪器末端P与目标腔道首端C重叠并导入目标腔道。
本发明还介绍了一种多手段联合的私密治疗装置,包括机械臂、与机械臂尾端连接的治疗手柄电极以及控制器。控制器工作时执行前述的目标腔道导入方法的步骤。需要说明的是,机械臂相当于三活动关节,治疗手柄电极相当于导入仪器;其中,第一活动关节相当于机械臂的第一支臂,第二活动关节相当于机械臂的第二支臂,第三活动关节相当于机械臂的第三支臂。第一支臂与台车通过带有电机的转轴连接,第二支臂和第三支臂的连接以及第三支臂与治疗手柄电机的连接采用同样的连接方式。
进一步的,多手段联合的私密治疗装置还包括治疗头和手柄,治疗头与手柄可拆卸连接,手柄包括手柄外壳和安装在手柄外壳内的传动部件、驱动器、电路板,手柄外壳的输入端设有连接电路板的手柄线束,电路板通过线路与驱动器电连接,驱动器的输出端与传动部件固定连接,传动部件与治疗头传动连接。
优选的,治疗电极包括治疗头、旋转体、手柄和主机,旋转体的顶部内腔中转动连接有套筒,旋转体的内部设有与套筒传动连接的驱动装置,驱动装置和手柄分别通过电缆线与主机连接,旋转体的底部设有装配口,装配口用于将旋转体固定在治疗的现场环境中,套筒的内部一侧与手柄活动连接,手柄位于套筒中的一侧与治疗头活动连接,治疗头、手柄、套筒分别同轴设置。
本发明还介绍一种智能盆底自动化治疗装置;自动化治疗装置包括治疗设备,治疗 设备用于确定治疗方案并发射治疗用的能量;治疗设备电连接智能运动驱动模块和治疗执行模块,智能运动驱动模块包括夹持机构、控制电路系统和多维度多角度驱动机构;夹持机构拆卸式连接治疗执行模块,多维度多角度驱动机构连接夹持机构;控制电路系统用于控制多维度多角度驱动机构驱动治疗执行模块进行多维度多角度运动。
与现有技术相比,本发明的有益效果包括:
1、本发明采用了结合机械臂与视觉相机,通过视觉相机实时监测患者体态,计算腔道轴线方向及坐标变化,通过机械臂来将治疗电极的进行随动控制,能实时准确判定治疗腔道的体态,进行跟随移动,能提高患者的治疗体感,治疗电极跟随移动,所以,有效解决了治疗电极固定不方便的问题,进而实现了通过视觉定位系统,能实时准确判定治疗腔道的体态,进行跟随移动,能提高患者的治疗体感,治疗电极跟随移动,能大大提高治疗效果。
2、本发明采用了结合机械臂与传感器,传感器实时获取治疗电极在腔道内直角坐标系x、y、z轴方向的作用力及扭矩变化值,将作用力及扭矩的变化值输出给系统,通过PID算法控制机械臂按照腔道运动趋势运动,至作用力及扭矩恢复零值,初始静止状态下,将传感器的作用力及扭矩清零,所以,有效解决了治疗电极固定不方便的问题,进而实现了无需手持治疗,解放操作者双手,提高医院治疗效率,患者无需保持截石位姿势不能动弹,缓解患者腰部不适。
3、本发明利用生物组织阻抗的温度特性,指示皮下组织温度,即可实现无创方法采集靶组织内部温度,实时控制射频治疗设备的输出功率参数,使得皮下组织治疗更加有效和安全;使用生物传热模型引入血液灌注率等因素,可以通过主动计算得到更加准确的能量输出数值;结合采集到的温度传感器和生物组织阻抗数据,使得治疗温度更加可靠;分阶段控制,根据每个阶段的生物组织升温特性设定各个阶段的温控参数值,使得治疗更安全,无过温等安全风险;维温阶段采用PID算法与维温边界功率,使得治疗温度更加准确稳定。
4、本发明利用旋转体通过装配口将旋转体固定在治疗的现场环境中后,通过驱动装置驱动套筒在旋转体的内部旋转,再由套筒治疗头和手柄一起旋转,并且将输出旋转效果作用于女性盆底治疗部位,从而避免采用人工操作时的隐私问题,因本智能旋转装置在驱动装置的电性连接下可以自动启停和旋转,从而提高治疗效果和感受,相比于采用人工操作,更加精确治疗和便于控制。
5、本发明通过控制智能运动驱动模块驱动治疗执行模块进行多维度多角度的运动, 以便于治疗执行模块进入到盆底预定的位置进行治疗,本发明通过智能控制深度、位置和按压力度,精准度高;即使长时间治疗后续也没有偏差,治疗精准、一致,保证治疗效果的可靠性,同时对用户的私密处有很好的保护作用。
6、本发明通过控制三活动关节两次转动实现将导入仪器先与目标腔道定位再导入,和现有的手动导入相比,无需耗费人力,实现精准定位,保证导入效率的同时也能够降低导入不适感;通过多手段联合的私密治疗装置替代人工手持治疗电极导入,在提高导入效率、保证导入精度的同时能够降低被导入者的不适感,也能够满足相关人员在导入过程还能兼顾其它事宜,且导入精度的提高也能够提升治疗效果。
附图说明
参照附图来说明本发明的公开内容。应当了解,附图仅仅用于说明目的,而并非意在对本发明的保护范围构成限制。其中:
图1为本发明实施例1介绍的一种射频私密治疗仪的结构示意图;
图2为本发明实施例1介绍的随动控制方法中视觉运动模块的流程图;
图3为本发明实施例2介绍的随动控制方法中随动控制流程图;
图4为本发明实施例1介绍的随动系统中功能模块组成框图;
图5为本发明实施例1介绍的随动装置的伺服系统框图;
图6为本发明实施例3的一种分段式射频治疗设备的温度控制方法的流程示意图;
图7为基于图6的电极与温度传感器的连接结构示意图;
图8为基于图6射频治疗设备的系统框图;
图9为本发明在实施例4中介绍的传动治疗装置外部结构示意图;
图10为本本发明在实施例4中介绍的传动治疗装置的内部结构示意图;
图11为实施例4中传动部件和驱动器组合后的结构示意图;
图12为图11内部结构示意图;
图13为图11分解结构示意图;
图14为实施例4中治疗头与手柄的连接结构示意图;
图15为实施例5中驱动器与治疗头的连接结构示意图;
图16为实施例5中另一视角的驱动器与治疗头的连接结构示意图;
图17为实施例5中驱动器与治疗头的分解结构示意图;
图18为实施例6中安装结构示意图;
图19为实施例6中实施时的结构示意图;
图20为本发明实施例7整体结构示意图;
图21为基于图20的旋转体的内部结构示意图;
图22为基于图20的旋转体的外部结构示意图;
图23为基于图20的工作原理示意图;
图24为基于图20的治疗头和手柄组合后的结构示意图;
图25为基于图20的治疗头的安装端的结构示意图;
图26为基于图20的手柄的安装端的结构示意图;
图27为基于图20的治疗头、旋转体、手柄安装后的内部结构示意图;
图28为图27中A部结构放大图;
图29为治疗电极固定在支架上的结构示意图;
图30为治疗电极固定在治疗床上的结构示意图;
图31为本发明实施例9介绍的一种智能盆底自动化治疗装置系统框图;
图32为本发明实施案例组合臂局部结构示意图;
图33为本发明实施案例组合臂整体的结构示意图;
图34为本发明实施案例组合臂使用时的结构示意图;
图35为本发明实施案例不同的治疗执行机构安装后的结构示意图;
图36为本发明实施案例第一直线驱动组件驱动前后的对比结构示意图;
图37为本发明实施案例机械臂的结构示意图;
图38为本发明自动化治疗装置的控制方法流程示意图;
图39为本发明自动化治疗装置的控制方法治疗时流程示意图;
图40为本发明实施例10介绍的一种目标腔道导入方法的流程图;
图41为基于图40的导入仪器末端P与目标腔道首端C重叠的示意图;
图42为基于图40的导入仪器末端P沿目标腔道法线方向导入距离n的示意图;
图43为本发明实施例11介绍的一种多手段联合的私密治疗装置的结构示意图;
图44为基于图43的多手段联合的私密治疗装置工作过程的示意图;
图45为本发明实施例12介绍的腔道全贴合治疗仪内部结构示意图;
图46为图45中A部放大图;
图47为基于图45的电极治疗头的内部结构示意图;
图48为图47中B部放大图;
图49为基于图45的电极外壳的结构示意图;
图50为基于图45的电极治疗头的分解结构示意图;
图51为基于图45的外部结构示意图;
图52为图51中C部放大图;
图53为基于图45的密封盖在电极治疗头中的安装位置示意图。
图中标注说明:1、控制与通讯模块;2、机械臂;3、治疗腔道;4、治疗床;5、视觉相机;6、治疗电极;2-1、治疗头;2-11、治疗头外壳;2-12、治疗头电极;2-13、装配槽;2-14、微针模块;2-2、手柄;2-21、开关按钮;2-22、传动部件;2-221、主动连接部件;2-222、传动部件外壳;2-223、从动连接件;2-224、传动部件端盖;2-225、紧固件;2-226、推杆;2-227、凸起;2-23、驱动器;2-24、电路板;2-25、手柄外壳;2-26、手柄线束;2-27、手持部位;2-3、调节支架;2-31、夹具;2-32、折叠架;6-1、治疗头;6-11、护罩;6-12、接头;6-13、销孔;6-14、旋转指示标记;6-2、旋转体;6-21、外壳;6-22、套筒;6-221、限位条;6-222、感应孔;6-223、限位圈;6-23、轴承;6-24、从动齿轮;6-25、电机;6-26、主动齿轮;6-27、装配口;6-28、感应开关;6-3、手柄;6-31、固定销;6-32、插槽;6-33、插装指示标记;6-34、感应块;6-4、主机;5-1、治疗设备;5-11、交互系统;5-12、控制系统;5-13、能量源发射系统;5-2、智能运动驱动模块;5-21、夹持机构;5-22、控制电路系统;5-23、多维度多角度驱动机构;5-3、治疗执行模块;5-4、组合臂;5-41、水平移动组件;5-411、固定架;5-412、第一齿轮;5-413、第一电机;5-414、滑块;5-42、防护罩;5-43、固定壳;5-44、第一直线驱动组件;5-45、旋转驱动组件;5-451、第二电机;5-452、第二齿轮;5-453、第三齿轮;5-46、推动环;5-47、限位环;5-5、机械臂;5-51、支撑臂;5-52、第二直线驱动组件;5-53、第三直线驱动组件;5-54、旋转盘;5-55、底座;5-56、第三电机;4-11、台车;4-12、视觉相机;4-13、机械臂;4-131、第一支臂;4-132、第二支臂;4-133、第三支臂;4-14、治疗手柄电极;3-1、电极治疗头;3-101、电极外壳;3-102、随动PCBA;3-103、螺钉;3-104、密封盖;3-105、腔体密封圈;3-106、转接PCBA;3-107、腔体;3-108、输气口;3-109、电极管道;3-110、管接头;3-111、管接头密封圈;3-112、触点PCBA;3-113、电极端盖;3-114、外壳硬胶;3-115、柔性波浪连接件;3-116、电极片;3-117、温度传感器;3-2、手柄;3-201、手柄外壳;3-202、手柄端盖;3-203、手柄PCBA;3-204、线缆;3-205、手柄气管;3-206、端盖气管接头;3-207、翼片;3-208、卡槽。
具体实施方式
容易理解,根据本发明的技术方案,在不变更本发明实质精神下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
实施例1
如图20至图23所示,本实施例介绍了一种射频私密治疗仪。由于在现有射频设备中,用于女性盆底治疗的治疗头一般采用人手持射手柄+射频治疗头的方式。治疗过程中需人手一直握住手柄,间歇式旋转手柄,人手长时间握持手柄会比较累,且需要保持同一姿势也比较困难;另外,人手旋转特定的角度比较难以判断和控制,长时间操作人手难免抖动,影响治疗感受和效果;并且,手持式手柄加治疗头的方法对患者的私密性没有很好的保护。为此,本实施例介绍了能够旋转的治疗电极。
治疗电极包括治疗头6-1、旋转体6-2、手柄6-3和主机6-4,旋转体6-2的顶部内腔中转动连接有套筒6-22,旋转体6-2的内部设有与套筒6-22传动连接的驱动装置,驱动装置和手柄6-3分别通过电缆线与主机6-4连接,通过驱动装置驱动套筒6-22在旋转体6-2的内部旋转。
作为一种优选的方案,其中,旋转体6-2包括外壳6-21和电机6-25,套筒6-22通过轴承6-23安装在外壳6-21的内腔顶部,可以通过先在外壳6-21的内腔顶部两侧分别开设安装槽,再在槽中安装驱动装置等组件,比如先将套筒6-22的两侧套装限位固定上轴承6-23,然后再将套筒6-22放置在外壳6-21的内腔顶部,并通过安装糟将轴承6-23进行限位。套筒6-22的外周固定有从动齿轮6-24,电机6-25安装在外壳6-21的内腔底部,电机6-25构成了套筒6-22的驱动装置,电机6-25的输出端传动连接有主动齿轮6-26,主动齿轮6-26与从动齿轮6-24啮合连接。电机6-25为采用可采用舵机,其型号为RX-U50H-M,可以实现正反转360°,治疗过程中旋转角度可以实现正、反转,旋转角度精确且可调,治疗时长根据需要设定电机6-25的开启和关闭,使治疗时长准确,方便治疗。
主机6-4通过内部控制系统进行数据处理,控制旋转体6-2内的电机6-25旋转,主动齿轮6-26与电机6-25的转轴固定成一体,电机6-25旋转时带动主动齿轮6-26旋转,主动齿轮6-26与从动齿轮6-24啮合传动,从动齿轮6-24与套筒6-22固定,旋转体6-22带动手柄6-3与治疗头6-1旋转。
主机6-4的顶部安装有显示面板,用于盆底治疗的手柄6-3插入时,屏幕界面上会 显示该手柄6-3针对的治疗模块。进入内阴治疗模块治疗时,可以选择手动治疗和智能方案。智能方案只有手柄6-3转入智能旋转体6-2的装置后,主机6-4感应到了智能装置,屏幕界面上显示智能治疗方案,才能选择智能方案。
进入主机6-4的智能方案后,界面上有相应的适应症治疗选项,各个适应症治疗的方案事先有设定好的治疗方案。治疗时界面会显示相应的治疗时间,温度反馈及电气控制数据。治疗头6-1内设置了温度反馈装置,智能旋转方案在临床上解放了医生的双手。
在主机6-4上选择该项治疗时,主机6-4会根据设定的治疗方案,开始治疗。主机6-4发射出射频能量,通过治疗头6-1发出治疗能量,对阴道进行治疗。治疗适应症有:阴道松弛、性功能障碍、压力性尿失禁、夜尿症、子宫/阴道穹窿脱垂、阴道后壁膨出、阴道前壁膨出、慢性盆腔痛等盆底疾病。
为了结束治疗后旋转体6-2能够回到原位,从动齿轮6-24与主动齿轮6-26的传动比为1:1,从而带动套筒6-22同级转动,电机6-25的输出轴转动一圈,带动主动齿轮6-26转动一圈,主动齿轮6-26带动从动齿轮6-24转动一圈,继而带动套筒6-22转动一圈。
旋转体6-2的外侧底部设有装配口6-27,装配口6-27用于将旋转体6-2固定在治疗的现场环境中。请参阅图29,可直接固定在支架上,然后在固定于治疗的现场环境中,请参阅图30,也可以在装配口6-27的内部安装有与现场环境中治疗床相固定的固定结构,该固定结构可以为固定螺丝、固定支架、固定座、伸缩杆、翻转板等结构,也可以为可移动调节的支架,从而方便调节本装置治疗时的高度和治疗的输出方向。为了便于固定实施,固定结构可以更简单一些,比如在装配口6-27的内部安装防松螺母,旋转体6-2通过防松螺母用于连接现场环境中治疗床上的螺纹杆,将旋转体6-2固定在治疗床上,最后再安装上治疗头6-1和手柄6-3,便可以进行治疗。
套筒6-22的内部一侧与手柄6-3活动连接,手柄6-3的工作端,即手柄6-3位于套筒6-22中的一侧与治疗头6-1活动连接,治疗头6-1、手柄6-3、套筒6-22分别同轴设置,方便输出旋转效果作用于女性盆底治疗部位。
本方案中,旋转体6-2通过装配口6-27将旋转体6-2固定在治疗的现场环境中后,通过驱动装置驱动套筒6-22在旋转体6-2的内部旋转,再由套筒6-22、治疗头6-1和手柄6-3一起旋转,并且将输出旋转效果作用于女性盆底治疗部位,从而避免采用人工操作时的隐私问题,因本实施例仪器在由主机6-4连接的驱动装置电性连接下可以自动启停和旋转,从而提高治疗效果和感受,相比于采用人工操作,更加精确治疗和便于控制。
实施例2
请参阅图22和图26,在实施例7的基础上,套筒6-22的内腔外壁上均匀设有限位条6-221,限位条6-221可以根据需要设置一组或者多组,每组设置一个或者多个,当两者插装固定时,限位牢固防松脱,便于旋转治疗。套筒6-22的内腔靠近限位条6-221的一侧设有限位圈6-223,对于插入的手柄6-3的深度进行限位。手柄6-3的外周面均匀开设有与限位条6-221相配合的插槽6-32,手柄6-3通过限位条6-221和插槽6-32的配合与套筒6-22插装连接,安装固定方式简单,便于节约治疗时间。
作为一种优选的方案,请参阅图27和图28,手柄6-3靠近治疗头6-1的安装端内部安装有感应块6-34,套筒6-22的内腔中开设有感应孔6-222,感应孔6-222的内部安装有感应开关6-28,感应开关6-28与感应块6-34感应连接,从而判断手柄6-3是否插入套筒6-22内,或者判断是否插入到位。进一步的,感应块6-34为磁铁,感应开关6-28为霍尔传感器,来进行位移测量。当手柄6-3装入到位时,本实施例仪器上的感应开关6-28在手柄6-3内磁铁的作用下发出信号,识别到手柄。其工作原理为:手柄6-3插入时,感应开关6-28感应到感应块6-34的靠近,外壳6-21内的霍尔传感器把磁场变化的量转换成电信号输出,反馈至处理中心,识别到手柄6-3的插入,且当手柄6-3插入指定位置时磁场影响最大。
感应开关6-28和感应块6-34构成的感应装置主要是感应到手柄6-3装入到了旋转体6-2内,为准备盆底治疗做好准备。
作为一种优选的方案,手柄6-3的安装端设有插装指示标记6-33,通过标记便于正确插装到旋转体6-2,护罩6-11上设有旋转指示标记6-14,通过标记便于正确安装到手柄6-3。
请参阅图24至图26,治疗头6-1远离治疗端的一侧设有与手柄6-3相连接的接头6-12,接头6-12的内壁上开设有销孔6-13,手柄6-3靠近治疗头6-1的连接端内部设有与销孔6-13相配合的固定销6-31,手柄6-3通过销孔6-13和固定销6-31的配合与治疗头6-1卡接。治疗头6-1按旋转指示标记6-14的位置插入手柄6-3后,按指定方向旋转固定的角度,两个固定销6-31旋转至设定的位置,治疗头6-1和手柄6-3锁定。另外,在不使用本实施例仪器的情况下,治疗头6-1和手柄6-3也可以安装起来单独手持使用。
优选的,可以将销孔6-13根据旋转方向设置成斜口状,固定销6-31也设置成斜条状,便于旋转时直接旋进去,而不是需要插进去,这样的组装将更加便捷,在旋转治疗时,也不会造成松动。治疗头6-1和手柄6-3两者通过旋转定位固定,属于可拆卸连接, 在对女性盆底进行治疗后,治疗头6-1可从手柄6-3上旋转下来,或者拨下来,进行更换,避免重复使用造成交叉感染。
实施时,治疗头6-1的非治疗端设有护罩6-11,护罩6-11为伞状曲面结构。通过护罩6-11可以判断伸入女性盆底的距离,最大距离将被护罩6-11所限制,避免操作不当出现意外。
实施例3
本实施例通过提供一种随动射频私密治疗仪,解决现有技术中腔道治疗电极位置控制的问题,通过视觉或者传感器定位系统,能实时准确判定治疗腔道的体态,进行跟随移动,能提高患者的治疗体感,治疗电极跟随移动,技术实现解放操作者双手,提高医院治疗效率,患者无需保持截石位姿势不能动弹,缓解患者腰部不适,能大大提高治疗效果。
请参阅图1,本实施例介绍了一种随动射频私密治疗仪,包括工作台,工作台设置有治疗电极6。
治疗床4,治疗床4上方用于患者治疗使用,工作台靠近治疗床4的侧面设有视觉相机5,视觉相机5用于探测患者的治疗腔道3的治疗靶点位置坐标和腔道轴线方向,治疗电极6插入到治疗腔道3中进行治疗。
所述工作台内设置有控制与通讯模块1,所述控制与通讯模块1用于运行控制与通讯机构,工作台上方设置有机械臂2,所述机械臂2末端设置有治疗电极6,其中治疗电极6末端设置有力值传感器来对治疗腔道3内的受力和扭矩情况进行判定,所述机械臂2用于调整治疗电极6的具体治疗位置。
所述工作台底部设置有运动组件7,运动组件7根据视觉相机5测量的点位来进行工作台的位置调整。
所述机械臂2采用六轴结构,能够实现治疗电极6多个角度的调整,所述治疗电极6末端的力值传感器可以对治疗腔道3中对于直角坐标系x、y、z轴方向的作用力及扭矩进行测量。
另外,本实施例还介绍了一种随动射频私密治疗控制系统,包括:
计算处理模块、识别机构、位移机构、伺服机构和通讯机构,计算处理模块通过通讯机构与识别机构、位移机构和伺服机构进行连接和信号传输,其中计算处理模块通过随动算法来对伺服机构移动路径进行计算,由通讯机构传输至位移机构执行。
此外,本实施例还介绍了一种随动射频私密治疗仪的控制方法,包括具体步骤如下:
步骤一:通过识别机构选取靶点位置;
步骤二:根据靶点位置来控制位移机构将治疗电极6移动到靶点位置;
步骤三:靶点位置变化时,通过随动算法来计算并控制位移机构跟随靶点位置移动,实现自动跟随治疗。
识别机构采用视觉相机5,位移机构采用滚轮组件加上机械臂2,具体步骤如下:
步骤一:视觉相机实时获取患者治疗区图像,找到治疗靶点,通过视觉相机判断治疗靶点是否移动;
步骤二:视觉相机输出治疗靶点坐标及法线方向的变化信息至控制与通讯模块;
步骤三:将视觉相机输入的信息处理之后,控制滚轮组件夹持治疗电极移动,再反馈至步骤一中进行视觉相机进行实时拍摄进行对比,再循环上述步骤实现动态调整。
最后应说明的是:
结合机械臂2与视觉相机5,通过视觉相机5实时监测患者体态,计算腔道轴线方向及坐标变化,控制机械臂2夹持治疗电极6随动,无需手持治疗,解放操作者双手,提高医院治疗效率,患者无需保持截石位姿势不能动弹,缓解患者腰部不适。
实施例4
以实施例1为基础,本实施例为可以为电机治疗的角度和转动进行实时控制,总体思路如下:
如图3所示,一种随动射频私密治疗控制方法,识别机构采用治疗电极6内置的力值传感器,位移机构采用机械臂2,具体步骤如下:
S1.静止状态下,将力值传感器获取的作用力及扭矩清零(治疗电极在腔道内直角坐标系x、y、z轴方向的作用力及扭矩);
S2.力值传感器实时获取治疗电极在腔道内直角坐标系x、y、z轴方向的作用力及扭矩,并通过通讯机构将输送到控制系统;
S3.探测作用力及扭矩是否变化,如不发生变化,不输出数据,保持力值传感器的实时监控,如发生变化,则力值传感器输出直角坐标系x、y、z轴方向的作用力及扭矩变化值;
S4.系统处理力值传感器的输出结果,计算患者移动时,腔道的入口坐标及腔道轴线方向的变化;
S5.根据腔道的入口坐标及腔道轴线方向的变化值,控制位移机构驱动治疗电极移动;
S6.判断作用力及扭矩是否恢复零值,
若是,继续步骤S2中的力值传感器实时检测,重复步骤S3-6中对于力值传感器多个方向角度的受力和扭矩变化的动态调整;
若否,则返回步骤S5中控制治疗电极进行移动。
优选的,其中对于机械臂对于私服力控制系统的控制方法如下:
n关节机械臂的PID控制律为:
e为跟踪误差,e=qd-q,采用定点控制时,qd为常数,n关节机械手方程为:
D(q)为n×n阶正定惯性矩阵,为n×n阶离心和哥氏力项,取Lyapunov函数为:
由D(q)、Kp的正定性知,V是全局正定的,利用的斜对称性知,则:
如图5所示,所述伺服系统PID算法应用于使系统具有较好的速度和加速度性能,采用引入测速机信号作为速度反馈,直接构成模拟式速度回路,由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路(Yd是框架参考角位置输入型号,θ是输出角位置信号)。
最后应说明的是:
结合机械臂2与力值传感器,力值传感器实时获取治疗电极6在治疗腔道3内直角坐标系x、y、z轴,将作用力及扭矩的变化值输出给计算处理模块,通过PID算法控制机械臂2按照随动趋势运动,至作用力及扭矩恢复零值(初始静止状态下,将传感器的作用力及扭矩清零)。
通过视觉或者传感器定位系统,能实时准确判定治疗腔道3的体态,进行跟随移动,能提高患者的治疗体感,治疗电极6跟随移动,能大大提高治疗效果。
实施例5
本实施例介绍了一种分段式射频治疗设备的温度控制方法。现今射频技术在医疗领域中的应用越来越广泛,射频技术主要是利用高频电流对靶组织加热,凝固生物组织,产生物理化学的性质变化,从而达到治疗目的;目前已广泛应用于普外科、妇科、皮肤科、整形科、泌尿外科等领域;射频在进行治疗时由于靶组织温度是决定疗效的重要指标;所以如果靶组织温度达不到则无法保证治疗效果,但是如果靶组织温度过高,则会出现烫伤;
目前采用的是使用温度传感器进行温度采集和控制,如图8所示,1-1为温度传感器,1-2为治疗电极,通常温度传感器放置于治疗电极背面,通过高导热率导热硅脂等材料连接;与人体组织接触区域为另外一面区域,因为射频加热为皮下组织内部加热,热量先传导至电极片,使得整个电极片温度上升之后,热量再传递给温度传感器,温度传感器采集到温度数据转换为电信号传递给控制系统;但是温度传感器无法即时采集到准确实时的靶组织温度,导致的靶组织烫伤,所以简单使用温度传感器和PID的方法来实现控温,温度检测和控制存在很大的误差,存在一定的安全隐患。为解决现有温度传感器采集的温度延缓,导致射频治疗时靶组织烫伤的问题。本实施例介绍了一种分段式射频治疗设备的温度控制方法,如图7所示,包括以下步骤:
步骤一:建立射频治疗设备的温度控制模型,包括
1.1、确定生物组织阻抗值和射频治疗设备输入能量值;具体的,
所述生物组织阻抗ZT值的计算式为:
ZT=a0+a1*cos(T*w)+b1*sin(T*w)     (1)
式(1)为生物组织阻抗函数,其中:a0,a1,b1,w均为无量纲常数,T为目标温度;ZT为生物组织阻抗;其中a0=(-1.801e+07),a1=(1.801e+07),b1=(-5.584e+04),w=(-0.000101);
所述射频治疗设备输入能量E值的计算式为:
式(2)为生物传热模型,其中,T为目标温度,ρ0为生物组织的密度,Ct表示生物组织的比热容,k表示热传导系数,wb表示血流的灌注率,Cb表示血流的比热容,T0表示加热区域的初始血流温度,此处为生物体温度,Q为生物基础代谢产热,与人的体重身高和年龄相关,在极短时间内可当作常量考虑,E为射频治疗设备输入能量。
1.2、确定射频治疗设备的功率曲线函数;具体的,所述射频治疗设备的功率曲线函 数f(ZT)具体的为:
f(zT)=1.2642*ln(zT)+13   (3)
式(3)中,ZT为生物组织阻抗。
1.3、基于所述射频治疗设备输入能量值、射频治疗设备的功率曲线函数建立射频温度控制模型;所述温度控制模型为:
式(4)中,(N-1)*10+f(ZT)为射频治疗设备的功率,即
P(zT)=(N-1)*10+f(zT)    (5)
式(4)和(5)中,f(ZT)为射频治疗设备的功率曲线函数,N为射频治疗设备的挡位,其中N取值为1-5,即N有五个挡位,E为射频治疗设备输入能量,t为到达T所需时间。
步骤二:基于所述射频温度控制模型和设定的目标温度进行分段温控模拟,得到射频治疗设备的阶段温控参数值;
所述分段温控模拟包括:分段温控模拟第一阶段的快速升温阶段、分段温控模拟第二阶段的慢速升温阶段和分段温控模拟第三阶段的维持温度阶段,具体为:设定生物组织的最终治疗目标温度为Ttreat和初始挡位N,初始温度为T0,设定温度差t1,取值为0~(Ttreat-T0),温度允许误差tt
则分段温控模拟第一阶段,温度变化从温度T0升至Ttreat-t1
分段温控模拟第二阶段,温度从Ttreat-t1升至Ttreat
分段温控模拟第三阶段,温度维持在Ttreat
模拟中采用治疗电极侧部的温度传感器采集组织表面温度TC(R),如图8所示,其中的1-1为温度传感器,1-2为治疗电极;射频治疗时射频治疗设备的系统框图如图9所示,包括治疗电极,治疗电极与射频板连接,射频板连接开关电源1和控制板,控制板连接温度传感器和开关电源2;其中所述温度传感器的特性函数为:
式(6)中,B值为选定温度传感器材料常数,TC(R)为射频治疗设备中的电极内部温度传感器采集到的温度,R0为0℃下电极的电阻值,R为T温度下电极的电阻值。
分段温控模拟具体操作为:示例性的,设定生物组织的最终治疗目标温度为Ttreat 和初始挡位N,初始温度为T0,设定温度差t1,取值为0~(Ttreat-T0),温度允许误差tt;补充说明的是,公式(4)可以确定出关于N与t的关系函数,可以设定N的值,N的值为整数;或者设定t的值计算N值,当计算得出N为非整数时向上取整,比如计算得出N值为4.1则取整后N值取5;计算得出N值为1.9则取整后N值取2。
分段温控模拟第一阶段:从初始温度T0升温到Ttreat-t1,并实时获取TC(R)的温度数据,当TC(R)数值达到第一阶段的目标温度Ttreat-t1时,停止加热;根据所述射频温度控制模型,计算升温到Ttreat-t1的目标温度下射频治疗设备的P(ZT)、tS1值,将P(ZT)、tS1值与经验值作对比判断,确定出第一阶段的射频治疗设备的实际工作温控参数值;具体为,即在确定目标温度T为Ttreat-t1时根据式(2)即可得到E的数值,根据式(1)得到ZT,ZT确定后根据式(3)得到f(ZT),f(ZT)确定后根据式(5)在N确定的情况下得到P(ZT)的值,将E值、P(ZT)值代入到式(4)中即可得到tS1的数值,进而实现根据温度控制模型计算升温到Ttreat-t1的目标温度下射频治疗设备的P(ZT)、tS1值,依据P(ZT)、tS1值以及相关经验数值确定出第一阶段的射频治疗设备的温控参数数值;其中的相关经验值是为了保证机器正常运行、人体能够接受治疗的射频治疗设备的数据,示例性的,Pj为经验输出功率,tj为经验输出时间,其经过多次实验得到的经验数据,取Pj1、tj1为相关数据;
当P(ZT)≤Pj1时,取P(ZT)值以及P(ZT)对应的关联参数数值为第一阶段的射频治疗设备的温控参数数值(即通过P(ZT)值确定此功率下的挡位N、得到该温度的时间tS1为第一阶段的射频治疗设备的温控参数数值),但是当关联参数数值tS1≤tj1时,取tS1,否则取tj1为第一阶段的射频治疗设备的关联参数数值;
当P(ZT)>Pj1时,取Pj1值以及Pj1对应的关联参数数值为第一阶段的射频治疗设备的温控参数数值,(即通过Pj1值确定此功率下的挡位N、得到该温度的时间tS1为第一阶段的射频治疗设备的温控参数数值),但是当关联参数数值tS1≤tj1时,取tS1,否则取tj1为第一阶段的射频治疗设备的关联参数数值。
另外在第一阶段中,在此过程中实时采集ZT值和TC(R)的值,优先判断当TC(R)值达到Ttreat-t1时即结束第一阶段,其次判断当ZT达到ZT-t1即结束第一阶段加热过程,当前面两个条件都未达到目标值时,根据方程计算设置输出功率为P(ZT),治疗时间达到tS1时,即结束第一阶段加热过程。
分段温控模拟第二阶段:从温度Ttreat-t1升温到Ttreat,并实时获取TC(R)的温度数据,当TC(R)的数值达到第二阶段的目标温度Ttreat时,停止加热;根据所述温度控制 模型,计算升温到Ttreat的目标温度下射频治疗设备的P(ZT)、tS2值,将P(ZT)、tS2值与经验值作对比判断,确定出第二阶段的射频治疗设备的实际工作温控参数值;具体为,根据式(2)即可得到E的数值,根据式(1)得到ZT,ZT确定后根据式(3)得到f(ZT),f(ZT)确定后根据式(5)在第二阶段N确定的情况下得到P(ZT)的值,将E值、P(ZT)值代入到式(4)中即可得到tS2的数值,进而实现根据温度控制模型计算升温到Ttreat的目标温度下射频治疗设备的P(ZT)、tS2值,依据P(ZT)、tS2值以及相关经验数值确定出第二阶段的射频治疗设备的温控参数数值;示例性的,取Pj2、tj2为相关数据,其中Pj2为输出功率阈值,tj2为输出时间阈值,该值经过多次实验得到的经验数据;
当P(ZT)≤Pj2时,取P(ZT)值以及P(ZT)对应的关联参数数值为第二阶段的射频治疗设备的温控参数数值(即通过P(ZT)值确定此功率下的挡位N、得到该温度的时间tS2为第二阶段的射频治疗设备的温控参数数值),但是当关联参数数值tS2≤tj2时,取tS2,否则取tj2为第二阶段的射频治疗设备的关联参数数值;
当P(ZT)>Pj2时,取Pj2值以及Pj2对应的关联参数数值为第二阶段的射频治疗设备的相关数据(即通过Pj2值确定此功率下的挡位N、得到该温度的时间tS2为第一阶段的射频治疗设备的温控参数数值),但是当关联参数数值tS2≤tj2时,取tS2,否则取tj2为第二阶段的射频治疗设备的关联参数数值。
分段温控模拟第三阶段:温度维持在Ttreat,并实时获取TC(R)的温度数据,使用PID算法计算出P(ZT),具体为:
式(7)中,△Tn为当前目标温度和实时温度的差值;Kp为比例系数,Ki为积分系数,Kd为微分系数;△Tn-1为当前温度与前一个时刻温度的温度差;
依据P(ZT)值和维温功率Pw,其中Pw为经验值,将P(ZT)与Pw作对比判断,确定出第三阶段的射频治疗设备的实际工作温控参数值;具体的包括:
当P(ZT)≥Pw-2时,取Pw为第三阶段的射频治疗设备的输出功率,通过Pw确定此功率下第三阶段的射频治疗设备的温控参数数值;第三阶段的时间t根据本次疗程的治疗时刻人为设定;
当P(ZT)<Pw-2时,取P(ZT)为第三阶段的射频治疗设备的输出功率;通过P(ZT)确定此功率下第三阶段的射频治疗设备的温控参数数值;第三阶段的时间t根据本次疗程的治疗时刻人为设定。
步骤三:射频治疗设备根据所述阶段温控参数值进行分段工作;
即通过步骤二得到需要加热到目标温度的阶段温控参数值,利用这些参数值即可进行射频治疗设备的实际治疗工作。
本实施例基于上述的温控方法,还介绍一种分段式射频治疗设备的温度控制装置,所述装置包括:
通信器,所述通信器用于获取数据;
处理器,耦接于所述通信器,用于:
建立射频治疗设备的温度控制模型,包括
确定生物组织阻抗值和射频治疗设备输入能量值;
确定射频治疗设备的功率曲线函数;
基于所述射频治疗设备输入能量值、射频治疗设备的功率曲线函数建立射频温度控制模型;
基于所述射频温度控制模型和设定的目标温度进行分段温控模拟,得到射频治疗设备的阶段温控参数值;
射频治疗设备根据所述阶段温控参数值进行分段工作。
本实施例还介绍一种电子设备,所述电子设备包括处理器和存储器,所述存储器用于存储指令,所述处理器用于调用所述存储器中的指令,使得所述电子设备执行如上述温度控制方法的步骤。
本实施例还介绍一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可读指令,所述计算机可读指令被处理器执行时实现如上述温度控制方法的步骤。
本发明利用生物组织阻抗的温度特性,指示皮下组织温度,即可实现无创方法采集靶组织内部温度,实时控制射频治疗设备的输出功率参数,使得皮下组织治疗更加有效和安全;
使用生物传热模型引入血液灌注率等因素,可以通过主动计算得到更加准确的能量输出数值;结合采集到的温度传感器和生物组织阻抗数据,使得治疗温度更加可靠;
分阶段控制,根据每个阶段的生物组织升温特性设定各个阶段的温控参数值,使得治疗更安全,无过温等安全风险;
维温阶段采用PID算法与维温边界功率,使得治疗温度更加准确稳定。
实施例6
本实施例介绍了一种随动射频私密治疗仪,具体介绍的为传动治疗装置。由于无论 是盆底治疗还是微针射频治疗,治疗时一般采用医护人员手持手柄+治疗头的方式进行手动治疗,治疗过程中需人手一直握持手柄进行治疗操作。一方面,长时间握持手柄会比较累,且有时需保持相同的姿势很长时间,操作的医护人员会比较累;另一方面,握持治疗只能一个医护人员对应一个患者,不利于提高医院治疗效率。为此,本实施例介绍传动治疗装置。
包括治疗头2-11和手柄2-2,治疗头2-11与手柄2-2可拆卸连接。作为一种优选的方案,请参阅图14,在治疗头2-11的安装端内侧设有装配槽2-13,在手柄2-2的安装端外侧设有与装配槽2-13相配合的凸起2-227,治疗头2-11通过装配槽2-13和凸起2-227的配合与手柄2-2卡接固定。装配槽2-13可选用L型槽,凸起2-227可选用圆形凸块,两者可拆卸连接时,将手柄2-2上的凸起2-227对准治疗头2-11的装配槽2-13插入后,再通过两者之间的旋转作用使装配槽2-13和凸起2-227卡接在一起。
在实施时,对于可重复使用的治疗头2-11可做成与手柄2-2为一体的,耗材类治疗头2-1需做成可拆卸。手柄2-2上须有可与作为耗材的治疗头2-11相连接的部件,不限于螺钉连接、卡扣连接、磁吸连接等。
手柄2-2包括手柄外壳2-25和安装在手柄外壳2-25内的传动部件2-22、驱动器2-23、电路板2-24。手柄外壳2-25的输入端设有连接电路板2-24的手柄线束2-26,手柄线束2-26用于连接电源以及主机设备。电路板2-24通过线路与驱动器2-23电连接,驱动器2-23的输出端与传动部件2-22固定连接,传动部件2-22与治疗头2-11传动连接,对治疗头2-11的动作进行控制,使其方便治疗,该治疗包括盆底治疗和微针射频治疗。
在实施时,驱动器2-23可以选择直线驱动装置,比如推缸、气缸等产品,主要用于微针射频治疗工作时,对微针模块2-14的直线推送。驱动器2-23还可以选择旋转驱动装置,比如直流电机,主要用于盆底治疗工作时,对手柄外壳2-25进行旋转,在旋转时带动手柄外壳2-25外壁上的治疗头电极2-12一起转动,从而更好的刺激盆腔的腔道。
在本实施例中,治疗头2-11为盆底治疗装置的治疗头2-1,治疗头2-11包括治疗头外壳2-11和治疗头电极2-12,治疗头电极2-12设有多个且外凸于治疗头外壳2-11上,驱动器2-23通过传动部件2-22与治疗头外壳2-11转动连接,驱动治疗头外壳2-11转动,带动治疗头电极2-12一起转动。
其中,请参阅图11至图13,传动部件2-22包括主动连接部件2-221、传动部件外壳2-222、从动连接件2-223和传动部件端盖2-224,主动连接部件2-221和从动连接件 2-223安装在传动部件外壳2-222内,传动部件外壳2-222安装在手柄外壳2-25内,主动连接部件2-221与驱动器2-23的输出端固定连接,主动连接部件2-221与从动连接件2-223传动连接,从动连接件2-223与治疗头2-11传动连接,传动部件端盖2-224的外周通过紧固件2-225与传动部件外壳2-222固定连接。
传动部件外壳2-222固定在手柄外壳上,驱动器2-23运动时,传动部件外壳2-222相对于手柄外壳静止,传动部件上端设置有传动部件端盖2-224,传动部件端盖2-224与传动部件外壳2-222固定,以防止从动连接件2-223的轴向运动。
驱动器2-23工作时,带动主动连接部件2-221一起转动,而主动连接部件2-221与从动连接件2-223传动连接,从而从动连接件2-223也会一起转动起来,进而带动治疗头2-11一起转动。作为一种优选的方案,主动连接部件2-221为齿轮、皮带轮、链轮中的其中一种。当主动连接部件2-221为齿轮时,则为主动齿轮,而从动连接件2-223则为被动齿轮,两者啮合连接;当主动连接部件2-221为皮带轮时,则为第一皮带轮,而从动连接件2-223则为第二皮带轮,两者通过皮带传动连接;当主动连接部件2-221为链轮时,则为第一链轮,而从动连接件2-223则为第二链轮,两者通过链条传动连接。
另外,手柄外壳2-25的外侧上部设有开关按钮2-21,开关按钮2-21与驱动器2-23电连接,用于控制驱动器2-23的启停动作,在实施时,开关按钮2-21为按压式开关、触摸式开关、推拉式开关中的任意一种。手柄外壳2-25的外侧下部设有手持部位2-27,手持部位2-27为直筒状结构,手持部位2-27的外壁上设有防滑纹,以便于医护人员握紧后进行连接治疗头2-11。
实施例7
请参阅图15至图17,与实施例4不同的是,驱动器2-23选择了直线驱动装置,治疗头2-11为微针治疗装置的治疗头2-1。治疗头2-11包括治疗头外壳2-11和微针模块2-14,微针模块2-14安装于治疗头外壳2-11的内部,驱动器2-23通过传动部件2-22与微针模块2-14直线传动连接,传动部件2-22可以采用推杆2-226替代,或者推杆2-226固定在传动部件2-22的外侧输出面上。通过微针模块2-14中的微针对皮肤进行刺激,并且通过手柄线束2-26内的线缆连接射频能量,在刺激时释放射频能量,对皮肤进行修复。
实施例8
请参阅图18和图19,本实施例介绍的传动治疗装置包括治疗头2-11和手柄2-2,还包括调节支架2-3,调节支架2-3包括夹具2-31和折叠架2-32,折叠架2-32的底座安 装在治疗现场的工作台上,折叠架2-32的端部与夹具2-31固定连接,夹具2-31固定在手柄2-2的外壁上。通过夹具2-31将手柄2-2进行夹紧,并通过折叠架2-32进行弯折调节一定的角度。夹具2-31可以为卡箍或者带有弹性伸缩的橡胶圈,折叠架2-32可以采用常见的折叠调节支架,比如手机自拍杆的支架、台灯的支架等可具有折叠、伸缩、旋转功能的支架。
通过调节支架2-3将本传动治疗装置固定在工作台上时,手柄2-2中的手柄线束2-26连接主机设备,主机上设有显示屏,显示当前治疗状态,主机内部也安装有电源设备,用于为传动治疗装置和主机供电,另外主机内部的控制PCBA连接显示屏以及主机和电路板2-24,以便于对本传动治疗装置更好的控制。
手柄2-2及治疗头2-11接入主机后,主机通过手柄2-2内的电路板2-24识别到手柄2-2及治疗头2-11,手柄2-2上的开关按钮2-21处于待机模式,驱动器2-23的输出位置自动回到原点,到达已设定好的位置。主机上或手柄2-2中电路板2-24上设有特定的治疗方案,通过选取治疗方案,治疗头2-11将会按设定好的流程进行治疗。
治疗时,通过开关按钮2-21触发驱动器2-23带动治疗头2-11运动(旋转运动或直线运动),旋转的速度、间歇时间和直线运动推进的频率及深度通过主机控制。治疗头2-1到达指定角度或深度后,释放射频能量。达到设定的治疗时间后,驱动器2-23带动治疗头2-11回到原点,完成一个治疗周期。
本传动治疗装置的驱动器2-23设在手柄2-2内部,整体体积小,在治疗过程中占用治疗空间小,便于实际治疗的应用。整体结构中治疗头2-11用到的零部件更少,故成本更低,适用前景更好,在作为耗材时能够节省成本。通过本传动治疗装置无需医护人员手持治疗,解放操作者双手,提高医疗效率。
实施例9
本实施例介绍一种智能盆底自动化治疗装置。由于治疗过程中需人手一直握住手柄,间歇式旋转治疗头、前后进给治疗头、多倾角角度旋转治疗头或按压治疗头,人工长时间握持手柄会比较累,且需要保持同一姿势也比较困难;另外,人工控制旋转特定的角度、深度、位置和按压力度难度较大,无法达到较高的精准度,全依靠主观判断,且同一个操作师单次治疗过程随着时间加长,疲惫度加大,导致后期偏差加大,无法做到治疗的精准性、一致性,因而无法保证治疗效果的可靠性;并且,手持式手柄加治疗头的方法对用户的私密性没有很好的保护。
为此,本实施例介绍的智能盆底自动化治疗装置包括治疗设备5-1,所述治疗设备 5-1用于确定治疗方案并发射治疗用的能量;具体的,所述治疗设备5-1包括交互系统5-11、控制系统5-12和能量源发射系统5-13;
所述交互系统5-11、所述能量源发射系统5-13连接控制系统5-12;所述交互系统5-11的交互界面用于设定治疗方案,所述能量源发射系统5-13用于发出射频、电刺激、超声、磁刺激、光、冲击波中的任意一种能量。
所述治疗设备5-1电连接智能运动驱动模块5-2和治疗执行模块5-3,所述智能运动驱动模块5-2包括夹持机构5-21、控制电路系统5-22和多维度多角度驱动机构5-23;所述夹持机构5-21拆卸式连接治疗执行模块5-3,所述治疗执行模块5-3设有多种,各种所述治疗执行模块5-3的倾斜角度(相对于夹持机构5-21)不同,一般治疗执行模块5-3与夹持机构5-21的轴向夹角范围为0~30°;示例性的,如图35所示,图中a为治疗执行模块5-3的治疗头部分竖直,b为治疗执行模块5-3的治疗头部分偏转一定角度(示例性的,图35中的b部分为治疗执行模块5-3相对于夹持机构5-21偏转30°),因此可根据不同需要替换不同倾斜角度的治疗执行模块5-3进行使用,偏转一定角度的治疗执行模块5-3在配合旋转运动时刻进行可控角度的锥面旋转运动,以达到治疗需求。所述多维度多角度驱动机构5-23连接夹持机构5-21;所述控制电路系统5-22电连接控制系统5-12,所述控制电路系统5-22用于控制多维度多角度驱动机构5-23驱动治疗执行模块5-3进行多维度多角度运动;其中的多维度多角度运动包括但是不限于旋转运动、直线运动、定点按压、可控倾斜角度旋转运动。
所述治疗执行模块5-3包括能量输送部分、能量承载部分、反馈传感器和支撑主体,所述支撑主体侧部设有能量输送部分、能量承载部分和反馈传感器,所述能量输送部分用于将所述能量源发射系统5-13发射的能量输送到能量承载部分以进行治疗,所述能量承载部分包括电极片、线圈、超声换能器或者冲击波能量转换器等中的一种,具体的能量承载部分根据能量源发射系统5-13的能量源确定,所述反馈传感器包括温度传感器和压力传感器。
第一种实施方式:如图32、图33和图34所示,所述多维度多角度驱动机构5-23包括组合臂5-4,所述组合臂5-4包括水平移动组件5-41、防护罩5-42、固定壳5-43、第一直线驱动组件5-44、旋转驱动组件5-45、推动环5-46和限位环5-47;所述旋转驱动组件5-45连接夹持机构5-21,所述旋转驱动组件5-45用于驱动夹持机构5-21旋转;示例性的,所述旋转驱动组件5-45包括第二电机5-451、第二齿轮5-452和第三齿轮5-453,其中第三齿轮5-453设于所述夹持机构5-21的外侧,所述第三齿轮5-453啮合第二齿轮 5-452,所述第二齿轮5-452连接第二电机5-451,通过第二电机5-451驱动第二齿轮5-452旋转进而带动第三齿轮5-453旋转,使得夹持机构5-21能够带动治疗执行模块5-3旋转运动;所述旋转驱动组件5-45的外部固定有固定壳5-43,所述固定壳5-43的外部设有防护罩5-42;所述固定壳5-43与所述防护罩5-42之间设有水平移动组件5-41,所述水平移动组件5-41用于带动夹持机构5-21进行水平移动;示例性的,所述水平移动组件5-41包括固定架5-411、第一齿轮5-412、第一电机5-413和滑块5-414;所述防护罩5-42的侧面开设滑槽,所述滑块5-414滑动连接滑槽,所述滑块5-414的顶端固定有固定壳5-43,所述滑块5-414的底端设有板齿,所述板齿啮合第一齿轮5-412,所述第一齿轮5-412连接第一电机5-413,所述第一电机5-413、所述第一齿轮5-412设于固定架5-411内;所述第一电机5-413启动带动所述第一齿轮5-412旋转,第一齿轮5-412旋转时即可带动滑块5-414在防护罩5-42内移动,即可实现带动治疗执行模块5-3进行水平移动;所述防护罩5-42的外侧设有推动环5-46,所述推动环5-46的外侧设有限位环5-47,限位环5-47可配合支撑底座,用于对组合臂5-4整体进行支撑;所述推动环5-46与所述限位环5-47之间通过弹性材料填充,在无外力情况下,推动环5-46在弹性材料的作用下与限位环5-47同心,所述限位环5-47外表面呈环形阵列开设有多个通孔,每个通孔均对应一个第一直线驱动组件5-44,示例性的,如图33所示,第一直线驱动组件5-44设有三个,第一直线驱动组件5-44穿过通孔即可与推动环5-46接触,推动推动环5-46带动内部整体结构向一侧移动,如图34所示,图34中的最左侧第一直线驱动组件5-44推动推动环5-46内部整体向右移动,完成治疗执行模块5-3的按压操作,参考图36,图36为整体俯视图,可以看出第一直线驱动组件5-44推动前(c)到推动后(d)的变化;另外所述第一直线驱动组件5-44包括电动推杆、液压推杆、气动推杆中的一种,但是不限于此,任何能够驱动进行直线运动的都在本发明的保护范围内。
本发明应用场景之一为盆底腔道内治疗,适用于全腔道分断治疗(旋转运动)、全腔道不同深度治疗(直线运动+旋转运动)、腔道内定点治疗(直线运动+旋转运动),腔道内定点按压治疗(直线运动+旋转运动+按压)和可控倾角旋转运动(旋转运动+按压+倾斜一定角度的质量执行模块)。医生通过用户症状,在治疗设备上选取治疗方案;进入治疗方案后,智能运动驱动模块将会被激活,根据选取的治疗方案,带动治疗执行模块进行相应的运动。治疗执行模块与治疗设备电连接,输送能量。治疗执行模块上设有反馈传感器,当达到设置的值时,治疗设备将会控制能量的输出,同时在设备显示界面显示正在治疗的位置区域、运动的轨迹和实时的传感器数值。
本发明还介绍一种自动化治疗装置的控制方法,如图38所示,包括以下步骤:
步骤一:根据用户症状和基本信息,在治疗设备上确定治疗方案;
具体的,所述症状包括查体症状和主诉症状,所述基本信息包括用户的年龄和阴道尺寸,从治疗设备的交互系统的界面确定出治疗方案,即治疗位置、治疗能量强度、治疗时间等。
步骤二:治疗设备根据所述治疗方案确定智能运动驱动模块的运行参数;
具体的,治疗设备根据用户年龄m,阴道内部空间尺寸a、b、c,查体症状和主诉症状进行计算,得出智能运动驱动模块的各运动机构运行的参数值x、y、z和角度θ,其中:
x=f1(a,b,c)+x0
y=f2(a,b,c)+y0
y=f3(a,b,c)+z0
θ=f4(a,b,c)+θ0
上式中x0、y0、z0均为无量刚常数,f1、f2、f3、f4为运动控制算法函数。
步骤三:智能运动驱动模块根据运行参数驱动治疗执行模块进行多维度多角度运动,直至治疗执行模块到达预设位置;
智能运动驱动模块根据治疗方案调整治疗执行模块的位置,直至到达治疗部位;具体的,在确定治疗部位和治疗方案后通过智能运动驱动模块驱动治疗执行模块直线运动和/或按压,使治疗执行模块到达预设位置后,通过旋转运动使治疗执行模块旋转。
步骤四:启动治疗设备和治疗执行模块进行能量输出,并根据反馈传感器反馈情况进行治疗设备能量和时间的调整;示例性的结合反馈传感器获取的实时温度值temp值进行治疗设备治疗能量P与时间t的调整。其中:
P=f5(Zt,temp)
ZT=a0+a1*cos(T*w)+b1*sin(T*w)
式中:a0,a1,b1,w均为无量刚常数,T为目标温度,ZT为生物组织阻抗。
具体的,启动治疗设备、治疗执行模块,使能量源发射系统发射的能量传输到治疗执行模块,进行治疗;治疗的流程如图39所示。
能量输送到治疗执行模块时,判断是否达到预设值,示例性的,通过温度传感器检测温度值判断是否达到预定的温度;如果没有达到预设值,则继续进行能量输送;如果达到预设值,则小功率维持,并判断是否达到预设的时间,若没有则继续小功率维持, 若有则能量输出结束,自动化治疗装置退出治疗部位,完成本次治疗。
第二种实施方式:如图34所示,所述多维度多角度驱动机构5-23包括机械臂5-5,示例性的,通过两节机械臂5-5进行说明;所述机械臂5-5包括支撑臂5-51、第二直线驱动组件5-52、第三直线驱动组件5-53、旋转盘5-54、底座5-55和第三电机5-56,所述旋转盘5-54的一端连接夹持机构5-21,所述旋转盘5-54的另一端连接第三电机5-56;通过第三电机5-56驱动旋转盘5-54旋转,进而带动治疗执行模块5-3进行旋转运动;所述旋转盘5-54转动连接第三直线驱动组件5-53,所述第三直线驱动组件5-53用于驱动治疗执行模块5-3进行水平运动;且所述第三直线驱动组件5-53转动连接支撑臂5-51;所述支撑臂5-51与所述第三直线驱动组件5-53之间设有第二直线驱动组件5-52,所述第二直线驱动组件5-52用于驱动第三直线驱动组件5-53改变角度,用于实现改变治疗执行模块5-3改变倾角进行定点按压运动及可控倾角旋转运动;所述支撑臂5-51的底端连接底座5-55;其中所述第二直线驱动组件5-52、第三直线驱动组件5-53包括电动推杆、液压推杆、气动推杆中的一种,但是不限于此,任何能够驱动进行直线运动的都在本发明的保护范围内。
本发明提供一种自动化治疗装置的控制方法,包括以下步骤:
步骤一:根据用户症状和基本信息,在治疗设备上确定治疗方案;
具体的,所述症状包括查体症状和主诉症状,所述基本信息包括用户的年龄和阴道尺寸,从治疗设备的交互系统的交互界面确定出治疗方案,即治疗位置、治疗能量强度、治疗时间等。
步骤二:治疗设备根据所述治疗方案确定智能运动驱动模块的运行参数;
具体的,根据用户查体症状、主诉症状、年龄、阴道尺寸进行治疗方案的设置,根据机械臂安装的原点位置x1、y1、z1,治疗设备可以根据用户年龄m,阴道尺寸a、b、c以及机械臂原点位置x1、y1、z1和症状进行计算,得出多轴机械臂的姿态控制参数和位置控制参数:基于关节运动的控制原理是一种基于关节的运动控制原理,它将机械臂的复杂空间运动分解为每个关节的运动,以期控制机械臂到达指定的位置。在关节运动控制中,要求关节的精确控制,通常使用位置或速度传感器,检测关节的实时位置或速度,再根据控制算法使关节达到预定位置或速度
θ=f-1(x,y,z,α,β,γ)
x1=x-xb
y1=y-yb
z1=z-zb
其中,θ表示机械臂各个关节的角度,x、y、z表示机械臂末端的位置,a、β、γ表示机械臂末端的姿态,xa、yb、zb为机械臂所在的位置B的空间坐标;f-1(x)为逆运动学计算公式。
步骤三:智能运动驱动模块根据运行参数驱动治疗执行模块进行多维度多角度运动,直至治疗执行模块到达预设位置;
智能运动驱动模块根据治疗方案调整治疗执行模块的位置,直至到达治疗部位;具体的,在确定治疗部位和治疗方案后通过智能运动驱动模块驱动治疗执行模块直线运动和/或可控倾角的按压,使治疗执行模块到达预设位置后,通过旋转运动使治疗执行模块旋转。
步骤四:启动治疗设备和治疗执行模块进行能量输出,并根据反馈传感器反馈情况进行治疗设备能量和时间的调整。
本实施例的自动化治疗装置通过控制智能运动驱动模块驱动治疗执行模块进行多维度多角度的运动,以便于治疗执行模块进入到盆底预定的位置,本实施例通过智能控制旋转特定的角度、深度、位置和按压力度,精准度高;即使长时间治疗后续也没有偏差,治疗精准、一致,保证治疗效果的可靠性,同时对用户的私密处有很好的保护作用。
实施例10
请参阅图40,本实施例介绍了一种随动射频私密治疗仪的控制方法,以下称为目标腔道导入方法。由于现有针对盆地的能量源技术治疗一般采用人工手持治疗电极,并且将治疗电极直接放置腔道内部;手动导入治疗电极后,一直手握保持治疗电极位于治疗靶区或者间歇式旋转治疗电极使治疗电极全面接触治疗靶区。但人工导入时很难准确判断腔道法线方向,导致导入体验感较差。同时,一个操作人员只能够进行单一导入操作,不能同时进行其它操作,较为费人工,导入效率较低。
本实施例的主要目的是将导入仪器沿目标腔道的法线方向导入至目标腔道内,本实施例方法的实现依托于三活动关节。三活动关节主要包含依次转动连接的第一活动关节、第二活动关节和第三活动关节的集成。导入仪器安装在第三活动关节尾端且二者保持位于同一直线上。
根据三活动关节和导入仪器的连接介绍目标腔道导入方法的具体步骤:
第一步:获取目标腔道的法线方向及目标腔道首端C的位置信息,判断导入仪器是否在由目标腔道的法线和重力线确定的竖直面上,否则移动导入仪器至该竖直面上;其中,C点为目标腔道首端中心点,位置信息包括目标腔道首端C与导入仪器之间的水平 间距。
三点确定一个面,根据目标腔道的法线和重力线确定目标腔道的竖直面。由于导入仪器和目标腔道处于空间关系,为了方便后续操作,需要将二者的空间关系转换成平面关系,因此需要先将导入仪器移动至目标腔道的法线和重力线确定的竖直面上。只有在该竖直面上,导入仪器可以通过二维移动便可移动至目标腔道首端,因为该竖直面是目标腔道法线所在竖直面。
第二步:是则根据目标腔道与导入仪器之间的水平间距判断水平间距是否大于导入仪器向目标腔道的活动距离,是则令导入仪器向目标腔道移动至水平间距小于导入仪器向目标腔道的活动距离。
当导入仪器处于指定竖直面上时,可将导入仪器与目标腔道的空间关系转变为平面关系。以三活动关节首端为起始点,由于三活动关节的活动范围有限,因此需要保证导入仪器和目标腔道之间的水平距离是三活动关节能够活动到的范围,若三活动关节无法将导入仪器从当前所在位置移动至目标腔道,则需要移动导入仪器,令导入仪器和目标腔道的间距缩短。
第三步:否则依据导入仪器末端P与目标腔道首端C重叠状态下三活动关节的状态得到如下关系式:其中,β1为第一活动关节的一次旋转角度,β2为第二活动关节的一次旋转角度,β3为第三活动关节的一次旋转角度,β4为目标腔道的法线与水平面的相交锐角。
结合图41,将导入仪器末端定义为P点,根据预先知晓的目标腔道的法线方向得到其法线与水平面的相交锐角β4。导入仪器末端P从当前位置移动至与目标腔道首端C重叠状态,三活动关节需要对应转动相应角度。第一活动关节的一次旋转角度定义为β1,第二活动关节的一次旋转角度定义为β2,第三活动关节的一次旋转角度定义为β3,通过三活动关节的弯折状态可以得到一次旋转角度与目标腔道的法线与水平面的相交锐角β4的关系式。本实施例是针对三活动关节从线性状态转动至弯折状态进行说明。
第四步:获取第二活动关节和第三活动关节的夹角γ1,根据第二活动关节和第三活动关节由线性活动至相交得到如下关系式:β3=π-γ1
结合图41和图42,夹角γ1实际上由第二活动关节首端经尾端到第一活动关节首端构成的夹角γ11由和第三关节尾端经首端到第一活动关节首端构成的夹角γ12构成。当得到夹角γ11、夹角γ12后,便知晓β3
夹角γ11的计算公式为
L1 2=((yc-(r3+r4)cosβ4)2+(zc+(r3+r4)sinβ4)2。其中,L1是第二活动关节尾端与第一活动关节首端之间的距离,yc是导入仪器末端P与目标腔道首端C重叠状态下第一活动关节首端和目标腔道首端C的水平间距,zc是纵向间距,r1是第一活动关节的长度,r2是第二活动关节的长度,r3是第三活动关节的长度,r4是导入仪器导入部位的长度。
夹角γ12的计算公式为其中,是目标腔道首端C与第一活动关节首端的距离L2
由此便可知晓β3
第五步:获取第一活动关节和第二活动关节的夹角γ2,根据第一活动关节和第二活动关节由线性活动至相交得到如下关系式:β2=π-γ2
在知晓夹角γ2后,便可知晓β2。β2的计算公式为
第六步:根据β3和β2计算出β1,并基于相同原理计算出导入仪器末端P沿目标腔道法线方向进入至预设位置时三活动关节对应转动角度β10、β20、β30,并对应与三活动关节的一次旋转角度进行差值计算,得到对应的二次旋转角度β11、β22、β33
在知晓β2和β3后,根据第三步的关系式,便可知晓β1。β1、β2和β3分别对应第一活动关节、第二活动关节和第三活动关节的转动角度,基于此角度旋转,可令导入仪器末端P与目标腔道首端C重叠。
由于本方法的最终目的是需将导入仪器导入至目标腔道内,导入的深度可以预设,基于第三步至第六步相同原理的计算方式,假设导入仪器末端P移动至指定位置后,根据三活动关节从直线状态下所需弯曲的角度,即对应的转动角度β10、β20、β30。将转动角度β10、β20、β30与β1、β2和β3进行差值计算,则可知晓导入仪器末端P从目标腔道首端C深入预设距离所需转动的角度,即二次转动角度β11、β22、β33
第七步:根据一次旋转角度和二次旋转角度驱动三活动关节移动导入仪器末端P与目标腔道首端C重叠并导入目标腔道。
在知道一次旋转角度和二次旋转角度后,先令三活动关节依据一次旋转角度转动,导入仪器末端P与目标腔道首端C重叠,随后再令三活动关节依据二次旋转角度转动,令导入仪器末端P导入目标腔道预设距离。通过先定位后导入的方式,能够提高定位精准度。
基于此,本实施例通过控制三活动关节两次转动实现将导入仪器先与目标腔道定位 再导入,和现有的手动导入相比,无需耗费人力,实现精准定位,保证导入效率的同时也能够提供降低导入不适感。
实施例11
请参阅图43,在实施例10的基础上。本实施例介绍了一种多手段联合的私密治疗装置,其包括机械臂4-13、治疗手柄电极4-14、控制器、台车4-11、视觉相机4-12、距离传感器或压力传感器。机械臂4-13包括第一支臂4-131、第二支臂4-132和第三支臂4-133,第三支臂4-133尾端与治疗手柄电极4-14连接且位于同一直线上。第一支臂4-131与台车4-11通过带有电机的转轴连接,第二支臂4-132和第三支臂4-133的连接以及第三支臂4-133与治疗手柄电机的连接采用同样的连接方式。
定义台车4-11初始状态下面向目标腔道的一侧为前侧,第一支臂4-131安装在台车4-11前侧顶部,台车4-11用于移动机械臂4-13及治疗手柄电极4-14至与目标腔道同一竖直面上,实现将目标腔道与治疗手柄电极4-14的空间关系转为平面关系。视觉相机4-12与第一支臂4-131首端相邻设置,其镜头面向目标腔道,用于采集目标腔道的图像。距离传感器或者压力传感器置于第三支臂4-133的尾端,分别用于感应治疗手柄电极4-14导入深度和机械臂4-13尾端压力。
控制器,用于定义第一支臂4-131首端为原点O,台车4-11的重力反方向为z轴,初始状态下台车4-11前侧面向目标腔道首端C的水平方向为y轴,与z轴和y轴相垂直的方向为x轴,并将目标腔道的图像进行数据处理,得到目标腔道首端C的坐标及目标腔道首端C的法线方向。
还用于判断台车4-11当前坐标是否是预设坐标区域,否则发送控制信号给台车4-11,驱动台车4-11移动直至到达预设坐标区域。
结合图41或图42,判断的具体步骤如下:获取目标腔道首端C的三维坐标(xc,yc,zc)和第一支臂4-131的长度r1、第二支臂4-132的长度r2、第三支臂4-133的长度r3
判断xc是否满足xc=0;
否则控制台车4-11沿x轴方向移动xc
判断yc是否满足yc≥r1+r2+r3
否则控制台车4-11沿y轴方向移动yc-(r1+r2+r3);
更新目标腔道首端C的三维坐标,重复上述操作直至目标腔道首端C的三维坐标同时满足xc=0、yc≥r1+r2+r3,令台车4-11处于预设坐标区域。
实际上上述操作的目的便是令机械臂4-13以及治疗手柄电极4-14和目标腔道均位于同一y-z平面上,二者的x坐标相对为0。
还用于根据治疗手柄电极4-14末端P与目标腔道首端C的距离以及治疗手柄电极4-14的轴线和目标腔道首端C的法线相交角度计算出机械臂4-13的一次转动角度。
由于第一支臂4-131的首端为坐标原点O,假设初始状态下机械臂4-13的第一支臂4-131、第二支臂4-132、第三支臂4-133以及治疗手柄电极4-14均位于z轴正方向上。其中,坐标原点O沿台车4-11的重力反方向为z轴正方向。定义第一支臂4-131和第二支臂4-132的连接转轴在y-z平面上的点为A点,定义第二支臂4-132和第三支臂4-133的连接转轴在y-z平面上的点为B点,目标腔道首端C点和治疗手柄电极4-14末端P点均位于y-z平面上。
水平面和目标腔道首端C的法线相交角度为β4。结合图41可知,在机械臂4-13初始状态呈一条直线的情况下并且从z轴正方向旋转时,所需计算的一次旋转角度是第一支臂4-131的一次旋转角度β1,第二支臂4-132的一次旋转角度β2,第三支臂4-133的一次旋转角度β3。一次旋转角度β1为z轴正方向和第一支臂4-131的夹角,一次旋转角度β2是π-∠OAB,∠OAB即第一支臂4-131和第二支臂4-132的夹角,一次旋转角度β3为π-∠ABC,∠ABC即第二支臂4-132和第三支臂4-133的夹角,∠ABC=∠ABO+∠OBC。本实施例中的∠ABC即为实施例1中所介绍的γ1,∠ABO即为实施例1中所介绍的γ11,∠OBC即为实施例1中所介绍的γ12,∠OAB即为实施例1中所介绍的γ2
将机械臂4-13的第一支臂4-131、第二支臂4-132和第三支臂4-133分别虚接成不同的三角形,基于平面函数关系计算出一次旋转角度的实际数值。
基于△AOB和△OBC的内角和边长关系计算出所需的一次旋转角度,具体计算公式如下:



β3=π-cos(∠ABO)-cos(∠OBC);   (4)
结合公式(1)~(5)计算出一次旋转角度为:


公式中的r3为第三支臂4-133的长度,r4为治疗手柄电极4-14的长度。
还用于根据预设的治疗手柄电极4-14导入目标腔道首端C内的导入距离n计算出机械臂4-13的二次转动角度。
结合图41和图42,导入距离n为预设距离。为了方便计算,可以先假设机械臂4-13从初始状态直接转动,令治疗手柄电极4-14进入目标腔道内,沿法线方向移动导入距离n,此时P点在y-z平面上的坐标可以根据已知的C点坐标、目标腔道首端C的法线与水平面的相交角度为β4和导入距离n计算得出。
采用与一次旋转角度相同的计算原理,将机械臂4-13的第一支臂4-131、第二支臂4-132和第三支臂4-133分别虚接成不同的三角形,基于平面函数关系计算出二次旋转角度的实际数值。
先计算的是机械臂4-13令治疗手柄电极4-14末端P从目标腔道首端C导入的导入距离n所需转动的角度。即第一支臂4-131理想的旋转角度β10、第二支臂4-132理想的旋转角度β20、第二支臂4-132理想的旋转角度β30
二次旋转角度为:β11=β101,β22=β202,β3=β303
即:
驱动机械臂4-13转动一次转动角度先令治疗手柄电极4-14末端P目标腔道首端C重叠,再驱动机械臂4-13转动二次转动至治疗手柄电极4-14末端P移动角度导入距离n,若机械臂4-13末端所承受的压力或机械臂4-13末端与目标腔道间隔距离达到预设安全阈值时,停止驱动机械臂4-13。
本实施例采用的是先定位后导入的方式,在精准定位后再导入,提高导入精准度,也可以减少误差的存在。同时本实施例还设置距离传感器或压力传感器亦或者其它传感器。具有安全辅助的作用。距离传感器可以在治疗手柄电极4-14末端P目标腔道首端C重叠后,感应治疗手柄电极4-14移动的距离,若是超出预设的导入距离n,则距离传感器可以发送信号给控制器,控制器控制机械臂4-13停止移动。或者是在治疗手柄电极4-14导入目标腔道时,会受到阻力,机械臂4-13导入需施加更多的力,但是若机械臂4-13施加的力过大时,会增加被导入者的不适感,因此需要提前设置压力阈值,当机械臂4-13末端即第三支臂4-133的末端的压力达到预设的压力阈值时,压力传感器发送信号给控制器,控制器接收信号后控制机械臂4-13停止移动。
结合图44,本实施例的整体原理是结合台车4-11的移动,将空间机械臂4-13简化 成了平面机械臂4-13,通过平面函数关系,得到机械臂4-13各关节运转角度,从而将手柄电极沿着靶点(目标腔道)法线方向导入腔道。
本实施实际应用时,可以满足一个医护人员同时对多个被导入者进行导入操作,且采用本实施例的装置进行私密治疗,可以避免医护人员与被导入者直接接触,避免治疗时候的尴尬,令被导入者心情更舒畅。此外,精准定位目标腔道及导入目标腔道深度,治疗靶向性更好,治疗效果更佳。
实施例12
本实施例介绍了一种腔道全贴合治疗仪。由于目前市面产品的电极治疗头外径尺寸固定,无法匹配不同尺寸腔道的患者,导致治疗时患者体验感觉较差,治疗效果也不好。假如根据客源需要,生产多种规格尺寸的腔道治疗设备则将增加医疗公司的成本。本实施例介绍了腔道全贴合治疗仪。
如图51和图52所示,腔道全贴合治疗仪包括电极治疗头3-1和与电极治疗头3-1相连接的手柄3-2。手柄3-2的接连端外侧设有翼片3-207,翼片3-207为凸台张结构,突出于手柄3-2的接连端外侧,电极治疗头3-1上设有与翼片3-207相配合的卡槽3-208,卡槽3-208为凹槽状结构,电极治疗头3-1通过翼片3-207和卡槽3-208的配合与手柄3-2卡接。电极治疗头3-1的翼片3-207通过手柄3-2的卡槽3-208插入,然后旋转一定角度,完成手柄3-2与电极治疗头3-1的卡接。
两者连接时,手持手柄3-2利用卡槽3-208插入卡槽3-208内即可连接,两者也可以采用卡扣连接的常规方式进行连接,也可以采用螺纹连接的方式进行连接。电极治疗头3-1与手柄3-2设计成可拆卸形式,方便做成专人专用电极或一次性使用电极,防止交叉感染。使用后电极治疗头3-1可以一次性使用扔掉或者消毒后专人专用,而手柄3-2可以重复使用,降低腔道治疗的成本。
请参阅图47至图50,电极治疗头3-1包括上下两片密封连接的电极外壳3-101,电极外壳3-101与手柄3-2的连接处设有电极端盖3-113,电极外壳3-101的外壁上安装有电极片3-116,用于电极片3-116作用于患者腔道内,进行射频刺激治疗。每个电极片3-116的外周均通过柔性波浪连接件3-115弹性连接在电极外壳3-101的外壳硬胶3-114上,柔性波浪连接件3-115通过包胶或粘接等形式与电极外壳3-101密封固接。柔性波浪连接件3-115由塑料制成,带有弹性褶皱,当充气后,能够膨胀外撑,将电极片3-116也撑起来,以此提高电极治疗头3-1的外径接触面。
电极外壳3-101内部靠近电极片3-116的一侧设有腔体3-107,该腔体3-107的外壳 可以跟电极外壳3-101为一体式结构。腔体3-107通过密封盖3-104将电极片3-116进行密封,电极片3-116的内侧均位于腔体3-107。密封盖3-104上安装有输气口3-108,输气口3-108通过电极管道3-109连接有管接头3-110,管接头3-110安装在电极端盖3-113上,且其外端口连接外部的充气装置,用于为腔体3-107的内部进行充气。充气装置可采用气囊或者充气泵,也可以采用其他可以充气的装置。
请参阅图53,作为一种优选的方案,在图53(a)中,密封盖3-104安装在电极端盖3-113上,当充气装置向腔体3-107内充气时,柔性波浪连接件3-115会膨胀起来将所有的电极片3-116撑起来,使其突出于电极外壳3-101的外壁,从而增加电极治疗头3-1的整体外径治疗尺寸。
作为一种优选的方案,在图53(b)中,腔体3-107设于每片电极外壳3-101的内侧,并将电极外壳3-101上所有的电极片3-116进行包绕,密封盖3-104密封在腔体3-107的端面上。即为腔体3-107将每片所在的所有电极片3-116进行包绕,再安装上密封盖3-104将每片电极外壳3-101上的所有电极片3-116进行密封,使其构成一个密闭的腔体3-107。当充气装置向腔体3-107内充气时,柔性波浪连接件3-115会膨胀起来将每片电极外壳3-101上的电极片3-116撑起来,使其突出于电极外壳3-101的外壁,从而增加电极治疗头3-1的整体外径治疗尺寸。
作为一种优选的方案,在图53(c)中,腔体3-107设于每个电极片3-116的外周,并将电极片3-116进行包绕,密封盖3-104设有多个,且其密封连接在每个腔体3-107的端面上。即为腔体3-107将每个电极片3-116单独进行包绕,再安装上密封盖3-104将每个电极片3-116进行密封,使其构成一个密闭的腔体3-107。当充气装置向腔体3-107内充气时,柔性波浪连接件3-115会膨胀起来将每个电极片3-116撑起来,使其突出于电极外壳3-101的外壁,从而增加电极治疗头3-1的整体外径治疗尺寸。
实施例13
在实施例12的基础上,每个电极片3-116的内部通过螺钉3-103安装有随动PCBA3-102,密封盖3-104通过腔体密封圈3-105密封连接有转接PCBA3-106,防止腔体3-107内气体的泄露,转接PCBA3-106与随动PCBA3-102电连接,从而方便输送射频能量。电极端盖3-113上安装有触点PCBA3-112,触点PCBA3-112与转接PCBA3-106电连接,从而方便输送射频能量。
作为一种优选的方案,管接头3-110通过管接头密封圈3-111安装在电极端盖3-113上,对充气的管路进行密封。每个随动PCBA3-102上安装有温度传感器3-117,因设有 多片式电极片3-116,每个电极片3-116均配备温度传感器3-117,可精准测量每个电极片3-116所在的区域的温度,通过温度来调节对应电极片3-116的射频能量大小,防止局部烫伤,达到最好的治疗效果。
实施时,电极外壳3-101的电极片3-116上通过螺钉3-103将带有温度传感器3-117的随动PCBA3-102固定,治疗能量通过螺钉3-103传递到电极片3-116。然后将密封盖3-104通过超声焊接、粘接或密封圈等形式密封固接在电极外壳3-101上,密封盖3-104外部放入密封圈105,然后压上一个转接PCBA3-106,形成一个腔体。其中,随动PCBA3-102上的信号及能量通过线缆接到转接PCBA3-106。密封盖3-104的输气口与套有管接头密封圈3-111的管接头3-110通过电极管道3-109连通。管接头3-110及触点PCBA3-112固定在电极端盖104上,然后用两个外壳将电极端盖104卡紧,电极治疗头3-1安装完成。其中,转接PCBA3-106上的型号及能量通过线缆3-204接到触点PCBA3-112。
实施例14
在实施例12或实施例13的基础上,请参阅图45和图46,手柄3-2包括手柄外壳3-201,手柄外壳3-201的连接端安装有手柄端盖3-202,手柄端盖3-202的内侧面安装有手柄PCBA3-203,手柄PCBA3-203通过对导线连接触点PCBA3-112输送射频能量,手柄外壳3-201的内部安装有连接手柄PCBA3-203的线缆3-204,线缆3-204的输入端连接射频装置。手柄外壳3-201的内部还安装有手柄气管3-205,手柄气管3-205通过端盖气管接头3-206与管接头3-110连接,具有良好的密封效果,手柄气管3-205的输入端连接外部的充气装置,便于进行充气操作。
实施时,手柄PCBA3-203固定在手柄端盖3-202上,手柄气管3-205插接在端盖气管接头3-206上,线缆3-204连接在手柄PCBA3-203上。然后将手柄端盖3-202用两个外壳卡紧固定,手柄3-2安装完成。
工作过程:将电极治疗头3-1与手柄3-2组装好,然后将电极治疗头3-1插入患者的腔道进行治疗,充气使电极片3-116膨胀,电极片3-116贴合腔道,然后主机通过电极片3-116释放治疗能量,同时通过随动PCBA3-102监测相应区域的温度,一旦检测到某个区域温度偏高,相应电极片3-116的射频能量减弱。治疗完设定时间后,将腔道的气体放出,电极片3-116缩回,拔出电极治疗头3-1,完成治疗。
原理说明:电极外壳3-101、密封盖3-104及转接PCBA3-106形成腔体,充气装置通过管道从输气口与腔体连通,用以对腔体3-107充气或者抽气。充气装置充气时,电 极外壳3-101上的柔性波浪连接件3-115产生形变,电极片3-116可向外膨胀,以适应直径更大的腔道,进行全贴合治疗。
在本实施例中,电极片3-116安装在柔性波浪连接件3-115上,充气可膨胀,电极片3-116被推出,可适应不同大小的腔道治疗。多片电极片3-116的柔性波浪连接件3-115为单独部件,充气后,能适应不同直径腔道的治疗(电极片凸出不同高度)。柔性波浪连接件3-115在未充气时具有固定形状,方便治疗完成后放气拔出电极治疗头3-1。这种结构有别于整体式气囊结构,在电极治疗头3-1插入时,极治疗头1整体结构不会发生改变,电极片3-116的间距等参数更加稳定,治疗效果更佳。腔体3-107充气、放气采用充气装置自动充放的形式,一方面解放了用户的双手,另一方面解决了手动充放气的顿挫感,患者体验感更佳。
本发明的技术范围不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对上述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的保护范围内。

Claims (48)

  1. 一种射频私密治疗仪,包括主机和治疗装置,其特征在于:所述治疗装置包括治疗电极(6),所述治疗电极(6)包括治疗头(6-1)、旋转体(6-2)和手柄(6-3),所述旋转体(6-2)的顶部内腔中转动连接有套筒(6-22),所述旋转体(6-2)的内部设有与套筒(6-22)传动连接的驱动装置,所述旋转体(6-2)外部设有装配口(6-27),所述装配口(6-27)用于将所述旋转体(6-2)固定在治疗的现场环境中,所述套筒(6-22)的内部一侧与手柄(6-3)活动连接,所述手柄(6-3)的工作端与治疗头(6-1)活动连接,所述治疗头(6-1)、手柄(6-3)、套筒(6-22)分别同轴设置。
  2. 如权利要求1所述的射频私密治疗仪,其特征在于:所述套筒(6-22)的内腔外壁上均匀设有限位条(6-221),所述套筒(6-22)的内腔靠近所述限位条(6-221)的一侧设有限位圈(6-223),所述手柄(6-3)的外周面均匀开设有与限位条(6-221)相配合的插槽(6-32),所述手柄(6-3)通过限位条(6-221)和插槽(6-32)的配合与套筒(6-22)插装连接。
  3. 如权利要求2所述的射频私密治疗仪,其特征在于:所述手柄(6-3)靠近所述治疗头(6-1)的安装端内部安装有感应块(6-34),所述套筒(6-22)的内腔中开设有感应孔(6-222),所述感应孔(6-222)的内部安装有感应开关(6-28),感应开关(6-28)与感应块(6-34)感应连接。
  4. 如权利要求3所述的射频私密治疗仪,其特征在于:所述感应块(6-34)为磁铁,所述感应开关(6-28)的感应端设有与磁铁磁性吸附的金属感应片。
  5. 如权利要求1所述的射频私密治疗仪,其特征在于:所述旋转体(6-2)包括外壳(6-21)和电机(6-25),所述套筒(6-22)通过轴承(6-23)安装在外壳(6-21)的内腔顶部,套筒(6-22)的外周固定有从动齿轮(6-24),所述电机(6-25)安装在外壳(6-21)的内腔底部,电机(6-25)构成了所述套筒(6-22)的驱动装置,电机(6-25)的输出端传动连接有主动齿轮(6-26),主动齿轮(6-26)与从动齿轮(6-24)啮合连接。
  6. 如权利要求5所述的射频私密治疗仪,其特征在于:从动齿轮(6-24)与主动齿轮(6-26)的传动比为1:1。
  7. 如权利要求1所述的射频私密治疗仪,其特征在于:所述治疗头(6-1)的非治疗端设有护罩(6-11),所述护罩(6-11)为伞状曲面结构。
  8. 如权利要求7所述的射频私密治疗仪,其特征在于:所述手柄(6-3)的安装端设有插装指示标记(6-33),所述护罩(6-11)上设有旋转指示标记(6-14)。
  9. 如权利要求1所述的射频私密治疗仪,其特征在于:所述治疗头(6-1)远离治 疗端的一侧设有与手柄(6-3)相连接的接头(6-12),所述接头(6-12)的内壁上开设有销孔(6-13),所述手柄(6-3)靠近所述治疗头(6-1)的连接端内部设有与销孔(6-13)相配合的固定销(6-31),所述手柄(6-3)通过销孔(6-13)和固定销(6-31)的配合与治疗头(6-1)卡接。
  10. 如权利要求1所述的射频私密治疗仪,其特征在于:所述装配口(6-27)的内部安装有与现场环境中治疗床相固定的固定结构。
  11. 一种分段式射频治疗设备的温度控制方法,其特征在于:包括:
    步骤一:建立射频治疗设备的温度控制模型,包括
    确定生物组织阻抗值和射频治疗设备输入能量值;
    确定射频治疗设备的功率曲线函数;
    基于所述射频治疗设备输入能量值、射频治疗设备的功率曲线函数建立射频温度控制模型;
    步骤二:基于所述射频温度控制模型和设定的目标温度进行分段温控模拟,得到射频治疗设备的阶段温控参数值;
    步骤三:射频治疗设备根据所述阶段温控参数值进行分段工作;
    其中:所述生物组织阻抗值的计算式为:
    ZT=a0+a1*cos(T*w)+b1*sin(T*w)    (1)
    式(1)中:a0,a1,b1,w均为无量纲常数,T为目标温度,ZT为生物组织阻抗;
    所述射频治疗设备的功率曲线函数具体的为:
    f(zT)=1.2642*ln(zT)+13     (3)
    式(3)中,ZT为生物组织阻抗;
    所述基于射频治疗设备输入能量值、射频治疗设备的功率曲线函数建立射频温度控制模型具体的为:
    式(4)中,(N-1)*10+f(ZT)为射频治疗设备的功率,即
    P(zT)=(N-1)*10+f(zT)      (5)
    式(4)和(5)中,f(ZT)为射频治疗设备的功率曲线函数,N为射频治疗设备的挡位,E为射频治疗设备输入能量,t为到达T所需时间;
    所述射频治疗设备输入能量值的计算式为:
    式(2)中,T为目标温度,ρ0为生物组织的密度,Ct表示生物组织的比热容,k表示热传导系数,wb表示血流的灌注率,Cb表示血流的比热容,T0表示加热区域的初始血流温度,此处为生物体温度,Q为生物基础代谢产热,与人的体重身高和年龄相关,在极短时间内可当作常量考虑,E为射频治疗设备输入能量;
    所述分段温控模拟包括:第一阶段的快速升温阶段、第二阶段的慢速升温阶段和第三阶段的维持温度阶段;模拟中采用治疗电极侧部的温度传感器采集组织表面温度TC(R),所述温度传感器的特性函数为:
    式(6)中,B值为选定温度传感器材料常数,TC(R)为射频治疗设备中的电极内部温度传感器采集到的温度,R0为0℃下电极的电阻值,R为T温度下电极的电阻值;
    设定生物组织的最终治疗目标温度为Ttreat和初始挡位N,初始温度为T0,设定温度差t1,取值为0~(Ttreat-T0),温度允许误差tt
    分段温控模拟第一阶段:从初始温度T0升温到Ttreat-t1,并实时获取TC(R)的温度数据,当TC(R)数值达到第一阶段的目标温度Ttreat-t1时,停止加热;根据所述射频温度控制模型,计算升温到Ttreat-t1的目标温度下射频治疗设备的P(ZT)、ts1值,将P(ZT)、ts1值与经验值作对比判断,确定出第一阶段的射频治疗设备的实际工作温控参数值;
    分段温控模拟第二阶段:从温度Ttreat-t1升温到Ttreat,并实时获取TC(R)的温度数据,当TC(R)的数值达到第二阶段的目标温度Ttreat时,停止加热;根据所述温度控制模型,计算升温到Ttreat的目标温度下射频治疗设备的P(ZT)、ts2值,将P(ZT)、ts2值与经验值作对比判断,确定出第二阶段的射频治疗设备的实际工作温控参数值;
    分段温控模拟第三阶段:温度维持在Ttreat,并实时获取TC(R)的温度数据,使用PID算法计算出P(ZT),具体为:
    式(7)中,△Tn为当前目标温度和实时温度的差值;Kp为比例系数,Ki为积分系数,Kd为微分系数;△Tn-1为当前温度与前一个时刻温度的温度差;
    依据P(ZT)值和维温功率Pw,将P(ZT)与Pw作对比判断,确定出第三阶段的 射频治疗设备的实际工作温控参数值;
    其中ts1为从T0升温到Ttreat-t1的目标温度下的时间;
    ts2为从Ttreat-t1升温到Ttreat的目标温度下的时间。
  12. 基于权利要求11的一种分段式射频治疗设备的温度控制装置,其特征在于:所述装置包括:
    通信器,所述通信器用于获取数据;
    处理器,耦接于所述通信器,用于:
    建立射频治疗设备的温度控制模型,包括
    确定生物组织阻抗值和射频治疗设备输入能量值;
    确定射频治疗设备的功率曲线函数;
    基于所述射频治疗设备输入能量值、射频治疗设备的功率曲线函数建立射频温度控制模型;
    基于所述射频温度控制模型和设定的目标温度进行分段温控模拟,得到射频治疗设备的阶段温控参数值;
    射频治疗设备根据所述阶段温控参数值进行分段工作;
    其中:所述生物组织阻抗值的计算式为:
    ZT=a0+a1*cos(T*w)+b1*sin(T*w)    (1)
    式(1)中:a0,a1,b1,w均为无量纲常数,T为目标温度,ZT为生物组织阻抗;
    所述射频治疗设备的功率曲线函数具体的为:
    f(zT)=1.2642*ln(zT)+13     (3)
    式(3)中,ZT为生物组织阻抗;
    所述基于射频治疗设备输入能量值、射频治疗设备的功率曲线函数建立射频温度控制模型具体的为:
    式(4)中,(N-1)*10+f(ZT)为射频治疗设备的功率,即
    P(zT)=(N-1)*10+f(zT)      (5)
    式(4)和(5)中,f(ZT)为射频治疗设备的功率曲线函数,N为射频治疗设备的挡位,E为射频治疗设备输入能量,t为到达T所需时间;
    所述射频治疗设备输入能量值的计算式为:
    式(2)中,T为目标温度,ρ0为生物组织的密度,Ct表示生物组织的比热容,k表示热传导系数,wb表示血流的灌注率,Cb表示血流的比热容,T0表示加热区域的初始血流温度,此处为生物体温度,Q为生物基础代谢产热,与人的体重身高和年龄相关,在极短时间内可当作常量考虑,E为射频治疗设备输入能量;
    所述分段温控模拟包括:第一阶段的快速升温阶段、第二阶段的慢速升温阶段和第三阶段的维持温度阶段;模拟中采用治疗电极侧部的温度传感器采集组织表面温度TC(R),所述温度传感器的特性函数为:
    式(6)中,B值为选定温度传感器材料常数,TC(R)为射频治疗设备中的电极内部温度传感器采集到的温度,R0为0℃下电极的电阻值,R为T温度下电极的电阻值;
    设定生物组织的最终治疗目标温度为Ttreat和初始挡位N,初始温度为T0,设定温度差t1,取值为0~(Ttreat-T0),温度允许误差tt
    分段温控模拟第一阶段:从初始温度T0升温到Ttreat-t1,并实时获取TC(R)的温度数据,当TC(R)数值达到第一阶段的目标温度Ttreat-t1时,停止加热;根据所述射频温度控制模型,计算升温到Ttreat-t1的目标温度下射频治疗设备的P(ZT)、ts1值,将P(ZT)、ts1值与经验值作对比判断,确定出第一阶段的射频治疗设备的实际工作温控参数值;
    分段温控模拟第二阶段:从温度Ttreat-t1升温到Ttreat,并实时获取TC(R)的温度数据,当TC(R)的数值达到第二阶段的目标温度Ttreat时,停止加热;根据所述温度控制模型,计算升温到Ttreat的目标温度下射频治疗设备的P(ZT)、ts2值,将P(ZT)、ts2值与经验值作对比判断,确定出第二阶段的射频治疗设备的实际工作温控参数值;
    分段温控模拟第三阶段:温度维持在Ttreat,并实时获取TC(R)的温度数据,使用PID算法计算出P(ZT),具体为:
    式(7)中,△Tn为当前目标温度和实时温度的差值;Kp为比例系数,Ki为积分系数,Kd为微分系数;△Tn-1为当前温度与前一个时刻温度的温度差;
    依据P(ZT)值和维温功率Pw,将P(ZT)与Pw作对比判断,确定出第三阶段的 射频治疗设备的实际工作温控参数值;
    其中ts1为从T0升温到Ttreat-t1的目标温度下的时间;
    ts2为从Ttreat-t1升温到Ttreat的目标温度下的时间。
  13. 一种随动射频私密治疗仪,其特征在于,包括:
    工作台,工作台设置有治疗电极(6);
    治疗床(4),治疗床(4)上方用于患者治疗使用,工作台靠近治疗床(4)的侧面设有视觉相机(5),视觉相机(5)用于探测患者的治疗腔道(3)的治疗靶点位置坐标和腔道轴线方向,治疗电极(6)插入到治疗腔道(3)中进行治疗。
  14. 如权利要求13所述的一种随动射频私密治疗仪,其特征在于:所述工作台内设置有控制与通讯模块(1),所述控制与通讯模块(1)用于运行控制与通讯机构,工作台上方设置有机械臂(2),所述机械臂(2)末端设置有治疗电极(6),其中治疗电极(6)末端设置有力值传感器来对治疗腔道(3)内的受力和扭矩情况进行判定,所述机械臂(2)用于调整治疗电极(6)的具体治疗位置。
  15. 如权利要求14的随动射频私密治疗仪,其特征在于:所述机械臂(2)采用六轴机械臂结构,能够实现治疗电极(6)多个角度的调整,所述治疗电极(6)末端的力值传感器可以对治疗腔道(3)中对于直角坐标系x、y、z轴方向的作用力及扭矩进行测量。
  16. 基于权利要求14所述的随动射频私密治疗仪的控制方法,其特征在于,包括具体步骤如下:
    步骤一:通过识别机构选取靶点位置;
    步骤二:根据靶点位置来控制位移机构将治疗电极(6)移动到靶点位置;
    步骤三:靶点位置变化时,通过随动算法来计算并控制位移机构跟随靶点位置移动,实现自动跟随治疗。
  17. 如权利要求16所述的随动射频私密治疗仪的控制方法,其特征在于:识别机构采用视觉相机(5),位移机构采用滚轮组件加上机械臂(2),具体步骤如下:
    步骤一:视觉相机实时获取患者治疗区图像,找到治疗靶点,通过视觉相机判断治疗靶点是否移动;
    步骤二:视觉相机输出治疗靶点坐标及法线方向的变化信息至控制与通讯模块;
    步骤三:将视觉相机输入的信息处理之后,控制滚轮组件夹持治疗电极移动,再反馈至步骤一中进行视觉相机进行实时拍摄进行对比,再循环上述步骤实现动态调整。
  18. 如权利要求16所述的随动射频私密治疗仪的控制方法,其特征在于:所述识别机构采用治疗电极(6)内置的力值传感器,位移机构采用机械臂(2),具体步骤如下:
    S1.静止状态下,将力值传感器获取的作用力及扭矩清零,即治疗电极在腔道内直角坐标系x、y、z轴方向的作用力及扭矩;
    S2.力值传感器实时获取治疗电极在腔道内直角坐标系x、y、z轴方向的作用力及扭矩,并通过通讯机构将输送到控制系统;
    S3.探测作用力及扭矩是否变化,如不发生变化,不输出数据,保持力值传感器的实时监控,如发生变化,则力值传感器输出直角坐标系x、y、z轴方向的作用力及扭矩变化值;
    S4.系统处理力值传感器的输出结果,计算患者移动时,腔道的入口坐标及腔道轴线方向的变化;
    S5.根据腔道的入口坐标及腔道轴线方向的变化值,控制位移机构驱动治疗电极移动。
  19. 如权利要求18所述的随动射频私密治疗仪的控制方法,其特征在于:还包括有如下步骤S6,具体为,通过控制系统判断作用力及扭矩是否恢复零值,
    若是,继续步骤S2中的力值传感器实时检测,重复步骤S3-6中对于力值传感器多个方向角度的受力和扭矩变化的动态调整;
    若否,则返回步骤S5中控制治疗电极进行移动。
  20. 如权利要求19所述的随动射频私密治疗仪的控制方法,其特征在于:其中对于机械臂(2)对于伺服力控制系统的控制方法如下:
    n关节机械臂的PID控制律为:
    e为跟踪误差,e=qd-q采用定点控制时,qd为常数,
    n关节机械手方程为:
    D(q)为n×n阶正定惯性矩阵,为n×n阶离心和哥氏力项;
    取Lyapunov函数为:
    由D(q)、Kp的正定性知,V是全局正定的,利用的斜对称性知,则:
  21. 如权利要求20所述的随动射频私密治疗仪的控制方法,其特征在于:所述伺服系统PID算法应用于使系统具有较好的速度和加速度性能,采用引入测速机信号作为速度反馈,直接构成模拟式速度回路,由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路。
  22. 如权利要求15所述的随动射频私密治疗仪的控制方法,其特征在于,所述机械臂采用三活动关节结构,用于治疗电极向目标腔道导入,三活动关节包括依次转动连接的第一活动关节、第二活动关节和第三活动关节,机械臂将治疗电极导入的目标腔道导入方法包括以下步骤:
    获取目标腔道的法线方向及目标腔道首端C的位置信息,判断导入仪器是否在由目标腔道的法线和重力线确定的竖直面上,否则移动导入仪器至该竖直面上;其中,C为目标腔道首端中心点,位置信息包括目标腔道首端C与导入仪器之间的水平间距;
    是则根据目标腔道与导入仪器之间的水平间距判断水平间距是否大于导入仪器向目标腔道的活动距离,是则令导入仪器向目标腔道移动至水平间距小于导入仪器向目标腔道的活动距离;
    否则依据导入仪器末端P与目标腔道首端C重叠状态下三活动关节的状态得到如下关系式:其中,β1为第一活动关节的一次旋转角度,β2为第二活动关节的一次旋转角度,β3为第三活动关节的一次旋转角度,β4为目标腔道的法线与水平面的相交锐角;
    获取第二活动关节和第三活动关节的夹角γ1,根据第二活动关节和第三活动关节由线性活动至相交得到如下关系式:β3=π-γ1
    获取第一活动关节和第二活动关节的夹角γ2,根据第一活动关节和第二活动关节由线性活动至相交得到如下关系式:β2=π-γ2
    根据β3和β2计算出β1,并基于相同原理计算出导入仪器末端P沿目标腔道法线方向进入至预设位置时三活动关节对应转动角度β10、β20、β30,并对应与三活动关节的一次旋转角度进行差值计算,得到相应的二次旋转角度β11、β22、β33
    根据一次旋转角度和二次旋转角度驱动三活动关节移动导入仪器末端P与目标腔道首端C重叠并导入目标腔道。
  23. 如权利要求22所述的随动射频私密治疗仪的控制方法,其特征在于,第二活动关节和第三活动关节的夹角γ1包括由第二活动关节首端经尾端到第一活动关节首端构成的夹角γ11由和第三关节尾端经首端到第一活动关节首端构成的夹角γ12
  24. 如权利要求23所述的随动射频私密治疗仪的控制方法,其特征在于,夹角γ11的计算方法包括以下步骤:
    获取导入仪器末端P与目标腔道首端C重叠状态下第一活动关节首端和目标腔道首端C的水平间距yc和纵向间距zc,以及第一活动关节的长度r1、第二活动关节的长度r2、第三活动关节的长度r3、导入仪器导入部位的长度r4
    根据目标腔道的法线与水平面的相交锐角β4计算第二活动关节尾端与第一活动关节首端之间的距离L1:L1 2=((yc-(r3+r4)cosβ4)2+(zc+(r3+r4)sinβ4)2
    根据余弦定理计算夹角γ11
  25. 如权利要求24所述的随动射频私密治疗仪的控制方法,其特征在于,夹角γ12的计算方法包括以下步骤:
    根据水平间距yc和纵向间距zc计算目标腔道首端C与第一活动关节首端的距离L2
    根据距离L1和距离L2计算夹角γ12
  26. 如权利要求25所述的随动射频私密治疗仪的控制方法,其特征在于,夹角γ2的计算方法包括以下步骤:
    获取第二活动关节尾端与第一活动关节首端之间的距离L1
    根据第一活动关节的长度r1、第二活动关节的长度r2计算夹角γ2
  27. 一种多手段联合的私密治疗装置,其包括机械臂(4-13)、与机械臂(4-13)尾端连接的治疗手柄电极(4-14)以及控制器,其特征在于,
    控制器工作时执行如权利要求22-26中任意一项所述的随动射频私密治疗仪的控制方法的步骤;其中,机械臂(4-13)为三活动关节,第一活动关节为机械臂(4-13)的第一支臂(4-131),第二活动关节为机械臂(4-13)的第二支臂(4-132),第三活动关节为机械臂(4-13)的第三支臂(4-133);治疗手柄电极(4-14)为导入仪器。
  28. 如权利要求27所述的多手段联合的私密治疗装置,其特征在于,私密治疗装 置还包括台车(4-11);台车(4-11)面向目标腔道的一侧顶部与机械臂(4-13)首端相连,用于移动机械臂(4-13)及治疗手柄电极(4-14)至与目标腔道同一竖直面上。
  29. 如权利要求27所述的多手段联合的私密治疗装置,其特征在于,私密治疗装置还包括视觉相机(4-12);视觉相机(4-12)安装在台车(4-11)顶部且靠近机械臂(4-13)首端处,用于采集目标腔道的图像。
  30. 如权利要求27所述的多手段联合的私密治疗装置,其特征在于,机械臂(4-13)尾端安装有用于获取治疗手柄电极(4-14)导入深度的距离传感器。
  31. 如权利要求27所述的多手段联合的私密治疗装置,其特征在于,机械臂(4-13)尾端安装有用于获取机械臂(4-13)尾端压力的压力传感器。
  32. 如权利要求13所述的随动射频私密治疗仪,其特征在于,治疗电极(6)包括治疗头(2-1)和手柄(2-2),所述治疗头(2-1)与手柄(2-2)可拆卸连接,其特征在于:所述手柄(2-2)包括手柄外壳(2-25)和安装在手柄外壳(2-25)内的传动部件(2-22)、驱动器(2-23)、电路板(2-24),所述手柄外壳(2-25)的输入端设有连接所述电路板(2-24)的手柄线束(2-26),所述电路板(2-24)通过线路与驱动器(2-23)电连接,所述驱动器(2-23)的输出端与传动部件(2-22)固定连接,所述传动部件(2-22)与治疗头(2-1)传动连接。
  33. 如权利要求32所述的随动射频私密治疗仪,其特征在于:所述手柄外壳(2-25)的外侧上部设有开关按钮(2-21),所述开关按钮(2-21)与驱动器(2-23)电连接,手柄外壳(2-25)的外侧下部设有手持部位(2-27)。
  34. 如权利要求33所述的随动射频私密治疗仪,其特征在于:所述开关按钮(2-21)为按压式开关、触摸式开关、推拉式开关中的任意一种,所述手持部位(2-27)为直筒状结构,所述手持部位(2-27)的外壁上设有防滑纹。
  35. 如权利要求32所述的随动射频私密治疗仪,其特征在于:所述驱动器(2-23)为直线驱动装置、旋转驱动装置中的任意一种。
  36. 如权利要求32所述的随动射频私密治疗仪,其特征在于:所述传动部件(2-22)包括主动连接部件(2-221)、传动部件外壳(2-222)、从动连接件(2-223)和传动部件端盖(2-224),所述主动连接部件(2-221)和从动连接件(2-223)安装在传动部件外壳(2-222)内,所述传动部件外壳(2-222)安装在手柄外壳(2-25)内,所述主动连接部件(2-221)与驱动器(2-23)的输出端固定连接,所述主动连接部件(2-221)与从动连接件(2-223)传动连接,所述从动连接件(2-223)与治疗头(2-1)传动连接, 所述传动部件端盖(2-224)的外周通过紧固件(2-225)与传动部件外壳(2-222)固定连接。
  37. 如权利要求36所述的随动射频私密治疗仪,其特征在于:所述主动连接部件(2-221)为齿轮、皮带轮、链轮中的其中一种。
  38. 如权利要求32所述的随动射频私密治疗仪,其特征在于:所述治疗头(2-1)包括治疗头外壳(2-11)和治疗头电极(2-12),所述治疗头电极(2-12)设有多个且外凸于所述治疗头外壳(2-11)上,所述驱动器(2-23)通过传动部件(2-22)与治疗头外壳(2-11)转动连接。
  39. 一种智能盆底自动化治疗装置,其特征在于:包括治疗设备(5-1),所述治疗设备(5-1)用于确定治疗方案并发射治疗用的能量;所述治疗设备(5-1)电连接智能运动驱动模块(5-2)和治疗执行模块(5-3),所述智能运动驱动模块(5-2)包括夹持机构(5-21)、控制电路系统(5-22)和多维度多角度驱动机构(5-23);所述夹持机构(5-21)拆卸式连接治疗执行模块(5-3),所述多维度多角度驱动机构(5-23)连接夹持机构(5-21);所述控制电路系统(5-22)用于控制多维度多角度驱动机构(5-23)驱动治疗执行模块(5-3)进行多维度多角度运动。
  40. 如权利要求39所述的智能盆底自动化治疗装置,其特征在于:所述治疗设备(5-1)包括交互系统(5-11)、控制系统(5-12)和能量源发射系统(5-13),所述交互系统(5-11)、所述能量源发射系统(5-13)连接控制系统(5-12);所述交互系统(5-11)用于设定治疗方案,所述能量源发射系统(5-13)用于发出射频、电刺激、超声、磁刺激、光、冲击波中的任意一种能量。
  41. 如权利要求40所述的智能盆底自动化治疗装置,其特征在于:所述治疗执行模块(5-3)包括能量输送部分、能量承载部分、反馈传感器和支撑主体,所述支撑主体侧部设有能量输送部分、能量承载部分和反馈传感器,所述能量输送部分用于将所述能量源发射系统(5-13)发射的能量输送到能量承载部分以进行治疗,所述反馈传感器包括温度传感器和压力传感器。
  42. 如权利要求39-41任意一项所述的智能盆底自动化治疗装置,其特征在于:所述多维度多角度驱动机构(5-23)包括组合臂(5-4),所述组合臂(5-4)包括水平移动组件(5-41)、防护罩(5-42)、固定壳(5-43)、第一直线驱动组件(5-44)、旋转驱动组件(5-45)、固定环和限位环(5-47);所述旋转驱动组件(5-45)连接夹持机构(5-21),所述旋转驱动组件(5-45)用于驱动夹持机构(5-21)旋转;所述旋转驱动组件(5-45) 的外部固定有固定壳(5-43),所述固定壳(5-43)的外部设有防护罩(5-42);所述固定壳(5-43)与所述防护罩(5-42)之间设有水平移动组件(5-41),所述水平移动组件(5-41)用于带动夹持机构(5-21)进行水平移动;所述防护罩(5-42)的外侧设有推动环(5-46),所述推动环(5-46)的外侧设有限位环(5-47);所述推动环(5-46)与所述限位环(5-47)之间通过弹性材料填充,所述限位环(5-47)外表面呈环形阵列开设有多个通孔,每个通孔均对应一个第一直线驱动组件(5-44)。
  43. 如权利要求42所述的智能盆底自动化治疗装置,其特征在于:所述旋转驱动组件(5-45)包括第二电机(5-451)、第二齿轮(5-452)和第三齿轮(5-453),所述第三齿轮(5-453)设于所述夹持机构(5-21)的外侧,所述第三齿轮(5-453)啮合第二齿轮(5-452),所述第二齿轮(5-452)连接第二电机(5-451);所述水平移动组件(5-41)包括固定架(5-411)、第一齿轮(5-412)、第一电机(5-413)和滑块(5-414);所述防护罩(5-42)的侧面开设滑槽,所述滑块(5-414)滑动连接滑槽,所述滑块(5-414)的顶端固定有固定壳(5-43),所述滑块(5-414)的底端设有板齿,所述板齿啮合第一齿轮(5-412),所述第一齿轮(5-412)连接第一电机(5-413),所述第一电机(5-413)、所述第一齿轮(5-412)设于固定架(5-411)内。
  44. 如权利要求42所述的智能盆底自动化治疗装置,其特征在于,所述治疗执行模块(5-3)与夹持机构(5-21)的轴向夹角范围为0~30°。
  45. 如权利要求39-41任意一项所述的智能盆底自动化治疗装置,其特征在于:所述多维度多角度驱动机构(5-23)包括机械臂(5-5),所述机械臂(5-5)包括支撑臂(5-51)、第二直线驱动组件(5-52)、第三直线驱动组件(5-53)、旋转盘(5-54)、底座(5-55)和第三电机(5-56),所述旋转盘(5-54)的一端连接夹持机构(5-21),所述旋转盘(5-54)的另一端连接第三电机(5-56);所述旋转盘(5-54)转动连接第三直线驱动组件(5-53),且所述第三直线驱动组件(5-53)转动连接支撑臂(5-51);所述支撑臂(5-51)与所述第三直线驱动组件(5-53)之间设有第二直线驱动组件(5-52),所述第二直线驱动组件(5-52)用于驱动第三直线驱动组件(5-53)改变角度;所述支撑臂(5-51)的底端连接底座(5-55)。
  46. 基于权利要求39所述的一种智能盆底自动化治疗装置的控制方法,其特征在于,包括
    根据用户基本信息和症状,在治疗设备(5-1)上确定治疗方案;
    治疗设备(5-1)根据所述治疗方案确定智能运动驱动模块(5-2)的运行参数;
    智能运动驱动模块(5-2)根据运行参数驱动治疗执行模块(5-3)进行多维度多角度运动,直至治疗执行模块(5-3)到达预设位置;
    启动治疗设备(5-1)和治疗执行模块(5-3)进行能量输出,并根据反馈传感器反馈情况进行治疗能量和时间的调整。
  47. 如权利要求46所述的自动化治疗装置的控制方法,其特征在于:所述治疗设备(5-1)根据所述治疗方案确定智能运动驱动模块(5-2)的运行参数,包括
    治疗设备(5-1)根据年龄m、阴道内部尺寸a、b、c和症状进行计算,得到组合臂(5-4)各运动机构运行的参数值x、y、z和角度θ:
    x=f1(a,b,c)+x0
    y=f2(a,b,c)+y0
    y=f3(a,b,c)+z0
    θ=f4(a,b,c)+θ0
    上式中x0、y0、z0均为无量刚常数;f1、f2、f3、f4为运动控制算法函数。
  48. 如权利要求47所述的自动化治疗装置的控制方法,其特征在于:所述治疗设备(5-1)根据所述治疗方案确定智能运动驱动模块(5-2)的运行参数,包括
    治疗设备(5-1)根据年龄m、阴道内部尺寸a、b、c、机械臂(5-5)安装原点x1、y1、z1和症状进行计算,得到机械臂(5-5)姿态控制参数和位置控制参数:
    θ=f-1(x,y,z,α,β,γ)
    x1=x-xb
    y1=y-yb
    z1=z-z
    其中,θ表示机械臂(5-5)各个关节的角度,x、y、z表示机械臂(5-5)末端的位置,a、β、γ表示机械臂(5-5)末端的姿态,xa、yb、zb为机械臂(5-5)所在的位置B的空间坐标;f-1(x)为逆运动学计算公式。
PCT/CN2023/119765 2022-09-20 2023-09-19 一种射频私密治疗仪 WO2024061225A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202211142910.4A CN115220496B (zh) 2022-09-20 2022-09-20 一种分段式射频治疗设备的温度控制方法、装置和设备
CN202211142910.4 2022-09-20
CN202222499498.3U CN219783542U (zh) 2022-09-21 2022-09-21 一种传动治疗装置
CN202222499498.3 2022-09-21
CN202310788849.9A CN117065204A (zh) 2023-06-30 2023-06-30 一种目标腔道导入方法及多手段联合的私密治疗装置
CN202310788849.9 2023-06-30
CN202310793524.XA CN116712674A (zh) 2023-06-30 2023-06-30 一种智能盆底自动化治疗装置及其控制方法
CN202310793524.X 2023-06-30
CN202310793569.7A CN116637296A (zh) 2023-06-30 2023-06-30 一种腔道治疗电极随动装置及控制方法
CN202310793569.7 2023-06-30

Publications (1)

Publication Number Publication Date
WO2024061225A1 true WO2024061225A1 (zh) 2024-03-28

Family

ID=90453842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119765 WO2024061225A1 (zh) 2022-09-20 2023-09-19 一种射频私密治疗仪

Country Status (1)

Country Link
WO (1) WO2024061225A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200942123Y (zh) * 2006-03-30 2007-09-05 迈德医疗科技(上海)有限公司 用于射频消融治疗的射频产生及控制装置
CN106362304A (zh) * 2016-09-28 2017-02-01 圆融健康科技(深圳)有限公司 智能光子治疗仪及其控制方法
CN107174753A (zh) * 2017-05-15 2017-09-19 中国医学科学院肿瘤医院 多机械臂式术中放射治疗装置
CN107349529A (zh) * 2017-08-24 2017-11-17 镇江金海创科技有限公司 私密振镜及其控制方法
CN110339480A (zh) * 2019-07-24 2019-10-18 南京伟思医疗科技股份有限公司 一种基于多轴机器人视觉动态跟踪的磁刺激系统和方法
CN114452529A (zh) * 2022-02-28 2022-05-10 南京伟思医疗科技股份有限公司 一种应用于女性盆底治疗的智能旋转装置
CN115220496A (zh) * 2022-09-20 2022-10-21 南京伟思医疗科技股份有限公司 一种分段式射频治疗设备的温度控制方法、装置和设备
CN218833393U (zh) * 2022-02-28 2023-04-11 南京伟思医疗科技股份有限公司 一种应用于女性盆底治疗的智能旋转装置
CN116637296A (zh) * 2023-06-30 2023-08-25 南京伟思医疗科技股份有限公司 一种腔道治疗电极随动装置及控制方法
CN116712674A (zh) * 2023-06-30 2023-09-08 南京伟思医疗科技股份有限公司 一种智能盆底自动化治疗装置及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200942123Y (zh) * 2006-03-30 2007-09-05 迈德医疗科技(上海)有限公司 用于射频消融治疗的射频产生及控制装置
CN106362304A (zh) * 2016-09-28 2017-02-01 圆融健康科技(深圳)有限公司 智能光子治疗仪及其控制方法
CN107174753A (zh) * 2017-05-15 2017-09-19 中国医学科学院肿瘤医院 多机械臂式术中放射治疗装置
CN107349529A (zh) * 2017-08-24 2017-11-17 镇江金海创科技有限公司 私密振镜及其控制方法
CN110339480A (zh) * 2019-07-24 2019-10-18 南京伟思医疗科技股份有限公司 一种基于多轴机器人视觉动态跟踪的磁刺激系统和方法
CN114452529A (zh) * 2022-02-28 2022-05-10 南京伟思医疗科技股份有限公司 一种应用于女性盆底治疗的智能旋转装置
CN218833393U (zh) * 2022-02-28 2023-04-11 南京伟思医疗科技股份有限公司 一种应用于女性盆底治疗的智能旋转装置
CN115220496A (zh) * 2022-09-20 2022-10-21 南京伟思医疗科技股份有限公司 一种分段式射频治疗设备的温度控制方法、装置和设备
CN116637296A (zh) * 2023-06-30 2023-08-25 南京伟思医疗科技股份有限公司 一种腔道治疗电极随动装置及控制方法
CN116712674A (zh) * 2023-06-30 2023-09-08 南京伟思医疗科技股份有限公司 一种智能盆底自动化治疗装置及其控制方法

Similar Documents

Publication Publication Date Title
US10610193B2 (en) Continuous ultrasonic monitoring
US10568638B2 (en) Intelligent orthopedic surgical system
US10792011B2 (en) Systems and methods for hand-free continuous ultrasonic monitoring
US10034814B2 (en) Mobile automatic massage apparatus
WO2018059036A1 (zh) 腹腔镜手术系统
CN104224091B (zh) 无线通信系统和无线终端设备
CN106913319A (zh) 一种仿生按压的三段式定位脉象检测装置及方法
CN104739462A (zh) 一种外科手术系统
CN107669340A (zh) 3d影像手术导航机器人及其控制方法
CN104055563A (zh) 机器人及智能复位系统
CN104873288A (zh) 便携折叠口腔治疗装置
IL267748A (en) Methods and systems for continuous ultrasonic monitoring without hand contact
TWI572382B (zh) 填補脂肪裝置
WO2024061225A1 (zh) 一种射频私密治疗仪
CN112316287A (zh) 一种口腔科的精准智能上药装置
CN115349888A (zh) 一种用于诊疗和心肺复苏的多功能机器人
CN2525956Y (zh) 穿刺用激光束引导仪
CN215129509U (zh) 一种手术室护理用肢体加压止血装置
CN115177340A (zh) 一种基于三维坐标颅脑定位穿刺方法
CN212466186U (zh) 一种基于增强现实技术的骨肿瘤手术辅助系统
JP2023516996A (ja) 動的適合による携帯型自動人命救助システム
CN208031192U (zh) 手持眼底相机组件
CN112914592B (zh) 用于脑梗死偏瘫患者康复检查的x光机及其工作方法
CN214073362U (zh) 辅助定位的超声诊断仪
CN109009196A (zh) 一种基于ct影像的颅内出血的血块定位系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867512

Country of ref document: EP

Kind code of ref document: A1