WO2024061176A1 - 信号传输方法、装置及通信设备 - Google Patents

信号传输方法、装置及通信设备 Download PDF

Info

Publication number
WO2024061176A1
WO2024061176A1 PCT/CN2023/119481 CN2023119481W WO2024061176A1 WO 2024061176 A1 WO2024061176 A1 WO 2024061176A1 CN 2023119481 W CN2023119481 W CN 2023119481W WO 2024061176 A1 WO2024061176 A1 WO 2024061176A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
communication device
carrier signal
carrier
frequency
Prior art date
Application number
PCT/CN2023/119481
Other languages
English (en)
French (fr)
Inventor
简荣灵
吴凯
谭俊杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024061176A1 publication Critical patent/WO2024061176A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a signal transmission method, device and communication equipment.
  • the single antenna of the reader is connected to a circulator (or directional coupler) or multiple antennas transmit and receive simultaneously to realize the frequency division duplex (Frequency Division Duplex, FDD) communication mode of radio frequency identification technology (Radio Frequency Identification, RFID).
  • FDD Frequency Division Duplex
  • the transmitter carrier leaks, and when dual antennas are used, the transmitter antenna coupling effect, coupling between circuits, signal reflection caused by mismatch of transmitting antennas, environmental signal reflection, etc., cause interference to the backscattered signal, which needs to be automatically controlled by RFID.
  • Interference cancellation technology eliminates or suppresses the above interference.
  • Reader specific methods for eliminating/suppressing self-interference include the following:
  • the first type Antenna domain interference elimination/suppression, which is mainly used in scenarios where multiple antennas are used to implement FDD.
  • Specific methods include measures such as increasing the distance between the transmitting and receiving antennas to achieve isolation, and physically isolating the transmitting and receiving antennas through baffles;
  • analog domain interference elimination/suppression that is, the self-interference of RFID is eliminated/suppressed through additional radio frequency circuits
  • the third type digital domain interference elimination/suppression, which is similar to the analog domain, eliminating/suppressing RFID self-interference through additional baseband circuits;
  • the fourth method Use filters to filter out-of-band noise, transmit control signaling to tags, and maintain silence for a fixed period of time.
  • Embodiments of the present application provide a signal transmission method, device and communication equipment, which can improve the effect of self-interference elimination or suppression without adding analog/baseband circuits.
  • a signal transmission method comprising:
  • the target communication device sends a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • the target communication device receives a backscattered signal, wherein the backscattered signal is obtained based on the first carrier signal and the second carrier signal.
  • a signal transmission method including:
  • a third communication device receives a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • the third communication device generates a backscattered signal based on the first carrier signal and the second carrier signal;
  • the third communications device transmits the backscattered signal.
  • a signal transmission method including:
  • a fourth communication device receives a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • the fourth communication device receives a backscattered signal, wherein the backscattered signal is obtained based on the first carrier signal and the second carrier signal.
  • a signal transmission device including:
  • a first signal sending module configured to send a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • a first signal receiving module is configured to receive a backscattered signal, where the backscattered signal is obtained based on the first carrier signal and the second carrier signal.
  • a signal transmission device including:
  • a second signal receiving module configured to receive a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • a processing module configured to generate a backscattered signal based on the first carrier signal and the second carrier signal
  • the second signal sending module is used to send the backscattered signal.
  • a signal transmission device including:
  • a third signal receiving module configured to receive a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • the fourth signal receiving module is used to receive a backscattered signal, wherein the backscattered signal is obtained based on the first carrier signal and the second carrier signal.
  • a communication device including a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the first aspect or the steps of the method described in the second aspect or the third aspect.
  • An eighth aspect provides a signal transmission system, including: a target communication device, a third communication device, and a fourth communication device.
  • the target communication device can be used to perform the steps of the signal transmission method as described in the first aspect
  • the third communication device may be used to perform the steps of the signal transmission method described in the above second aspect
  • the fourth communication device may be used to perform the steps of the signal transmission method described in the above third aspect.
  • a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method are implemented as described in the first aspect. The steps of the method described in the second aspect, or the steps of implementing the method described in the third aspect.
  • a chip in a tenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the method described in the first aspect. , or implement the method described in the second aspect, or implement the method described in the third aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the second aspect. The steps of the method described in the second aspect or the third aspect.
  • an embodiment of the present application provides a signal transmission device, which is used to execute the steps of the method described in the first aspect, the second aspect, or the third aspect.
  • the target communication device sends a first carrier signal and a second carrier signal, thereby receiving a backscattered signal based on the first carrier signal and the second carrier signal, where the first carrier signal and the second carrier signal
  • the frequencies of the signals are different. It can be seen from this that in the embodiment of the present application, the target communication device can send two carrier signals with different frequencies, so that the device receiving the two carrier signals can generate a backscatter signal based on the two carrier signals.
  • the backscattered signal is generated based on two carrier signals with different frequencies, since the carrier signals of different frequencies pass through the nonlinear device, at least one backscattered signal with a different frequency than the two sent carrier signals can be obtained, or, Multiple backscattered signals such as at least one backscattered signal with a different frequency than the two transmitted carrier signals and a backscattered signal with the same frequency as the carrier signal can be obtained. Therefore, after the target communication device receives the backscattered signal, even if there is a self-interference signal in the process of processing the backscattered signal, it can filter out unnecessary signals in the backscattered signal with a greater probability. Together with the ground, the self-interference signal is filtered out. Therefore, the embodiments of the present application can increase the probability of filtering out self-interference signals without increasing hardware costs.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • FIG2 is a schematic diagram of backscatter communication according to an embodiment of the present application.
  • Figure 3 is the second schematic diagram of backscatter communication in the embodiment of the present application.
  • Figure 4 is a schematic diagram of the application scenario of backscatter communication in the embodiment of the present application.
  • Figure 5 is a flow chart of a signal transmission method in an embodiment of the present application.
  • Figure 6 is a schematic spectrum diagram of the output signal after the first carrier signal and the second carrier signal are input into the nonlinear device in the implementation of the present application;
  • Figure 7 is a schematic diagram of the third-order intermodulation distortion IMD in the embodiment of the present application.
  • Figure 8 is a flow chart of another signal transmission method in an embodiment of the present application.
  • Figure 9 is a flow chart of another signal transmission method in an embodiment of the present application.
  • Figure 10 is a schematic diagram of the signal transmission process and spectrum at different stages in the first embodiment of the present application.
  • Figure 11 is a schematic diagram of the signal transmission process and spectrum at different stages in the second embodiment of the present application.
  • FIG12 is a structural block diagram of a signal transmission device in an embodiment of the present application.
  • FIG13 is a structural block diagram of another signal transmission device in an embodiment of the present application.
  • Figure 14 is a structural block diagram of another signal transmission device in an embodiment of the present application.
  • Figure 15 is a structural block diagram of a communication device in an embodiment of the present application.
  • Figure 16 is a structural block diagram of a terminal in an embodiment of the present application.
  • Figure 17 is a structural block diagram of a network side device in an embodiment of the present application.
  • Figure 18 is a structural block diagram of another network-side device in an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • augmented reality augmented reality, AR
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminals
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PCs personal computers
  • teller machines or self-service machines and other terminal-side devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home Node B Home Evolved Node B
  • TRP Transmitting Receiving Point
  • Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Services Discovery function (Edge Application Server Discovery Function, EASDF), unified data management (Unified Data Management, UDM), unified data warehousing (Unified Data Repository, UDR), home subscriber server (Home Subscriber Server, HSS), centralized network configuration ( Centralized network configuration, CNC), Network Repository Function (NRF), Network Exposure Function (NEF), Local NEF (Local NEF, or L-NEF), Binding Support Function (Binding Support Function, BSF), application function (Application Function, AF), etc.
  • MME mobility management entities
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • BSC Backscatter Communication
  • Backscatter communication refers to the backscatter communication device using the radio frequency signal from other devices or the environment to modulate the signal to transmit its own information (as shown in Figure 2).
  • the backscatter communication device can be one of the following:
  • the first type the backscatter communication device in traditional RFID, usually a Tag, is a passive IoT device (Passive-IoT);
  • Passive-IoT passive IoT device
  • the second type semi-passive Tag.
  • the downlink reception or uplink reflection of this type of Tag has certain amplification capabilities
  • the third type Tags with active transmission capabilities, that is, active Tags (active Tags).
  • This type of terminal can actively generate carrier signals and send them to the 5G base station (the next Generation Node B, gNB) or Reader sends information.
  • the 5G base station the next Generation Node B, gNB
  • Reader sends information.
  • a simple implementation method of backscatter communication is: when the Tag needs to send '1', the incident carrier signal is reflected, and when the Tag needs to send '0', no reflection is performed.
  • TX BB in Figure 3 represents the transmitting baseband module of the network side device;
  • RX BB represents the receiving end baseband processing module of the network side device,
  • Logic represents the logic unit,
  • Clock represents the clock unit,
  • Demod represents the demodulator, and
  • RF harvester represents the energy of the Tag. storage module.
  • backscatter communication equipment can control the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be characterized as:
  • Z 0 represents the antenna characteristic impedance
  • Z 1 represents the load impedance
  • the output signal is Therefore, corresponding amplitude modulation, frequency modulation or phase modulation can be achieved by reasonably controlling the reflection coefficient.
  • the maximum power of normal terminal communication is at least 23dBm.
  • the maximum power is very lower than this value, such as -20dBm, it is extremely low power communication.
  • it may be necessary to use a modulation method different from Orthogonal Frequency Division Multiplexing (OFDM), such as binary amplitude keying (OOK) modulation method.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OSK binary amplitude keying
  • the base station (such as gNB) sends carrier signal (CW) and signaling to Tag; among them, the control type (that is, the type of control command) includes at least one of the following: select, inventory, Access. Then, the network receives the feedback information from the Tag.
  • the control type that is, the type of control command
  • Figure 5 is a flow chart of a signal transmission method provided by an embodiment of the present application.
  • the method may include the following steps 501 to 502:
  • Step 501 The target communication device sends a first carrier signal and a second carrier signal.
  • the frequency of the first carrier signal is different from the frequency of the second carrier signal. That is, in this embodiment of the present application, the target communication device sends the first carrier signal and the second carrier signal with different frequencies to the third communication device.
  • the signal transmission method in the embodiment of the present application is applied to backscatter communication. That is, the target communication device described here, as well as the first communication device, the second communication device, and the fourth communication device described later may be a reader (Reader), and the third communication device may be a tag device (Tag). Among them, the relevant introduction to backscatter communication can be found in the previous section and will not be repeated here.
  • the Reader may be a second network side device (such as a base station) or a terminal.
  • the target communication device sends the first carrier signal and the second carrier signal, including at least one of the following:
  • the target communication device includes a first communication device, simultaneously sending the first carrier signal and the second carrier signal through the first communication device;
  • the target communication device includes a first communication device, sending the first carrier signal at a first time through the first communication device and sending the second carrier signal at a second time;
  • the target communication device includes a first communication device and a second communication device
  • the first carrier signal is sent through the first communication device
  • the second carrier signal is sent through the second communication device.
  • the first carrier signal and the second carrier signal can be sent by the same communication device or by different communication devices.
  • the first communication device can send the first carrier signal and the second carrier signal at the same time or at different times.
  • Step 502 The target communication device receives the backscattered signal.
  • the backscattered signal is obtained based on the first carrier signal and the second carrier signal. That is, in the example of this application, the target communication device can receive the backscattered signal obtained by the third communication device based on the first carrier signal and the second carrier signal.
  • the target communication device can perform filtering processing to filter out unnecessary signals in the backscattered signal, and then demodulate the filtered signal.
  • the backscattered signal includes a first carrier signal, a second carrier signal, a first carrier signal and a second carrier signal input into a third communication device that receives the first carrier signal and the second carrier signal.
  • the first third-order intermodulation IM3 signal and the second IM3 signal output by the nonlinear device are the signals obtained after modulation;
  • the backscattered signal includes a signal modulated on the first third-order intermodulation IM3 signal
  • the backscattered signal includes a signal obtained by modulating the second IM3 signal
  • the backscattered signal includes a signal obtained by modulating the first third-order intermodulation IM3 signal and the second IM3 signal.
  • the output signal after passing through the nonlinear device can be expressed as the following target formula:
  • a 0 , a 1 , a 2 , a 3 represent coefficients of different orders.
  • the above formula includes the fundamental wave, the 2nd-order intermodulation product and the 2nd harmonic, the 3rd-order intermodulation product and the 3rd harmonic.
  • the specific spectrum distribution diagram is shown in Figure 6.
  • the third communication device that receives the first carrier signal and the second carrier signal can generate a first third-order intermodulation IM3 signal and a second IM3 signal after inputting the first carrier signal and the second carrier signal into the nonlinear device in the third communication device respectively.
  • the third communication device can then modulate the first carrier signal, the second carrier signal, the first third-order intermodulation IM3 signal and the second IM3 signal to obtain a backscatter signal, or can modulate the first third-order intermodulation IM3 signal and/or the second IM3 signal to obtain a backscatter signal.
  • the third communication device modulates the first carrier signal, the second carrier signal, the first third-order intermodulation IM3 signal and the second IM3 signal, or modulates the first IM3 intermodulation signal and/or the second IM3 signal.
  • Modulation can obtain more backscattered signals with different parameters. For example, when performing frequency modulation, a backscattered signal with a wider frequency range and farther away from the frequency of the first carrier signal and the second carrier signal can be obtained. In this way, After the target communication device receives such a backscattered signal, even if there is a self-interference signal during the processing of the backscattered signal, the bandpass filter is used to filter out unnecessary signals in the backscattered signal. It can also filter out self-interference signals with a greater probability.
  • the target communication device sends a first carrier signal and a second carrier signal, and receives a backscattered signal based on the first carrier signal and the second carrier signal, where the The frequency of the first carrier signal and the second carrier signal are different. It can be seen from this that in the embodiment of the present application, the target communication device can send two carrier signals with different frequencies, so that the device receiving the two carrier signals can generate a backscatter signal based on the two carrier signals.
  • the backscattered signal is generated based on two carrier signals with different frequencies, since the carrier signals of different frequencies pass through the nonlinear device, at least one backscattered signal with a different frequency than the two sent carrier signals can be obtained, or, Multiple backscattered signals such as at least one backscattered signal with a different frequency than the two transmitted carrier signals and a backscattered signal with the same frequency as the carrier signal can be obtained. Therefore, after the target communication device receives the backscattered signal, even if there is a self-interference signal in the process of processing the backscattered signal, it can filter out unnecessary signals in the backscattered signal with a greater probability. Together with the ground, the self-interference signal is filtered out. Moreover, in the embodiment of the present application, no self-interference cancellation circuit is added. Therefore, the embodiment of the present application can increase the probability of filtering out self-interference signals without increasing the hardware cost.
  • the first information is indicated by the first communication device, or specified by the protocol, or configured by the first network side device;
  • the first information includes at least one of the following items A-1 to A-10:
  • Item A-1 The carrier frequency of the first carrier signal
  • Item A-2 The carrier frequency of the second carrier signal
  • Item A-3 carrier frequency resource of the first carrier signal
  • Item A-4 carrier frequency resource of the second carrier signal
  • Item A-5 The absolute value of the difference between the carrier frequency of the first carrier signal and the carrier frequency of the second carrier signal;
  • Item A-6 The transmission power of the first carrier signal
  • Item A-7 The transmission power of the second carrier signal
  • Item A-8 The third-order intermodulation distortion corresponding to the nonlinear device in the first communication device
  • Item A-9 The continuous sending time of the first carrier signal
  • Item A-10 The continuous sending time of the second carrier signal.
  • the carrier frequency resource may include at least one of frequency location and frequency resource unit.
  • the third order intermodulation distortion is the energy difference between the third order intermodulation signal and the fundamental useful signal.
  • IMD the energy difference between the third order intermodulation signal and the fundamental useful signal.
  • the larger the IMD the smaller the impact of the third-order intermodulation signal on the fundamental signal (ie, the first carrier signal and the second carrier signal).
  • the nonlinear device is a power amplifier (PA)
  • PA power amplifier
  • the input power, bias voltage or frequency of the input signal of the PA can affect the efficiency and output power of the PA, thereby further affecting the size of the IMD corresponding to the PA.
  • the target communication device includes a first communication device and a second communication device
  • the second information is indicated by the first communication device to the second communication device, or is specified by a protocol, or The first network side device is configured
  • the second information includes at least one of the following B-1 to B-7:
  • Item B-1 The first communication device and the second communication device remain synchronous or asynchronous;
  • Item B-2 The carrier frequency of the second carrier signal
  • Item B-3 Carrier frequency resource of the second carrier signal
  • Item B-4 the absolute value of the difference between the carrier frequency of the first carrier signal and the carrier frequency of the second carrier signal
  • Item B-5 The transmission power of the second carrier signal
  • Item B-6 The third-order intermodulation distortion corresponding to the nonlinear device in the second communication device
  • Item B-7 The continuous sending time of the second carrier signal.
  • the carrier frequency resource may include at least one of frequency location and frequency resource unit.
  • the first communication device can indicate the above-mentioned second information to the second communication device, or it may be specified by the protocol or The first network side device configures the above second information.
  • the target communication device includes a first communication device and a second communication device
  • the third information is indicated by the second communication device to the first communication device, or is specified by a protocol, or The first network side device is configured;
  • the third information includes at least one of the following items C-1 to C-7:
  • Item C-1 The first communication device and the second communication device remain synchronous or asynchronous;
  • Item C-2 The carrier frequency of the first carrier signal
  • Item C-3 Carrier frequency resource of the first carrier signal
  • Item C-4 The absolute value of the difference between the carrier frequency of the first carrier signal and the carrier frequency of the second carrier signal;
  • Item C-5 The transmission power of the first carrier signal
  • Item C-6 The third-order intermodulation distortion corresponding to the nonlinear device in the first communication device
  • Item C-7 The continuous sending time of the first carrier signal.
  • the carrier frequency resource may include at least one of frequency location and frequency resource unit.
  • the second communication device can also indicate the above-mentioned information to the first communication device, or it can be specified by the protocol. Or the first network side device configures the above third information.
  • the fourth information is indicated by the target communication device to the third communication device, or is specified by the protocol, or configured by the first network side device;
  • the fourth information includes at least one of the following items D-1 to D-3:
  • Item D-1 Modulation method of the backscattered signal
  • Item D-2 The offset of the frequency of the backscattered signal relative to the frequency of the modulated carrier signal
  • Item D-3 Conditions that the transmission parameters of the backscattered signal need to meet.
  • the modulation method of the backscattered signal includes: at least one of amplitude modulation, phase modulation and frequency modulation.
  • the modulated carrier signal is the signal to be modulated.
  • the “offset” described in item D-2 here may include: the first carrier The offset between the signal and the frequency of the backscattered signal obtained after modulating the first carrier signal; when the above-mentioned second carrier signal is used as the modulated carrier signal, the "offset” described in item D-2 here can include : The second carrier signal is obtained by modulating the second carrier signal The offset between the frequencies of the backscattered signal; when the above-mentioned first third-order intermodulation IM3 signal is used as a modulated carrier signal, the "offset" described in item D-2 here may include: the first third-order The offset between the frequency of the intermodulated IM3 signal and the backscattered signal obtained after modulating the first third-order intermodulated IM3 signal; when the above-mentioned second IM3 signal is used as the modulated
  • the above-mentioned fourth information can be instructed by the first communication device to the third communication device; when the first carrier signal and the second carrier signal are sent by the first communication device, When the carrier signal is sent by the first communication device and the second communication device respectively, the above-mentioned fourth information may be indicated to the third communication device by at least one of the first communication device and the second communication device.
  • the conditions that the transmission parameters of the backscattered signal need to meet include at least one of the following items E-1 to E-6:
  • Item E-1 The first carrier signal, the second carrier signal, the first third-order intermodulation IM3 signal, and the second IM3 signal are used as modulated carrier signals;
  • Item E-2 The first third-order intermodulation IM3 signal is used as a modulated carrier signal
  • Item E-3 The second IM3 signal is used as a modulated carrier signal
  • Item E-4 The first third-order intermodulation IM3 signal and the second IM3 signal are used as modulated carrier signals;
  • Item E-5 The offset of the frequency of the backscattered signal relative to the frequency of the modulated carrier signal is less than or equal to the second threshold;
  • Item E-6 The difference between the third-order intermodulation distortion corresponding to the nonlinear device in the third communication device and the first preset value is less than or equal to the first threshold;
  • the first third-order intermodulation IM3 signal and the second IM3 signal are respectively: the first carrier signal and the second carrier signal received by the third communication device and input into the third communication device.
  • the IM3 signal is output after the nonlinear device.
  • the above-mentioned item E-1 indicates that: it may be stipulated in the agreement, or the first network side device configuration, or the target communication device instructs the third communication device to perform the processing of the first carrier signal, the second carrier signal, the first third-order intermodulation IM3 signal,
  • the second IM3 signal is modulated.
  • the backscattered signal received by the target communication device includes the first carrier signal, the second carrier signal, and the first carrier signal is input to the nonlinear device in the third communication device that receives the first carrier signal and then is output.
  • the first third-order intermodulation IM3 signal and the second carrier signal are input to the nonlinear device in the third communication device and the second IM3 signal is output after modulation.
  • the above-mentioned item E-2 indicates that: it can be stipulated in the protocol, or the first network side device is configured, or the target communication device instructs the third communication device to modulate the first third-order intermodulation IM3 signal.
  • the backscattered signal received by the target communication device includes a modulated signal of the first third-order intermodulation IM3 signal.
  • the above item E-3 indicates that: it can be stipulated in the protocol, or the first network side device is configured, or the target communication device instructs the third communication device to modulate the second IM3 signal.
  • the backscattered signal received by the target communication device includes a modulated signal of the second IM3 signal.
  • the above-mentioned item E-4 indicates that: it can be stipulated in the protocol, or the first network side device is configured, or the target communication device instructs the third communication device to modulate the first third-order intermodulation IM3 signal and the second IM3 signal.
  • the backscattered signal received by the target communication device includes a signal obtained by modulating the first third-order intermodulation IM3 signal and the second IM3 signal.
  • the second threshold in the above item E-5 may be one-half of the absolute value of the difference between the frequency of the first carrier signal and the frequency of the second carrier signal. Wherein, setting the frequency of the backscattered signal so that the offset relative to the frequency of the modulated carrier signal is less than or equal to the second threshold can ensure that the modulated backscattered signal will not cause interference to adjacent channel signals.
  • Item E-6 above indicates that the difference between the third-order intermodulation distortion degree corresponding to the nonlinear device in the third communication device and the first preset value may be less than or equal to the first threshold.
  • item E-6 can be used to make the IMD corresponding to the nonlinear device in the third communication device as small as possible, so that after the first carrier signal and the second carrier signal are input to the nonlinear device in the third communication device, we get The power of the third-order intermodulation signal (i.e., the first third-order intermodulation IM3 signal and the second IM3 signal mentioned above) is relatively large, so that when the IM3 signal is used as a modulated signal, the target communication device can receive it better IM3 signal modulated signal.
  • the third-order intermodulation signal i.e., the first third-order intermodulation IM3 signal and the second IM3 signal mentioned above
  • the method also includes:
  • the target communication device receives the capability information sent by the third communication device
  • the capability information includes at least one of the following:
  • the third communication device can also send its capability information to the target communication device to inform the target communication device whether it integrates a nonlinear device and/or the capability information of the nonlinear device it integrates, so as to facilitate the target communication device. Based on the capability information sent by the third communication device, the communication device determines the conditions that the transmission parameters of the backscattered signal need to meet and/or indicates the information described in the foregoing content to the third communication device.
  • the nonlinear device capability information includes at least one of the following items F-1 to F-3:
  • Item F-1 The third-order intermodulation distortion corresponding to the nonlinear device in the third communication device
  • Item F-2 The nonlinear device in the third communication device corresponds to the maximum power backoff (MPR);
  • Item F-3 The bandwidth corresponding to the nonlinear device in the third communication device.
  • item F-1 represents the IMD that the nonlinear device in the third communication device can achieve.
  • the above nonlinear device capability information may also include the input third-order intercept point power (Input Third-order Intercept Point, IIP3) corresponding to the nonlinear device in the third communication device.
  • IIP3 reflects the linear characteristics of the amplifier, and this value is related to the input power and IMD.
  • the method may include the following steps 801 to 803:
  • Step 801 The third communication device receives the first carrier signal and the second carrier signal.
  • the frequency of the first carrier signal is different from the frequency of the second carrier signal. That is, the embodiment of this application , the third communication device may receive the first carrier signal and the second carrier signal with different frequencies sent by the target communication device.
  • the signal transmission method in the embodiment of the present application is applied to backscatter communication.
  • the third communication device described here may be a tag device (Tag); the target communication device may be a reader (Reader).
  • the Reader may be a second network side device (such as a base station) or a terminal.
  • Step 802 The third communication device generates a backscatter signal based on the first carrier signal and the second carrier signal.
  • step 802 the third communication device generates a backscatter signal based on the first carrier signal and the second carrier signal.
  • the third communication device performs at least one of the following according to instructions from the target communication device, or according to protocol regulations, or according to the configuration of the first network side device:
  • the first third-order intermodulation IM3 signal and the second IM3 signal are respectively: the first carrier signal and the second carrier signal received by the third communication device and input into the third communication device.
  • the IM3 signal is output after the nonlinear device.
  • the above-mentioned backscattered signal includes the first third-order intermodulation output after the first carrier signal, the second carrier signal, the first carrier signal and the second carrier signal are input to the nonlinear device in the third communication device.
  • IM3 signal and the second IM3 signal the signal obtained after modulation;
  • the above-mentioned backscattered signal includes a signal modulated on the first third-order intermodulation IM3 signal;
  • the above-mentioned backscattered signal includes a signal obtained by modulating the second IM3 signal
  • the backscatter signal includes a signal obtained by modulating the first third-order intermodulation IM3 signal and the second IM3 signal.
  • the third communication device that receives the first carrier signal and the second carrier signal can generate the first third-order signal after inputting the first carrier signal and the second carrier signal to the nonlinear device in the third communication device respectively. If the IM3 signal and the second IM3 signal are intermodulated, the third communication device can modulate the first carrier signal, the second carrier signal, the first third-order intermodulated IM3 signal and the second IM3 signal, thereby obtaining the backscattered signal, The first third-order intermodulation IM3 signal and/or the second IM3 signal may also be modulated to obtain a backscattered signal.
  • the third communication device modulates the first carrier signal, the second carrier signal, the first third-order intermodulation IM3 signal and the second IM3 signal, or modulates the first IM3 intermodulation signal and/or the second IM3 signal.
  • Modulation yes Obtain more backscattered signals with different parameters. For example, when performing frequency modulation, you can obtain backscattered signals with a wider frequency range and farther away from the frequencies of the first carrier signal and the second carrier signal. In this way, the target communication equipment After receiving such a backscattered signal, even if there is a self-interference signal during the processing of the backscattered signal, it is more convenient to filter out unnecessary signals in the backscattered signal through a bandpass filter. , with a greater probability of filtering out self-interference signals.
  • Step 803 The third communication device sends the backscatter signal.
  • the third communication device can receive the first carrier signal and the second carrier signal, so as to obtain the backscattered signal based on the first carrier signal and the second carrier signal, and The backscattered signal is transmitted, wherein the first carrier signal and the second carrier signal have different frequencies.
  • the target communication device can send two carrier signals with different frequencies, so that the third communication device can receive the two carrier signals and generate a backscatter signal based on the two carrier signals.
  • the third communication device passively receives and processes the carrier signal, without requiring additional signaling analysis and signaling interaction.
  • the backscattered signal is generated based on two carrier signals with different frequencies, since the carrier signals of different frequencies pass through the nonlinear device, at least one backscattered signal with a different frequency than the two sent carrier signals can be obtained, or, Multiple backscattered signals such as at least one backscattered signal with a different frequency than the two transmitted carrier signals and a backscattered signal with the same frequency as the carrier signal can be obtained. Therefore, after the target communication device receives the backscattered signal, even if there is a self-interference signal in the process of processing the backscattered signal, it can filter out unnecessary signals in the backscattered signal with a greater probability. Together with the ground, the self-interference signal is filtered out. Moreover, in the embodiment of the present application, no self-interference cancellation circuit is added. Therefore, the embodiment of the present application can increase the probability of filtering out self-interference signals without increasing the hardware cost.
  • the third communication device receives the first carrier signal and the second carrier signal, including at least one of the following:
  • the third communication device receives the first carrier signal and the second carrier signal simultaneously;
  • the third communication device receives the first carrier signal at a first time, and receives the first carrier signal and the second carrier signal at a second time.
  • the first carrier signal and the second carrier signal may be sent by the same communication device or by different communication devices.
  • the first communication device may send the first carrier signal and the second carrier signal at the same time or at different times. Therefore, when the third communication device receives the first carrier signal and the second carrier signal, it may receive the first carrier signal and the second carrier signal at the same time or at different times.
  • the transmission parameters of the backscattered signal satisfy at least one of the following conditions G-1 to G-2:
  • Item G-1 The difference between the third-order intermodulation distortion corresponding to the nonlinear device in the third communication device and the first preset value is less than or equal to the first threshold;
  • Item G-2 The frequency of the backscattered signal, relative to the frequency of the modulated carrier signal, is less than or equal to a second threshold.
  • the conditions that the transmission parameters of the backscattered signal meet may be indicated by the target communication device to the third communication device, may be specified in advance through a protocol, or may be configured by the first network side device.
  • the above-mentioned second threshold may be half of the absolute value of the difference between the frequency of the first carrier signal and the frequency of the second carrier signal.
  • the G-2 term can be used to make the IMD corresponding to the nonlinear device in the third communication device as small as possible, so that after the first carrier signal and the second carrier signal are input to the nonlinear device in the third communication device, we obtain
  • the power of the third-order intermodulation signal i.e., the first third-order intermodulation IM3 signal and the second IM3 signal mentioned above
  • the power of the third-order intermodulation signal is relatively large, so that when the IM3 signal is used as a modulated signal, the target communication device can receive it better IM3 signal modulated signal.
  • the method also includes:
  • the third communication device sends capability information
  • the capability information includes at least one of the following:
  • the third communication device can also send its capability information to the target communication device to inform the target communication device whether it integrates a nonlinear device and/or the capability information of the nonlinear device it integrates, so as to facilitate the target communication device. Based on the capability information sent by the third communication device, the communication device determines the conditions that the transmission parameters of the backscattered signal need to meet and/or indicates the information described in the foregoing content to the third communication device.
  • the nonlinear device capability information includes at least one of the following items F-1 to F-3:
  • Item F-1 The third-order intermodulation distortion corresponding to the nonlinear device in the third communication device
  • Item F-2 The nonlinear device in the third communication device corresponds to the maximum power backoff (MPR);
  • Item F-3 The bandwidth corresponding to the nonlinear device in the third communication device.
  • item F-1 represents the IMD that the nonlinear device in the third communication device can achieve.
  • the above nonlinear device capability information may also include the input third-order intercept point power (Input Third-order Intercept Point, IIP3) corresponding to the nonlinear device in the third communication device.
  • IIP3 reflects the linear characteristics of the amplifier, and this value is related to the input power and IMD.
  • Figure 9 is a flow chart of a signal transmission method provided by an embodiment of the present application.
  • the method may include the following steps 901 to 902:
  • Step 901 The fourth communication device receives the first carrier signal and the second carrier signal.
  • the frequency of the first carrier signal is different from the frequency of the second carrier signal. That is, the fourth communication device can receive the first carrier signal and the second carrier signal with different frequencies sent by the target communication device.
  • Step 902 The fourth communication device receives the backscattered signal.
  • the backscattered signal is obtained based on the first carrier signal and the second carrier signal.
  • the fourth communication device may receive the backscattered signal obtained by the third communication device based on the first carrier signal and the second carrier signal.
  • the fourth communication device can receive the first carrier signal and the second carrier signal sent by the target communication device, and the backscattered signal obtained by the third communication device based on the first carrier signal and the second carrier signal. That is, the signal transmission method in the embodiment of the present application can also be applied to the dual-base architecture.
  • the receiving end (such as UE) will receive the carrier signal of the transmitting end (such as gNB) and the backscattered signal of the Tag. Since the energy of the backscattered signal is much lower than the carrier signal The energy may cause the receiving end to fail to demodulate the backscattered signal.
  • the third communication device when the third communication device generates a backscatter signal based on two carrier signals with different frequencies, it can obtain at least one backscatter signal with a different frequency than the two sent carrier signals.
  • direction scattering signal, or multiple backscattering signals such as at least one backscattering signal with a different frequency from the two transmitted carrier signals and a backscattering signal with the same frequency as the carrier signal can be obtained.
  • the reflection obtained in this way If the co-channel interference of the backscattered signal is small, then after the fourth communication device receives the backscattered signal, the first carrier signal and the second carrier signal, it can more easily successfully parse the backscattered signal, that is, the embodiment of the present application When the communication method is applied to the dual-base architecture, the success rate of the fourth communication device in parsing the backscattered signal can be improved.
  • first network side device and the second network side device mentioned above may be the same or different.
  • Embodiment 1 The same Reader sends two carrier signals
  • the nonlinear device in the Reader includes a PA and two bandpass filters
  • the nonlinear device in the Tag includes a Low Noise Amplification (LNA).
  • LNA Low Noise Amplification
  • the frequency information may include, for example: the frequencies of the first carrier signal (CW1) and the second carrier signal (CW2) are 900MHz and 920MHz respectively; or, the carrier frequency of CW1 is 900MHz, and the frequency difference between CW1 and CW1 is 20MHz.
  • IMD1 that is, the IMD corresponding to the nonlinear device in Reader, such as IMD A and IMD B in Figure 10;
  • the input power, bias voltage or frequency of the input signal of the PA can affect the efficiency and output power of the PA, thereby further affecting the size of the IMD corresponding to the PA.
  • the IMD B in Figure 10 is controlled by a band-pass filter, and its value is fixed.
  • the power of CW 1 and CW2, for example, are both 36dBm.
  • Tag modulation method (this embodiment takes double sideband amplitude shift keying (DSB-ASK) modulation as an example);
  • IMD2 which is the IMD corresponding to the nonlinear device in Tag, such as IMD D and IMD E in Figure 10;
  • the bias voltage/input power/signal frequency of the LNA can affect the efficiency of the LNA, and further affect its output power, so that the size of the IMD2 can be further controlled.
  • the local oscillator of Reader generates two carrier signals respectively, namely CW1: 900MHz and CW2: 902MHz.
  • IMD A After passing through the PA in Reader, it can be seen from the spectrum diagram at point A that IMD A is 20dB; then, after the two carrier signals and two IM3 signals (i.e., signals with frequencies of 880MH and 940MHz) pass through the 890MHz ⁇ 930MHz band-pass filter, the power of the carrier signal remains basically unchanged, still 30dBm, and the power of the IM3 signal remains unchanged.
  • the two carrier signals pass through the Tag's LNA. After the two carrier signals are amplified by the LNA, their power increases from -22dBm to -2dBm, and due to the nonlinear characteristics of the LNA, at 880MHz -10dBm IM3 signals are generated at and 940MHz frequency points respectively.
  • IMD D is 8dB (as shown in the spectrum diagram at point D); then, Tag uses the DSB-ASK modulation method for the two carrier signals and the two IM3 signals respectively. Modulation is performed to generate modulated data (ie, backscattered signal) near two carrier frequencies and two IM3 signals, with a frequency offset of 5MHz.
  • the frequency-shift keying (FSK) debugging method can also be used to modulate the aforementioned two carrier signals and two IM3 signals, thereby obtaining the backscattered signal.
  • the backscattered signal obtained is such as the dotted line in the spectrum diagram of point E and the signals represented by 880MHz and 940MHz; if the FSK modulation method is used for modulation, the backscattered signal obtained is such as E Shown by the dotted line in the point spectrum diagram.
  • the backscattered signal obtained after modulation undergoes 50dB attenuation of the uplink wireless channel and is received by the Reader's receiving antenna, as shown in the spectrum diagram at point F.
  • the power of the carrier signal and its modulation data i.e., the signals represented by the two dotted lines on both sides of 900MHz in the spectrum diagram at point F, and the signals represented by the two dotted lines on both sides of 920MHz
  • the IM3 signal power is about -50dBm.
  • the power of its modulation data (i.e., the signals represented by the two dotted lines on both sides of 880MHz in the spectrum diagram at point F, and the signals represented by the two dotted lines on both sides of 940MHz) is about -70dBm. Then, these signals pass through ">940MHz" in Reader After the band-pass filter and LAN, only the G point frequency is left The spectrum diagram shows the backscattered signal at 945MHz.
  • CW1 and CW2 may enter the ">940MHz” band-pass filter, thereby causing self-interference in the processing of the backscattered signal received by the Reader, that is, entering ">
  • the CW1 and CW2 signals of the 940MHz” bandpass filter are self-interference signals.
  • the Reader can retain one or several modulated signals. For example, you can only retain the signal represented by the dotted line on the right side of 940MHz in the spectrum diagram at point F (i.e. 945MHz), and leave the other signals.
  • the Reader can filter out the backscattered signal through the filter after receiving the backscattered signal (that is, the signal obtained after modulation).
  • Other unnecessary signals including two carrier signals and unnecessary IM3 signals, achieve the purpose of interference elimination.
  • the 890MHz ⁇ 930MHz bandpass filter in the Reader can not only play a filtering role, but also reduce the power of the IM3 signal output from the PA (i.e., the 880MHz and 940MHz signals in the spectrum diagram at point A), thereby improving the performance of the Reader.
  • Tag When transmitting the signal, Tag can receive cleaner 900MHz and 920MHz carrier signals.
  • setting IMD A in the Reader to be larger (that is, greater than a certain threshold), for example, setting it to 20dB in this embodiment, can make the power of the IM3 signal in the spectrum diagram at point A smaller, so that when the Reader transmits the signal , Tag can receive cleaner 900MHz and 920MHz carrier signals.
  • Setting IMD D in Tag to be smaller (that is, less than a certain threshold), for example, setting it to 8dB in this embodiment, can make the power of the IM3 signal in the spectrum diagram at point D larger, so that when the IM3 signal is used as a modulated signal, it can This allows Reader to better receive the modulated IM3 signal.
  • the nonlinear device in the first Reader includes a PA and two bandpass filters
  • the nonlinear device in the second Reader includes a PA and a bandpass filter
  • the nonlinear device in the Tag includes an LNA as an example for explanation, but this does not mean that the communication method in the embodiment of the present application is only applicable to this kind of Reader and Tag.
  • the first Reader sends the first carrier signal
  • the second Reader sends the second carrier signal. Signal.
  • the frequency information may include, for example: the frequencies of CW1 and CW2 are 900MHz and 920MHz respectively; or the carrier frequency of CW1 is 900MHz, and the frequency difference between CW1 and CW1 is 20MHz;
  • the power of CW 1 and CW 2 is, for example, 36 dBm;
  • first Reader can also indicate the following parameters (2.1) to (2.6) to the second Reader:
  • the second Reader can also indicate the following parameters (3.1) to (3.6) to the first Reader:
  • first Reader and/or the second Reader indicate or predefine the following parameters 4.1 to 4.3 to the Tag:
  • Tag modulation method (this embodiment takes double sideband amplitude shift keying (DSB-ASK) modulation as an example);
  • IMD2 that is, the IMD corresponding to the nonlinear device in Tag, such as IMD I and IMD J in Figure 11;
  • the output power of the nonlinear device can be affected by controlling the bias voltage of the LNA in the Tag, and the size of IMD2 can be further controlled.
  • the carrier signals transmitted by the first Reader and the second Reader respectively undergo a path loss of 50dB and are received by the Tag.
  • the power of the two carrier signals received by the Tag is shown in the spectrum diagram at point H. are -22dBm, the frequencies are 900MHz and 902MHz respectively.
  • the spectrum diagram at point H shows the case where the power of the two carrier signals received by the Tag is equal. There are also cases where the power is unequal.
  • the power of the two carrier signals received by the Tag is different, mainly due to the different degrees of channel fading, and the different distance between the first Reader and Tag and the distance between the second Reader and Tag.
  • the subsequent Tag signal modulation process and reverse transmission process are consistent with the above-mentioned Embodiment 1.
  • the processing flow after the backscattered signal emitted by the Tag is received by the first Reader after being attenuated by the channel is consistent with the foregoing Embodiment 1.
  • Embodiment 1 and Embodiment 2 can also be extended to a dual-base architecture, that is, the backscattered signal can also be received by the third Reader; at the same time, the third reader also receives the first Reader and/or the second Reader sends it to Tag carrier signal.
  • the receiving end (such as UE) will receive the carrier signal of the transmitting end (such as gNB) and the backscattered signal of the Tag. Since the energy of the backscattered signal is much lower than the energy of the carrier signal, , which may cause the receiving end to fail to demodulate the backscattered signal.
  • the frequency of the backscattered signal generated by the Tag is far from the frequency of the carrier signal, so the co-channel interference is very small, and the third Reader receives the reverse signal.
  • the scattering signal, the first carrier signal and the second carrier signal it is easier to successfully parse the backscattered signal. That is, extending the above-mentioned embodiment one or embodiment two to a dual-base architecture can improve the third Reader's ability to parse the backscatter signal. The success rate of scattered signals.
  • the execution subject may be a signal transmission device.
  • a signal transmission device performing a signal transmission method is used as an example to illustrate the signal transmission device provided by the embodiment of the present application.
  • the signal transmission device 120 includes the following modules:
  • the first signal sending module 1201 is used to send a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • the first signal receiving module 1202 is configured to receive a backscattered signal, where the backscattered signal is obtained based on the first carrier signal and the second carrier signal.
  • the first signal sending module 1201 is configured to perform at least one of the following:
  • the target communication device includes a first communication device
  • control the first communication device to send the first carrier signal and the second carrier signal simultaneously
  • the target communication device includes a first communication device
  • control the first communication device to send the first carrier signal at a first time and to send the second carrier signal at a second time
  • the target communication device includes a first communication device and a second communication device
  • controlling the first communication device The first carrier signal is sent by the communication device, and the second carrier signal is sent by the second communication device.
  • the first information is indicated by the first communication device, or specified by a protocol, or configured by a first network side device;
  • the first information includes at least one of the following:
  • the carrier frequency of the first carrier signal is the carrier frequency of the first carrier signal
  • the carrier frequency of the second carrier signal is the carrier frequency of the second carrier signal
  • the duration of sending the second carrier signal is the duration of sending the second carrier signal.
  • the target communication device includes a first communication device and a second communication device
  • the second information is indicated by the first communication device to the second communication device, or is specified by a protocol, or The first network side device is configured
  • the second information includes at least one of the following:
  • the first communication device remains synchronous or asynchronous with the second communication device
  • the carrier frequency of the second carrier signal is the carrier frequency of the second carrier signal
  • the duration of sending the second carrier signal is the duration of sending the second carrier signal.
  • the target communication device includes a first communication device and a second communication device
  • the third information is indicated by the second communication device to the first communication device, or is specified by a protocol, or The first network side device is configured;
  • the third information includes at least one of the following:
  • the first communication device remains synchronous or asynchronous with the second communication device
  • the carrier frequency resource of the first carrier signal
  • the duration of sending the first carrier signal is the duration of sending the first carrier signal.
  • the fourth information is indicated by the target communication device to the third communication device, or is specified by the protocol, or configured by the first network side device;
  • the fourth information includes at least one of the following:
  • the transmission parameters of the backscattered signal need to meet the conditions.
  • the modulation method of the backscattered signal includes at least one of the following:
  • Amplitude modulation phase modulation, frequency modulation.
  • the conditions that the transmission parameters of the backscattered signal need to meet include at least one of the following:
  • the first carrier signal, the second carrier signal, the first third-order intermodulation IM3 signal, and the second IM3 signal are used as modulated carrier signals;
  • the first third-order intermodulation IM3 signal serves as a modulated carrier signal
  • the second IM3 signal serves as a modulated carrier signal
  • the first third-order intermodulation IM3 signal and the second IM3 signal serve as modulated carrier signals
  • the offset of the frequency of the backscattered signal relative to the frequency of the modulated carrier signal is less than or equal to a second threshold
  • the difference between the third-order intermodulation distortion corresponding to the nonlinear device in the third communication device and the first preset value is less than or equal to the first threshold;
  • the first third-order intermodulation IM3 signal and the second IM3 signal are respectively: the first carrier signal and the second carrier signal received by the third communication device, which are input into a nonlinear device in the third communication device and then output as IM3 signals.
  • the device further comprises:
  • a capability information receiving module configured to receive capability information sent by a third communication device
  • the capability information includes at least one of the following:
  • the nonlinear device capability information includes at least one of the following:
  • the third-order intermodulation distortion degree corresponding to the nonlinear device in the third communication device
  • the nonlinear device in the third communication device corresponds to maximum power backoff
  • the target communication device is a second network side device or a terminal.
  • the signal transmission device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the signal transmission device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 5 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the embodiment of the present application provides a signal transmission device, which can be applied to a third communication device.
  • the signal transmission device 130 includes the following modules:
  • the second signal receiving module 1301 is configured to receive a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • Processing module 1302 configured to generate a backscatter signal based on the first carrier signal and the second carrier signal;
  • the second signal sending module 1303 is used to send the backscattered signal.
  • the second signal receiving module 1301 is configured to perform at least one of the following:
  • the first carrier signal is received at a first time, and the first carrier signal and the second carrier signal are received at a second time.
  • processing module 1302 is specifically used to:
  • the instructions of the target communication device or according to the protocol provisions, or according to the configuration of the first network side device, perform at least one of the following:
  • the first third-order intermodulation IM3 signal and the second IM3 signal are respectively: the first carrier signal and the second carrier signal received by the third communication device and input into the third communication device.
  • the IM3 signal is output after the nonlinear device.
  • the transmission parameters of the backscattered signal satisfy at least one of the following conditions:
  • the difference between the third-order intermodulation distortion corresponding to the nonlinear device in the third communication device and the first preset value is less than or equal to the first threshold;
  • the deviation of the frequency of the backscattered signal relative to the frequency of the modulated carrier signal is less than or equal to the second threshold.
  • the device also includes:
  • Capability information sending module used to send capability information
  • the capability information includes at least one of the following:
  • Non-linear device capability information includes
  • the nonlinear device capability information includes at least one of the following:
  • the third-order intermodulation distortion degree corresponding to the nonlinear device in the third communication device
  • the nonlinear device in the third communication device corresponds to maximum power backoff
  • the signal transmission device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the signal transmission device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 8 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • the embodiment of the present application provides a signal transmission device, which can be applied to the fourth communication device.
  • the signal transmission device 140 includes the following modules:
  • the third signal receiving module 1401 is used to receive a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal;
  • the fourth signal receiving module 1402 is used to receive backscattered signals, where the backscattered signals are obtained based on the first carrier signal and the second carrier signal.
  • the signal transmission device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • the signal transmission device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 9 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • this embodiment of the present application also provides a communication device 1500, which includes a processor 1501 and a memory 1502.
  • the memory 1502 stores programs or instructions that can be run on the processor 1501, such as , when the communication device 1500 is a terminal, when the program or instruction is executed by the processor 1501, each step of the above signal transmission method embodiment is implemented, and the same technical effect can be achieved.
  • the communication device 1500 is a network-side device, when the program or instruction is executed by the processor 1501, each step of the above signal transmission method embodiment is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a terminal.
  • the hardware of a terminal for implementing the embodiment of the present application is Schematic diagram of the component structure.
  • the terminal 1600 includes but is not limited to: a radio frequency unit 1601, a network module 1602, an audio output unit 1603, an input unit 1604, a sensor 1605, a display unit 1606, a user input unit 1607, an interface unit 1608, a memory 1609, a processor 1610, etc. At least some parts.
  • the terminal 1600 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1610 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 16 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1604 may include a graphics processing unit (Graphics Processing Unit, GPU) 16041 and a microphone 16042.
  • the graphics processor 16041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1606 may include a display panel 16061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1607 includes a touch panel 16071 and at least one of other input devices 16072. Touch panel 16 071, also known as touch screen.
  • the touch panel 16071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 16072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1601 after receiving downlink data from the network side device, the radio frequency unit 1601 can transmit it to the processor 1610 for processing; in addition, the radio frequency unit 1601 can send uplink data to the network side device.
  • the radio frequency unit 1601 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • the memory 1609 can be used to store software programs or instructions and various data.
  • the memory 1609 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1609 may include a volatile memory or a non-volatile memory, or the memory 1609 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1609 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1610 may include one or more processing units; optionally, the processor 1610 integrates an application processor and Modem processor, wherein the application processor mainly processes operations related to the operating system, user interface and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1610.
  • the radio frequency unit 1601 is used to send a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal; receive backscatter signal, wherein the backscattered signal is obtained based on the first carrier signal and the second carrier signal.
  • the radio frequency unit 1601 sends the first carrier signal and the second carrier signal, including at least one of the following:
  • the target communication device includes a first communication device
  • control the first communication device to send the first carrier signal and the second carrier signal simultaneously
  • the target communication device includes a first communication device
  • control the first communication device to send the first carrier signal at a first time and to send the second carrier signal at a second time
  • the target communication device includes a first communication device and a second communication device
  • the first communication device is controlled to send the first carrier signal
  • the second communication device sends the second carrier signal
  • the first information is indicated by the first communication device, or specified by the protocol, or configured by the first network side device;
  • the first information includes at least one of the following:
  • the carrier frequency of the first carrier signal is the carrier frequency of the first carrier signal
  • the carrier frequency of the second carrier signal is the carrier frequency of the second carrier signal
  • the carrier frequency resource of the first carrier signal
  • the duration of sending the second carrier signal is the duration of sending the second carrier signal.
  • the target communication device includes a first communication device and a second communication device
  • the second information is indicated by the first communication device to the second communication device, or is specified by a protocol, or The first network side device is configured
  • the second information includes at least one of the following:
  • the first communication device and the second communication device are kept synchronously or asynchronously;
  • the carrier frequency of the second carrier signal is the carrier frequency of the second carrier signal
  • the duration of sending the second carrier signal is the duration of sending the second carrier signal.
  • the target communication device includes a first communication device and a second communication device
  • the third information is indicated by the second communication device to the first communication device, or is specified by a protocol, or The first network side device is configured;
  • the third information includes at least one of the following:
  • the first communication device remains synchronous or asynchronous with the second communication device
  • the carrier frequency of the first carrier signal is the carrier frequency of the first carrier signal
  • the carrier frequency resource of the first carrier signal
  • the duration of sending the first carrier signal is the duration of sending the first carrier signal.
  • the fourth information is indicated by the target communication device to the third communication device, or is specified by the protocol, or configured by the first network side device;
  • the fourth information includes at least one of the following:
  • the transmission parameters of the backscattered signal need to meet the conditions.
  • the modulation mode of the backscatter signal includes at least one of the following:
  • Amplitude modulation phase modulation, frequency modulation.
  • the conditions that the transmission parameters of the backscattered signal need to meet include at least one of the following:
  • the first carrier signal, the second carrier signal, the first third-order intermodulation IM3 signal, and the second IM3 signal are used as modulated carrier signals;
  • the first third-order intermodulation IM3 signal serves as a modulated carrier signal
  • the second IM3 signal serves as a modulated carrier signal
  • the first third-order intermodulation IM3 signal and the second IM3 signal serve as modulated carrier signals
  • the frequency of the backscattered signal, relative to the frequency of the modulated carrier signal, is less than or equal to a second threshold
  • the difference between the third-order intermodulation distortion corresponding to the nonlinear device in the third communication device and the first preset value is less than or equal to the first threshold;
  • the first third-order intermodulation IM3 signal and the second IM3 signal are respectively: the third communication device
  • the received first carrier signal and the second carrier signal are input to the nonlinear device in the third communication device and then the IM3 signal is output.
  • the radio frequency unit 1601 is also used for:
  • the capability information includes at least one of the following:
  • the nonlinear device capability information includes at least one of the following:
  • the third-order intermodulation distortion degree corresponding to the nonlinear device in the third communication device
  • the nonlinear device in the third communication device corresponds to the maximum power backoff
  • the target communication device is a second network side device or a terminal.
  • the radio frequency unit 1601 is configured to: receive a first carrier signal and a second carrier signal, wherein the frequency of the first carrier signal is different from the frequency of the second carrier signal; receive the reverse signal.
  • a forward scattering signal wherein the backscattering signal is obtained based on the first carrier signal and the second carrier signal.
  • the network side device 1700 includes: an antenna 171, a radio frequency device 172, a baseband device 173, a processor 174, and a memory 175.
  • the antenna 171 is connected to the radio frequency device 172 .
  • the radio frequency device 172 receives information through the antenna 171 and sends the received information to the baseband device 173 for processing.
  • the baseband device 173 processes the information to be sent and sends it to the radio frequency device 172.
  • the radio frequency device 172 processes the received information and then sends it out through the antenna 171.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 173, which includes a baseband processor.
  • the baseband device 173 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 176, which is, for example, a common public radio interface (CPRI).
  • a network interface 176 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1700 in this embodiment of the present invention also includes: instructions or programs stored in the memory 175 and executable on the processor 174.
  • the processor 174 calls the instructions or programs in the memory 175 to execute Figure 5 or Figure 9 The method shown and achieves the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1800 includes: a processor 1801, a network interface 1802, and a memory 1803.
  • the network interface 1802 is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1800 in this embodiment of the present invention also includes: stored in the memory 1803 and available at The processor 1801 calls the instructions or programs in the memory 1803 to execute the method shown in Figure 5 or Figure 9, and achieves the same technical effect. To avoid repetition, it will not be described again here.
  • Embodiments of the present application also provide a readable storage medium, with programs or instructions stored on the readable storage medium.
  • programs or instructions are executed by a processor, the first aspect, the second aspect, or the third aspect are implemented.
  • Each process of the signal transmission method embodiment can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect or the second aspect.
  • Each process of the signal transmission method embodiment described in the aspect or the third aspect can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above first aspect or the third aspect.
  • the signal transmission method embodiment described in the second aspect or the third aspect can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • An embodiment of the present application also provides a signal transmission system, including: a target communication device, a third communication device, and a fourth communication device.
  • the target communication device can be used to execute the steps of the signal transmission method as described in the first aspect above
  • the third communication device can be used to execute the steps of the signal transmission method as described in the second aspect above
  • the fourth communication device can be used to execute the steps of the signal transmission method as described in the third aspect above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法、装置及通信设备,属于通信技术领域,本申请实施例的信号传输方法包括:目标通信设备发送第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;所述目标通信设备接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。

Description

信号传输方法、装置及通信设备
相关申请的交叉引用
本申请要求在2022年9月22日提交中国专利局、申请号为202211158920.7、名称为“信号传输方法、装置及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种信号传输方法、装置及通信设备。
背景技术
读写器(Reader)的单天线连接环形器(或定向耦合器)或多天线同时收发可实现射频识别技术(Radio Frequency Identification,RFID)的频分双工(Frequency Division Duplex,FDD)通信模式。
其中,单天线使用时发端载波泄漏,双天线使用时发端天线耦合效应、电路之间的耦合、发射天线不匹配导致信号反射、环境信号反射等,对反向散射信号造成干扰,需要通过RFID自干扰消除技术对上述干扰进行消除或者抑制。
目前,Reader消除/抑制自干扰的具体方法包括如下几种:
第一种:天线域干扰消除/抑制,即主要应用于多天线实现FDD的场景,具体方法包括收发天线通过距离拉远达到隔离、收发天线之间通过挡板的物理隔离等措施;
第二种:模拟域干扰消除/抑制,即通过附加射频电路对RFID的自干扰进行消除/抑制;
第三种:数字域干扰消除/抑制,即与模拟域类似,通过附加基带电路对RFID的自干扰进行消除/抑制;
第四种:使用滤波器滤除带外噪声、通过给标签(Tag)发射控制信令,以在固定时间段保持静默的方式等。
由此可知,目前Reader消除/抑制自干扰时,需要额外增加隔离板或天线间距,或配置额外的模拟干扰消除/抑制电路或基带电路,但是,额外增加干扰消除/抑制电路会降低射频前端的功率效率,同时会增加硬件设计成本。
其次,由于反向散射信号能量较弱,而泄露/耦合的载波信号能量较强,且反向散射信号的频点与载波信号频点基本一致,所以,很难通过模拟/基带电路的方法消除/抑制自干扰。
由此可知,在现有技术中,增加模拟/基带电路消除Reader的自干扰,不仅增加了硬件成本,而且消除或抑制效果欠佳。
发明内容
本申请实施例提供一种信号传输方法、装置及通信设备,能够在不增加模拟/基带电路的情况下提升自干扰消除或抑制的效果。
第一方面,提供了一种信号传输方法,包括:
目标通信设备发送第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
所述目标通信设备接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
第二方面,提供了一种信号传输方法,包括:
第三通信设备接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
所述第三通信设备基于所述第一载波信号和所述第二载波信号,生成反向散射信号;
所述第三通信设备发送所述反向散射信号。
第三方面,提供了一种信号传输方法,包括:
第四通信设备接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
所述第四通信设备接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
第四方面,提供了一种信号传输装置,包括:
第一信号发送模块,用于发送第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
第一信号接收模块,用于接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
第五方面,提供了一种信号传输装置,包括:
第二信号接收模块,用于接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
处理模块,用于基于所述第一载波信号和所述第二载波信号,生成反向散射信号;
第二信号发送模块,用于发送所述反向散射信号。
第六方面,提供了一种信号传输装置,包括:
第三信号接收模块,用于接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
第四信号接收模块,用于接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
第七方面,提供了一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面或第三方面所述的方法的步骤。
第八方面,提供了一种信号传输系统,包括:目标通信设备、第三通信设备、第四通信设备,所述目标通信设备可用于执行如上述第一方面所述的信号传输方法的步骤, 所述第三通信设备可用于执行如上述第二方面所述的信号传输方法的步骤,所述第四通信设备可用于执行如上述第三方面所述的信号传输方法的步骤。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法,或实现如第三方面所述的方法。
第十一方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或者第二方面或者第三方面所述的方法的步骤。
第十二方面,本申请实施例提供了一种信号传输装置,所述装置用于执行如第一方面或第二方面或第三方面所述的方法的步骤。
在本申请实施例中,目标通信设备发送第一载波信号和第二载波信号,从而接收基于第一载波信号和第二载波信号得到的反向散射信号,其中,第一载波信号与第二载波信号的频率不同。由此可知,在本申请实施例中,目标通信设备可以发送两个频率不同的载波信号,从而使得接收这两个载波信号的设备,可以基于这两个载波信号生成反向散射信号。
其中,基于两个频率不同的载波信号生成反向散射信号时,由于不同频率的载波信号经过非线性器件,可以得到至少一个与已发送的两个载波信号不同频的反向散射信号,或者,可以得到至少一个与已发送的两个载波信号不同频的反向散射信号以及与载波信号同频的反向散射信号等多个反向散射信号。因此,目标通信设备接收到反向散射信号之后,即使在对反向散射信号的处理过程中存在自干扰信号,也可以在滤除反向散射信号中的非必要信号的过程中,更大几率地一同将自干扰信号滤除。因此,本申请实施例可以在不增加硬件成本的基础上,增加滤除自干扰信号的几率。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例中反向散射通信的示意图之一;
图3是本申请实施例中反向散射通信的示意图之二;
图4是本申请实施例中反向散射通信的应用场景示意图;
图5是本申请实施例中的一种信号传输方法的流程图;
图6是本申请实施中第一载波信号和第二载波信号输入非线性器件后输出信号的频谱示意图;
图7是本申请实施例中的三阶交调失真度IMD的示意图;
图8是本申请实施例中的另一种信号传输方法的流程图;
图9是本申请实施例中的另一种信号传输方法的流程图;
图10是本申请实施例中实施方式一中信号传输流程及在不同阶段的频谱示意图;
图11是本申请实施例中实施方式二中信号传输流程及在不同阶段的频谱示意图;
图12是本申请实施例中的一种信号传输装置的结构框图;
图13是本申请实施例中的另一种信号传输装置的结构框图;
图14是本申请实施例中的另一种信号传输装置的结构框图;
图15是本申请实施例中的一种通信设备的结构框图;
图16是本申请实施例中的一种终端的结构框图;
图17是本申请实施例中的一种网络侧设备的结构框图;
图18是本申请实施例中的另一种网络侧设备的结构框图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality, AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
为了便于理解本申请实施例的信号传输方法,首先对如下相关技术进行介绍:
一、反向散射通信(Backscatter Communication,BSC)和极低功耗通信
反向散射通信,是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息(例如图2所示)。其中,反向散射通信设备,可以是如下中的其中一种:
第一种:传统RFID中的反向散射通信设备,一般是一个Tag,属于无源IoT设备(Passive-IoT);
第二种:半无源(semi-passive)的Tag,这类Tag的下行接收或者上行反射具备一定的放大能力;
第三种:具备主动发送能力的Tag,即有源Tag(active Tag),这类终端可以不依赖对入射信号的反射,主动生成载波信号并向5G基站(the next Generation Node B,gNB)或Reader发送信息。
其中,如图3所示,反向散射通信的一种简单的实现方式为:Tag需要发送‘1’时,对入射载波信号进行反射,Tag需要发送‘0’时不进行反射。这里,图3中的TX BB表示网络侧设备发端基带模块;RX BB表示网络侧设备接收端基带处理模块,Logic表示逻辑单元,Clock表示时钟单元,Demod表示解调器,RF harvester表示Tag的能量存储模块。
另外,反向散射通信设备可以通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0表示天线特性阻抗,Z1表示负载阻抗。
假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。
此外,正常终端通信的最大功率至少为23dBm,当最大功率非常低于这个值时,比如-20dBm的情况下,属于极低功率通信。这种情况下可能需要使用不同于正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)的调制方法,比如二进制振幅键控(即OOK)调制方法。
二、反向散射通信的应用场景
如图4所示,基站(例如gNB)发送载波信号(CW)和信令给Tag;其中,control类型(即控制命令的类型)包括如下至少一项:选择(select),盘点(inventory),接入(access)。然后,网络接收Tag的反馈信息。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信号传输方法进行详细地说明。
第一方面,参见图5所示,为本申请实施例所提供的一种信号传输方法的流程图,该方法可以包括以下步骤501至502:
步骤501:目标通信设备发送第一载波信号和第二载波信号。
其中,所述第一载波信号的频率与所述第二载波信号的频率不同。即本申请实施例中,目标通信设备给第三通信设备发送频率不同的第一载波信号和第二载波信号。
另外,本申请实施例的信号传输方法应用于反向散射通信。即此处所述的目标通信设备、以及后文所述的第一通信设备、第二通信设备、第四通信设备可以为阅读器(Reader),第三通信设备可以为标签设备(Tag)。其中,关于反向散射通信的相关介绍可参见前文所述,此处不再赘述。这里,该Reader可以为第二网络侧设备(例如基站)或者终端。
可选地,所述目标通信设备发送第一载波信号和第二载波信号,包括如下中的至少一项:
在所述目标通信设备包括第一通信设备的情况下,通过所述第一通信设备同时发送所述第一载波信号和所述第二载波信号;
在所述目标通信设备包括第一通信设备的情况下,通过所述第一通信设备在第一时间发送所述第一载波信号,在第二时间发送所述第二载波信号;
在所述目标通信设备包括第一通信设备和第二通信设备的情况下,通过所述第一通信设备发送所述第一载波信号,通过所述第二通信设备发送所述第二载波信号。
由此可知,上述第一载波信号和第二载波信号可以由同一通信设备发送,也可以由不同通信设备发送。其中,当第一载波信号和第二载波信号由同一第一通信设备发送时,第一通信设备可以同时发送第一载波信号和第二载波信号,也可以在不同时间发送第一载波信号和第二载波信号。
步骤502:所述目标通信设备接收反向散射信号。
其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。即本申请实例中,目标通信设备可以接收第三通信设备基于第一载波信号和第二载波信号得到的反向散射信号。
另外,目标通信设备接收到反向散射信号之后,可以进行滤波处理,以滤除反向散射信号中的非必要信号,然后对滤波后得到的信号进行解调处理。
可选地,所述反向散射信号包括对第一载波信号、第二载波信号、第一载波信号和第二载波信号输入至接收第一载波信号和第二载波信号的第三通信设备中的非线性器件后输出的第一三阶交调IM3信号和第二IM3信号,调制后得到的信号;
或者,所述反向散射信号包括对第一三阶交调IM3信号调制后的信号;
或者,所述反向散射信号包括对第二IM3信号调制后得到的信号;
或者,所述反向散射信号包括对第一三阶交调IM3信号和第二IM3信号调制后得到的信号。
其中,假设上述第一载波信号和第二载波信号的角频率为w1和w2,且两个载波频率靠得较近,则经过非线性器件之前的输入信号vi可表示为:vi=V0(cosw1t+cosw2t),其中,V0为信号的幅值。
经过非线性器件之后的输出信号可表示为如下目标公式:

其中,a0,a1,a2,a3表示不同阶数的系数。上式包含基波、2阶交调物和2次谐波、3阶交调物和3次谐波,具体频谱分布图如图6所示。
由此可知,接收第一载波信号和第二载波信号的第三通信设备,将第一载波信号和第二载波信号分别输入至第三通信设备中的非线性器件后,可以产生第一三阶交调IM3信号和第二IM3信号,则第三通信设备可以对第一载波信号、第二载波信号、第一三阶交调IM3信号和第二IM3信号进行调制,从而得到反向散射信号,也可以对第一三阶交调IM3信号和/或第二IM3信号进行调制,从而得到反向散射信号。
其中,第三通信设备对第一载波信号、第二载波信号、第一三阶交调IM3信号和第二IM3信号进行调制,或者,对第一IM3交调信号和/或第二IM3信号进行调制,可以得到更多参数不同的反向散射信号,例如进行频率调制时,可以得到频率范围更宽,并且距离第一载波信号和第二载波信号的频率较远的反向散射信号,这样,目标通信设备接收到这样的反向散射信号之后,即使在对反向散射信号的处理过程中存在自干扰信号,通过带通滤波器在滤除反向散射信号中的非必要信号的过程中,也能更大几率地一同将自干扰信号滤除。
另外,从图6中可以看出,2阶交调物、2次谐波和3次谐波离基波都比较远,而3阶交调信号(2w1-w2和2w2-w1)离基波比较近,易于接收端检测,并有别于载波信号的频率。同时,从上述目标公式中可以看出,3阶交调信号的信号能量可以通过几个项的能量进行合并补充,其一定程度的能量高低范围是可调可控的。因此,可以选择3阶交调信号中的2w1-w2和2w2-w1作为上述第一三阶交调IM3信号和第二IM3信号。
由上述步骤501至502可知,在本申请实施例中,目标通信设备发送第一载波信号和第二载波信号,接收基于第一载波信号和第二载波信号得到的反向散射信号,其中,第一载波信号与第二载波信号的频率不同。由此可知,在本申请实施例中,目标通信设备可以发送两个频率不同的载波信号,从而使得接收这两个载波信号的设备,可以基于这两个载波信号生成反向散射信号。
其中,基于两个频率不同的载波信号生成反向散射信号时,由于不同频率的载波信号经过非线性器件,可以得到至少一个与已发送的两个载波信号不同频的反向散射信号,或者,可以得到至少一个与已发送的两个载波信号不同频的反向散射信号以及与载波信号同频的反向散射信号等多个反向散射信号。因此,目标通信设备接收到反向散射信号之后,即使在对反向散射信号的处理过程中存在自干扰信号,也可以在滤除反向散射信号中的非必要信号的过程中,更大几率地一同将自干扰信号滤除。并且,本申请实施例中,未增加任何自干扰消除电路,因此,本申请实施例可以在不增加硬件成本的基础上,增加滤除自干扰信号的几率。
可选地,在所述目标通信设备包括第一通信设备的情况下,第一信息是所述第一通信设备指示的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第一信息包括如下A-1至A-10项中至少一项:
A-1项:所述第一载波信号的载波频率;
A-2项:所述第二载波信号的载波频率;
A-3项:所述第一载波信号的载波频率资源;
A-4项:所述第二载波信号的载波频率资源;
A-5项:所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
A-6项:所述第一载波信号的发射功率;
A-7项:所述第二载波信号的发射功率;
A-8项:所述第一通信设备中的非线性器件对应的三阶交调失真度;
A-9项:所述第一载波信号的持续发送时间;
A-10项:所述第二载波信号的持续发送时间。
其中,上述A-2项中,载波频率资源可以包括频率位置和频率资源单元中的至少一者。
上述A-8项中,三阶交调失真度(3rd order intermodulation distortion,IMD)为3阶交调信号与基波有用信号的能量差,例如角频率分别为w1和w2的第一载波信号和第二载波信号输入至一个非线性器件后,产生角频率分别为2w1-w2和2w2-w1的3阶交调信号,则该非线性器件对应的IMD如图7所示,即IMD=P0(w2)-P0(2w2-w1)。其中,P0(w2)表示第二载波信号的功率,P0(2w2-w1)表示角频率为2w2-w1的三阶交调信号的功率。
一般情况下,IMD越大,表示3阶交调信号对基波信号(即第一载波信号和第二载波信号)的影响越小。
另外,当非线性器件为功率放大器(Power Amplifier,PA)时,PA的输入功率、偏置电压或输入信号的频率,可以影响PA的效率及输出功率,从而进一步影响PA对应的IMD的大小。
可选地,在所述目标通信设备包括第一通信设备和第二通信设备的情况下,第二信息是所述第一通信设备指示给所述第二通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第二信息包括如下B-1至B-7中至少一项:
B-1项:所述第一通信设备与所述第二通信设备保持同步或异步;
B-2项:所述第二载波信号的载波频率;
B-3项:所述第二载波信号的载波频率资源;
B-4项:所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
B-5项:所述第二载波信号的发射功率;
B-6项:所述第二通信设备中的非线性器件对应的三阶交调失真度;
B-7项:所述第二载波信号的持续发送时间。
其中,上述B-3项中,载波频率资源可以包括频率位置和频率资源单元中的至少一者。
由此可知,当第一载波信号和第二载波信号分别由第一通信设备和第二通信设备发送时,可以由第一通信设备给第二通信设备指示上述第二信息,或者由协议规定或者第一网络侧设备配置上述第二信息。
可选地,在所述目标通信设备包括第一通信设备和第二通信设备的情况下,第三信息是所述第二通信设备指示给所述第一通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第三信息包括如下C-1至C-7项中的至少一项:
C-1项:所述第一通信设备与所述第二通信设备保持同步或异步;
C-2项:所述第一载波信号的载波频率;
C-3项:所述第一载波信号的载波频率资源;
C-4项:所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
C-5项:所述第一载波信号的发射功率;
C-6项:所述第一通信设备中的非线性器件对应的三阶交调失真度;
C-7项:所述第一载波信号的持续发送时间。
其中,上述C-3项中,载波频率资源可以包括频率位置和频率资源单元中的至少一者。
由此可知,当第一载波信号和第二载波信号分别由第一通信设备和第二通信设备发送时,还可以由第二通信设备给第一通信设备指示上述第案信息,或者由协议规定或者第一网络侧设备配置上述第三信息。
可选地,第四信息是所述目标通信设备指示给第三通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第四信息包括如下D-1项至D-3项中至少一项:
D-1项:所述反向散射信号的调制方式;
D-2项:所述反向散射信号的频率相对于调制载波信号的频率的偏移;
D-3项:所述反向散射信号的传输参数需要满足的条件。
其中,上述D-1项中,所述反向散射信号的调制方式包括:幅度调制、相位调制、频率调制中的至少一项。
上述D-2项中,调制载波信号,即为待调制的信号,例如当上述第一载波信号作为调制载波信号时,这里D-2项中所述的“偏移”可以包括:第一载波信号与对第一载波信号调制后得到的反向散射信号的频率之间的偏移;当上述第二载波信号作为调制载波信号时,这里D-2项中所述的“偏移”可以包括:第二载波信号与对第二载波信号调制后得 到的反向散射信号的频率之间的偏移;当上述第一三阶交调IM3信号作为调制载波信号时,这里D-2项中所述的“偏移”可以包括:第一三阶交调IM3信号与对第一三阶交调IM3信号调制后得到的反向散射信号的频率之间的偏移;当上述第二IM3信号作为调制载波信号时,这里D-2项中所述的“偏移”可以包括:第二IM3信号与对第二IM3信号调制后得到的反向散射信号的频率之间的偏移。
另外,需要说明的是,当第一载波信号和第二载波信号由第一通信设备发送时,上述第四信息可以由第一通信设备指示给第三通信设备;当第一载波信号和第二载波信号分别由第一通信设备和第二通信设备发送时,上述第四信息可以由第一通信设备和第二通信设备中的至少一个指示给第三通信设备。
可选地,上述D-3项中,所述反向散射信号的传输参数需要满足的条件包括如下E-1至E-6项中的至少一项:
E-1项:所述第一载波信号、所述第二载波信号、第一三阶交调IM3信号、第二IM3信号作为调制载波信号;
E-2项:所述第一三阶交调IM3信号作为调制载波信号;
E-3项:所述第二IM3信号作为调制载波信号;
E-4项:所述第一三阶交调IM3信号和所述第二IM3信号作为调制载波信号;
E-5项:所述反向散射信号的频率,相对于所述调制载波信号的频率的偏移小于或等于第二阈值;
E-6项:所述第三通信设备中的非线性器件对应的三阶交调失真度与第一预设值之差小于或等于第一阈值;
其中,所述第一三阶交调IM3信号和所述第二IM3信号分别为:所述第三通信设备接收到的第一载波信号和第二载波信号,输入至所述第三通信设备中的非线性器件后输出的IM3信号。
另外,上述E-1项表示:可以协议规定,或者第一网络侧设备配置,或者目标通信设备指示第三通信设备对第一载波信号、第二载波信号、第一三阶交调IM3信号、第二IM3信号进行调制。此种情况下,目标通信设备接收到的反向散射信号包括对第一载波信号、第二载波信号、第一载波信号输入至接收第一载波信号的第三通信设备中的非线性器件后输出的第一三阶交调IM3信号、第二载波信号输入至第三通信设备中的非线性器件后输出的第二IM3信号,调制后得到的信号。
上述E-2项表示:可以协议规定,或者第一网络侧设备配置,或者目标通信设备指示第三通信设备对第一三阶交调IM3信号进行调制。此种情况下,目标通信设备接收到的反向散射信号包括对第一三阶交调IM3信号调制后的信号。
上述E-3项表示:可以协议规定,或者第一网络侧设备配置,或者目标通信设备指示第三通信设备对第二IM3信号进行调制。此种情况下,目标通信设备接收到的反向散射信号包括对第二IM3信号调制后的信号。
上述E-4项表示:可以协议规定,或者第一网络侧设备配置,或者目标通信设备指示第三通信设备对第一三阶交调IM3信号和第二IM3信号进行调制。此种情况下,目标通信设备接收到的反向散射信号包括对第一三阶交调IM3信号和第二IM3信号调制后得到的信号。
上述E-5项中的第二阈值可以为第一载波信号的频率与第二载波信号的频率之差的绝对值的二分之一。其中,设置反向散射信号的频率,相对于调制载波信号的频率的偏移小于或等于第二阈值,可以保证所调制的反向散射信号不会对邻道信号造成干扰。
上述E-6项表示:可以协议规定,或者第一网络侧设备配置,或者目标通信设备指示第三通信设备中的非线性器件对应的三阶交调失真度与第一预设值之差小于或等于第一阈值。这里,可以通过E-6项,使得第三通信设备中的非线性器件对应的IMD尽量小,从而使得第一载波信号和第二载波信号输入至第三通信设备中的非线性器件之后,得到的3阶交调信号(即上述所述的第一三阶交调IM3信号和第二IM3信号)的功率较大,从而在将IM3信号作为调制信号时,可以使得目标通信设备更好地接收IM3信号调制后的信号。
可选地,所述方法还包括:
所述目标通信设备接收第三通信设备发送的能力信息;
其中,所述能力信息包括如下中至少一项:
是否集成非线性器件;
非线性器件能力信息。
由此可知,第三通信设备还可以向目标通信设备发送其能力信息,用于告知目标通信设备其是否集成有非线性器件,和/或其所集成的非线性器件的能力信息,以便于目标通信设备基于第三通信设备发送的能力信息,确定反向散射信号的传输参数需要满足的条件和/或为第三通信设备指示前述内容所述的信息。
可选地,所述非线性器件能力信息包括如下F-1项至F-3项中的至少一项:
F-1项:所述第三通信设备中的非线性器件对应的三阶交调失真度;
F-2项:所述第三通信设备中的非线性器件对应最大功率回退(MPR);
F-3项:所述第三通信设备中的非线性器件对应的带宽。
其中,F-1项表示第三通信设备中的非线性器件可以达到的IMD。
可选地,上述非线性器件能力信息还可以包括第三通信设备中的非线性器件对应的输入三阶截点功率(Input Third-order Intercept Point,IIP3)。其中,IIP3反映放大器的线性特性,该值与输入功率及IMD有关。
第二方面,参见图8所示,为本申请实施例所提供的一种信号传输方法的流程图,该方法可以包括以下步骤801至803:
步骤801:第三通信设备接收第一载波信号和第二载波信号。
其中,所述第一载波信号的频率与所述第二载波信号的频率不同。即本申请实施例 中,第三通信设备可以接收目标通信设备发送的频率不同的第一载波信号和第二载波信号。
另外,本申请实施例的信号传输方法应用于反向散射通信。即此处所述的第三通信设备可以为标签设备(Tag);所述目标通信设备可以为阅读器(Reader)。其中,关于反向散射通信的相关介绍可参见前文所述,此处不再赘述。这里,该Reader可以为第二网络侧设备(例如基站)或者终端。
步骤802:所述第三通信设备基于所述第一载波信号和所述第二载波信号,生成反向散射信号。
可选地,步骤802“所述第三通信设备基于所述第一载波信号和所述第二载波信号,生成反向散射信号”,包括:
所述第三通信设备根据目标通信设备的指示,或者根据协议规定,或者根据第一网络侧设备的配置,执行如下中至少一项:
对所述第一载波信号、所述第二载波信号、第一三阶交调IM3信号、第二IM3信号进行调制,得到所述反向散射信号;
对所述第一三阶交调IM3信号进行调制,得到所述反向散射信号;
对所述第二IM3信号进行调制,得到所述反向散射信号;
对所述第一三阶交调IM3信号、所述第二IM3信号进行调制,得到所述反向散射信号;
其中,所述第一三阶交调IM3信号和所述第二IM3信号分别为:所述第三通信设备接收到的第一载波信号和第二载波信号,输入至所述第三通信设备中的非线性器件后输出的IM3信号。
由此可知,上述反向散射信号包括对第一载波信号、第二载波信号、第一载波信号和第二载波信号输入至第三通信设备中的非线性器件后输出的第一三阶交调IM3信号和第二IM3信号,调制后得到的信号;
或者,上述反向散射信号包括对第一三阶交调IM3信号调制后的信号;
或者,上述反向散射信号包括对第二IM3信号调制后得到的信号;
或者,上述反向散射信号包括对第一三阶交调IM3信号和第二IM3信号调制后得到的信号。
由此可知,接收第一载波信号和第二载波信号的第三通信设备,将第一载波信号和第二载波信号分别输入至第三通信设备中的非线性器件后,可以产生第一三阶交调IM3信号和第二IM3信号,则第三通信设备可以对第一载波信号、第二载波信号、第一三阶交调IM3信号和第二IM3信号进行调制,从而得到反向散射信号,也可以对第一三阶交调IM3信号和/或第二IM3信号进行调制,从而得到反向散射信号。
其中,第三通信设备对第一载波信号、第二载波信号、第一三阶交调IM3信号和第二IM3信号进行调制,或者,对第一IM3交调信号和/或第二IM3信号进行调制,可以 得到更多参数不同的反向散射信号,例如进行频率调制时,可以得到频率范围更宽,并且距离第一载波信号和第二载波信号的频率较远的反向散射信号,这样,目标通信设备接收到这样的反向散射信号之后,即使在对反向散射信号的处理过程中存在自干扰信号,也通过带通滤波器更加方便地在滤除反向散射信号中的非必要信号的过程中,更大几率地一同将自干扰信号滤除。
步骤803:所述第三通信设备发送所述反向散射信号。
由上述步骤801至803可知,在本申请实施例中,第三通信设备能够接收第一载波信号和第二载波信号,从而基于第一载波信号和第二载波信号得到的反向散射信号,并发送该反向散射信号,其中,第一载波信号与第二载波信号的频率不同。由此可知,在本申请实施例中,目标通信设备可以发送两个频率不同的载波信号,从而使得第三通信设备可以接收这两个载波信号,并基于这两个载波信号生成反向散射信号。并且,本申请实施例中,第三通信设备被动式进行载波信号的接收及处理,不需要额外的信令解析和信令交互。
其中,基于两个频率不同的载波信号生成反向散射信号时,由于不同频率的载波信号经过非线性器件,可以得到至少一个与已发送的两个载波信号不同频的反向散射信号,或者,可以得到至少一个与已发送的两个载波信号不同频的反向散射信号以及与载波信号同频的反向散射信号等多个反向散射信号。因此,目标通信设备接收到反向散射信号之后,即使在对反向散射信号的处理过程中存在自干扰信号,也可以在滤除反向散射信号中的非必要信号的过程中,更大几率地一同将自干扰信号滤除。并且,本申请实施例中,未增加任何自干扰消除电路,因此,本申请实施例可以在不增加硬件成本的基础上,增加滤除自干扰信号的几率。
可选地,所述第三通信设备接收第一载波信号和第二载波信号,包括如下中至少一项:
所述第三通信设备同时接收所述第一载波信号和所述第二载波信号;
所述第三通信设备在第一时间接收所述第一载波信号,在第二时间接收所述第一载波信号和所述第二载波信号。
其中,上述第一载波信号和第二载波信号可以由同一通信设备发送,也可以由不同通信设备发送。其中,当第一载波信号和第二载波信号由同一第一通信设备发送时,第一通信设备可以同时发送第一载波信号和第二载波信号,也可以在不同时间发送第一载波信号和第二载波信号。因此,第三通信设备在接收第一载波信号和第二载波信号时,可能同时接收第一载波信号和第二载波信号,也可能在不同时间接收第一载波信号和第二载波信号。
可选地,所述反向散射信号的传输参数满足如下G-1至G-2项中的至少一个条件:
G-1项:所述第三通信设备中的非线性器件对应的三阶交调失真度与第一预设值之差小于或等于第一阈值;
G-2项:所述反向散射信号的频率,相对于调制载波信号的频率的偏移小于或等于第二阈值。
其中,这里反向散射信号的传输参数满足的条件可以由目标通信设备指示给第三通信设备,也可以预先通过协议规定,也可以由第一网络侧设备配置。
另外,上述第二阈值可以为第一载波信号的频率与第二载波信号的频率之差的绝对值的二分之一。
此外,可以通过G-2项,使得第三通信设备中的非线性器件对应的IMD尽量小,从而使得第一载波信号和第二载波信号输入至第三通信设备中的非线性器件之后,得到的3阶交调信号(即上述所述的第一三阶交调IM3信号和第二IM3信号)的功率较大,从而在将IM3信号作为调制信号时,可以使得目标通信设备更好地接收IM3信号调制后的信号。
可选地,所述方法还包括:
所述第三通信设备发送能力信息;
其中,所述能力信息包括如下中至少一项:
是否集成非线性器件;
非线性器件能力信息。
由此可知,第三通信设备还可以向目标通信设备发送其能力信息,用于告知目标通信设备其是否集成有非线性器件,和/或其所集成的非线性器件的能力信息,以便于目标通信设备基于第三通信设备发送的能力信息,确定反向散射信号的传输参数需要满足的条件和/或为第三通信设备指示前述内容所述的信息。
可选地,所述非线性器件能力信息包括如下F-1项至F-3项中的至少一项:
F-1项:所述第三通信设备中的非线性器件对应的三阶交调失真度;
F-2项:所述第三通信设备中的非线性器件对应最大功率回退(MPR);
F-3项:所述第三通信设备中的非线性器件对应的带宽。
其中,F-1项表示第三通信设备中的非线性器件可以达到的IMD。
可选地,上述非线性器件能力信息还可以包括第三通信设备中的非线性器件对应的输入三阶截点功率(Input Third-order Intercept Point,IIP3)。其中,IIP3反映放大器的线性特性,该值与输入功率及IMD有关。
第三方面,参见图9所示,为本申请实施例所提供的一种信号传输方法的流程图,该方法可以包括以下步骤901至902:
步骤901:第四通信设备接收第一载波信号和第二载波信号。
其中,所述第一载波信号的频率与所述第二载波信号的频率不同。即第四通信设备可以接收目标通信设备发送的频率不同的第一载波信号和第二载波信号。
步骤902:所述第四通信设备接收反向散射信号。
其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。即 第四通信设备可以接收第三通信设备基于第一载波信号和第二载波信号得到的反向散射信号。
由步骤901至902可知,第四通信设备可以接收目标通信设备发送的第一载波信号和第二载波信号,以及第三通信设备基于第一载波信号和第二载波信号得到的反向散射信号。即本申请实施例的信号传输方法,还可以应用于双基地架构。
其中,现有技术的双基地架构中,接收端(如UE)会收到发射端(如gNB)的载波信号及Tag的反向散射信号,由于反向散射信号的能量远远低于载波信号的能量,可能导致接收端解调反向散射信号失败。
而本申请实施例的通信方法应用于双基地架构时,第三通信设备基于两个频率不同的载波信号生成反向散射信号时,可以得到至少一个与已发送的两个载波信号不同频的反向散射信号,或者,可以得到至少一个与已发送的两个载波信号不同频的反向散射信号以及与载波信号同频的反向散射信号等多个反向散射信号,因此,这样得到的反向散射信号的同频干扰较小,则第四通信设备接收到反向散射信号、第一载波信号和第二载波信号之后,则可以更加容易得成功解析反向散射信号,即本申请实施例的通信方法应用于双基地架构时,可以提升第四通信设备解析反向散射信号的成功率。
此外需要说明的是,前文所述的第一网络侧设备与第二网络侧设备可以相同,也可以不同。
综上所述,本申请实施例的信号传输方法的具体实施方式可如下实施方式一或实施方式二所述。
实施方式一:同一Reader发送两个载波信号
首先需要说明的是,在本实施方式中,以Reader中的非线性器件包括一个PA和两个带通滤波器,以及Tag中的非线性器件包括一个低噪声放大器(Low Noise Amplification,LNA)为例进行说明,但并不表示本申请实施例的通信方法仅应用于此种Reader和Tag。
其中,通过预定义或网络配置的方式,给出Reader侧的下列(1.1)至(1.5)的参数值:
(1.1)两个载波信号(CW)(即图10中的CW1和CW2)的频率信息;
该频率信息例如可以包括:第一载波信号(CW1)和第二载波信号(CW2)的频率分别为900MHz及920MHz;或者,CW1的载波频率为900MHz,且CW1与CW1的频差为20MHz。
(1.2)两个载波的频域资源;
(1.3)IMD1(即Reader中的非线性器件对应的IMD,例如图10中的IMDA和IMDB);
此处需要说明的是,PA的输入功率、偏置电压或输入信号的频率,可以影响PA的效率及输出功率,从而进一步影响PA对应的IMD的大小。而图10中的IMDB是通过带通滤波器控制的,其值是固定的。
(1.4)CW 1和CW2的持续时间T;
(1.5)CW 1和CW2的功率,例如均为36dBm。
另外,通过Reader给Tag指示或预定义如下2.1至2.3的参数:
(2.1)Tag的调制方式(本实施例以双边带幅移键控(DSB-ASK)调制为例);
(2.2)反向散射信号相对于调制载波信号的频偏Δf,且Δf<|f1-f2|/2,其中,f1表示CW1的频率,f2表示CW2的频率;
(2.3)IMD2,即Tag中的非线性器件对应的IMD,例如图10中的IMDD和IMDE
其中,可以LNA的偏置电压/输入功率大小/信号频率,可影响LNA的效率,进一步影响其输出功率,从而可以进一步控制IMD2的大小。
另外,在Reader中的信号处理流程如下3.1所述:
(3.1)如图10所述,Reader的本振分别产生两个载波信号,即CW1:900MHz和CW2:902MHz,其中,经过Reader中的PA之后,从A点的频谱示意图可以看出,IMDA为20dB;然后,两个载波信号及两个IM3信号(即频率为880MH和940MHz的信号)经过890MHz~930MHz的带通滤波器之后,载波信号的功率基本不变,仍为30dBm,IM3信号的功率降到-20dBm(如B点的频谱示意图);随后载波信号及IM3信号通过Reader的发射天线发射;此后,发射出去的载波信号和IM3信号,经过50dB的路损之后,被Tag接收;其中,Tag接收到两个载波信号的功率如C点的频谱示意图所示,均为-22dBm,频率分别为900MHz和920MHz。
然后,Tag中的信号调制流程如下3.2所述:
(3.2)两个载波信号在下行传输过程中,经过Tag的LNA,其中,两个载波信号经过LNA放大之后,其功率从-22dBm增加到-2dBm,并且,由于LNA的非线性特征,于880MHz和940MHz频点处分别产生-10dBm的IM3信号,此时IMDD为8dB(如D点频谱示意图所示);然后,Tag分别对两个载波信号和两个IM3信号,采用DSB-ASK调制方式进行调制,从而在两个载波频率及两个IM3信号附近产生调制数据(即反向散射信号),其频偏为5MHz。可以理解的是,还可以采用频移键控(Frequency-shift keying,FSK)调试方式,对前述两个载波信号和两个IM3信号进行调制,从而得到反向散射信号。其中,若采用DSB-ASK调制方式进行调制,得到的反向散射信号如E点频谱示意图中的虚线以及880MHz和940MHz表示的信号;若采用FSK调制方式进行调制,得到的反向散射信号如E点频谱示意图中的虚线所示。
此后,信号的反向传输流程如下3.3所述:
(3.3)调制后得到的反向散射信号经过上行无线信道的50dB衰减,被Reader的接收天线接收,如F点的频谱示意图所示。此时,载波信号功率及其调制数据(即F点频谱示意图中900MHz两侧的两个虚线表示的信号,以及920MHz两侧的两个虚线表示的信号)功率约为-50dBm,IM3信号功率及其调制数据(即F点频谱示意图中880MHz两侧的两个虚线表示的信号,以及940MHz两侧的两个虚线表示的信号)功率约为-70dBm,然后,这些信号经过Reader中“>940MHz”的带通滤波器及LAN之后,仅剩下如G点频 谱示意图所示的945MHz的反向散射信号。
其中,在图10中所示的Reader中,CW1和CW2可能会进入“>940MHz”的带通滤波器,从而对Reader接收到的反向散射信号的处理产生自干扰,即此处进入“>940MHz”的带通滤波器的CW1和CW2信号,属于自干扰信号。
而从上述流程可以看出,通过在Tag侧产生IM3信号,并在IM3信号上进行调制,这样,对IM3信号调制得到的信号(即F点频谱示意图中880MHz两侧的两个虚线表示的信号,以及940MHz两侧的两个虚线表示的信号)的频率,距离CW1和CW2的频率(即900MHz和920MHz)较远。而Reader接收到反向散射信号之后,保留其中一个或几个调制后的信号即可,例如可以只保留F点频谱示意图中940MHz右侧的虚线表示的信号(即945MHz)的信号,而将其他信号滤除,这样,在将F点频谱示意图中所示的信号输入至“>940MHz”的带通滤波器之后,则可以滤除小于或等于940Hz的信号,这样,不仅滤除了其他非必要IM3信号,还可以滤除上述自干扰信号(即两个载波信号CW1和CW2)。
由此可知,在本实施方式中,通过在Tag侧产生IM3信号,并在IM3信号上进行调制,可以使得Reader接收到反向散射信号(即调制后得到的信号)之后,通过滤波器滤除其它非必要信号,包括两个载波信号和非必要IM3信号,达到干扰消除的目的。
其中,需要说明的是,上述IM3信号的频率的计算方法分别为:
880MHz=2*CW1的频率-CW2的频率;
940MHz=2*CW2的频率-CW1的频率。
另外,Reader中890MHz~930MHz的带通滤波器除了可以起到滤波作用之后,还可以让从PA中输出的IM3信号(即A点频谱示意图中880MHz和940MHz的信号)的功率降低,从而在Reader将信号发射出去的时候,Tag可以接收到更加干净的900MHz、920MHz的载波信号。
此外,在Reader中设置IMDA较大(即大于一定阈值),例如本实施方式中设置为20dB,可以使得A点频谱示意图中的IM3信号的功率较小,从而在Reader将信号发射出去的时候,Tag可以接收到更加干净的900MHz、920MHz的载波信号。
在Tag中设置IMDD较小(即小于一定阈值),例如本实施方式中设置为8dB,可以使得D点频谱示意图中的IM3信号的功率较大,从而在将IM3信号作为调制信号时,可以使得Reader更好地接收IM3信号调制后的信号。
实施方式二:不同Reader发送两个载波信号
首先需要说明的是,在本实施方式中,以第一Reader中的非线性器件包括一个PA和两个带通滤波器,第二Reader中的非线性器件包括一个PA和一个带通滤波器,以及Tag中的非线性器件包括一个LNA为例进行说明,但并不表示本申请实施例的通信方法仅应用于此种Reader和Tag。
其次,在本实施方式中,第一Reader发送第一载波信号,第二Reader发送第二载波 信号。
再次,类似于上述实施方式一,通过预定义或网络配置的方式,给出第一Reader和第二Reader侧的下列(1.1)至(1.6)的参数值:
(1.1)两个载波信号(CW)(即图11中的CW1和CW2)的频率信息;
该频率信息例如可以包括:CW1和CW2的频率分别为900MHz及920MHz;或者,CW1的载波频率为900MHz,且CW1与CW1的频差为20MHz;
(1.2)两个载波的频域资源;
(1.3)第一Reader中的非线性器件对应的IMD;
(1.4)第二Reader中的非线性器件对应的IMD;
(1.5)CW 1和CW2的持续时间T;
(1.6)CW 1和CW2的功率,例如均为36dBm;
(1.7)第一Reader与第二Reader保持同步。
可以理解的是,还可以由第一Reader给第二Reader指示如下(2.1)至(2.6)的参数:
(2.1)第二载波信号的频率;
(2.2)第二载波信号的频域资源;
(2.3)第二Reader中的非线性器件对应的IMD;
(2.4)第二载波信号的持续时间;
(2.5)第二载波信号的发射功率;
(2.6)第一Reader与第二Reader保持同步。
可以理解的是,还可以由第二Reader给第一Reader指示如下(3.1)至(3.6)的参数:
(3.1)第一载波信号的频率;
(3.2)第一载波信号的频域资源;
(3.3)第一Reader中的非线性器件对应的IMD;
(3.4)第一载波信号的持续时间;
(3.5)第一载波信号的发射功率;
(3.6)第一Reader与第二Reader保持同步。
另外,通过第一Reader和/或第二Reader给Tag指示或预定义如下4.1至4.3的参数:
(4.1)Tag的调制方式(本实施例以双边带幅移键控(DSB-ASK)调制为例);
(4.2)反向散射信号相对于调制信号的频偏Δf,且Δf<|f1-f2|/2,其中,f1表示CW1的频率,f2表示CW2的频率;
(4.3)IMD2,即Tag中的非线性器件对应的IMD,例如图11中的IMDI和IMDJ
其中,可以通过控制Tag中的LNA的偏置电压,可影响非线性器件的输出功率,进一步控制IMD2的大小。
如图11所示,第一Reader和第二Reader分别发射的载波信号经过50dB的路损,被Tag接收,其中,Tag接收到的两个载波信号的功率如H点的频谱示意图所示,均为-22dBm,频率分别为900MHz和902MHz。
此处需要说明的是,H点的频谱示意图给出的是Tag所接收的两个载波信号功率相等的情况,还存在功率不相等的情况。这里,Tag接收到的两个载波信号的功率不相同,主要是由于信道衰落程度不同,以及第一Reader与Tag之间的距离与第二Reader与Tag的距离不同引起的。
这里,无论Tag接收到的两个载波信号的功率是否相同,后续Tag信号调制流程及反向传输流程与上述实施方式一一致。并且,Tag发射的反向散射信号经过信道衰减之后,被第一Reader接收之后的处理流程,与前述实施方式一一致。
其中,上述实施方式一与实施方式二还可以扩展到双基地架构,即反向散射信号还可以被第三Reader接收;同时,第三reader、也接收第一Reader和/或第二Reader发送给Tag的载波信号。
现有技术的双基地架构中,接收端(如UE)会收到发射端(如gNB)的载波信号及Tag的反向散射信号,由于反向散射信号的能量远远低于载波信号的能量,可能导致接收端解调反向散射信号失败。
而将上述实施方式一或实施方式二扩展到双基地架构中之后,Tag生成的反向散射信号的频率距离载波信号的频率较远,这样同频干扰很小,则第三Reader接收到反向散射信号、第一载波信号和第二载波信号之后,则可以更加容易得成功解析反向散射信号,即将上述实施方式一或实施方式二扩展到双基地架构中,可以提升第三Reader解析反向散射信号的成功率。
本申请实施例提供的信号传输方法,执行主体可以为信号传输装置。本申请实施例中以信号传输装置执行信号传输方法为例,说明本申请实施例提供的信号传输装置。
第四方面,本申请实施例提供了一种信号传输装置,可应用于目标通信设备,如图12所示,该信号传输装置120包括如下模块:
第一信号发送模块1201,用于发送第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
第一信号接收模块1202,用于接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
可选地,所述第一信号发送模块1201用于执行如下中的至少一项:
在所述目标通信设备包括第一通信设备的情况下,控制所述第一通信设备同时发送所述第一载波信号和所述第二载波信号;
在所述目标通信设备包括第一通信设备的情况下,控制所述第一通信设备在第一时间发送所述第一载波信号,在第二时间发送所述第二载波信号;
在所述目标通信设备包括第一通信设备和第二通信设备的情况下,控制所述第一通 信设备发送所述第一载波信号,通过所述第二通信设备发送所述第二载波信号。
可选地,在所述目标通信设备包括第一通信设备的情况下,第一信息是所述第一通信设备指示的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第一信息包括如下中至少一项:
所述第一载波信号的载波频率;
所述第二载波信号的载波频率;
所述第一载波信号的载波频率资源;
所述第二载波信号的载波频率资源;
所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
所述第一载波信号的发射功率;
所述第二载波信号的发射功率;
所述第一通信设备中的非线性器件对应的三阶交调失真度;
所述第一载波信号的持续发送时间;
所述第二载波信号的持续发送时间。
可选地,在所述目标通信设备包括第一通信设备和第二通信设备的情况下,第二信息是所述第一通信设备指示给所述第二通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第二信息包括如下中至少一项:
所述第一通信设备与所述第二通信设备保持同步或异步;
所述第二载波信号的载波频率;
所述第二载波信号的载波频率资源;
所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
所述第二载波信号的发射功率;
所述第二通信设备中的非线性器件对应的三阶交调失真度;
所述第二载波信号的持续发送时间。
可选地,在所述目标通信设备包括第一通信设备和第二通信设备的情况下,第三信息是所述第二通信设备指示给所述第一通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第三信息包括如下中至少一项:
所述第一通信设备与所述第二通信设备保持同步或异步;
所述第一载波信号的载波频率;
所述第一载波信号的载波频率资源;
所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对 值;
所述第一载波信号的发射功率;
所述第一通信设备中的非线性器件对应的三阶交调失真度;
所述第一载波信号的持续发送时间。
可选地,第四信息是所述目标通信设备指示给第三通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第四信息包括如下中至少一项:
所述反向散射信号的调制方式;
所述反向散射信号的频率相对于调制载波信号的频率的偏移;
所述反向散射信号的传输参数需要满足的条件。
可选地,所述反向散射信号的调制方式包括如下中的至少一项:
幅度调制、相位调制、频率调制。
可选地,所述反向散射信号的传输参数需要满足的条件包括如下中的至少一项:
所述第一载波信号、所述第二载波信号、第一三阶交调IM3信号、第二IM3信号作为调制载波信号;
所述第一三阶交调IM3信号作为调制载波信号;
所述第二IM3信号作为调制载波信号;
所述第一三阶交调IM3信号和所述第二IM3信号作为调制载波信号;
所述反向散射信号的频率,相对于所述调制载波信号的频率的偏移小于或等于第二阈值;
所述第三通信设备中的非线性器件对应的三阶交调失真度与第一预设值之差小于或等于第一阈值;
其中,所述第一三阶交调IM3信号和所述第二IM3信号分别为:所述第三通信设备接收到的第一载波信号和第二载波信号,输入至所述第三通信设备中的非线性器件后输出的IM3信号。
可选地,所述装置还包括:
能力信息接收模块,用于接收第三通信设备发送的能力信息;
其中,所述能力信息包括如下中至少一项:
是否集成非线性器件;
非线性器件能力信息。
可选地,所述非线性器件能力信息包括如下中的至少一项:
所述第三通信设备中的非线性器件对应的三阶交调失真度;
所述第三通信设备中的非线性器件对应最大功率回退;
所述第三通信设备中的非线性器件对应的带宽。
可选地,所述目标通信设备为第二网络侧设备或者终端。
本申请实施例中的信号传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信号传输装置能够实现图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
第五方面,本申请实施例提供了一种信号传输装置,可应用于第三通信设备,如图13所示,该信号传输装置130包括如下模块:
第二信号接收模块1301,用于接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
处理模块1302,用于基于所述第一载波信号和所述第二载波信号,生成反向散射信号;
第二信号发送模块1303,用于发送所述反向散射信号。
可选地,所述第二信号接收模块1301用于执行如下中至少一项:
同时接收所述第一载波信号和所述第二载波信号;
在第一时间接收所述第一载波信号,在第二时间接收所述第一载波信号和所述第二载波信号。
可选地,所述处理模块1302具体用于:
根据目标通信设备的指示,或者根据协议规定,或者根据第一网络侧设备的配置,执行如下中至少一项:
对所述第一载波信号、所述第二载波信号、第一三阶交调IM3信号、第二IM3信号进行调制,得到所述反向散射信号;
对所述第一三阶交调IM3信号进行调制,得到所述反向散射信号;
对所述第二IM3信号进行调制,得到所述反向散射信号;
对所述第一三阶交调IM3信号、所述第二IM3信号进行调制,得到所述反向散射信号;
其中,所述第一三阶交调IM3信号和所述第二IM3信号分别为:所述第三通信设备接收到的第一载波信号和第二载波信号,输入至所述第三通信设备中的非线性器件后输出的IM3信号。
可选地,所述反向散射信号的传输参数满足如下中的至少一个条件:
所述第三通信设备中的非线性器件对应的三阶交调失真度与第一预设值之差小于或等于第一阈值;
所述反向散射信号的频率,相对于调制载波信号的频率的偏移小于或等于第二阈值。
可选地,所述装置还包括:
能力信息发送模块,用于发送能力信息;
其中,所述能力信息包括如下中至少一项:
是否集成非线性器件;
非线性器件能力信息。
可选地,所述非线性器件能力信息包括如下中的至少一项:
所述第三通信设备中的非线性器件对应的三阶交调失真度;
所述第三通信设备中的非线性器件对应最大功率回退;
所述第三通信设备中的非线性器件对应的带宽。
本申请实施例中的信号传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信号传输装置能够实现图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
第六方面,本申请实施例提供了一种信号传输装置,可应用于第四通信设备,如图14所示,该信号传输装置140包括如下模块:
第三信号接收模块1401,用于接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
第四信号接收模块1402,用于接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
本申请实施例中的信号传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信号传输装置能够实现图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图15所示,本申请实施例还提供一种通信设备1500,包括处理器1501和存储器1502,存储器1502上存储有可在所述处理器1501上运行的程序或指令,例如,该通信设备1500为终端时,该程序或指令被处理器1501执行时实现上述信号传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1500为网络侧设备时,该程序或指令被处理器1501执行时实现上述信号传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,如图16所示,为实现本申请实施例的一种终端的硬 件结构示意图。
该终端1600包括但不限于:射频单元1601、网络模块1602、音频输出单元1603、输入单元1604、传感器1605、显示单元1606、用户输入单元1607、接口单元1608、存储器1609以及处理器1610等中的至少部分部件。
本领域技术人员可以理解,终端1600还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1610逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图16中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1604可以包括图形处理单元(Graphics Processing Unit,GPU)16041和麦克风16042,图形处理器16041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1606可包括显示面板16061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板16061。用户输入单元1607包括触控面板16071以及其他输入设备16072中的至少一种。触控面板16 071,也称为触摸屏。触控面板16071可包括触摸检测装置和触摸控制器两个部分。其他输入设备16072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1601接收来自网络侧设备的下行数据后,可以传输给处理器1610进行处理;另外,射频单元1601可以向网络侧设备发送上行数据。通常,射频单元1601包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1609可用于存储软件程序或指令以及各种数据。存储器1609可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1609可以包括易失性存储器或非易失性存储器,或者,存储器1609可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1609包括但不限于这些和任意其它适合类型的存储器。
处理器1610可包括一个或多个处理单元;可选地,处理器1610集成应用处理器和 调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1610中。
当终端1600作为目标通信设备时,射频单元1601用于发送第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
可选地,射频单元1601发送第一载波信号和第二载波信号,包括如下中的至少一项:
在所述目标通信设备包括第一通信设备的情况下,控制所述第一通信设备同时发送所述第一载波信号和所述第二载波信号;
在所述目标通信设备包括第一通信设备的情况下,控制所述第一通信设备在第一时间发送所述第一载波信号,在第二时间发送所述第二载波信号;
在所述目标通信设备包括第一通信设备和第二通信设备的情况下,控制所述第一通信设备发送所述第一载波信号,通过所述第二通信设备发送所述第二载波信号。
可选地,在所述目标通信设备包括第一通信设备的情况下,第一信息是所述第一通信设备指示的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第一信息包括如下中至少一项:
所述第一载波信号的载波频率;
所述第二载波信号的载波频率;
所述第一载波信号的载波频率资源;
所述第二载波信号的载波频率资源;
所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
所述第一载波信号的发射功率;
所述第二载波信号的发射功率;
所述第一通信设备中的非线性器件对应的三阶交调失真度;
所述第一载波信号的持续发送时间;
所述第二载波信号的持续发送时间。
可选地,在所述目标通信设备包括第一通信设备和第二通信设备的情况下,第二信息是所述第一通信设备指示给所述第二通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第二信息包括如下中至少一项:
所述第一通信设备与所述第二通信设备保持同步或异步;
所述第二载波信号的载波频率;
所述第二载波信号的载波频率资源;
所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对 值;
所述第二载波信号的发射功率;
所述第二通信设备中的非线性器件对应的三阶交调失真度;
所述第二载波信号的持续发送时间。
可选地,在所述目标通信设备包括第一通信设备和第二通信设备的情况下,第三信息是所述第二通信设备指示给所述第一通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第三信息包括如下中至少一项:
所述第一通信设备与所述第二通信设备保持同步或异步;
所述第一载波信号的载波频率;
所述第一载波信号的载波频率资源;
所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
所述第一载波信号的发射功率;
所述第一通信设备中的非线性器件对应的三阶交调失真度;
所述第一载波信号的持续发送时间。
可选地,第四信息是所述目标通信设备指示给第三通信设备的,或者协议规定的,或者第一网络侧设备配置的;
其中,所述第四信息包括如下中至少一项:
所述反向散射信号的调制方式;
所述反向散射信号的频率相对于调制载波信号的频率的偏移;
所述反向散射信号的传输参数需要满足的条件。
可选地,所述反向散射信号的调制方式包括如下中的至少一项:
幅度调制、相位调制、频率调制。
可选地,所述反向散射信号的传输参数需要满足的条件包括如下中的至少一项:
所述第一载波信号、所述第二载波信号、第一三阶交调IM3信号、第二IM3信号作为调制载波信号;
所述第一三阶交调IM3信号作为调制载波信号;
所述第二IM3信号作为调制载波信号;
所述第一三阶交调IM3信号和所述第二IM3信号作为调制载波信号;
所述反向散射信号的频率,相对于所述调制载波信号的频率的偏移小于或等于第二阈值;
所述第三通信设备中的非线性器件对应的三阶交调失真度与第一预设值之差小于或等于第一阈值;
其中,所述第一三阶交调IM3信号和所述第二IM3信号分别为:所述第三通信设备 接收到的第一载波信号和第二载波信号,输入至所述第三通信设备中的非线性器件后输出的IM3信号。
可选地,射频单元1601还用于:
接收第三通信设备发送的能力信息;
其中,所述能力信息包括如下中至少一项:
是否集成非线性器件;
非线性器件能力信息。
可选地,所述非线性器件能力信息包括如下中的至少一项:
所述第三通信设备中的非线性器件对应的三阶交调失真度;
所述第三通信设备中的非线性器件对应最大功率回退;
所述第三通信设备中的非线性器件对应的带宽。
可选地,所述目标通信设备为第二网络侧设备或者终端。
当终端1600作为第四通信设备时,射频单元1601用于:接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
本申请实施例还提供一种网络侧设备,如图17所示,该网络侧设备1700包括:天线171、射频装置172、基带装置173、处理器174和存储器175。天线171与射频装置172连接。在上行方向上,射频装置172通过天线171接收信息,将接收的信息发送给基带装置173进行处理。在下行方向上,基带装置173对要发送的信息进行处理,并发送给射频装置172,射频装置172对收到的信息进行处理后经过天线171发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置173中实现,该基带装置173包括基带处理器。
基带装置173例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图17所示,其中一个芯片例如为基带处理器,通过总线接口与存储器175连接,以调用存储器175中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口176,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1700还包括:存储在存储器175上并可在处理器174上运行的指令或程序,处理器174调用存储器175中的指令或程序执行图5或图9所示的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图18所示,该网络侧设备1800包括:处理器1801、网络接口1802和存储器1803。其中,网络接口1802例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1800还包括:存储在存储器1803上并可在处 理器1801上运行的指令或程序,处理器1801调用存储器1803中的指令或程序执行图5或图9所示的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述第一方面或第二方面或第三方面所述的信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述第一方面或第二方面或第三方面所述的信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述第一方面或第二方面或第三方面所述的信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信号传输系统,包括:目标通信设备、第三通信设备、第四通信设备,所述目标通信设备可用于执行如上述第一方面所述的信号传输方法的步骤,所述第三通信设备可用于执行如上述第二方面所述的信号传输方法的步骤,所述第四通信设备可用于执行如上述第三方面所述的信号传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个 存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内

Claims (23)

  1. 一种信号传输方法,其中,所述方法包括:
    目标通信设备发送第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
    所述目标通信设备接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
  2. 根据权利要求1所述的方法,其中,所述目标通信设备发送第一载波信号和第二载波信号,包括如下中的至少一项:
    在所述目标通信设备包括第一通信设备的情况下,通过所述第一通信设备同时发送所述第一载波信号和所述第二载波信号;
    在所述目标通信设备包括第一通信设备的情况下,通过所述第一通信设备在第一时间发送所述第一载波信号,在第二时间发送所述第二载波信号;
    在所述目标通信设备包括第一通信设备和第二通信设备的情况下,通过所述第一通信设备发送所述第一载波信号,通过所述第二通信设备发送所述第二载波信号。
  3. 根据权利要求1或2所述的方法,其中,在所述目标通信设备包括第一通信设备的情况下,第一信息是所述第一通信设备指示的,或者协议规定的,或者第一网络侧设备配置的;
    其中,所述第一信息包括如下中至少一项:
    所述第一载波信号的载波频率;
    所述第二载波信号的载波频率;
    所述第一载波信号的载波频率资源;
    所述第二载波信号的载波频率资源;
    所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
    所述第一载波信号的发射功率;
    所述第二载波信号的发射功率;
    所述第一通信设备中的非线性器件对应的三阶交调失真度;
    所述第一载波信号的持续发送时间;
    所述第二载波信号的持续发送时间。
  4. 根据权利要求1或2所述的方法,其中,在所述目标通信设备包括第一通信设备和第二通信设备的情况下,第二信息是所述第一通信设备指示给所述第二通信设备的,或者协议规定的,或者第一网络侧设备配置的;
    其中,所述第二信息包括如下中至少一项:
    所述第一通信设备与所述第二通信设备保持同步或异步;
    所述第二载波信号的载波频率;
    所述第二载波信号的载波频率资源;
    所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
    所述第二载波信号的发射功率;
    所述第二通信设备中的非线性器件对应的三阶交调失真度;
    所述第二载波信号的持续发送时间。
  5. 根据权利要求1或2所述的方法,其中,在所述目标通信设备包括第一通信设备和第二通信设备的情况下,第三信息是所述第二通信设备指示给所述第一通信设备的,或者协议规定的,或者第一网络侧设备配置的;
    其中,所述第三信息包括如下中至少一项:
    所述第一通信设备与所述第二通信设备保持同步或异步;
    所述第一载波信号的载波频率;
    所述第一载波信号的载波频率资源;
    所述第一载波信号的载波频率和所述第二载波信号的载波信号载波频率之差的绝对值;
    所述第一载波信号的发射功率;
    所述第一通信设备中的非线性器件对应的三阶交调失真度;
    所述第一载波信号的持续发送时间。
  6. 根据权利要求1所述的方法,其中,第四信息是所述目标通信设备指示给第三通信设备的,或者协议规定的,或者第一网络侧设备配置的;
    其中,所述第四信息包括如下中至少一项:
    所述反向散射信号的调制方式;
    所述反向散射信号的频率相对于调制载波信号的频率的偏移;
    所述反向散射信号的传输参数需要满足的条件。
  7. 根据权利要求6所述的方法,其中,所述反向散射信号的调制方式包括如下中的至少一项:
    幅度调制、相位调制、频率调制。
  8. 根据权利要求6所述的方法,其中,所述反向散射信号的传输参数需要满足的条件包括如下中的至少一项:
    所述第一载波信号、所述第二载波信号、第一三阶交调IM3信号、第二IM3信号作为调制载波信号;
    所述第一三阶交调IM3信号作为调制载波信号;
    所述第二IM3信号作为调制载波信号;
    所述第一三阶交调IM3信号和所述第二IM3信号作为调制载波信号;
    所述反向散射信号的频率,相对于所述调制载波信号的频率的偏移小于或等于第二 阈值;
    所述第三通信设备中的非线性器件对应的三阶交调失真度与第一预设值之差小于或等于第一阈值;
    其中,所述第一三阶交调IM3信号和所述第二IM3信号分别为:所述第三通信设备接收到的第一载波信号和第二载波信号,输入至所述第三通信设备中的非线性器件后输出的IM3信号。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述目标通信设备接收第三通信设备发送的能力信息;
    其中,所述能力信息包括如下中至少一项:
    是否集成非线性器件;
    非线性器件能力信息。
  10. 根据权利要求9所述的方法,其中,所述非线性器件能力信息包括如下中的至少一项:
    所述第三通信设备中的非线性器件对应的三阶交调失真度;
    所述第三通信设备中的非线性器件对应最大功率回退;
    所述第三通信设备中的非线性器件对应的带宽。
  11. 根据权利要求1所述的方法,其中,所述目标通信设备为第二网络侧设备或者终端。
  12. 一种信号传输方法,其中,所述方法包括:
    第三通信设备接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
    所述第三通信设备基于所述第一载波信号和所述第二载波信号,生成反向散射信号;
    所述第三通信设备发送所述反向散射信号。
  13. 根据权利要求12所述的方法,其中,所述第三通信设备接收第一载波信号和第二载波信号,包括如下中至少一项:
    所述第三通信设备同时接收所述第一载波信号和所述第二载波信号;
    所述第三通信设备在第一时间接收所述第一载波信号,在第二时间接收所述第一载波信号和所述第二载波信号。
  14. 根据权利要求12所述的方法,其中,所述第三通信设备基于所述第一载波信号和所述第二载波信号,生成反向散射信号,包括:
    所述第三通信设备根据目标通信设备的指示,或者根据协议规定,或者根据第一网络侧设备的配置,执行如下中至少一项:
    对所述第一载波信号、所述第二载波信号、第一三阶交调IM3信号、第二IM3信号进行调制,得到所述反向散射信号;
    对所述第一三阶交调IM3信号进行调制,得到所述反向散射信号;
    对所述第二IM3信号进行调制,得到所述反向散射信号;
    对所述第一三阶交调IM3信号、所述第二IM3信号进行调制,得到所述反向散射信号;
    其中,所述第一三阶交调IM3信号和所述第二IM3信号分别为:所述第三通信设备接收到的第一载波信号和第二载波信号,输入至所述第三通信设备中的非线性器件后输出的IM3信号。
  15. 根据权利要求12或14所述的方法,其中,所述反向散射信号的传输参数满足如下中的至少一个条件:
    所述第三通信设备中的非线性器件对应的三阶交调失真度与第一预设值之差小于或等于第一阈值;
    所述反向散射信号的频率,相对于调制载波信号的频率的偏移小于或等于第二阈值。
  16. 根据权利要求12所述的方法,其中,所述方法还包括:
    所述第三通信设备发送能力信息;
    其中,所述能力信息包括如下中至少一项:
    是否集成非线性器件;
    非线性器件能力信息。
  17. 根据权利要求16所述的方法,其中,所述非线性器件能力信息包括如下中的至少一项:
    所述第三通信设备中的非线性器件对应的三阶交调失真度;
    所述第三通信设备中的非线性器件对应最大功率回退;
    所述第三通信设备中的非线性器件对应的带宽。
  18. 一种信号传输方法,其中,所述方法包括:
    第四通信设备接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
    所述第四通信设备接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
  19. 一种信号传输装置,其中,所述装置包括:
    第一信号发送模块,用于发送第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
    第一信号接收模块,用于接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
  20. 一种信号传输装置,其中,所述装置包括:
    第二信号接收模块,用于接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
    处理模块,用于基于所述第一载波信号和所述第二载波信号,生成反向散射信号;
    第二信号发送模块,用于发送所述反向散射信号。
  21. 一种信号传输装置,其中,所述装置包括:
    第三信号接收模块,用于接收第一载波信号和第二载波信号,其中,所述第一载波信号的频率与所述第二载波信号的频率不同;
    第四信号接收模块,用于接收反向散射信号,其中,所述反向散射信号是基于所述第一载波信号和所述第二载波信号得到的。
  22. 一种通信设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至11任一项所述的信号传输方法的步骤,或者实现如权利要求12至17任一项所述的信号传输方法的步骤,或者实现如权利要求18所述的信号传输方法的步骤。
  23. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至11任一项所述的信号传输方法的步骤,或者实现如权利要求12至17任一项所述的信号传输方法的步骤,或者实现如权利要求18所述的信号传输方法的步骤。
PCT/CN2023/119481 2022-09-22 2023-09-18 信号传输方法、装置及通信设备 WO2024061176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211158920.7A CN117811618A (zh) 2022-09-22 2022-09-22 信号传输方法、装置及通信设备
CN202211158920.7 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024061176A1 true WO2024061176A1 (zh) 2024-03-28

Family

ID=90433909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119481 WO2024061176A1 (zh) 2022-09-22 2023-09-18 信号传输方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN117811618A (zh)
WO (1) WO2024061176A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232530A1 (en) * 2009-03-11 2010-09-16 Fujitsu Microelectronics Limited Communication apparatus
CN107135017A (zh) * 2017-04-28 2017-09-05 电子科技大学 反向散射通信系统信号发送和接收方法
CN108092926A (zh) * 2017-11-21 2018-05-29 北京交通大学 无源反向散射通信信道的参数估计算法
WO2021163955A1 (zh) * 2020-02-20 2021-08-26 Oppo广东移动通信有限公司 一种基于反向散射通信的接收方法、设备及存储介质
CN114765860A (zh) * 2021-01-11 2022-07-19 中国移动通信有限公司研究院 传输方法、装置、设备及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232530A1 (en) * 2009-03-11 2010-09-16 Fujitsu Microelectronics Limited Communication apparatus
CN107135017A (zh) * 2017-04-28 2017-09-05 电子科技大学 反向散射通信系统信号发送和接收方法
CN108092926A (zh) * 2017-11-21 2018-05-29 北京交通大学 无源反向散射通信信道的参数估计算法
WO2021163955A1 (zh) * 2020-02-20 2021-08-26 Oppo广东移动通信有限公司 一种基于反向散射通信的接收方法、设备及存储介质
CN114765860A (zh) * 2021-01-11 2022-07-19 中国移动通信有限公司研究院 传输方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN117811618A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2022062538A1 (zh) 一种无线通信组件、方法及终端设备
WO2024061176A1 (zh) 信号传输方法、装置及通信设备
WO2023208042A1 (zh) 预失真处理方法、装置及设备
WO2024088218A1 (zh) 信号传输方法、装置、通信设备及存储介质
WO2024199078A1 (zh) 信号传输方法、信号检测方法、装置及通信设备
WO2024061175A1 (zh) 信号传输方法、装置、通信设备及存储介质
CN118041390A (zh) 信号处理方法、装置、通信设备及存储介质
WO2024179397A1 (zh) 调谐指示方法、设备及介质
WO2024146543A1 (zh) 反向散射通信的子载波调制方法及装置、通信设备
WO2024061111A1 (zh) 资源处理方法、装置及通信设备
WO2024061109A1 (zh) 传输方法、装置、通信设备及反向散射设备
WO2024169807A1 (zh) 信号发送、信号接收方法、装置、终端及网络侧设备
WO2023202632A1 (zh) 资源分配方法、设备及可读存储介质
WO2023186088A1 (zh) 发起bsc链路建立的方法、终端及网络侧设备
WO2024083042A1 (zh) 终端射频前端结构及终端
WO2024032607A1 (zh) 帧结构确定方法、装置、通信设备及存储介质
WO2024083041A1 (zh) 射频电路及电子设备
WO2024001976A1 (zh) 信号处理方法及通信设备
WO2024088220A1 (zh) 发送信号方法、装置、终端及网络侧设备
WO2024001978A1 (zh) 信号处理方法及通信设备
WO2024007980A1 (zh) 设备数量确定方法、装置及电子设备
CN117278068A (zh) 通信设备的状态控制方法、通信设备及网络侧设备
CN117596671A (zh) 通信、资源配置方法、装置、阅读器、标签和网络侧设备
CN117812732A (zh) 传输处理方法、装置及设备
CN116939878A (zh) 发起bsc链路建立的方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867464

Country of ref document: EP

Kind code of ref document: A1