WO2024179397A1 - 调谐指示方法、设备及介质 - Google Patents

调谐指示方法、设备及介质 Download PDF

Info

Publication number
WO2024179397A1
WO2024179397A1 PCT/CN2024/078517 CN2024078517W WO2024179397A1 WO 2024179397 A1 WO2024179397 A1 WO 2024179397A1 CN 2024078517 W CN2024078517 W CN 2024078517W WO 2024179397 A1 WO2024179397 A1 WO 2024179397A1
Authority
WO
WIPO (PCT)
Prior art keywords
tuning
information
indication information
signal
following
Prior art date
Application number
PCT/CN2024/078517
Other languages
English (en)
French (fr)
Inventor
简荣灵
黄伟
谭俊杰
应祚龙
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024179397A1 publication Critical patent/WO2024179397A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/22Scatter propagation systems, e.g. ionospheric, tropospheric or meteor scatter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a tuning indication method, device and medium.
  • the antenna impedance and RF circuit impedance of communication equipment e.g., tag
  • the signal frequency including carrier frequency and modulation frequency
  • environmental parameters e.g., temperature and humidity
  • the input impedance of the antenna radiation unit is a function of the operating frequency, antenna type, antenna size and wireless environment. Its input impedance will change with the changes of the above factors, while the output impedance of the transmitter power stage is relatively unchanged, which will cause impedance mismatch between the transmitter and the antenna, causing part of the transmitter final stage output power sent by the feeder to be reflected back by the antenna, affecting the normal working state of the final stage circuit. The reflected power flows ineffectively on the transmission line, generating additional heat loss on the wire resistance, reducing the radiation efficiency of the system power.
  • the embodiments of the present application provide a tuning indication method, device and medium, which can solve the problem of low RF working efficiency of the device caused by the existing impedance matching method.
  • a tuning indication method comprising:
  • the first device sends first information to the second device
  • the first device receives the indication information sent by the second device
  • the first information is used to determine the indication information; the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, a tuning parameter and an energy storage parameter.
  • a tuning indication method comprising:
  • the second device receives the first information sent by the first device
  • the second device determines indication information according to the first information
  • the second device sends the indication information to the first device
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • a first device including:
  • a first sending module used to send first information to a second device
  • a first receiving module used to receive indication information sent by the second device
  • the first information is used to determine the indication information
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • a second device including:
  • a second receiving module used to receive first information sent by the first device
  • a determination module used to determine indication information according to the first information
  • a second sending module used to send the indication information to the first device
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • a first device which terminal includes a processor and a memory, wherein the memory stores a program or instruction that can be executed on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a first device comprising a communication interface, wherein the communication interface is used to send first information to a second device;
  • the first information is used to determine the indication information
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, a tuning parameter and an energy storage parameter.
  • a second device which network side device includes a processor and a memory, the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the second aspect are implemented.
  • a second device comprising a processor and a communication interface, wherein the communication interface is used to receive first information sent by the first device;
  • the processor is configured to determine indication information according to the first information,
  • the communication interface is also used to send the indication information to the first device
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented.
  • a wireless communication system comprising: a first device and a second device, wherein the first device can be used to perform the steps of the method described in the first aspect, and the second device can be used to perform the method described in the second aspect. steps.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, or to implement the method described in the second aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium, and the program/program product is executed by at least one processor to implement the steps of the tuning indication method as described in the first aspect, or the program/program product is executed by at least one processor to implement the steps of the tuning indication method as described in the second aspect.
  • a tuning indication method which belongs to the field of communication.
  • the tuning indication method of the embodiment of the present application includes: a first device sends first information to a second device; the first device receives the indication information sent by the second device; wherein the first information is used to determine the indication information; the indication information is used to indicate at least one of the following: a tuning matching mode, a tuning object, and a tuning parameter.
  • FIG1 is a schematic diagram of a backscatter communication system
  • FIG2 is a schematic diagram of a backscatter communication process
  • FIG3 is a schematic diagram of the interaction between a reader and a tag device during backscatter communication
  • FIG4 is a schematic diagram of a backscatter communication system architecture
  • FIG5 is a schematic diagram of a matching network
  • FIG6 is a schematic diagram of the dynamic range of the resistance component and the reactance component of the antenna
  • FIG7 is a schematic diagram of an impedance matching process in the prior art
  • FIG8 is a flow chart of a tuning indication method provided by an embodiment of the present invention.
  • FIG9 is a schematic diagram of a tunable matching network provided by an embodiment of the present invention.
  • FIG10 is a schematic diagram of a first device provided by an embodiment of the present invention.
  • FIG11 is a schematic diagram of another first device provided by an embodiment of the present invention.
  • FIG13 is a schematic diagram of a second device provided by an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of another second device provided by an embodiment of the present invention.
  • first, second, etc. of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable where appropriate, so that the embodiments of the present application can be implemented in an order other than those illustrated or described herein, and the objects distinguished by “first” and “second” are generally of one type, and the number of objects is not limited, for example, the first object can be one or more.
  • “or” in the present application represents at least one of the connected objects.
  • “A or B” covers three schemes, namely, Scheme 1: including A but not including B; Scheme 2: including B but not including A; Scheme 3: including both A and B.
  • the character "/" generally indicates that the objects associated with each other are in an "or” relationship.
  • the antenna impedance and RF circuit impedance of the communication equipment e.g., tag
  • the signal frequency including carrier frequency and modulation frequency
  • environmental parameters e.g., temperature and humidity
  • BSC backscatter communication
  • Backscatter communication refers to the backscatter communication device using the radio frequency signal from other devices or the environment to modulate the signal to transmit its own information.
  • the backscatter communication device can be any of the following:
  • RFID Radio Frequency Identification
  • Passive-IoT passive Internet of Things
  • Semi-passive tags have energy storage capacitors or batteries.
  • the downlink reception or uplink backscatter of such tags have a certain amplification capability.
  • Active tags have the ability to actively send information. These terminals can send information to the gNB/reader without relying on backscatter of the incident signal.
  • part (a) of FIG. 1 is a backscatter communication transmitter, and its basic components and main functions include:
  • Antenna unit used to receive RF signals, control commands, and also to send modulated backscattered signals.
  • Energy harvesting module or power supply module This module is used for backscatter communication equipment to harvest radio frequency energy or other energy, including but not limited to solar energy, kinetic energy, mechanical energy, thermal energy, etc. In addition to the energy harvesting module, it may also include a battery power supply module. In this case, the backscatter communication device is a semi-passive device. The energy harvesting module or power supply module supplies power to all other modules in the device.
  • Microcontroller including control of baseband signal processing, energy storage or data scheduling status, switch switching, system synchronization, etc.
  • Signal receiving module used to demodulate control commands or data sent by the backscatter communication receiving end or other network nodes.
  • Channel coding and modulation module performs channel coding and signal modulation under the control of the controller, and realizes modulation by selecting different load impedances under the control of the controller through a selection switch;
  • Memory or sensor module used to store device identification (ID) information, location information or sensor Data, etc.
  • future backscatter communication transmitters can even integrate tunnel diode amplifier modules, low-noise amplifier modules, etc. to improve the receiving sensitivity and transmission power of the transmitter.
  • part (b) of FIG. 1 is a backscatter communication receiving end.
  • the backscatter communication receiving end in a traditional RFID system is a reader, and its basic components and main functions include:
  • Antenna unit used to receive the modulated backscattered signal.
  • Backscatter signal detection module It is used to detect the backscatter signal sent by the transmitter, including amplitude shift keying (ASK) detection, phase shift keying (PSK) detection, frequency shift keying (FSK) detection or quadrature amplitude modulation (QAM) detection.
  • ASK amplitude shift keying
  • PSK phase shift keying
  • FSK frequency shift keying
  • QAM quadrature amplitude modulation
  • Decoding module decodes the detected signal to restore the original information stream.
  • the modulation circuit is shown in Figure 2.
  • the backscatter communication device controls the reflection coefficient ⁇ of the circuit by adjusting its internal impedance, thereby changing the amplitude, frequency, phase, etc. of the incident signal to achieve signal modulation.
  • the reflection coefficient of the signal can be expressed as:
  • the backscatter communication device can be a tag in traditional RFID, or a passive or semi-passive IoT (Passive/Semi-passive IoT). For convenience, it is collectively referred to as BSC equipment here.
  • tags working in extreme environments are generally made of special materials or have special protective covers to avoid damage to the tags in high temperature and high pressure environments.
  • the antenna impedance and RF circuit impedance of the tag will still change with changes in environmental parameters and signal frequency.
  • FSK frequency-shift keying
  • RF radio frequency
  • the extremely low power communication based on backscatter communication technology will have lower power consumption, cost and speed than LTE (Long-term Evolution) CAT1 to CAT4, eMTC (enhanced Machine-Type Communication) and Narrow Band Internet of Things (NB-IoT), which can help build a sustainable next-generation Internet of Things with extremely low or even zero power consumption, and meet the needs of green energy saving and sustainable development.
  • LTE Long-term Evolution
  • eMTC enhanced Machine-Type Communication
  • NB-IoT Narrow Band Internet of Things
  • the device in the embodiment of the present invention may be an extremely low power consumption communication device.
  • the gNB/reader sends a carrier wave (CW) and signaling to the tag; the control type includes at least one of the following: selection, inventory, and access.
  • the network receives feedback information from the tag.
  • the reader selects (select) the tag device, sends the query command (Query), and the tag device responds (Relay), that is, generates a 16-bit random number to the reader, and then the reader sends the random number sequence to the tag device through the confirmation response command (ACK), and the tag device sends the relevant data to the reader, such as the protocol control word (Protocol Control, PC)/Extended Protocol Control Word (Extended Protocol Control, XPC), Electronic Product Code (Electronic Product Code, EPC), Data Packet Cyclic Redundancy Check (Cyclic Redundancy Check, CRC) (PacketCRC), etc.
  • protocol control word Protocol Control, PC
  • Extended Protocol Control Word Extended Protocol Control
  • EPC Electronic Product Code
  • EPC Data Packet Cyclic Redundancy Check
  • CRC Cyclic Redundancy Check
  • the reader can send a repeated query command (QueryRep) or other commands. If the EPC is invalid, the reader can send a negative acknowledgment (Negative Acknowledgment, NAK). From the reader sending the query command to the reader receiving the relevant data sent by the tag device is a single tag device response process. Exemplarily, the communication process between the reader and the tag is shown in FIG3 .
  • MBCS Monostatic Backscatter Communication System
  • the traditional RFID system is a typical MBCS, which includes a BSC transmitter (such as a tag) and a reader.
  • the reader includes an RF source and a BSC receiver, wherein the RF source is used to generate an RF signal to power the BSC transmitter/Tag.
  • the BSC transmitter backscatters the modulated RF signal, and the BSC receiver in the reader receives the backscattered signal and then demodulates the signal. Since the RF source and the BSC receiver are in the same device, such as the reader here, it becomes a single-station backscatter communication system.
  • MBCS can refer to part (a) of Figure 4.
  • the input impedance of the antenna radiation unit is a function of the operating frequency, antenna type, antenna size and wireless environment. Its input impedance will change greatly with the changes of the above factors, while the output impedance of the transmitter power stage is relatively unchanged, which will cause impedance mismatch between the transmitter and the antenna, causing part of the transmitter final stage output power sent by the feeder to be reflected back by the antenna, affecting the normal working state of the final stage circuit. The reflected power flows ineffectively on the transmission line, generating additional heat loss on the wire resistance, reducing the radiation efficiency of the system power. Therefore, it is necessary to consider the impedance matching between the transmitter and the antenna.
  • the matching network consists of an inductor and a capacitor, the number can be one or more, and its form includes the basic ⁇ shape, the extended T shape and the ⁇ shape, where ZA represents the impedance of the antenna, ZL represents the load impedance, L represents the inductor, and C represents the capacitor.
  • the impedance matching network provides impedance to the RF front end (RFFE), thereby providing the complex conjugate impedance of the RFFE to the antenna.
  • Impedance matching networks usually use inductors and capacitors to form a network with relatively low losses and achieve maximum power transfer. Transmission lines and transformers can also be used for matching, but they are not the best choice for matching antennas.
  • the impedance will change
  • the impedance will also change.
  • the dynamic range of the antenna's resistance component (Rin) and reactance component (Xin) reaches 5K ⁇ . Furthermore, considering the changes in the environment, the impedance matching of the antenna becomes a key issue affecting the efficiency of the antenna system and the uplink and downlink coverage and sensitivity.
  • the existing fixed impedance matching network cannot meet the problem of frequent channel switching. If the matching network is composed only of fixed inductance and fixed capacitance, the matching ability of the network is limited to fixed impedance. Since the antenna impedance varies with frequency and usage conditions, the fixed impedance coverage is limited, and only a few frequency bands or only one usage condition can obtain the best match. In this case, an impedance matching network with variable parameters can be considered, for example, setting an adjustable capacitor or adjustable inductor in the matching network.
  • tunable capacitors can provide complex conjugate matching to a load over a very wide frequency range, thereby achieving maximum power transfer over multiple frequency bands.
  • each component in the network can be changed according to the antenna impedance values corresponding to different carrier frequencies to achieve dynamic full-band matching.
  • the existing antenna tuner (as shown in FIG. 7 ), it usually adopts a traditional digital antenna tuner, and the control circuit is mostly implemented based on a single-chip microcomputer.
  • this tuning method is independently performed by the RF communication device, which has high hardware requirements for the device and requires targeted detection and control circuits based on the tuning requirements, resulting in high equipment costs.
  • the detection information provided by the parameter detection circuit can only qualitatively give the relative value of the input impedance of the matching network, that is, the resistance is greater than or less than 50 ⁇ , and the reactance is greater than or less than 0, but cannot give a quantitative offset value.
  • the control circuit can only traverse the matching network component values according to the detection results to complete the impedance matching, which is slow and has low accuracy.
  • BSC backscatter communication
  • indication in this application can be either a direct indication (or an explicit indication) or a Indirect instructions (or implicit instructions).
  • Direct instructions can be understood as the sender clearly informing the receiver of specific information, operations to be performed, or request results in the instructions sent;
  • indirect instructions can be understood as the receiver determining the corresponding information based on the instructions sent by the sender, or making a judgment and determining the operations to be performed or request results based on the judgment results.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • the terminal can be a mobile phone, tablet computer (Tablet Personal Computer), laptop computer (Laptop Computer), notebook computer, personal digital assistant (PDA), handheld computer, netbook, ultra-mobile personal computer (Ultra-mobile Personal Computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (Augmented Reality, AR), virtual reality (Virtual Reality, VR) equipment, robot, wearable device (Wearable Device), flight vehicle (flight vehicle), vehicle user equipment (VUE), shipborne equipment, pedestrian terminal (Pedestrian User Equipment, PUE), smart home (home appliances with wireless communication function, such as refrigerator, TV, washing machine or furniture, etc.), game console, personal computer (Personal Computer, PC), ATM or self-service machine and other terminal side devices.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • notebook computer personal digital assistant
  • PDA personal digital assistant
  • UPDA ultra-mobile personal computer
  • Ultra-mobile Personal Computer Ultra-mobile Personal Computer
  • UMPC ultra-mobile personal computer
  • Mobile Internet Device Mobile Internet Device
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the vehicle-mounted device can also be called a vehicle-mounted terminal, a vehicle-mounted controller, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit, etc. It should be noted that the specific type of the terminal is not limited in the embodiments of the present application.
  • the network side equipment may include access network equipment or core network equipment, wherein the access network equipment may also be referred to as radio access network (RAN) equipment, radio access network function or radio access network unit.
  • the access network equipment may include base stations, wireless local area network (WLAN) access points (AS) or wireless fidelity (WiFi) nodes, etc.
  • WLAN wireless local area network
  • AS wireless local area network
  • WiFi wireless fidelity
  • the base station may be referred to as node B (NB), evolved node B (eNB), next generation node B (gNB), new radio node B (NR Node B), access point, relay station (RBS), serving base station (SBS), base transceiver station (BTS), radio base station, radio transceiver, basic service set (BSS), extended service set (ESS), home node B (HNB), home evolved node B
  • NB node B
  • eNB evolved node B
  • gNB next generation node B
  • NR Node B new radio node B
  • RBS serving base station
  • BTS base transceiver station
  • BSS basic service set
  • ESS extended service set
  • HNB home evolved node B
  • the base station is not limited to specific technical terms as long as the same technical effect is achieved. It should be noted that in the embodiments of the present application, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • the tuning indication method provided in the embodiment of the present application is described in detail below through some embodiments and application scenarios in conjunction with FIG. 8 .
  • Step 801 A first device sends first information to a second device.
  • the first device may be understood as a device that needs to be tuned.
  • the first device may obtain the tuning indication information by sending the first information to the second device.
  • the second device may be understood as a device that configures the tuning indication information for the first device. After the indication information is configured, the second device may send it directly to the first device or send it to the first device through other devices. Both the first device and the second device may be understood as communication devices.
  • the first device includes any one of the following: a tag, a first terminal, a transmitter of a backscattered signal;
  • the second device includes any one of the following: a base station, a relay, a second terminal, a reader/writer, a radio frequency source device, and a receiving end of a backscattered signal.
  • the first device and the second device may include any one of the following combinations:
  • the second device is the base station/reader/relay, and the first device is the tag;
  • the second device is the user equipment (UE), and the first device is the tag;
  • the second device includes a network device and a third device, wherein the network device is a base station/reader/relay, the first device is a tag, and the third device is a UE;
  • the second device includes a network device and a fourth device, wherein the network device is a base station/reader/relay, the first device is a tag, and the fourth device is a UE;
  • the second device is a base station relay, and the first device is a UE.
  • the first device includes any of the following:
  • Semi-passive tags have energy storage capacitors/batteries, rely on non-RF signals for energy, and optionally have power amplifiers (PA)/low noise amplifiers (LNA) or other active devices. They do not have carrier generation capabilities and have the second-lowest power consumption.
  • PA power amplifier
  • LNA low noise amplifier
  • Active tags have energy storage capacitors/batteries, rely on non-RF signals for energy, have carrier generation capabilities, and consume the most power;
  • the first information includes at least one of the following: capability information of the first device, environmental parameter information, reference signal measurement information, and a reference signal.
  • the capability information of the first device is used to indicate at least one of the following:
  • Tunable capability device type, frequency deviation capability, oscillator capability, number of load impedances, impedance value, power amplifier PA parameters, and rectifier parameters.
  • the tunable capability indicates at least one of the following: whether the device has tunable capability, a dynamic range of the tunable tuner, an accuracy of the tunable tuner, and a tuning parameter type of the tunable tuner;
  • the device type is divided according to whether it has carrier generation capability
  • the frequency deviation capability indicates at least one of the following: duration of the first level, a switching period of the first level, a frequency modulation capability of the varactor diode, and a hardware capability related to the frequency modulation capability;
  • the oscillator capability indicates at least one of the following: crystal frequency, clock frequency, and oscillator stability.
  • the capability information of the first device may indicate at least one of the following information:
  • the dynamic range of the tuner e.g., the range of tunable capacitor values
  • the accuracy of the tuner e.g., the amount of tuning that can be achieved within the range of tunable capacitor values
  • the type of tuning parameters of the tunable device such as resistance, capacitance or inductance, or a combination thereof;
  • the indication of whether there is tunable capability may directly indicate “yes” or “no”, or may indicate the capability itself, for example, indicating the dynamic range of the tunable tuner.
  • Crystal frequency for example, a 100MHz reference clock source
  • Clock frequency for example, 20MHz frequency shift capability
  • the frequency error is 100ppm at 20MHz deviation
  • the first information or the capability information of the first device further includes at least one of the following information: insufficient power information and power saving request information. At least one of the insufficient power information and power saving request information can be used to determine the matching status of the first device.
  • the matching state of the first device can be divided into complete matching, moderate matching and mismatching. It is understandable that the number of matching states is not fixed (the above three divisions are only for example) and need to be defined according to different scenarios.
  • At least one of the environmental parameter information, the reference signal measurement information, and the reference signal is reported, mainly for determining whether the tag needs to be tuned.
  • the tag can report environmental parameters in any of the following ways:
  • Direct reporting method Taking temperature and humidity as an example, when the ambient temperature and humidity changes are detected, the tag directly reports parameters such as temperature and humidity to the network;
  • Indirect reporting method Taking temperature and humidity as an example, the specific quantity is not reported, and only the change is reported through fixed bits. For example, if the temperature and humidity exceed the threshold, the environmental parameter change information is reported through 1 bit.
  • the active device it measures the reference signal and reports the relevant information of the reference signal measurement quantity (such as the reference signal received power (RSRP)) so that the second device can obtain the reference signal measurement information; or the network device (for example, the second device, or other network devices) sends a reference signal and assists in measuring the reference signal strength through the cascade channel, and the first device (for example, the tag) reflects the reference signal in all 1 or a certain specific modulation mode, so that the second device can obtain the reference signal measurement information.
  • the all-1 reflection can be understood as direct reflection, and in the embodiment of the present invention, the reflection can also be understood as backscattering.
  • the tag actively sends a reference signal
  • the network device measures the reference signal to obtain reference signal measurement information.
  • the first device When the first information includes the reference signal, it should be understood that the current first device has the ability to send the reference signal, for example, the first device is an active device. It is understandable that when the first information includes at least one of the capability information, environmental parameter information, and reference signal measurement information of the first device, the first device may be a passive device, a semi-passive device, or an active device.
  • the triggering step 801, or the triggering process before step 801 may be initiated by the first device, may be initiated by the second device, or may be triggered by other devices other than the first device and the second device.
  • the first device may send a tuning request to the second device, and after the second device sends a request response to the first device, the first device executes the above step 801; or the above first device may execute the above step 801 after receiving the tuning instruction sent by the second device.
  • Step 802 The first device receives indication information sent by the second device;
  • the first information is used to determine the indication information
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • the first device receives the indication information sent by the second device, including any one of the following:
  • the first device receives indication information directly sent by the second device
  • the first device receives indication information forwarded by the second device through the sixth device.
  • the second device may directly send the indication information to the first device, or send the indication information to the sixth device, and then send the indication information to the first device through the sixth device.
  • the sixth device may be the third device or the fourth device, or may be a device other than the second device, the third device and the fourth device.
  • the tuning and matching mode includes matching or non-matching
  • the tuning object includes at least one of the following: antenna tuning, matching circuit tuning, load impedance tuning, and other circuit tuning;
  • the tuning parameters include at least one of the following: a capacitance value of a tunable network, an inductance value of a tunable network, a resistance value of a tunable network, and a selection of a load impedance.
  • the tuning and matching mode indicates matching, that is, indicates that the first device does not radiate signals and energy outwardly, and the tuning and matching mode indicates mismatching, that is, indicates that the first device reflects signals and energy outwardly.
  • the tag when the tag sends a backscatter signal, if the on-off keying (OOK) modulation method is used, when transmitting bit 0, it is in a matching state and absorbs energy; when transmitting bit 1, it is in a mismatched state and reflects energy.
  • OOK on-off keying
  • modulation methods other than OOK such as phase shift keying (PSK) or FSK modulation methods, it should be ensured that the tag is in a mismatched state and reflects energy outward.
  • the tag When the tag is in the energy storage state and the signal demodulation state, the tag is indicated to be in the matching state so that the energy and signal can be received by the tag as much as possible.
  • the purpose of the present invention is to ensure maximum energy reflection/absorption as much as possible by combining the tag's tuning object through dynamic indication/semi-static indication under the premise of determining the tuning matching method.
  • the selection of its tuning object will affect the tunable dynamic range and accuracy, and further affect the matching/mismatching depth.
  • Table 1 different matching objects are set in different situations, where the first row of Table 1 can be understood as tuning the antenna and the matching circuit when the first device only includes one load impedance.
  • the other circuit tuning may be understood as the tuning of other circuits other than the matching circuit.
  • the tuning parameters are mainly used to indicate the working parameters of the tunable matching network of the first device, including at least one of the following: the capacitance value of the tunable network, the inductance value of the tunable network, the resistance value of the tunable network, and the selection of the load impedance.
  • the selection of the load impedance specifies the selection of a certain load impedance for signal reflection and signal reception.
  • the tuning parameters can also be the above method. combination.
  • the tuning parameters may also include a modulation mode and a frequency deviation magnitude.
  • the indication information can be used to indicate time-frequency resources.
  • the first device adjusts the tuning parameters within the tunable range according to the time-frequency resources configured by the network device, combined with the hardware parameters of the tag and the detected environmental parameters, to achieve matching between the antenna and the RF circuit.
  • This implementation method requires the tag to have the ability to detect reflected signals.
  • the tag needs to have a detection circuit for reflected signals, and the detection results are sent to the microcontroller unit (MCU) through a serial-parallel interface, and the MCU determines the value of the tuning network by itself, which has certain requirements on the capabilities of the tag.
  • MCU microcontroller unit
  • the second device determines a variable parameter according to the first information
  • the second device determines indication information according to the variable parameter
  • variable parameters include at least one of the following:
  • the capability information of the first device includes environmental parameter information, reference signal measurement information, signal frequency information, matching status of the first device, and energy storage efficiency of the first device.
  • variable parameter determined by the second device based on the first information reported by the first device may be information explicitly carried by the first information, information implicitly carried by the first information, or information acquired or measured based on the reception of the first information.
  • the energy storage efficiency can be determined based on the reported rectifier information.
  • the above-mentioned second device can determine the indication information according to the first information according to different scenarios affecting impedance; wherein, the determination of the scenario can be determined based on the first information or by other means, and the embodiment of the present invention does not limit this.
  • the second device compares the obtained reference signal measurement amount with the carrier transmission power in combination with the known path loss information and the tag hardware insertion loss information:
  • the tag is instructed to tune
  • the corresponding conditions are determined according to the first information, thereby determining the corresponding tuning indication information.
  • the indication information is also used to indicate energy storage parameters.
  • the indication information is also used to indicate energy storage parameters.
  • the matching state changes due to frequency changes of RF energy signals and changes in environmental parameters, affecting the parameter indication method when the energy storage efficiency is affected.
  • the matching state changes due to frequency changes of RF energy signals and changes in environmental parameters, affecting the parameter indication method when the energy storage efficiency is affected.
  • Table 3 three matching states are exemplarily defined, and the indication information of the tuning parameters and energy storage parameters is determined according to these three matching states.
  • the change in the table refers to the need to indicate the corresponding variable information, and no indication is required if there is no change.
  • step 802 may adopt at least one of the following methods:
  • the indication information is sent through at least one of the following items: downlink control information (Downlink Control Information, DCI), medium access control control element (Medium Access Control Control Element, MAC CE), sidelink control information (Sidelink Control Information, SCI), and preamble code.
  • Downlink Control Information Downlink Control Information
  • Medium Access Control Control Element Medium Access Control Control Element
  • MAC CE Medium Access Control Control Element
  • SCI Sidelink Control Information
  • the preamble may be a physical frame preamble.
  • the first device receiving the indication information sent by the second device includes at least one of the following:
  • the first device receives the indication information sent by the second device through Radio Resource Control (RRC) signaling, where the information unit in the RRC signaling includes the indication information;
  • RRC Radio Resource Control
  • the first device receives the indication information sent by the second device through first downlink control information DCI signaling, where the indication information indicates a transmission configuration indicator (TCI) state pool.
  • TCI transmission configuration indicator
  • the first device receives the indication information sent by the second device through the media access control control element MAC CE, where the indication information indicates a TCI state in the TCI state pool;
  • the first device receives the indication information sent by the second device through the second DCI signaling, where the indication information indicates one TCI state among N TCI states, where the N TCI states are selected by the MAC CE from M TCI states in the TCI state pool, 1 ⁇ N ⁇ M, and N and M are positive integers;
  • the TCI state pool is obtained by RRC configuration, and each TCI state in the TCI state pool corresponds to a group of indication parameters, and each group of indication parameters includes at least one of the following: tuning matching mode, tuning object, and tuning parameter.
  • each group of indication parameters is different from each other, which can be understood as at least one of a tuning matching mode, a tuning object, and a tuning parameter of one group of indication parameters being different from another group of indication parameters.
  • the method further includes:
  • the first device receives a first signal sent by a third device
  • the first device modulates, demodulates or stores energy on the first signal based on the indication information
  • the third device and the second device are the same device, or the third device and the second device are different devices.
  • the device that sends the first signal to the first device may be the second device itself, or may be another device other than the second device.
  • the first signal includes a carrier signal or a reference signal.
  • the above-mentioned first signal can be a carrier signal, wherein the carrier signal is divided into an energy supply carrier signal or a communication carrier signal.
  • the energy supply carrier signal is mainly used for energy storage/modulation of the tag, while the communication carrier signal is mainly a carrier for the tag to transmit data bits. If the first device (tag) has the ability to generate a carrier signal, the first signal is optional to send.
  • the communication carrier signal can also be a carrier signal carrying information, such as a carrier signal based on OOK modulation/binary phase shift keying (BPSK) modulation.
  • BPSK phase shift keying
  • the carrier signal can be a single-frequency continuous wave, a frequency-modulated continuous wave, etc.
  • the above-mentioned first signal may also be a reference signal that does not contain any transmission information, such as the existing LTE/NR synchronization and reference signals, including synchronization signal and physical broadcast channel (Synchronization Signal and PBCH block, SSB), channel state information reference signal (Channel State Information Reference Signal, CSI-RS), demodulation reference signal, etc.
  • synchronization signal and physical broadcast channel Synchronization Signal and PBCH block, SSB
  • CSI-RS Channel State Information Reference Signal
  • demodulation reference signal etc.
  • the parameter configuration information of the first signal includes at least one of the following:
  • a radio frequency (RF) signal for power supply RF
  • Hybrid RF signals i.e. signals that can be used for both energy storage and modulation
  • the first signal may be understood as an execution object of the indication information, and the specific execution operation is not limited to modulation, demodulation or energy storage, but may also be measurement and other operations.
  • the above indication information may be a dynamic indication (for example, using the above-mentioned method 1) or a semi-static indication (for example, using the above-mentioned method 2).
  • the indication information indicates at least two tuning parameters, and each of the at least two tuning parameters corresponds to a time unit;
  • the method further comprises:
  • the first device measures a reference signal with a first tuning parameter to obtain a first reference signal measurement amount, where the first tuning parameter is a tuning parameter corresponding to the first time unit;
  • the first device modulates, demodulates or stores energy on the first signal based on the first tuning parameter
  • the second reference signal measurement amount is a reference signal measurement amount obtained by the first device measuring the reference signal with a second tuning parameter in a second time unit;
  • the second time unit is a time unit other than the first time unit in the indication information, and the second tuning parameter is a tuning parameter corresponding to the second time unit;
  • the first information is sent from a third device to the first device, and the third device and the second device are the same device, or the third device and the second device are different devices.
  • the indication information corresponding to the time unit can be executed by at least one of the method one or the method two.
  • the time unit is a symbol level, a slot level, or a frame level.
  • the reference signal may be the first signal.
  • the comparison between the first reference signal measurement amount and the second reference signal measurement amount may be performed by the second device, and the second device may instruct the first device to perform the first tuning parameter.
  • the correspondence between the time unit and the tuning parameter is shown in Table 4.
  • a specific time unit performs reference signal measurement with the corresponding tuning parameter to obtain the corresponding reference signal measurement amount (such as RSRP), and based on the comparison result of the reference signal measurement amount, determines the current best tuning reference signal for subsequent energy storage, demodulation and modulation operations. For example, if at the T4 time unit, the tag's tuning parameter is parameter 4, and the corresponding RSRP 4 is the strongest, then parameter 4 is used for the tag's subsequent energy storage, demodulation and modulation within a specific time.
  • the tag's tuning parameter is parameter 4
  • the corresponding RSRP 4 is the strongest
  • the uplink coverage range and downlink receiving sensitivity can be improved, especially in specific modulation modes (such as FSK) or specific application scenarios (such as multi-carrier energy storage, harsh environment detection).
  • the first device modulates the first signal based on the indication information, including:
  • the first device modulates the first signal based on the indication information to obtain a first modulated signal
  • the method further comprises:
  • the first device sends the first modulated signal to a fourth device
  • the fourth device and the second device are the same device; or, the fourth device and the second device are different devices; or, the fourth device and the third device are the same device; or, the fourth device and the third device are different devices.
  • the device for receiving the first modulated signal may be the second device, or may be a third device that sends the first signal, or may be a fourth device that is different from the second device and the third device.
  • the third device is a device controlled by the second device
  • the first signal is forwarded by the second device to the first device via the third device.
  • the third device and the second device are different devices, at least one of the third device and the fourth device is further used to receive the indication information sent by the second device;
  • the first signal is forwarded by the fifth device to the first device via the third device, and at least one of the third device, the fourth device and the fifth device is used to receive the indication information sent by the second device.
  • the following steps illustrate a dynamic indication method for tag tuning, in which the network device gives a dynamic indication mode and transmission process for tag tuning according to at least one of the capability information, environmental parameter information, reference signal measurement information, and reference signal reported by the tag:
  • the network device sends instruction information to the tag, dynamically indicating at least one of the tag's tuning matching mode, tuning object, tuning parameter, and energy storage parameter;
  • the sending method of the instruction information includes any of the following:
  • the forwarding device sends, wherein the forwarding device receives the indication information sent by the network device;
  • the radio frequency source device sends, and the radio frequency source device is a device that provides a radio frequency carrier signal for the tag;
  • third-party devices i.e. devices other than network devices, forwarding devices and RF source devices;
  • the dynamic indication method includes but is not limited to the use of DCI, MAC CE, SCI or physical frame preamble, etc.
  • the tag receives the first signal, and modulates, demodulates or stores energy on the first signal based on the indication information.
  • the network device determines at least one of the matching state, tuning mode and tuning parameters based on the information reported by the tag.
  • Table 5 gives examples of corresponding tuning parameters under different environmental parameters, signal frequencies and reference signal measurement parameters.
  • the signal frequency includes the carrier signal frequency, the frequency deviation generated during modulation and the frequency error caused by the crystal oscillator stability.
  • the above signal frequency is determined by the network device according to the first information sent by the tag.
  • the determination method of the network device can be predefined or obtained by implicit calculation (such as fitting by nonlinear modeling), which is not limited here.
  • the following steps illustrate a semi-static indication method of tag tuning, in which the network device gives a semi-static indication mode and transmission process of tag tuning according to at least one of the capability information, reference signal measurement information, and reference information reported by the tag.
  • the environmental parameters for example, including temperature and humidity
  • the impedance of the tag is only affected by the signal frequency:
  • the network device sends indication information to the tag, semi-statically indicating at least one of the tag's tuning matching mode, tuning object, tuning parameter, and energy storage parameter.
  • the sending method of the instruction information includes any of the following:
  • the forwarding device sends, wherein the forwarding device receives the indication information sent by the network device;
  • the radio frequency source device sends, and the radio frequency source device is a device that provides a radio frequency carrier signal for the tag;
  • the data is sent by a third-party device, i.e., a device other than a network device, a forwarding device, and a RF source device.
  • a third-party device i.e., a device other than a network device, a forwarding device, and a RF source device.
  • the configuration/indication method of the semi-static indication includes but is not limited to at least one of the following:
  • RRC configuration that is, the high-level RRC directly configures an information unit containing matching status and/or tuning mode and/or tuning parameters, and informs the label;
  • RRC configuration, DCI indication RRC configures a TCI state pool containing multiple transmission configuration indication (TCI) states, each TCI state corresponds to a different matching state and/or tuning mode and/or tuning parameter. Then, through DCI signaling Indicate one of the TCI states to the tag;
  • TCI transmission configuration indication
  • RRC configuration, MAC CE activation RRC configures a TCI state pool containing multiple TCI states, each TCI state corresponds to a different matching state and/or tuning mode and/or tuning parameter. Then one of the TCI states is indicated to the tag through MAC CE signaling;
  • RRC configuration, MAC CE activation, DCI indication RRC configures one or more TCI state pools, including M TCI states, each TCI state corresponds to a different matching state and/or tuning mode and/or tuning parameter.
  • MAC CE selects up to N (N ⁇ M) TCI states, and DCI selects one of the N TCI states for indication;
  • the tag receives the first signal and performs modulation, demodulation or energy storage based on the indication information.
  • the tag can be instructed to tune in the manner shown in Table 4 above.
  • This measurement method assumes that the signal frequency and environmental parameters remain unchanged over a period of time. As shown in Table 4, if the tag's tuning parameter is parameter 4 at the T4 time unit, and the corresponding RSRP 4 is the strongest, the tag's subsequent energy storage, demodulation, and modulation are performed with parameter 4.
  • the network device dynamically configures/semi-statically configures the matching method, tuning object and tuning parameters of the tag according to at least one of the tag capability information, reference signal measurement information, environmental parameter information and reference signal to improve the BSC uplink coverage and downlink reception sensitivity.
  • a tunable matching network can be configured based on the hardware architecture of the traditional tag to achieve uplink coverage enhancement and downlink sensitivity improvement. As shown in FIG9 , the tunable matching network is set at the rear end of the antenna, connected to the energy collection module/signal receiving module/modulation and coding module to control the matching of the tag.
  • the transmission process of the configuration indication signal is configured in different network deployment situations.
  • the single-base architecture means that the sender of the first signal (the third device) and the receiver of the backscattered signal (the fourth device) are both network devices.
  • the receiver of the backscattered signal (the fourth device) is a device different from the network device (the third device), it is a dual-base architecture.
  • the transmission process of the single base architecture configuration indication signal is as follows:
  • the network device configures at least one of the tuning matching mode, the tuning object, and the tuning parameter, and sends the configuration information to the tag (first device).
  • the network device configures at least one of a tuning matching mode, a tuning object, and a tuning parameter, and the tuning matching mode, the tuning object, and the tuning parameter are sent by the network device, and the first signal is sent by a third device, wherein the third device is controlled by the network device and is responsible for sending the first signal to the tag;
  • a third-party device configures a tuning matching method, a tuning object, and at least one of the tuning parameters.
  • the tuning matching method, the tuning object, and at least one of the tuning parameters are sent by the third-party device to the network device and the tag.
  • the first signal is sent by the network device to the tag.
  • the network device configures the tuning and matching mode, the tuning object, at least one of the tuning parameters and parameter information of the first signal, the tuning and matching mode, the tuning object and at least one of the tuning parameters are sent by the network device to the tag, the first signal parameter is sent by the network device to the fourth device and the fourth device sends the first signal to the tag;
  • the network device configures the tuning matching mode, the tuning object, and at least one of the tuning parameters, which is sent by the network device to the fourth device and forwarded to the tag by the fourth device, and the first signal is still sent by the network device;
  • the network device configures at least one of the tuning matching mode, the tuning object, and the tuning parameter, the network device sends the tuning matching mode, the tuning object, and at least one of the tuning parameter to the fourth device, and the fourth device forwards the tuning signal to the tag, and the first signal is sent by the third device, wherein the third device is controlled by the network device and is responsible for sending the first signal to the tag;
  • the third-party device configures a tuning matching mode, a tuning object, and at least one of the tuning parameters.
  • the tuning matching mode, the tuning object, and at least one of the tuning parameters are sent by the third-party device to the network device, the tag, and the fourth device.
  • the first signal is sent by the network device to the tag.
  • a third-party device configures a tuning matching method, a tuning object, and at least one of the tuning parameters.
  • the tuning matching method, the tuning object, and at least one of the tuning parameters are sent by the third-party device to the network device, the tag, and the fourth device.
  • the first signal parameter is sent by the network device to the fourth device.
  • the fourth device sends a first signal to the tag according to the first signal parameter.
  • the tuning indication method in this embodiment includes: a first device sends first information to a second device; the first device receives the indication information sent by the second device; wherein the first information is used to determine the indication information; the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • the tuning indication method provided in the embodiment of the present application may be executed by a first device.
  • the first device provided in the embodiment of the present application is described by taking the first device executing the tuning indication method as an example.
  • the first device comprises:
  • a first sending module used to send first information to a second device
  • a first receiving module used to receive indication information sent by the second device
  • the first information is used to determine the indication information
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • the indication information is sent via at least one of the following:
  • Downlink control information DCI Downlink control information DCI, media access control control unit MAC CE, sidelink control information SCI, preamble code.
  • the first device further includes:
  • a third receiving module configured for the first device to receive a first signal sent by a third device
  • a first execution module configured for the first device to modulate, demodulate or store energy on the first signal based on the indication information
  • the third device and the second device are the same device, or the third device and the second device are different devices.
  • the first receiving module includes at least one of the following:
  • a first receiving submodule configured to receive the indication information sent by the second device through radio resource control RRC signaling, where the information unit in the RRC signaling includes the indication information;
  • a second receiving submodule is configured to receive the indication information sent by the second device through the first downlink control information DCI signaling, where the indication information indicates a TCI state in the transmission configuration indication TCI state pool;
  • a third receiving submodule is used to receive the indication information sent by the second device through the media access control control unit MAC CE, where the indication information indicates a TCI state in the TCI state pool;
  • a fourth receiving submodule configured to receive the indication information sent by the second device through the second DCI signaling, wherein the indication information indicates one TCI state among N TCI states, wherein the N TCI states are selected by the MAC CE from the M TCI states in the TCI state pool, 1 ⁇ N ⁇ M, and N and M are positive integers;
  • the TCI state pool is obtained by RRC configuration, and each TCI state in the TCI state pool corresponds to a group of indication parameters, and each group of indication parameters includes at least one of the following: tuning matching mode, tuning object, and tuning parameter.
  • the indication information indicates at least two tuning parameters, and each of the at least two tuning parameters corresponds to a time unit;
  • the first device further includes:
  • a measuring module configured to, in a first time unit, measure a reference signal by the first device with a first tuning parameter to obtain a first reference signal measurement amount, where the first tuning parameter is a tuning parameter corresponding to the first time unit;
  • a second execution module configured to, when the first reference signal measurement value is greater than the second reference signal measurement value, modulate, demodulate or store energy on the first signal based on the first tuning parameter by the first device;
  • the second reference signal measurement amount is a reference signal measurement amount obtained by the first device measuring the reference signal with a second tuning parameter in a second time unit;
  • the second time unit is a time unit other than the first time unit in the indication information, and the second tuning parameter is a tuning parameter corresponding to the second time unit;
  • the first information is sent from a third device to the first device, and the third device and the second device are the same device, or the third device and the second device are different devices.
  • the first signal includes a carrier signal or a reference signal.
  • the first execution module includes:
  • a first execution submodule configured for the first device to modulate the first signal based on the indication information to obtain a first modulated signal
  • the first device further includes:
  • a third sending module used for sending the first modulated signal to a fourth device
  • the fourth device and the second device are the same device; or, the fourth device and the second device are different devices; or, the fourth device and the third device are the same device; or, the fourth device and the third device are different devices.
  • the third device is a device controlled by the second device
  • the first signal is forwarded by the second device to the first device via the third device.
  • the third device and the second device are different devices, at least one of the third device and the fourth device is further used to receive the indication information sent by the second device;
  • the first signal is forwarded by the fifth device to the first device via the third device, and at least one of the third device, the fourth device and the fifth device is used to receive the indication information sent by the second device.
  • the first receiving module includes: any one of the following:
  • a fifth receiving submodule configured to receive indication information directly sent by the second device
  • the sixth receiving submodule is used to receive indication information forwarded by the second device through the sixth device.
  • the first information includes at least one of the following: capability information of the first device, environmental parameter information, reference signal measurement information, and a reference signal.
  • the capability information of the first device is used to indicate at least one of the following:
  • Tunable capability device type, frequency deviation capability, oscillator capability, number of load impedances, impedance value, power amplifier PA parameters, and rectifier parameters.
  • the tunable capability indicates at least one of the following: whether the device has tunable capability, a dynamic range of the tunable tuner, an accuracy of the tunable tuner, and a tuning parameter type of the tunable tuner;
  • the device type is divided according to whether it has carrier generation capability
  • the frequency deviation capability indicates at least one of the following: first level duration, first level switching period, frequency modulation capability of the varactor diode, and hardware capability related to the frequency modulation capability, such as the frequency deviation capability of a ring oscillator.
  • the oscillator capability indicates at least one of the following: crystal frequency, clock frequency, and oscillator stability.
  • the tuning and matching mode includes matching or non-matching
  • the tuning object includes at least one of the following: antenna tuning, matching circuit tuning, load impedance tuning, and other circuit tuning;
  • the tuning parameters include at least one of the following: a capacitance value of a tunable network, an inductance value of a tunable network, a resistance value of a tunable network, and a selection of a load impedance.
  • the first device includes any one of the following: a tag, a first terminal, a transmitter of a backscattered signal;
  • the second device includes any one of the following: a base station, a relay, a second terminal, a reader/writer, a radio frequency source device, and a receiving end of a backscattered signal.
  • the indication information is also used to indicate energy storage parameters.
  • the tuning efficiency and flexibility can be improved by configuring the tuning indication of the first device through the second device.
  • the first device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or may be other devices other than a terminal.
  • the terminal may include but is not limited to the types of terminal 11 listed above, and other devices may include but are not limited to the types of terminal 11 listed above.
  • the device may be a server, a network attached storage (NAS), etc., and is not specifically limited in the embodiments of the present application.
  • the first device provided in the embodiment of the present application can implement the various processes implemented in the method embodiments of Figures 8 to 9 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a first device 1000, including a processor 1001 and a memory 1002, wherein the memory 1002 stores a program or instruction that can be run on the processor 1001.
  • the first device 1000 is a first device
  • the program or instruction is executed by the processor 1001 to implement the various steps of the above-mentioned tuning indication method embodiment, and can achieve the same technical effect.
  • the first device 1000 is a network side device
  • the program or instruction is executed by the processor 1001 to implement the various steps of the above-mentioned tuning indication method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a first device, including a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps in the method embodiment shown in Figures 8-9.
  • the first device embodiment corresponds to the above-mentioned first device side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to the first device embodiment and can achieve the same technical effect.
  • Figure 11 is a schematic diagram of the hardware structure of a first device implementing the embodiment of the present application.
  • the first device 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109 and at least some of the components of a processor 1110.
  • the first device 1100 can also include a power supply (such as a battery) for supplying power to each component, and the power supply can be logically connected to the processor 1110 through a power management system, so as to implement functions such as charging, discharging, and power consumption management through the power management system.
  • a power supply such as a battery
  • the first device structure shown in FIG11 does not constitute a limitation on the first device, and the first device may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1104 may include a graphics processing unit (GPU) 11041 and a microphone 11042, and the graphics processor 11041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1107 includes a touch panel 1071 and at least one of other input devices 11072.
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 1101 can transmit the data to the processor 1110 for processing; in addition, the RF unit 1101 can send uplink data to the network side device.
  • the RF unit 1101 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1109 can be used to store software programs or instructions and various data.
  • the memory 1109 can mainly include storage A first storage area for programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1109 may include a volatile memory or a non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • DRRAM direct memory bus random access memory
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1110.
  • the radio frequency unit 1101 is used for the first device to send the first information to the second device;
  • the first device receives the indication information sent by the second device
  • the first information is used to determine the indication information
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • the efficiency and flexibility of tuning can be improved.
  • the tuning indication method provided in the embodiment of the present application is described in detail below through some embodiments and their application scenarios in conjunction with FIG. 12 .
  • Step 1201 The second device receives the first information sent by the first device.
  • Step 1202 The second device determines indication information according to the first information.
  • Step 1203 The second device sends the indication information to the first device.
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • the indication information is sent via at least one of the following:
  • Downlink control information DCI Downlink control information DCI, media access control control unit MAC CE, sidelink control information SCI, preamble code.
  • the second device sending the indication information to the first device includes at least one of the following:
  • the second device sends the indication information through radio resource control RRC signaling, and the information unit in the RRC signaling includes the indication information;
  • the second device sends the indication information through first downlink control information DCI signaling, where the indication information indicates a TCI state in a transmission configuration indication TCI state pool;
  • the second device sends the indication information through a media access control control element MAC CE, where the indication information indicates a TCI state in a TCI state pool;
  • the second device sends the indication information through a second DCI signaling, where the indication information indicates one TCI state among N TCI states, where the N TCI states are selected by the MAC CE from M TCI states in the TCI state pool, 1 ⁇ N ⁇ M, and N and M are positive integers;
  • the TCI state pool is obtained by RRC configuration, and each TCI state in the TCI state pool corresponds to a group of indication parameters, and each group of indication parameters includes at least one of the following: tuning matching mode, tuning object, and tuning parameter.
  • the indication information indicates at least two tuning parameters, and each of the at least two tuning parameters corresponds to a time unit.
  • the second device determines the indication information according to the first information, including:
  • the second device determines a variable parameter according to the first information
  • the second device determines indication information according to the variable parameter
  • variable parameters include at least one of the following:
  • the capability information of the first device includes environmental parameter information, reference signal measurement information, signal frequency information, matching status of the first device, and energy storage efficiency of the first device.
  • the second device determines a variable parameter according to the first information, including:
  • the second device determines a matching status of the first device according to the first information
  • the first information includes at least one of the following information: insufficient power information and power saving request information.
  • the method further includes any one of the following:
  • the indication information is used for modulation, demodulation or energy storage of the first signal.
  • the first signal includes a carrier signal or a reference signal.
  • the configuration information of the first signal includes at least one of the following:
  • Signal type time domain resources, frequency domain resources, bandwidth information, waveform type, guard interval, signal power
  • the signal type includes any of the following:
  • RF signal for power supply RF signal for communication
  • RF signal for demodulation mixed RF signal.
  • the method further includes any one of the following:
  • the first modulated signal is obtained by modulating the first signal.
  • the second device sending the indication information to the first device includes any one of the following:
  • the second device directly sends the indication information to the first device
  • the second device forwards the indication information through a sixth device.
  • the first information includes at least one of the following: capability information of the first device, environmental parameter information, reference signal measurement information, and a reference signal.
  • the capability information of the first device is used to indicate at least one of the following:
  • Tunable capability device type, frequency deviation capability, oscillator capability, number of load impedances, impedance value, power amplifier PA parameters, and rectifier parameters.
  • the tunable capability indicates at least one of the following: whether the device has tunable capability, a dynamic range of the tunable tuner, an accuracy of the tunable tuner, and a tuning parameter type of the tunable tuner;
  • the device type is divided according to whether it has carrier generation capability
  • the frequency deviation capability indicates at least one of the following: duration of the first level, a switching period of the first level, a frequency modulation capability of the varactor diode, and a hardware capability related to the frequency modulation capability, for example, a frequency deviation capability of a ring oscillator;
  • the oscillator capability indicates at least one of the following: crystal frequency, clock frequency, and oscillator stability.
  • the tuning and matching mode includes matching or non-matching
  • the tuning object includes at least one of the following: antenna tuning, matching circuit tuning, load impedance tuning, and other circuit tuning;
  • the tuning parameters include at least one of the following: a capacitance value of a tunable network, an inductance value of a tunable network, a resistance value of a tunable network, and a selection of a load impedance.
  • the first device includes any one of the following: a tag, a first terminal, a transmitter of a backscattered signal;
  • the second device includes any one of the following: a base station, a relay, a second terminal, a reader/writer, a radio frequency source device, and a receiving end of a backscattered signal.
  • the indication information is also used to indicate energy storage parameters.
  • the tuning indication method provided in the embodiment of the present application is an execution method of the second device corresponding to the method embodiment of Figures 8 to 9, and achieves the same technical effect. To avoid repetition, it is not repeated here.
  • the above optional implementation method can refer to the relevant description in the embodiment shown in Figures 8 to 9. To avoid repetition, this embodiment is not repeated.
  • the tuning indication method in this embodiment includes: a second device receives first information sent by a first device, and the second device determines indication information according to the first information; the second device sends the indication information to the first device, and the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • the tuning indication method provided in the embodiment of the present application may be executed by a second device.
  • the second device provided in the embodiment of the present application is described by taking the second device executing the tuning indication method as an example.
  • the second device comprises:
  • a second receiving module used to receive first information sent by the first device
  • a determination module used to determine indication information according to the first information
  • a second sending module used to send the indication information to the first device
  • the indication information is used to indicate at least one of the following: a tuning matching method, a tuning object, and a tuning parameter.
  • the indication information is sent via at least one of the following:
  • Downlink control information DCI Downlink control information DCI, media access control control unit MAC CE, sidelink control information SCI, preamble code.
  • the second sending module includes at least one of the following:
  • a first sending submodule configured to send the indication information through radio resource control RRC signaling, wherein the information unit in the RRC signaling includes the indication information;
  • a second sending submodule is configured to send the indication information through first downlink control information DCI signaling, where the indication information indicates a TCI state in a transmission configuration indication TCI state pool;
  • a third sending submodule is used to send the indication information through a media access control control unit MAC CE, where the indication information indicates a TCI state in a TCI state pool;
  • a fourth sending submodule configured to send the indication information through a second DCI signaling, where the indication information indicates one TCI state among N TCI states, where the N TCI states are selected by MAC CE from M TCI states in the TCI state pool, 1 ⁇ N ⁇ M, and N and M are positive integers;
  • the TCI state pool is obtained by RRC configuration, and each TCI state in the TCI state pool corresponds to a group of indication parameters, and each group of indication parameters includes at least one of the following: tuning matching mode, tuning object, and tuning parameter.
  • the indication information indicates at least two tuning parameters, and each of the at least two tuning parameters corresponds to a time unit.
  • determine the modules including:
  • a first determination submodule used to determine a variable parameter according to the first information
  • a second determining submodule used to determine indication information according to the variable parameter
  • variable parameters include at least one of the following:
  • the capability information of the first device includes environmental parameter information, reference signal measurement information, signal frequency information, matching status of the first device, and energy storage efficiency of the first device.
  • the first determination submodule includes:
  • a first determining unit configured to determine a matching status of the first device according to the first information
  • the first information includes at least one of the following information: insufficient power information and power saving request information.
  • the second device further includes:
  • a fourth sending module configured to send a first signal to the first device
  • a control module used to control the third device to send a first signal to the first device
  • a fifth sending module configured to forward the first signal to the first device through a third device
  • a sixth sending module configured to send the first signal to the first device after receiving the first signal sent by the fifth device
  • the indication information is used for modulation, demodulation or energy storage of the first signal.
  • the first signal includes a carrier signal or a reference signal.
  • the configuration information of the first signal includes at least one of the following:
  • Signal type time domain resources, frequency domain resources, bandwidth information, waveform type, guard interval, signal power
  • the signal type includes any of the following:
  • RF signal for power supply RF signal for communication
  • RF signal for demodulation mixed RF signal.
  • the second device further includes:
  • a fourth receiving module configured to receive a first modulated signal sent by the first device
  • a seventh sending module configured to send the indication information to a fourth device, wherein the fourth device is configured to receive the first modulated signal
  • the first modulated signal is obtained by modulating the first signal.
  • the second sending module includes any of the following items:
  • a fifth sending submodule configured to directly send the indication information to the first device
  • the sixth sending submodule is used to forward the indication information through a sixth device.
  • the first information includes at least one of the following: capability information of the first device, environmental parameter information, reference signal measurement information, and a reference signal.
  • the capability information of the first device is used to indicate at least one of the following:
  • Tunable capability device type, frequency deviation capability, oscillator capability, number of load impedances, impedance value, power amplifier PA parameters, and rectifier parameters.
  • the tunable capability indicates at least one of the following: whether the device has tunable capability, a dynamic range of the tunable tuner, an accuracy of the tunable tuner, and a tuning parameter type of the tunable tuner;
  • the device type is divided according to whether it has carrier generation capability
  • the frequency deviation capability indicates at least one of the following: duration of the first level, a switching period of the first level, a frequency modulation capability of the varactor diode, and a hardware capability related to the frequency modulation capability, for example, a frequency deviation capability of a ring oscillator;
  • the oscillator capability indicates at least one of the following: crystal frequency, clock frequency, and oscillator stability.
  • the tuning and matching mode includes matching or non-matching
  • the tuning object includes at least one of the following: antenna tuning, matching circuit tuning, load impedance tuning, and other circuit tuning;
  • the tuning parameters include at least one of the following: a capacitance value of a tunable network, an inductance value of a tunable network, a resistance value of a tunable network, and a selection of a load impedance.
  • the first device includes any one of the following: a tag, a first terminal, a transmitter of a backscattered signal;
  • the second device includes any one of the following: a base station, a relay, a second terminal, a reader/writer, a radio frequency source device, and a receiving end of a backscattered signal.
  • the indication information is also used to indicate energy storage parameters.
  • the tuning efficiency and flexibility can be improved by configuring the tuning indication of the first device through the second device.
  • the second device in the embodiment of the present application may be an electronic device, such as an electronic device having an operating system, or It is a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a network device, or may be a device other than a network device.
  • the network device may include but is not limited to the types of network devices listed above, and other devices may be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiments of the present application.
  • the second device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 12 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a second device 1300, including a processor 1301 and a memory 1302, and the memory 1302 stores a program or instruction that can be run on the processor 1301.
  • the second device 1300 is a terminal
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment of FIG12 above, and can achieve the same technical effect.
  • the second device 1300 is a network side device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the method embodiment of FIG12 above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a second device, including a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the steps of the method embodiment shown in Figure 12.
  • the second device embodiment corresponds to the second device method embodiment, and each implementation process and implementation method of the above method embodiment can be applied to the second device embodiment and can achieve the same technical effect.
  • the embodiment of the present application also provides a second device.
  • the second device 1400 includes: an antenna 141, a radio frequency device 142, a baseband device 143, a processor 144 and a memory 145.
  • the antenna 141 is connected to the radio frequency device 142.
  • the radio frequency device 142 receives information through the antenna 141 and sends the received information to the baseband device 143 for processing.
  • the baseband device 143 processes the information to be sent and sends it to the radio frequency device 142.
  • the radio frequency device 142 processes the received information and sends it out through the antenna 141.
  • the method executed by the second device in the above embodiment may be implemented in the baseband device 143, which includes a baseband processor.
  • the baseband device 143 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 14, one of the chips is, for example, a baseband processor, which is connected to the memory 145 through a bus interface to call the program in the memory 145 to execute the network device operations shown in the above method embodiment.
  • the second device may also include a network interface 146, which is, for example, a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the second device 1400 of the embodiment of the present invention also includes: instructions or programs stored in the memory 145 and executable on the processor 144.
  • the processor 144 calls the instructions or programs in the memory 145 to execute the methods executed by the modules shown in Figure 12 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • each process of the method embodiment shown in FIG. 8-9 is implemented, and the same technical effect can be achieved. To avoid repetition, it is not repeated here; or when the program or instruction is executed by a processor, each process of the method embodiment shown in FIG. 12 is implemented, and the same technical effect can be achieved. To avoid repetition, it is not repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the readable storage medium may be a non-transient readable storage medium.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the method embodiments shown in Figures 8-9 above, and can achieve the same technical effects. To avoid repetition, they are not described here; or, to implement the various processes of the method embodiment shown in Figure 12 above, and can achieve the same technical effects. To avoid repetition, they are not described here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium, and is executed by at least one processor to implement the various processes of the method embodiments shown in Figures 8-9 above, and can achieve the same technical effect. To avoid repetition, it is not described here; or, the computer program/program product is executed by at least one processor to implement the various processes of the method embodiment shown in Figure 12 above, and can achieve the same technical effect. To avoid repetition, it is not described here.
  • An embodiment of the present application also provides a wireless communication system, including: a first device and a second device, wherein the first device can be used to execute the steps of the method shown in Figures 8-9 above, and the network side device can be used to execute the steps of the method shown in Figure 12.
  • the above-mentioned embodiment method can be implemented by means of a computer software product plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product is stored in a storage medium (such as ROM, RAM, disk, CD, etc.), including several instructions to enable the terminal or network side device to execute the method described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

本申请公开了一种调谐指示方法,属于通信领域,本申请实施例的调谐指示方法包括:第一设备向第二设备发送第一信息(801);第一设备接收第二设备发送的指示信息(802);其中,第一信息用于确定指示信息;指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。

Description

调谐指示方法、设备及介质
相关申请的交叉引用
本申请主张在2023年03月01日在中国提交的中国专利申请No.202310197401.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种调谐指示方法、设备及介质。
背景技术
在射频通信过程中,例如反向散射通信(Backscatter Communication,BSC),通信设备(例如,标签(Tag))的天线阻抗和射频电路阻抗会随信号频率(包括载波频率和调制频率)及环境参数(例如,温度、湿度)的变化而变化,进一步影响通信设备的阻抗匹配性能,影响上行覆盖范围或下行接收灵敏度。
举例而言,天线辐射单元的输入阻抗是工作频率、天线类型、天线尺寸及无线环境的函数,其输入阻抗会随上述因素的改变而发生变化,而发射机功率级的输出阻抗是相对不变的,这会导致发射机与天线之间阻抗失配,导致馈线送来的部分发射机末级输出功率被天线反射回去,对末级电路的正常工作状态造成影响。反射功率在传输线上作无效流动,在导线电阻上产生额外的发热损耗,降低了系统功率的辐射效率。
然而,现有的通信设备,例如,BSC中的Tag设备,通常采用固定的匹配网络,易受信号频率及环境参数影响,导致其射频工作效率低,进一步影响其上行覆盖和下行接收灵敏度。
发明内容
本申请实施例提供一种调谐指示方法、设备及介质,能够解决现有的阻抗匹配方式导致设备射频工作效率低的问题。
第一方面,提供了一种调谐指示方法,该方法包括:
第一设备向第二设备发送第一信息;
所述第一设备接收所述第二设备发送的指示信息;
其中,所述第一信息用于确定所述指示信息;所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数和储能参数。
第二方面,提供了一种调谐指示方法,该方法包括:
第二设备接收第一设备发送的第一信息;
所述第二设备根据所述第一信息,确定指示信息;
所述第二设备向所述第一设备发送所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
第三方面,提供了一种第一设备,包括:
第一发送模块,用于向第二设备发送第一信息;
第一接收模块,用于接收所述第二设备发送的指示信息;
其中,所述第一信息用于确定所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
第四方面,提供了一种第二设备,包括:
第二接收模块,用于接收第一设备发送的第一信息;
确定模块,用于根据所述第一信息,确定指示信息;
第二发送模块,用于向所述第一设备发送所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
第五方面,提供了一种第一设备,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种第一设备,包括通信接口,其中,所述通信接口用于向第二设备发送第一信息;
接收所述第二设备发送的指示信息;
其中,所述第一信息用于确定所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数和储能参数。
第七方面,提供了一种第二设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种第二设备,包括处理器及通信接口,其中,所述通信接口用于接收第一设备发送的第一信息;
所述处理器用于根据所述第一信息,确定指示信息,
所述通信接口还用于向所述第一设备发送所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
第九方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十方面,提供了一种无线通信系统,包括:第一设备及第二设备,所述第一设备可用于执行如第一方面所述的方法的步骤,所述第二设备可用于执行如第二方面所述的方法 的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的调谐指示方法的步骤,或者,所述程序/程序产品被至少一个处理器执行以实现如第二方面所述的调谐指示方法的步骤。
在本申请实施例中,公开了一种调谐指示方法,属于通信领域,本申请实施例的调谐指示方法包括:第一设备向第二设备发送第一信息;所述第一设备接收所述第二设备发送的指示信息;其中,所述第一信息用于确定所述指示信息;所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。通过第二设备配置第一设备的调谐指示,能够提高调谐的效率和灵活性。
附图说明
图1是反向散射通信系统的示意图;
图2是反向散射通信过程的示意图;
图3是反向散射通信过程中读取器和标签设备的交互示意图;
图4是反向散射通信系统架构的示意图;
图5是匹配网络的示意图;
图6是天线的电阻分量和电抗分量的动态范围的示意图;
图7是现有技术中的阻抗匹配流程的示意图;
图8是本发明实施例提供的一种调谐指示方法的流程图;
图9是本发明实施例提供的一种可调谐匹配网络的示意图;
图10是本发明实施例提供的一种第一设备示意图;
图11是本发明实施例提供的另一种第一设备示意图;
图12是本发明实施例提供的另一种调谐指示方法的流程图;
图13是本发明实施例提供的一种第二设备示意图;
图14是本发明实施例提供的另一种第二设备示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,本申请中的“或”表示所连接对象的至少其中之一。例如“A或B”涵盖三种方案,即,方案一:包括A且不包括B;方案二:包括B且不包括A;方案三:既包括A又包括B。字符“/”一般表示前后关联对象是一种“或”的关系。
为了方便理解,以下对本发明实施例涉及的一些内容进行说明:
在射频通信过程中,例如反向散射通信(Backscatter Communication,BSC),通信设备(例如,标签Tag)的天线阻抗和射频电路阻抗会随信号频率(包括载波频率和调制频率)及环境参数(例如,温度、湿度)的变化而变化,进一步影响通信设备的阻抗匹配性能,影响上行覆盖范围或下行接收灵敏度。
(1)关于反向散射通信(Backscatter Communication,BSC)和极低功耗通信。
反向散射通信是指反向散射通信设备利用其它设备或者环境中的射频信号进行信号调制来传输自己信息。反向散射通信设备,可以是如下任一项:
传统射频识别(Radio Frequency Identification,RFID)反向散射通信设备,一般是一个标签Tag,不具备储能电容或电池,属于无源物联网(Internet of Things,IoT)设备(Passive-IoT)
半无源(semi-passive)的tag,具有储能电容或储能电池,可选地,这类tag的下行接收或者上行反向散射具备一定的放大能力;
具备主动发送能力的有源tag(active tag),这类终端可以不依赖对入射信号的反向散射向gNB/读取器(reader)发送信息。
示例性的,图1的(a)部分为反向散射通信发送端,其基本构成模块及主要功能包括:
天线单元:用于接收射频信号、控制命令,同时用于发送调制的反向散射信号。
能量采集模块或供能模块:该模块用于反向散射通信设备进行射频能量采集,或者其它能量采集,包括但不限于太阳能、动能、机械能、热能等。另外除了能量采集模块,也可能包括电池供能模块,此时反向散射通信设备为半无源设备。能量采集模块或供能模块给设备中的其它所有模块进行供电。
微控制器:包括控制基带信号处理、储能或数据调度状态、开关切换、系统同步等。
信号接收模块:用于解调反向散射通信接收端或是其它网络节点发送的控制命令或数据等。
信道编码和调制模块:在控制器的控制下进行信道编码和信号调制,并通过选择开关在控制器的控制下通过选择不同的负载阻抗来实现调制;
存储器或传感模块:用于存储设备的标识(Identifier,ID)信息、位置信息或是传感 数据等。
除了上述典型的构成模块之外,未来的反向散射通信发送端甚至可以集成隧道二极管放大器模块、低噪声放大器模块等,用于提升发送端的接收灵敏度和发送功率。
示例性的,图1的(b)部分为反向散射通信接收端,传统的RFID系统中的反向散射通信接收端即为阅读器,其基本构成模块及主要功能包括:
天线单元:用于接收调制的反向散射信号。
反向散射信号检波模块:即用于对发送端发送的反向散射信号进行检波,包括幅移键控(Amplitude Shift Keying,ASK)检波、相移键控(phase shift keying,PSK)检波、频移键控(Frequency-shift keying,FSK)检波或正交幅度调制(Quadrature Amplitude Modulation,QAM)检波等。
解码模块:对检波出的信号进行解码,以恢复出原始信息流。
其调制电路如图2所示,反向散射通信设备通过调节其内部阻抗来控制电路的反射系数Γ,从而改变入射信号的幅度、频率、相位等,实现信号的调制。其中信号的反射系数可表征为:
其中,Z0为天线特性阻抗,Z1是负载阻抗。假设入射信号为Sin(t),则输出信号为因此,通过合理的控制反射系数可实现对应的幅度调制、频率调制或相位调制。基于此,反向散射通信设备,可以是传统RFID中的Tag,或者是无源或半无源IoT(Passive/Semi-passive IoT)。为了方便,这里统称为BSC设备。
值得注意的是,工作在极端环境下的tag一般采用特殊材料制造,或采取特殊保护罩,避免高温高压环境下tag的损坏。但tag的天线阻抗和射频电路阻抗依然会随着环境参数以及信号频率的变化而变化。
在tag进行频移键控(Frequency-shift keying,FSK)调制(如几十MHz搬频)、不同频率的射频(Radio Frequency,RF)信号给tag储能、tag晶振稳定性较差及tag应用于极端环境(如火灾预警)场景时,需要考虑tag的调谐方案,以应对tag阻抗变化引起的上行覆盖和下行接收灵敏度受限等问题。
此外,基于反向散射通信技术的极低功耗通信将具有比LTE(Long-term Evolution)CAT1到CAT4、eMTC(enhanced Machine-Type Communication)和窄带物联网(Narrow Band Internet of Things,NB-IoT)更低的功耗、成本与速率,能够助力构建可持续发展的极低功耗甚至零功耗的下一代物联网,满足绿色节能和可持续发展的需求。
本发明实施例中的设备可以是极低功耗通信设备。
(2)RFID中gNB/读取器(reader)和标签(Tag)之间的信息传输
gNB/reader发送载波(carrier wave,CW)和信令给Tag;其中,控制类型包括如下至少一项:选取(select),盘点(inventory),接入(access)。网络接收Tag的反馈信息。
目前,在超高频(Ultra High Frequency,UHF)RFID的协议中,在盘点模式下,读取器选取(select)标签设备,发送查询指令(Query)后,标签设备回应(Relay),即产生一个16bit的随机数给读取器,然后读取器通过确认响应指令(ACK)将该随机数序列发给标签设备,标签设备将相关的数据发送给读取器,如协议控制字(Protocol Control,PC)/扩展协议控制字(Extended Protocol Control,XPC)、电子产品编码(Electronic Product Code,EPC)、数据包循环冗余校验(Cyclic Redundancy Check,CRC)(PacketCRC)等,如果EPC是有效的,则读取器可以发送重复查询指令(QueryRep)或其他命令,如果EPC是无效的,则读取器可以发送否定应答(Negative Acknowledgment,NAK)。从读取器发送查询指令到读取器接收到标签设备发送的相关的数据为单个标签设备回应过程。示例性的,读取器与标签之间的通信流程参考图3所示。
(3)反向散射的应用场景
1)单基地反向散射通信(Monostatic Backscatter Communication System,MBCS)
传统的RFID系统就是典型的MBCS,系统中包含BSC发送端(比如Tag)和读写器Reader。读写器Reader中包含RF射频源和BSC接收端,其中RF射频源用于产生RF射频信号从而来给BSC发送端/Tag供能。BSC发送端通过反向散射经过调制后的RF射频信号,Reader中的BSC接收端接收到该反向散射信号后进行信号解调。由于RF射频源和BSC接收端是在同一个设备中,比如这里的Reader,因此成为单站反向散射通信系统。MBCSs系统中,由于从BSC发送端发送出去的RF射频信号会经过往返信号的信号衰减引起的双倍远近效应,因而信号的能量衰减大,因而MBCS系统一般用于短距离的反向散射通信,比如传统的RFID应用。示例性的,MBCS可以参考图4的(a)部分。
2)双基地反向散射通信系统(Bistatic Backscatter Communication System,BBCS)
不同于MBCS系统,BBCS系统中的RF射频源、BSC发送设备和BSC接收设备是分开的,图4的(b)部分所示为BBCS系统的示意图。因而,BBCS避免了往返信号衰减大的问题,另外通过合理的放置RF射频源的位置可以进一步提高BBCS通信系统的性能。值得注意,环境反向散射通信(ambient backscatter communications systems,ABCSs)也是双基地反向散射通信的一种,但与BBCS系统中的射频源为专用的信号射频源,ABCS系统中的射频源可以是可用的环境中的射频源,比如:电视塔、蜂窝基站、WiFi信号、蓝牙信号等。
(4)天线调谐与匹配网络
以上行发射场景为例,天线辐射单元的输入阻抗是工作频率、天线类型、天线尺寸及无线环境的函数,其输入阻抗会随上述因素的改变而发生很大的变化,而发射机功率级的输出阻抗是相对不变的,这会导致发射机与天线之间阻抗失配,导致馈线送来的部分发射机末级输出功率被天线反射回去,对末级电路的正常工作状态造成影响。反射功率在传输线上作无效流动,在导线电阻上产生额外的发热损耗,降低了系统功率的辐射效率。因此,需要考虑发射机与天线之间的阻抗匹配。
阻抗匹配常用的两种类型:1)微波等较高射频系统使用传输线进行匹配;2)中短波系统采用LC匹配网络,为了不消耗或减少功率消耗,通常采用纯电抗匹配网络。图5给出常见的几种LC匹配网络:匹配网络由电感和电容组成,数量可以是一个或者多个,其形式包括基本形Γ形、扩展形T形和Π形,其中ZA表示天线的阻抗,ZL表示负载阻抗,L表示电感,C表示电容。
阻抗匹配网络为射频前端(Radio Frequency Front End,RFFE)提供阻抗,从而为天线提供RFFE的复共轭阻抗。阻抗匹配网络通常采用电感和电容,形成的网络具有相对较低的损耗,并可实现最大功率传输。传输线和变压器也可用于匹配,但不是匹配天线的最佳选择。
随着频率变化,天线的输入阻抗会呈现较大的变化:
天线工作在不同频段,如900MHz和2.4GHz,阻抗会发生变化;
天线工作在同一频段,如890MHz-920MHz,阻抗也会发生变化。
如图6所示,天线的电阻分量(Rin)和电抗分量(Xin)的动态范围达到了5KΩ。进一步,考虑环境的变化,天线的阻抗匹配成为影响天线系统效率及上下行覆盖、灵敏度的关键问题。
通过频率切换/信道切换,可以有效降低干扰,提升接收端的解调性能。现有的固定的阻抗匹配网络无法满足信道频繁切换的问题,如果匹配网络仅由固定电感和固定电容组成,则网络的匹配能力仅限于固定阻抗。由于天线阻抗随频率和使用条件而变化,因此固定阻抗覆盖范围有限,仅几个频段或只有一个使用条件能够获得最佳匹配。在这种情况下,可以考虑参数可变的阻抗匹配网络,例如,在匹配网络中设置可调电容或可调电感。
举例而言,可调谐电容能够在非常宽的频率范围内为负载提供复共轭匹配,从而可在多个频段范围内实现最大功率传输。
此外,可以根据不同载波频率对应的天线阻抗值来改变网络中的各元件值,实现动态的全频段匹配。显然,元件的个数越多,元件的取值范围越大、精度越高。受设备体积和控制资源的限制,元件的个数通常被限制在一定的范围之内。
然而,参考现有的天线调谐器(如图7所示),其通常采用传统的数字天线调谐器,控制电路大多是基于单片机的实现,一方面,这种调谐方式由射频通信设备独立执行调谐,对设备的硬件要求较高,需要基于调谐需求针对性设置检测和控制电路,设备成本高;另一方面,参数检测电路提供的检测信息只能定性的给出匹配网络输入阻抗的相对值,即电阻大于或小于50Ω,电抗大于或小于0,而不能给出定量的偏移值,控制电路只能依据检测结果遍历匹配网络元件值,完成阻抗匹配,其速度慢、精度低。
因此,需要考虑通信设备,尤其是反向散射通信(Backscatter Communication,BSC)设备,例如,tag的调谐方案,以应对上述设备阻抗变化引起的上行覆盖和下行接收灵敏度受限等问题。
本申请的术语“指示”既可以是一个直接的指示(或者说显式的指示),也可以是一个 间接的指示(或者说隐含的指示)。其中,直接的指示可以理解为,发送方在发送的指示中明确告知了接收方具体的信息、需要执行的操作或请求结果等内容;间接的指示可以理解为,接收方根据发送方发送的指示确定对应的信息,或者进行判断并根据判断结果确定需要执行的操作或请求结果等。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)或其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统以外的系统,如第6代(6th Generation,6G)通信系统。
其中,终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、飞行器(flight vehicle)、车载设备(Vehicle User Equipment,VUE)、船载设备、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(Personal Computer,PC)、柜员机或者自助机等终端侧设备。可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。其中,车载设备也可以称为车载终端、车载控制器、车载模块、车载部件、车载芯片或车载单元等。需要说明的是,在本申请实施例并不限定终端的具体类型。
网络侧设备可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网(Radio Access Network,RAN)设备、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点(Access Point,AS)或无线保真(Wireless Fidelity,WiFi)节点等。其中,基站可被称为节点B(Node B,NB)、演进节点B(Evolved Node B,eNB)、下一代节点B(the next generation Node B,gNB)、新空口节点B(New Radio Node B,NR Node B)、接入点、中继站(Relay Base Station,RBS)、服务基站(Serving Base Station,SBS)、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点(home Node B,HNB)、家用演进型B节点 (home evolved Node B)、发送接收点(Transmission Reception Point,TRP)或所属领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图8,通过一些实施例及其应用场景对本申请实施例提供的调谐指示方法进行详细地说明。
步骤801、第一设备向第二设备发送第一信息。
本发明实施例中,上述第一设备可以理解为需要进行调谐的设备。上述第一设备通过向第二设备发送第一信息获取调谐的指示信息。上述第二设备可以理解为为上述第一设备配置调谐指示信息的设备,上述第二设备在配置了指示信息后可以直接发送给第一设备,也可以通过其他设备发送给第一设备。上述第一设备和第二设备都可以理解为通信设备。
可选的,所述第一设备包括如下任一项:标签tag,第一终端,反向散射信号的发送端;
或者,所述第二设备包括如下任一项:基站,中继,第二终端,读写器,射频源设备,反向散射信号的接收端。
示例性的,第一设备和第二设备可以包括如下组合中的任一项:
第二设备是基站/reader/中继,第一设备是tag;
第二设备是用户设备(User Equipment,UE,即终端),第一设备是tag;
第二设备包括网络设备和第三设备,其中网络设备为基站/reader/中继,第一设备是tag,第三设备是UE;
第二设备包括网络设备和第四设备,其中网络设备为基站/reader/中继,第一设备是tag,第四设备是UE;
第二设备是基站中继,第一设备是UE。
示例性的,上述第一设备包括如下任一项:
无源tag,无储能电容/电池,依靠RF信号进行供能(接收的RF信号即为整流器的电源信号),不具有载波生成能力,功耗最低;
半无源tag,具有储能电容/电池,依靠非RF信号进行供能,可选地,具有功率放大(Power Amplifier,PA)/低噪声放大器(Low Noise Amplifier,LNA)或其它有源器件,不具有载波生成能力,功耗次之;
有源tag,具有储能电容/电池,依靠非RF信号进行供能,具有载波生成能力,功耗最大;
上述tag的分类不是唯一且确定的,这里仅给出每种tag可能的分类特征。
可选的,所述第一信息包括如下至少一项:所述第一设备的能力信息,环境参数信息,参考信号测量信息,参考信号。
可选的,所述第一设备的能力信息用于指示如下至少一项:
可调谐能力,设备类型,频偏能力,振荡器能力,负载阻抗数量,阻抗值,功率放大PA参数、整流参数。
可选的,所述可调谐能力,指示如下至少一项:是否具有可调谐能力,可调谐器的动态范围,可调谐器的精度,可调谐器的调谐参数类型;
所述设备类型,根据是否具有载波生成能力划分;
所述频偏能力,指示如下至少一项:第一电平持续时间,第一电平的切换周期,变容二极管的调频能力,与调频能力相关的硬件能力;
所述振荡器能力,指示如下至少一项:晶振频率,时钟频率,振荡器稳定性。
本发明实施例中,所述第一设备的能力信息,可以指示如下信息中的至少一项:
1)是否具有可调谐能力,若具有,则上报以下能力中的至少一项
可调谐器的动态范围,如,可调谐电容值的范围;
可调谐器的精度,如,可调谐电容值范围内的可调谐数量;
可调谐器的调谐参数类型,如电阻、电容或电感,或其组合方式;
可以理解的是,指示是否具有可调谐能力,可以直接指示“是”或者“否”,也可以指示能力本身,例如指示可调谐器的动态范围。
2)设备类型
具有载波生成能力,即有源设备;
不具备载波生成能力,即无源或半无源设备;
3)频偏能力
第一电平持续时间/第一电平的切换周期;
变容二极管的调频能力;
其它与调频能力相关的硬件能力,如,环形振荡器频偏能力;
4)振荡器能力
晶振频率,例如,100MHz的参考时钟源;
时钟频率,例如,20MHz的频移能力;
振荡器稳定性,例如,20MHz频偏时的频率误差为100ppm;
5)其它能力,如,负载阻抗数量及阻抗值、PA参数、整流参数等。
可选的,上述第一信息或所述第一设备的能力信息还包括如下信息中的至少一项:电量不足信息、节约电量请求信息。其中,电量不足信息、节约电量请求信息中的至少一项可以用于确定上述第一设备的匹配状态。
示例性的,上述第一设备的匹配状态可以划分为完全匹配、中度匹配和失配。可以理解的是,匹配状态的数量不是固定的(上述三种的划分方式只是用于示例),需要根据不同的场景进行定义。
本发明实施例中,上报上述环境参数信息,参考信号测量信息,参考信号中的至少一项,主要用于确定标签是否需要调谐。
其中,关于环境参数信息,标签可通过以下任意一种方式上报环境参数:
直接上报方式:以温度和湿度为例,检测到环境温度和湿度变化时,标签直接向网络上报温度和湿度等参数;
间接上报方式:以温度和湿度为例,不上报具体的量,仅通过固定比特上报变化情况,比如,温度和湿度超过了阈值,通过1bit上报环境参数变化信息。
其中,关于参考信号测量信息,对于有源设备而言,其测量参考信号,并上报参考信号测量量(如参考信号接收功率(Reference Signal Received Power,RSRP))的相关信息,以使所述第二设备获取参考信号测量信息;或网络设备(例如,第二设备,或其他网络设备)发送参考信号,并辅助测量经过级联信道的参考信号强度,第一设备(例如,tag)以全1或某种特定的调制方式进行参考信号的反射,以使所述第二设备获取参考信号测量信息。其中,全1反射可以理解为直接反射,本发明实施例中,反射也可以理解为反向散射。
一种可能的方式为,标签(第一设备)主动发送参考信号,网络设备(第二设备)测量参考信号获得参考信号测量信息。
上述第一信息包括上述参考信号的情况下,应当理解当前第一设备具备发送参考信号的能力,例如,上述第一设备为有源设备。可以理解的是,所述第一信息包括所述第一设备的能力信息,环境参数信息,参考信号测量信息中的至少一项的情况下,上述第一设备可以是无源设备、半无源设备或有源设备。
可以理解的是,触发步骤801,或者说步骤801之前的触发流程,可以是由第一设备发起的,也可以是由第二设备发起的,也可以是由第一设备和第二设备之外的其他设备触发的。例如,可以是由第一设备向第二设备发送调谐请求,第二设备向第一设备方法送请求响应后,第一设备执行上述步骤801;也可以是,上述第一设备接收所述第二设备发送的调谐指示后,执行上述步骤801。
步骤802、所述第一设备接收所述第二设备发送的指示信息;
其中,所述第一信息用于确定所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
可选的,所述第一设备接收所述第二设备发送的指示信息,包括如下任一项:
所述第一设备接收所述第二设备直接发送的指示信息;
所述第一设备接收所述第二设备通过第六设备转发的指示信息。
可以理解的是,上述第二设备可以直接向上述第一设备发送指示信息,也可以是将上述指示信息发送给第六设备,通过上述第六设备向所述第一设备发送所述指示信息。第六设备可以是第三设备或第四设备,也可以是除第二设备、第三设备和第四设备之外的其他设备。
可选的,所述调谐匹配方式,包括匹配或不匹配;
所述调谐对象,包括如下至少一项:天线调谐,匹配电路调谐,负载阻抗调谐,其它电路调谐;
所述调谐参数,包括如下至少一项:可调谐网络的电容值,可调谐网络的电感值,可调谐网络的电阻值,负载阻抗的选择。
本发明实施例中,所述调谐匹配方式指示匹配,即指示第一设备不向外辐射信号和能量,所述调谐匹配方式指示不匹配,则即指示第一设备向外反射信号和能量。
示例性的,当标签发送反向散射信号时,若采用通断键控(on-off keying,OOK)调制方式,发射bit 0时,为匹配状态,吸收能量;发射bit 1时,为失配状态,反射能量。采用除了OOK的调制方式时,如相移键控(phase shift keying,PSK)或FSK等调制方式,应保证标签为失配状态,向外反射能量。
当标签处于储能状态和信号解调状态时,指示标签为匹配状态,使能量和信号尽可能被标签接收。
值得注意的是,本发明的目的在于确定调谐匹配方式的前提下,通过动态指示/半静态指示,结合标签的调谐对象,尽量保证能量最大的反射/吸收。
本发明实施例中,无论标签处于匹配还是失配状态,其调谐对象的选择都会影响可调谐的动态范围和精度,进一步影响匹配/失配深度。示例性地,如表1所示,不同情况下设置不同的匹配对象,其中,表1的第一行可以理解为在第一设备仅包含一个负载阻抗的情况下,对天线、匹配电路进行调谐。
表1
其中,其他电路调谐可以理解为匹配电路之外的其他电路的调谐。
本发明实施例中,调谐参数主要用于指示第一设备的可调谐匹配网络的工作参数,包括以下至少一项:可调谐网络的电容值,可调谐网络的电感值,可调谐网络的电阻值,以及负载阻抗的选择。其中,负载阻抗的选择即规定选择某一个负载阻抗用于信号反射和信号接收。
若标签的可调谐匹配网络具有电感、电容等组合器件,则调谐参数也可以是上述方式 的组合。
此外,由于标签发送反向散射信号时可能会产生频偏,频偏的大小对信号的匹配深度也会有影响,因此,调谐参数还可以包括调制方式及频偏大小。
本发明实施例中,对于有源设备(tag)而言,即上述第一设备为有源设备的情况下,所述指示信息可以用于指示时频资源。所述第一设备据网络设备配置的时频资源,结合标签的硬件参数和检测的环境参数,在可调谐范围内调整调谐参数,实现天线与射频电路的匹配。该实现方式需要tag具有反射信号的检测能力,例如,需要tag具有反射信号的检测电路,并将检测结果通过串并接口发给微控制单元(MicrocontrollerUnit,MCU),且MCU自行决定调谐网络的数值,对tag的能力具有一定的要求。
可选的,所述第二设备根据所述第一信息,确定变量参数;
所述第二设备根据所述变量参数,确定指示信息;
所述变量参数,包括如下至少一项:
所述第一设备的能力信息,环境参数信息,参考信号测量信息,信号频率信息,所述第一设备的匹配状态,所述第一设备的储能效率。
可以理解的是,上述第二设备根据第一设备上报的第一信息确定的变量参数,可以是第一信息显示携带的信息,也可以是第一信息隐式携带的信息,还可以是根据上述第一信息的接收情况获取或测量得到的信息。
其中,储能效率的根据上报的整流器的信息可以确定。
上述第二设备可以根据不同的影响阻抗的场景,根据第一信息确定指示信息;其中,场景的确定是可以根据第一信息确定的,也可以通过其他方式确定的,本发明实施例对此不做限定。
以第一信息包括参考信号测量量为例,第二设备根据已获得的参考信号测量量,结合已知的路损信息和标签硬件插损信息,与载波发射功率作对比:
若小于某个阈值,则指示tag进行调谐;
否则,不指示tag调谐。
示例性的,如表2所示,在不同的场景下,例如,FSK调制、不同频率的RF信号给tag储能、tag晶振稳定性较差及tag应用于极端环境(如火灾预警),根据第一信息确定对应的条件,从而确定对应的调谐指示信息。
表2

可选的,所述指示信息还用于指示储能参数。
本发明实施例中,在储能场景下,所述指示信息还用于指示储能参数。
示例性的,具体以储能场景为例(标签阻抗需匹配),由于射频能量信号的频率变化和环境参数变化,导致匹配状态发生改变,影响储能效率时的参数指示方法。由于射频能量信号的频率变化和环境参数变化,导致匹配状态发生改变,影响储能效率时的参数指示方法。如表3所示,示例性地定义了三种匹配状态,根据这三种匹配状态决定调谐参数和储能参数的指示信息。在可选的指示方式中,表中的改变指的是需要指示对应的变量信息,不改变则不需要指示。
表3
本发明实施例中,步骤802,可以采用如下方式中的至少一个:
方式一,所述指示信息通过如下至少一项发送:下行控制信息(Downlink Control Information,DCI),媒体接入控制控制单元(Medium Access Control Control Element,MAC CE),旁链路控制信息(Sidelink Control Information,SCI),前导码。
其中,前导码可以是物理帧前导码。
方式二,所述第一设备接收所述第二设备发送的指示信息,包括如下至少一项:
所述第一设备接收所述第二设备通过无线资源控制(Radio Resource Control,RRC)信令发送的所述指示信息,所述RRC信令中的信息单元包括所述指示信息;
所述第一设备接收所述第二设备通过第一下行控制信息DCI信令发送的所述指示信息,所述指示信息指示传输配置指示(Transmission Configuration Indicator,TCI)状态池 中的一个TCI状态;
所述第一设备接收所述第二设备通过媒体接入控制控制单元MAC CE发送的所述指示信息,所述指示信息指示TCI状态池中的一个TCI状态;
所述第一设备接收所述第二设备通过第二DCI信令发送的所述指示信息,所述指示信息指示N个TCI状态中的一个TCI状态,所述N个TCI状态由MAC CE从所述TCI状态池的M个TCI状态中选择得到,1≤N≤M,N和M为正整数;
其中,所述TCI状态池由RRC配置得到,所述TCI状态池中的每个TCI状态对应的一组指示参数,每组指示参数包括如下至少一项:调谐匹配方式,调谐对象,调谐参数。
可选的,各组指示参数彼此不同,可以理解为一组指示参数与另一组指示参数的调谐匹配方式,调谐对象,调谐参数至少一个不同。
可选的,所述方法还包括:
所述第一设备接收第三设备发送的第一信号;
所述第一设备基于所述指示信息对所述第一信号进行调制、解调或储能;
其中,所述第三设备与所述第二设备为相同设备,或者,所述第三设备与所述第二设备为不同设备。
本发明实施例中,向所述第一设备发送第一信号的设备可以第二设备本身,也可以是第二设备之外的其他设备
可选的,所述第一信号包括载波信号或参考信号。
上述第一信号可以是载波信号,其中,载波信号分为供能载波信号或通信载波信号。供能载波信号主要用于标签进行储能/调制,而通信载波信号主要是标签进行数据比特传输的载体,若第一设备(tag)具有载波信号生成能力,第一信号是可选发送的。所述通信载波信号还可以是携带信息的载波信号,比如基于OOK调制/二进制相移键控(Binary Phase Shift Keying,BPSK)调制的载波信号。所述载波信号可以是单频连续波、调频连续波等。
上述第一信号还可以是不包含任何传输信息的参考信号,如现有的LTE/NR同步和参考信号,包括同步信号和物理广播信道(Synchronization Signal and PBCH block,SSB)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、解调参考信号等。
可选的,第一信号的参数配置信息包括以下至少一项:
1)信号类型;
用于供能的射频RF信号;
用于通信的RF信号;
用于解调的RF信号;
混合RF信号,即该信号既能用于储能,也能用于调制;
2)时域资源;
3)频域资源;
4)带宽信息;
5)波形类型;
6)保护间隔;
7)信号功率。
本发明实施例中,上述第一信号可以理解为指示信息的执行对象,具体的执行操作不限于调制、解调或储能,还可以为测量等操作。
上述指示信息可以是动态指示(例如,采用前述方式一),也可以是半静态指示(例如,采用前述方式二)。
可选的,所述指示信息指示至少两个调谐参数,所述至少两个调谐参数中的每一个调谐参数对应一个时间单元;
所述方法还包括:
在第一时间单元中,所述第一设备以第一调谐参数,测量参考信号获取第一参考信号测量量,所述第一调谐参数为与所述第一时间单元对应的调谐参数;
在所述第一参考信号测量量大于第二参考信号测量量的情况下,所述第一设备基于所述第一调谐参数对第一信号进行调制、解调或储能;
其中,第二参考信号测量量为所述第一设备在第二时间单元以第二调谐参数测量所述参考信号获取的参考信号测量量;所述第二时间单元为所述指示信息中的除第一时间单元之外的其他时间单元,所述第二调谐参数为与所述第二时间单元对应的调谐参数;
所述第一信息由第三设备发送至所述第一设备,所述第三设备与所述第二设备为相同设备,或者所述第三设备与所述第二设备为不同设备。
其中,上述对应时间单元的指示信息,可以采用方式一或方式二中的至少一项执行指示。
上述时间单元是符号级、slot级别、帧级别的。上述参考信号可以是上述第一信号。上述所述第一参考信号测量量与第二参考信号测量量的比较可以由第二设备执行,并由第二设备指示第一设备执行上述第一调谐参数。
示例性的,时间单元与调谐参数之间的对应关系,如表4所示,特定时间单元以与其对应的调谐参数进行参考信号测量得到对应的参考信号测量量(如RSRP),并基于参考信号测量量的比较结果,确定当前最佳的调谐参考信号,以用于后续的储能、解调和调制操作。例如,若在T4时间单元时,标签的调谐参数为参数4,对应的RSRP 4是最强的,则以参数4进行标签后续特定时间内的储能、解调和调制。
表4

本发明实施例中,通过动态配置/半静态配置第一设备的调谐匹配方式,调谐对象,调谐参数和储能参数中的至少一项,能够提升上行覆盖范围和下行接收灵敏度,尤其在在特定调制方式(如FSK)或特定应用场景中(如多载波储能、恶劣环境检测)。
本发明实施例中,在第一设备对第一信号进行调制的场景下,所述第一设备基于所述指示信息对所述第一信号进行调制,包括:
所述第一设备基于所述指示信息对所述第一信号进行调制,得到第一调制信号;
所述方法,还包括:
所述第一设备向第四设备发送所述第一调制信号;
其中,所述第四设备与所述第二设备为相同设备;或者,所述第四设备与所述第二设备为不同设备;或者,所述第四设备与所述第三设备为相同设备;或者,所述第四设备与所述第三设备为不同设备。
本发明实施例中,用于接收第一调制信号的设备可以是第二设备,也可以发送第一信号的第三设备,也可以是,不同于第二设备和第三设备的第四设备。
可选的,在第三设备与第二设备为不同设备的情况下,所述第三设备为由所述第二设备控制的设备;
或者,在第三设备与第二设备为不同设备的情况下,所述第一信号由所述第二设备通过第三设备向所述第一设备转发。
可选的,在第三设备与第二设备为不同设备的情况下,所述第三设备和第四设备中的至少一个还用于接收所述第二设备发送的所述指示信息;
或者,在第三设备与第二设备为不同设备的情况下,所述第一信号由第五设备通过第三设备向所述第一设备转发,所述第三设备、第四设备和第五设备中的至少一个用于接收所述第二设备发送的所述指示信息。
以第一设备为标签、第二设备为网络设备的标签调谐为例,如下步骤示例了一种标签调谐的动态指示方法,由网络设备根据标签上报的能力信息、环境参数信息、参考信号测量信息、参考信号中的至少一项,给出标签调谐的动态指示方式和传输流程:
1)网络设备向标签发送指示信息,动态指示标签的调谐匹配方式,调谐对象,调谐参数以及储能参数中的至少一项;
其中,指示信息的发送方式包括以下任意一项:
网络设备发送给标签的;
转发设备发送,其中转发设备接收所述网络设备发送的指示信息;
射频源设备发送,所述射频源设备是为标签提供射频载波信号的设备;
第三方设备发送,即网络设备、转发设备和射频源设备之外的设备;
其中,动态指示方式包括但不限于采用DCI、MAC CE、SCI或物理帧前导码等等方式进行指示
2)标签接收第一信号,并基于指示信息对第一信号进行进行调制、解调或储能。
网络设备基于标签上报的信息,确定匹配状态、调谐方式和调谐参数中的至少一项。下表5给出不同环境参数、信号频率及参考信号测量量等参数下,对应调谐参数的例子。其中,信号频率包括载波信号频率、调制时产生的频偏及晶振稳定性带来的频率误差等。其中,上述信号频率是网络设备根据标签发送的第一信息确定的。
表5
从上表可以看出,相同温度,不同频率、不同RSRP也可能对应不同的标签调谐参数。因此,网络设备的确定方法可以是预定义的,也可以通过隐式计算的方式获得(如,非线性建模进行拟合),此处不作限制。
以第一设备为标签、第二设备为网络设备的标签调谐为例,如下步骤示例了一种标签调谐的半静态指示方法,由网络设备根据标签上报的能力信息、参考信号测量信息、参考信息中的至少一项,给出标签调谐的半静态指示方式和传输流程,与前一实施例的区别在于环境参数,(例如,包括温度、湿度),一段时间内是固定不变的,即标签的阻抗仅受信号频率的影响:
1)网络设备向标签发送指示信息,半静态指示标签的调谐匹配方式,调谐对象,调谐参数以及储能参数中的至少一项。
其中,指示信息的发送方式包括以下任意一项:
网络设备发送给标签的;
转发设备发送,其中转发设备接收所述网络设备发送的指示信息;
射频源设备发送,所述射频源设备是为标签提供射频载波信号的设备;
第三方设备发送,即网络设备、转发设备和射频源设备之外的设备。
其中,半静态指示的配置/指示方式包括但不限于如下至少一项:
RRC配置:即直接由高层RRC配置一个包含匹配状态和/或调谐方式和/或调谐参数的信息单元,并告知标签;
RRC配置,DCI指示:RRC配置一个包含多个传输配置指示(TCI)状态的TCI状态池,每个TCI状态对应不同的匹配状态和/或调谐方式和/或调谐参数。然后通过DCI信令 向标签指示其中一个TCI状态;
RRC配置,MAC CE激活:RRC配置一个包含多个TCI状态的TCI状态池,每个TCI状态对应不同的匹配状态和/或调谐方式和/或调谐参数。然后通过MAC CE信令向标签指示其中一个TCI状态;
RRC配置,MAC CE激活,DCI指示:RRC配置一个或多个TCI状态池,共包含M个TCI状态,每个TCI状态对应不同的匹配状态和/或调谐方式和/或调谐参数。MAC CE选择最多N(N≤M)个TCI状态,DCI在N个TCI状态中选择其中一个进行指示;
基于RRC、DCI、MAC CE、SCI或L1信令的其它组合方式。
2)标签接收第一信号,并基于指示信息进行调制、解调或储能。
若网络设备已经确定需要指示标签进行调谐,由于标签可调谐的范围和精度是有限的,则可以通过上表4方式指示标签进行调谐。该测量方式假设信号频率、环境参数在一段时间是保持不变的。如表4所示,若在T4时间单元时,标签的调谐参数为参数4,对应的RSRP 4是最强的,则以参数4进行标签后续储能、解调和调制。
本发明实施例中,网络设备根据标签的能力信息、参考信号测量信息、环境参数信息和参考信号中的至少一项,动态配置/半静态配置标签的匹配方式、调谐对象和调谐参数,以提升BSC上行覆盖范围和下行接收灵敏度。
本发明实施例中,可选的,可以在传统标签的硬件架构基础上,配置可调谐匹配网络,以实现上行覆盖增强和下行灵敏度的提升。如图9所示,设置可调谐匹配网络位于天线后端,与能量采集模块/信号接收模块/调制与编码模块连接,控制标签的匹配。
在此,应当理解的是,本发明具体实施例的方法中,适用场景包括但不限于:RFID专用reader、WiFi传输场景或gNB传输场景等。
本发明实施例中,在不同的网络部署情况下,配置指示信号的传输流程。其中,单基地架构是指第一信号的发送者(第三设备)与反向散射信号的接收者(第四设备)都为网络设备。当反向散射信号的接收者(第四设备)为不同于网络设备(第三设备)的设备时,则为双基地架构。
单基地架构配置指示信号的传输流程:
场景1:网络设备配置调谐匹配方式,调谐对象,调谐参数中的至少一项,并由网络设备向标签(第一设备)发送;
场景2:网络设备配置调谐匹配方式,调谐对象,调谐参数中的至少一项,调谐匹配方式,调谐对象,调谐参数中的至少一项由网络设备发送,第一信号由第三设备发送,其中第三设备由网络设备控制,负责向标签发送第一信号;
场景3:第三方设备配置调谐匹配方式,调谐对象,调谐参数中的至少一项,调谐匹配方式,调谐对象,调谐参数中的至少一项由第三方设备发送给网络设备和标签,第一信号由网络设备发送给标签。
双基地架构配置指示信号的传输流程:
场景1:网络设备配置调谐匹配方式,调谐对象,调谐参数中的至少一项和第一信号的参数信息,调谐匹配方式,调谐对象,调谐参数中的至少一项由网络设备向标签发送,第一信号参数由网络设备向第四设备发送并由第四设备向标签发送第一信号;
场景2:网络设备配置调谐匹配方式,调谐对象,调谐参数中的至少一项,由网络设备向第四设备发送,并由第四设备转发至标签,第一信号仍由网络设备发送;
场景3:网络设备配置调谐匹配方式,调谐对象,调谐参数中的至少一项,网络设备向第四设备发送调谐匹配方式,调谐对象,调谐参数中的至少一项,并由第四设备转发至标签,第一信号由第三设备发送,其中第三设备由网络设备控制,负责向标签发送第一信号;
场景4:第三方设备配置调谐匹配方式,调谐对象,调谐参数中的至少一项,调谐匹配方式,调谐对象,调谐参数中的至少一项由第三方设备发送给网络设备、标签和第四设备,第一信号由网络设备发送给标签;
场景5:第三方设备配置调谐匹配方式,调谐对象,调谐参数中的至少一项,调谐匹配方式,调谐对象,调谐参数中的至少一项由第三方设备发送给网络设备、标签和第四设备,第一信号参数由网络设备发送给第四设备,第四设备根据第一信号参数向标签发送第一信号。
本实施例中的调谐指示方法,包括:第一设备向第二设备发送第一信息;所述第一设备接收所述第二设备发送的指示信息;其中,所述第一信息用于确定所述指示信息;所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。通过第二设备配置调谐指示参数,能够提高调谐的效率和灵活性。
本申请实施例提供的调谐指示方法,执行主体可以为第一设备。本申请实施例中以第一设备执行调谐指示方法为例,说明本申请实施例提供的第一设备。
所述第一设备,包括:
第一发送模块,用于向第二设备发送第一信息;
第一接收模块,用于接收所述第二设备发送的指示信息;
其中,所述第一信息用于确定所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
可选的,所述指示信息通过如下至少一项发送:
下行控制信息DCI,媒体接入控制控制单元MAC CE,旁链路控制信息SCI,前导码。
可选的,所述第一设备,还包括:
第三接收模块,用于所述第一设备接收第三设备发送的第一信号;
第一执行模块,用于所述第一设备基于所述指示信息对所述第一信号进行调制、解调或储能;
其中,所述第三设备与所述第二设备为相同设备,或者,所述第三设备与所述第二设备为不同设备。
可选的,第一接收模块,包括如下至少一项:
第一接收子模块,用于接收所述第二设备通过无线资源控制RRC信令发送的所述指示信息,所述RRC信令中的信息单元包括所述指示信息;
第二接收子模块,用于接收所述第二设备通过第一下行控制信息DCI信令发送的所述指示信息,所述指示信息指示传输配置指示TCI状态池中的一个TCI状态;
第三接收子模块,用于接收所述第二设备通过媒体接入控制控制单元MAC CE发送的所述指示信息,所述指示信息指示TCI状态池中的一个TCI状态;
第四接收子模块,用于接收所述第二设备通过第二DCI信令发送的所述指示信息,所述指示信息指示N个TCI状态中的一个TCI状态,所述N个TCI状态由MAC CE从所述TCI状态池的M个TCI状态中选择得到,1≤N≤M,N和M为正整数;
其中,所述TCI状态池由RRC配置得到,所述TCI状态池中的每个TCI状态对应的一组指示参数,每组指示参数包括如下至少一项:调谐匹配方式,调谐对象,调谐参数。
可选的,所述指示信息指示至少两个调谐参数,所述至少两个调谐参数中的每一个调谐参数对应一个时间单元;
所述第一设备,还包括:
测量模块,用于在第一时间单元中,所述第一设备以第一调谐参数测量参考信号获取第一参考信号测量量,所述第一调谐参数为与所述第一时间单元对应的调谐参数;
第二执行模块,用于在所述第一参考信号测量量大于第二参考信号测量量的情况下,所述第一设备基于所述第一调谐参数对第一信号进行调制、解调或储能;
其中,第二参考信号测量量为所述第一设备在第二时间单元以第二调谐参数测量所述参考信号获取的参考信号测量量;所述第二时间单元为所述指示信息中的除第一时间单元之外的其他时间单元,所述第二调谐参数为与所述第二时间单元对应的调谐参数;
所述第一信息由第三设备发送至所述第一设备,所述第三设备与所述第二设备为相同设备,或者所述第三设备与所述第二设备为不同设备。
可选的,所述第一信号包括载波信号或参考信号。
可选的,所述第一执行模块,包括:
第一执行子模块,用于所述第一设备基于所述指示信息对所述第一信号进行调制,得到第一调制信号;
所述第一设备,还包括:
第三发送模块,用向第四设备发送所述第一调制信号;
其中,所述第四设备与所述第二设备为相同设备;或者,所述第四设备与所述第二设备为不同设备;或者,所述第四设备与所述第三设备为相同设备;或者,所述第四设备与所述第三设备为不同设备。
可选的,在第三设备与第二设备为不同设备的情况下,所述第三设备为由所述第二设备控制的设备;
或者,在第三设备与第二设备为不同设备的情况下,所述第一信号由所述第二设备通过第三设备向所述第一设备转发。
可选的,在第三设备与第二设备为不同设备的情况下,所述第三设备和第四设备中的至少一个还用于接收所述第二设备发送的所述指示信息;
或者,在第三设备与第二设备为不同设备的情况下,所述第一信号由第五设备通过第三设备向所述第一设备转发,所述第三设备、第四设备和第五设备中的至少一个用于接收所述第二设备发送的所述指示信息。
可选的,所述第一接收模块,包括:如下任一项:
第五接收子模块,用于接收所述第二设备直接发送的指示信息;
第六接收子模块,用于接收所述第二设备通过第六设备转发的指示信息。
可选的,所述第一信息包括如下至少一项:所述第一设备的能力信息,环境参数信息,参考信号测量信息,参考信号。
可选的,所述第一设备的能力信息用于指示如下至少一项:
可调谐能力,设备类型,频偏能力,振荡器能力,负载阻抗数量,阻抗值,功率放大PA参数、整流参数。
可选的,其中,所述可调谐能力,指示如下至少一项:是否具有可调谐能力,可调谐器的动态范围,可调谐器的精度,可调谐器的调谐参数类型;
所述设备类型,根据是否具有载波生成能力划分;
所述频偏能力,指示如下至少一项:第一电平持续时间,第一电平的切换周期,变容二极管的调频能力,与调频能力相关的硬件能力,如,环形振荡器频偏能力。
所述振荡器能力,指示如下至少一项:晶振频率,时钟频率,振荡器稳定性。
可选的,所述调谐匹配方式,包括匹配或不匹配;
所述调谐对象,包括如下至少一项:天线调谐,匹配电路调谐,负载阻抗调谐,其它电路调谐;
所述调谐参数,包括如下至少一项:可调谐网络的电容值,可调谐网络的电感值,可调谐网络的电阻值,负载阻抗的选择。
可选的,所述第一设备包括如下任一项:标签,第一终端,反向散射信号的发送端;
或者,所述第二设备包括如下任一项:基站,中继,第二终端,读写器,射频源设备,反向散射信号的接收端。
可选的,所述指示信息还用于指示储能参数。
本申请实施例,通过第二设备配置第一设备的调谐指示,能够提高调谐的效率和灵活性。
本申请实施例中的第一设备可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设 备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的第一设备能够实现图8至图9的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图10所示,本申请实施例还提供一种第一设备1000,包括处理器1001和存储器1002,存储器1002上存储有可在所述处理器1001上运行的程序或指令,例如,该第一设备1000为第一设备时,该程序或指令被处理器1001执行时实现上述调谐指示方法实施例的各个步骤,且能达到相同的技术效果。该第一设备1000为网络侧设备时,该程序或指令被处理器1001执行时实现上述调谐指示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种第一设备,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图8-9所示方法实施例中的步骤。该第一设备实施例与上述第一设备侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第一设备实施例中,且能达到相同的技术效果。具体地,图11为实现本申请实施例的一种第一设备的硬件结构示意图。
该第一设备1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,第一设备1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电以及功耗管理等功能。图11中示出的第一设备结构并不构成对第一设备的限定,第一设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板1071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自网络侧设备的下行数据后,可以传输给处理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储 程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选的,处理器1110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,射频单元1101,用于第一设备向第二设备发送第一信息;
所述第一设备接收所述第二设备发送的指示信息;
其中,所述第一信息用于确定所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
通过第二设备配置第一设备的调谐指示,能够提高调谐的效率和灵活性。
可以理解,本实施例中提及的各实现方式的实现过程可以参照如图8-9所示方法实施例的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。
下面结合附图12,通过一些实施例及其应用场景对本申请实施例提供的调谐指示方法进行详细地说明。
步骤1201、第二设备接收第一设备发送的第一信息。
步骤1202、所述第二设备根据所述第一信息,确定指示信息。
步骤1203、所述第二设备向所述第一设备发送所述指示信息,
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
可选的,所述指示信息通过如下至少一项发送:
下行控制信息DCI,媒体接入控制控制单元MAC CE,旁链路控制信息SCI,前导码。
可选的,所述第二设备向所述第一设备发送所述指示信息,包括如下至少一项:
所述第二设备通过无线资源控制RRC信令发送所述指示信息,所述RRC信令中的信息单元包括所述指示信息;
所述第二设备通过第一下行控制信息DCI信令发送所述指示信息,所述指示信息指示传输配置指示TCI状态池中的一个TCI状态;
所述第二设备通过媒体接入控制控制单元MAC CE发送所述指示信息,所述指示信息指示TCI状态池中的一个TCI状态;
所述第二设备通过第二DCI信令发送所述指示信息,所述指示信息指示N个TCI状态中的一个TCI状态,所述N个TCI状态由MAC CE从所述TCI状态池的M个TCI状态中选择得到,1≤N≤M,N和M为正整数;
其中,所述TCI状态池由RRC配置得到,所述TCI状态池中的每个TCI状态对应的一组指示参数,每组指示参数包括如下至少一项:调谐匹配方式,调谐对象,调谐参数。
可选的,所述指示信息指示至少两个调谐参数,所述至少两个调谐参数中的每一个调谐参数对应一个时间单元。
可选的,所述第二设备根据所述第一信息,确定指示信息,包括:
所述第二设备根据所述第一信息,确定变量参数;
所述第二设备根据所述变量参数,确定指示信息;
所述变量参数,包括如下至少一项:
所述第一设备的能力信息,环境参数信息,参考信号测量信息,信号频率信息,所述第一设备的匹配状态,所述第一设备的储能效率。
可选的,所述第二设备根据所述第一信息,确定变量参数,包括:
第二设备根据所述第一信息,确定所述第一设备的匹配状态;
其中,所述第一信息包括如下信息中的至少一项:电量不足信息、节约电量请求信息。
可选的,所述方法,还包括如下任意一项:
向所述第一设备发送第一信号;
控制第三设备向所述第一设备发送第一信号;
通过第三设备向所述第一设备转发所述第一信号;
在接收第五设备发送的第一信号后,向所述第一设备发送所述第一信号;
其中,所述指示信息用于所述第一信号的调制、解调或储能。
可选的,所述第一信号包括载波信号或参考信号。
可选的,第一信号的配置信息包括如下至少一项:
信号类型,时域资源,频域资源,带宽信息,波形类型,保护间隔,信号功率;
所述信号类型包括如下任一项:
用于供能的RF信号,用于通信的RF信号,用于解调的RF信号,混合RF信号。
可选的,所述方法,还包括如下任意一项:
接收所述第一设备发送的第一调制信号;
向第四设备发送所述指示信息,所述第四设备用于接收第一调制信号;
其中,所述第一调制信号由调制所述第一信号得到。
可选的,所述第二设备向所述第一设备发送所述指示信息,包括如下任一项:
所述第二设备直接向所述第一设备发送所述指示信息;
所述第二设备通过第六设备转发所述指示信息。
可选的,所述第一信息包括如下至少一项:所述第一设备的能力信息,环境参数信息,参考信号测量信息,参考信号。
可选的,所述第一设备的能力信息用于指示如下至少一项:
可调谐能力,设备类型,频偏能力,振荡器能力,负载阻抗数量,阻抗值,功率放大PA参数、整流参数。
可选的,其中,所述可调谐能力,指示如下至少一项:是否具有可调谐能力,可调谐器的动态范围,可调谐器的精度,可调谐器的调谐参数类型;
所述设备类型,根据是否具有载波生成能力划分;
所述频偏能力,指示如下至少一项:第一电平持续时间,第一电平的切换周期,变容二极管的调频能力,与调频能力相关的硬件能力,例如,环形振荡器频偏能力;
所述振荡器能力,指示如下至少一项:晶振频率,时钟频率,振荡器稳定性。
可选的,所述调谐匹配方式,包括匹配或不匹配;
所述调谐对象,包括如下至少一项:天线调谐,匹配电路调谐,负载阻抗调谐,其它电路调谐;
所述调谐参数,包括如下至少一项:可调谐网络的电容值,可调谐网络的电感值,可调谐网络的电阻值,负载阻抗的选择。
可选的,所述第一设备包括如下任一项:标签,第一终端,反向散射信号的发送端;
或者,所述第二设备包括如下任一项:基站,中继,第二终端,读写器,射频源设备,反向散射信号的接收端。
可选的,所述指示信息还用于指示储能参数。
本申请实施例提供的调谐指示方法为与图8至图9的方法实施例对应的第二设备的执行方法,并达到相同的技术效果,为避免重复,这里不再赘述。上述可选的实施方式可以参见图8至图9所示的实施例中的相关说明,为避免重复说明,本实施例不再赘述。
本实施例中的调谐指示方法,包括:第二设备接收第一设备发送的第一信息,所述第二设备根据所述第一信息,确定指示信息;所述第二设备向所述第一设备发送所述指示信息,所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。通过第二设备配置调谐指示参数,能够提高调谐的效率和灵活性。
本申请实施例提供的调谐指示方法,执行主体可以为第二设备。本申请实施例中以第二设备执行调谐指示方法为例,说明本申请实施例提供的第二设备。
所述第二设备,包括:
第二接收模块,用于接收第一设备发送的第一信息;
确定模块,用于根据所述第一信息,确定指示信息;
第二发送模块,用于向所述第一设备发送所述指示信息;
所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
可选的,所述指示信息通过如下至少一项发送:
下行控制信息DCI,媒体接入控制控制单元MAC CE,旁链路控制信息SCI,前导码。
可选的,所述第二发送模块,包括如下至少一项:
第一发送子模块,用于通过无线资源控制RRC信令发送所述指示信息,所述RRC信令中的信息单元包括所述指示信息;
第二发送子模块,用于通过第一下行控制信息DCI信令发送所述指示信息,所述指示信息指示传输配置指示TCI状态池中的一个TCI状态;
第三发送子模块,用于通过媒体接入控制控制单元MAC CE发送所述指示信息,所述指示信息指示TCI状态池中的一个TCI状态;
第四发送子模块,用于通过第二DCI信令发送所述指示信息,所述指示信息指示N个TCI状态中的一个TCI状态,所述N个TCI状态由MAC CE从所述TCI状态池的M个TCI状态中选择得到,1≤N≤M,N和M为正整数;
其中,所述TCI状态池由RRC配置得到,所述TCI状态池中的每个TCI状态对应的一组指示参数,每组指示参数包括如下至少一项:调谐匹配方式,调谐对象,调谐参数。
可选的,所述指示信息指示至少两个调谐参数,所述至少两个调谐参数中的每一个调谐参数对应一个时间单元。
可选的,确定模块,包括:
第一确定子模块,用于根据所述第一信息,确定变量参数;
第二确定子模块,用于根据所述变量参数,确定指示信息;
所述变量参数,包括如下至少一项:
所述第一设备的能力信息,环境参数信息,参考信号测量信息,信号频率信息,所述第一设备的匹配状态,所述第一设备的储能效率。
可选的,第一确定子模块,包括:
第一确定单元,用于根据所述第一信息,确定所述第一设备的匹配状态;
其中,所述第一信息包括如下信息中的至少一项:电量不足信息、节约电量请求信息。
可选的,所述第二设备,还包括:
第四发送模块,用于向所述第一设备发送第一信号;
控制模块,用于控制第三设备向所述第一设备发送第一信号;
第五发送模块,用于通过第三设备向所述第一设备转发所述第一信号;
第六发送模块,用于在接收第五设备发送的第一信号后,向所述第一设备发送所述第一信号;
其中,所述指示信息用于所述第一信号的调制、解调或储能。
可选的,所述第一信号包括载波信号或参考信号。
可选的,第一信号的配置信息包括如下至少一项:
信号类型,时域资源,频域资源,带宽信息,波形类型,保护间隔,信号功率;
所述信号类型包括如下任一项:
用于供能的RF信号,用于通信的RF信号,用于解调的RF信号,混合RF信号。
可选的,所述第二设备还包括:
第四接收模块,用于接收所述第一设备发送的第一调制信号;
第七发送模块,用于向第四设备发送所述指示信息,所述第四设备用于接收第一调制信号;
其中,所述第一调制信号由调制所述第一信号得到。
可选的,第二发送模块,包括如下任一项:
第五发送子模块,用于直接向所述第一设备发送所述指示信息;
第六发送子模块,用于通过第六设备转发所述指示信息。
可选的,所述第一信息包括如下至少一项:所述第一设备的能力信息,环境参数信息,参考信号测量信息,参考信号。
可选的,所述第一设备的能力信息用于指示如下至少一项:
可调谐能力,设备类型,频偏能力,振荡器能力,负载阻抗数量,阻抗值,功率放大PA参数、整流参数。
可选的,所述可调谐能力,指示如下至少一项:是否具有可调谐能力,可调谐器的动态范围,可调谐器的精度,可调谐器的调谐参数类型;
所述设备类型,根据是否具有载波生成能力划分;
所述频偏能力,指示如下至少一项:第一电平持续时间,第一电平的切换周期,变容二极管的调频能力,与调频能力相关的硬件能力,例如,环形振荡器频偏能力;
所述振荡器能力,指示如下至少一项:晶振频率,时钟频率,振荡器稳定性。
可选的,所述调谐匹配方式,包括匹配或不匹配;
所述调谐对象,包括如下至少一项:天线调谐,匹配电路调谐,负载阻抗调谐,其它电路调谐;
所述调谐参数,包括如下至少一项:可调谐网络的电容值,可调谐网络的电感值,可调谐网络的电阻值,负载阻抗的选择。
可选的,所述第一设备包括如下任一项:标签,第一终端,反向散射信号的发送端;
或者,所述第二设备包括如下任一项:基站,中继,第二终端,读写器,射频源设备,反向散射信号的接收端。
可选的,所述指示信息还用于指示储能参数。
本发明实施例,通过第二设备配置第一设备的调谐指示,能够提高调谐的效率和灵活性。
本申请实施例中的第二设备可以是电子设备,例如具有操作系统的电子设备,也可以 是电子设备中的部件,例如集成电路或芯片。该电子设备可以是网络设备,也可以为除网络设备之外的其他设备。示例性的,网络设备可以包括但不限于上述所列举的网络设备比的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的第二设备能够实现图12的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图13所示,本申请实施例还提供一种第二设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该第二设备1300为终端时,该程序或指令被处理器1301执行时实现上述图12的方法实施例的各个步骤,且能达到相同的技术效果。该第二设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述图12的方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种第二设备,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图12所示的方法实施例的步骤。该第二设备实施例与第二设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第二设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种第二设备。如图14所示,该第二设备1400包括:天线141、射频装置142、基带装置143、处理器144和存储器145。天线141与射频装置142连接。在上行方向上,射频装置142通过天线141接收信息,将接收的信息发送给基带装置143进行处理。在下行方向上,基带装置143对要发送的信息进行处理,并发送给射频装置142,射频装置142对收到的信息进行处理后经过天线141发送出去。
以上实施例中第二设备执行的方法可以在基带装置143中实现,该基带装置143包括基带处理器。
基带装置143例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为基带处理器,通过总线接口与存储器145连接,以调用存储器145中的程序,执行以上方法实施例中所示的网络设备操作。
该第二设备还可以包括网络接口146,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的第二设备1400还包括:存储在存储器145上并可在处理器144上运行的指令或程序,处理器144调用存储器145中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图8-9所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述;或者该程序或指令被处理器执行时实现上述图12所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。在一些示例中,可读存储介质可以是非瞬态的可读存储介质。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述图8-9所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述;或者,实现上述图12所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述图8-9所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述;或者,所述计算机程序/程序产品被至少一个处理器执行以实现上述图12所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种无线通信系统,包括:第一设备及第二设备,所述第一设备可用于执行如上图8-9所示方法的步骤,所述网络侧设备可用于执行图12所示方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助计算机软件产品加必需的通用硬件平台的方式来实现,当然也可以通过硬件。该计算机软件产品存储在存储介质(如ROM、RAM、磁碟、光盘等)中,包括若干指令,用以使得终端或者网络侧设备执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式的实施方式,这些实施方式均属于本申请的保护之内。

Claims (38)

  1. 一种调谐指示方法,包括:
    第一设备向第二设备发送第一信息;
    所述第一设备接收所述第二设备发送的指示信息;
    其中,所述第一信息用于确定所述指示信息;
    所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
  2. 根据权利要求1所述的方法,其中,所述指示信息通过如下至少一项发送:
    下行控制信息DCI,媒体接入控制控制单元MAC CE,旁链路控制信息SCI,前导码。
  3. 根据权利要求2所述的方法,所述方法还包括:
    所述第一设备接收第三设备发送的第一信号;
    所述第一设备基于所述指示信息对所述第一信号进行调制、解调或储能;
    其中,所述第三设备与所述第二设备为相同设备,或者,所述第三设备与所述第二设备为不同设备。
  4. 根据权利要求1所述的方法,其中,所述第一设备接收所述第二设备发送的指示信息,包括如下至少一项:
    所述第一设备接收所述第二设备通过无线资源控制RRC信令发送的所述指示信息,所述RRC信令中的信息单元包括所述指示信息;
    所述第一设备接收所述第二设备通过第一下行控制信息DCI信令发送的所述指示信息,所述指示信息指示传输配置指示TCI状态池中的一个TCI状态;
    所述第一设备接收所述第二设备通过媒体接入控制控制单元MAC CE发送的所述指示信息,所述指示信息指示TCI状态池中的一个TCI状态;
    所述第一设备接收所述第二设备通过第二DCI信令发送的所述指示信息,所述指示信息指示N个TCI状态中的一个TCI状态,所述N个TCI状态由MAC CE从所述TCI状态池的M个TCI状态中选择得到,1≤N≤M,N和M为正整数;
    其中,所述TCI状态池由RRC配置得到,所述TCI状态池中的每个TCI状态对应的一组指示参数,每组指示参数包括如下至少一项:调谐匹配方式,调谐对象,调谐参数。
  5. 根据权利要求1-4中任一项所述的方法,其中,所述指示信息指示至少两个调谐参数,所述至少两个调谐参数中的每一个调谐参数对应一个时间单元;
    所述方法还包括:
    在第一时间单元中,所述第一设备以第一调谐参数测量参考信号获取第一参考信号测量量,所述第一调谐参数为与所述第一时间单元对应的调谐参数;
    在所述第一参考信号测量量大于第二参考信号测量量的情况下,所述第一设备基于所述第一调谐参数对第一信号进行调制、解调或储能;
    其中,第二参考信号测量量为所述第一设备在第二时间单元以第二调谐参数测量所述 参考信号获取的参考信号测量量;所述第二时间单元为所述指示信息中的除第一时间单元之外的其他时间单元,所述第二调谐参数为与所述第二时间单元对应的调谐参数;
    所述第一信息由第三设备发送至所述第一设备,所述第三设备与所述第二设备为相同设备,或者所述第三设备与所述第二设备为不同设备。
  6. 根据权利要求3或5所述的方法,其中,所述第一信号包括载波信号或参考信号。
  7. 根据权利要求6所述的方法,其中,所述第一设备基于所述指示信息对所述第一信号进行调制,包括:
    所述第一设备基于所述指示信息对所述第一信号进行调制,得到第一调制信号;
    所述方法,还包括:
    所述第一设备向第四设备发送所述第一调制信号;
    其中,所述第四设备与所述第二设备为相同设备;或者,所述第四设备与所述第二设备为不同设备;或者,所述第四设备与所述第三设备为相同设备;或者,所述第四设备与所述第三设备为不同设备。
  8. 根据权利要求3或5-7中任一项所述的方法,其中,
    在第三设备与第二设备为不同设备的情况下,所述第三设备为由所述第二设备控制的设备;
    或者,在第三设备与第二设备为不同设备的情况下,所述第一信号由所述第二设备通过第三设备向所述第一设备转发。
  9. 根据权利要求7所述的方法,其中,
    在第三设备与第二设备为不同设备的情况下,所述第三设备和第四设备中的至少一个还用于接收所述第二设备发送的所述指示信息;
    或者,在第三设备与第二设备为不同设备的情况下,所述第一信号由第五设备通过第三设备向所述第一设备转发,所述第三设备、第四设备和第五设备中的至少一个用于接收所述第二设备发送的所述指示信息。
  10. 根据权利要求1-9中任一项所述的方法,其中,所述第一设备接收所述第二设备发送的指示信息,包括如下任一项:
    所述第一设备接收所述第二设备直接发送的指示信息;
    所述第一设备接收所述第二设备通过第六设备转发的指示信息。
  11. 根据权利要求1-10中任一项所述的方法,其中,所述第一信息包括如下至少一项:所述第一设备的能力信息,环境参数信息,参考信号测量信息,参考信号。
  12. 根据权利要求11所述的方法,其中,
    所述第一设备的能力信息用于指示如下至少一项:
    可调谐能力,设备类型,频偏能力,振荡器能力,负载阻抗数量,阻抗值,功率放大PA参数、整流参数。
  13. 根据权利要求12所述的方法,其中,
    所述可调谐能力,指示如下至少一项:是否具有可调谐能力,可调谐器的动态范围,可调谐器的精度,可调谐器的调谐参数类型;
    或者,所述设备类型,根据是否具有载波生成能力划分;
    或者,所述频偏能力,指示如下至少一项:第一电平持续时间,第一电平的切换周期,变容二极管的调频能力,与调频能力相关的硬件能力;
    或者,所述振荡器能力,指示如下至少一项:晶振频率,时钟频率,振荡器稳定性。
  14. 根据权利要求1-13中任一项所述的方法,其中,
    所述调谐匹配方式,包括匹配或不匹配;
    或者,所述调谐对象,包括如下至少一项:天线调谐,匹配电路调谐,负载阻抗调谐,其它电路调谐;
    或者,所述调谐参数,包括如下至少一项:可调谐网络的电容值,可调谐网络的电感值,可调谐网络的电阻值,负载阻抗的选择。
  15. 根据权利要求1-14中任一项所述的方法,其中,
    所述第一设备包括如下任一项:标签,第一终端,反向散射信号的发送端;
    或者,所述第二设备包括如下任一项:基站,中继,第二终端,读写器,射频源设备,反向散射信号的接收端。
  16. 根据权利要求1-15中任一项所述的方法,其中,所述指示信息还用于指示储能参数。
  17. 一种调谐指示方法,包括:
    第二设备接收第一设备发送的第一信息;
    所述第二设备根据所述第一信息,确定指示信息;
    所述第二设备向所述第一设备发送所述指示信息;
    所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
  18. 根据权利要求17所述的方法,其中,所述指示信息通过如下至少一项发送:
    下行控制信息DCI,媒体接入控制控制单元MAC CE,旁链路控制信息SCI,前导码。
  19. 根据权利要求17所述的方法,其中,所述第二设备向所述第一设备发送所述指示信息,包括如下至少一项:
    所述第二设备通过无线资源控制RRC信令发送所述指示信息,所述RRC信令中的信息单元包括所述指示信息;
    所述第二设备通过第一下行控制信息DCI信令发送所述指示信息,所述指示信息指示传输配置指示TCI状态池中的一个TCI状态;
    所述第二设备通过媒体接入控制控制单元MAC CE发送所述指示信息,所述指示信息指示TCI状态池中的一个TCI状态;
    所述第二设备通过第二DCI信令发送所述指示信息,所述指示信息指示N个TCI状态中的一个TCI状态,所述N个TCI状态由MAC CE从所述TCI状态池的M个TCI状 态中选择得到,1≤N≤M,N和M为正整数;
    其中,所述TCI状态池由RRC配置得到,所述TCI状态池中的每个TCI状态对应的一组指示参数,每组指示参数包括如下至少一项:调谐匹配方式,调谐对象,调谐参数。
  20. 根据权利要求17-19中任一项所述的方法,其中,所述指示信息指示至少两个调谐参数,所述至少两个调谐参数中的每一个调谐参数对应一个时间单元。
  21. 根据权利要求17-20中任一项所述的方法,其中,所述第二设备根据所述第一信息,确定指示信息,包括:
    所述第二设备根据所述第一信息,确定变量参数;
    所述第二设备根据所述变量参数,确定指示信息;
    所述变量参数,包括如下至少一项:
    所述第一设备的能力信息,环境参数信息,参考信号测量信息,信号频率信息,所述第一设备的匹配状态,所述第一设备的储能效率。
  22. 根据权利要求21所述的方法,其中,所述第二设备根据所述第一信息,确定变量参数,包括:
    第二设备根据所述第一信息,确定所述第一设备的匹配状态;
    其中,所述第一信息包括如下信息中的至少一项:电量不足信息、节约电量请求信息。
  23. 根据权利要求17-22中任一项所述的方法,所述方法,还包括如下任意一项:
    向所述第一设备发送第一信号;
    控制第三设备向所述第一设备发送第一信号;
    通过第三设备向所述第一设备转发所述第一信号;
    在接收第五设备发送的第一信号后,向所述第一设备发送所述第一信号;
    其中,所述指示信息用于所述第一信号的调制、解调或储能。
  24. 根据权利要求23所述的方法,其中,所述第一信号包括载波信号或参考信号。
  25. 根据权利要求23-24中任一项所述的方法,其中,第一信号的配置信息包括如下至少一项:
    信号类型,时域资源,频域资源,带宽信息,波形类型,保护间隔,信号功率;
    所述信号类型包括如下任一项:
    用于供能的射频RF信号,用于通信的RF信号,用于解调的RF信号,混合RF信号。
  26. 根据权利要求23-25中任一项所述的方法,其中,所述方法,还包括如下任意一项:
    所述第二设备接收所述第一设备发送的第一调制信号;
    所述第二设备向第四设备发送所述指示信息,所述第四设备用于接收第一调制信号;
    其中,所述第一调制信号由调制所述第一信号得到。
  27. 根据权利要求17-26中任一项所述的方法,其中,所述第二设备向所述第一设备发送所述指示信息,包括如下任一项:
    所述第二设备直接向所述第一设备发送所述指示信息;
    所述第二设备通过第六设备转发所述指示信息。
  28. 根据权利要求17-27中任一项所述的方法,其中,所述第一信息包括如下至少一项:所述第一设备的能力信息,环境参数信息,参考信号测量信息,参考信号。
  29. 根据权利要求28所述的方法,其中,
    所述第一设备的能力信息用于指示如下至少一项:
    可调谐能力,设备类型,频偏能力,振荡器能力,负载阻抗数量,阻抗值,功率放大PA参数、整流参数。
  30. 根据权利要求29所述的方法,其中,
    其中,所述可调谐能力,指示如下至少一项:是否具有可调谐能力,可调谐器的动态范围,可调谐器的精度,可调谐器的调谐参数类型;
    或者,所述设备类型,根据是否具有载波生成能力划分;
    或者,所述频偏能力,指示如下至少一项:第一电平持续时间,第一电平的切换周期,变容二极管的调频能力,与调频能力相关的硬件能力;
    或者,所述振荡器能力,指示如下至少一项:晶振频率,时钟频率,振荡器稳定性。
  31. 根据权利要求17-30中任一项所述的方法,其中,
    所述调谐匹配方式,包括匹配或不匹配;
    或者,所述调谐对象,包括如下至少一项:天线调谐,匹配电路调谐,负载阻抗调谐,其它电路调谐;
    或者,所述调谐参数,包括如下至少一项:可调谐网络的电容值,可调谐网络的电感值,可调谐网络的电阻值,负载阻抗的选择。
  32. 根据权利要求17-31中任一项所述的方法,其中,
    所述第一设备包括如下任一项:标签,第一终端,反向散射信号的发送端;
    或者,所述第二设备包括如下任一项:基站,中继,第二终端,读写器,射频源设备,反向散射信号的接收端。
  33. 根据权利要求17-32中任一项所述的方法,其中,所述指示信息还用于指示储能参数。
  34. 一种第一设备,包括:
    第一发送模块,用于向第二设备发送第一信息;
    第一接收模块,用于接收所述第二设备发送的指示信息;
    其中,所述第一信息用于确定所述指示信息;
    所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
  35. 一种第二设备,包括:
    第二接收模块,用于接收第一设备发送的第一信息;
    确定模块,用于根据所述第一信息,确定指示信息;
    第二发送模块,用于向所述第一设备发送所述指示信息;
    所述指示信息用于指示如下至少一项:调谐匹配方式,调谐对象,调谐参数。
  36. 一种第一设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的调谐指示方法的步骤。
  37. 一种第二设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求17至33任一项所述的调谐指示方法的步骤。
  38. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至16任一项所述的调谐指示方法,或者实现如权利要求17至33任一项所述的调谐指示方法的步骤。
PCT/CN2024/078517 2023-03-01 2024-02-26 调谐指示方法、设备及介质 WO2024179397A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310197401.X 2023-03-01
CN202310197401.XA CN118590348A (zh) 2023-03-01 2023-03-01 调谐指示方法、设备及介质

Publications (1)

Publication Number Publication Date
WO2024179397A1 true WO2024179397A1 (zh) 2024-09-06

Family

ID=92536120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/078517 WO2024179397A1 (zh) 2023-03-01 2024-02-26 调谐指示方法、设备及介质

Country Status (2)

Country Link
CN (1) CN118590348A (zh)
WO (1) WO2024179397A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099269A1 (en) * 2003-11-10 2005-05-12 Diorio Christopher J. Method and apparatus to configure an RFID system to be adaptable to a plurality of environmental conditions
CN1701342A (zh) * 2003-08-29 2005-11-23 赛宝技术公司 具有可选择的反向散射参数的rfid系统
CN112399542A (zh) * 2019-08-16 2021-02-23 成都华为技术有限公司 一种反向散射通信方法及相关设备
CN113891356A (zh) * 2021-09-29 2022-01-04 中国信息通信研究院 一种无线通信数据信息传输方法和设备
CN113973369A (zh) * 2020-07-22 2022-01-25 维沃移动通信有限公司 获取、指示通信资源的方法、装置及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701342A (zh) * 2003-08-29 2005-11-23 赛宝技术公司 具有可选择的反向散射参数的rfid系统
US20050099269A1 (en) * 2003-11-10 2005-05-12 Diorio Christopher J. Method and apparatus to configure an RFID system to be adaptable to a plurality of environmental conditions
CN112399542A (zh) * 2019-08-16 2021-02-23 成都华为技术有限公司 一种反向散射通信方法及相关设备
CN113973369A (zh) * 2020-07-22 2022-01-25 维沃移动通信有限公司 获取、指示通信资源的方法、装置及电子设备
CN113891356A (zh) * 2021-09-29 2022-01-04 中国信息通信研究院 一种无线通信数据信息传输方法和设备

Also Published As

Publication number Publication date
CN118590348A (zh) 2024-09-03

Similar Documents

Publication Publication Date Title
WO2023066318A1 (zh) Bsc终端能力上报方法、装置、终端及网络侧设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
US20240349223A1 (en) Method for wireless communication, terminal device, and network device
US20240171269A1 (en) Wireless communication method and apparatus, and communication device
WO2024179397A1 (zh) 调谐指示方法、设备及介质
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2024146543A1 (zh) 反向散射通信的子载波调制方法及装置、通信设备
WO2024199078A1 (zh) 信号传输方法、信号检测方法、装置及通信设备
WO2024212163A1 (zh) 无线通信的方法、网络设备和环境能amp设备
WO2024212162A1 (zh) 无线通信的方法、发送端设备和接收端设备
WO2023159495A1 (zh) 通信方法、终端设备、网络设备、芯片和存储介质
WO2024152354A1 (zh) 一种通信方法及装置、终端设备、网络设备
WO2024077479A1 (zh) 一种零功耗通信方法及装置、终端设备、网络设备
WO2024159522A1 (zh) 无线通信的方法和设备
WO2023168721A1 (zh) 配置资源的方法、终端以及网络设备
WO2024187419A1 (zh) 无线通信方法、终端设备及网络设备
WO2024098403A1 (zh) 无线通信的方法及设备
EP4408078A1 (en) Wireless communication method, and device
WO2024061109A1 (zh) 传输方法、装置、通信设备及反向散射设备
WO2023044895A1 (zh) 一种移动性管理方法及装置、终端
WO2024093776A1 (zh) 级联链路中的信号测量处理方法、装置及相关设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2024012369A1 (zh) 一种数据传输的方法和通信装置
EP4407828A1 (en) Wireless communication method and device