WO2024061094A1 - 用户设备、无线通信方法和计算机可读存储介质 - Google Patents

用户设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2024061094A1
WO2024061094A1 PCT/CN2023/118740 CN2023118740W WO2024061094A1 WO 2024061094 A1 WO2024061094 A1 WO 2024061094A1 CN 2023118740 W CN2023118740 W CN 2023118740W WO 2024061094 A1 WO2024061094 A1 WO 2024061094A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
link
quality
indication information
wireless communication
Prior art date
Application number
PCT/CN2023/118740
Other languages
English (en)
French (fr)
Inventor
王晓雪
孙晨
Original Assignee
索尼集团公司
王晓雪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 王晓雪 filed Critical 索尼集团公司
Publication of WO2024061094A1 publication Critical patent/WO2024061094A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route

Definitions

  • Embodiments of the present disclosure relate generally to the field of wireless communications, and specifically to user equipment, a wireless communication method performed by the user equipment, and a computer-readable storage medium. More specifically, embodiments of the present disclosure relate to user equipment at the transmitting end, user equipment at the receiving end, a wireless communication method performed by the user equipment at the transmitting end, a wireless communication method performed by the user equipment at the receiving end, and a computer-readable storage medium.
  • SL communication can be used in a wider range of scenarios, such as Internet of Vehicles, XR (Extended Reality, including AR, VR, MR), autonomous driving, industrial automation, etc. These advanced application scenarios put forward higher requirements for SL communication, such as higher transmission speed and lower transmission delay.
  • XR Extended Reality, including AR, VR, MR
  • autonomous driving industrial automation, etc.
  • the positions of the sending communication device and the receiving communication device may change within a short period of time.
  • the quality of communication links may deteriorate rapidly due to the rapid mobility of communication devices and the presence of obstructions.
  • how to quickly switch links when the quality of the communication link drops to a certain level is the key to maintaining communication quality.
  • the purpose of this disclosure is to provide a user equipment, a wireless communication method and a computer-readable storage medium to quickly switch communication links between user equipment, thereby ensuring communication quality.
  • a user equipment including a processing circuit configured to: generate and send link quality indication information to a peer user equipment, where the link quality indication information indicates that the user equipment communicates with multiple the quality of the link between each of the communication devices; and receiving link priority indication information determined according to the link quality indication information from the opposite end user equipment, the link priority indication The information includes priority information of multiple links between the peer user equipment and the user equipment.
  • a user device comprising a processing circuit, configured to: receive link quality indication information from an opposite user device, the link quality indication information indicating the quality of a link between the opposite user device and each of a plurality of communication devices; determine link priority indication information based on the link quality indication information, the link priority indication information comprising priority information of a plurality of links between the user device and the opposite user device; and send the link priority indication information to the opposite user device.
  • a wireless communication method performed by a user equipment including: generating and sending link quality indication information to a peer user equipment, where the link quality indication information indicates that the user equipment is connected to the quality of the link between each communication device in the plurality of communication devices; and receiving link priority indication information determined according to the link quality indication information from the opposite end user equipment, the link priority
  • the indication information includes priority information of multiple links between the opposite end user equipment and the user equipment.
  • a wireless communication method performed by a user equipment including: receiving link quality indication information from a peer user equipment, the link quality indication information indicating that the peer user equipment is connected to The quality of the link between each communication device in the plurality of communication devices; determining link priority indication information according to the link quality indication information, where the link priority indication information includes the user equipment and the priority information of multiple links between opposite end user equipment; and sending the link priority indication information to the opposite end user equipment.
  • a computer-readable storage medium including executable computer instructions that, when executed by a computer, cause the computer to perform a wireless communication method according to the present disclosure.
  • a computer program that, when executed by a computer, causes the computer to perform a wireless communication method according to the present disclosure.
  • the user equipment can receive link priority indication information determined according to the link quality indication information sent by the user equipment from the opposite end user equipment, including the opposite end user equipment. Priority information of multiple links between the user equipment and the user equipment. In this way, both the peer user equipment and the user equipment can store the priority information of the link, so that link switching can be performed based on the priority information when needed, without the need for link measurement, reporting, and recovery. operation, thereby realizing fast link switching and ensuring communication quality.
  • Figure 1 is a schematic diagram showing an application scenario of the present disclosure
  • FIG. 2 is a block diagram illustrating an example of a configuration of a user equipment at a receiving end according to an embodiment of the present disclosure
  • Figure 3 is a schematic diagram illustrating a scenario in which UE (User Equipment) 1 and UE2 communicate using direct links according to an embodiment of the present disclosure
  • Figure 4 is a schematic diagram illustrating a scenario in which UE1 and UE2 switch communication links according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram illustrating an example of a configuration of a user equipment of a sending end according to an embodiment of the present disclosure
  • FIG6 is a schematic diagram showing a scenario in which UE1 and UE2 switch communication links again according to an embodiment of the present disclosure
  • Figure 7 is a signaling flow diagram illustrating link switching using link priority indication information according to an embodiment of the present disclosure
  • Figure 8 is a signaling flow chart illustrating link switching using link priority indication information according to another embodiment of the present disclosure.
  • Figure 9 is a flowchart illustrating a wireless communication method performed by a user equipment at the receiving end according to an embodiment of the present disclosure
  • FIG. 10 is a flowchart illustrating a wireless communication method performed by a user equipment at a sending end according to an embodiment of the present disclosure
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a smartphone.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, neither of which should be construed to limit the scope of the present disclosure. In certain example embodiments, well-known processes, well-known structures, and well-known techniques have not been described in detail.
  • FIG. 1 is a schematic diagram showing an application scenario of the present disclosure.
  • the sending end user equipment of SL communication is identified as TX UE1, and the receiving end user equipment is identified as RX UE2.
  • SL communication is applied to the Internet of Vehicles, so UE1 and UE2 are both vehicles.
  • UE3 as a vehicle is also shown in FIG. 1 .
  • UE1 and UE2 communicate through the direct link between them.
  • UE3 travels between UE1 and UE2 and blocks the direct link between UE1 and UE2, causing the quality of the direct link between UE1 and UE2 to decrease.
  • the present disclosure proposes a user equipment in a wireless communication system, a wireless communication method performed by the user equipment in the wireless communication system, and a computer-readable storage medium to quickly switch communication links between user equipments. , thereby ensuring communication quality.
  • the user equipment may be a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera device, or a vehicle-mounted terminal such as a car navigation device ).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also known as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single die) installed on each of the above-mentioned terminals.
  • the present disclosure may be used in a vehicle network, that is, the user equipment may be integrated in a vehicle, or may be disposed in the vehicle separately from the vehicle.
  • the wireless communication system can be used in a 5G NR communication system, and can also be used in a higher level communication system in the future.
  • the wireless communication system may include a transmitting user device and a receiving user device that communicate using SL.
  • the wireless communication system may also include one or more other communication devices, and the one or more communication devices may include user devices located at pedestrians, user devices located at vehicles, road side units (Road Side Unit, RSU) and intelligent reflective surfaces (Large Intelligent Surface, LIS) and other devices that can forward data.
  • the other communication device refers to the transmitting user device and the receiving user device in a specific SL communication, and the other communication device may also be a transmitting user device in another SL communication. That is, the wireless communication system may include multiple user equipments, at least two of which communicate using SL, and optionally the wireless communication system may also include devices such as RSU and LIS that can forward data.
  • the FR2 millimeter wave frequency band can be used to improve data throughput. Since the FR2 frequency band has a high frequency, a small coverage range, and a large propagation loss, beamforming is usually used to transmit data.
  • the user equipment according to the present disclosure can use beamforming to perform SL communication.
  • the communication device used to forward data can also communicate with the user equipment in a beamforming manner.
  • FIG. 2 is a block diagram illustrating an example of a configuration of user equipment 200 according to an embodiment of the present disclosure.
  • the user equipment 200 may be a receiving end user equipment in SL communication in the wireless communication system.
  • the user equipment 200 may include a generation unit 210, a communication unit 220, and a storage unit 230.
  • each unit of the user equipment 200 may be included in the processing circuit. It should be noted that the user equipment 200 may include one processing circuit or multiple processing circuits. Further, the processing circuitry may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the generating unit 210 may generate link quality indication information, which indicates the quality of the link between the user equipment 200 and each of the multiple communication devices. Further, the user equipment 200 may send the link quality indication information to the opposite user equipment through the communication unit 220.
  • the opposite user equipment here may be a transmitting user equipment of SL communication.
  • the user equipment 200 may receive link priority indication information determined by the opposite end user equipment according to the link quality indication information from the opposite end user equipment through the communication unit 220.
  • the link priority indication information includes priority information of multiple links between the opposite end user equipment and the user equipment 200.
  • the user equipment 200 may store the link priority indication information in the storage unit 230.
  • the user equipment 200 can receive link priority indication information determined based on the link quality indication information sent by the user equipment 200 from the opposite end user equipment, including the link priority indication information between the opposite end user equipment and the user. Priority information for multiple links between devices 200. In this way, both the peer user equipment and the user equipment 200 can store the priority information of the link, so that link switching can be performed based on the priority information when needed, without the need for link measurement, reporting, and recovery. operation, thereby realizing fast link switching and ensuring communication quality.
  • the user equipment 200 may send link quality indication information to the opposite end user equipment after the opposite end user equipment establishes a link with the user equipment 200.
  • a link can be established through a beam scanning process between the opposite end user equipment and the user equipment 200.
  • the opposite end user equipment can determine the best beam pair between the opposite end user equipment and the user equipment 200 through a beam scanning process, so as to use the best beam pair to perform SL communication through the direct link.
  • the base station equipment may determine the location of the opposite end user equipment and the user equipment 200 according to the location (optionally, the base station equipment may also The movement information of the peer user equipment and the user equipment 200 (such as movement direction and movement speed) configures part of the beam for beam scanning.
  • the peer user equipment can perform partial beam scanning, and the user equipment 200 can perform partial beam scanning pairing, thereby reducing the time of the beam scanning process.
  • the opposite end user equipment or the user equipment 200 is located outside the coverage of the base station equipment, the opposite end user equipment can perform omnidirectional beam scanning, and the user equipment 200 can perform omnidirectional beam scanning pairing.
  • FIG. 3 is a schematic diagram illustrating a scenario in which UE1 and UE2 communicate using a direct link according to an embodiment of the present disclosure.
  • UE1 is the sending end user equipment
  • UE2 is the receiving end user equipment
  • the two sides pointed by arrows indicate that a connection has been established. That is to say, in addition to UE1 and UE2 communicating through the direct link, UE1 has also established connections with communication device 3 and communication device 5, and UE2 has also established connections with communication device 3, communication device 4 and communication device 5.
  • UE2 may send link quality indication information to UE1, which The link quality indication information indicates the quality of the link between UE2 and each of the plurality of communication devices. Further, UE1 may determine link priority indication information according to the link quality indication information from UE2, where the link priority indication information includes priority information of multiple links between UE1 and UE2.
  • multiple communication devices involved in the link quality indication information may be communication devices that have established connections with the user equipment 200, and the multiple communication devices include but are not limited to user equipment (such as users at pedestrians). equipment, user equipment at the vehicle), roadside units or smart reflective surfaces. That is to say, the plurality of communication devices may be any communication devices capable of data forwarding.
  • the generating unit 210 may generate link quality indication information, which indicates the quality of the link between the user equipment 200 and each of the multiple communication devices with which the connection has been established.
  • the link quality indication information generated by UE2 may indicate the quality of the link between UE2 and communication device 3, UE2 and communication device 4, UE2 and communication device 5, and UE2 and UE1.
  • the link quality indication information may indicate an absolute value of the quality of the link between the user equipment 200 and each communication device. For example, you can use SIR (Signal to Interference Ratio, Signal to Interference Ratio), SINR (Signal to Interference plus Noise Ratio, Signal to Interference Ratio), SNR (Signal Noise Ratio, Signal to Noise Ratio), RSRP (Reference Signal Receiving Power, Reference Signal receiving power), RSRQ (Reference Signal Receiving Quality, reference signal receiving quality) and other parameters represent the absolute value of the link quality.
  • the link quality indication information may also indicate a relative value of the quality of the link between the user equipment 200 and each communication device.
  • the relative value of the link quality can be represented by the difference with the link quality reference value or the ratio with the link quality reference value, or the normalized value can be used to represent the link quality. relative value. This disclosure does not limit the expression method of link quality.
  • the link quality indication information may include the following information: the link between UE2 and communication device 3: link quality A; the link between UE2 and communication device 4: Link quality B; the link between UE2 and communication device 5: link quality C; the link between UE2 and UE1: link quality D.
  • the link quality indication information may include priority information of the link between the user equipment 200 and each communication device.
  • the link quality indication information generated by UE2 may indicate that UE2 and communication device 3, UE2 and communication device 4, UE2 The priority of the link with communication device 5 and UE2 and UE1.
  • the user equipment 200 may further include a measurement unit 240 for measuring the quality of the link between the user equipment 200 and each communication device.
  • parameters representing the quality of a link include, but are not limited to, SIR, SINR, SNR, RSRP, and RSRQ.
  • the user equipment 200 may further include a ranking unit 250 for ranking links according to the quality of the link between the user equipment 200 and each communication device.
  • the sorting unit 250 may sort the links in order from high to low quality.
  • the user equipment 200 may further include a determining unit 260 for determining the priority information of each link according to the sorting result of the sorting unit 250 .
  • the determining unit 260 may determine that the higher the quality of the link, the higher the priority level.
  • the link quality indication information may include the following information: the link between UE2 and communication device 3: priority N1; the link between UE2 and communication device 4: priority Level N2; the link between UE2 and communication device 5: priority N3; the link between UE2 and UE1: priority N4.
  • N1-N4 represent non-negative integers, and the smaller the number, the higher the priority.
  • N1-N4 can be each number from 0-3 respectively.
  • the link quality indication information may include the following information: the link between UE2 and communication device 3: priority 0; the link between UE2 and communication device 4: priority 1; the link between UE2 and communication device 5 Link: priority 2; link between UE2 and UE1: priority 3.
  • priority information can be used to replace link quality information, thereby saving signaling overhead.
  • priority information may be expressed explicitly as described above, or may be expressed implicitly.
  • the order of the links in the link quality indication information can be used to implicitly represent the priority of the link. For example, the higher the link is in the link quality indication information, the higher the priority of the link.
  • the link quality indication information may include the following information: the link between UE2 and communication device 3; the link between UE2 and communication device 5; UE2 and communication device 4 The link between UE2 and UE1. That is to say, after receiving such link quality indication information, UE1 can determine that the following links are arranged in order from high to low priority: the link between UE2 and communication device 3; the link between UE2 and communication device 3. The link between devices 5; the link between UE2 and communication device 4; the link between UE2 and UE1 link. In this way, priority information can be represented invisibly, thereby further saving signaling overhead.
  • the identification of the communication device may be used to represent the link between the user equipment 200 and the communication device.
  • the link quality indication information may include the following information: the identification of communication device 3; the identification of communication device 5; the identification of communication device 4; and the identification of UE1.
  • the priority of each link connected to the user equipment 200 can be clearly expressed with minimal signaling overhead.
  • the user equipment 200 may transmit link quality indication information through MAC layer, RRC layer or physical layer signaling.
  • PSSCH Physical Sidelink Share Channel
  • the user equipment 200 may send the link quality indication information to the opposite end user equipment. Afterwards, the user equipment 200 may receive link priority indication information determined according to the link quality indication information from the peer user equipment through the communication unit 220 .
  • the link priority indication information may include priority information of multiple links between the opposite end user equipment and the user equipment 200.
  • the multiple links between the opposite end user equipment and the user equipment 200 may include direct links and indirect links between the opposite end user equipment and the user equipment 200.
  • the link priority indication information may indicate the priority of all links or part of all links among all reachable links between the opposite end user equipment and the user equipment 200 .
  • all reachable links between UE1 and UE2 include: UE1 ⁇ UE2; UE1 ⁇ communication device 3 ⁇ UE2; UE1 ⁇ communication device 5 ⁇ UE2.
  • the link priority indication information received by UE2 may indicate the priorities of all or part of the three links.
  • the link priority indication information may include the following information: link UE1 ⁇ communication device 3 ⁇ UE2: priority M1; link UE1 ⁇ communication device 5 ⁇ UE2: priority M2; link UE1 ⁇ UE2: priority M3 .
  • M1-M3 represent non-negative integers, and the smaller the number, the higher the priority.
  • M1-M3 can be each number from 0-2 respectively.
  • the link priority indication information may include the following information: link UE1 ⁇ communication device 3 ⁇ UE2: priority 0; link UE1 ⁇ communication device 5 ⁇ UE2: priority 1; link UE1 ⁇ UE2: priority Priority 2.
  • the priority of each link may be expressed explicitly as described above, or the priority of each link may be expressed implicitly.
  • the order of the links in the link priority indication information can be used to implicitly represent the priority of the link. For example, the higher the order of a link in the link priority indication information, the higher the priority of the link.
  • the link priority indication information may include the following information: link UE1 ⁇ communication device 3 ⁇ UE2; link UE1 ⁇ communication device 5 ⁇ UE2; link UE1 ⁇ UE2. That is to say, after receiving such link priority indication information, UE2 can determine that the following links are arranged in order from high to low priority: link UE1 ⁇ communication device 3 ⁇ UE2; link UE1 ⁇ Communication device 5 ⁇ UE2; link UE1 ⁇ UE2. In this way, priority information can be represented invisibly, thereby further saving signaling overhead.
  • the identifier of the communication device on the indirect link can be used to represent the indirect link
  • the identifier of the peer user equipment can be used to represent the direct link.
  • the link priority indication information may include the following information: the identification of communication device 3; the identification of communication device 5; and the identification of UE1. In this way, the priority of each reachable link between the opposite end user equipment and the user equipment 200 can be clearly expressed with minimal signaling overhead.
  • the user equipment 200 may receive the link priority indication information through MAC layer, RRC layer or physical layer signaling.
  • the link priority indication information may be received using PSSCH.
  • both the peer user equipment and the user equipment 200 may store such link priority indication information.
  • the opposite end user equipment and the user equipment 200 can switch links according to the link priority indication information, thereby increasing the speed of switching and ensuring communication quality.
  • the process of the user equipment 200 sending link quality indication information to the opposite end user equipment, and then the opposite end user equipment sending link priority indication information to the user equipment 200 may be triggered periodically. That is to say, the user equipment 200 periodically generates link quality indication information.
  • the period is 10ms or 5ms.
  • the cycle may be configured by the opposite end user equipment, the cycle may be configured by the base station equipment, or the cycle may be pre-configured in the user equipment 200.
  • the process of the user equipment 200 sending the link quality indication information to the opposite end user equipment, and then the opposite end user equipment sending the link priority indication information to the user equipment 200 may be dynamically triggered, for example, by the opposite end user equipment or The user equipment 200 uses SCI (Sidelink Control Information) to trigger.
  • SCI Servicelink Control Information
  • the process of the user equipment 200 sending the link quality indication information to the opposite end user equipment, and then the opposite end user equipment sending the link priority indication information to the user equipment 200 may be semi-statically triggered. For example, you can specify that the process should be triggered periodically within a period of time, and then stop triggering the process after this period of time.
  • the link quality indication information and the link priority indication information are updateable, that is, only the latest version of the link priority indication information is stored in the storage unit 230 .
  • the user equipment 200 may further include an adjustment unit 290.
  • the user equipment 200 can monitor the opposite end user equipment. Changes in the quality of the direct link with the user equipment 200. Further, in the case where the change speed of the quality of the direct link between the opposite end user equipment and the user equipment 200 exceeds the speed threshold range, the adjustment unit 290 may adjust the period for generating the link quality indication information.
  • the speed threshold range here may include an upper limit and a lower limit.
  • the adjustment unit 290 can adjust the current period to be shorter; when the opposite end user equipment and the user equipment 200 If the change speed of the quality of the direct link between the user equipments 200 is less than the lower limit of the speed threshold range, the adjustment unit 290 may adjust the current period to be longer.
  • the user equipment 200 can monitor the quality of the direct link, so that the change amount of the quality of the direct link within a unit time can be used to represent the changing speed of the quality of the direct link.
  • the link quality indication information is generated periodically, there may be a situation where the period of generating the link quality indication information does not match the communication environment around the opposite end user equipment and the user equipment 200 .
  • the location of the peer user equipment or user equipment 200 has changed greatly, or the communication equipment capable of forwarding data is no longer able to provide services, resulting in a communication environment A lot has changed.
  • the generated link quality indication information is no longer accurate, causing the link priority indication information to be no longer accurate.
  • the locations of the peer user equipment and user equipment 200 and the surrounding communication environment are relatively stable. If the period for generating link quality indication information is too small, information exchange will occur too frequently and signaling overhead will increase.
  • the cycle for generating link quality indication information is adjusted according to the changing speed of the link quality, so that the cycle is more consistent with the surrounding communication environment, and the generated link quality indication information and link priority indication information are more accurate, ensuring that the link quality indication information is generated more accurately. while controlling signaling overhead.
  • the user equipment 200 may also include a judgment unit 270 for judging whether the quality of the direct link between the opposite end user equipment and the user equipment 200 meets the handover condition, that is, judging Whether the quality of the direct link has dropped to a certain level and link switching is required.
  • the measuring unit 240 may measure the quality of the direct link periodically, dynamically or semi-statically. Further, when the number of times that the quality of the direct link is less than the quality threshold within a predetermined time window is greater than the number threshold, the judging unit 270 may determine that the quality of the direct link meets the switching condition. For example, the judging unit 270 may set a counter, and the initial value of the counter is 0. Within the predetermined time window, each time the quality of the direct link is less than the quality threshold, the counter is incremented by 1.
  • the judging unit 270 determines that the quality of the direct link meets the switching condition; if the value of the counter is not greater than the number threshold, the counter is cleared.
  • the length of the predetermined time window, the number threshold, and the quality threshold may be configured by the peer user equipment, may be configured by the user equipment 200, may be configured by the base station device, or may be pre-configured in the user equipment 200.
  • the user equipment 200 may further include a switching unit 280.
  • the switching unit 280 may switch the direct link according to the link priority indication information.
  • the switching unit 280 may cause the user equipment 200 to switch to the link with the highest priority in the link priority indication information to communicate with the opposite end user equipment.
  • the generating unit 210 may also generate a switching notification, and the user equipment 200 may send a switching notification to the opposite end user equipment through the communication unit 220 to notify the opposite end user equipment to also switch to the link with the highest priority to communicate with the opposite end user equipment.
  • User equipment 200 communicates.
  • the switching notification may only include 1 bit of information to indicate the switching operation.
  • the end user equipment switches to the link with the highest priority based on its own stored link priority indication information.
  • the user equipment 200 may send the switching notification through SCI.
  • the user equipment 200 may also receive a switching notification from the opposite end user equipment through the communication unit 220.
  • the switching notification may only include 1 bit of information to indicate the switching operation.
  • the user equipment 200 may receive the switching notification through the SCI.
  • the judgment unit 270 determines that the quality of the direct link satisfies the switching condition according to the switching notification, so that the switching unit 280 performs switching as described above.
  • the opposite end user equipment may determine whether to switch the direct link. Furthermore, when a direct link needs to be switched, link switching can be performed directly based on the latest version of the link priority indication information in the user equipment 200, without the need to perform operations such as measuring and reporting the link, thereby saving switching time. time to ensure the communication quality between the peer user equipment and the user equipment 200.
  • FIG. 4 is a schematic diagram illustrating a scenario in which UE1 and UE2 switch communication links according to an embodiment of the present disclosure.
  • UE2 can be implemented by user equipment 200, and UE1 serves as the sending end user equipment.
  • the link priority indication information indicates that the following links are arranged in order from high to low priority: link UE1 ⁇ communication device 3 ⁇ UE2; link UE1 ⁇ communication device 5 ⁇ UE2; link UE1 ⁇ UE2.
  • the link is switched to UE1 ⁇ communication device 3 ⁇ UE2. That is to say, the information of UE1 is forwarded to UE2 through communication device 3 .
  • the communication quality between UE1 and UE2 can be guaranteed.
  • the peer user equipment and other communication devices may communicate in a beamforming manner, and other communication devices and the user equipment 200 may also communicate in a beamforming manner.
  • the communication device that performs forwarding is a communication device that has established a connection with the opposite end user equipment and the user equipment 200, so the beam pair has been determined. That is to say, the communication device used for forwarding can use the previously determined beam pair to communicate with the opposite end user equipment and the user equipment 200.
  • the user equipment 200 can receive link priority indication information from the opposite end user equipment, which includes priority information of multiple links between the opposite end user equipment and the user equipment 200.
  • the peer user equipment and user equipment 200 Both can store link priority information.
  • the link priority indication information can be updated.
  • the user equipment 200 or the opposite end user equipment can determine whether the direct link needs to be switched, and can perform link switching based on the link priority indication information, without the need to perform link measurement, reporting, recovery and other operations. This achieves fast link switching and ensures the communication quality of the link between user equipment.
  • FIG. 5 is a block diagram showing the structure of a user equipment 500 in a wireless communication system according to an embodiment of the present disclosure.
  • the user equipment 500 may be a sending end user equipment in SL communication.
  • the user equipment 500 may include a communication unit 510, a priority determination unit 520, and a generation unit 530.
  • each unit of the user equipment 500 may be included in the processing circuit. It should be noted that the user equipment 500 may include one processing circuit or multiple processing circuits. Further, the processing circuitry may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the user equipment 500 may receive link quality indication information from the opposite end user equipment through the communication unit 510, the link quality indication information indicating the link quality between the opposite end user equipment and each communication device in the plurality of communication devices.
  • the quality of the link may be the receiving end user equipment in SL communication.
  • the priority determination unit 520 may determine priority information of multiple links between the user equipment 500 and the opposite end user equipment according to the received link quality indication information.
  • the generating unit 530 may generate link priority indication information, where the link priority indication information includes priority information of a plurality of links determined by the priority determining unit 520 . Further, the user equipment 500 may send the link priority indication information to the opposite end user equipment through the communication unit 510.
  • the user equipment 500 can send link priority indication information to the opposite end user equipment, which includes priority information of multiple links between the user equipment 500 and the opposite end user equipment. Furthermore, when link switching is required, link switching can be performed based on the link priority indication information, without the need for link measurement and reporting. and recovery operations to achieve fast link switching and ensure the communication quality of the link between user equipment.
  • the user equipment 500 may further include a storage unit 540 for storing link priority indication information.
  • the user equipment 500 may receive link quality indication information from the opposite user equipment after the user equipment 500 establishes a link with the opposite user equipment.
  • a link can be established through a beam scanning process between the user equipment 500 and the opposite end user equipment.
  • the user equipment 500 can determine the best beam pair between the user equipment 500 and the opposite end user equipment through a beam scanning process, thereby using the best beam pair to perform SL communication through the direct link.
  • the base station equipment when the user equipment 500 and the opposite end user equipment are both located within the coverage of the base station equipment, the base station equipment can determine The motion information of the device 500 and the peer user device, including motion speed and motion direction, configures a portion of the beam for beam scanning. In this way, the user equipment 500 can perform partial beam scanning, and the peer user equipment can perform partial beam scanning pairing, thereby reducing the time of the beam scanning process. Further, when the user equipment 500 or the opposite end user equipment is located outside the coverage of the base station equipment, the user equipment 500 can perform omnidirectional beam scanning, and the opposite end user equipment can perform omnidirectional beam scanning pairing.
  • the user equipment 500 may receive the link quality indication information through MAC layer, RRC layer or physical layer signaling.
  • PSSCH may be used to receive link quality indication information.
  • the priority determination unit 520 may determine the quality of each link between the user equipment 500 and the opposite end user equipment.
  • the multiple links may include direct links and indirect links between the user equipment 500 and the opposite end user equipment. That is to say, the user equipment 500 can determine all reachable links between the user equipment 500 and the opposite end user equipment.
  • the user equipment 500 can know the communication equipment that has established a connection with the user equipment 500, and can determine the communication equipment that has established a connection with the opposite end user equipment based on the link quality indication information, so that it can determine the communication equipment that has established a connection with the user equipment 500 based on the link quality indication information.
  • the device and the communication device that has established a connection with the peer user device to determine all reachable links.
  • UE1 can determine It is determined that UE2 has established connections with communication device 3, communication device 4 and communication device 5, and UE1 knows that UE2, communication device 3 and communication device 5 have established connections with UE1, so all reachable links between UE1 and UE2 can be determined Including: link UE1 ⁇ communication device 3 ⁇ UE2; link UE1 ⁇ communication device 5 ⁇ UE2; link UE1 ⁇ UE2. Among them, the first two are indirect links, and the last one is a direct link.
  • the user equipment 500 may further include a measurement unit 550 for measuring the quality of the link between the user equipment 500 and other communication devices.
  • the measurement unit 550 may measure the quality of the direct link between the user equipment 500 and the opposite end user equipment.
  • the measurement unit 550 can measure the quality of the link between the user equipment 500 and the communication device on each indirect link, and the priority determination unit 520 can determine each link quality indication information from the opposite end user equipment.
  • the quality of the link between the communication equipment on each indirect link and the peer user equipment can be based on the quality of the link between the user equipment and the communication equipment on each indirect link and the quality of the link between the communication equipment and the peer user equipment.
  • the quality of the indirect link is determined by the quality of the link between end user equipment.
  • the priority determination unit 520 may determine the quality of the entire link by comprehensively considering the quality of the link between the user equipment 500 and the communication device and the quality of the link between the communication device and the opposite end user equipment. quality. For example, the priority determination unit 520 may determine the quality of the entire link as a weighted sum of the quality of the link between the user equipment 500 and the communication device and the quality of the link between the communication device and the opposite end user equipment, where each The weight of a link may be determined by the user equipment 500 according to the importance of the link. Alternatively, the priority determination unit 520 may also determine the quality of the entire link based only on the quality of the link between the user equipment 500 and the communication device.
  • the user equipment 500 is relatively busy, so it is expected to use a communication device with better link quality between the user equipment 500 and the user equipment 500 to forward the data of the user equipment 500 .
  • the priority determination unit 520 may determine the quality of the entire link only based on the quality of the link between the communication device and the opposite end user equipment.
  • the opposite end user equipment 500 is relatively busy, so it is expected to use a communication device with better link quality to forward data to the opposite end user equipment 500 .
  • the priority determination unit 520 may determine the quality of each reachable link according to the measurement result of the measurement unit 550 and the link quality indication information from the opposite end user equipment.
  • the priority determination unit 520 can determine the priority of each reachable link according to the The priority determining unit 520 can sort the multiple reachable links according to their quality. For example, the better the quality of the reachable link, the higher the ranking. Further, the priority determining unit 520 can determine the priority information of the multiple links according to the sorting result. For example, the higher the ranking, the higher the priority of the link. In other words, the priority determining unit 520 can sort the reachable links according to the quality of the reachable links, so that the better the quality, the higher the priority.
  • the generating unit 530 may generate link priority indication information.
  • the link priority indication information includes the priority of each reachable link.
  • the link priority indication information may include the following information: link UE1 ⁇ communication device 3 ⁇ UE2: priority M1; link UE1 ⁇ communication device 5 ⁇ UE2: priority M2; Road UE1 ⁇ UE2: priority M3.
  • M1-M3 represent non-negative integers, and the smaller the number, the higher the priority. For example, M1-M3 can be each number from 0-2 respectively.
  • the link priority indication information may include the following information: link UE1 ⁇ communication device 3 ⁇ UE2: priority 0; link UE1 ⁇ communication device 5 ⁇ UE2: priority 1; link UE1 ⁇ UE2: priority 2 .
  • the priority of each link may be expressed explicitly as described above, or the priority of each link may be expressed implicitly.
  • the order of the links in the link priority indication information can be used to implicitly represent the priority of the link. For example, the higher the order of a link in the link priority indication information, the higher the priority of the link.
  • the link priority indication information may include the following information: link UE1 ⁇ communication device 3 ⁇ UE2; link UE1 ⁇ communication device 5 ⁇ UE2; link UE1 ⁇ UE2. That is to say, after receiving such link priority indication information, UE2 can determine that the following links are arranged in order from high to low priority: link UE1 ⁇ communication device 3 ⁇ UE2; link UE1 ⁇ Communication device 5 ⁇ UE2; link UE1 ⁇ UE2. In this way, priority information can be represented invisibly, thereby further saving signaling overhead.
  • the identity of the communication device on the indirect link may be used to represent the indirect link
  • the identity of the user equipment 500 may be used to represent the direct link
  • the link priority indication information may include the following information: the identification of communication device 3; the identification of communication device 5; and the identification of UE1. In this way, the priority of each reachable link between the user equipment 500 and the opposite end user equipment can be clearly expressed with minimal signaling overhead.
  • the user equipment 500 may send the link priority indication information through MAC layer, RRC layer or physical layer signaling.
  • the link priority indication information may be sent using PSSCH.
  • the process in which the user equipment 500 receives link quality indication information from the opposite end user equipment, and then the user equipment 500 sends the link priority indication information to the opposite end user equipment may be triggered periodically.
  • dynamic trigger semi-static trigger. That is to say, the link quality indication information and the link priority indication information can be updated, that is, only the latest version of the link priority indication information is stored in the storage unit 540 .
  • the user equipment 500 may further include an adjustment unit 580.
  • the user equipment 500 can monitor the relationship between the user equipment 500 and Changes in the quality of the direct link between peer user equipment. Further, when the change speed of the direct link quality between the user equipment 500 and the opposite end user equipment exceeds the speed threshold range, the adjustment unit 580 may adjust the period in which the opposite end user equipment generates link quality indication information.
  • the adjustment unit 580 can adjust the current period to be shorter; when the user equipment 500 and the opposite end user equipment If the change speed of the quality of the direct link between end user equipment is less than the lower limit of the speed threshold range, the adjustment unit 580 may adjust the current period to be longer.
  • the user equipment 500 can monitor the quality of the direct link, so that the change amount of the quality of the direct link per unit time can be used to represent the changing speed of the quality of the direct link.
  • both the user equipment 500 and the peer user equipment can monitor the quality of the direct link, thereby adjusting the period for generating link quality indication information according to the quality of the direct link.
  • the user equipment 500 may further include a judgment unit 560 for judging whether the quality of the direct link between the user equipment 500 and the opposite end user equipment meets the handover condition.
  • the measurement unit 550 may measure the quality of the direct link periodically, dynamically, or semi-statically. Further, if the number of times the quality of the direct link is less than the quality threshold is greater than the number threshold within the predetermined time window, the judgment unit 560 may determine the quality of the direct link. The quality meets the switching conditions. For example, the judgment unit 560 may set a counter whose initial value is 0. Within the predetermined time window, each time the quality of the direct link is less than the quality threshold, the counter is incremented by 1.
  • the judgment unit 560 determines that the quality of the direct link meets the switching condition; if the value of the counter is not greater than the times threshold, the counter is cleared.
  • the length of the predetermined time window, the number threshold, and the quality threshold can be configured by the user equipment 500, configured by the peer user equipment, configured by the base station equipment, or can be pre-configured in the user equipment 500.
  • the user equipment 500 may further include a switching unit 570.
  • the switching unit 570 may switch the direct link according to the link priority indication information.
  • the switching unit 570 may cause the user equipment 500 to switch to the link with the highest priority in the link priority indication information to communicate with the opposite end user equipment.
  • the generating unit 530 may also generate a switching notification, and the user equipment 500 may send a switching notification to the opposite end user equipment through the communication unit 510 to notify the opposite end user equipment to also switch to the link with the highest priority to communicate with the opposite end user equipment.
  • User equipment 500 communicates.
  • the switching notification may only include 1 bit of information to indicate the switching operation.
  • the end user equipment switches to the link with the highest priority based on its own stored link priority indication information.
  • the user equipment 500 may send the switching notification through SCI.
  • the user equipment 500 may also receive a switching notification from the opposite end user equipment through the communication unit 510.
  • the switching notification may only include 1 bit of information to indicate the switching operation.
  • the user equipment 500 may receive the switching notification through the SCI.
  • the judgment unit 560 determines that the quality of the direct link satisfies the switching condition according to the switching notification, so that the switching unit 570 performs switching as described above.
  • the transmitting end user equipment may determine whether to switch the direct link, and the receiving end user equipment may determine whether to switch the direct link.
  • the user equipment 500 may determine whether the communication failed. For example, it may be specified that the peer user equipment needs to send ACK information to the user equipment 500 when receiving data from the user equipment 500 . If an ACK message from the peer user equipment for the data from the user equipment 500 is not received within a predetermined time from the communication equipment on the link with the highest priority, message, the user equipment 500 may determine that the communication failed.
  • the communication device on the link with the highest priority does not receive ACK information from the opposite end user equipment for the data from the user equipment 500 within a predetermined time, the communication device may send a representation to the user equipment 500 Notification of communication failure. That is, in the case where the user equipment 500 receives a notification indicating communication failure from the communication device, the user equipment 500 may determine that the communication failed.
  • the switching unit 570 may switch to the link with the second highest priority to communicate with the opposite end user equipment. communicate.
  • the link with the highest priority indicated in the link priority indication information may first be switched. road. Further, if communication fails using the link with the highest priority, it may be switched to the link with the next highest priority indicated in the link priority indication information. Of course, if communication fails using the link with the highest priority, the link priority indication information is updated, that is, the link with the highest priority indicated in the latest version of the priority indication information is different from the previous one. You can switch to the link with the highest priority indicated in the latest version of the link priority indication information. In short, according to embodiments of the present disclosure, the link through which the user equipment 500 communicates with the opposite end user equipment can be switched according to the priority of the link indicated in the link priority indication information, thereby improving the switching speed and ensuring the link quality. .
  • FIG. 6 is a schematic diagram illustrating a scenario in which UE1 and UE2 switch communication links again according to an embodiment of the present disclosure.
  • UE2 may be implemented by user equipment 200
  • UE1 may be implemented by user equipment 500.
  • the link priority indication information indicates that the following links are arranged in order from high to low priority: link UE1 ⁇ communication device 3 ⁇ UE2; link UE1 ⁇ communication device 5 ⁇ UE2; link UE1 ⁇ UE2.
  • link UE1 ⁇ communication device 3 ⁇ UE2 after switching to link UE1 ⁇ communication device 3 ⁇ UE2, if communication fails, switching to link UE1 ⁇ communication device 5 ⁇ UE2. That is to say, the information of UE1 is forwarded to UE2 through the communication device 5 .
  • the communication quality between UE1 and UE2 can be guaranteed.
  • the user equipment 500 can generate link priority indication information according to the link quality indication information of the opposite end user equipment, which includes multiple links between the user equipment 500 and the opposite end user equipment. Road priority information.
  • both the user equipment 500 and the peer user equipment can store the priority information of the link.
  • the link priority indication information can be updated.
  • the user equipment 500 or the opposite end user equipment can determine whether the direct link needs to be switched, and can proceed based on the link priority indication information. Link switching is performed without the need for link measurement, reporting, recovery, etc., thereby achieving fast link switching and ensuring the communication quality of the link between user equipment.
  • the user equipment 500 can also switch the link again according to the link priority indication information according to whether the communication fails.
  • the user equipment 200 at the receiving end and the user equipment 500 at the transmitting end are respectively described with reference to FIGS. 2 and 5
  • the user equipment 200 can also be used as a transmitter in other SL communications
  • the user equipment 500 can also be used as a transmitter in other SL communications. Therefore, the user equipment according to the embodiment of the present disclosure can have all the functions of the user equipment 200 and the user equipment 500. Among them, the user equipment can only have one unit with the same function in Figures 2 and 5.
  • the user equipment may include the generation unit 210, the communication unit 220, the storage unit 230, the measurement unit 240, the sorting unit 250, the determination unit 260, the judgment unit 270, the switching unit 280, and the adjustment unit 290 and priority determining unit 520.
  • Tx UE represents a transmitting user equipment, which can be implemented by user equipment 500
  • Rx UE represents a receiving user equipment, which can be implemented by user equipment 200.
  • step S701 the Tx UE and the Rx UE establish a link, that is, determine the beam pair through the beam scanning process, so as to use the optimal beam pair to communicate through the direct link.
  • step S702 the Rx UE determines the quality of the link with each of the plurality of communication devices with which the Rx UE has established a link.
  • step S703 the Rx UE sends link quality indication information to the Tx UE.
  • step S704 the Tx UE determines priorities of multiple links between the Tx UE and the Rx UE based on the link quality indication information from the Rx UE and the Tx UE's own measurement results, and generates link priority indication information.
  • step S705 the Tx UE sends link priority indication information to the Rx UE.
  • step S706 the Rx UE determines that the quality of the direct link meets the handover condition.
  • step S707 the Rx UE switches to the link with the highest priority indicated in the link priority indication information to communicate with the Tx UE.
  • step S708 the Rx UE sends a switching notification to the Tx UE to notify the Tx UE to also switch to the link with the highest priority.
  • step S709 the Tx UE and the Rx UE communicate using the link with the highest priority. As shown in Figure 7, the Rx UE determines that link switching is required, and the Tx UE and the Rx UE switch to the link with the highest priority for communication.
  • step S801 the Tx UE and the Rx UE establish a link, that is, determine the beam pair through the beam scanning process, thereby using the optimal beam pair to communicate through the direct link.
  • step S802 the Rx UE determines the quality of the link with each of the plurality of communication devices that have established a link with the Rx UE.
  • step S803 the Rx UE sends link quality indication information to the Tx UE.
  • the Tx UE determines the priorities of multiple links between the Tx UE and the Rx UE based on the link quality indication information from the Rx UE and the measurement results of the Tx UE itself, and generates link priority indication information.
  • step S805 the Tx UE sends link priority indication information to the Rx UE.
  • step S806 the Tx UE determines that the quality of the direct link meets the handover condition.
  • step S807 the Tx UE switches to the link with the highest priority indicated in the link priority indication information to communicate with the Rx UE.
  • step S808 the Tx UE sends a switching notification to the Rx UE to notify the Rx UE to also switch to the link with the highest priority.
  • step S809 the Tx UE and the Rx UE communicate using the link with the highest priority. As shown in Figure 8, the Tx UE determines that link switching is required, and the Tx UE and Rx UE switch to the link with the highest priority for communication.
  • FIG. 9 is a flowchart illustrating a wireless communication method performed by the user equipment 200 in the wireless communication system according to an embodiment of the present disclosure.
  • step S910 link quality indication information is generated and sent to the opposite end user equipment.
  • the link quality indication information indicates the link between the user equipment 200 and each communication device in the plurality of communication devices. the quality of.
  • step S920 link priority indication information determined according to the link quality indication information is received from the opposite end user equipment.
  • the link priority indication information includes multiple links between the opposite end user equipment and the user equipment 200. Road priority information.
  • the link quality indication information includes priority information of the link between the user equipment 200 and each communication device.
  • the wireless communication method further includes: measuring the quality of the link between the user equipment 200 and each communication device; ranking the links between the user equipment 200 and each communication device according to the measurement results; and according to the ranking results Priority information for the link between the user equipment 200 and each communication device is determined.
  • the wireless communication method further includes: using the identification of the communication device to represent the link between the user equipment 200 and the communication device.
  • the plurality of communication devices are communication devices that have established connections with the user equipment 200, and the plurality of communication devices are user equipment, roadside units or smart reflective surfaces.
  • the multiple links between the opposite end user equipment and the user equipment 200 include direct links and indirect links between the opposite end user equipment and the user equipment 200.
  • the wireless communication method further includes: when the quality of the direct link between the opposite end user equipment and the user equipment 200 meets the switching condition, switching to the link with the highest priority to communicate with the opposite end user equipment.
  • the wireless communication method further includes: determining that the quality of the direct link satisfies the handover condition when the number of times the quality of the direct link is less than the quality threshold is greater than the number threshold within the predetermined time window.
  • the wireless communication method further includes: when it is determined that the quality of the direct link meets the switching conditions, sending a switching notification to the opposite end user equipment to notify the opposite end user equipment to switch to the link with the highest priority to communicate with the user equipment. 200 for communication.
  • the wireless communication method further includes: receiving a handover notification from the opposite end user equipment; and determining according to the handover notification that the quality of the direct link satisfies the handover condition.
  • the wireless communication method further includes: periodically generating link quality indication information.
  • the wireless communication method further includes: adjusting the period for generating the link quality indication information when the change speed of the quality of the direct link between the opposite end user equipment and the user equipment 200 exceeds the speed threshold range.
  • the subject that performs the above method may be the user equipment 200 according to the embodiment of the present disclosure, so all the previous embodiments about the user equipment 200 are applicable here.
  • Figure 10 is a flowchart showing a wireless communication method performed by a user equipment 500 in a wireless communication system according to an embodiment of the present disclosure.
  • step S1010 link quality indication information is received from the opposite end user equipment.
  • the link quality indication information indicates the quality of the link between the opposite end user equipment and each communication device in the plurality of communication devices. quality.
  • link priority indication information is determined according to the link quality indication information.
  • the link priority indication information includes the link between the user equipment 500 and the opposite end user equipment. priority information of multiple links.
  • step S1030 link priority indication information is sent to the opposite end user equipment.
  • the wireless communication method further includes: determining the quality of each link between the user equipment 500 and the opposite end user equipment; sorting the multiple links according to the determination result; and determining the priority of the multiple links according to the sorting result. level information.
  • the multiple links include direct links and indirect links between the user equipment 500 and the opposite end user equipment
  • the wireless communication method further includes: according to the user equipment 500 and the communication equipment on each indirect link
  • the quality of the indirect link is determined by the quality of the link between the communication equipment and the opposite end user equipment.
  • the wireless communication method further includes: using the identification of the communication device on the indirect link to represent the indirect link.
  • the wireless communication method further includes: when the quality of the direct link between the user equipment 500 and the opposite end user equipment meets the switching condition, switching to the link with the highest priority to communicate with the opposite end user equipment.
  • the wireless communication method further includes: determining that the quality of the direct link satisfies the handover condition when the number of times the quality of the direct link is less than the quality threshold is greater than the number threshold within the predetermined time window.
  • the wireless communication method further includes: when it is determined that the quality of the direct link meets the switching conditions, sending a switching notification to the opposite end user equipment to notify the opposite end user equipment to switch to the link with the highest priority to communicate with the user equipment. 500 for communication.
  • the wireless communication method further includes: receiving a handover notification from the opposite end user equipment; and determining according to the handover notification that the quality of the direct link satisfies the handover condition.
  • the wireless communication method further includes: periodically receiving link quality indication information.
  • the wireless communication method further includes: when the change speed of the direct link quality between the user equipment 500 and the opposite end user equipment exceeds the speed threshold range, adjusting the period in which the opposite end user equipment generates link quality indication information. .
  • the wireless communication method further includes: in the case of using the link with the highest priority to communicate with the opposite end user equipment, if the communication fails, switching to the link with the second highest priority to communicate with the opposite end user equipment. .
  • the wireless communication method further comprises: determining that the communication fails when no ACK information for the data from the user equipment 500 is received from the opposite user equipment within a predetermined time.
  • the wireless communication method further includes: receiving a notification indicating communication failure from the communication device on the link with the highest priority.
  • the subject that performs the above method may be the user equipment 500 according to the embodiment of the present disclosure, so all the previous embodiments about the user equipment 500 are applicable here.
  • the technology of the present disclosure can be applied to a variety of products.
  • the user equipment may be implemented as a mobile terminal (such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and a digital camera) or a vehicle-mounted terminal (such as a car navigation device ).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also known as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single die) installed on each of the above-mentioned user equipments.
  • the smart phone 1100 includes a processor 1101, a memory 1102, a storage device 1103, an external connection interface 1104, a camera 1106, a sensor 1107, a microphone 1108, an input device 1109, a display device 1110, a speaker 1111, a wireless communication interface 1112, one or more Antenna switch 1115, one or more antennas 1116, bus 1117, battery 1118, and auxiliary controller 1119.
  • the processor 1101 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and other layers of the smartphone 1100.
  • the memory 1102 includes a RAM and a ROM, and stores data and programs executed by the processor 1101.
  • the storage device 1103 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1104 is an interface for connecting an external device (such as a memory card and a universal serial bus (USB) device) to the smartphone 1100.
  • USB universal serial bus
  • the camera 1106 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) and generates a captured image.
  • Sensors 1107 may include a group of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1108 converts the sound input to the smartphone 1100 into an audio signal.
  • the input device 1109 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1110, and receives an operation or information input from a user.
  • the display device 1110 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1100 .
  • the speaker 1111 converts the audio signal output from the smartphone 1100 into sound.
  • the wireless communication interface 1112 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 1112 may generally include a BB processor 1113 and an RF circuit 1114, for example.
  • the BB processor 1113 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1114 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 1116 .
  • the wireless communication interface 1112 may be a chip module on which the BB processor 1113 and the RF circuit 1114 are integrated. As shown in FIG.
  • the wireless communication interface 1112 may include multiple BB processors 1113 and multiple RF circuits 1114.
  • FIG. 11 shows an example in which the wireless communication interface 1112 includes a plurality of BB processors 1113 and a plurality of RF circuits 1114, the wireless communication interface 1112 may also include a single BB processor 1113 or a single RF circuit 1114.
  • the wireless communication interface 1112 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1112 may include a BB processor 1113 and an RF circuit 1114 for each wireless communication scheme.
  • Each of the antenna switches 1115 switches the connection destination of the antenna 1116 between a plurality of circuits included in the wireless communication interface 1112 (for example, circuits for different wireless communication schemes).
  • Each of the antennas 1116 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 1112 to transmit and receive wireless signals.
  • the smart phone 1100 may include multiple antennas 1116.
  • FIG11 shows an example in which the smart phone 1100 includes multiple antennas 1116, the smart phone 1100 may also include a single antenna 1116.
  • smartphone 1100 may include an antenna 1116 for each wireless communication scheme.
  • the antenna switch 1115 may be omitted from the configuration of the smartphone 1100 .
  • the bus 1117 connects the processor 1101, the memory 1102, the storage device 1103, the external connection interface 1104, the camera 1106, the sensor 1107, the microphone 1108, the input device 1109, the display device 1110, the speaker 1111, the wireless communication interface 1112, and the auxiliary controller 1119 to each other. connect.
  • the battery 1118 provides power to the various blocks of the smartphone 1100 shown in FIG. 11 via feeders, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 1119 operates the minimum necessary functions of the smartphone 1100 in the sleep mode, for example.
  • the priority determination unit 520, the generation unit 530, the measurement unit 550, the judgment unit 560, the switching unit 570 and the adjustment unit 580 described in 5 may be implemented by the processor 1101 or the auxiliary controller 1119. At least part of the functionality may also be implemented by processor 1101 or auxiliary controller 1119.
  • the processor 1101 or the auxiliary controller 1119 may perform generating link quality indication information, measuring link quality, ranking links, determining link priorities, etc. by executing instructions stored in the memory 1102 or the storage device 1103. Functions to determine whether the quality of the direct link meets the switching conditions, switch the link, adjust the period for generating link quality indication information, and generate link priority indication information.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation device 1220 to which the technology of the present disclosure can be applied.
  • the car navigation device 1220 includes a processor 1221, a memory 1222, a global positioning system (GPS) module 1224, a sensor 1225, a data interface 1226, a content player 1227, a storage media interface 1228, an input device 1229, a display device 1230, a speaker 1231, a wireless Communication interface 1233, one or more antenna switches 1236, one or more antennas 1237, and battery 1238.
  • GPS global positioning system
  • the processor 1221 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 1220 .
  • the memory 1222 includes RAM and ROM, and stores data and programs executed by the processor 1221 .
  • the GPS module 1224 measures the location (such as latitude, longitude, and altitude) of the car navigation device 1220 using GPS signals received from GPS satellites.
  • Sensors 1225 may include a group of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • Data interface 1226 It is connected to, for example, the in-vehicle network 1241 via a terminal not shown, and data generated by the vehicle (such as vehicle speed data) is acquired.
  • the content player 1227 reproduces content stored in storage media, such as CDs and DVDs, which are inserted into the storage media interface 1228 .
  • the input device 1229 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1230, and receives an operation or information input from a user.
  • the display device 1230 includes a screen such as an LCD or an OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1231 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1233 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1233 may generally include, for example, BB processor 1234 and RF circuitry 1235.
  • the BB processor 1234 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1235 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 1237.
  • the wireless communication interface 1233 may also be a chip module on which the BB processor 1234 and the RF circuit 1235 are integrated. As shown in FIG.
  • the wireless communication interface 1233 may include a plurality of BB processors 1234 and a plurality of RF circuits 1235.
  • FIG. 12 shows an example in which the wireless communication interface 1233 includes a plurality of BB processors 1234 and a plurality of RF circuits 1235, the wireless communication interface 1233 may also include a single BB processor 1234 or a single RF circuit 1235.
  • the wireless communication interface 1233 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless LAN schemes.
  • the wireless communication interface 1233 may include the BB processor 1234 and the RF circuit 1235 for each wireless communication scheme.
  • Each of the antenna switches 1236 switches the connection destination of the antenna 1237 between a plurality of circuits included in the wireless communication interface 1233, such as circuits for different wireless communication schemes.
  • Each of the antennas 1237 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the wireless communication interface 1233 to transmit and receive wireless signals.
  • the car navigation device 1220 may include multiple antennas 1237.
  • FIG. 12 shows an example in which the car navigation device 1220 includes multiple antennas 1237, the car navigation device 1220 may also include a single antenna 1237.
  • the car navigation device 1220 may include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 1236 may be omitted from the configuration of the car navigation device 1220.
  • the battery 1238 provides power to the various blocks of the car navigation device 1220 shown in FIG. 12 via feeders, which are partially shown in the figure as dotted lines. Battery 1238 accumulates power provided from the vehicle.
  • the generation unit 210 by using the generation unit 210 , the measurement unit 240 , the sorting unit 250 , the determination unit 260 , the judgment unit 270 , the switching unit 280 and the adjustment unit 290 described in FIG. 2 , and by using The priority determination unit 520, the generation unit 530, the measurement unit 550, the judgment unit 560, the switching unit 570 and the adjustment unit 580 described in FIG. 5 may be implemented by the processor 1221. At least part of the functionality may also be implemented by processor 1221.
  • the processor 1221 can generate link quality indication information, measure the link quality, sort the links, determine the priority of the link, and determine whether the quality of the direct link satisfies the handover by executing instructions stored in the memory 1222. Conditions, switching links, adjusting the period for generating link quality indication information, and generating link priority indication information.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1240 including a car navigation device 1220 , an in-vehicle network 1241 , and one or more blocks of a vehicle module 1242 .
  • vehicle module 1242 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1241 .
  • the units shown in dotted boxes in the functional block diagrams shown in the accompanying drawings all indicate that the functional units are optional in the corresponding devices, and each optional functional unit can be combined in an appropriate manner to achieve the required functions. .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in the steps of time series processing, it goes without saying that it is appropriate to to change the order.
  • the present disclosure may have a configuration as described below.
  • a user equipment including processing circuitry configured to:
  • link quality indication information indicating the quality of the link between the user equipment and each communication device in a plurality of communication devices
  • Link priority indication information determined based on the link quality indication information from the opposite end user equipment, where the link priority indication information includes multiple links between the opposite end user equipment and the user equipment. Link priority information.
  • the link quality indication information includes priority information of a link between the user equipment and each communication device.
  • the priority information of the link between the user equipment and each communication device is determined according to the sorting result.
  • processing circuit is further configured to:
  • the link between the user equipment and the communication device is represented by an identifier of the communication device.
  • the plurality of communication devices are communication devices that have established connections with the user equipment, and the plurality of communication devices are user equipment, roadside units or intelligent reflective surfaces.
  • processing circuit is further configured to:
  • the quality of the direct link between the opposite user equipment and the user equipment meets the requirement of When the conditions change, switch to the link with the highest priority to communicate with the opposite user equipment.
  • processing circuit is further configured to:
  • the quality threshold is greater than the number of times threshold within the predetermined time window, it is determined that the quality of the direct link satisfies the switching condition.
  • processing circuit is further configured to:
  • a switching notification is sent to the opposite end user equipment to notify the opposite end user equipment to switch to the link with the highest priority to communicate with the user. devices communicate.
  • processing circuit is further configured to:
  • processing circuit is further configured to:
  • the link quality indication information is generated periodically.
  • processing circuit is further configured to:
  • a user equipment including processing circuitry configured to:
  • the link priority indication information includes priority information of multiple links between the user equipment and the opposite user equipment;
  • processing circuit is further configured to:
  • Priority information of the multiple links is determined according to the sorting result.
  • processing circuit is further configured to: according to the quality of the link between the user equipment and the communication equipment on each indirect link and the link between the communication equipment and the opposite end user equipment.
  • the quality of the indirect link is determined by the quality of the road.
  • processing circuit is further configured to:
  • the indirect link is represented by the identification of the communication device on the indirect link.
  • processing circuit is further configured to:
  • the link with the highest priority is switched to communicate with the opposite end user equipment.
  • processing circuit is further configured to:
  • the quality threshold is greater than the number of times threshold within the predetermined time window, it is determined that the quality of the direct link satisfies the switching condition.
  • processing circuit is further configured to:
  • a switching notification is sent to the opposite end user equipment to notify the opposite end user equipment to switch to the link with the highest priority to communicate with the user. devices communicate.
  • processing circuit is further configured to:
  • processing circuit is further configured to:
  • the link quality indication information is received periodically.
  • processing circuit is further configured to:
  • the link with the highest priority is used to communicate with the opposite user equipment, if the communication fails, the link with the next highest priority is switched to communicate with the opposite user equipment.
  • a notification indicating the communication failure is received from a communication device on the highest priority link.
  • a wireless communication method performed by a user equipment comprising:
  • link quality indication information indicating the quality of the link between the user equipment and each communication device in a plurality of communication devices
  • Link priority indication information determined based on the link quality indication information from the opposite end user equipment, where the link priority indication information includes multiple links between the opposite end user equipment and the user equipment. Link priority information.
  • the priority information of the link between the user equipment and each communication device is determined according to the sorting result.
  • the link with the highest priority is switched to communicate with the opposite user equipment.
  • the quality threshold is greater than the number of times threshold within the predetermined time window, it is determined that the quality of the direct link satisfies the switching condition.
  • a switching notification is sent to the opposite end user equipment to notify the opposite end user equipment to switch to the link with the highest priority to communicate with the user. devices communicate.
  • the link quality indication information is generated periodically.
  • the period of generating the link quality indication information is adjusted.
  • a wireless communication method performed by user equipment comprising:
  • link priority indication information includes priority information of multiple links between the user equipment and the opposite end user equipment
  • Priority information of the multiple links is determined according to the sorting result.
  • the wireless communication method further includes: determining the quality of the indirect link according to the quality of the link between the user equipment and the communication equipment on each indirect link and the quality of the link between the communication equipment and the opposite user equipment.
  • the indirect link is represented by the identification of the communication device on the indirect link.
  • the link with the highest priority is switched to communicate with the opposite end user equipment.
  • the quality threshold is greater than the number of times threshold within the predetermined time window, it is determined that the quality of the direct link satisfies the switching condition.
  • a switching notification is sent to the opposite end user equipment to notify the opposite end user equipment to switch to the highest priority link to communicate with the user equipment.
  • the link quality indication information is received periodically.
  • the link with the highest priority is used to communicate with the opposite user equipment, if the communication fails, the link with the next highest priority is switched to communicate with the opposite user equipment.
  • a notification indicating the communication failure is received from a communication device on the highest priority link.
  • a computer-readable storage medium comprising executable computer instructions that, when executed by a computer, cause the computer to perform the wireless communication method according to any one of 26-50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及用户设备、无线通信方法和计算机可读存储介质。根据本公开的用户设备包括处理电路,被配置为:生成并向对端用户设备发送链路质量指示信息,所述链路质量指示信息指示所述用户设备与多个通信设备中的每个通信设备之间的链路的质量;以及从所述对端用户设备接收根据所述链路质量指示信息确定的链路优先级指示信息,所述链路优先级指示信息包括所述对端用户设备与所述用户设备之间的多条链路的优先级信息。使用根据本公开的用户设备、无线通信方法和计算机可读存储介质,可以在快速地切换用户设备之间的通信链路,从而保证通信质量。

Description

用户设备、无线通信方法和计算机可读存储介质
本申请要求于2022年9月21日提交中国专利局、申请号为202211154938.X、发明名称为“用户设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及用户设备、由用户设备执行的无线通信方法和计算机可读存储介质。更具体地,本公开的实施例涉及发送端的用户设备、接收端的用户设备、由发送端的用户设备执行的无线通信方法、由接收端的用户设备执行的无线通信方法、以及计算机可读存储介质。
背景技术
Sidelink(直连链路,SL)通信可以应用在更为广泛的场景中,例如车联网、XR(Extended Reality,扩展现实,包括AR、VR、MR)、自动驾驶,工业自动化等。这些先进的应用场景对SL通信提出了更高的要求,例如更高的传输速度以及更低的传输时延。
在SL通信中,发送端通信设备和接收端通信设备的位置可能会在很短的时间内发生变化。此外,由于通信设备的快速移动性以及遮挡物的出现可能导致通信链路质量的迅速恶化。在这种情况下,在通信链路质量下降到一定程度时如何能够快速地切换链路是保持通信质量的关键。
因此,有必要提出一种技术方案,以在SL通信中快速地切换用户设备之间的通信链路,从而保证通信质量。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种用户设备、无线通信方法和计算机可读存储介质,以快速地切换用户设备之间的通信链路,从而保证通信质量。
根据本公开的一方面,提供了一种用户设备,包括处理电路,被配置为:生成并向对端用户设备发送链路质量指示信息,所述链路质量指示信息指示所述用户设备与多个通信设备中的每个通信设备之间的链路的质量;以及从所述对端用户设备接收根据所述链路质量指示信息确定的链路优先级指示信息,所述链路优先级指示信息包括所述对端用户设备与所述用户设备之间的多条链路的优先级信息。
根据本公开的另一方面,提供了一种用户设备,包括处理电路,被配置为:从对端用户设备接收链路质量指示信息,所述链路质量指示信息指示所述对端用户设备与多个通信设备中的每个通信设备之间的链路的质量;根据所述链路质量指示信息确定链路优先级指示信息,所述链路优先级指示信息包括所述用户设备与所述对端用户设备之间的多条链路的优先级信息;以及将所述链路优先级指示信息发送至所述对端用户设备。
根据本公开的另一方面,提供了一种由用户设备执行的无线通信方法,包括:生成并向对端用户设备发送链路质量指示信息,所述链路质量指示信息指示所述用户设备与多个通信设备中的每个通信设备之间的链路的质量;以及从所述对端用户设备接收根据所述链路质量指示信息确定的链路优先级指示信息,所述链路优先级指示信息包括所述对端用户设备与所述用户设备之间的多条链路的优先级信息。
根据本公开的另一方面,提供了一种由用户设备执行的无线通信方法,包括:从对端用户设备接收链路质量指示信息,所述链路质量指示信息指示所述对端用户设备与多个通信设备中的每个通信设备之间的链路的质量;根据所述链路质量指示信息确定链路优先级指示信息,所述链路优先级指示信息包括所述用户设备与所述对端用户设备之间的多条链路的优先级信息;以及将所述链路优先级指示信息发送至所述对端用户设备。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开的无线通信方法。
根据本公开的另一方面,提供了一种计算机程序,所述计算机程序当被计算机执行时使得所述计算机执行根据本公开的无线通信方法。
使用根据本公开的用户设备、无线通信方法和计算机可读存储介质,用户设备可以从对端用户设备接收根据用户设备发送的链路质量指示信息确定的链路优先级指示信息,其中包括对端用户设备与该用户设备之间的多条链路的优先级信息。这样一来,对端用户设备和该用户设备都可以存储链路的优先级信息,从而在需要时可以根据该优先级信息进行链路切换,而无需再进行链路的测量、上报和恢复等操作,进而实现链路的快速切换,保证通信质量。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出本公开的应用场景的示意图;
图2是示出根据本公开的实施例的接收端的用户设备的配置的示例的框图;
图3是示出根据本公开的实施例的UE(User Equipment,用户设备)1和UE2利用直达链路通信的场景的示意图;
图4是示出根据本公开的实施例的UE1和UE2切换通信链路的场景的示意图;
图5是示出根据本公开的实施例的发送端的用户设备的配置的示例的框图;
图6是示出根据本公开的实施例的UE1和UE2再次切换通信链路的场景的示意图;
图7是示出根据本公开的实施例的利用链路优先级指示信息切换链路的信令流程图;
图8是示出根据本公开的另一个实施例的利用链路优先级指示信息切换链路的信令流程图;
图9是示出根据本公开的实施例的由接收端的用户设备执行的无线通信方法的流程图;
图10是示出根据本公开的实施例的由发送端的用户设备执行的无线通信方法的流程图;
图11是示出智能电话的示意性配置的示例的框图;以及
图12是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.接收端用户设备的配置示例;
3.发送端用户设备的配置示例;
4.方法实施例;
5.应用示例。
<1.场景的描述>
图1是示出本公开的应用场景的示意图。如图1所示,SL通信的发送端用户设备被标识为TX UE1,接收端用户设备被标识为RX UE2。这里,SL通信被应用于车联网,因此UE1和UE2均为车辆。此外,在图1中还示出了作为车辆的UE3。如图1所示,UE1与UE2通过他们之间的直达链路进行通信。接下来,UE3行驶到UE1和UE2的中间遮挡了UE1与UE2之间的直达链路,导致UE1与UE2之间的直达链路的质量下降。
在图1所示的场景中,由于各个UE的快速移动性以及遮挡物的出现可能导致通信链路质量的迅速恶化。在这种情况下,在通信链路质量下降到一定程度时如何能够快速地切换链路是保持通信质量的关键。图1仅是一个示例,在SL通信应用于其他场景中时也存在这样的问题。
本公开针对这样的场景提出了一种无线通信系统中的用户设备、由无线通信系统中的用户设备执行的无线通信方法以及计算机可读存储介质,以快速地切换用户设备之间的通信链路,从而保证通信质量。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
特别地,本公开可以用于车联网,即用户设备可以集成在车辆中,或者与车辆分离地设置在车辆中。
根据本公开的无线通信系统可以用于5G NR通信系统,也可以用于未来更高等级的通信系统。该无线通信系统可以包括利用SL进行通信的发送端用户设备和接收端用户设备。此外,该无线通信系统还可以包括一个或多个其他通信设备,该一个或多个通信设备可以包括位于行人处的用户设备、位于车辆处的用户设备、路侧单元(Road Side Unit,RSU)和智能反射面(Large Intelligent Surface,LIS)等一切能够转发数据的设备。此外,该其他通信设备是针对特定的SL通信中的发送端用户设备和接收端用户设备而言的,该其他通信设备也可以是另一个SL通信中的发 送端用户设备或者接收端用户设备。也就是说,该无线通信系统可以包括多个用户设备,其中至少两个用户设备利用SL进行通信,可选地该无线通信系统还可以包括RSU和LIS等能够转发数据的设备。
在根据本公开的无线通信系统中,可以使用FR2毫米波频段,从而提升数据吞吐量。由于FR2频段的频率高、覆盖范围小、传播损耗大,因此通常会采用波束赋形的方式进行数据的传输。也就是说,根据本公开的用户设备可以采用波束赋形的方式进行SL通信。此外,用于转发数据的通信设备也可以采用波束赋形的方式与用户设备进行通信。
<2.接收端用户设备的配置示例>
图2是示出根据本公开的实施例的用户设备200的配置的示例的框图。这里,用户设备200可以是无线通信系统中的SL通信中的接收端用户设备。
如图2所示,用户设备200可以包括生成单元210、通信单元220和存储单元230。
这里,用户设备200的各个单元都可以包括在处理电路中。需要说明的是,用户设备200既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,生成单元210可以生成链路质量指示信息,该链路质量指示信息指示用户设备200与多个通信设备中的每个通信设备之间的链路的质量。进一步,用户设备200可以通过通信单元220向对端用户设备发送链路质量指示信息。这里的对端用户设备可以是SL通信的发送端用户设备。
根据本公开的实施例,用户设备200可以通过通信单元220从对端用户设备接收对端用户设备根据链路质量指示信息确定的链路优先级指示信息。这里,链路优先级指示信息包括对端用户设备与用户设备200之间的多条链路的优先级信息。
进一步,用户设备200可以将链路优先级指示信息存储在存储单元230中。
由此可见,根据本公开的实施例的用户设备200,可以从对端用户设备接收根据用户设备200发送的链路质量指示信息确定的链路优先级指示信息,其中包括对端用户设备与用户设备200之间的多条链路的优先级信息。这样一来,对端用户设备和用户设备200都可以存储链路的优先级信息,从而在需要时可以根据该优先级信息进行链路切换,而无需再进行链路的测量、上报和恢复等操作,进而实现链路的快速切换,保证通信质量。
根据本公开的实施例,用户设备200可以在对端用户设备与用户设备200建立链路之后向对端用户设备发送链路质量指示信息。
根据本公开的实施例,在对端用户设备与用户设备200采用波束赋形的方式进行通信的情况下,可以通过对端用户设备与用户设备200之间的波束扫描过程来建立链路。具体地,对端用户设备可以通过波束扫描过程来确定对对端用户设备与用户设备200之间的最佳波束对,从而利用该最佳波束对通过直达链路进行SL通信。
根据本公开的实施例,在对端用户设备和用户设备200均位于基站设备的覆盖范围内的情况下,基站设备可以根据对端用户设备和用户设备200的位置(可选地,还可以根据对端用户设备和用户设备200的运动信息,例如运动方向和运动速度)配置部分的波束以用于波束扫描。这样一来,对端用户设备可以进行部分波束扫描,用户设备200可以进行部分波束扫描配对,从而减少波束扫描过程的时间。进一步,在对端用户设备或用户设备200位于基站设备的覆盖范围外的情况下,对端用户设备可以进行全向波束扫描,用户设备200可以进行全向波束扫描配对。
图3是示出根据本公开的实施例的UE1和UE2利用直达链路通信的场景的示意图。在图3中,UE1为发送端用户设备,UE2为接收端用户设备,在UE1和UE2周围还存在三个通信设备:通信设备3、通信设备4和通信设备5。箭头指向的双方表示已经建立了连接。也就是说,除了UE1与UE2正在通过直达链路通信以外,UE1还与通信设备3和通信设备5建立了连接,UE2还与通信设备3、通信设备4和通信设备5建立了连接。
根据本公开的实施例,UE2可以向UE1发送链路质量指示信息,该 链路质量指示信息指示UE2与多个通信设备中的每个通信设备之间的链路的质量。进一步,UE1可以根据来自UE2的链路质量指示信息确定链路优先级指示信息,该链路优先级指示信息包括UE1与UE2之间的多条链路的优先级信息。
根据本公开的实施例,链路质量指示信息中涉及的多个通信设备可以是已经与用户设备200建立连接的通信设备,并且这多个通信设备包括但不限于用户设备(例如行人处的用户设备、车辆处的用户设备)、路侧单元或智能反射面。也就是说,这多个通信设备可以是能够进行数据转发的任何通信设备。
如上所述,根据本公开的实施例,生成单元210可以生成链路质量指示信息,该链路质量指示信息指示用户设备200与已经与其建立了连接的多个通信设备中的每个通信设备之间的链路的质量。例如,在图3中,UE2生成的链路质量指示信息可以指示UE2与通信设备3、UE2与通信设备4、UE2与通信设备5、以及UE2与UE1之间的链路的质量。
根据本公开的实施例,链路质量指示信息可以指示用户设备200与每个通信设备之间的链路的质量的绝对值。例如,可以用SIR(Signal to Interference Ratio,信干比)、SINR(Signal to Interference plus Noise Ratio,信干噪比)、SNR(Signal Noise Ratio,信噪比)、RSRP(Reference Signal Receiving Power,参考信号接收功率)、RSRQ(Reference Signal Receiving Quality,参考信号接收质量)等参数来表示链路的质量的绝对值。此外,链路质量指示信息也可以指示用户设备200与每个通信设备之间的链路的质量的相对值。例如,可以用与链路质量参考值之间的差值或与链路质量参考值之间的比率来表示链路的质量的相对值,也可以用归一化值来表示链路的质量的相对值。本公开对链路质量的表示方式不作限定。
也就是说,在图3所示的示例中,链路质量指示信息可以包括如下信息:UE2与通信设备3之间的链路:链路质量A;UE2与通信设备4之间的链路:链路质量B;UE2与通信设备5之间的链路:链路质量C;UE2与UE1之间的链路:链路质量D。
根据本公开的实施例,链路质量指示信息可以包括用户设备200与每个通信设备之间的链路的优先级信息。例如,在图3中,UE2生成的链路质量指示信息可以指示UE2与通信设备3、UE2与通信设备4、UE2 与通信设备5、以及UE2与UE1之间的链路的优先级。
根据本公开的实施例,如图2所示,用户设备200还可以包括测量单元240,用于对用户设备200与每个通信设备之间的链路的质量进行测量。如上所述,表示链路的质量的参数包括但不限于SIR、SINR、SNR、RSRP和RSRQ。
根据本公开的实施例,如图2所示,用户设备200还可以包括排序单元250,用于根据用户设备200与每个通信设备之间的链路的质量对链路进行排序。例如,排序单元250可以按照链路的质量从高到低的顺序排序。
根据本公开的实施例,如图2所示,用户设备200还可以包括确定单元260,用于根据排序单元250的排序结果确定每条链路的优先级信息。例如,确定单元260可以确定链路的质量越高,优先级等级越高。
也就是说,在图3所示的示例中,链路质量指示信息可以包括如下信息:UE2与通信设备3之间的链路:优先级N1;UE2与通信设备4之间的链路:优先级N2;UE2与通信设备5之间的链路:优先级N3;UE2与UE1之间的链路:优先级N4。这里,N1-N4表示非负整数,数字越小表示优先级越高。例如,N1-N4可以分别是0-3中的各个数字。例如,链路质量指示信息可以包括如下信息:UE2与通信设备3之间的链路:优先级0;UE2与通信设备4之间的链路:优先级1;UE2与通信设备5之间的链路:优先级2;UE2与UE1之间的链路:优先级3。这样一来,可以利用优先级信息来代替链路的质量信息,从而节约信令开销。
根据本公开的实施例,可以如上所述显性地表示优先级信息,也可以隐形地表示优先级信息。这里,可以用链路质量指示信息中链路的顺序来隐形地表示该链路的优先级。例如,在链路质量指示信息中链路的顺序越靠前,则该链路的优先级越高。
也就是说,在图3所示的示例中,链路质量指示信息可以包括如下信息:UE2与通信设备3之间的链路;UE2与通信设备5之间的链路;UE2与通信设备4之间的链路;UE2与UE1之间的链路。也就是说,UE1在接收到这样的链路质量指示信息之后,可以确定以下链路是按照优先级从高到低的顺序来排列的:UE2与通信设备3之间的链路;UE2与通信设备5之间的链路;UE2与通信设备4之间的链路;UE2与UE1之间 的链路。这样一来,可以隐形地表示优先级信息,从而进一步节约信令开销。
根据本公开的实施例,在链路质量指示信息中,可以利用通信设备的标识来表示用户设备200与通信设备之间的链路。
也就是说,在图3所示的示例中,链路质量指示信息可以包括如下信息:通信设备3的标识;通信设备5的标识;通信设备4的标识;UE1的标识。这样一来,可以用最小的信令开销清楚地表示出与用户设备200相连的各个链路的优先级。
根据本公开的实施例,用户设备200可以通过MAC层、RRC层或者物理层信令来传输链路质量指示信息。在通过物理层信令来传输链路质量指示信息时,可以利用PSSCH(Pysical Sidelink Share Channel,物理直连共享信道)来携带链路质量指示信息。
根据本公开的实施例,在生成单元210如上所述生成了链路质量指示信息之后,用户设备200可以将链路质量指示信息发送至对端用户设备。之后,用户设备200可以通过通信单元220从该对端用户设备接收根据链路质量指示信息确定的链路优先级指示信息。
根据本公开的实施例,链路优先级指示信息可以包括对端用户设备与用户设备200之间的多条链路的优先级信息。这里,对端用户设备与用户设备200之间的多条链路可以包括对端用户设备与用户设备200之间的直达链路和非直达链路。
也就是说,链路优先级指示信息可以指示对端用户设备与用户设备200之间的所有可达的链路中的全部链路或者部分链路的优先级。在图3所示的示例中,UE1与UE2之间的所有可达链路包括:UE1→UE2;UE1→通信设备3→UE2;UE1→通信设备5→UE2。UE2接收到的链路优先级指示信息可以指示这三条链路中的全部链路或者部分链路的优先级。
例如,链路优先级指示信息可以包括如下信息:链路UE1→通信设备3→UE2:优先级M1;链路UE1→通信设备5→UE2:优先级M2;链路UE1→UE2:优先级M3。这里,M1-M3表示非负整数,数字越小表示优先级越高。例如,M1-M3可以分别是0-2中的各个数字。例如,链路优先级指示信息可以包括如下信息:链路UE1→通信设备3→UE2:优先级0;链路UE1→通信设备5→UE2:优先级1;链路UE1→UE2:优 先级2。
根据本公开的实施例,可以如上所述显性地表示各个链路的优先级,也可以隐形地表示各个链路的优先级。这里,可以用链路优先级指示信息中链路的顺序来隐形地表示该链路的优先级。例如,在链路优先级指示信息中链路的顺序越靠前,则该链路的优先级越高。
也就是说,在图3所示的示例中,链路优先级指示信息可以包括如下信息:链路UE1→通信设备3→UE2;链路UE1→通信设备5→UE2;链路UE1→UE2。也就是说,UE2在接收到这样的链路优先级指示信息之后,可以确定以下链路是按照优先级从高到低的顺序来排列的:链路UE1→通信设备3→UE2;链路UE1→通信设备5→UE2;链路UE1→UE2。这样一来,可以隐形地表示优先级信息,从而进一步节约信令开销。
根据本公开的实施例,在链路优先级指示信息中,可以利用非直达链路上的通信设备的标识来表示该非直达链路,并且可以利用对端用户设备的标识来表示直达链路。
也就是说,在图3所示的示例中,链路优先级指示信息可以包括如下信息:通信设备3的标识;通信设备5的标识;UE1的标识。这样一来,可以用最小的信令开销清楚地表示出对端用户设备与用户设备200之间的各个可达链路的优先级。
根据本公开的实施例,用户设备200可以通过MAC层、RRC层或者物理层信令来接收链路优先级指示信息。在通过物理层信令来接收链路优先级指示信息时,可以利用PSSCH来接收链路优先级指示信息。
根据本公开的实施例,对端用户设备和用户设备200都可以存储这样的链路优先级指示信息。这样一来,在需要进行链路切换时对端用户设备和用户设备200可以根据链路优先级指示信息来切换链路,从而提高切换的速度,保证通信质量。
根据本公开的实施例,用户设备200向对端用户设备发送链路质量指示信息、然后对端用户设备向用户设备200发送链路优先级指示信息的过程可以是周期性触发的。也就是说,用户设备200周期性生成链路质量指示信息。优选地,周期为10ms或5ms。这里,可以由对端用户设备配置该周期,也可以由基站设备配置该周期,或者该周期被预先配置在用户设备200中。
可选地,用户设备200向对端用户设备发送链路质量指示信息、然后对端用户设备向用户设备200发送链路优先级指示信息的过程可以是动态触发的,例如由对端用户设备或者用户设备200利用SCI(Sidelink Control Information,直连链路控制信息)来触发。可选地,用户设备200向对端用户设备发送链路质量指示信息、然后对端用户设备向用户设备200发送链路优先级指示信息的过程可以是半静态触发的。例如,可以规定在一段时间内周期性触发该过程,在这一段时间过后停止触发该过程。
如上所述,链路质量指示信息和链路优先级指示信息是可以更新的,即存储单元230中仅存储最新版本的链路优先级指示信息。
根据本公开的实施例,如图2所示,用户设备200还可以包括调整单元290。在周期性触发用户设备200向对端用户设备发送链路质量指示信息、然后对端用户设备向用户设备200发送链路优先级指示信息的过程的情况下,用户设备200可以监测对端用户设备与用户设备200之间的直达链路的质量的变化情况。进一步,在对端用户设备与用户设备200之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整单元290可以调整生成链路质量指示信息的周期。这里的速度阈值范围可以包括上限和下限。例如,在对端用户设备与用户设备200之间的直达链路的质量的变化速度大于速度阈值范围的上限的情况下,调整单元290可以将当前周期调整得更短;在对端用户设备与用户设备200之间的直达链路的质量的变化速度小于速度阈值范围的下限的情况下,调整单元290可以将当前周期调整的更长。这里,用户设备200可以监测直达链路的质量,从而可以利用单位时间内直达链路的质量的变化量来表示直达链路的质量的变化速度。
在周期性生成链路质量指示信息的情况下,可能会出现生成链路质量指示信息的周期与对端用户设备与用户设备200周围的通信环境不匹配的情况。例如,在两次生成链路质量指示信息的时间间隔期限,对端用户设备或者用户设备200的位置发生了很大的变化,或者能够转发数据的通信设备不再能够提供服务,从而导致通信环境发生了很大的变化。在这种情况下,生成的链路质量指示信息不再准确,导致链路优先级指示信息也不再准确。再如,对端用户设备与用户设备200的位置以及周围的通信环境比较稳定,如果生成链路质量指示信息的周期太小,会导致信息交互的过于频繁,增加信令开销。根据本公开的实施例,可以根 据链路质量的变化速度来调整生成链路质量指示信息的周期,从而使得该周期与周围的通信环境更加匹配,生成的链路质量指示信息和链路优先级指示信息更加准确,在保证链路可靠性的同时控制信令开销。
根据本公开的实施例,如图3所示,用户设备200还可以包括判断单元270,用于判断对端用户设备与用户设备200之间的直达链路的质量是否满足切换条件,也就是判断直达链路的质量是否下降到一定程度从而需要进行链路切换。
根据本公开的实施例,对端用户设备与用户设备200利用直达链路进行通信的情况下,测量单元240可以周期性、动态或者半静态地测量直达链路的质量。进一步,在预定时间窗口内直达链路的质量小于质量阈值的次数大于次数阈值的情况下,判断单元270可以确定直达链路的质量满足切换条件。例如,判断单元270可以设置计数器,计数器的初始值为0。在预定时间窗口内,每次直达链路的质量小于质量阈值,则计数器加1。在预定时间窗口内,如果计数器的值大于次数阈值,则判断单元270确定直达链路的质量满足切换条件;如果计数器的值不大于次数阈值,则计数器清零。这里,预定时间窗口的长度、次数阈值、以及质量阈值可以由对端用户设备来配置,可以由用户设备200配置,可以由基站设备配置,也可以预先配置在用户设备200中。
根据本公开的实施例,如图2所示,用户设备200还可以包括切换单元280。在判断单元270判断对端用户设备与用户设备200之间的直达链路的质量满足切换条件的情况下,切换单元280可以根据链路优先级指示信息来切换直达链路。例如,切换单元280可以使得用户设备200切换到链路优先级指示信息中优先级最高的链路以与对端用户设备进行通信。在这种情况下,生成单元210还可以生成切换通知,并且用户设备200可以通过通信单元220向对端用户设备发送切换通知,以通知对端用户设备也切换到优先级最高的链路以与用户设备200进行通信。这里,由于对端用户设备存储有与用户设备200存储的链路优先级指示信息相同的链路优先级指示信息,因此切换通知可以仅包括1比特信息,以用于指示切换这个操作,由对端用户设备根据自身存储的链路优先级指示信息来切换到优先级最高的链路。这里,用户设备200可以通过SCI来发送该切换通知。
如上所述,根据本公开的实施例,可以由用户设备200来判断是否 切换直达链路。进一步,在需要切换直达链路的情况下,可以直接根据用户设备200中最新版本的链路优先级指示信息进行链路切换,而无需再对链路进行测量、上报等操作,从而节约切换的时间,保证对端用户设备与用户设备200之间的通信质量。
根据本公开的实施例,用户设备200还可以通过通信单元220从对端用户设备接收切换通知。例如,切换通知可以仅包括1比特信息,以用于指示切换这个操作。这里,用户设备200可以通过SCI来接收该切换通知。进一步,判断单元270根据切换通知确定直达链路的质量满足切换条件,从而切换单元280如上所述执行切换。
如上所述,根据本公开的实施例,可以由对端用户设备来判断是否切换直达链路。进一步,在需要切换直达链路的情况下,可以直接根据用户设备200中最新版本的链路优先级指示信息进行链路切换,而无需再对链路进行测量、上报等操作,从而节约切换的时间,保证对端用户设备与用户设备200之间的通信质量。
图4是示出根据本公开的实施例的UE1和UE2切换通信链路的场景的示意图。在图4中,UE2可以由用户设备200来实现,UE1作为发送端用户设备。这里,假定链路优先级指示信息指示以下链路是按照优先级从高到低的顺序来排列的:链路UE1→通信设备3→UE2;链路UE1→通信设备5→UE2;链路UE1→UE2。如图4所示,在UE1和UE2之间的直达链路满足切换条件的情况下,切换到链路UE1→通信设备3→UE2。也就是说,通过通信设备3将UE1的信息转发至UE2。由此,可以保证UE1与UE2之间的通信质量。
根据本公开的实施例,对端用户设备与其他通信设备可以采用波束赋形的方式进行通信、并且其他通信设备与用户设备200也可以采用波束赋形的方式进行通信。在链路优先级指示信息中指示的链路中,进行转发的通信设备是已经与对端用户设备和用户设备200建立了连接的通信设备,因此已经确定了波束对。也就是说,用于转发的通信设备可以采用之前确定的波束对来与对端用户设备以及用户设备200进行通信。
由此可见,根据本公开的实施例,用户设备200可以从对端用户设备接收链路优先级指示信息,其中包括对端用户设备与用户设备200之间的多条链路的优先级信息。这样一来,对端用户设备和用户设备200 都可以存储链路的优先级信息。此外,链路优先级指示信息是可以被更新的。进一步,用户设备200或者对端用户设备可以判断直达链路是否需要被切换,并且可以根据该链路优先级指示信息进行链路切换,而无需再进行链路的测量、上报和恢复等操作,进而实现链路的快速切换,保证用户设备之间的链路的通信质量。
<3.发送端用户设备的配置示例>
图5是示出根据本公开的实施例的无线通信系统中的用户设备500的结构的框图。这里,用户设备500可以是SL通信中的发送端用户设备。
如图5所示,用户设备500可以包括通信单元510、优先级确定单元520和生成单元530。
这里,用户设备500的各个单元都可以包括在处理电路中。需要说明的是,用户设备500既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,用户设备500可以通过通信单元510从对端用户设备接收链路质量指示信息,链路质量指示信息指示对端用户设备与多个通信设备中的每个通信设备之间的链路的质量。这里的对端用户设备可以是SL通信中的接收端用户设备。
根据本公开的实施例,优先级确定单元520可以根据接收到的链路质量指示信息确定用户设备500与对端用户设备之间的多条链路的优先级信息。
根据本公开的实施例,生成单元530可以生成链路优先级指示信息,链路优先级指示信息包括优先级确定单元520确定的多条链路的优先级信息。进一步,用户设备500可以通过通信单元510将链路优先级指示信息发送至对端用户设备。
由此可见,根据本公开的实施例,用户设备500可以向对端用户设备发送链路优先级指示信息,其中包括用户设备500与对端用户设备之间的多条链路的优先级信息。进一步,在需要进行链路切换时可以根据该链路优先级指示信息进行链路切换,而无需再进行链路的测量、上报 和恢复等操作,进而实现链路的快速切换,保证用户设备之间的链路的通信质量。
根据本公开的实施例,如图5所示,用户设备500还可以包括存储单元540,用于存储链路优先级指示信息。
根据本公开的实施例,用户设备500可以在用户设备500与对端用户设备建立链路之后从对端用户设备接收链路质量指示信息。
根据本公开的实施例,在用户设备500与对端用户设备采用波束赋形的方式进行通信的情况下,可以通过用户设备500与对端用户设备之间的波束扫描过程来建立链路。具体地,用户设备500可以通过波束扫描过程来确定用户设备500与对端用户设备之间的最佳波束对,从而利用该最佳波束对通过直达链路进行SL通信。
根据本公开的实施例,在用户设备500和对端用户设备均位于基站设备的覆盖范围内的情况下,基站设备可以根据用户设备500和对端用户设备的位置(可选地还可以根据用户设备500和对端用户设备的运动信息,包括运动速度和运动方向)配置部分的波束以用于波束扫描。这样一来,用户设备500可以进行部分波束扫描,对端用户设备可以进行部分波束扫描配对,从而减少波束扫描过程的时间。进一步,在用户设备500或对端用户设备位于基站设备的覆盖范围外的情况下,用户设备500可以进行全向波束扫描,对端用户设备可以进行全向波束扫描配对。
根据本公开的实施例,用户设备500可以通过MAC层、RRC层或者物理层信令来接收链路质量指示信息。在通过物理层信令来接收链路质量指示信息时,可以利用PSSCH来接收链路质量指示信息。
根据本公开的实施例,优先级确定单元520可以确定用户设备500与对端用户设备之间的每条链路的质量。这里,多条链路可以包括用户设备500与对端用户设备之间的直达链路和非直达链路。也就是说,用户设备500可以确定用户设备500与对端用户设备之间的所有可达的链路。例如,用户设备500可以知晓已经与用户设备500建立连接的通信设备、可以根据链路质量指示信息确定已经与对端用户设备建立连接的通信设备,从而可以根据已经与用户设备500建立连接的通信设备和已经与对端用户设备建立连接的通信设备来确定所有可达的链路。例如,在图3所示的示例中,根据UE2发送的链路质量指示信息,UE1可以确 定UE2已经与通信设备3、通信设备4和通信设备5建立连接,并且UE1知晓UE2、通信设备3和通信设备5已经与UE1建立连接,因此可以确定UE1与UE2之间的所有可达链路包括:链路UE1→通信设备3→UE2;链路UE1→通信设备5→UE2;链路UE1→UE2。其中,前两条为非直达链路,最后一条为直达链路。
根据本公开的实施例,如图5所示,用户设备500还可以包括测量单元550,用于测量用户设备500与其他通信设备之间的链路的质量。例如,测量单元550可以测量用户设备500与对端用户设备之间的直达链路的质量。进一步,测量单元550可以测量用户设备500与每条非直达链路上的通信设备之间的链路的质量,并且优先级确定单元520可以根据来自对端用户设备的链路质量指示信息确定每条非直达链路上的通信设备与对端用户设备之间的链路的质量,从而可以根据用户设备与每条非直达链路上的通信设备之间的链路的质量以及通信设备与对端用户设备之间的链路的质量来确定非直达链路的质量。
根据本公开的实施例,优先级确定单元520可以综合考虑用户设备500与通信设备之间的链路的质量以及通信设备与对端用户设备之间的链路的质量来确定整条链路的质量。例如,优先级确定单元520可以确定整条链路的质量为用户设备500与通信设备之间的链路的质量以及通信设备与对端用户设备之间的链路的质量的加权和,其中每条链路的权重可以由用户设备500根据链路的重要程度来确定。可选地,优先级确定单元520也可以仅根据用户设备500与通信设备之间的链路的质量来确定整条链路的质量。例如,用户设备500较为繁忙,因此期望采用与其之间的链路质量较好的通信设备来转发用户设备500的数据。可选地,优先级确定单元520可以仅根据通信设备与对端用户设备之间的链路的质量来确定整条链路的质量。例如,对端用户设备500较为繁忙,因此期望采用与其之间的链路质量较好的通信设备来向对端用户设备500转发数据。
本公开对优先级确定单元520确定用户设备500与对端用户设备之间的每条可达链路的质量的方式不作限定。也就是说,优先级确定单元520可以根据测量单元550的测量结果以及来自对端用户设备的链路质量指示信息来确定每条可达链路的质量。
根据本公开的实施例,优先级确定单元520可以根据每条可达链路 的质量来对多条可达链路进行排序。例如,可达链路的质量越好,则排序越靠前。进一步,优先级确定单元520可以根据排序结果确定多条链路的优先级信息。例如,排序越靠前,该链路的优先级越高。也就是说,优先级确定单元520可以根据各条可达链路的质量来对各条可达链路进行排序,以使得质量越好,优先级越高。
根据本公开的实施例,在优先级确定单元520确定了每条可达链路的优先级之后,生成单元530可以生成链路优先级指示信息。链路优先级指示信息包括每条可达链路的优先级。以图3所示的示例为例,链路优先级指示信息可以包括如下信息:链路UE1→通信设备3→UE2:优先级M1;链路UE1→通信设备5→UE2:优先级M2;链路UE1→UE2:优先级M3。这里,M1-M3表示非负整数,数字越小表示优先级越高。例如,M1-M3可以分别是0-2中的各个数字。例如,链路优先级指示信息可以包括如下信息:链路UE1→通信设备3→UE2:优先级0;链路UE1→通信设备5→UE2:优先级1;链路UE1→UE2:优先级2。
根据本公开的实施例,可以如上所述显性地表示各个链路的优先级,也可以隐形地表示各个链路的优先级。这里,可以用链路优先级指示信息中链路的顺序来隐形地表示该链路的优先级。例如,在链路优先级指示信息中链路的顺序越靠前,则该链路的优先级越高。
也就是说,在图3所示的示例中,链路优先级指示信息可以包括如下信息:链路UE1→通信设备3→UE2;链路UE1→通信设备5→UE2;链路UE1→UE2。也就是说,UE2在接收到这样的链路优先级指示信息之后,可以确定以下链路是按照优先级从高到低的顺序来排列的:链路UE1→通信设备3→UE2;链路UE1→通信设备5→UE2;链路UE1→UE2。这样一来,可以隐形地表示优先级信息,从而进一步节约信令开销。
根据本公开的实施例,在链路优先级指示信息中,可以利用非直达链路上的通信设备的标识来表示该非直达链路,并且可以利用用户设备500的标识来表示直达链路。
也就是说,在图3所示的示例中,链路优先级指示信息可以包括如下信息:通信设备3的标识;通信设备5的标识;UE1的标识。这样一来,可以用最小的信令开销清楚地表示出用户设备500与对端用户设备之间的各个可达链路的优先级。
根据本公开的实施例,用户设备500可以通过MAC层、RRC层或者物理层信令来发送链路优先级指示信息。在通过物理层信令来发送链路优先级指示信息时,可以利用PSSCH来发送链路优先级指示信息。
如前文所述,根据本公开的实施例,用户设备500从对端用户设备接收链路质量指示信息、然后用户设备500向对端用户设备发送链路优先级指示信息的过程可以是周期性触发的、动态触发的、半静态触发的。也就是说,链路质量指示信息和链路优先级指示信息是可以更新的,即存储单元540中仅存储最新版本的链路优先级指示信息。
根据本公开的实施例,如图5所示,用户设备500还可以包括调整单元580。在周期性触发用户设备500从对端用户设备接收链路质量指示信息、然后用户设备500向对端用户设备发送链路优先级指示信息的过程的情况下,用户设备500可以监测用户设备500与对端用户设备之间的直达链路的质量的变化情况。进一步,在用户设备500与对端用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整单元580可以调整对端用户设备生成链路质量指示信息的周期。例如,在用户设备500与对端用户设备之间的直达链路的质量的变化速度大于速度阈值范围的上限的情况下,调整单元580可以将当前周期调整得更短;在用户设备500与对端用户设备之间的直达链路的质量的变化速度小于速度阈值范围的下限的情况下,调整单元580可以将当前周期调整的更长。这里,用户设备500可以监测直达链路的质量,从而可以利用单位时间内直达链路的质量的变化量来表示直达链路的质量的变化速度。
根据本公开的实施例,用户设备500和对端用户设备都可以监测直达链路的质量,从而根据直达链路的质量来调整生成链路质量指示信息的周期。
根据本公开的实施例,如图5所示,用户设备500还可以包括判断单元560,用于判断用户设备500与对端用户设备之间的直达链路的质量是否满足切换条件。
根据本公开的实施例,用户设备500与对端用户设备利用直达链路进行通信的情况下,测量单元550可以周期性、动态或者半静态地测量直达链路的质量。进一步,在预定时间窗口内直达链路的质量小于质量阈值的次数大于次数阈值的情况下,判断单元560可以确定直达链路的 质量满足切换条件。例如,判断单元560可以设置计数器,计数器的初始值为0。在预定时间窗口内,每次直达链路的质量小于质量阈值,则计数器加1。在预定时间窗口内,如果计数器的值大于次数阈值,则判断单元560确定直达链路的质量满足切换条件;如果计数器的值不大于次数阈值,则计数器清零。这里,预定时间窗口的长度、次数阈值、以及质量阈值可以由用户设备500来配置,可以由对端用户设备配置,可以由基站设备配置,也可以预先配置在用户设备500中。
根据本公开的实施例,如图5所示,用户设备500还可以包括切换单元570。在判断单元560判断用户设备500与对端用户设备之间的直达链路的质量满足切换条件的情况下,切换单元570可以根据链路优先级指示信息来切换直达链路。例如,切换单元570可以使得用户设备500切换到链路优先级指示信息中优先级最高的链路以与对端用户设备进行通信。在这种情况下,生成单元530还可以生成切换通知,并且用户设备500可以通过通信单元510向对端用户设备发送切换通知,以通知对端用户设备也切换到优先级最高的链路以与用户设备500进行通信。这里,由于对端用户设备存储有与用户设备500存储的链路优先级指示信息相同的链路优先级指示信息,因此切换通知可以仅包括1比特信息,以用于指示切换这个操作,由对端用户设备根据自身存储的链路优先级指示信息来切换到优先级最高的链路。这里,用户设备500可以通过SCI来发送该切换通知。
根据本公开的实施例,用户设备500还可以通过通信单元510从对端用户设备接收切换通知。例如,切换通知可以仅包括1比特信息,以用于指示切换这个操作。这里,用户设备500可以通过SCI来接收该切换通知。进一步,判断单元560根据切换通知确定直达链路的质量满足切换条件,从而切换单元570如上所述执行切换。
如上所述,根据本公开的实施例,可以由发送端用户设备来判断是否切换直达链路,也可以由接收端用户设备来判断是否切换直达链路。
根据本公开的实施例,在利用优先级最高的链路与对端用户设备进行通信之后,用户设备500可以确定通信是否失败。例如,可以规定对端用户设备在接收到来自用户设备500的数据的情况下需向用户设备500发送ACK信息。在预定时间内如果没有从优先级最高的链路上的通信设备收到来自对端用户设备的针对来自用户设备500的数据的ACK信 息,则用户设备500可以确定通信失败。可选地,如果在预定时间内优先级最高的链路上的通信设备没有接收到来自对端用户设备的针对来自用户设备500的数据的ACK信息,则该通信设备可以向用户设备500发送表示通信失败的通知。也就是说,在用户设备500从通信设备接收到表示通信失败的通知的情况下,用户设备500可以确定通信失败。
根据本公开的实施例,在用户设备500确定利用优先级最高的链路与对端用户设备进行通信失败的情况下,切换单元570可以切换到优先级次高的链路以与对端用户设备进行通信。
如上所述,根据本公开的实施例,在用户设备500与对端用户设备之间的直达链路质量下降需要切换时,可以首先切换到链路优先级指示信息中指示的优先级最高的链路。进一步,在利用优先级最高的链路进行通信失败的情况下,可以切换到链路优先级指示信息中指示的优先级次高的链路。当然,如果在利用优先级最高的链路进行通信失败的情况下,链路优先级指示信息发生了更新,即最新版本的优先级指示信息中指示的优先级最高的链路与之前不同,也可以切换到最新版本的链路优先级指示信息中指示的优先级最高的链路。总之,根据本公开的实施例,可以根据链路优先级指示信息中指示的链路的优先级来切换用户设备500与对端用户设备进行通信的链路,从而提高切换速度,保证链路质量。
图6是示出根据本公开的实施例的UE1和UE2再次切换通信链路的场景的示意图。在图6中,UE2可以由用户设备200来实现,UE1可以由用户设备500来实现。这里,假定链路优先级指示信息指示以下链路是按照优先级从高到低的顺序来排列的:链路UE1→通信设备3→UE2;链路UE1→通信设备5→UE2;链路UE1→UE2。如图6所示,在切换到链路UE1→通信设备3→UE2之后,如果通信失败,则切换到链路UE1→通信设备5→UE2。也就是说,通过通信设备5将UE1的信息转发至UE2。由此,可以保证UE1与UE2之间的通信质量。
由此可见,根据本公开的实施例,用户设备500可以根据对端用户设备的链路质量指示信息生成链路优先级指示信息,其中包括用户设备500与对端用户设备之间的多条链路的优先级信息。这样一来,用户设备500和对端用户设备都可以存储链路的优先级信息。此外,链路优先级指示信息是可以被更新的。进一步,用户设备500或者对端用户设备可以判断直达链路是否需要被切换,并且可以根据该链路优先级指示信息进 行链路切换,而无需再进行链路的测量、上报和恢复等操作,进而实现链路的快速切换,保证用户设备之间的链路的通信质量。此外,用户设备500还可以根据通信是否失败来根据链路优先级指示信息再次切换链路。
此外,虽然参照图2和图5分别描述了接收端的用户设备200和发送端的用户设备500,但是用户设备200也可以用作其他SL通信中的发送端,用户设备500也可以用作其他SL通信中的接收端,因此根据本公开的实施例的用户设备可以具备用户设备200和用户设备500的全部功能,其中针对图2和图5中功能相同的单元,用户设备可以仅具备一个。换句话说,根据本公开的实施例的用户设备可以包括生成单元210、通信单元220、存储单元230、测量单元240、排序单元250、确定单元260、判断单元270、切换单元280、调整单元290和优先级确定单元520。
<4.方法实施例>
下面结合图7和图8来描述根据本公开的实施例的利用链路优先级指示信息切换链路的信令流程图。在图7和图8中,Tx UE表示发送端用户设备,可以由用户设备500来实现,Rx UE表示接收端用户设备,可以由用户设备200来实现。
如图7所示,在步骤S701中,Tx UE与Rx UE建立链路,即通过波束扫描过程确定波束对,从而利用最优波束对通过直达链路进行通信。在步骤S702中,Rx UE确定与和Rx UE建立了链路的多个通信设备中的每个通信设备之间的链路的质量。在步骤S703中,Rx UE向Tx UE发送链路质量指示信息。在步骤S704中,Tx UE根据来自Rx UE的链路质量指示信息和Tx UE自身的测量结果确定Tx UE与Rx UE之间的多条链路的优先级,并生成链路优先级指示信息。在步骤S705中,Tx UE向Rx UE发送链路优先级指示信息。在步骤S706中,Rx UE确定直达链路的质量满足切换条件。在步骤S707中,Rx UE切换到链路优先级指示信息中指示的优先级最高的链路与Tx UE进行通信。在步骤S708中,Rx UE向Tx UE发送切换通知,以通知Tx UE也切换到优先级最高的链路。在步骤S709中,Tx UE和Rx UE利用优先级最高的链路进行通信。如图7所示,由Rx UE确定需要进行链路切换,并且Tx UE和Rx UE切换到优先级最高的链路进行通信。
如图8所示,在步骤S801中,Tx UE与Rx UE建立链路,即通过波束扫描过程确定波束对,从而利用最优波束对通过直达链路进行通信。在步骤S802中,Rx UE确定与和Rx UE建立了链路的多个通信设备中的每个通信设备之间的链路的质量。在步骤S803中,Rx UE向Tx UE发送链路质量指示信息。在步骤S804中,Tx UE根据来自Rx UE的链路质量指示信息和Tx UE自身的测量结果确定Tx UE与Rx UE之间的多条链路的优先级,并生成链路优先级指示信息。在步骤S805中,Tx UE向Rx UE发送链路优先级指示信息。在步骤S806中,Tx UE确定直达链路的质量满足切换条件。在步骤S807中,Tx UE切换到链路优先级指示信息中指示的优先级最高的链路与Rx UE进行通信。在步骤S808中,Tx UE向Rx UE发送切换通知,以通知Rx UE也切换到优先级最高的链路。在步骤S809中,Tx UE和Rx UE利用优先级最高的链路进行通信。如图8所示,由Tx UE确定需要进行链路切换,并且Tx UE和Rx UE切换到优先级最高的链路进行通信。
接下来将详细描述根据本公开实施例的由无线通信系统中的用户设备200执行的无线通信方法。图9是示出根据本公开的实施例的由无线通信系统中的作为用户设备200执行的无线通信方法的流程图。
如图9所示,在步骤S910中,生成并向对端用户设备发送链路质量指示信息,链路质量指示信息指示用户设备200与多个通信设备中的每个通信设备之间的链路的质量。
接下来,在步骤S920中,从对端用户设备接收根据链路质量指示信息确定的链路优先级指示信息,链路优先级指示信息包括对端用户设备与用户设备200之间的多条链路的优先级信息。
优选地,链路质量指示信息包括用户设备200与每个通信设备之间的链路的优先级信息。
优选地,无线通信方法还包括:测量用户设备200与每个通信设备之间的链路的质量;根据测量结果对用户设备200与每个通信设备之间的链路进行排序;以及根据排序结果确定用户设备200与每个通信设备之间的链路的优先级信息。
优选地,无线通信方法还包括:利用通信设备的标识来表示用户设备200与通信设备之间的链路。
优选地,多个通信设备是已经与用户设备200建立连接的通信设备,并且多个通信设备是用户设备、路侧单元或智能反射面。
优选地,对端用户设备与用户设备200之间的多条链路包括对端用户设备与用户设备200之间的直达链路和非直达链路。
优选地,无线通信方法还包括:在对端用户设备与用户设备200之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与对端用户设备进行通信。
优选地,无线通信方法还包括:在预定时间窗口内直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定直达链路的质量满足切换条件。
优选地,无线通信方法还包括:在确定直达链路的质量满足切换条件的情况下,向对端用户设备发送切换通知,以通知对端用户设备切换到优先级最高的链路以与用户设备200进行通信。
优选地,无线通信方法还包括:从对端用户设备接收切换通知;以及根据切换通知确定直达链路的质量满足切换条件。
优选地,无线通信方法还包括:周期性生成链路质量指示信息。
优选地,无线通信方法还包括:在对端用户设备与用户设备200之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整生成链路质量指示信息的周期。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的用户设备200,因此前文中关于用户设备200的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的用户设备500执行的无线通信方法。图10是示出根据本公开的实施例的由无线通信系统中的用户设备500执行的无线通信方法的流程图。
如图10所示,在步骤S1010中,从对端用户设备接收链路质量指示信息,链路质量指示信息指示对端用户设备与多个通信设备中的每个通信设备之间的链路的质量。
接下来,在步骤S1020中,根据链路质量指示信息确定链路优先级指示信息,链路优先级指示信息包括用户设备500与对端用户设备之间 的多条链路的优先级信息。
接下来,在步骤S1030中,将链路优先级指示信息发送至对端用户设备。
优选地,无线通信方法还包括:确定用户设备500与对端用户设备之间的每条链路的质量;根据确定结果对多条链路进行排序;以及根据排序结果确定多条链路的优先级信息。
优选地,多条链路包括用户设备500与对端用户设备之间的直达链路和非直达链路,并且无线通信方法还包括:根据用户设备500与每条非直达链路上的通信设备之间的链路的质量以及通信设备与对端用户设备之间的链路的质量来确定非直达链路的质量。
优选地,无线通信方法还包括:利用非直达链路上的通信设备的标识来表示非直达链路。
优选地,无线通信方法还包括:在用户设备500与对端用户设备之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与对端用户设备进行通信。
优选地,无线通信方法还包括:在预定时间窗口内直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定直达链路的质量满足切换条件。
优选地,无线通信方法还包括:在确定直达链路的质量满足切换条件的情况下,向对端用户设备发送切换通知,以通知对端用户设备切换到优先级最高的链路以与用户设备500进行通信。
优选地,无线通信方法还包括:从对端用户设备接收切换通知;以及根据切换通知确定直达链路的质量满足切换条件。
优选地,无线通信方法还包括:周期性接收链路质量指示信息。
优选地,无线通信方法还包括:在用户设备500与对端用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整对端用户设备生成链路质量指示信息的周期。
优选地,无线通信方法还包括:在利用优先级最高的链路与对端用户设备进行通信的情况下,如果通信失败,则切换到优先级次高的链路以与对端用户设备进行通信。
优选地,无线通信方法还包括:在预定时间内未收到来自对端用户设备的针对来自用户设备500的数据的ACK信息的情况下,确定通信失败。
优选地,无线通信方法还包括:从优先级最高的链路上的通信设备接收表示通信失败的通知。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的用户设备500,因此前文中关于用户设备500的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于终端设备的应用示例>
(第一应用示例)
图11是示出可以应用本公开内容的技术的智能电话1100的示意性配置的示例的框图。智能电话1100包括处理器1101、存储器1102、存储装置1103、外部连接接口1104、摄像装置1106、传感器1107、麦克风1108、输入装置1109、显示装置1110、扬声器1111、无线通信接口1112、一个或多个天线开关1115、一个或多个天线1116、总线1117、电池1118以及辅助控制器1119。
处理器1101可以为例如CPU或片上系统(SoC),并且控制智能电话1100的应用层和另外层的功能。存储器1102包括RAM和ROM,并且存储数据和由处理器1101执行的程序。存储装置1103可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1104为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1100的接口。
摄像装置1106包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1107可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1108将输入到智能电话1100的声音转换为音频信号。输入装置1109包括例如被配置为检测显示装置1110的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1110包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1100的输出图像。扬声器1111将从智能电话1100输出的音频信号转换为声音。
无线通信接口1112支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1112通常可以包括例如BB处理器1113和RF电路1114。BB处理器1113可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1114可以包括例如混频器、滤波器和放大器,并且经由天线1116来传送和接收无线信号。无线通信接口1112可以为其上集成有BB处理器1113和RF电路1114的一个芯片模块。如图11所示,无线通信接口1112可以包括多个BB处理器1113和多个RF电路1114。虽然图11示出其中无线通信接口1112包括多个BB处理器1113和多个RF电路1114的示例,但是无线通信接口1112也可以包括单个BB处理器1113或单个RF电路1114。
此外,除了蜂窝通信方案之外,无线通信接口1112可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1112可以包括针对每种无线通信方案的BB处理器1113和RF电路1114。
天线开关1115中的每一个在包括在无线通信接口1112中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1116的连接目的地。
天线1116中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1112传送和接收无线信号。如图11所示,智能电话1100可以包括多个天线1116。虽然图11示出其中智能电话1100包括多个天线1116的示例,但是智能电话1100也可以包括单个天线1116。
此外,智能电话1100可以包括针对每种无线通信方案的天线1116。在此情况下,天线开关1115可以从智能电话1100的配置中省略。
总线1117将处理器1101、存储器1102、存储装置1103、外部连接接口1104、摄像装置1106、传感器1107、麦克风1108、输入装置1109、显示装置1110、扬声器1111、无线通信接口1112以及辅助控制器1119彼此连接。电池1118经由馈线向图11所示的智能电话1100的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1119例如在睡眠模式下操作智能电话1100的最小必需功能。
在图11所示的智能电话1100中,通过使用图2所描述的生成单元210、测量单元240、排序单元250、确定单元260、判断单元270、切换单元280和调整单元290,以及通过使用图5所描述的优先级确定单元520、生成单元530、测量单元550、判断单元560、切换单元570和调整单元580可以由处理器1101或辅助控制器1119实现。功能的至少一部分也可以由处理器1101或辅助控制器1119实现。例如,处理器1101或辅助控制器1119可以通过执行存储器1102或存储装置1103中存储的指令而执行生成链路质量指示信息、测量链路质量、对链路进行排序、确定链路的优先级、判断直达链路的质量是否满足切换条件、切换链路、调整生成链路质量指示信息的周期、生成链路优先级指示信息的功能。
(第二应用示例)
图12是示出可以应用本公开内容的技术的汽车导航设备1220的示意性配置的示例的框图。汽车导航设备1220包括处理器1221、存储器1222、全球定位系统(GPS)模块1224、传感器1225、数据接口1226、内容播放器1227、存储介质接口1228、输入装置1229、显示装置1230、扬声器1231、无线通信接口1233、一个或多个天线开关1236、一个或多个天线1237以及电池1238。
处理器1221可以为例如CPU或SoC,并且控制汽车导航设备1220的导航功能和另外的功能。存储器1222包括RAM和ROM,并且存储数据和由处理器1221执行的程序。
GPS模块1224使用从GPS卫星接收的GPS信号来测量汽车导航设备1220的位置(诸如纬度、经度和高度)。传感器1225可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1226 经由未示出的终端而连接到例如车载网络1241,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1227再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1228中。输入装置1229包括例如被配置为检测显示装置1230的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1230包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1231输出导航功能的声音或再现的内容。
无线通信接口1233支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1233通常可以包括例如BB处理器1234和RF电路1235。BB处理器1234可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1235可以包括例如混频器、滤波器和放大器,并且经由天线1237来传送和接收无线信号。无线通信接口1233还可以为其上集成有BB处理器1234和RF电路1235的一个芯片模块。如图12所示,无线通信接口1233可以包括多个BB处理器1234和多个RF电路1235。虽然图12示出其中无线通信接口1233包括多个BB处理器1234和多个RF电路1235的示例,但是无线通信接口1233也可以包括单个BB处理器1234或单个RF电路1235。
此外,除了蜂窝通信方案之外,无线通信接口1233可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1233可以包括BB处理器1234和RF电路1235。
天线开关1236中的每一个在包括在无线通信接口1233中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1237的连接目的地。
天线1237中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1233传送和接收无线信号。如图12所示,汽车导航设备1220可以包括多个天线1237。虽然图12示出其中汽车导航设备1220包括多个天线1237的示例,但是汽车导航设备1220也可以包括单个天线1237。
此外,汽车导航设备1220可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关1236可以从汽车导航设备1220的配置中省略。
电池1238经由馈线向图12所示的汽车导航设备1220的各个块提供电力,馈线在图中被部分地示为虚线。电池1238累积从车辆提供的电力。
在图12示出的汽车导航设备1220中,通过使用图2所描述的生成单元210、测量单元240、排序单元250、确定单元260、判断单元270、切换单元280和调整单元290,以及通过使用图5所描述的优先级确定单元520、生成单元530、测量单元550、判断单元560、切换单元570和调整单元580可以由处理器1221实现。功能的至少一部分也可以由处理器1221实现。例如,处理器1221可以通过执行存储器1222中存储的指令而执行生成链路质量指示信息、测量链路质量、对链路进行排序、确定链路的优先级、判断直达链路的质量是否满足切换条件、切换链路、调整生成链路质量指示信息的周期、生成链路优先级指示信息的功能。
本公开内容的技术也可以被实现为包括汽车导航设备1220、车载网络1241以及车辆模块1242中的一个或多个块的车载系统(或车辆)1240。车辆模块1242生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1241。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当 地改变该顺序。
此外,本公开可以具有如下所述的配置。
1.一种用户设备,包括处理电路,被配置为:
生成并向对端用户设备发送链路质量指示信息,所述链路质量指示信息指示所述用户设备与多个通信设备中的每个通信设备之间的链路的质量;以及
从所述对端用户设备接收根据所述链路质量指示信息确定的链路优先级指示信息,所述链路优先级指示信息包括所述对端用户设备与所述用户设备之间的多条链路的优先级信息。
2.根据1所述的用户设备,其中,所述链路质量指示信息包括所述用户设备与每个通信设备之间的链路的优先级信息。
3.根据2所述的用户设备,其中,所述处理电路还被配置为:
测量所述用户设备与每个通信设备之间的链路的质量;
根据测量结果对所述用户设备与每个通信设备之间的链路进行排序;以及
根据排序结果确定所述用户设备与每个通信设备之间的链路的优先级信息。
4.根据3所述的用户设备,其中,所述处理电路还被配置为:
利用通信设备的标识来表示所述用户设备与所述通信设备之间的链路。
5.根据1所述的用户设备,其中,所述多个通信设备是已经与所述用户设备建立连接的通信设备,并且所述多个通信设备是用户设备、路侧单元或智能反射面。
6.根据1所述的用户设备,其中,所述对端用户设备与所述用户设备之间的多条链路包括所述对端用户设备与所述用户设备之间的直达链路和非直达链路。
7.根据1所述的用户设备,其中,所述处理电路还被配置为:
在所述对端用户设备与所述用户设备之间的直达链路的质量满足切 换条件的情况下,切换到优先级最高的链路以与所述对端用户设备进行通信。
8.根据7所述的用户设备,其中,所述处理电路还被配置为:
在预定时间窗口内所述直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定所述直达链路的质量满足切换条件。
9.根据8所述的用户设备,其中,所述处理电路还被配置为:
在确定所述直达链路的质量满足切换条件的情况下,向所述对端用户设备发送切换通知,以通知所述对端用户设备切换到所述优先级最高的链路以与所述用户设备进行通信。
10.根据7所述的用户设备,其中,所述处理电路还被配置为:
从所述对端用户设备接收切换通知;以及
根据所述切换通知确定所述直达链路的质量满足切换条件。
11.根据1所述的用户设备,其中,所述处理电路还被配置为:
周期性生成所述链路质量指示信息。
12.根据11所述的用户设备,其中,所述处理电路还被配置为:
在所述对端用户设备与所述用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整生成所述链路质量指示信息的周期。
13.一种用户设备,包括处理电路,被配置为:
从对端用户设备接收链路质量指示信息,所述链路质量指示信息指示所述对端用户设备与多个通信设备中的每个通信设备之间的链路的质量;
根据所述链路质量指示信息确定链路优先级指示信息,所述链路优先级指示信息包括所述用户设备与所述对端用户设备之间的多条链路的优先级信息;以及
将所述链路优先级指示信息发送至所述对端用户设备。
14.根据13所述的用户设备,其中,所述处理电路还被配置为:
确定所述用户设备与所述对端用户设备之间的每条链路的质量;
根据确定结果对所述多条链路进行排序;以及
根据排序结果确定所述多条链路的优先级信息。
15.根据14所述的用户设备,其中,所述多条链路包括所述用户设备与所述对端用户设备之间的直达链路和非直达链路,并且
其中,所述处理电路还被配置为:根据所述用户设备与每条非直达链路上的通信设备之间的链路的质量以及所述通信设备与所述对端用户设备之间的链路的质量来确定所述非直达链路的质量。
16.根据15所述的用户设备,其中,所述处理电路还被配置为:
利用非直达链路上的通信设备的标识来表示所述非直达链路。
17.根据13所述的用户设备,其中,所述处理电路还被配置为:
在所述用户设备与所述对端用户设备之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与所述对端用户设备进行通信。
18.根据17所述的用户设备,其中,所述处理电路还被配置为:
在预定时间窗口内所述直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定所述直达链路的质量满足切换条件。
19.根据18所述的用户设备,其中,所述处理电路还被配置为:
在确定所述直达链路的质量满足切换条件的情况下,向所述对端用户设备发送切换通知,以通知所述对端用户设备切换到所述优先级最高的链路以与所述用户设备进行通信。
20.根据17所述的用户设备,其中,所述处理电路还被配置为:
从所述对端用户设备接收切换通知;以及
根据所述切换通知确定所述直达链路的质量满足切换条件。
21.根据13所述的用户设备,其中,所述处理电路还被配置为:
周期性接收所述链路质量指示信息。
22.根据21所述的用户设备,其中,所述处理电路还被配置为:
在所述用户设备与所述对端用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整所述对端用户设备生成所述链路 质量指示信息的周期。
23.根据17所述的用户设备,其中,所述处理电路还被配置为:
在利用所述优先级最高的链路与所述对端用户设备进行通信的情况下,如果通信失败,则切换到优先级次高的链路以与所述对端用户设备进行通信。
24.根据23所述的用户设备,其中,所述处理电路还被配置为:
在预定时间内未收到来自所述对端用户设备的针对来自所述用户设备的数据的ACK信息的情况下,确定所述通信失败。
25.根据23所述的用户设备,其中,所述处理电路还被配置为:
从所述优先级最高的链路上的通信设备接收表示所述通信失败的通知。
26.一种由用户设备执行的无线通信方法,包括:
生成并向对端用户设备发送链路质量指示信息,所述链路质量指示信息指示所述用户设备与多个通信设备中的每个通信设备之间的链路的质量;以及
从所述对端用户设备接收根据所述链路质量指示信息确定的链路优先级指示信息,所述链路优先级指示信息包括所述对端用户设备与所述用户设备之间的多条链路的优先级信息。
27.根据26所述的无线通信方法,其中,所述链路质量指示信息包括所述用户设备与每个通信设备之间的链路的优先级信息。
28.根据27所述的无线通信方法,其中,所述无线通信方法还包括:
测量所述用户设备与每个通信设备之间的链路的质量;
根据测量结果对所述用户设备与每个通信设备之间的链路进行排序;以及
根据排序结果确定所述用户设备与每个通信设备之间的链路的优先级信息。
29.根据28所述的无线通信方法,其中,所述无线通信方法还包括:
利用通信设备的标识来表示所述用户设备与所述通信设备之间的链 路。
30.根据26所述的无线通信方法,其中,所述多个通信设备是已经与所述用户设备建立连接的通信设备,并且所述多个通信设备是用户设备、路侧单元或智能反射面。
31.根据26所述的无线通信方法,其中,所述对端用户设备与所述用户设备之间的多条链路包括所述对端用户设备与所述用户设备之间的直达链路和非直达链路。
32.根据26所述的无线通信方法,其中,所述无线通信方法还包括:
在所述对端用户设备与所述用户设备之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与所述对端用户设备进行通信。
33.根据32所述的无线通信方法,其中,所述无线通信方法还包括:
在预定时间窗口内所述直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定所述直达链路的质量满足切换条件。
34.根据33所述的无线通信方法,其中,所述无线通信方法还包括:
在确定所述直达链路的质量满足切换条件的情况下,向所述对端用户设备发送切换通知,以通知所述对端用户设备切换到所述优先级最高的链路以与所述用户设备进行通信。
35.根据32所述的无线通信方法,其中,所述无线通信方法还包括:
从所述对端用户设备接收切换通知;以及
根据所述切换通知确定所述直达链路的质量满足切换条件。
36.根据26所述的无线通信方法,其中,所述无线通信方法还包括:
周期性生成所述链路质量指示信息。
37.根据36所述的无线通信方法,其中,所述无线通信方法还包括:
在所述对端用户设备与所述用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整生成所述链路质量指示信息的周期。
38.一种由用户设备执行的无线通信方法,包括:
从对端用户设备接收链路质量指示信息,所述链路质量指示信息指示所述对端用户设备与多个通信设备中的每个通信设备之间的链路的质量;
根据所述链路质量指示信息确定链路优先级指示信息,所述链路优先级指示信息包括所述用户设备与所述对端用户设备之间的多条链路的优先级信息;以及
将所述链路优先级指示信息发送至所述对端用户设备。
39.根据38所述的无线通信方法,其中,所述无线通信方法还包括:
确定所述用户设备与所述对端用户设备之间的每条链路的质量;
根据确定结果对所述多条链路进行排序;以及
根据排序结果确定所述多条链路的优先级信息。
40.根据39所述的无线通信方法,其中,所述多条链路包括所述用户设备与所述对端用户设备之间的直达链路和非直达链路,并且
其中,所述无线通信方法还包括:根据所述用户设备与每条非直达链路上的通信设备之间的链路的质量以及所述通信设备与所述对端用户设备之间的链路的质量来确定所述非直达链路的质量。
41.根据40所述的无线通信方法,其中,所述无线通信方法还包括:
利用非直达链路上的通信设备的标识来表示所述非直达链路。
42.根据38所述的无线通信方法,其中,所述无线通信方法还包括:
在所述用户设备与所述对端用户设备之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与所述对端用户设备进行通信。
43.根据42所述的无线通信方法,其中,所述无线通信方法还包括:
在预定时间窗口内所述直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定所述直达链路的质量满足切换条件。
44.根据43所述的无线通信方法,其中,所述无线通信方法还包括:
在确定所述直达链路的质量满足切换条件的情况下,向所述对端用户设备发送切换通知,以通知所述对端用户设备切换到所述优先级最高 的链路以与所述用户设备进行通信。
45.根据42所述的无线通信方法,其中,所述无线通信方法还包括:
从所述对端用户设备接收切换通知;以及
根据所述切换通知确定所述直达链路的质量满足切换条件。
46.根据38所述的无线通信方法,其中,所述无线通信方法还包括:
周期性接收所述链路质量指示信息。
47.根据46所述的无线通信方法,其中,所述无线通信方法还包括:
在所述用户设备与所述对端用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整所述对端用户设备生成所述链路质量指示信息的周期。
48.根据42所述的无线通信方法,其中,所述无线通信方法还包括:
在利用所述优先级最高的链路与所述对端用户设备进行通信的情况下,如果通信失败,则切换到优先级次高的链路以与所述对端用户设备进行通信。
49.根据48所述的无线通信方法,其中,所述无线通信方法还包括:
在预定时间内未收到来自所述对端用户设备的针对来自所述用户设备的数据的ACK信息的情况下,确定所述通信失败。
50.根据48所述的无线通信方法,其中,所述无线通信方法还包括:
从所述优先级最高的链路上的通信设备接收表示所述通信失败的通知。
51.一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据26-50中任一项所述的无线通信方法。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (51)

  1. 一种用户设备,包括处理电路,被配置为:
    生成并向对端用户设备发送链路质量指示信息,所述链路质量指示信息指示所述用户设备与多个通信设备中的每个通信设备之间的链路的质量;以及
    从所述对端用户设备接收根据所述链路质量指示信息确定的链路优先级指示信息,所述链路优先级指示信息包括所述对端用户设备与所述用户设备之间的多条链路的优先级信息。
  2. 根据权利要求1所述的用户设备,其中,所述链路质量指示信息包括所述用户设备与每个通信设备之间的链路的优先级信息。
  3. 根据权利要求2所述的用户设备,其中,所述处理电路还被配置为:
    测量所述用户设备与每个通信设备之间的链路的质量;
    根据测量结果对所述用户设备与每个通信设备之间的链路进行排序;以及
    根据排序结果确定所述用户设备与每个通信设备之间的链路的优先级信息。
  4. 根据权利要求3所述的用户设备,其中,所述处理电路还被配置为:
    利用通信设备的标识来表示所述用户设备与所述通信设备之间的链路。
  5. 根据权利要求1所述的用户设备,其中,所述多个通信设备是已经与所述用户设备建立连接的通信设备,并且所述多个通信设备是用户设备、路侧单元或智能反射面。
  6. 根据权利要求1所述的用户设备,其中,所述对端用户设备与所述用户设备之间的多条链路包括所述对端用户设备与所述用户设备之间的直达链路和非直达链路。
  7. 根据权利要求1所述的用户设备,其中,所述处理电路还被配置 为:
    在所述对端用户设备与所述用户设备之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与所述对端用户设备进行通信。
  8. 根据权利要求7所述的用户设备,其中,所述处理电路还被配置为:
    在预定时间窗口内所述直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定所述直达链路的质量满足切换条件。
  9. 根据权利要求8所述的用户设备,其中,所述处理电路还被配置为:
    在确定所述直达链路的质量满足切换条件的情况下,向所述对端用户设备发送切换通知,以通知所述对端用户设备切换到所述优先级最高的链路以与所述用户设备进行通信。
  10. 根据权利要求7所述的用户设备,其中,所述处理电路还被配置为:
    从所述对端用户设备接收切换通知;以及
    根据所述切换通知确定所述直达链路的质量满足切换条件。
  11. 根据权利要求1所述的用户设备,其中,所述处理电路还被配置为:
    周期性生成所述链路质量指示信息。
  12. 根据权利要求11所述的用户设备,其中,所述处理电路还被配置为:
    在所述对端用户设备与所述用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整生成所述链路质量指示信息的周期。
  13. 一种用户设备,包括处理电路,被配置为:
    从对端用户设备接收链路质量指示信息,所述链路质量指示信息指示所述对端用户设备与多个通信设备中的每个通信设备之间的链路的质量;
    根据所述链路质量指示信息确定链路优先级指示信息,所述链路优先级指示信息包括所述用户设备与所述对端用户设备之间的多条链路的优先级信息;以及
    将所述链路优先级指示信息发送至所述对端用户设备。
  14. 根据权利要求13所述的用户设备,其中,所述处理电路还被配置为:
    确定所述用户设备与所述对端用户设备之间的每条链路的质量;
    根据确定结果对所述多条链路进行排序;以及
    根据排序结果确定所述多条链路的优先级信息。
  15. 根据权利要求14所述的用户设备,其中,所述多条链路包括所述用户设备与所述对端用户设备之间的直达链路和非直达链路,并且
    其中,所述处理电路还被配置为:根据所述用户设备与每条非直达链路上的通信设备之间的链路的质量以及所述通信设备与所述对端用户设备之间的链路的质量来确定所述非直达链路的质量。
  16. 根据权利要求15所述的用户设备,其中,所述处理电路还被配置为:
    利用非直达链路上的通信设备的标识来表示所述非直达链路。
  17. 根据权利要求13所述的用户设备,其中,所述处理电路还被配置为:
    在所述用户设备与所述对端用户设备之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与所述对端用户设备进行通信。
  18. 根据权利要求17所述的用户设备,其中,所述处理电路还被配置为:
    在预定时间窗口内所述直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定所述直达链路的质量满足切换条件。
  19. 根据权利要求18所述的用户设备,其中,所述处理电路还被配置为:
    在确定所述直达链路的质量满足切换条件的情况下,向所述对端用户设备发送切换通知,以通知所述对端用户设备切换到所述优先级最高的链路以与所述用户设备进行通信。
  20. 根据权利要求17所述的用户设备,其中,所述处理电路还被配置为:
    从所述对端用户设备接收切换通知;以及
    根据所述切换通知确定所述直达链路的质量满足切换条件。
  21. 根据权利要求13所述的用户设备,其中,所述处理电路还被配置为:
    周期性接收所述链路质量指示信息。
  22. 根据权利要求21所述的用户设备,其中,所述处理电路还被配置为:
    在所述用户设备与所述对端用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整所述对端用户设备生成所述链路质量指示信息的周期。
  23. 根据权利要求17所述的用户设备,其中,所述处理电路还被配置为:
    在利用所述优先级最高的链路与所述对端用户设备进行通信的情况下,如果通信失败,则切换到优先级次高的链路以与所述对端用户设备进行通信。
  24. 根据权利要求23所述的用户设备,其中,所述处理电路还被配置为:
    在预定时间内未收到来自所述对端用户设备的针对来自所述用户设备的数据的ACK信息的情况下,确定所述通信失败。
  25. 根据权利要求23所述的用户设备,其中,所述处理电路还被配置为:
    从所述优先级最高的链路上的通信设备接收表示所述通信失败的通知。
  26. 一种由用户设备执行的无线通信方法,包括:
    生成并向对端用户设备发送链路质量指示信息,所述链路质量指示信息指示所述用户设备与多个通信设备中的每个通信设备之间的链路的质量;以及
    从所述对端用户设备接收根据所述链路质量指示信息确定的链路优先级指示信息,所述链路优先级指示信息包括所述对端用户设备与所述用户设备之间的多条链路的优先级信息。
  27. 根据权利要求26所述的无线通信方法,其中,所述链路质量指示信息包括所述用户设备与每个通信设备之间的链路的优先级信息。
  28. 根据权利要求27所述的无线通信方法,其中,所述无线通信方法还包括:
    测量所述用户设备与每个通信设备之间的链路的质量;
    根据测量结果对所述用户设备与每个通信设备之间的链路进行排序;以及
    根据排序结果确定所述用户设备与每个通信设备之间的链路的优先级信息。
  29. 根据权利要求28所述的无线通信方法,其中,所述无线通信方法还包括:
    利用通信设备的标识来表示所述用户设备与所述通信设备之间的链路。
  30. 根据权利要求26所述的无线通信方法,其中,所述多个通信设备是已经与所述用户设备建立连接的通信设备,并且所述多个通信设备是用户设备、路侧单元或智能反射面。
  31. 根据权利要求26所述的无线通信方法,其中,所述对端用户设备与所述用户设备之间的多条链路包括所述对端用户设备与所述用户设备之间的直达链路和非直达链路。
  32. 根据权利要求26所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述对端用户设备与所述用户设备之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与所述对端用户设备进行 通信。
  33. 根据权利要求32所述的无线通信方法,其中,所述无线通信方法还包括:
    在预定时间窗口内所述直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定所述直达链路的质量满足切换条件。
  34. 根据权利要求33所述的无线通信方法,其中,所述无线通信方法还包括:
    在确定所述直达链路的质量满足切换条件的情况下,向所述对端用户设备发送切换通知,以通知所述对端用户设备切换到所述优先级最高的链路以与所述用户设备进行通信。
  35. 根据权利要求32所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述对端用户设备接收切换通知;以及
    根据所述切换通知确定所述直达链路的质量满足切换条件。
  36. 根据权利要求26所述的无线通信方法,其中,所述无线通信方法还包括:
    周期性生成所述链路质量指示信息。
  37. 根据权利要求36所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述对端用户设备与所述用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整生成所述链路质量指示信息的周期。
  38. 一种由用户设备执行的无线通信方法,包括:
    从对端用户设备接收链路质量指示信息,所述链路质量指示信息指示所述对端用户设备与多个通信设备中的每个通信设备之间的链路的质量;
    根据所述链路质量指示信息确定链路优先级指示信息,所述链路优先级指示信息包括所述用户设备与所述对端用户设备之间的多条链路的优先级信息;以及
    将所述链路优先级指示信息发送至所述对端用户设备。
  39. 根据权利要求38所述的无线通信方法,其中,所述无线通信方法还包括:
    确定所述用户设备与所述对端用户设备之间的每条链路的质量;
    根据确定结果对所述多条链路进行排序;以及
    根据排序结果确定所述多条链路的优先级信息。
  40. 根据权利要求39所述的无线通信方法,其中,所述多条链路包括所述用户设备与所述对端用户设备之间的直达链路和非直达链路,并且
    其中,所述无线通信方法还包括:根据所述用户设备与每条非直达链路上的通信设备之间的链路的质量以及所述通信设备与所述对端用户设备之间的链路的质量来确定所述非直达链路的质量。
  41. 根据权利要求40所述的无线通信方法,其中,所述无线通信方法还包括:
    利用非直达链路上的通信设备的标识来表示所述非直达链路。
  42. 根据权利要求38所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述用户设备与所述对端用户设备之间的直达链路的质量满足切换条件的情况下,切换到优先级最高的链路以与所述对端用户设备进行通信。
  43. 根据权利要求42所述的无线通信方法,其中,所述无线通信方法还包括:
    在预定时间窗口内所述直达链路的质量小于质量阈值的次数大于次数阈值的情况下,确定所述直达链路的质量满足切换条件。
  44. 根据权利要求43所述的无线通信方法,其中,所述无线通信方法还包括:
    在确定所述直达链路的质量满足切换条件的情况下,向所述对端用户设备发送切换通知,以通知所述对端用户设备切换到所述优先级最高的链路以与所述用户设备进行通信。
  45. 根据权利要求42所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述对端用户设备接收切换通知;以及
    根据所述切换通知确定所述直达链路的质量满足切换条件。
  46. 根据权利要求38所述的无线通信方法,其中,所述无线通信方法还包括:
    周期性接收所述链路质量指示信息。
  47. 根据权利要求46所述的无线通信方法,其中,所述无线通信方法还包括:
    在所述用户设备与所述对端用户设备之间的直达链路的质量的变化速度超出速度阈值范围的情况下,调整所述对端用户设备生成所述链路质量指示信息的周期。
  48. 根据权利要求42所述的无线通信方法,其中,所述无线通信方法还包括:
    在利用所述优先级最高的链路与所述对端用户设备进行通信的情况下,如果通信失败,则切换到优先级次高的链路以与所述对端用户设备进行通信。
  49. 根据权利要求48所述的无线通信方法,其中,所述无线通信方法还包括:
    在预定时间内未收到来自所述对端用户设备的针对来自所述用户设备的数据的ACK信息的情况下,确定所述通信失败。
  50. 根据权利要求48所述的无线通信方法,其中,所述无线通信方法还包括:
    从所述优先级最高的链路上的通信设备接收表示所述通信失败的通知。
  51. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求26-50中任一项所述的无线通信方法。
PCT/CN2023/118740 2022-09-21 2023-09-14 用户设备、无线通信方法和计算机可读存储介质 WO2024061094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211154938.X 2022-09-21
CN202211154938.XA CN117793669A (zh) 2022-09-21 2022-09-21 用户设备、无线通信方法和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2024061094A1 true WO2024061094A1 (zh) 2024-03-28

Family

ID=90389745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118740 WO2024061094A1 (zh) 2022-09-21 2023-09-14 用户设备、无线通信方法和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117793669A (zh)
WO (1) WO2024061094A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159151A1 (en) * 2007-01-03 2008-07-03 Harris Corporation Data-path dynamic link maintenance in mobile ad hoc networks
KR20100029869A (ko) * 2008-09-09 2010-03-18 엘지노텔 주식회사 이종망간 끊김없는 서비스를 지원하는 장치 및 그 방법
CN109863786A (zh) * 2016-10-10 2019-06-07 三星电子株式会社 多链路环境中的数据发送方法和设备
CN111294144A (zh) * 2019-03-28 2020-06-16 北京展讯高科通信技术有限公司 直接链路的信道质量上报方法及装置、存储介质、用户设备
CN111901836A (zh) * 2020-02-13 2020-11-06 中兴通讯股份有限公司 链路切换、链路切换配置方法、装置、通信节点及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159151A1 (en) * 2007-01-03 2008-07-03 Harris Corporation Data-path dynamic link maintenance in mobile ad hoc networks
KR20100029869A (ko) * 2008-09-09 2010-03-18 엘지노텔 주식회사 이종망간 끊김없는 서비스를 지원하는 장치 및 그 방법
CN109863786A (zh) * 2016-10-10 2019-06-07 三星电子株式会社 多链路环境中的数据发送方法和设备
CN111294144A (zh) * 2019-03-28 2020-06-16 北京展讯高科通信技术有限公司 直接链路的信道质量上报方法及装置、存储介质、用户设备
CN111901836A (zh) * 2020-02-13 2020-11-06 中兴通讯股份有限公司 链路切换、链路切换配置方法、装置、通信节点及介质

Also Published As

Publication number Publication date
CN117793669A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US11456789B2 (en) Electronic device, wireless communication method and computer-readable medium
US11212708B2 (en) Relay communication device, base station, method, and recording medium
US10904804B2 (en) Handover measurement control method and apparatus
CN109937610B (zh) 基站和终端设备
CN108605198B (zh) 电子装置、信息处理设备和信息处理方法
WO2018105263A1 (ja) 端末装置、方法及び記録媒体
US20210289401A1 (en) Electronic device and method executed by electronic device
WO2018024080A1 (zh) 无线通信系统中的电子设备和服务器以及无线通信方法
US20200177349A1 (en) Electronic device and user equipment in wireless communication system and wireless communication method
US10165510B2 (en) Wireless communication device, wireless communication method, and wireless communication system
US10382949B2 (en) Apparatus, program, and method
US10897296B2 (en) Terminal apparatus, base station, method and recording medium
WO2016088302A1 (en) Information processing apparatus, information processing method and non-transitory computer-readable medium in a mesh network
CN116803175A (zh) 无线通信系统中的电子设备和方法
WO2021164675A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US10904814B2 (en) Electronic device and method for wireless communication
CN114449596A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2019242536A1 (zh) 用于卫星通信的用户设备
WO2024061094A1 (zh) 用户设备、无线通信方法和计算机可读存储介质
WO2023134717A1 (zh) 用于波束失败恢复的设备、方法和介质
CN113330758B (zh) 无线通信系统中的用户设备
CN114747247A (zh) 电子设备、无线通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867383

Country of ref document: EP

Kind code of ref document: A1