WO2024060885A1 - 一种用于储能装置的箱体及储能装置、储能系统 - Google Patents

一种用于储能装置的箱体及储能装置、储能系统 Download PDF

Info

Publication number
WO2024060885A1
WO2024060885A1 PCT/CN2023/113111 CN2023113111W WO2024060885A1 WO 2024060885 A1 WO2024060885 A1 WO 2024060885A1 CN 2023113111 W CN2023113111 W CN 2023113111W WO 2024060885 A1 WO2024060885 A1 WO 2024060885A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
energy storage
heat exchange
storage device
height
Prior art date
Application number
PCT/CN2023/113111
Other languages
English (en)
French (fr)
Inventor
王勇灵
江志顺
张创
余士江
李马林
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP23844519.1A priority Critical patent/EP4369489A1/en
Publication of WO2024060885A1 publication Critical patent/WO2024060885A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/251Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for stationary devices, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of electrochemical energy storage, specifically designing a box for an energy storage device, an energy storage device, and an energy storage system.
  • an electrochemical energy storage power station usually requires the centralized arrangement of a large number of electrochemical energy storage devices.
  • Existing energy storage devices usually use a collection box as a carrier for the convenience of transportation and centralized arrangement.
  • Some existing energy storage device boxes use a single-layer space, and electrical components such as battery modules, temperature control modules, and heat exchange components are all arranged in the same space. Correspondingly, there is too much heat inside the box of the energy storage device, which is not conducive to the heat dissipation and overall efficiency of the energy storage device. In addition, the box needs to be equipped with multiple heat dissipation or communication windows, which is not conducive to dustproof, waterproof and other safety protection.
  • the battery module can be installed with less capacity.
  • Some existing energy storage devices have heat exchange components installed outside the box.
  • the energy storage device with the heat exchange component installed outside the box is larger than a standard container.
  • energy storage systems usually require a large number of energy storage devices to be arranged centrally, resulting in the adjacent arrangement or stacking of boxes of energy storage devices to occupy a larger space or land area, thereby reducing the energy storage density of the energy storage system, and Increasing the construction cost of energy storage systems is not conducive to the large-scale promotion of the electrochemical energy storage industry.
  • This application provides a box for an energy storage device, an energy storage device, and an energy storage system.
  • the heat dissipation capacity of the energy storage device can be improved. and safety protection capabilities, and can increase the energy storage density of the energy storage system and reduce construction costs.
  • the present application provides a box for an energy storage device.
  • the box includes four columns, three side panels, partitions, bottom panels and sealed doors.
  • the partition and the bottom plate are arranged oppositely along the height direction of the box.
  • the two side plates are arranged oppositely along the length direction of the box.
  • the other side plate and the sealing door are arranged oppositely along the width direction of the box.
  • Each side plate is arranged oppositely along the height direction of the box.
  • the height of the column is greater than the height of the partition.
  • three side panels, partitions and bottom plates are fixed by four pillars and enclosed with a sealed door to form a closed second accommodation area, and the four pillars and partitions are enclosed to form an open first accommodation area.
  • the first accommodating area and the second accommodating area are stacked and arranged along the height direction of the box. Two said side panels.
  • the length of the first accommodating area or the second accommodating area along the length direction of the box is equal to the distance between the two side plates oppositely arranged along the length direction of the box, and the distance between the partition and the bottom plate along the height direction of the box. Less than the height of each column.
  • the box provided by this application includes an open first accommodating area and a closed second accommodating area arranged in layers up and down, which can reduce the heat of the components in the open first accommodating area to the closed second accommodating area. component effects, Thereby improving the heat dissipation efficiency of the energy storage device.
  • the box provided by this application reduces the height of the partition to form a recessed open first accommodation area for accommodating external components of the energy storage device. Compared with the box of the existing energy storage device, it is not only convenient for energy storage The placement of external components of the device can also ensure the standardization of the overall size of the box, which is beneficial to reducing the space required for stacking boxes or the floor space required for adjacent arrangement, thereby increasing the energy storage density of the energy storage system and reducing Construction costs.
  • the second accommodation area includes a first accommodation cavity and a second accommodation cavity.
  • the first accommodation cavity and the second accommodation cavity are arranged adjacently along the length direction of the box body.
  • the first accommodation cavity is arranged along the height direction of the box body. At least one of the height or the height of the second accommodation cavity is equal to the height of the second accommodation area.
  • the second accommodating area in the box provided by the present application is only provided with a first accommodating cavity and a second accommodating cavity arranged adjacent to each other in the longitudinal direction.
  • the first accommodating cavity is used to place the battery module
  • the second accommodating cavity can be used to place the power module and the temperature control module. Accordingly, the layout or maintenance work of the battery module in the first accommodating cavity and the layout or maintenance work of the power module and the temperature control module in the second accommodating cavity can be carried out simultaneously without affecting each other, thereby improving the layout and maintenance efficiency of the energy storage device.
  • the volume of the first accommodation cavity is greater than the volume of the second accommodation cavity.
  • the length of the first accommodating cavity along the length direction of the box is greater than the length of the second accommodating cavity, and the sum of the length of the first accommodating cavity and the length of the second accommodating cavity along the length direction of the box is equal to the length of the second accommodating area.
  • the second accommodation area in the box provided by this application only provides first and second accommodation chambers arranged longitudinally adjacent to each other. Compared with the existing way of using channels or gaps to distinguish multiple spaces in the box of the energy storage device, , not only can the space of the second accommodation area be more fully utilized, but also it is conducive to separate chambers for layout and maintenance work, thereby reducing working time.
  • the first accommodation cavity is used to place the battery module
  • the second accommodation cavity can be used to place the power module and the temperature control module.
  • the arrangement or maintenance work of the battery module in the first accommodation cavity and the arrangement or maintenance work of the power module and temperature control module in the second accommodation cavity can be carried out simultaneously without affecting each other, thereby improving the arrangement and maintenance of the energy storage device. Maintenance efficiency.
  • the second accommodation area includes a plurality of battery racks.
  • the plurality of battery racks are arranged adjacently along the length direction of the box. Any two adjacent battery racks among the plurality of battery racks are arranged adjacent to each other along the length direction of the box.
  • the spacing is the same, and the first or last battery rack of the multiple battery racks along the length direction of the box is used to separate the first accommodating cavity and the second accommodating cavity.
  • the distance between the first or last battery rack and its adjacent side plate is equal to the distance between two adjacent battery racks.
  • the depth of each battery rack can be 1700 ⁇ 2200mm.
  • the box provided by this application multiple battery racks are used to separate the first and second accommodation chambers. Compared with the existing energy storage box that uses separation walls or gaps to separate multiple spaces, it can be more fully utilized. space in the second accommodation area, thereby increasing the number of batteries that can be accommodated in the box.
  • the battery rack is used to separate the first accommodation cavity and the second accommodation cavity, and the battery can also be arranged in the second accommodation cavity.
  • the first accommodation cavity is used to place batteries
  • the second accommodation cavity can be used to place power modules and temperature control modules.
  • the power module and the temperature control module only occupy part of the second accommodation cavity, other parts of the second accommodation cavity can also be used to arrange batteries.
  • the box provided by the present application can accommodate more batteries.
  • the sealing doors include at least two, and the at least two sealing doors are arranged along the length direction of the box. Wherein, one of the at least two sealing doors is used to close the second accommodation chamber, and the other of the at least two sealing doors is used to close the second accommodation chamber. The sealing door is used to close the first accommodation cavity.
  • the first accommodation cavity and the second accommodation cavity in the box provided by this application are respectively provided with longitudinally opening sealed doors.
  • the first accommodation cavity and the second accommodation cavity can be arranged or maintained separately, and the first accommodation cavity or the second accommodation cavity can be opened.
  • the sealed door will not affect the components placed in another accommodation chamber, thereby improving the convenience of maintenance work and the safety protection capability of the energy storage device.
  • the length, width and height of the box are the same as those of a standard container.
  • the box body can be a standard container of any specification.
  • the length of the cabinet is 6058mm
  • the width of the cabinet is 2438mm
  • the height of the cabinet is 2438 ⁇ 4150mm.
  • the size of the box provided by this application is the same as that of the standard container, which not only facilitates the transportation of the energy storage device, but also facilitates the stacking or adjacent arrangement of multiple boxes.
  • the height of each column is equal to the height of a standard container.
  • the height of the columns in the box provided by this application is equal to the height of the standard container and the height of the partition is lower than the height of the columns, thereby forming a recessed first accommodation area. Even if external components are placed in the first accommodation area, it will not cause energy storage.
  • the overall height of the device exceeds the height of a standard container, thereby ensuring the standardization of the volume of the energy storage device, which is beneficial to reducing the space required for stacking energy storage devices or the floor space required for adjacent arrangements, thereby increasing the storage capacity of the energy storage system. energy density and reduce construction costs.
  • the box may include one or more reinforcing beams.
  • Each reinforcing beam is parallel to the length or width direction of the box.
  • Each reinforcing beam is used to fixedly connect two columns along the height direction of the box.
  • Each reinforcing beam is arranged above the partition. Among them, one or more reinforcing beams, four columns and the bottom plate are enclosed to form a first accommodation area.
  • the box provided by this application is provided with reinforcing beams parallel to the width or length of the box, which not only helps to improve the overall structural strength of the box, but can also be used to protect external components placed in the first accommodation area, such as heat exchangers. components.
  • this application provides an energy storage device.
  • the energy storage device includes a heat exchange component, an electrical component, and a box as in any one of the first aspect and the above implementation manner.
  • the first accommodation area is used to place the heat exchange component
  • the second accommodation area is used to place the electrical component.
  • the first accommodation area is located above the second accommodation area along the height direction of the box and the height of the first accommodation area is less than the height of the second accommodation area.
  • the height of the heat exchange component along the height direction of the box is less than or equal to the first accommodation area.
  • the height of the containment area is used to place the first accommodation area.
  • the energy storage device of the present application uses an open first accommodation area to place relatively small heat exchange components, and uses a closed second accommodation area to place electrical components, thereby reducing the impact of the heat of the heat exchange components on the electrical components. , thereby improving the heat dissipation performance of the energy storage device.
  • the energy storage device provided by this application places the electrical components in a closed second accommodation area, which can reduce the communication or maintenance windows of the box, thereby improving the safety protection capability of the energy storage device.
  • the energy storage device provided by this application has a recessed open first accommodation area to place the heat exchange components, which not only facilitates the external placement of the heat exchange components but also ensures the standardization of the overall size of the energy storage device, which is conducive to reducing the number of multiple storage devices.
  • the space required for stacking energy devices or the floor space required for adjacent arrangement can increase the energy storage density of the energy storage system and reduce construction costs.
  • the electrical component includes multiple rows of battery modules, each row of battery modules includes multiple battery modules, and the multiple battery modules in each row of battery modules are stacked and arranged in the first accommodation cavity along the height direction of the box.
  • multiple battery modules of each column of battery modules are centrally arranged in the first accommodation cavity, which not only makes full use of the space in the first accommodation area, but also improves the prefabrication rate of the energy storage device and facilitates Maintenance work on battery modules.
  • the electrical component includes a power module and a temperature control module.
  • the power module and the temperature control module are stacked and arranged in the second accommodation cavity along the height direction of the box.
  • the power module and the temperature control module are centrally arranged in the second accommodation cavity, which not only makes full use of the space in the second accommodation area, but also improves the prefabrication rate of the energy storage device and facilitates the installation of the power module. and temperature control module maintenance work.
  • the partition includes a first communication hole and a second communication hole.
  • the first communication hole is provided above the first accommodation cavity, and the heat exchange pipe of the heat exchange assembly passes through the first communication hole and enters the first accommodation cavity.
  • the second communication hole is provided above the second accommodation cavity, and the connecting cable between the heat exchange component and the temperature control module passes through the second communication hole.
  • the electrical components and the heat exchange components are respectively connected through the two communication holes of the partition, which can reduce the communication or maintenance windows on the side panels of the box, thereby improving the safety protection capability of the energy storage device.
  • the distance between the upper surface of the heat exchange component housing along the height direction of the box and the partition plate is equal to or less than the height of the first accommodation area, and both sides of the heat exchange component housing along the width direction of the box are equal to or less than the height of the first accommodation area.
  • the distance between the side surfaces is equal to or less than the width of the first accommodation area, and the distance between the two side surfaces of the heat exchange component housing along the length direction of the box is equal to or less than the length of the first accommodation area.
  • the distance between the upper surface of the heat exchange component housing along the height direction of the box and the bottom of the box is equal to or less than the height of the box.
  • the energy storage device provided by this application is provided with a recessed open first accommodation area to place the heat exchange components, which not only facilitates the external placement of the heat exchange components, but also ensures that the heat exchange components are not exposed outside or on the upper side of the energy storage device. It is beneficial to reduce the space required for stacking multiple energy storage devices or the floor space required for adjacent arrangement, thereby increasing the energy storage density of the energy storage system and reducing construction costs.
  • this application provides an energy storage system.
  • the energy storage system includes a plurality of energy storage devices as in the second aspect and any one of the above-mentioned implementations in the second aspect, and the heat exchange component of each energy storage device includes an air outlet and an air inlet.
  • the air outlet and air inlet of the heat exchange component are oriented toward the height direction of the energy storage device's box.
  • Multiple energy storage devices are arranged adjacently along the length or width direction of the energy storage device's box. The boxes of two adjacent energy storage devices The gap between the bodies is less than the length, height or width of the heat exchange assembly.
  • the air outlet and air inlet of the heat exchange component are oriented toward the width or length of the energy storage device's box, and multiple energy storage devices are stacked in the height direction of the energy storage device's box.
  • the boxes of two adjacent energy storage devices are The gap between them is less than the length, height or width of the heat exchange component.
  • multiple energy storage devices use a recessed open first accommodation area to place heat exchange components, which can ensure that the heat exchange components are not exposed outside or on the upper side of the energy storage device, thereby reducing stacking or adjacent
  • the gap required for arranging two or more energy storage devices reduces the space or floor space required for the energy storage system, thereby increasing the energy storage density of the energy storage system and reducing construction costs.
  • the heat exchange assembly includes a shell and a heat exchange plate, and the shell is used to accommodate the heat exchange plate.
  • the air inlet is provided on the side of the housing along the length or width direction of the box of the energy storage device, and the heat exchange plate and the partition plate are arranged at an angle. Or, the air inlet is provided at the top of the housing along the height direction of the energy storage device's box, and the heat exchange plate and the partition are arranged in parallel.
  • the heat exchange components of multiple energy storage devices in the energy storage system provided by this application can flexibly set the positions of the air inlets and outlets of the heat exchange components according to the needs of stacking or adjacent arrangement, thereby making it easier to combine energy storage devices. Box assembly. Moreover, the heat exchange components of multiple energy storage devices in the energy storage system provided by this application can set the relative positions of the heat exchange plates and partitions accordingly, thereby improving the heat dissipation capacity of a single energy storage device and the entire energy storage system.
  • the heat exchanger is a liquid-cooled heat exchanger, and the liquid-cooled heat exchanger is connected to a liquid-cooling pipeline of the battery module.
  • Liquid cooling versus air cooling enables an air duct-free design in the second accommodation area where the battery module is placed, saving space and allowing more space to be accommodated. Multiple batteries significantly reduce system non-battery cell electricity costs.
  • the corners of the box are provided with corner piece structures.
  • corner piece structures By setting up the corner piece structure, self-stacking transportation by sea can be realized, reducing shipping costs, and the box of the energy storage device can be protected from damage during transportation.
  • Figure 1 is a schematic diagram of a box provided by an embodiment of the present application.
  • FIG2 is another schematic diagram of a box provided in an embodiment of the present application.
  • Figure 3 is another schematic diagram of a box provided by an embodiment of the present application.
  • FIG4 is another schematic diagram of a box provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an energy storage device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a battery module
  • FIG. 7 is a schematic diagram of a heat exchange component in the energy storage device provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another heat exchange component in the energy storage device provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of the energy storage system provided by the embodiment of the present application.
  • 20-battery module 30-heat exchange component; 40-power module; 50-temperature control module;
  • 31-shell 311-top of shell; 312-side of shell; 313-side of shell; 32-refrigeration module; 33-heat exchange plate; 34-air inlet; 35-air outlet.
  • the length, width, height and other data described or defined in each implementation mode of this application, as well as vertical, parallel, equal to, greater than or less than, etc., should be understood as values or conditions that are within the engineering measurement error range.
  • Energy storage devices in energy storage systems in industrial and commercial energy storage scenarios and power station energy storage scenarios usually include boxes, battery modules and heat exchange components.
  • the box of the existing energy storage device generally only includes a single accommodation space. If the heat exchange component is located inside the box, it will increase the heat inside the box and require a connecting window in the box, thus affecting the heat dissipation performance and safety protection capabilities of the energy storage device. If the heat exchange component is located outside the box, it will increase the footprint of a single energy storage device and cause the overall size of each energy storage device to be inconsistent, which is not conducive to the centralized arrangement of multiple energy storage devices.
  • embodiments of the present application provide a box for an energy storage device, an energy storage device, and an energy storage system.
  • the external components of the energy storage device are placed in the recessed open first accommodation area, which can improve the performance of the energy storage device.
  • the heat dissipation and safety protection capabilities of energy storage devices can also improve the energy storage density of energy storage systems and reduce construction costs.
  • the energy storage device provided by the embodiment of the present application includes a box 10 , an electrical component, and a heat exchange component 30 .
  • the electrical components include multiple battery modules 20 , power modules 40 and temperature control modules 50 .
  • the battery module 20 is used for charging or discharging.
  • the heat exchange component 30 is used to dissipate heat from the energy storage device.
  • the power module 40 is used to charge the battery module 20 using an external power source or to receive the discharge of the battery module 20 to provide power to the load.
  • the temperature module 50 is used to control the heat exchange component 30 to dissipate heat from the energy storage module according to the heat generation condition of the energy storage device.
  • FIG. 1 is a schematic diagram of a box provided by an embodiment of the present application.
  • the box 10 includes a bottom plate 11 , three side plates 12 , a sealing door 13 , a partition 14 and four uprights 132 .
  • the partition 14 and the bottom plate 11 are arranged oppositely along the height direction of the box 10 .
  • the two side plates 12 are arranged oppositely along the length direction of the box body 10
  • the other side plate 12 and the sealing door 13 are arranged oppositely along the width direction of the box body 10 .
  • first accommodating area 01 and the second accommodating area 02 are stacked and arranged along the height direction of the box 10 .
  • the length of the first accommodating area 01 or the second accommodating area 02 along the length direction of the box 10 is equal to the distance between the two side plates 12 oppositely arranged along the length direction of the box 10 .
  • the distance between the partition 14 and the bottom plate 11 in the height direction of 10 is less than the height of each column 132 .
  • the height of each column 132 along the height direction of the box 10 is greater than the height of the partition 14 .
  • the height of each column 132 along the height direction of the box 10 is greater than the height of the first accommodation area 01 or the height of the second accommodation area 02 .
  • the height of each column 132 along the height direction of the box 10 is greater than the sum of the height of the first accommodation area 01 and the height of the second accommodation area 02 .
  • the first accommodation area 01 is used to place the heat exchange component 30, and the second accommodation area 02 is used to place electrical components.
  • the box 10 provided by the embodiment of the present application includes an open first accommodating area 01 and a closed second accommodating area 02 arranged in layers up and down, which can reduce the heat of external components in the open first accommodating area 01 and the closed The influence of the second accommodation area 02 of the formula, thereby improving the heat dissipation efficiency of the energy storage device.
  • the box 10 provided in this application forms a recessed open first accommodation area 01 by reducing the height of the partition 14 for accommodating external components of the energy storage device.
  • the second accommodation area 02 includes a first accommodation cavity 021 and a second accommodation cavity 022 .
  • the first accommodating cavity 021 and the second accommodating cavity 022 are arranged adjacently in the length direction, and at least one of the height of the first accommodating cavity 021 or the height of the second accommodating cavity 022 along the height direction of the box 10 is equal to that of the second accommodating area 02 high.
  • the length of the first accommodating cavity 021 along the length direction of the box 10 is greater than the length 22 of the second accommodating cavity.
  • the sum of the lengths is equal to the length of the second accommodation area 02 .
  • the second accommodation area 02 in the box 10 provided by the present application only provides the first accommodation chamber 021 and the second accommodation chamber 022 arranged longitudinally adjacently. Compared with the existing energy storage device boxes that use channels or gaps to distinguish multiple The method of separate spaces not only makes full use of the space of the second accommodation area 02, but also facilitates layout and maintenance work in separate chambers, thereby reducing working time.
  • the first accommodation cavity 021 is used to place the battery module
  • the second accommodation cavity 022 can be used to place the power module 40 and the temperature control module 50 .
  • the arrangement or maintenance work of the battery module 20 in the first accommodation cavity and the arrangement or maintenance work of the power module 40 and the temperature control module 50 in the second accommodation cavity can be carried out simultaneously without affecting each other, thereby improving the efficiency of the energy storage device. layout and maintenance efficiency.
  • the box 10 includes a plurality of battery racks 15, which are arranged in sequence along the length direction of the box 10. The spacing between any two adjacent battery racks 15 along the length direction of the box 10 is the same.
  • the first or last battery rack 15 along the length direction of the box 10 is used to separate the first accommodating cavity 021 from the second accommodating cavity 022.
  • the first accommodating area 01 is used to place the battery module 20, and the second accommodating area 02 is used to place the power module 40 and the temperature control module 50.
  • the box 10 provided by this application uses the battery rack 15 to separate the first accommodation cavity 021 and the second accommodation cavity 022. Compared with the existing energy storage box that uses separation walls or gaps to separate multiple spaces, it can more fully The space of the second accommodation area 02 is utilized to increase the number of battery modules that the box 10 can accommodate.
  • the battery rack 15 is used to separate the first accommodating cavity 021 and the second accommodating cavity 022 , and the battery module 20 can also be arranged in the second accommodating cavity 022 .
  • the first accommodation cavity 021 is used to place the battery module 20
  • the second accommodation cavity 022 can be used to place the power module 40 and the temperature control module 50 .
  • the box provided by this application can accommodate more battery modules 20 .
  • the box 10 includes a plurality of spacer columns 131 , and the plurality of spacer columns 131 are used to support the partition 14 and external components placed on the partition 14 .
  • the plurality of spacer columns 131 are arranged at intervals along the length direction of the box 10 , and the plurality of spacer columns 131 are respectively fixed between the bottom plate 11 and the partition plate 14 .
  • Each spacing column 131 corresponds to one battery rack 15 , and each spacing column 131 overlaps with the projection of one battery rack 15 along the width direction of the box 10 .
  • the partition 14 is used to place the heat exchange component 30 of the energy storage device.
  • the box provided by this application is provided with a plurality of spacing columns 131 respectively corresponding to the plurality of battery racks 15, which can not only improve the stability of the box 10, but also does not occupy the space of the second accommodation area 02.
  • the box 10 includes a sealing door 13 for closing the first accommodating chamber 021 and the second accommodating chamber 022 .
  • the sealed door 13 in the box 10 provided by this application is used to close the first accommodating cavity 021 and the second accommodating cavity 022.
  • an open first accommodating area 01 is provided for placing external components, and the maintenance work of the external components is not required. It will affect the components in the first accommodation chamber 021 and the second accommodation chamber 022 closed by the sealing door 13 , thereby improving the maintenance convenience and safety protection capability of the energy storage device.
  • the box 10 includes a plurality of sealing doors 13 .
  • the box 10 includes at least two sealing doors 13 , and the at least two sealing doors 13 are arranged along the length direction of the box 10 .
  • at least two sealed doors 13 One of the sealing doors 13 is used to close the second accommodation chamber 022
  • the other sealing doors 13 of at least two sealing doors 13 are used to close the first accommodation chamber 021 .
  • the first accommodating cavity 021 and the second accommodating cavity 022 in the box 10 provided by this application are respectively provided with longitudinally opening sealing doors 13.
  • the first accommodating cavity 021 and the second accommodating cavity 022 can be arranged or maintained separately, and only the first accommodating cavity 022 is opened.
  • the sealing door 13 of the cavity 021 or the sealing door 13 of the second accommodation cavity 022 will not affect the components placed in the other accommodation cavity, thereby improving the maintenance convenience and safety protection capabilities of the energy storage device.
  • the length, width and height of the box 10 and the standard container are the same.
  • the height of each column 132 is equal to the height of a standard container.
  • standard containers include a variety of specifications, and each standard container has specific length, width and height dimensions.
  • the length, width and height dimensions of the box 10 correspond to the length, width and height dimensions of one of the standard containers.
  • the length, width, and height dimensions of the box 10 may be one of a 20-foot standard container, a 40-foot standard container, a 20-foot high container, or a 40-foot high container.
  • the length of the box is 6058mm
  • the width of the box is 2438mm
  • the height of the box is 2438 ⁇ 4150mm.
  • the size of the box 10 provided in this application is the same as that of a standard container, which not only facilitates the transportation of energy storage devices, but also facilitates the stacking or adjacent arrangement of multiple boxes.
  • each column 132 is equal to the height of a standard container.
  • the height of the central column 132 of the box 10 provided by the present application is equal to the height of a standard container and the height of the partition 14 is lower than the height of the column 132, thereby forming a recessed first accommodation area 01, even if the first accommodation area 01 is placed with external components It will not cause the overall height of the energy storage device to exceed the height of the standard container, thereby ensuring the standardization of the volume of the energy storage device, which is conducive to reducing the space required for stacking energy storage devices or the floor space required for adjacent arrangements, thus Increase the energy storage density of the energy storage system and reduce construction costs.
  • the box 10 includes one or more reinforcing beams 133, each reinforcing beam 133 is parallel to the length or width direction of the box 10, and each reinforcing beam 133 is used to fixedly connect two uprights 132, along the Each reinforcing beam 133 is disposed above the partition 14 in the height direction of the box 10 .
  • the box provided by this application is provided with reinforcing beams parallel to the width or length direction of the box, which not only helps to improve the overall structural strength of the box, but can also use the reinforcing beams to protect components placed in the first accommodation area, such as heat exchange components. .
  • Figure 2 is another schematic diagram of a box provided by an embodiment of the present application.
  • the reinforcing beam 133 parallel to the width direction of the box 10 can also be called the first reinforcing beam 134
  • the reinforcing beam 133 parallel to the length direction of the box 10 can also be called the second reinforcing beam. 135.
  • the two columns 132 along the length direction of the box 10 are fixedly connected through the second reinforcing beam 135 .
  • the second reinforcing beam 135 is fixedly connected to the same side column 132 of the first side plate 121 and the third side plate 123 .
  • the first reinforcing beam 134 and the second reinforcing beam 135 are arranged perpendicularly to each other, and the first reinforcing beam 134 and the second reinforcing beam 135 are respectively arranged in parallel with the partition plate 14 .
  • the heights of the first reinforcing beam 134 and the second reinforcing beam 135 are higher than the partition plate 14 .
  • the four uprights 132 , the first reinforcing beam 134 , the second reinforcing beam 135 and the partition 14 can form a rectangular, concave, open first accommodation area 01 on the top of the partition 14 .
  • the box 10 By providing at least one of the first reinforcing beam 134 or the second reinforcing beam 135, the box 10 provided in the embodiment of the present application can not only improve the structural strength and structural stability of the box 10, but can also be used to protect the first container. External components placed in area 01, such as heat exchange component 30.
  • the first accommodation area 01 can be an open accommodation area, and its shape can be a U-shaped structure or a square frame structure.
  • the heat exchange assembly can be placed in the first accommodation area 01 to be layered with the battery module. In this way, it can be reduced
  • the occupied area of the heat exchange assembly 30 increases the filling space of the battery modules in the second accommodation area 02, thereby increasing the capacity of the energy storage device.
  • the second accommodation area 02 forms a closed accommodation area for the bottom plate 11 , the upright column 132 , the side plate 12 , the partition 14 and the sealing door 13 .
  • the second accommodation area 02 is used to place electrical components such as the battery module 20 , the power module 40 and the temperature control module 50 .
  • the second accommodation area 02 includes a first accommodation cavity 021 and a second accommodation cavity 022 .
  • the first accommodation cavity 021 and the second accommodation cavity 022 are arranged adjacently along the length direction of the box body 10 .
  • the height of the first accommodation cavity 021 and the height of the second accommodation cavity 022 are equal to the height of the second accommodation area 02 .
  • the second accommodation area 02 can be divided into a first accommodation cavity 021 and a second accommodation cavity 022.
  • the first accommodation cavity 021 and the second accommodation cavity 022 are arranged adjacent to each other.
  • the first accommodation cavity 021 is used to place the battery module 20.
  • the second accommodation cavity 022 is used to place the power module 40 and the temperature control module 50.
  • the first accommodating cavity 021 and the second accommodating cavity 022 may be separated by a baffle.
  • a through hole is provided on the baffle for passing cables between the power module 40 and the battery module 20 .
  • multiple battery racks 15 can be disposed in the first accommodation cavity 021 .
  • a plurality of battery racks 15 are arranged adjacently in sequence.
  • Each battery rack 15 may include a plurality of guide rails.
  • the battery modules When placing the battery modules 20 , the battery modules may be placed on two adjacent battery racks 15 along the corresponding guide rails. Among them, the depth of the battery module 20 is 1700-2200 mm.
  • the second accommodation cavity 022 in the box 10 provided by the embodiment of the present application can facilitate the insertion of the prefabricated power module 40 and the temperature control module 50 .
  • the temperature control module 50 can be placed in the upper space of the second accommodation cavity 022
  • the power module 40 can be placed in the lower space of the second accommodation cavity 022 . Placing the power module 40 and the temperature control module 50 one above the other can further reduce the space occupied in the horizontal plane and increase the assembly space of the battery module 20 .
  • the box 10 provided in the embodiment of the present application can provide a relatively sealed accommodation space for electrical components such as the battery module 20, the power module 40, and the temperature control module 50, so as to protect the battery module 20 and achieve fireproof, waterproof, and vaporproof effects. .
  • the partition 14 includes a first communication hole 141 and a second communication hole 142 .
  • the first communication hole 141 is provided above the first receiving cavity 021
  • the second communication hole 142 is provided above the second receiving cavity 022 .
  • the heat exchange pipe of the heat exchange assembly 30 passes through the first communication hole 141 and enters the first accommodation cavity 021
  • the connection cable between the heat exchange assembly 30 and the temperature control module 50 passes through the second communication hole 142 .
  • the partition 14 includes a plurality of first connecting holes 141, each of which corresponds to each first accommodating cavity 021 and is located at a partition position above the first accommodating cavity 021.
  • the positions of each first connecting hole 141 and the second connecting hole 142 of the partition 14 avoid the contact position between each battery rack 15 and the partition 14.
  • the two communication holes of the partition 14 in the box 10 provided in this application are respectively used to connect the components of the two accommodation areas, which can reduce the communication or maintenance windows of the box 10 and thereby improve the safety protection capability of the energy storage device.
  • the heat exchange component 30 uses liquid cooling for heat dissipation.
  • the heat exchange pipe can be a liquid cooling pipe.
  • the heat exchange pipe between the heat exchange assembly 30 and the battery module 20 may form a circulation loop of the cooling medium between the heat exchanger and the battery module 20 .
  • the second accommodation cavity in the box 10 provided by the embodiment of the present application can reduce the number of internal heat exchange pipes and thus can accommodate more battery modules 20 and significantly reduce the non-battery core density of the energy storage device. Electricity costs.
  • the power module 40 and the temperature control module 50 are both placed in the second accommodation cavity 022 .
  • the temperature control module 50 is disposed in the upper space of the power module 40 to facilitate electrical connection with the heat exchange component 30 in the first accommodation area 01 .
  • the heat exchange component 30 and the temperature control module 50 can be electrically connected through connecting cables.
  • a second communication hole may be provided in the partition 14 , and the second communication hole may be provided above the second accommodation cavity 022 for passing the connection cables. In order to ensure the sealing of the second accommodation cavity 022, a seal is maintained between the cable and the hole wall of the second communication hole.
  • the bottom plate 11 has a rectangular structure.
  • the bottom plate 11 includes four sides, which can be respectively noted as a first side, a second side, a third side and a fourth side.
  • the first side and the third side are the short sides of the base plate 11
  • the second side and the fourth side are the long sides of the base plate 11 .
  • the four uprights 132 are respectively provided at the four corners of the bottom plate 11 and are fixedly connected to the bottom plate 11 .
  • the three side plates 12 can be respectively referred to as a first side plate 121 , a second side plate 122 and a third side plate 123 .
  • the first side plate 121 , the second side plate 122 and the third side plate 123 are respectively provided corresponding to the first side, the second side and the third side of the base plate 11 .
  • the first side plate 121 , the second side plate 122 and the third side plate 123 are all vertically connected to the bottom plate 11 .
  • the three side plates 12 can be connected to the four columns 132 respectively.
  • the sealing door 13 is provided along the fourth side of the base plate 11 , and the sealing door 13 can be vertically connected to the base plate 11 .
  • the sealed door 13 , the bottom plate 11 , the partition 14 , the side plates 12 and the four columns 132 together form a closed second accommodation area 02 .
  • the sealing door 13 is provided on one side of the box 10 to enable single-side opening of the box 10 .
  • the sealed door 13 can be a double door, a single door, etc.
  • the number of sealing doors 13 may be two or three or more, and the number of sealing doors may be 2, 3, 4, 5, or more.
  • the number of sealing doors is not specifically limited here.
  • a plurality of sealing doors 13 are arranged in sequence along the length direction of the box 10 .
  • the box 10 may also include loose-leaf connectors.
  • each sealing door 13 is connected to its adjacent column 132 through an active connector, so that the sealing door 13 can be opened and closed.
  • spacing columns 131 can be provided between the plurality of sealing doors 13.
  • the sealing door 13 adjacent to one of the columns 132 can be The remaining sealed door 13 can be rotatably connected to the spacer column 131 through the loose-leaf connector and the upright column 132 .
  • each column 132 is greater than the height of the partition 14 .
  • the space above the partition 14 can form the first accommodation area 01
  • the space below the partition 14 can form the second accommodation area 02 .
  • the height of the first accommodation area 01 is smaller than the height of the second accommodation area 02 .
  • Figure 3 is another schematic diagram of a box provided by an embodiment of the present application.
  • the first side plate 121 can be disposed between two uprights 132 and fixedly connected to the uprights 132 .
  • the height of the first side panel 121 may be flush with the partition 14 .
  • a plurality of first reinforcing beams 134 arranged along the width direction of the box 10 may be provided between the two uprights 132 on the upper part of the first side plate 121 .
  • the third side plate 123 is arranged opposite to the first side plate 121 .
  • a plurality of first reinforcing beams 134 arranged along the width direction of the box 10 may be disposed between the two uprights 132 on the upper part of the third side plate 123, which will not be described again.
  • one or more second reinforcing beams 135 arranged along the length direction of the box 10 may also be provided between the two uprights 132 on the upper part of the second side plate 122, which will not be described again.
  • the top of the column 132 is higher than the partition 14 .
  • the first reinforcing beam 134 and/or the second reinforcing beam 135, the four uprights 132 and the partition 14 are enclosed to form a first accommodation area 01 above the partition 14.
  • the body of the first side plate 121 and the third side plate 123 are in a space below the partition 14 , and one side of the first side plate 121 and one side of the third side plate 123 can be in a space above the partition 14 .
  • the space forms a hollow structure to facilitate the arrangement of the air inlet of the heat exchange component 30 and the circulation of the heat exchange airflow.
  • the box 10 includes one or more beams 136 .
  • a cross beam 136 is fixedly connected to two columns 132 along the width direction of the box 10 .
  • the first side plate 121 is fixedly connected to a cross beam 136 and two upright columns 132 .
  • the third side plate 123 is arranged opposite to the first side plate 121 .
  • One or more cross beams 136 fixedly connected along the width direction of the box 10 may also be provided between the two columns 132 connected to the third side plate 123, which will not be described again.
  • one or more cross beams 136 fixedly connected along the length direction of the box 10 can also be provided between the two uprights 132 connected to the second side plate 122, which will not be described again.
  • the box 10 provided by the present application can enhance the stability of the side panels through one or more cross beams 136, thereby improving the structural stability of the box 10.
  • FIG 4 is another schematic diagram of a box provided by an embodiment of the present application.
  • an auxiliary reinforcing beam 137 can be disposed between one upright column 132 and one of the cross beams 136.
  • the auxiliary reinforcing beam 137 can be arranged at an angle, and a triangular support can be formed between the auxiliary reinforcing beam 137 and the columns 132 and cross beams 136 connected thereto to further improve the structural stability of the box 10 .
  • the first side plate 121 and the third side plate 123 have the same structure. Using the box composed of the first side plate 121 and the third side plate 123 of the structure shown in Figure 3 or Figure 4, an open first accommodation area 01 with a U-shaped structure can be formed.
  • FIG5 is a schematic diagram of an energy storage device provided in an embodiment of the present application.
  • the energy storage device includes a housing 10, an electrical component, and a heat exchange component 30.
  • the housing 10 includes an open first storage area 01 and a closed second storage area 02.
  • the electrical component includes a plurality of battery modules 20, a power module 40, and a temperature control module 50.
  • the first storage area 01 is used to place the heat exchange component 30, and the second storage area 02 is used to place the electrical component.
  • the first storage area 01 is located above the second storage area 02, and the height of the first storage area 01 is less than the height of the second storage area 02, and the height of the heat exchange component 30 is less than or equal to the height of the first storage area 01.
  • the energy storage device of the present application uses the open first accommodation area 01 to place the relatively small heat exchange component 30 and uses the closed second accommodation area 02 to place the electrical components, thereby reducing the heat exchanger component 30 influence on electrical components, thereby improving the heat dissipation performance of the energy storage device.
  • the energy storage device provided by this application places the electrical components in the closed second accommodation area 02, which can reduce the communication or maintenance windows that need to be opened in the box 10, thereby improving the safety protection capability of the energy storage device.
  • the energy storage device provided by the present application sets the recessed open first accommodation area 01 to place the heat exchange component 30, which not only facilitates the external placement of the heat exchange component 30 but also ensures the standardization of the overall size of the energy storage device, which is conducive to reducing the
  • the space required for stacking multiple energy storage devices or the floor space required for adjacent arrangement can increase the energy storage density of the energy storage system and reduce the construction cost of the energy storage system.
  • the energy storage device includes multiple rows of battery modules 20 .
  • Each column of battery modules 20 includes a plurality of battery modules 20 respectively.
  • a plurality of battery modules 20 in each row of battery modules 20 are stacked and arranged in the first receiving cavity 021 along the height direction of the box 10 .
  • the electrical assembly includes a plurality of battery modules 20 .
  • the plurality of battery modules 20 are divided into multiple rows and are stacked in the first accommodation cavity 021 along the height direction of the box 10 .
  • multiple battery modules 20 are centrally arranged in the first accommodation cavity 021 , which not only makes full use of the first accommodation cavity 021 space, can improve the prefabrication rate of the energy storage device, and facilitate the maintenance of the battery module 20 .
  • FIG. 6 is a schematic structural diagram of a battery module.
  • each battery module 20 has a rectangular parallelepiped structure.
  • Each battery module 20 is inserted into the battery rack 15 .
  • the insertion direction of the battery module 20 is along the width direction of the box 10 .
  • the y direction is along the width direction of the box 10 .
  • the length of the battery module 20 along the width of the box 10 is 1.7 to 2.2 m.
  • a plurality of battery modules 20 are divided into multiple columns and stacked on the battery rack 15 arranged in the first accommodation cavity 021 .
  • the box 10 includes a plurality of sealing doors 13 .
  • Each row of battery modules 20 corresponds to a sealed door 13 to facilitate the placement and maintenance of each row of battery modules 20 .
  • the battery frame 15 is fixedly connected to the spacer column 131 to increase the stability of the battery frame 15 .
  • the electrical component also includes a power module 40 and a temperature control module 50.
  • the power module 40 and the temperature control module 50 are stacked and arranged in the second accommodation cavity 022 along the height direction of the box 10. .
  • the power module 40 and the temperature control module 50 are centrally arranged in the second accommodation cavity 022, which not only makes full use of the space of the second accommodation cavity 022, but also improves the prefabrication rate of the energy storage device, and This facilitates maintenance of the power module 40 and the temperature control module 50 .
  • the distance between the upper surface of the heat exchange assembly 30 along the height direction of the box 10 and the bottom of the box 10 is equal to or less than the height of the box 10 .
  • the distance between the upper surface of the heat exchange assembly 30 along the height direction of the box 10 and the partition plate 14 is equal to or less than the height of the first accommodation area 01
  • the distance between the upper surface of the heat exchange assembly 30 along the width direction of the box 10 is equal to or less than the length of the first accommodation area 01 .
  • the distance between the upper surface of the housing of the heat exchange assembly 30 along the height direction of the box 10 and the bottom of the box 10 is equal to or less than the height of the box 10 .
  • the energy storage device places the heat exchange component 30 in the recessed open first accommodation area 01, which not only facilitates the external placement of the heat exchange component 30, but also ensures that the heat exchange component 30 is not exposed outside the energy storage device or On the upper side, it is helpful to reduce the space required for stacking multiple energy storage devices or the floor space required for adjacent arrangement, thereby increasing the energy storage density of the energy storage system and reducing construction costs.
  • the electrical components of the energy storage device of the present application may also include electronic circuit modules such as communication modules and fire protection modules.
  • Electronic circuit modules such as communication modules and fire protection modules can be stacked with the power module 40 and the temperature control module 50 in the second accommodation area 02 to achieve fireproof, waterproof and steamproof protection functions, and at the same time improve the integration of energy storage devices.
  • corner piece structures 16 may be provided at the corners of the box 10 .
  • the heat exchange component 30 of the energy storage device provided by the embodiment of the present application includes a shell 31, a refrigeration module 32 and a heat exchange plate 33.
  • the housing 31 is used to accommodate the refrigeration module 32 and the heat exchange plate 33.
  • the housing 31 includes a bottom, a top 311 and side portions 312 and 313 located between the bottom and the top 311 .
  • the refrigeration module 32 can be placed between the air inlet 34 and the heat exchange plate 33 , or between the air outlet 35 and the heat exchange plate 33 .
  • the heat exchange component 30 of the energy storage device provided by the embodiment of the present application includes an air inlet 34 and an air outlet 35 .
  • the air inlet 34 and the air outlet 35 of the heat exchange assembly 30 may be disposed on one or more of the side portion 312 of the housing 31 or the top 311 of the housing 31 .
  • the heat exchange plate 33 is provided between the air inlet 34 and the air outlet 35 .
  • the heat exchange plate 33 can be arranged obliquely or parallel to the partition plate 14 .
  • the heat exchange component 30 may be a prefabricated rectangular parallelepiped component.
  • the refrigeration module 32 can be air-cooled Or at least one of liquid cooling.
  • the heat exchange component 30 of the energy storage device provided in the embodiment of the present application is placed in the first accommodation area 01 of the box 10 , and the bottom of the shell 31 of the heat exchange component 30 is in contact with the partition 14 of the box 10 .
  • the air inlet 34 and the air outlet 35 of the heat exchange assembly 30 face the height direction of the box 10 .
  • the heat exchange plates 33 and the partition plates 14 are arranged in parallel.
  • FIG. 7 is a schematic diagram of a heat exchange component in the energy storage device provided by the embodiment of the present application.
  • the air inlet 34 and the air outlet 35 are provided on the top 311 of the housing 31 .
  • the heat exchange plate 33 is arranged parallel to the partition plate 14 .
  • the cold air enters the interior of the housing 31 from the air inlet 34 , flows through the heat exchange plate 33 , flows to the air outlet 35 , and flows out from the air outlet 35 .
  • the air inlet 34 and the air outlet 35 of the heat exchange assembly 30 face the width or length direction of the box 10 .
  • the heat exchange plate 33 and the partition plate 14 are arranged obliquely.
  • the heat exchange plate 33 and the partition plate 14 are arranged at an angle to increase the heat exchange area and improve the heat exchange efficiency.
  • FIG. 8 is a schematic diagram of another heat exchange component in the energy storage device provided by the embodiment of the present application.
  • the air inlet 34 is provided on the side 312 of the housing 31
  • the air outlet 35 is provided on the side 313 of the housing 31 .
  • the heat exchange plate 33 and the partition plate 14 are arranged obliquely. The cold air enters the interior of the housing 31 from the air inlet 34 , flows through the heat exchange plate 33 , flows to the air outlet 35 , and flows out from the air outlet 35 .
  • the heat exchange component 30 of the energy storage device provided by this application can flexibly set the direction of the air inlet 34 and the air outlet 35 of the heat exchange component 30 according to the requirements of stacking or adjacent arrangement of the energy storage devices, thereby making it easier to combine the energy storage devices. Box layout.
  • the heat exchange assembly 30 of the energy storage device provided by this application can set the arrangement of the heat exchange plate 33 and the partition plate 14 accordingly according to the orientation of the air inlet 34 and the air outlet 35, thereby improving the efficiency of a single energy storage device and the entire energy storage.
  • the cooling capacity of the system can be used to set the arrangement of the heat exchange plate 33 and the partition plate 14 accordingly according to the orientation of the air inlet 34 and the air outlet 35, thereby improving the efficiency of a single energy storage device and the entire energy storage.
  • the energy storage system includes multiple energy storage devices as described above. Wherein, multiple energy storage devices are stacked and arranged along the height direction of the box 10 of the energy storage device, or the boxes of multiple energy storage devices are arranged adjacently along the length or width direction of the box 10 .
  • the air outlet and air inlet of the heat exchange assembly 30 are oriented toward the width or length direction of the energy storage device box 10, and multiple energy storage devices are stacked and arranged along the height direction of the energy storage device box 10.
  • the gap between the boxes 10 of two adjacent energy storage devices is smaller than the length, height or width of the heat exchange assembly 30 .
  • the air inlet 34 and the air outlet 35 of the heat exchange assembly 30 are provided on the side 312 of the housing 31 along the length or width direction of the energy storage device box 10, and the heat exchange plate 33 and the partition plate 14 are arranged obliquely.
  • FIG. 9 is a schematic diagram of the energy storage system provided by the embodiment of the present application.
  • the energy storage system includes two energy storage devices as described above, and the boxes 10 of the two energy storage devices are stacked and arranged along the height direction of the boxes 10 .
  • the gap between the boxes 10 of two adjacent energy storage devices is smaller than the height of the heat exchange assembly 30 .
  • the air inlet 34 and the air outlet 35 of the heat exchange assembly 30 are provided on the side surfaces 312 and 313 of the housing 31 along the width direction of the energy storage device box 10.
  • the heat exchange plate 33 is arranged parallel to the partition plate 14.
  • the parts of the energy storage device other than the box 10 are not shown in Figure 9 . Please refer to Figure 8 for the heat exchange component 30 . For other parts not shown, please refer to Figures 1 to 5 .
  • the air inlet 34 and the air outlet 35 of the heat exchange assembly 30 of each energy storage device face the height direction of the box 10 of the energy storage device, and the boxes of multiple energy storage devices are arranged along the length of the box 10 Or arranged adjacently in the width direction.
  • the gap between the boxes 10 of two adjacent energy storage devices is smaller than the length or width of the heat exchange assembly 30 .
  • the air inlet 34 and the air outlet 35 of the heat exchange assembly 30 are provided at the top 311 of the housing 31 along the height direction of the energy storage device box 10, and the heat exchange plate 33 is arranged parallel to the partition plate 14.
  • the heat exchange component 30 is shown in Figure 7, and the others are not shown. Please refer to Figure 1- Figure 5 for the outgoing parts.
  • multiple energy storage devices use a recessed open first accommodation area to place heat exchange components, which can ensure that the heat exchange components are not exposed outside or on the upper side of the energy storage device, thereby reducing stacking or adjacent
  • the gap required for arranging two or more energy storage devices reduces the space or floor space required for the energy storage system, thereby increasing the energy storage density of the energy storage system and reducing construction costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种用于储能装置的箱体及储能装置、储能系统。其中,箱体包括四个立柱、三个侧板、隔板、底板和密封门。三个侧板、隔板及底板经四个立柱固定并与密封门围合形成闭合式的第二容纳区,四个立柱及隔板相围合形成开放式的第一容纳区。提供的箱体通过降低隔板的高度形成凹陷型开放式的第一容纳区用于容纳储能装置的外置组件,不仅可以提高储能装置的散热效率,还可以保证储能装置的整体尺寸的标准化,有利于减少多个储能装置的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低建设成本。

Description

一种用于储能装置的箱体及储能装置、储能系统
本申请要求于2023年03月08日提交中国国家知识产权局、申请号为202310268425.X、申请名称为“一种用于储能装置的箱体及储能装置、储能系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电化学储能领域,具体设计一种用于储能装置的箱体及储能装置、储能系统。
背景技术
建设电化学储能电站通常需要集中布置大量的电化学储能装置,现有的储能装置为了方便运输和集中布置通常采用集箱体作为载体。
现有的一部分储能装置的箱体采用单层空间,电池模块、温控模块等电气组件以及换热组件都布置于同一空间。相应的,储能装置的箱体内部的热量过多,不利于储能装置的散热和整体效率。另外,箱体需要设置多个散热或连通窗口,不利于防尘、防水等安全防护。电池模块可装容量较少的问题。
现有的一部分储能装置将换热组件安装于箱体外部,换热组件安装于箱体外部的储能装置的体积大于标准集装箱。然而,储能系统通常需要集中布置大量储能装置,从而导致储能装置的箱体的相邻排列或上下层叠需要占用更大的空间或土地面积,从而降低储能系统的储能密度,并且增加储能系统的建设成本,不利于电化学储能产业的大规模推广。
发明内容
本申请提供了一种用于储能装置的箱体及储能装置、储能系统,通过凹陷型开放式的第一容纳区放置储能装置的外置组件,可以提高储能装置的散热能力和安全防护能力,而且可以提高储能系统的储能密度且降低建设成本。
第一方面,本申请提供一种用于储能装置的箱体。箱体包括四个立柱、三个侧板、隔板、底板和密封门。隔板与底板沿箱体的高度方向相对设置,两个侧板沿箱体的长度方向相对设置,另一个侧板与密封门沿箱体的宽度方向相对设置,沿箱体的高度方向每个立柱的高度大于隔板的高度。其中,三个侧板、隔板及底板经四个立柱固定并与密封门围合形成闭合式的第二容纳区,四个立柱及隔板相围合形成开放式的第一容纳区。第一容纳区和所述第二容纳区沿箱体的高度方向层叠排列。两个所述侧板。沿箱体的长度方向第一容纳区或第二容纳区的长度等于沿箱体的长度方向相对设置的两个侧板之间的距离,沿箱体的高度方向隔板与底板之间的距离小于每个立柱的高度。
本申请提供的箱体包括上下分层设置的开放式的第一容纳区和闭合式的第二容纳区,可以降低开放式的第一容纳区内组件的热量对闭合式的第二容纳区内组件的影响, 从而提高储能装置的散热效率。另外,本申请提供的箱体通过降低隔板的高度形成凹陷型开放式的第一容纳区用于容纳储能装置的外置组件,相对于现有储能装置的箱体,不仅便于储能装置的外置组件的放置还可以保证箱体整体尺寸的标准化,有利于减少箱体的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
一种实现方式中,第二容纳区包括第一容纳腔和第二容纳腔,沿箱体的长度方向第一容纳腔和第二容纳腔相邻排列,沿箱体的高度方向第一容纳腔高度或第二容纳腔的高度中至少一个等于第二容纳区的高度。
本申请提供的箱体中第二容纳区仅仅设置纵向相邻排列的第一容纳腔和第二容纳腔,相对于现有的储能装置的箱体中利用通道或间隙区分多个空间的方式,不仅可以更充分地利用第二容纳区的空间,而且有利于分腔进行布置、维护工作从而减少工作时间。例如,第一容纳腔用于放置电池模块,第二容纳腔可用于放置功率模块和温控模块。相应的,对第一容纳腔中电池模块的布置或维护工作和对第二容纳腔中功率模块和温控模块的布置或维护工作可以互不影响且同时开展,从而提高储能装置的布置和维护效率。
一种实现方式中,第一容纳腔的体积大于第二容纳腔的体积。其中,沿箱体的长度方向第一容纳腔的长度大于第二容纳腔的长度,沿箱体的长度方向第一容纳腔的长度与第二容纳腔的长度之和等于第二容纳区的长度。
本申请提供的箱体中第二容纳区仅仅设置纵向相邻排列的第一容纳腔和第二容纳腔,相对于现有的储能装置的箱体中利用通道或间隙区分多个空间的方式,不仅可以更充分地利用第二容纳区的空间,而且有利于分腔进行布置、维护工作从而减少工作时间。例如,第一容纳腔用于放置电池模块,第二容纳腔可用于放置功率模块和温控模块。相应的,对第一容纳腔中电池模块的布置或维护工作和对第二容纳腔中功率模块和温控模块的布置或维护工作可以互不影响且同时开展,从而提高储能装置的布置和维护效率。
一种实现方式中,第二容纳区包括多个电池架,沿箱体的长度方向多个电池架依次相邻排列,多个电池架中任意相邻的两个电池架沿箱体长度方向的间距相同,多个电池架沿箱体长度方向的第一个或最后一个电池架用于区隔第一容纳腔和第二容纳腔。其中,第一个或最后一个电池架与其相邻侧板的间距等于相邻的两个电池架的间距。每个电池架的进深可为1700~2200mm。
本申请提供的箱体中利用多个电池架区隔第一容纳腔和第二容纳腔,相对于现有的储能箱体中使用隔离墙或间隙区隔多个空间,可以更充分地利用第二容纳区域的空间,从而提高箱体内可以容纳的电池数量。另外,利用电池架区隔第一容纳腔和第二容纳腔,还可以在第二容纳腔中布置电池。例如,第一容纳腔用于放置电池,第二容纳腔可用于放置功率模块和温控模块。功率模块和温控模块只占用第二容纳腔一部分时,第二容纳腔的其它部分也可以用于布置电池。相应的,相对于现有的储能装置的箱体,本申请提供的箱体可以容纳更多的电池。
一种实现方式中,密封门包括至少两个,至少两个密封门沿箱体的长度方向排列。其中,至少两个密封门中一个密封门用于闭合第二容纳腔,至少两个密封门中其他密 封门用于闭合第一容纳腔。
本申请提供的箱体中第一容纳腔和第二容纳腔分别设置纵向开启的密封门,第一容纳腔和第二容纳腔可以分开布置或维护,开启第一容纳腔或第二容纳腔的密封门不会影响另一容纳腔放置的组件,从而可以提高维护工作的便利性和储能装置的安全防护能力。
一种实现方式中,箱体与标准集装箱的长度、宽度和高度相同。标准集装箱有多种规范,箱体可以是任意规范的标准集装箱。例如,箱体的长度为6058mm,箱体的宽度为2438mm,箱体的高度为2438~4150mm。本申请提供的箱体与标准集装箱体的尺寸相同,不仅便于储能装置的运输,并且有利于多个箱体的层叠或相邻排列。
一种实现方式中,每个立柱的高度等于标准集装箱的高度。本申请提供的箱体中立柱的高度等于标准集装箱的高度且隔板的高度低于立柱的高度从而形成凹陷型的第一容纳区,即使第一容纳区放置外置组件也不会导致储能装置的整体高度超过标准集装箱的高度,从而保证储能装置的体积的标准化,有利于减少储能装置的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
一种实现方式中,箱体可包括一个或多个加强梁,每个加强梁与箱体的长度或宽度方向相平行,每个加强梁用于固定连接两个立柱,沿箱体的高度方向每个加强梁设置于隔板的上方。其中,一个或多个加强梁、四个立柱及底板相围合形成第一容纳区域。
本申请提供的箱体通过设置与箱体宽度或长度方向平行的加强梁,不仅有利于提高箱体的整体结构强度,还可以用于防护第一容纳区域内放置的外置组件,如换热组件。
第二方面,本申请提供一种储能装置。储能装置包括换热组件、电气组件及如第一方面及上述实现方式中任一项的箱体,第一容纳区用于放置换热组件,第二容纳区用于放置电气组件。其中,沿箱体的高度方向第一容纳区位于第二容纳区的上方且第一容纳区的高度小于第二容纳区的高度,沿箱体的高度方向换热组件的高度小于或等于第一容纳区的高度。
本申请的储能装置利用开放式的第一容纳区放置尺寸相对较小的换热组件、并利用闭合式的第二容纳区放置电气组件,从而降低了换热组件的热量对电气组件的影响,从而提高了储能装置的散热性能。另外,本申请提供的储能装置将电气组件放置于闭合式的第二容纳区域,可以减少箱体的连通或维护窗口,从而提高储能装置的安全防护能力。并且,本申请提供的储能装置通过设置凹陷型的开放式第一容纳区放置换热组件,不仅便于换热组件的外置而且可以保证储能装置整体尺寸的标准化,有利于减少多个储能装置的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
一种实现方式中,电气组件包括多列电池模块,每列电池模块包括多个电池模块,每列电池模块中多个电池模块沿箱体的高度方向层叠排列于第一容纳腔。
本申请的储能装置中每列电池模块的多个电池模块集中布置于第一容纳腔,不仅可以更充分地利用第一容纳区的空间,而且可以提高储能装置的预制化率,并且便于对电池模块的维护工作。
一种实现方式中,电气组件包括功率模块和温控模块,功率模块和温控模块沿箱体的高度方向温控模块与功率模块层叠排列于第二容纳腔。
本申请的储能装置中功率模块和温控模块集中布置于第二容纳腔,不仅可以更充分地利用第二容纳区的空间,而且可以提高储能装置的预制化率,并且便于对功率模块和温控模块的维护工作。
一种实现方式中,隔板包括第一连通孔和第二连通孔。其中,第一连通孔设于第一容纳腔的上方,换热组件的热交换管道穿过第一连通孔进入第一容纳腔。第二连通孔设于第二容纳腔的上方,换热组件与温控模块之间的连接线缆穿过第二连通孔。
本申请提供的储能装置中通过隔板的两个连通孔分别连通电气组件和换热组件,可以减少箱体侧板的连通或维护窗口,从而提高储能装置的安全防护能力。
一种实现方式中,换热组件的壳体沿箱体的高度方向的上表面与隔板的距离等于或小于第一容纳区域的高度,换热组件的壳体沿箱体的宽度方向的两侧表面的距离等于或小于第一容纳区域的宽度,换热组件的壳体沿箱体的长度方向的两侧表面的距离等于或小于第一容纳区域的长度。或者,换热组件的壳体沿箱体的高度方向的上表面与箱体底部的距离等于或小于箱体的高度。
本申请提供的储能装置通过设置凹陷型的开放式第一容纳区放置换热组件,不仅便于换热组件的外置,而且可以保证换热组件不露出于储能装置外侧或上侧,有利于减少多个储能装置的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
第三方面,本申请提供一种储能系统。储能系统包括多个如第二方面及第二方面中上述实现方式中任一项的储能装置,每个储能装置的换热组件包括出风口和进风口。其中,换热组件的出风口和进风口朝向储能装置的箱体高度方向,多个储能装置沿储能装置的箱体长度或宽度方向相邻排列,相邻两个储能装置的箱体之间的间隙小于换热组件的长度、高度或宽度。或,换热组件的出风口和进风口朝向储能装置的箱体宽度或长度方向,多个储能装置沿储能装置的箱体高度方向层叠排列,相邻两个储能装置的箱体之间的间隙小于换热组件的长度、高度或宽度。
本申请提供的储能系统中多个储能装置采用凹陷型的开放式第一容纳区放置换热组件,可以保证换热组件不露出于储能装置外侧或上侧,从而减少层叠或相邻排列的两个多个储能装置所需的间隙,从而减少储能系统所需的空间或所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
一种实现方式中,换热组件包括壳体和换热板,壳体用于容纳换热板。其中,进风口设于壳体沿储能装置的箱体长度或宽度方向的侧部,换热板与隔板倾斜设置。或,进风口设于壳体沿储能装置的箱体高度方向的顶部,换热板与隔板平行设置。
本申请提供的储能系统中多个储能装置的换热组件可以可灵活地根据层叠或相邻布置的需求设置换热组件的进风口和出风口的位置,从而更方便储能装置的并箱组装。并且,本申请提供的储能系统中多个储能装置的换热组件可以相应地设置换热板与隔板的相对位置,从而提高单个储能装置以及整个储能系统的散热能力。
一种实现方式中,换热器为液冷换热器,液冷换热器与电池模块的液冷管道连接。液冷相对风冷可在放置电池模块的第二容纳区内实现无风道设计,节省空间可容纳更 多电池,大幅减少系统非电芯度电成本。
一种实现方式中,箱体的角部设有角件结构。通过设置角件结构,可实现海运自堆叠运输,减少海运成本,并可保护储能装置的箱体在运输过程中不被损伤。
附图说明
图1为本申请实施例提供的箱体的一种示意图;
图2为本申请实施例提供的箱体的另一种示意图;
图3为本申请实施例提供的一种箱体的另一示意图;
图4为本申请实施例提供的一种箱体的另一示意图;
图5为本申请实施例提供的储能装置的一种示意图;
图6为一种电池模块的结构示意图;
图7为本申请实施例提供的储能装置中一种换热组件的示意图;
图8为本申请实施例提供的储能装置中另一种换热组件的示意图;
图9为本申请实施例提供的储能系统的一种示意图。
附图标记:
10-箱体;01-第一容纳区;02-第二容纳区;021-第一容纳腔;022-第二容纳腔;
11-底板;12-侧板;13-密封门;14-隔板;15-电池架;16-角件结构;121-第一侧板;122-第二侧板;123-第三侧板;131-间隔柱;132-立柱;141-第一连通孔;142-第二连通孔;
133-加强梁;134-第一加强梁;135-第二加强梁;136-横梁;137-辅助加强梁;
20-电池模块;30-换热组件;40-功率模块;50-温控模块;
31-壳体;311-壳体顶部;312-壳体侧部;313-壳体侧部;32-制冷模块;33-换热板;34-进风口;35-出风口。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
其中,本申请各实现方式中描述或限定的长、宽、高等数据以及垂直、平行、等于、大于或小于等情况,均应理解为符合工程测量误差范围内的数值或情况。
工商业储能场景和电站储能场景的储能系统中储能装置通常包括箱体、电池模块和换热组件。现有储能装置的箱体一般仅包括单个容纳空间。换热组件设于箱体的内部,则会造成箱体内部的发热增加且需要在箱体开设连通窗口,从而影响储能装置的散热性能和安全防护能力。换热组件设于箱体的外部,则会增加单个储能装置的占地面积且造成各个储能装置的整体尺寸不统一,不利于多个储能装置的集中布置。
为解决上述问题,本申请实施例提供一种用于储能装置的箱体和储能装置、储能系统,通过凹陷型开放式的第一容纳区放置储能装置的外置组件,可以提高储能装置的散热能力和安全防护能力,而且可以提高储能系统的储能密度且降低建设成本。
本申请实施例提供的储能装置包括箱体10、电气组件和换热组件30。其中,电气组件包括多个电池模块20、功率模块40和温控模块50。电池模块20用于充电或放电。换热组件30用于为储能装置散热。功率模块40用于利用外部电源对电池模块20充电或接收电池模块20的放电向负载供电。温度模块50用于根据储能装置的发热情况控制换热组件30对储能模块散热。
图1为本申请实施例提供的箱体的一种示意图。如图1所示,箱体10包括底板11、三个侧板12、密封门13、隔板14和四个立柱132。其中,隔板14与底板11沿箱体10的高度方向相对设置。两个侧板12沿箱体10的长度方向相对设置,另一个侧板12与密封门13沿箱体10的宽度方向相对设置。
本申请实施例中,四个立柱132及隔板14相围合形成开放式的第一容纳区01,三个侧板12、隔板14及底板11经四个立柱132固定并与密封门13围合形成闭合式的第二容纳区02。第一容纳区01和第二容纳区02沿箱体10的高度方向层叠排列。
本申请实施例中,沿箱体10的长度方向第一容纳区01或第二容纳区02的长度等于沿箱体10的长度方向相对设置的两个侧板12之间的距离,沿箱体10的高度方向隔板14与底板11之间的距离小于每个立柱132的高度。
本申请实施例中,沿箱体10的高度方向每个立柱132的高度大于隔板14的高度。沿箱体10的高度方向每个立柱132的高度大于第一容纳区01的高度或第二容纳区02的高度。或者,沿箱体10的高度方向每个立柱132的高度大于第一容纳区01的高度和第二容纳区02的高度之和。
本申请实施例中,第一容纳区01用于放置换热组件30,第二容纳区02用于放置电气组件。
本申请实施例提供的箱体10包括上下分层设置的开放式的第一容纳区01和闭合式的第二容纳区02,可以降低开放式的第一容纳区01中外置组件的热量对闭合式的第二容纳区02的影响,从而提高储能装置的散热效率。另外,本申请提供的箱体10通过降低隔板14的高度形成凹陷型开放式的第一容纳区01用于容纳储能装置的外置组件,相对于现有储能装置的箱体,不仅便于储能装置的外置组件的放置还可以保证储能装置整体尺寸的标准化,有利于减少箱体的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
如图1所示,第二容纳区02包括第一容纳腔021和第二容纳腔022,沿箱体10 的长度方向第一容纳腔021和第二容纳腔022相邻排列,沿箱体10的高度方向第一容纳腔021的高度或第二容纳腔022的高度中至少一个等于第二容纳区02的高度。
如图1所示,沿箱体10的长度方向第一容纳腔021的长度大于第二容纳腔的长度22,沿箱体10的长度方向第一容纳腔021的长度与第二容纳腔022的长度之和等于第二容纳区02的长度。
本申请提供的箱体10中第二容纳区02仅仅设置纵向相邻排列的第一容纳腔021和第二容纳腔022,相对于现有的储能装置的箱体中利用通道或间隙区分多个空间的方式,不仅可以更充分地利用第二容纳区02的空间,而且有利于分腔进行布置、维护工作从而减少工作时间。例如,第一容纳腔021用于放置电池模块,第二容纳腔022可用于放置功率模块40和温控模块50。相应的,对第一容纳腔中电池模块20的布置或维护工作和对第二容纳腔中功率模块40和温控模块50的布置或维护工作可以互不影响且同时开展,从而提高储能装置的布置和维护效率。
如图1所示,箱体10包括多个电池架15,多个电池架15沿箱体10的长度方向依次间隔排列,多个电池架15中任意相邻的两个电池架15沿箱体10长度方向的间距相同,多个电池架15沿箱体10长度方向的第一个或最后一个电池架15用于区隔第一容纳腔021和第二容纳腔022。本申请实施例中,第一容纳区01用于放置电池模块20,第二容纳区02用于放置功率模块40和温控模块50。
本申请提供的箱体10利用电池架15区隔第一容纳腔021和第二容纳腔022,相对于现有的储能箱体中使用隔离墙或间隙区隔多个空间,可以更充分地利用第二容纳区域02的空间,从而提高箱体10可以容纳的电池模块的数量。另外,利用电池架15区隔第一容纳腔021和第二容纳腔022,还可以在第二容纳腔022中布置电池模块20。例如,第一容纳腔021用于放置电池模块20,第二容纳腔022可用于放置功率模块40和温控模块50。功率模块40和温控模块50只占用第二容纳腔022一部分时,第二容纳腔022的其它部分也可以用于布置电池模块20。相应的,相对于现有的储能装置的箱体,本申请提供的箱体可以容纳更多的电池模块20。
一种实施例中,箱体10包括多个间隔柱131,多个间隔柱131用于支撑隔板14及放置于隔板14的外置组件。多个间隔柱131沿箱体10的长度方向依次间隔排列,多个间隔柱131分别固定于底板11与隔板14之间。每个间隔柱131与一个电池架15相对应,每个间隔柱131与一个电池架15沿箱体10的宽度方向的投影相重叠。示例性的,隔板14用于放置储能装置的换热组件30。本申请提供的箱体通过设置与多个电池架15分别对应的多个间隔柱131,不仅可以提高箱体10的稳固性,且不占用第二容纳区02的空间。
一种实施例中,箱体10包括一个密封门13,一个密封门13用于闭合第一容纳腔021和第二容纳腔022。本申请提供的箱体10中密封门13用于闭合第一容纳腔021和第二容纳腔022,同时设置开放式的第一容纳区01用于放置外置组件,对外置组件的维护工作不会影响被密封门13闭合的第一容纳腔021和第二容纳腔022内的组件,从而可以提高储能装置的维护便利性和安全防护能力。
一种实施例中,箱体10包括多个密封门13。示例性的,箱体10包括至少两个密封门13,至少两个密封门13沿箱体10的长度方向排列。其中,至少两个密封门13 中一个密封门13用于闭合第二容纳腔022,至少两个密封门13中其他密封门13用于闭合第一容纳腔021。
本申请提供的箱体10中第一容纳腔021和第二容纳腔022分别设置纵向开启的密封门13,第一容纳腔021和第二容纳腔022可以分开布置或维护,仅开启第一容纳腔021密封门13或第二容纳腔022的密封门13不会影响另一容纳腔放置的组件,从而可以提高储能装置的维护便利性和安全防护能力。
本申请实施例中,箱体10和标准集装箱的长度、宽度和高度相同。每个立柱132的高度等于标准集装箱的高度。可以理解的是,标准集装箱包括多种规格,每种规格的标准集箱具有特定的长宽高尺寸。本申请实施例中,箱体10的长宽高尺寸对应其中一种标准集装箱的长宽高尺寸规格。例如,箱体10的长宽高尺寸可以是20尺标准集装箱、40尺标准集装箱、20尺高柜或40尺高柜中的一种。示例性的,箱体的长度为6058mm,箱体的宽度为2438mm,箱体的高度为2438~4150mm。本申请提供的箱体10与标准集装箱体的尺寸相同,不仅便于储能装置的运输,并且有利于多个箱体的层叠或相邻排列。
本申请实施例中,每个立柱132的高度等于标准集装箱的高度。本申请提供的箱体10中立柱132的高度等于标准集装箱的高度且隔板14的高度低于立柱132的高度从而形成凹陷型的第一容纳区01,即使第一容纳区01放置外置组件也不会导致储能装置的整体高度超过标准集装箱的高度,从而保证储能装置的体积的标准化,有利于减少储能装置的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
本申请实施例中,箱体10包括一个或多个加强梁133,每个加强梁133与箱体10的长度或宽度方向相平行,每个加强梁133用于固定连接两个立柱132,沿箱体10的高度方向每个加强梁133设置于隔板14的上方。本申请提供的箱体通过设置与箱体宽度或长度方向平行的加强梁,不仅有利于提高箱体的整体结构强度,还可以利用加强梁防护第一容纳区域内放置的组件,如换热组件。
图2为本申请实施例提供的箱体的另一种示意图。如图2所示,与箱体10的宽度方向相平行的加强梁133也可以称为第一加强梁134,与箱体10的长度方向相平行的加强梁133也可以称为第二加强梁135。
如图2所示,沿箱体10的长度方向的两个立柱132通过第二加强梁135固定连接。示例性的,第二加强梁135固定连接第一侧板121和第三侧板123的同侧立柱132。具体的,第一加强梁134与第二加强梁135相互垂直排列,第一加强梁134和第二加强梁135分别与隔板14平行排列。在箱体10的高度z方向,第一加强梁134与第二加强梁135的高度高于隔板14。相应的,四个立柱132、第一加强梁134、第二加强梁135与隔板14可在隔板14的顶部形成长方形、凹陷型、开放式的第一容纳区01。
本申请实施例提供的箱体10通过设置第一加强梁134或第二加强梁135中的至少一个,不仅可以提高箱体10的结构强度和结构稳定性,另外还可以用于防护第一容纳区01放置的外置组件,如换热组件30。
结合图1和图2,第一容纳区01可为开放式容纳区,其形状可为U型结构或方形框架结构。换热组件可放置在第一容纳区01,以与电池模块分层设置。这样,可减少 换热组件30的占地面积,提高第二容置区02内的电池模块的填充空间,进而提高储能装置的容量。
以上对第一容纳区01的结构做了解释说明,以下将对第二容纳区02的结构做解释说明。本申请实施例中,第二容纳区02为底板11、立柱132、侧板12、隔板14以及密封门13形成封闭式容纳区。第二容纳区02用于放置电池模块20、功率模块40和温控模块50等电气组件。
其中,第二容纳区02包括第一容纳腔021和第二容纳腔022,沿箱体10的长度方向第一容纳腔021和第二容纳腔022相邻排列,沿箱体10的高度方向第一容纳腔021的高度和第二容纳腔022的高度等于第二容纳区02的高度。
参照图2,第二容纳区02可划分为第一容纳腔021和第二容纳腔022。沿箱体10的长度x方向,第一容纳腔021和第二容纳腔022相邻排列。第一容纳腔021用于放置电池模块20。第二容纳腔022用于放置功率模块40和温控模块50。
一种实施例中,在箱体10的长度x方向,第一容纳腔021和第二容纳腔022之间可用挡板分隔。挡板上设置通孔,以用于穿设功率模块40和电池模块20之间的线缆。
继续参照图2,第一容纳腔021内可设置多个电池架15。沿箱体10的长度方向,多个电池架15依次相邻排列。每个电池架15可包括多个导轨,在放置电池模块20时,可将电池模块分别沿对应的导轨放置两个相邻的电池架15上。其中,电池模块20的进深为1700~2200mm。
本申请实施例提供的箱体10中第二容纳腔022可以便于预制化的功率模块40和温控模块50插设。其中,温控模块50可放置在第二容纳腔022的上部空间,功率模块40可放置在第二容纳腔022的下部空间。功率模块40和温控模块50上下放置还可进一步减少水平面内的占用空间,提高电池模块20的装配空间。
本申请实施例提供的箱体10可以为电池模块20、功率模块40和温控模块50等电气组件提供相对密封的容纳空间,以实现对电池模块20的防护,起到防火防水防汽的效果。
本申请实施例中,第一容纳区01内的换热组件30与电池模块20之间需通过设置热交换管道以实现两者的热量交换。如图2所示,隔板14包括第一连通孔141和第二连通孔142。其中,第一连通孔141设于第一容纳腔021的上方,第二连通孔142设于第二容纳腔022的上方。示例性的,换热组件30的热交换管道穿过第一连通孔141进入第一容纳腔021,换热组件30与温控模块50之间的连接线缆穿过第二连通孔142。
一种实施例中,隔板14包括多个第一连通孔141,每个第一连通孔141与每个第一容纳腔021相对应并位于第一容纳腔021的上方的隔板位置。隔板14的每个第一连通孔141和第二连通孔142的位置避让每个电池架15与隔板14的接触位置。
本申请提供的箱体10中隔板14的两个连通孔分别用于连通两个容纳区的组件,可以减少箱体10的连通或维护窗口,从而提高储能装置的安全防护能力。一种实施例中,换热组件30采用液冷散热。对应的,热交换管道可为液冷管道。换热组件30和电池模块20之间的热交换管道可在换热器和电池模块20之间形成冷却介质的流通回路。相对于现有储能装置的箱体,本申请实施例提供的箱体10中第二容纳腔可以减少内部热交换管道从而可以容纳更多电池模块20,大幅减少储能装置的非电芯度电成本。
本申请实施例的储能装置中,功率模块40和温控模块50均放置在第二容纳腔022内。其中,沿箱体10的高度方向,温控模块50设置在功率模块40的上部空间,以便于和第一容纳区01内的换热组件30进行电连接。换热组件30与温控模块50之间可通过连接线缆实现电连接。为实现连接线缆在箱体10的走线,可在隔板14设置第二连通孔,第二连通孔可设于第二容纳腔022的上方,以用于穿设连接线缆。为保证第二容纳腔022的密封性,线缆与第二连通孔的孔壁之间保持密封。
以下结合附图对箱体的各部件的具体连接结构进行说明。
参照图1,底板11为矩形结构。底板11包括四条侧边,可分别记为第一侧边、第二侧边、第三侧边和第四侧边。其中,第一侧边和第三侧边为底板11的短边,第二侧边和第四侧边为底板11的长边。四个立柱132分别设置在底板11的四个角部,并与底板11固定连接。
三个侧板12中的两个侧板12沿箱体10的长度方向相对设置,另一个侧板12与密封门13沿箱体的宽度方向相对设置。如图2所示,三个侧板12可分别记为第一侧板121、第二侧板122和第三侧板123。第一侧板121、第二侧板122和第三侧板123分别对应底板11的第一侧边、第二侧边和第三侧边设置。并且,第一侧板121、第二侧板122和第三侧板123均与底板11垂直连接。同时,三个侧板12可分别与四个立柱132连接。
参照图1,密封门13沿底板11的第四侧边设置,密封门13可与底板11垂直连接。密封门13和底板11、隔板14、侧板12以及四个立柱132共同围设形成闭合式的第二容纳区02。密封门13设置在箱体10的一侧,可实现箱体10的单侧开门。其中,密封门13可为对开门,可为单开门等。其中,密封门13可为两个或大于等于三个,密封门的数量可为2个、3个、4个、5个、或更多个,在此不对密封门的数量做具体的限定。多个密封门13沿箱体10的长度方向依次排列设置。
其中,箱体10还可包括活页连接件。当密封门13的数量为2个时,各密封门13分别通过活性连接件和与其相邻的立柱132连接,以实现密封门13的开启和闭合。当密封门13的数量为3个及以上时,多个密封门13之间可设置间隔柱131。3个及以上数量的密封门13在固定时,与其中一个立柱132邻接的密封门13可通过活页连接件与该立柱132转动连接,剩余密封门13可通过活页连接件与间隔柱131转动连接。
其中,沿箱体10的高度方向,每个立柱132的高度大于隔板14的高度。隔板14以上的空间可形成第一容纳区01,隔板14以下的空间可形成第二容纳区02。第一容纳区01的高度小于第二容纳区02的高度。
图3为本申请实施例提供的一种箱体的另一示意图。如图3所示,在一种实施例中,第一侧板121可设置在两个立柱132之间并与立柱132固定连接。第一侧板121的高度可与隔板14齐平。在第一侧板121的上部的两个立柱132之间可设置多个沿箱体10的宽度方向设置的第一加强梁134。
可以理解的是,第三侧板123与第一侧板121相对设置。第三侧板123的上部的两个立柱132之间可设置多个沿箱体10的宽度方向设置的第一加强梁134,不再赘述。可以理解的是,第二侧板122上部的两个立柱132之间也可以设置一个或多个沿箱体10的长度方向设置的第二加强梁135,不再赘述。
在箱体10的高度z方向,立柱132的顶端高于隔板14。第一加强梁134和/或第二加强梁135、四个立柱132和隔板14相围合可在隔板14的上方形成第一容纳区01。
一种实施例中,第一侧板121的板体和第三侧板123在隔板14以下的空间,第一侧板121一侧和第三侧板123一侧可在隔板14以上的空间形成镂空结构,以方便换热组件30进气口的设置,便于换热气流的流通。
在一种实施例中,箱体10包括一个或多个横梁136。如图3所示,一个横梁136沿箱体10的宽度方向固定连通两个立柱132。其中,第一侧板121与一个横梁136和两个立柱132固定连接。可以理解的是,第三侧板123与第一侧板121相对设置。第三侧板123相连接的两个立柱132之间也可以设置一个或多个沿箱体10的宽度方向固定连接的横梁136,不再赘述。可以理解的是,第二侧板122相连接的两个立柱132之间也可以设置一个或多个沿箱体10的长度方向固定连接的横梁136,不再赘述。相应的,本申请提供的箱体10可以通过一个或多个横梁136加强侧板的稳定性,进而可提高箱体10的结构稳定性。
图4为本申请实施例提供的一种箱体的另一示意图。如图4所示,一个立柱132与其中一个横梁136之间可设置一个辅助加强梁137。此时,辅助加强梁137可倾斜设置,辅助加强梁137和与其连接的立柱132和横梁136之间可形成三角支撑,以进一步提高箱体10的结构稳定性。
其中,第一侧板121和第三侧板123的结构相同。利用图3或图4所示结构的第一侧板121和第三侧板123组成的箱体,可形成具有U型结构的开放式的第一容纳区01。
图5为本申请实施例提供的储能装置的一种示意图。如图5所示,储能装置包括箱体10、电气组件和换热组件30。其中,箱体10包括开放式的第一容纳区01和闭合式的第二容纳区02。电气组件包括多个电池模块20、功率模块40和温控模块50。第一容纳区01用于放置换热组件30,第二容纳区02用于放置电气组件。沿箱体10的高度方向,第一容纳区01位于第二容纳区02的上方,且第一容纳区01的高度小于第二容纳区02的高度,且换热组件30的高度小于或等于第一容纳区01的高度。
本申请的储能装置利用开放式的第一容纳区01放置尺寸相对较小的换热组件30、并利用闭合式的第二容纳区02放置电气组件,从而降低了换热组件30的热量对电气组件的影响,从而提高了储能装置的散热性能。另外,本申请提供的储能装置将电气组件放置于闭合式的第二容纳区域02,可以减少箱体10需要开设的连通或维护窗口,从而提高储能装置的安全防护能力。并且,本申请提供的储能装置通过设置凹陷型的开放式第一容纳区01放置换热组件30,不仅便于换热组件30的外置而且可以保证储能装置整体尺寸的标准化,有利于减少多个储能装置的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低储能系统的建设成本。
本申请实施例中,储能装置包括多列电池模块20。每列电池模块20分别包括多个电池模块20。每列电池模块20中多个电池模块20沿箱体10的高度方向层叠排列于第一容纳腔021。如图5所示,电气组件包括多个电池模块20。多个电池模块20分成多列沿箱体10的高度方向层叠排列于第一容纳腔021。本申请提供的储能装置中多个电池模块20集中布置于第一容纳腔021,不仅可以更充分地利用第一容纳腔021 的空间,而且可以提高储能装置的预制化率,并且便于对电池模块20的维护工作。
图6为一种电池模块的结构示意图。如图6所示,每个电池模块20为长方体结构。每个电池模块20插设在电池架15。其中,电池模块20的插设方向沿箱体10的宽度方向。示例性的,y方向沿箱体10的宽度方向。电池模块20沿箱体10的宽度的长度为1.7~2.2m。一并参照图5和图6,多个电池模块20分成多列层叠排列于第一容纳腔021内的电池架15。箱体10包括多个密封门13。每列电池模块20对应一个密封门13,以方便每列电池模块20的放置和维护。其中,电池架15与间隔柱131固定连接,以增加电池架15的稳定性。
如图5所示,电气组件还包括功率模块40和温控模块50,功率模块40和温控模块50沿箱体10的高度方向功率模块40和温控模块50层叠排列于第二容纳腔022。本申请的储能装置中功率模块40和温控模块50集中布置于第二容纳腔022,不仅可以更充分地利用第二容纳腔022的空间,而且可以提高储能装置的预制化率,并且便于对功率模块40和温控模块50的维护工作。
如图5所示,换热组件30沿箱体10的高度方向的上表面与箱体10底部的距离等于或小于箱体10的高度。其中,换热组件30的壳体沿箱体10的高度方向的上表面与隔板14的距离等于或小于第一容纳区域01的高度,换热组件30的壳体沿箱体10的宽度方向的两侧表面的距离等于或小于第一容纳区域01的宽度,换热组件30的壳体沿箱体10的长度方向的两侧表面的距离等于或小于第一容纳区域01的长度。或者,换热组件30的壳体沿箱体10的高度方向的上表面与箱体10底部的距离等于或小于箱体10的高度。
本申请提供的储能装置通过设置凹陷型的开放式第一容纳区01放置换热组件30,不仅便于换热组件30的外置,而且可以保证换热组件30不露出于储能装置外侧或上侧,有利于减少多个储能装置的层叠所需的空间或相邻排列所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
可以理解的是,本申请的储能装置的电气组件除包括电池模块20、换热组件30、功率模块40和温控模块50外,还可以包括通信模块和消防模块等电子电路模块。通信模块和消防模块等电子电路模块可以与功率模块40和温控模块50层叠设置于第二容纳区02,以实现防火防水防汽的防护功能,同时提高储能装置集成度。
一种实施例中,为了方便运输且在运输过程中保护箱体10不被划伤,可在箱体10的角部设置角件结构16。
本申请实施例提供的储能装置的换热组件30包括壳体31、制冷模块32和换热板33。壳体31用于容纳制冷模块32和换热板33。壳体31包括底部、顶部311和设于底部和顶部311之间的侧部312和313。制冷模块32可以放置于进风口34与换热板33之间,也可以放置于出风口35与换热板33之间。
本申请实施例提供的储能装置的换热组件30包括进风口34和出风口35。其中,换热组件30的进风口34和出风口35可以设置于壳体31的侧部312或壳体31的顶部311中的一个或多个。换热板33设于进风口34和出风口35之间。换热板33可与隔板14倾斜或平行设置。
一种实施例中,换热组件30可为预制的长方体组件。制冷模块32可以采用风冷 或液冷中的至少一个。
本申请实施例提供的储能装置的换热组件30放置于箱体10的第一容纳区01,换热组件30的壳体31底部与箱体10的隔板14接触。
一种实施例中,换热组件30的进风口34和出风口35朝向箱体10的高度方向。换热板33与隔板14平行排列。
图7为本申请实施例提供的储能装置中一种换热组件的示意图。如图7所示,进风口34和出风口35设置于壳体31的顶部311。换热板33与隔板14平行设置。冷风自进风口34进入壳体31内部,流经换热板33流向出风口35并从出风口35流出。
一种实施例中,换热组件30的进风口34和出风口35朝向箱体10的宽度或长度方向。换热板33与隔板14倾斜排列。换热板33与隔板14倾斜设置,以增大换热面积,提高换热效率。
图8为本申请实施例提供的储能装置中另一种换热组件的示意图。如图8所示,进风口34设置于壳体31的侧部312,出风口35设置于壳体31的侧部313。换热板33与隔板14倾斜排列。冷风自进风口34进入壳体31内部,流经换热板33流向出风口35并从出风口35流出。
本申请提供的储能装置的换热组件30可以灵活地根据储能装置层叠或相邻布置的需求设置换热组件30的进风口34和出风口35的朝向,从而更方便储能装置的并箱布置。并且,本申请提供的储能装置的换热组件30可以根据进风口34和出风口35的朝向相应地设置换热板33与隔板14的排列方式,从而提高单个储能装置以及整个储能系统的散热能力。
本申请还提供了一种储能系统。储能系统包括多个如上所述的储能装置。其中,多个储能装置沿储能装置的箱体10的高度方向层叠排列,或者,多个储能装置的箱体沿箱体10的长度或宽度方向相邻排列。
一种实施例中,换热组件30的出风口和进风口朝向储能装置的箱体10的宽度或长度方向,多个储能装置沿储能装置的箱体10的高度方向层叠排列,相邻两个储能装置的箱体10之间的间隙小于换热组件30的长度、高度或宽度。其中,换热组件30的进风口34和出风口35设于壳体31沿储能装置的箱体10的长度或宽度方向的侧部312,换热板33与隔板14倾斜设置。
图9为本申请实施例提供的储能系统的一种示意图。如图9所示,储能系统包括两个如上所述的储能装置,两个储能装置的箱体10沿箱体10的高度方向层叠排列。相邻两个储能装置的箱体10之间的间隙小于换热组件30的高度。换热组件30的进风口34和出风口35设于壳体31沿储能装置的箱体10的宽度方向的侧面312和313,换热板33与隔板14平行设置。其中,储能装置除箱体10外的部分在图9中未示出,换热组件30请参考图8所示,其他未示出的部分请参考图1-图5所示。
一种实施例中,每个储能装置的换热组件30的进风口34和出风口35朝向储能装置的箱体10的高度方向,多个储能装置的箱体沿箱体10的长度或宽度方向相邻排列。相邻两个储能装置的箱体10之间的间隙小于换热组件30的长度或宽度。其中,换热组件30的进风口34和出风口35设于壳体31沿储能装置的箱体10的高度方向的顶部311,换热板33与隔板14平行设置。其中,换热组件30请参考图7所示,其他未示 出的部分请参考图1-图5所示。
本申请提供的储能系统中多个储能装置采用凹陷型的开放式第一容纳区放置换热组件,可以保证换热组件不露出于储能装置外侧或上侧,从而减少层叠或相邻排列的两个多个储能装置所需的间隙,从而减少储能系统所需的空间或所需的占地面积,从而增加储能系统的储能密度且降低建设成本。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种用于储能装置的箱体,其特征在于,所述箱体包括四个立柱、三个侧板、隔板、底板和密封门,所述隔板与所述底板沿所述箱体的高度方向相对设置,两个所述侧板沿所述箱体的长度方向相对设置,另一个所述侧板与所述密封门沿所述箱体的宽度方向相对设置,其中:
    所述四个立柱及所述隔板相围合形成开放式的第一容纳区,所述三个侧板、所述隔板及所述底板经所述四个立柱固定并与所述密封门围合形成闭合式的第二容纳区,所述第一容纳区和所述第二容纳区沿所述箱体的高度方向层叠排列;
    沿所述箱体的长度方向所述第一容纳区或所述第二容纳区的长度等于沿所述箱体的长度方向相对设置的两个所述侧板之间的距离,沿所述箱体的高度方向所述隔板与所述底板之间的距离小于每个所述立柱的高度。
  2. 根据权利要求1所述的箱体,其特征在于,所述第二容纳区包括第一容纳腔和第二容纳腔,沿所述箱体的长度方向所述第一容纳腔和所述第二容纳腔相邻排列,沿所述箱体的高度方向所述第一容纳腔的高度或所述第二容纳腔的高度中至少一个等于所述第二容纳区的高度。
  3. 根据权利要求2所述的箱体,其特征在于,沿所述箱体的长度方向所述第一容纳腔的长度大于所述第二容纳腔的长度,沿所述箱体的长度方向所述第一容纳腔的长度与所述第二容纳腔的长度之和等于所述第二容纳区的长度。
  4. 根据权利要求2所述的箱体,其特征在于,所述箱体包括多个电池架,沿所述箱体的长度方向所述多个电池架依次相邻排列,所述多个电池架中任意相邻的两个所述电池架沿所述箱体长度方向的间距相同,所述多个电池架沿所述箱体长度方向的第一个或最后一个所述电池架用于区隔所述第一容纳腔和所述第二容纳腔。
  5. 根据权利要求2所述的箱体,其特征在于,所述箱体包括至少两个密封门,所述至少两个密封门沿所述箱体的长度方向排列,其中:
    所述至少两个密封门中一个所述密封门用于闭合所述第二容纳腔;
    所述至少两个密封门中其他所述密封门用于闭合所述第一容纳腔。
  6. 根据权利要求1所述的箱体,其特征在于,所述箱体与标准集装箱的长度、宽度和高度相同。
  7. 根据权利要求1所述的箱体,其特征在于,每个所述立柱的高度等于标准集装箱的高度。
  8. 根据权利要求1所述的箱体,其特征在于,所述箱体包括一个或多个加强梁,每个所述加强梁与所述箱体的长度或宽度方向相平行,每个所述加强梁用于固定连接两个所述立柱,沿所述箱体的高度方向每个所述加强梁设置于所述隔板的上方。
  9. 一种储能装置,其特征在于,所述储能装置包括换热组件、电气组件及如权利要求1-8任一项所述的箱体,所述第一容纳区用于放置所述换热组件,所述第二容纳区用于放置所述电气组件,其中:
    沿所述箱体的高度方向所述第一容纳区位于所述第二容纳区的上方且所述第一容纳区的高度小于所述第二容纳区的高度,沿所述箱体的高度方向所述换热组件的高度小于或等于所述第一容纳区的高度。
  10. 根据权利要求9所述的储能装置,其特征在于,所述电气组件包括多列电池模块,所述每列电池模块包括多个所述电池模块,所述每列电池模块中多个所述电池模块沿所述箱体的高度方向层叠排列于所述第一容纳腔。
  11. 根据权利要求9所述的储能装置,其特征在于,所述电气组件包括功率模块和温控模块,所述功率模块和所述温控模块沿所述箱体的高度方向所述温控模块与所述功率模块层叠排列于所述第二容纳腔。
  12. 根据权利要求11所述的储能装置,其特征在于,所述隔板包括第一连通孔和第二连通孔,其中:
    所述第一连通孔设于所述第一容纳腔的上方,所述换热组件的热交换管道穿过所述第一连通孔进入所述第一容纳腔;
    所述第二连通孔设于所述第二容纳腔的上方,所述换热组件与所述温控模块之间的连接线缆穿过所述第二连通孔。
  13. 根据权利要求9所述的储能装置,其特征在于,所述换热组件的壳体沿所述箱体的高度方向的上表面与所述隔板的距离等于或小于所述第一容纳区域的高度,所述换热组件的壳体沿所述箱体的宽度方向的两侧表面的距离等于或小于所述第一容纳区域的宽度,所述换热组件的壳体沿所述箱体的长度方向的两侧表面的距离等于或小于所述第一容纳区域的长度。
  14. 一种储能系统,其特征在于,所述储能系统包括多个如权利要求9-13任一项所述的储能装置,每个所述储能装置中换热组件包括出风口和进风口,其中:
    所述换热组件的所述出风口和所述进风口朝向所述储能装置的箱体高度方向,所述多个储能装置沿所述储能装置的箱体长度或宽度方向相邻排列,相邻两个所述储能装置的箱体之间的间隙小于所述换热组件的长度、高度或宽度;或,
    所述换热组件的所述出风口和所述进风口朝向所述储能装置的箱体宽度或长度方向,所述多个储能装置沿所述储能装置的箱体高度方向层叠排列,相邻两个所述储能装置的箱体之间的间隙小于所述换热组件的长度、高度或宽度。
  15. 根据权利要求14所述的储能系统,其特征在于,所述换热组件包括壳体和换热板,所述壳体用于容纳所述换热板,其中:
    所述进风口设于所述壳体沿所述储能装置的箱体长度或宽度方向的侧部,所述换热板与所述隔板倾斜设置;或,
    所述进风口设于所述壳体沿所述储能装置的箱体高度方向的顶部,所述换热板与所述隔板平行设置。
PCT/CN2023/113111 2023-03-08 2023-08-15 一种用于储能装置的箱体及储能装置、储能系统 WO2024060885A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23844519.1A EP4369489A1 (en) 2023-03-08 2023-08-15 Box for energy storage device, energy storage device and energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310268425.XA CN116315372A (zh) 2023-03-08 2023-03-08 一种用于储能装置的箱体及储能装置、储能系统
CN202310268425.X 2023-03-08

Publications (1)

Publication Number Publication Date
WO2024060885A1 true WO2024060885A1 (zh) 2024-03-28

Family

ID=86779345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/113111 WO2024060885A1 (zh) 2023-03-08 2023-08-15 一种用于储能装置的箱体及储能装置、储能系统

Country Status (3)

Country Link
EP (1) EP4369489A1 (zh)
CN (1) CN116315372A (zh)
WO (1) WO2024060885A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116315372A (zh) * 2023-03-08 2023-06-23 华为数字能源技术有限公司 一种用于储能装置的箱体及储能装置、储能系统
CN117638373A (zh) * 2024-01-25 2024-03-01 晶科储能科技有限公司 储能系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109720749A (zh) * 2017-10-31 2019-05-07 比亚迪股份有限公司 储能集装箱系统
CN213747097U (zh) * 2020-08-13 2021-07-20 江苏双志新能源有限公司 一种相变储能热泵热风机末端
CN114976361A (zh) * 2022-06-28 2022-08-30 厦门科华数能科技有限公司 一种储能集装箱
CN217426937U (zh) * 2021-09-29 2022-09-13 蜂巢能源科技有限公司 储能机柜及模块化储能机组
WO2022246717A1 (zh) * 2021-05-27 2022-12-01 华为数字能源技术有限公司 储能集装箱
CN116315372A (zh) * 2023-03-08 2023-06-23 华为数字能源技术有限公司 一种用于储能装置的箱体及储能装置、储能系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109720749A (zh) * 2017-10-31 2019-05-07 比亚迪股份有限公司 储能集装箱系统
CN213747097U (zh) * 2020-08-13 2021-07-20 江苏双志新能源有限公司 一种相变储能热泵热风机末端
WO2022246717A1 (zh) * 2021-05-27 2022-12-01 华为数字能源技术有限公司 储能集装箱
CN217426937U (zh) * 2021-09-29 2022-09-13 蜂巢能源科技有限公司 储能机柜及模块化储能机组
CN114976361A (zh) * 2022-06-28 2022-08-30 厦门科华数能科技有限公司 一种储能集装箱
CN116315372A (zh) * 2023-03-08 2023-06-23 华为数字能源技术有限公司 一种用于储能装置的箱体及储能装置、储能系统

Also Published As

Publication number Publication date
CN116315372A (zh) 2023-06-23
EP4369489A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
WO2024060885A1 (zh) 一种用于储能装置的箱体及储能装置、储能系统
KR102654288B1 (ko) 배터리 팩, 차량, 및 에너지 저장 디바이스
WO2020102909A1 (en) Battery module and battery module stack
CN220086214U (zh) 储能集装箱及储能集装箱系统
CN217691353U (zh) 电池包和储能系统
WO2023197907A1 (zh) 一种储能预制箱和换电站
CN218827567U (zh) 储能系统
CN220086171U (zh) 液冷电池架及电池包
CN219832797U (zh) 电池包
EP4228056A1 (en) Energy storage container, and method and device for manufacturing energy storage container
CN219106299U (zh) 一种电池包及用电装置
WO2024045457A1 (zh) 储能装置
CN218867280U (zh) 电池、储能装置以及用电设备
CN115425326A (zh) 一种电池箱及包含其的电池化成分容设备
EP3706222A1 (en) Redox flow battery
WO2024037234A1 (zh) 储能系统
CN214498535U (zh) 一种便携移动式的边缘数据方舱
WO2024037023A1 (zh) 电池柜及采用该电池柜的储能系统
KR20240046898A (ko) 전지, 전기기기, 전지를 제조하기 위한 방법 및 장비
KR20220061580A (ko) 배터리 모듈
CN218548659U (zh) 一种侧板组件及电池模组
CN220368047U (zh) 一种集装箱式储能系统
CN218771773U (zh) 一种多dc-dc对置堆叠式结构
CN220821768U (zh) 户外液冷储能柜
CN220021434U (zh) 电池插箱及电池包

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023844519

Country of ref document: EP

Effective date: 20240202