WO2024060643A1 - 面罩结构体及其制备方法及vr眼镜 - Google Patents

面罩结构体及其制备方法及vr眼镜 Download PDF

Info

Publication number
WO2024060643A1
WO2024060643A1 PCT/CN2023/094121 CN2023094121W WO2024060643A1 WO 2024060643 A1 WO2024060643 A1 WO 2024060643A1 CN 2023094121 W CN2023094121 W CN 2023094121W WO 2024060643 A1 WO2024060643 A1 WO 2024060643A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask structure
elastic body
structure according
fitting
glasses
Prior art date
Application number
PCT/CN2023/094121
Other languages
English (en)
French (fr)
Inventor
吴玲
叶君剑
张春武
李铭豪
Original Assignee
裕克施乐塑料制品(太仓)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 裕克施乐塑料制品(太仓)有限公司 filed Critical 裕克施乐塑料制品(太仓)有限公司
Publication of WO2024060643A1 publication Critical patent/WO2024060643A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present disclosure belongs to the field of VR technology, and specifically relates to a mask structure and a preparation method thereof, and also relates to VR glasses.
  • VR glasses are a type of head-mounted display device.
  • virtual reality technology has gradually become popular.
  • VR glasses include glasses imaging parts and glasses wearing parts, where the glasses wearing parts include a mask structure and wearing auxiliary parts formed on the glasses imaging parts and capable of fitting the user's eyes.
  • the glasses wearing parts include a mask structure and wearing auxiliary parts formed on the glasses imaging parts and capable of fitting the user's eyes.
  • the glasses are put on the head, and a mirror cavity is formed between the mask structure, the imaging components of the glasses and the face (forehead, cheeks, nose).
  • a flexible body is usually added inside or on the inside of the mask structure.
  • the flexible body is mainly made of foam. Although the foam is soft in texture, it has poor air permeability. If worn for a long time, It is easy to produce a feeling of stuffiness and affect the user experience.
  • the soft cushions include a continuous and uninterrupted lattice structure, which includes lattice units defined by lattice elements.
  • the lattice The element is made of elastically deformable material.
  • the elastic pad body can be formed through 3D printing.
  • the elastic pad body is fitted to the skin from the lattice unit under the external force of the wearing aid.
  • the part that contacts the face cannot provide balance.
  • the bearing capacity of the self-lattice unit will cause a sense of pressure in some places after wearing it, affecting the comfort of wearing it; 2. Since the self-lattice unit directly maintains pressure contact with the skin, once the support force formed is insufficient and the wearing time is long, the parts in contact with the skin will Indentations are formed.
  • One aspect of the present disclosure relates to a novel mask structure.
  • Another aspect of the present disclosure relates to a method of preparing a mask structure.
  • Another aspect of the present disclosure relates to VR glasses.
  • a first aspect of the present disclosure provides a mask structure, including:
  • the surrounding frame part is used to connect the facial fitting part and the external connecting part to form a mask cavity
  • the facial fitting part, the external connecting part and the surrounding frame part all include an elastic body made of thermoplastic elastomer, and breathable hollow holes are formed on part of the elastic body.
  • the elastic body corresponding to the face fitting part includes a forehead fitting part and cheek fitting parts located on both sides of the forehead fitting part, wherein the forehead fitting part and/or the cheek fitting part are provided with hollow holes; after fitting, the forehead fitting part, the cheek fitting part, the frame part and the eyeglass imaging component form a lens cavity.
  • the face fitting part is light in weight, has good comfort after wearing, and has a small contact area with the face, so the pressure formed is reduced.
  • the facial fitting part also includes a nose bridge fitting part for connecting the cheek fitting parts on both sides.
  • the nose bridge fitting part is also provided with a hollow hole; the facial fitting part is a closed ring structure.
  • the hollow holes of the forehead fitting part, the cheek fitting part, and the nose bridge fitting part form a lattice lattice structure, and the lattice lattice structure is configured such that changes in one or more parameters can adjust the face.
  • the balanced load-bearing capacity of the fitting part and The parameters of the pressure of VR glasses on the face include cell shape, rod diameter, porosity and density.
  • Such a structure has good mechanical properties and aesthetics, and for different application scenarios, different lattice structures can be designed and used in combination to achieve the performance indicators required by the target scenario.
  • the facial fitting portion is connected from its contour edge by the contour edge of the frame portion and the outer connecting portion, and the connection is chamfered or rounded; the frame portion is provided with a hollow hole. Further enhancing overall aesthetics and breathability.
  • the hollow holes on the frame part of the present disclosure have a lattice structure, and the lattice structure is configured so that changes in one or more parameters can adjust the balanced load-bearing capacity of the facial fitting part and the pairing of VR glasses.
  • parameters include cell shape, rod diameter, porosity and density.
  • the surrounding frame portion includes an outer frame body, wherein the outer frame body connects the outer contour edge of the face fitting portion and the outer contour edge of the outer connecting portion.
  • the surrounding frame portion includes an inner frame body, wherein the inner frame body connects the inner contour edge of the facial fitting portion and the inner contour edge of the outer connecting portion.
  • the surrounding frame part can be a single layer, or a double layer or multiple layers, which are selected according to the needs of the compression performance provided, which has good practicability.
  • the external connection part includes a closed ring-shaped mounting body, in which the spectacle imaging component is installed in the mounting body, and no hollow hole is formed on the mounting body. Avoid visual interference caused by the hollowing out of the installation body and affecting the VR display effect.
  • the mask structure further includes an elastic resin layer formed on the elastic body, and the elastic resin layer is at least formed in the internal pores of the elastic body and combined with the elastic body.
  • the elastic resin layer is at least formed in the internal pores of the elastic body and combined with the elastic body.
  • the elastic resin layer is also formed on the outer surface of the elastic body; and/or the mass of the elastic resin layer is 10%-50% of the mass of the thermoplastic elastomer on the elastic body.
  • the hardness of the elastic resin constituting the elastic resin layer is above 50A Shore hardness and below 40D Shore hardness; the viscosity of the elastic resin at 25°C is less than 12000cP, the tensile strength is above 5MPa, and the elongation at break is 120% Above; and the pressure required when the mask structure is compressed to a deformation of 50% is greater than 200N.
  • the porosity of the hollow holes is 5%-40%; and/or the density of the elastic body is 0.7-1.1g/cm 3 .
  • the mask structure is formed of an elastic body coated with a treatment liquid containing an elastic resin or a raw material thereof, and a curing agent.
  • the treatment liquid is sprayed, dip-coated or electroplated on the elastic body, and the treatment liquid penetrates into the internal pores of the elastic body.
  • the coating treatment time is 5-20 minutes, and the heating treatment time is 3-12 hours.
  • the mass concentration of the elastic resin in the treatment liquid is 30-60%, and the mass concentration of the curing agent is 1%-10%.
  • the mass concentration of the elastic resin in the treatment liquid is 40-55%, and the mass concentration of the curing agent is 2%-5%.
  • heating and curing are performed after coating.
  • the heating and curing is performed at a temperature of 80-100 degrees.
  • the coating and heating and curing are each performed once, or after one time, they are repeated 1-3 times.
  • the resin constituting the elastic body is one or a combination of two selected from thermoplastic polyurethane resin and thermoplastic polyethylene resin.
  • the elastic resin constituting the elastic resin layer is one or a combination of one or more selected from polyurethane resin, acrylic resin, and silicone resin.
  • a second aspect of the present disclosure provides a method for preparing a mask structure, including the following steps:
  • a treatment liquid which contains elastic resin or its raw materials, and a curing agent
  • the elastic body is fully contacted with the treatment liquid containing the elastic resin or its raw materials and the resin curing agent, and is heated and solidified.
  • the elastic resin will form an elastic resin layer in the internal pores of the elastic body and on the outer surface of the elastic body.
  • the lattice structure has higher compression resistance; under the same compression performance, the material has a lower weight.
  • the elastic resin layer located on the outer surface of the elastic body can reduce the surface roughness of the material and make the surface of the lattice structure smooth.
  • thermoplastic elastomer in step i, is manufactured into an elastic body by 3D printing technology.
  • the elastic body is prepared by 3D printing.
  • parameters such as 3D printing temperature and laser energy, the sintering density and porosity of the elastic body can be controlled, thereby controlling the depth and quality of elastic resin penetration.
  • the mass concentration of the elastic resin in the treatment liquid is 30-60%, and the mass concentration of the curing agent is 1%-10%.
  • step iii the treatment liquid is sprayed, dip-coated or electroplated on the elastic body, and the treatment liquid penetrates into the internal pores of the elastic body.
  • steps iii and iv are repeated multiple times in sequence.
  • step iv the curing is performed by heating at 80-100°C.
  • the parameters used are as follows: the temperature of the 3D printed elastic body is 80-140°C, the laser power is 30-100W, the scanning rate is 4000-12000mm/s, and the scanning spacing is 0.1-0.3mm.
  • the lattice cell structure constituting the elastic body is not particularly limited.
  • the lattice cell structure can be common cubes, stars, octagons, hexagons, rhombuses, tetrahedrons, etc.
  • a third aspect of the present disclosure provides VR glasses, which include a glasses imaging component and a glasses wearing component.
  • the glasses wearing component includes the above-mentioned mask structure, wherein the glasses imaging component is docked with an external connection portion of the mask structure.
  • the mask structure in the present disclosure uses a thermoplastic elastomer to make an elastic body to form a three-dimensional mask cavity, which can provide a balanced bearing capacity for the mask structure, not only reducing the sense of pressure formed when the mask is fit and worn, but also reducing the long-term
  • the probability of skin indentation caused by wearing it is relatively soft, breathable and lightweight, ensuring wearing comfort.
  • hollow holes are provided on part of the elastic body, which has good air permeability and makes users less likely to feel stuffy, thus improving the user experience.
  • Figure 1 is a schematic structural diagram of a mask structure according to the present disclosure.
  • Figure 2 is a schematic front view of Figure 1.
  • Figure 3 is a schematic structural diagram of another mask structure according to the present disclosure.
  • Figure 4 is a schematic structural diagram of yet another mask structure according to the present disclosure.
  • Figures 1 and 2 show an embodiment of the mask structure of VR glasses.
  • the VR glasses include a spectacle imaging component and a spectacle wearing component.
  • the spectacle wearing component includes a mask structure 1 formed on the spectacle imaging component and capable of fitting the user's eyes, and a wearing auxiliary component. .
  • the mask structure 1 includes an elastic body 10 made of thermoplastic elastomer and an elastic resin layer.
  • the elastic main body 10 includes a facial fitting part 100, an external connecting part 101, and a surrounding frame part 102 for connecting the facial fitting part 100 and the external connecting part 101, wherein the spectacle imaging component is docked with the external connecting part 101 of the mask structure 1 .
  • the elastic body 10 of the face fitting part 100 includes a forehead fitting part a, cheek fitting parts b located on both sides of the forehead fitting part a, and a nose bridge fitting part c for connecting the cheek fitting parts b on both sides.
  • the face fitting part 100 is a closed ring structure as a whole.
  • Breathable hollow holes k are formed on the forehead fitting part a, the cheek fitting parts b on both sides, and the nose bridge fitting part c, and after the veneer, the forehead fitting part a, the cheek fitting part b, and the frame part 102 and the imaging components of the glasses constitute the mirror cavity.
  • the face fitting part 100 and the external connection part 101 are connected from the contour edge to form the surrounding frame part 102, and the connection is chamfered or rounded.
  • the surrounding frame part 102 is also provided with hollow holes k to further enhance the overall aesthetics and air permeability.
  • a hollow hole k is formed on the surrounding frame 102, and the hollow hole k has a crystal lattice structure, and the crystal lattice structure is configured as one or Changes in multiple parameters can adjust the balanced bearing force of the facial fitting part and the pressure of the glasses on the face.
  • Parameters include cell shape, rod diameter, porosity and density.
  • Such a structure has good mechanical properties and aesthetics, and for different application scenarios, different lattice structures can be designed and used in combination to achieve the performance indicators required by the target scenario.
  • the surrounding frame part 102 includes an outer frame body d and an inner frame body e.
  • the outer frame body d connects the outer contour edge of the facial fitting part 100 and the outer contour edge of the outer connecting part 101 .
  • the inner frame body e connects the facial fitting part 100 to the outer contour edge of the outer connecting part 101 .
  • the inner contour edge of 100 is connected to the inner contour edge of outer connecting portion 101 .
  • the external connection part 101 includes a closed ring-shaped mounting body f, in which the glasses imaging component is installed in the mounting body f, and no hollow hole k is formed on the mounting body f to avoid visual interference caused by the hollowing out of the mounting body and affecting the VR display. Effect.
  • an elastic resin layer is formed on the elastic body 10.
  • a part of the elastic resin layer is formed in the internal pores of the elastic body 10 and combined with the elastic body 10, and the other part is formed in the internal pores of the elastic body 10.
  • the outer surface of the elastic body 10. In this way, the pressure required when the mask structure 1 is compressed to a deformation of 50% is greater than 200N. Therefore, through the combination of the elastic resin layer, not only the thickness and weight of the elastic body 10 change little, but its compression performance can also be greatly improved.
  • thermoplastic elastomer has a porosity of 5%-30% and is 3D printed through powder sintering.
  • the hardness of the elastic resin constituting the elastic resin layer is 50A Shore hardness or more and 40D Shore hardness or less, the viscosity at 25 hardness is less than 12000cP, the tensile strength is 5MPa or more, and the elongation at break is more than 120%.
  • the mass of the elastic resin layer is 10%-20% of the mass of the thermoplastic elastomer on the elastic body 10 . Improve the strength, elasticity, and impact resistance of the lattice structure, and optimize the weight reduction while ensuring sufficient elastic buffering capacity.
  • Thermoplastic elastomers are produced through 3D printing.
  • parameters such as 3D printing temperature and laser energy, the sintering density and porosity of the thermoplastic elastomer can be controlled, thereby controlling the depth and quality of elastic resin penetration.
  • the parameters used are as follows: temperature is 80-140 °F, laser power is 30-100W, scanning rate is 4000-10000mm/s, and scanning spacing is 0.1-0.3mm.
  • the preparation process of the mask structure 1 includes the following steps:
  • thermoplastic polyurethane TPU As raw material, the elastic body is 3D printed by powder sintering molding.
  • the process parameters are main temperature 100-120°C, laser power 50W, scanning rate 8000mm/s, and scanning spacing 0.2mm.
  • thermoplastic elastomer is immersed in the impregnation treatment solution prepared in step 2) for 8 minutes, taken out and dried, and then placed in a vacuum oven at 80 ⁇ 2°C for curing for 2.5 hours to obtain a mask structure.
  • the pressure at 50% compression deformation of the thermoplastic elastomer is from 2N before treatment. Increase to 7N, the density of the prepared thermoplastic elastomer is 1.05g/cm 3 , and the weight of the mask structure 1 increases from 40g before treatment to 45g (while the conventional mask structure 1 reaches the same pressure, its The weight of the mask structure 1 is generally 200g).
  • FIG 3 shows another embodiment of the mask structure of VR glasses.
  • the VR glasses in this embodiment include a glasses imaging component and a glasses wearing component, wherein the glasses wearing component includes a mask structure 1 formed on the glasses imaging component and capable of fitting the user's eyes, and a wearing aid. pieces.
  • the structure of the mask structure 1 is basically the same as that of the mask structure shown in Figures 1 and 2, with the following differences.
  • the face fitting part 100 includes a forehead fitting part a and cheek fitting parts b located on both sides of the forehead fitting part a, wherein the forehead fitting part a and the cheek fitting parts b on both sides are both in an arc shape that bends inwards. That is to say, in this embodiment, no nose bridge part is provided, so the cheek fitting parts b on both sides extend to the middle and then are disconnected, but it should be noted that after the face fitting, the forehead fitting part a, the cheek fitting part b, the frame part 102 and the eyeglass imaging component constitute a mirror cavity.
  • the hollow holes formed on the forehead fitting part a and the cheek fitting part b constitute a lattice structure.
  • the surrounding frame part 102 is a single-layer structure and adopts a rounded transition, and the forehead patch corresponding to the surrounding frame part 102
  • the combined part a forms an outer frame d and an inner frame e. Specifically, whether it is a single-layer outer frame d or a double-layer outer frame d and inner frame e, they all have a lattice structure and are adjusted in the same way. Cell shape, rod diameter, porosity, density and other parameters are used to adjust the balanced bearing capacity of the facial fitting part and the pressure of the glasses on the face.
  • Such a structure has good mechanical properties and aesthetics, and for different application scenarios, different lattice structures can be designed and used in combination to achieve the performance indicators required by the target scenario.
  • the porosity of the facial fitting portion 100 is greater than the porosity of the surrounding frame portion 102 .
  • the preparation process of the mask structure 1 includes the following steps:
  • thermoplastic polyurethane TPU As raw material, the elastic body is 3D printed through powder sintering.
  • the process parameters are main temperature 100-120, laser power 80W, scanning rate 8000mm/s, and scanning spacing 0.2mm;
  • two elastic resin layers are formed on the surface of the elastic body 10 of the mask structure 1.
  • the pressure increases from 2.4N before treatment to 9N.
  • the density of the prepared thermoplastic elastomer is 1.07g/cm3
  • the weight of the mask structure 1 increases from 40g before treatment to 47g (while the existing mask structure 1 has a weight of 1 Usually 200g).
  • Fig. 4 shows another embodiment of the mask structure of VR glasses.
  • the VR glasses of this embodiment include a glasses imaging component and a glasses wearing component, wherein the glasses wearing component includes a mask structure 1 formed on the glasses imaging component and capable of fitting the user's eyes, and a wearing auxiliary component.
  • the structure of the mask structure 1 is basically the same as that of the mask structure shown in Figure 3, with the following differences:
  • the facial fitting part 100 does not include a nose bridge part. Therefore, the cheek fitting parts b on both sides extend toward the middle and then are disconnected. However, it should be noted that after the face fitting part 100 is attached, the forehead fitting part a , the cheek fitting part b, the surrounding frame part 102 and the glasses imaging component constitute the mirror cavity.
  • the forehead fitting part a, the cheek fitting parts b on both sides, and the single-layer frame part 102 all have inwardly curved slopes.
  • the hollow holes formed on the forehead fitting part a and the cheek fitting part b constitute a lattice structure.
  • the surrounding frame part 102 has a single-layer structure and adopts rounded corner transitions, and the surrounding frame part 102
  • the corresponding forehead fitting part a forms an outer frame d and an inner frame e.
  • it is a single-layer outer frame d or a double-layer outer frame d and inner frame e, they all have a lattice structure, and the lattice is also adjusted
  • the cell shape, rod diameter, porosity, density and other parameters of the lattice structure are used to adjust the balanced load-bearing force of the facial fitting part and the pressure of the glasses on the face.
  • Such a structure has good mechanical properties and aesthetics, and for different application scenarios, different lattice structures can be designed and used in combination to achieve the performance indicators required by the target scenario.
  • the porosity of the facial fitting portion 100 is greater than the porosity of the surrounding frame portion 102 .
  • the preparation process of the mask structure 1 includes the following steps:
  • thermoplastic polyurethane TPU Using thermoplastic polyurethane TPU as raw material, thermoplastic elastomer is 3D printed through powder sintering molding.
  • the process parameters are main temperature 100-120, laser power 80W, scanning rate 8000mm/s, and scanning spacing 0.2mm;
  • the pressure increases from 2.5N before treatment to 11N.
  • the prepared thermoplastic elastomer has The density is 1.08g/cm 3 , and the weight of the mask structure 1 increases from 40g before treatment to 49g (the weight of the existing mask structure 1 is generally 200g under the premise of reaching the same pressure) .
  • the mask structure in the present disclosure uses a thermoplastic elastomer to make a three-dimensional mask cavity formed by an elastic body, which enables the mask structure to provide a balanced bearing capacity, not only reducing the sense of pressure formed when the mask is fit and worn, but also reducing the The probability of skin indentation caused by long-term wearing is relatively soft, breathable and lightweight, ensuring wearing comfort.
  • thermoplastic elastomer 2
  • This disclosure allows the elastic resin to penetrate into the internal pores of the thermoplastic elastomer and tightly combine the two through the compounding of the thermoplastic elastomer and the elastic resin coating.
  • the compression resistance of the material is improved, while the volume of the material remains unchanged and the weight only increases slightly.
  • the volume of the lattice structure of the present disclosure is significantly smaller and the weight is significantly lighter; when the weight is the same, the crystal lattice structure of the present disclosure is significantly lighter.
  • the lattice structure has significantly higher compression resistance.
  • thermoplastic elastomers uses 3D printing to prepare thermoplastic elastomers, and adopts coating and curing processes.
  • parameters such as 3D printing temperature and laser power
  • the sintering density and porosity of the thermoplastic elastomer can be controlled, thereby controlling the elasticity.
  • the depth and quality of resin penetration ultimately control the degree of improvement in the compression performance of the lattice structure. Therefore, lattice structures with various properties can be flexibly prepared to meet the personalized needs of various application scenarios.
  • coating treatment and curing processes the bond between the thermoplastic elastomer and the elastic resin coating is more complete and tight, which helps to improve the strength and service life of the lattice structure.
  • the lattice structure involved in this disclosure is a very special structure. Products designed through the lattice structure can form a specific structure through the combination of one or more different lattice structures. Such a structure has good Mechanical properties and aesthetics. For different application scenarios, different lattice structures can be designed and used in combination to achieve the performance indicators required by the target scenario; at the same time, once it is hit by an external force, it can form a balanced force-bearing, and the fitting surface will not easily detach from the face. The probability of glasses falling off is smaller.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other and do not imply a specific order or importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be called second information, and similarly, the second information may also be called first information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)

Abstract

面罩结构体(1)及其制备方法及VR眼镜。该面罩结构体(1)包括面部贴合部(100)、外连接部(101)、用于将面部贴合部(100)和外连接部(101)相连的围框部(102),其中面部贴合部(100)、外连接部(101)及围框部(102)均包括由热塑性弹性体制成的弹性主体(10),且在部分弹性主体(10)上形成透气的镂空孔(k)。面罩结构体(1)通过热塑性弹性体制成弹性主体(10)以形成立体罩腔,能够使得面罩结构体(1)提供均衡的承载力,不仅降低面罩结构体(1)贴合穿戴时候所形成的压迫感,而且还降低因长期佩戴所造成的皮肤出现压痕的概率,同时柔软、透气、自重轻,确保佩戴的舒适度。

Description

面罩结构体及其制备方法及VR眼镜
本公开要求2022年9月23日提交的申请号为CN 2022111639850的中国专利申请的优先权。
技术领域
本公开属于VR技术领域,具体涉及一种面罩结构体及其制备方法,同时还涉及一种VR眼镜。
背景技术
众所周知,虚拟现实(virtual reality,VR)眼镜是一种头戴式显示设备,同时,随着互联网技术的发展,虚拟现实技术逐渐普及,VR眼镜作为连接虚拟现实的视觉媒介,市场火爆。
常规的VR眼镜包括眼镜成像部件、眼镜佩戴部件,其中眼镜佩戴部件包括形成在眼镜成像部件上且能够贴合用户眼部的面罩结构体和佩戴辅助件。VR眼镜在使用时,将眼镜戴在头上,面罩结构体、眼镜成像部件和面部(额头部、脸颊部、鼻部)之间形成一个的镜腔。为了改善面罩结构体与面部接触的舒适度,通常在面罩结构体的内部或内侧增设柔性体,其中柔性体以发泡的泡沫为主,虽然泡沫质地柔软,但是透气性差,若佩戴时间稍长易产生闷热感,影响用户的体验。
为了解决上述难题,市场上也出现了采用软垫替换面罩结构体的解决方案,软垫包括连续且不间断的晶格结构,该晶格结构包括由晶格元件限定的晶格单元,晶格元件由可弹性变形材料制成。也就是说,可以通过3D打印形成弹性垫体,因具有成型过程简单、环保、原料利用率高、可回收、及精度高等优势,该解决方案已被应用于多种场合。这种解决方案在一定程度上解决了舒适度和透气性的难题,但是,其存在以下缺陷:
1、在实际使用中,由于伴随着熔体收缩、粉末颗粒间结合不牢、空隙多等因素,导致弹性垫体的力学性能不足,尤其是抗压缩性能,最简单的方式就是增加弹性体的厚度,然而,这种方式不仅导致所形成面罩结构体的体积较大,而且直接将眼镜的重心前移,造成佩戴承载力不均匀,一旦受到外力碰撞,容易造成软垫部分脱开面部,致使眼镜脱落的概率较大;
2、为了实现面罩结构体与面部完全贴合,在佩戴辅助件的外力下,将弹性垫体自晶格单元贴合皮肤,此时,存在两个问题:一、由于接触面部部分无法提供均衡的承载力,致使佩戴后局部地方存在压迫感,影响佩戴的舒适度;二、由于自晶格单元直接与皮肤保持压合接触,一旦所形成支撑力不足和佩戴时间长,会在接触皮肤部分形成有压痕。
发明内容
本公开的一个方面涉及一种新颖的面罩结构体。
本公开的另一个方面涉及一种面罩结构体的制备方法。
本公开的另一个方面涉及一种VR眼镜。
本公开的第一个方面提供一种面罩结构体,包括:
面部贴合部;
外连接部;
围框部,其用于将面部贴合部和外连接部相连形成罩腔;
其中,面部贴合部、外连接部及围框部均包括由热塑性弹性体制成的弹性主体,且在部分的弹性主体上形成透气的镂空孔。
在一些实施例中,面部贴合部所对应的弹性主体包括额头贴合部分、及位于额头贴合部分两侧的脸颊贴合部分,其中额头贴合部分和/或脸颊贴合部分设有镂空孔;贴面后,额头贴合部分、脸颊贴合部分、围框部及眼镜成像部件构成镜腔。也就是说,此时面部贴合部,自重轻,佩戴后的舒适度好,而且与面部接触面积小,所形成的压迫感变小。
在一些实施例中,面部贴合部还包括用于将两侧的脸颊贴合部分相连接的鼻梁贴合部分,鼻梁贴合部分也设有镂空孔;面部贴合部为闭合环状结构。在此,通过鼻梁贴合部分的设置,不仅造成所增加重量几乎不计,而且能够进一步的形成有效支撑,这样一来可进一步的减小眼镜佩戴后的压迫感。
在一些实施例中,额头贴合部分、脸颊贴合部分、及鼻梁贴合部分的镂空孔形成晶格点阵结构,晶格点阵结构被配置为其一或多个参数的改变能够调整面部贴合部的均衡承载力和 VR眼镜对面部的压力,参数包括胞元造型、杆径粗细、孔隙率和密度。这样的结构具有良好的力学性能和美观性,而且,针对不同的应用场景,可以设计不同的晶格结构进行组合运用来达到目标场景需要的性能指标。
在一些实施例中,面部贴合部自其轮廓边缘通过围框部和外连接部的轮廓边连接,且连接处倒角或圆角过渡;围框部上设有镂空孔。进一步增强整体美观性和透气性。
在一些实施例中,本公开围框部上的镂空孔呈晶格点阵结构,晶格点阵结构被配置为其一或多个参数的改变能够调整面部贴合部的均衡承载力和VR眼镜对面部的压力,参数包括胞元造型、杆径粗细、孔隙率和密度。这样的结构具有良好的力学性能和美观性,而且,针对不同的应用场景,可以设计不同的晶格结构进行组合运用来达到目标场景需要的性能指标。
在一些实施例中,围框部包括外框体,其中外框体将面部贴合部的外轮廓边缘和外连接部的外轮廓边缘连接。
在一些实施例中,围框部包括内框体,其中内框体将面部贴合部的内轮廓边缘和外连接部的内轮廓边缘连接。
也就是说,围框部可以是单层,也可以是双层或多层,其根据所提供的压缩性能的需要进行选择,这样具有良好的实用性。
在一些实施例中,外连接部包括呈闭合环状的安装本体,其中眼镜成像部件安装在安装本体内,且安装本体上未形成镂空孔。避免安装本体的镂空造成视觉上的干扰,影响VR显示的效果。
在一些实施例中,面罩结构体还包括形成在弹性主体上的弹性树脂层,弹性树脂层至少形成在弹性主体的内部孔隙中并与弹性主体之间结合。也就是说,通过弹性树脂层的结合,不仅对弹性主体上热塑性弹性体的厚度和重量变化小,而且还能够大幅度改善其压缩性能。
在一些实施例中,弹性树脂层还形成在弹性主体的外表面;和/或,弹性树脂层的质量为弹性主体上热塑性弹性体质量的10%-50%。
在一些实施例中,组成弹性树脂层的弹性树脂的硬度为50A邵氏硬度以上、40D邵氏硬度以下;25℃下弹性树脂的粘度小于12000cP,抗拉强度为5MPa以上,断裂伸长率为120% 以上;且面罩结构体在被压缩至形变为50%时所需的压力大于200N。
在一些实施例中,镂空孔的孔隙率为5%-40%;和/或,弹性主体的密度为0.7-1.1g/cm3
在一些实施例中,面罩结构体由涂覆有包含弹性树脂或其原料、以及固化剂的处理液的弹性主体形成。
在一些实施例中,处理液喷涂、浸涂或电镀在弹性主体上,且处理液渗透进入弹性主体的内部孔隙之中。
其中,涂覆处理的时间为5-20min,加热处理的时间为3-12h。
在一些实施例中,处理液中弹性树脂的质量浓度为30-60%,固化剂的质量浓度为1%-10%。
更优选地,处理液中弹性树脂的质量浓度为40-55%,固化剂的质量浓度为2%-5%。
在一些实施例中,涂覆后进行加热固化,加热固化在温度80-100度下进行,涂覆和加热固化各进行一次,或者在一次结束后,再重复1-3次。
此外,组成弹性主体的树脂为选自热塑性聚氨酯树脂、热塑性聚乙烯树脂中的一种或两种的组合。
在一些实施例中,组成弹性树脂层的弹性树脂为选自聚氨酯树脂、丙烯酸树脂、有机硅树脂中的一种或多种的组合。
本公开的第二个方面提供一种面罩结构体的制备方法,包括如下步骤:
i–提供弹性主体
ii–提供处理液,处理液包含弹性树脂或其原料、以及固化剂;
iii–使用处理液对弹性主体进行涂覆处理;
iv–固化。
本公开将弹性主体与包含弹性树脂或其原料、以及树脂固化剂的处理液充分接触,并加热固化,弹性树脂会在弹性主体的内部孔隙中以及弹性主体的外表面形成弹性树脂层,弹性树脂与弹性主体固化、粘接、复合,填充弹性主体的内部孔隙,进而可以获得优异力学性能 的晶格点阵结构。在相同的重量下,该晶格点阵结构具有更高的抗压缩性能;在达到相同压缩性能的条件下,该材料具有更低的重量。此外,位于弹性主体外表面的弹性树脂层可以降低材料的表面粗糙度,使得晶格点阵结构表面光滑。
在一些实施例中,步骤i中,将热塑性弹性体通过3D打印技术制得弹性主体。
弹性主体通过3D打印制备。通过调节3D打印温度和激光能量等参数,可以控制弹性主体的烧结密度和孔隙率,进而控制弹性树脂渗透的深度和质量。温度和激光功率越低,打印出的弹性主体的孔隙率越高,晶格点阵结构中弹性树脂的含量也就越高,晶格点阵结构的抗压缩性能越好。
在一些实施例中,处理液中弹性树脂的质量浓度为30-60%,固化剂的质量浓度为1%-10%。
在一些实施例中,步骤iii中,将所述处理液喷涂、浸涂或电镀在所述弹性主体上,且处理液渗透进入所述弹性主体的内部孔隙之中。
在一些实施例中,步骤iii和iv顺序重复多次。
在一些实施例中,步骤iv中,在80-100℃下加热固化。
在一些实施例中,采用的参数如下:3D打印弹性主体的温度为80-140℃,激光功率为30-100W,扫描速率为4000-12000mm/s,扫描间距为0.1-0.3mm。
同时,构成弹性主体的点阵胞元结构没有特别限制。点阵胞元结构可以是常见的立方体,星形,八角形,六边形,菱形和四面体等。
本公开的第三个方面提供一种VR眼镜,其包括眼镜成像部件和眼镜佩戴部件,眼镜佩戴部件包括上述的面罩结构体,其中眼镜成像部件与面罩结构体的外连接部对接。
本公开中的面罩结构体,通过热塑性弹性体制成弹性主体以形成立体罩腔,能够使得面罩结构体提供均衡的承载力,不仅降低面罩贴合穿戴时候所形成的压迫感,而且还降低因长期佩戴所造成的皮肤出现压痕的概率,同时相对柔软、透气、自重轻,确保佩戴的舒适度。且部分弹性主体上开设镂空孔,透气性较好,使用者不易产生闷热感,提升了用户的体验。
附图说明
图1为根据本公开的一种面罩结构体的结构示意图。
图2为图1的主视示意图。
图3为根据本公开的另一种面罩结构体的结构示意图。
图4为根据本公开的又一种面罩结构体的结构示意图。
附图标记:1-面罩结构体;10-热塑性弹性体;100-面部贴合部;a-额头贴合部分;b-两侧的脸颊贴合部分;c-鼻梁贴合部分;101-外连接部;f-安装本体;102-围框部;d-外框体;e-内框体;k-镂空孔。
具体实施方式
为使本公开的上述目的、特征和优点能够更加明显易懂,下面结合附图对本公开的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本公开。但是本公开能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本公开内涵的情况下做类似改进,因此本公开不受下面公开的具体实施方式的限制。
图1和图2示出了VR眼镜的面罩结构体的一种实施方式。如图1和图2所示,该VR眼镜包括眼镜成像部件、眼镜佩戴部件,其中眼镜佩戴部件包括形成在所述眼镜成像部件上且能够贴合用户眼部的面罩结构体1和佩戴辅助件。
具体的,面罩结构体1包括由热塑性弹性体制成的弹性主体10和弹性树脂层。
弹性主体10包括面部贴合部100、外连接部101、用于将面部贴合部100和外连接部101相连的围框部102,其中眼镜成像部件与面罩结构体1的外连接部101对接。
面部贴合部100的弹性主体10包括额头贴合部分a、位于额头贴合部分a两侧的脸颊贴合部分b、及用于将两侧的脸颊贴合部分b相连接的鼻梁贴合部分c。面部贴合部100整体呈闭合环状结构。
额头贴合部分a、两侧的脸颊贴合部分b、鼻梁贴合部分c上均形成透气的镂空孔k,且贴面后,额头贴合部分a、脸颊贴合部分b、围框部102及眼镜成像部件构成镜腔。
也就是说,面部贴合部100和外连接部101自轮廓边连接形成围框部102,且连接处倒角或圆角过渡。围框部102上也设有镂空孔k,进一步增强整体美观性和透气性。
围框部102上形成镂空孔k,且镂空孔k呈晶格点阵结构,晶格点阵结构被配置为其一或 多个参数的改变能够调整面部贴合部的均衡承力和眼镜对面部的压力。参数包括胞元造型、杆径粗细、孔隙率和密度。这样的结构具有良好的力学性能和美观性,而且,针对不同的应用场景,可以设计不同的晶格结构进行组合运用来达到目标场景需要的性能指标。
围框部102包括外框体d和内框体e,其中外框体d将面部贴合部100的外轮廓边缘和外连接部101的外轮廓边缘连接,内框体e将面部贴合部100的内轮廓边缘和外连接部101的内轮廓边缘连接。
外连接部101包括呈闭合环状的安装本体f,其中眼镜成像部件安装在安装本体f内,且安装本体f上未形成镂空孔k,避免安装本体的镂空造成视觉上的干扰,影响VR显示的效果。
本实施方式中,为了增强面罩结构体1的压缩性能,在弹性主体10上形成有弹性树脂层,弹性树脂层一部分形成在弹性主体10的内部孔隙中并与弹性主体10结合、另一部分形成在弹性主体10的外表面。这样一来,面罩结构体1在被压缩至形变为50%时所需的压力大于200N。因此,通过弹性树脂层的结合,不仅弹性主体10的厚度和重量变化小,而且还能够大幅度改善其压缩性能。
热塑性弹性体的孔隙率为5%-30%,且通过粉末烧结成型3D打印成型。
组成弹性树脂层的弹性树脂的硬度为50A邵氏硬度以上、40D邵氏硬度以下,25硬下的粘度小于12000cP,抗拉强度为5MPa以上,断裂伸长率为120%以上。
弹性树脂层的质量为弹性主体10上热塑性弹性体质量的10%-20%。提升晶格点阵结构的强度、弹性、抗冲击性能,且保证弹性缓冲能力足够前提下,最佳化的减轻重量。
热塑性弹性体通过3D打印制备。通过调节3D打印温度和激光能量等参数,可以控制热塑性弹性体的烧结密度和孔隙率,进而控制弹性树脂渗透的深度和质量。温度和激光功率越低,打印出的热塑性弹性体的孔隙率越高,晶格点阵结构中弹性树脂的含量也就越高,晶格点阵结构的抗压缩性能越好。
在一些具体实施方式中,采用的参数如下:温度为80-140施,激光功率为30-100W,扫描速率为4000-10000mm/s,扫描间距为0.1-0.3mm。
同时,面罩结构体1的制备过程包括如下步骤:
1)以热塑性聚氨酯TPU为原料,通过粉末烧结成型3D打印出弹性主体,其工艺参数为主温100-120℃,激光功率50W,扫描速率8000mm/s,扫描间距0.2mm。
2)将商购的质量浓度为45%的聚氨酯树脂溶液94质量份、异氰酸酯类固化剂6质量份,用高速搅拌器混合分散均匀得到浸渍处理液,其中聚氨酯树脂的硬度为60A,25A下的粘度为8000cP,抗拉强度为10MPa,断裂伸长率为200%。
3)将打印出的热塑性弹性体浸泡于步骤2)制备的浸渍处理液中8min,取出后甩干,然后放入80±2℃真空烘箱中固化2.5h,得到面罩结构体。
由上述过程得到的热塑性弹性体的烧结密度和孔隙率,以及热塑性弹性体在聚氨酯树脂处理前和处理后的重量、压缩形变50%时的压力,料压缩形变50%时压力由处理前的2N增加至7N,制备的热塑性弹性体的密度为1.05g/cm3,且面罩结构体1的重量由处理前的40g增加至45g(而常规的面罩结构体1在达到相同压力的前提下,其面罩结构体1重量一般在200g)。
图3示出了VR眼镜的面罩结构体的另一种实施方式。如图3所示,本实施方式中的VR眼镜包括眼镜成像部件、眼镜佩戴部件,其中眼镜佩戴部件包括形成在所述眼镜成像部件上且能够贴合用户眼部的面罩结构体1和佩戴辅助件。
具体的,面罩结构体1与图1和图2示出的面罩结构体的结构基本相同,不同之处如下。
本实施方式中,面部贴合部100包括额头贴合部分a、位于额头贴合部分a两侧的脸颊贴合部分b,其中额头贴合部分a和两侧的脸颊贴合部分b均呈向内弯曲的弧形。也就是说,本实施方式中,没有设置鼻梁部分,因此,两侧脸颊贴合部分b向中部延伸后断开设置,但是需要说明的是,其贴面后,额头贴合部分a、脸颊贴合部分b、围框部102及眼镜成像部件构成镜腔。
额头贴合部分a和脸颊贴合部分b上形成的镂空孔构成晶格点阵结构,同时,围框部102为单层结构,并且采用圆角过渡,而且围框部102所对应的额头贴合部分a形成外框体d和内框体e,具体的,不管是单层外框体d,还是双层的外框体d和内框体e均呈晶格点阵结构,而且同样调整胞元造型、杆径粗细、孔隙率、密度等参数,以调整面部贴合部的均衡承力和眼镜对面部的压力。这样的结构具有良好的力学性能和美观性,而且,针对不同的应用场景,可以设计不同的晶格结构进行组合运用来达到目标场景需要的性能指标。
本实施方式中,面部贴合部100的孔隙率大于围框部102的孔隙率。
此外,面罩结构体1制备过程包括如下步骤:
1)以热塑性聚氨酯TPU为原料,通过粉末烧结成型3D打印出弹性主体,其工艺参数为主温100-120性,激光功率80W,扫描速率8000mm/s,扫描间距0.2mm;
2)将商购质量浓度为约55%的丙烯酸树脂溶液98质量份、固化剂4,4'-亚甲基双(2-甲基环己基胺)2质量份,用高速搅拌器混合分散均匀得到浸渍处理液,其中,丙烯酸树脂的硬度为70A,25A下的粘度为10000cP,抗拉强度为12MPa,断裂伸长率为180%;
3)将打印出的TPU热塑性弹性体浸泡于浸渍处理液中10min,取出后甩干,然后放入80出真空烘箱中固化5h,得到面罩结构体;
4)将固化后的面罩结构体再次置于浸渍处理液中,浸泡10min、甩干、固化。
也就是说,所形成的面罩结构体1中弹性主体10表面形成有两层弹性树脂层,材料压缩形变50%时压力由处理前的2.4N增加至9N。制备的热塑性弹性体的密度为1.07g/cm3,面罩结构体1的重量由处理前的40g增加至47g(而现有的面罩结构体1在达到相同压力的前提下,其面罩结构体1重量一般在200g)。
图4示出了VR眼镜的面罩结构体的又一种实施方式。如图4所示,本实施方式的VR眼镜包括眼镜成像部件、眼镜佩戴部件,其中眼镜佩戴部件包括形成在所述眼镜成像部件上且能够贴合用户眼部的面罩结构体1和佩戴辅助件。
具体的,面罩结构体1与图3示出的面罩结构体的结构基本相同,不同之处如下:
本实施方式中,面部贴合部100也不包括设置鼻梁部分,因此,两侧脸颊贴合部分b向中部延伸后断开设置,但是需要说明的是,其贴面后,额头贴合部分a、脸颊贴合部分b、围框部102及眼镜成像部件构成镜腔。
同时,额头贴合部分a和两侧的脸颊贴合部分b、单层结构的围框部102均呈向内弯曲的斜面。
本实施方式中,额头贴合部分a和脸颊贴合部分b上形成的镂空孔构成晶格点阵结构,同时,围框部102为单层结构,并且采用圆角过渡,而且围框部102所对应的额头贴合部分 a形成外框体d和内框体e,具体的,不管是单层外框体d,还是双层的外框体d和内框体e均呈晶格点阵结构,而且同样调整晶格点阵结构的胞元造型、杆径粗细、孔隙率、密度等参数,以调整面部贴合部的均衡承力和眼镜对面部的压力。这样的结构具有良好的力学性能和美观性,而且,针对不同的应用场景,可以设计不同的晶格结构进行组合运用来达到目标场景需要的性能指标。
本实施方式中,面部贴合部100的孔隙率大于围框部102的孔隙率。
同时,面罩结构体1制备过程包括如下步骤:
1)以热塑性聚氨酯TPU为原料,通过粉末烧结成型3D打印出热塑性弹性体,其工艺参数为主温100-120性,激光功率80W,扫描速率8000mm/s,扫描间距0.2mm;
2)将商购质量浓度为约55%的丙烯酸树脂溶液98质量份、固化剂4,4'-亚甲基双(2-甲基环己基胺)2质量份,用高速搅拌器混合分散均匀得到浸渍处理液,其中,丙烯酸树脂的硬度为70A,25A下的粘度为10000cP,抗拉强度为12MPa,断裂伸长率为180%;
3)将打印出的TPU热塑性弹性体浸泡于浸渍处理液中10min,取出后甩干,然后放入80出真空烘箱中固化5h,得到面罩结构体;
4)将固化后的面罩结构体再次置于浸渍处理液中,浸泡10min、甩干、固化。
也就是说,面罩结构体1成型过程中,面罩结构体1中弹性主体表面形成有三层弹性树脂层,材料压缩形变50%时压力由处理前的2.5N增加至11N,制备的热塑性弹性体的密度为1.08g/cm3,且面罩结构体1的重量由处理前的40g增加至49g(而现有的面罩结构体1在达到相同压力的前提下,其面罩结构体1重量一般在200g)。
因此,本公开具有以下优势:
1、本公开中的面罩结构体,通过热塑性弹性体制成弹性主体形成的立体罩腔,能够使得面罩结构体提供均衡的承载力,不仅降低面罩贴合穿戴时候所形成的压迫感,而且还降低因长期佩戴所造成的皮肤出现压痕的概率,同时相对柔软、透气、自重轻,确保佩戴的舒适度。
2、本公开通过热塑性弹性体与弹性树脂涂层的复合,使弹性树脂渗入热塑性弹性体的内部孔隙中并且使二者紧密结合,出乎意料地,在不影响热塑性弹性体优势性能的前提下,显著提 高了材料的抗压缩性能,而同时材料的体积不变,重量仅有微小的增加。相比未复合弹性树脂涂层的热塑性弹性体,在达到相同的抗压缩性能时,本公开的晶格点阵结构的体积显著更小、重量显著更轻;在重量相同时,本公开的晶格点阵结构的抗压缩性能显著更高。
3、本公开采用3D打印制备热塑性弹性体,并采用涂覆处理和固化工艺,一方面,通过调节3D打印温度和激光功率等参数,可以控制热塑性弹性体的烧结密度和孔隙率,进而控制弹性树脂渗透的深度和质量,最终控制晶格点阵结构压缩性能改善的程度,因此,可以灵活制备各种性能的晶格点阵结构,以满足各种应用场景下的个性化需求。另一方面,采用涂覆处理和固化工艺,热塑性弹性体与弹性树脂涂层之间结合更加充分和紧密,有助于提升晶格点阵结构的强度和使用寿命。
4、本公开所涉及的晶格结构是一种很特别的结构,通过晶格结构设计的产品,可以通过一种或多种不同的晶格结构组合形成特定的结构,这样的结构具有良好的力学性能和美观性。针对不同的应用场景,可以设计不同的晶格结构进行组合运用来达到目标场景需要的性能指标;同时一旦受到外力碰撞时,能够形成均衡承力,且贴合面也不会轻易脱开面部,致使眼镜脱落的概率较小。
如本说明书和权利要求书中所示,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的组合。
除非上下文明确说明,否则位于本文的元素或成份之前的不定冠词“一”、“一个”及“一种”旨在非限制性地说明所述元素或成份的实例数目(即出现数)。因此,“一”、“一个”及“一种”应理解为包括一个或至少一个,且所述元素或成分的单数词形也包括复数形式。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本公开中所使用的上、下、左、右等描述仅仅是相对于附图中本公开各组成部分的相互位置关系来说的。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。 实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
上述实施方式只为说明本公开的技术构思及特点,是一种优选的实施方式,其目的在于熟悉此项技术的人士能够了解本公开的内容并据以实施,并不能以此限定本公开的保护范围。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (25)

  1. 一种面罩结构体,包括:
    面部贴合部;
    外连接部;
    围框部,其用于将所述面部贴合部和所述外连接部相连形成罩腔;
    其中,所述面部贴合部、所述外连接部及所述围框部均包括由热塑性弹性体制成的弹性主体,且在部分的所述弹性主体上形成透气的镂空孔。
  2. 根据权利要求1所述的面罩结构体,其特征在于:所述面部贴合部的弹性主体包括额头贴合部分、及位于所述额头贴合部分两侧的脸颊贴合部分,其中所述额头贴合部分和/或所述脸颊贴合部分设有所述的镂空孔;贴面后,所述额头贴合部分、所述脸颊贴合部分、所述围框部及所述眼镜成像部件构成镜腔。
  3. 根据权利要求2所述的面罩结构体,其特征在于:所述面部贴合部还包括用于将两侧的所述脸颊贴合部分相连接的鼻梁贴合部分,所述鼻梁贴合部分也设有所述镂空孔;所述面部贴合部为闭合环状。
  4. 根据权利要求3所述的面罩结构体,其特征在于:所述额头贴合部分、所述脸颊贴合部分、及所述鼻梁贴合部分的所述镂空孔呈晶格点阵结构,所述晶格点阵结构被配置为其一或多个参数的改变能够调整所述面部贴合部的均衡承载力和所述VR眼镜对面部的压力,所述参数包括胞元造型、杆径粗细、孔隙率和密度。
  5. 根据前述权利要求中的任一项所述的面罩结构体,其特征在于:所述面部贴合部自其轮廓边缘通过所述围框部和所述外连接部的轮廓边连接,且连接处倒角或圆角过渡。
  6. 根据权利要求5所述的面罩结构体,其特征在于:所述围框体上形成所述镂空孔。
  7. 根据权利要求6所述的面罩结构体,其特征在于:所述围框部上的所述镂空孔呈晶格点阵结构,所述晶格点阵结构被配置为其一或多个参数的改变能够调整所述面部贴合部的均衡承载力和所述VR眼镜对面部的压力,所述参数包括胞元造型、杆径粗细、孔隙率和密度。
  8. 根据权利要求5所述的面罩结构体,其特征在于:所述围框部包括外框体,其中所述外框体将所述面部贴合部的外轮廓边缘和所述外连接部的外轮廓边缘连接。
  9. 根据权利要求5或8所述的面罩结构体,其特征在于:所述围框部包括内框体,其中所述内框体将所述面部贴合部的内轮廓边缘和所述外连接部的内轮廓边缘连接。
  10. 根据前述权利要求中任一项所述的面罩结构体,其特征在于:所述外连接部包括呈闭合环状的安装本体,其中眼镜成像部件安装在所述安装本体内,且所述安装本体上未形成所述镂空孔。
  11. 根据前述权利要求中任一项所述的面罩结构体,其特征在于:所述面罩结构体还包括形成在所述弹性主体上的弹性树脂层,所述弹性树脂层至少形成在所述弹性主体的内部孔隙中并与所述弹性主体结合。
  12. 根据权利要求11所述的面罩结构体,其特征在于:所述弹性树脂层还形成在所述弹性主体的外表面。
  13. 根据权利要求11或12所述的面罩结构体,其特征在于:所述弹性树脂层的质量为所述弹性主体上热塑性弹性体质量的10%-50%。
  14. 根据权利要求11至13中任一项所述的面罩结构体,其特征在于:组成所述弹性树脂层的弹性树脂的硬度为50A邵氏硬度以上、40D邵氏硬度以下,25硬下的粘度小于12000cP,抗拉强度为5MPa以上,断裂伸长率为120%以上;且所述面罩结构体在被压缩至形变为50%时所需的压力大于200N。
  15. 根据前述权利要求中任一项所述的面罩结构体,其特征在于:所述镂空孔的孔隙率为5%-40%;和/或,所述弹性主体的密度为0.7-1.1g/cm3
  16. 根据前述权利要求中任一项所述的面罩结构体,其特征在于:所述的面罩结构体由涂覆有包含弹性树脂或其原料、以及固化剂的处理液的所述弹性主体形成。
  17. 根据权利要求16所述的面罩结构体,其特征在于:所述处理液喷涂、浸涂或电镀在所述弹性主体上,且所述处理液渗透进入所述弹性主体的内部孔隙之中。
  18. 根据权利要求17所述的面罩结构体,其特征在于:所述处理液中所述弹性树脂的质量浓度为30-60%,固化剂的质量浓度为1%-10%,涂覆后进行加热固化,所述加热固化在80-100度下进行,所述涂覆和所述加热固化各进行一次,或者在一次结束后,再重复1-3次。
  19. 一种前述权利要求中任一项所述的面罩结构体的制备方法,其特征在于,包括如下步骤:
    i–提供所述弹性主体
    ii–提供处理液,所述处理液包含弹性树脂或其原料、以及固化剂;
    iii–使用所述处理液对所述弹性主体进行涂覆处理;
    iv–固化。
  20. 根据权利要求19所述的制备方法,其特征在于:步骤i中,将热塑性弹性体通过3D打印技术制得所述弹性主体。
  21. 根据权利要求19所述的制备方法,其特征在于:步骤ii中,所述处理液中所述弹性树脂的质量浓度为30-60%,固化剂的质量浓度为1%-10%。
  22. 根据权利要求19所述的制备方法,其特征在于:步骤iii中,将所述处理液喷涂、浸涂或电镀在所述弹性主体上,且所述处理液渗透进入所述弹性主体的内部孔隙之中。
  23. 根据权利要求19所述的制备方法,其特征在于:步骤iii和iv顺序重复多次。
  24. 根据权利要求19所述的制备方法,其特征在于:步骤iv中,在80-100℃下加热固化。
  25. 一种VR眼镜,其包括眼镜成像部件和眼镜佩戴部件,其特征在于:所述眼镜佩戴部件包括如权利要求1至18中任一项所述面罩结构体,其中所述眼镜成像部件与所述面罩结构体的所述外连接部对接。
PCT/CN2023/094121 2022-09-23 2023-05-15 面罩结构体及其制备方法及vr眼镜 WO2024060643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211163985.0A CN115373150A (zh) 2022-09-23 2022-09-23 面罩结构体及vr眼镜
CN202211163985.0 2022-09-23

Publications (1)

Publication Number Publication Date
WO2024060643A1 true WO2024060643A1 (zh) 2024-03-28

Family

ID=84071219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094121 WO2024060643A1 (zh) 2022-09-23 2023-05-15 面罩结构体及其制备方法及vr眼镜

Country Status (2)

Country Link
CN (1) CN115373150A (zh)
WO (1) WO2024060643A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115373150A (zh) * 2022-09-23 2022-11-22 裕克施乐塑料制品(太仓)有限公司 面罩结构体及vr眼镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030706A (ja) * 2009-07-31 2011-02-17 Taisei Plas Co Ltd マスクの製造方法とそのマスク
CN110803268A (zh) * 2018-08-06 2020-02-18 玛瑞斯公开有限公司 潜水面罩
US11000080B1 (en) * 2020-03-25 2021-05-11 ActivArmor LLC Fittable facemasks and related methods of manufacture and customization
CN217443649U (zh) * 2022-03-24 2022-09-16 潍坊歌尔电子有限公司 可穿戴设备
CN115373150A (zh) * 2022-09-23 2022-11-22 裕克施乐塑料制品(太仓)有限公司 面罩结构体及vr眼镜
CN218240564U (zh) * 2022-09-23 2023-01-06 裕克施乐塑料制品(太仓)有限公司 自重轻、压迫感小且透气的面罩结构体及vr眼镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011030706A (ja) * 2009-07-31 2011-02-17 Taisei Plas Co Ltd マスクの製造方法とそのマスク
CN110803268A (zh) * 2018-08-06 2020-02-18 玛瑞斯公开有限公司 潜水面罩
US11000080B1 (en) * 2020-03-25 2021-05-11 ActivArmor LLC Fittable facemasks and related methods of manufacture and customization
CN217443649U (zh) * 2022-03-24 2022-09-16 潍坊歌尔电子有限公司 可穿戴设备
CN115373150A (zh) * 2022-09-23 2022-11-22 裕克施乐塑料制品(太仓)有限公司 面罩结构体及vr眼镜
CN218240564U (zh) * 2022-09-23 2023-01-06 裕克施乐塑料制品(太仓)有限公司 自重轻、压迫感小且透气的面罩结构体及vr眼镜

Also Published As

Publication number Publication date
CN115373150A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN218240564U (zh) 自重轻、压迫感小且透气的面罩结构体及vr眼镜
WO2024060643A1 (zh) 面罩结构体及其制备方法及vr眼镜
CN103116221B (zh) 眼镜腿及制造方法
JP2002526180A (ja) 注文生産可能な密封材、注文生産可能な密封材を有するマスク及び密封材の使用法
US11042042B2 (en) Flexible temples for glasses frames
CN202421647U (zh) 带排汗功能的运动眼镜框架
CN110074904A (zh) 一种3d打印下肢义肢接受腔内衬套及其制作方法
WO2024060679A1 (zh) 一种弹性垫及人体支撑垫
CN206096626U (zh) 一种vr头盔
US20100077537A1 (en) Multicolor frameless diving masks and method for making the same
CN219206392U (zh) 一种弹性垫
CN115542552A (zh) Ar眼镜框及其制备方法、ar眼镜
CN203433209U (zh) 眼镜鼻垫结构
CN201698101U (zh) 防滑按摩眼镜鼻托
CN219628921U (zh) 一种可调节防护面罩视野的运动头盔
CN212302129U (zh) 一种钛镍形状记忆合金眼镜
CN213252959U (zh) 一体式飞行模拟健身器
CN213780568U (zh) 木结构复合型眼镜
CN212395844U (zh) 一种多层皮肤肌肉填充人偶
CN107765432A (zh) 一种智能穿戴设备防刮装置
CN100579611C (zh) 具有多孔性材质的高尔夫球头及其制造方法
CN207799262U (zh) 一种便于清洗的防汗渗眼镜
CN201859266U (zh) 衬垫镜架
CN219727458U (zh) 一种超软弹性沙发皮复合结构
CN2899867Y (zh) 一种泳镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866940

Country of ref document: EP

Kind code of ref document: A1