WO2024060640A1 - 一种改性环氧化橡胶及其制备方法和应用 - Google Patents

一种改性环氧化橡胶及其制备方法和应用 Download PDF

Info

Publication number
WO2024060640A1
WO2024060640A1 PCT/CN2023/093417 CN2023093417W WO2024060640A1 WO 2024060640 A1 WO2024060640 A1 WO 2024060640A1 CN 2023093417 W CN2023093417 W CN 2023093417W WO 2024060640 A1 WO2024060640 A1 WO 2024060640A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
glycol
epoxidized
rubber
polyether
Prior art date
Application number
PCT/CN2023/093417
Other languages
English (en)
French (fr)
Inventor
牛忠福
李海
彭华龙
姚翔
王莹莹
Original Assignee
江苏麒祥高新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏麒祥高新材料有限公司 filed Critical 江苏麒祥高新材料有限公司
Publication of WO2024060640A1 publication Critical patent/WO2024060640A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • C08C19/40Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with epoxy radicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Definitions

  • the invention relates to the field of rubber modification, in particular to a modified epoxidized rubber and its preparation method and application.
  • Rubber has always been used in a variety of fields, including products, tires, adhesives, shock absorbers, and conveyor belts.
  • Sources of rubber products include natural rubber (cis and trans) from plants and synthetic rubber from petroleum.
  • petrochemical resources have been overused and are in danger of being depleted.
  • the use of petrochemical resources will also cause a large amount of carbon dioxide emissions, leading to global warming.
  • scientific researchers in the rubber industry have been looking for alternatives to synthetic rubber prepared from petrochemical resources.
  • Natural plant resources are recyclable, and natural rubber produced from plant resources has good strength, wear resistance and resilience, which has attracted the continuous attention of scientific researchers.
  • natural rubber compared with synthetic rubber prepared from petrochemical resources, natural rubber has no advantages in weather resistance, ozone resistance, flame retardancy, damping and polarity.
  • special functional additives oil and resin are used in semi-steel treads, and white carbon black is selected as filler. These materials are polar and have poor compatibility with natural rubber.
  • Epoxidized natural rubber has excellent oil resistance, air tightness resistance, damping properties, good adhesion and good anti-slip properties due to polar epoxy bonds.
  • the epoxy bonds can interact with the hydroxyl groups on the surface of silica black. Chemical reactions and formation of physical hydrogen bonds improve the dispersion of silica. Epoxidized natural rubber can effectively solve the polarity and compatibility problems of natural rubber replacing synthetic rubber from petrochemical resources.
  • the epoxidation of natural rubber can be carried out in a solution or latex system.
  • the solution method is to first dissolve the dry rubber in an organic solvent to prepare a solution of a certain concentration, and then carry out epoxidation.
  • the solvent method has low yield, high energy consumption, and pollution to the environment, and is not suitable for industrial production.
  • the latex method is simple to operate, the product is easy to obtain, there is no pollution to the environment, and the reaction is relatively stable, so it is a commonly used and accepted method today.
  • the existing latex method for producing epoxidized natural rubber technology has the problems of excessive acid addition, unstable epoxy bonds, and many open-loop by-products, and a large amount of acid will cause the natural rubber molecular chain to break, which not only affects the molecular weight and glass transition temperature, but also the excess acid must be treated with alkali, which will inevitably produce a large amount of wastewater and pollute the environment.
  • Products prepared by existing patented technologies have the problems of using a large amount of acid in the process, inaccurate temperature control, many ring-opening by-products, and poor stability and heat aging resistance of the final product.
  • the use of peracid under acidic conditions or peroxide under alkaline conditions can cause epoxidation of unsaturated carbon-carbon double bonds.
  • the reaction system is suitable for water media and has a certain stability; (2) the reaction rate and reaction intensity are moderate, and the reaction temperature is easy to control; (3) the reaction system has few by-products and will not affect the application performance; (4) the reaction is easy to terminate, the main product is separated, the post-processing is relatively convenient, and the residue has no effect on the product performance.
  • the reaction system is suitable for water media and has a certain stability; (2) the reaction rate and reaction intensity are moderate, and the reaction temperature is easy to control; (3) the reaction system has few by-products and will not affect the application performance; (4) the reaction is easy to terminate, the main product is separated, the post-processing is relatively convenient, and the residue has no effect on the product performance.
  • Epoxidized natural rubber can improve the shortcomings of natural rubber replacing synthetic rubber from petrochemical resources.
  • the natural rubber epoxidation products provided by the current technology have the problem of unstable epoxy bonds, and there is also the problem of epoxidized natural rubber glass.
  • the transformation temperature Tg is much higher than the glass transition temperature Tg of natural rubber and the thermal aging resistance is poor. This is due to the change in the molecular chain structure and thermal stability of the epoxy bond after the natural rubber is epoxidized. caused.
  • researchers have not studied the reduction of the glass transition temperature and heat aging resistance of epoxidized natural rubber.
  • the glass transition temperature Tg is higher than that of natural rubber.
  • the application range of epoxidized natural rubber is still limited and can only be used in special products that do not have strict temperature requirements, which greatly limits the application of epoxidized natural rubber.
  • the present invention proposes a modified epoxidized rubber and its preparation method and application.
  • This invention starts from the polarity of the epoxy bond of the epoxy rubber/epoxidized elastomer, and designs the ring-opening grafting reaction of the epoxy bond and the flexible side chain to reduce the polarity of the epoxy rubber/epoxidized elastomer. , while introducing a certain amount of flexible side chains to reduce the glass transition temperature Tg of epoxidized rubber/epoxidized elastomer, thus improving the heat aging resistance and improving the compatibility with non-polar materials. Capacitive, broaden the application scope of epoxidized natural rubber.
  • a modified epoxidized rubber characterized in that it is obtained from the following components:
  • the polyether compound is one or more of polyether alcohols, polyether amines, polyether carboxylic acids, polyether mercapto compounds and polyether epoxy compounds.
  • the polyether compound undergoes a ring-opening grafting reaction with the epoxy bonds in the epoxidized rubber or epoxidized elastomer, so that the epoxidized rubber or epoxidized elastomer is grafted with polar flexible side chains.
  • the flexible side chains can improve the flexibility of the molecular chain of the rubber or epoxidized elastomer, thereby reducing the glass resistance of the epoxidized rubber or epoxidized elastomer. transformation temperature.
  • the polyether alcohols are diethylene glycol methyl ethyl ether, ethylene glycol monooctyl ether, diethylene glycol monomethyl amyl ether, propylene glycol monomethyl ether, bis(1-methyl -2-Hydroxyethyl) ether, ethylene glycol methyl ether, ethylene glycol monomethyl ether, 2-hydroxyethyl ethyl sulfide, ethylene glycol monoethyl ether, ethylene glycol ethyl ether, 1,4-butanedi Alcohol monomethyl ether, 1,3-propylene glycol monoethyl ether, ethylene glycol monoallyl ether, bis(2-hydroxyethyl) sulfide, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethyl ether Glycol monoethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monomethyl
  • the polyetheramines are polyetheramine, polyethylene glycol mono(2-lauramidoethyl) ether, ethylene glycol di(3-aminopropyl) ether, polyethylene glycol One or more of alcohol mono(2-hexadecacarbonamidoethyl) ether and diethylene glycol di(3-aminopropyl) ether.
  • the polyether carboxylic acid is one or more of 4,4'-disulfide dibutyric acid, 3-carboxypropyl disulfide, cysteinyl homocysteine mixture disulfide, polyethylene glycol bis (2-carboxyethyl) ether, cystathionine, ethylene glycol bis (2-aminoethyl ether) tetraacetic acid, 2-carboxymethyl-3-aminopropyl selenoether, branched C11-C14 fatty alcohol polyoxyethylene polyoxypropylene ether and polyoxyethylene lauryl ether carboxylic acid.
  • the polyether mercapto group is bis(dimethylthiocarbamoyl)trisulfide, 2,2'-thiobis(ethanethiol), bismercaptoethyl sulfide, 2 - One or more of mercaptoethyl sulfide and dithiocarbamoyl disulfide.
  • the polyether epoxy is one or more of propylene epoxy terminated polyethers. kind.
  • 1 mol of the polyether compound reacts with 1 mol of epoxy bonds in the epoxidized rubber or epoxidized elastomer, thereby modifying the epoxidized rubber or epoxidized elastomer. Therefore, in a specific embodiment, based on the total molar amount of epoxy bonds of the epoxy rubber or epoxy elastomer before modification, the modified epoxy rubber or modified epoxy
  • the modified epoxy bond content of the modified elastomer is ⁇ 5 mol% and ⁇ 60 mol%, and preferably the modified epoxy bond content of the modified epoxy rubber or modified epoxidized elastomer is ⁇ 10 mol% and ⁇ 55 mol. %.
  • the modified epoxy bond content in epoxidized rubber or epoxidized elastomer is less than 5 mol%, sufficient anti-slip properties cannot be obtained; when it is higher than 60 mol%, the tensile strength and wear resistance of the rubber will be reduced. The performance begins to decline, resulting in cross-linking between molecular chains, which affects the effect of ring-opening modification, especially the reduction of the glass transition temperature.
  • 0.01 mol to 0.33 mol of epoxy bonds are modified in 1 mol of epoxidized rubber or epoxidized elastomer.
  • the testing method for epoxy bond content can be chemical titration, infrared spectroscopy (FTIR) analysis or nuclear magnetic resonance (NMR) analysis.
  • FTIR infrared spectroscopy
  • NMR nuclear magnetic resonance
  • Chemical titration method The epoxy group is a three-membered ring structure with a certain tension, so it has greater chemical activity and can react chemically with many reagents to cause ring rupture and form addition products.
  • the determination of epoxy group content by chemical titration is based on this property. Titration with HCl, HBr, tetraethylammonium bromide or perchloric acid provides a simple and rapid method for determining low epoxidation levels. However, for rubber with a high degree of epoxidation, it is found that the results obtained by chemical titration are low. This is due to the furanization reaction of adjacent epoxidized groups.
  • the reaction principle is as follows:
  • Formula (a) is the HCl titration reaction when the degree of epoxidation is low
  • formula (b) is the HCl titration reaction when the degree of epoxidation is high.
  • C e , C d and C 0 represent the molar percentage content of epoxy groups, double bonds and ring-opening products respectively.
  • a 835 , A 870 , A 1375 and A 3460 correspond to absorbances of 835cm -1 , 870cm -1 , 1375cm -1 and 3460cm -1 respectively.
  • Use NMR method and IR method to measure C e , C d , C 0 and A 835 , A 870 , A 1375 , A 3460 respectively, and the values of k 1 and k 2 can be calculated, which are 0.77 and 0.34 respectively.
  • the chemical shift of olefin protons is 5.14 ppm
  • the chemical shift of methine protons is 2.70 ppm. Therefore, the degree of epoxidation can be calculated from the integrated area of the chemical shifts of the protons of the olefin and epoxy groups.
  • the chemical shift of the epoxy group in the 13 C NMR spectrum of natural rubber is 64.5 ppm, and the chemical shift of the olefin is 124.4 ppm, 125.0 ppm and 125.6 ppm.
  • the latex of the epoxidized rubber is from epoxidized natural latex, epoxidized styrene-butadiene latex, epoxidized nitrile-butadiene latex, epoxidized chloroprene latex, epoxidized cis-butadiene latex, One or more of epoxidized Eucommia latex, epoxidized synthetic isoprene rubber latex or epoxidized synthetic trans polyisoprene latex, preferably epoxidized natural rubber.
  • the epoxidized elastomer can be a styrenic thermoplastic elastomer with epoxy bonds, such as ESBS/ESIS/ESEBS, or it can be an epoxidized bio-based polyester, such as a bio-based polyester with epoxy bonds. Itaconate, etc.
  • the epoxy degree of the epoxidized rubber or epoxidized elastomer is 5%-75%, preferably 20%-55%.
  • the "epoxy degree” is the percentage of the epoxy bond content in the epoxidized rubber or epoxidized elastomer to its total chemical bond content.
  • the preparation method of the epoxidized rubber or epoxidized elastomer includes:
  • step S2 Add molybdenum polyoxometalate and hydrogen peroxide to the mixture in step S1, and dry after the reaction to obtain an epoxidized rubber or epoxidized elastomer, in which hydrogen peroxide provides an epoxy bond.
  • the molybdenum polyoxometalate is one or more of alkylammonium molybdates, imidazole molybdates and pyridine molybdates, preferably alkylammonium molybdates, such as tetramethylammonium molybdate, tetraethylammonium molybdate, tetrabutylammonium molybdate, hexadecyltrimethylammonium molybdate, (1-butyl)triethylammonium molybdate, tetrapropylammonium molybdate and tetrapentylammonium molybdate, and more preferably tetraethylammonium molybdate.
  • alkylammonium molybdates such as tetramethylammonium molybdate, tetraethylammonium molybdate, tetrabutylammonium molybdate,
  • reaction temperature of step S2 is 30-80°C, preferably 40-60°C.
  • the surfactant is one or more of an ionic surfactant, a nonionic surfactant or an amphoteric surfactant, preferably a nonionic surfactant, such as fatty alcohol polyoxyethylene ether, dodecylphenol polyoxyethylene ether, nonylphenol polyoxyethylene ether-10, octylphenol polyoxyethylene ether-10, polyoxyethylene castor oil, sorbitol ester and polyoxyethylene sorbitol ester, more preferably fatty alcohol polyoxyethylene ether.
  • Surfactants are used to stabilize the water emulsion system of rubber or elastomer, among which fatty alcohol polyoxyethylene ether has the best stabilizing effect.
  • the drying is flocculation drying, which can be conventional hot steam flocculation, adding calcium or magnesium chloride salts, or microwave overfrequency thermal flocculation.
  • microwave high-frequency thermal flocculation can achieve fast flocculation drying, uniform product batches, no additional high-salt wastewater is generated, and waste gas can be liquefied and recovered without causing air pollution.
  • the solid content of the rubber or elastomer is 15-60%, preferably 20-30%.
  • the surfactant is added in an amount of 0.1-5% of the mass of the rubber or elastomer.
  • the concentration of hydrogen peroxide is 5%-75%, with a preferred concentration being 15%-30%.
  • the added amount of hydrogen peroxide is 1.5-27%, preferably 6-15%, of the solid mass of the rubber or elastomer.
  • the rubber in step S1, can be natural rubber, styrene-butadiene rubber, nitrile rubber, chloroprene rubber, butadiene rubber, eucommia rubber, synthetic isoprene rubber, synthetic trans polyisoprene rubber etc., preferably natural rubber and styrene-butadiene rubber, more preferably natural rubber.
  • the amount of molybdenum polyoxometalate is 0.1%-10%, preferably 0.5%-3%, of the molar number of unsaturated double bonds in the rubber or elastomer.
  • the molybdenum polyoxometalate can be an alkyl molybdate prepared by reacting alkyl ammonium bromide and potassium hydroxide to form an alkyl quaternary ammonium base, and then reacting with ammonium molybdate.
  • the synthesis of molybdenum polyoxometalate used in the present invention is a method that is generally widely known and easy to prepare.
  • the reaction time is 3h-24h, preferably 12h-18h, and more preferably 16-18h.
  • the reaction stirring speed is 50 rpm-600 rpm, preferably 50 rpm-150 rpm.
  • the preparation process is carried out in a water emulsion system, which avoids the use of organic solvents and will not cause environmental pollution or human harm; and the synthesis temperature is controlled at a low level and there is less production wastewater, which can achieve controllable recycling and protect the environment.
  • the present invention uses specially customized equipment to perform microwave high-frequency thermal flocculation, which can liquefy and recover waste gas without causing air pollution.
  • the molybdenum polyoxometalate used in this method has the advantages of easy preparation, stable chemical properties, and environmental friendliness, and can be used to catalyze epoxidation, dihydroxylation and other reactions of olefins.
  • the epoxidized rubber or epoxidized elastomer in the modified epoxidized rubber provided by the present invention can be prepared by using the above preparation method, or can be prepared by using existing processes proposed by scientific researchers, or directly using existing technologies. There are commercially available products.
  • the modified epoxidized rubber further includes a catalyst.
  • the catalyst can be selected from Lewis acids or basic catalysts, preferably p-toluenesulfonic acid or 4-dimethylaminopyridine, and more preferably 4-dimethylaminopyridine.
  • the invention also provides a preparation method for the above-mentioned modified epoxidized rubber, which includes the following steps:
  • the preparation method of modified epoxidized rubber has no special restrictions on the state of the reaction system and can be carried out in any state of emulsion, rubber solution or solid rubber.
  • the emulsion of epoxidized rubber or epoxidized elastomer used is not particularly limited, but it can be commercially available ammonia treated or self-prepared virgin epoxidized rubber/epoxidized elastomer. body lotion.
  • the organic solvent used is not limited as long as it does not react with epoxidized rubber/epoxidized elastomers and polyether compounds, such as aromatic hydrocarbons, Such as benzene, chlorobenzene, toluene, xylene; aliphatic hydrocarbons, such as n-hexane, n-pentane and n-octane; alicyclic hydrocarbons, such as cyclohexane, methylcyclohexane, tetrachlorinated naphthalene , decalin, they can all be used as solvents, and methylene chloride can also be used.
  • the rubber can be directly mixed and modified by a roller or extruder mixer. From the perspective of cost and ease of operation, the present invention is preferably carried out in an emulsion system.
  • the step S1 further comprises adding a catalyst.
  • the reaction temperature is 40°C-160°C.
  • the reaction rate is low and the reactivity is reduced; while if the temperature is higher than 160°C, the polymer tends to gel during the reaction process, and the heat resistance stability of the product after a long period of high temperature is decline.
  • the reaction time is 1.5-10 hours, preferably 4-8 hours. If the reaction time is less than 1.5 hours, the modification reaction is not sufficient and it is difficult to obtain the desired modified epoxidized rubber; if the reaction time exceeds 10 hours, the polymer tends to gel and side reactions may occur.
  • the present invention also provides the application of the above-mentioned modified epoxidized rubber in the preparation of rubber products.
  • the rubber products can be tires, bicycle tires, rubber machine belts, etc.
  • the epoxy rubber or epoxidized elastomer is modified by epoxy bond ring-opening grafting using polyether compounds, so that the side chains of the epoxidized rubber or epoxidized elastomer are grafted with a polyether long chain structure, which introduces
  • the corresponding flexible side chains can reduce polarity and provide molecular chain flexibility, improve the dispersion of fillers, and especially can reduce the glass transition temperature Tg of modified epoxy rubber and epoxidized elastomer.
  • the ring opening of the epoxy bond forms a stable bond and the side chain introduces a stable structure, which improves the temperature resistance of the epoxidized rubber, especially in the low temperature resistance.
  • Figure 1 is a schematic flow chart of a preparation method of modified epoxy rubber proposed by the present invention
  • Figure 2 is the infrared spectrum of Example 1;
  • Figure 3 is the glass transition temperature test result of Example 1
  • Figure 4 is the glass transition temperature test result of Example 2.
  • Figure 5 is the infrared spectrum of Example 2.
  • Figure 6 is the glass transition temperature test result of Example 3.
  • Figure 7 is the infrared spectrum of Example 3.
  • Figure 8 is the glass transition temperature test result of Example 4.
  • Figure 9 is the glass transition temperature test result of Example 5.
  • Figure 10 is the glass transition temperature test results of the first group of products in Example 6;
  • Figure 11 is the glass transition temperature test results of the second group of products in Example 6;
  • Figure 12 is the glass transition temperature test results of the third group of Example 6;
  • Figure 13 is the glass transition temperature test results of the fourth group of Example 6;
  • Figure 14 shows the glass transition temperature test results of the comparative example
  • Figure 15 is an infrared spectrum chart of the comparative example.
  • alkyl ammonium bromide and potassium hydroxide in a ratio of 1:1.2 to the reaction bottle, and add an appropriate amount of absolute ethanol to make the alkyl ammonium bromide Fully dissolve the solution with potassium hydroxide, place the reaction flask on a magnetic stirrer and stir at room temperature. During the reaction, potassium bromide that is insoluble in ethanol continues to precipitate. After the reaction, remove the potassium bromide and distill the ethanol solution of the alkyl quaternary ammonium base under reduced pressure to remove most of the ethanol. Transfer it to a small beaker and add Dilute with appropriate amount of water.
  • the product was extracted and purified, and then subjected to nuclear magnetic and infrared testing for characterization.
  • the analysis results showed that the epoxy degree was 35% and the by-products were 0.9%.
  • the product was extracted and purified, and then characterized by nuclear magnetic and infrared testing. The analysis results showed that the epoxy degree was 29% and the by-product was 0.7%.
  • the product was extracted and purified, and then subjected to nuclear magnetic and infrared testing for characterization.
  • the analysis results showed that the epoxy degree was 31% and the by-products were 4.1%.
  • the product was extracted and purified, and then subjected to nuclear magnetic and infrared testing for characterization.
  • the analysis results showed that the epoxy degree was 23% and the by-products were 1.2%.
  • Figures 4 and 5 are obtained. From Figure 4, it can be seen that the Tg has decreased, and compared with 15% molar modification (i.e. Example 1), the glass transition temperature has decreased more, indicating that at 30% modification Sex ENR25, for The overall flexibility and polarity of the molecular chain are favorable. From the hydroxyl peak in the infrared spectrum of Figure 5, it can be seen that the ring-opening grafting is successful and the epoxy bond is still retained.
  • Figures 6 and 7 are obtained. From Figure 6, it can be seen that the Tg of Example 3 is higher than the glass transition temperature Tg of 30% modified ENR25 (i.e. Example 2). Analyze the phenomenon. The reason is that the difunctional amino groups cause cross-linking of the internal molecular chains, which increases the glass transition temperature. Subsequent analysis of the insoluble gel test also confirmed this view. The insoluble matter gel test uses a filter to wrap the modified rubber and place it in a good solvent. After dissolving for more than 48 hours, insoluble matter will remain in the end. Figure 7 is the infrared spectrum of the modified sample. The characteristic peaks at 3364cm -1 and 1106cm -1 are the reaction of terminal primary amines into secondary amines.
  • Tg is relatively unmodified ENR25 (unmodified
  • the glass transition temperature of ENR25 is between -40°C and -41°C), and the glass transition temperature Tg is reduced by 3°C.
  • the product was characterized to obtain Figure 9. It can be seen from Figure 9 that the Tg of Example 5 is about 8°C lower than the glass transition temperature Tg of the unmodified ENR25. Because it is monofunctional, there is no cross-linking phenomenon for the modified product. Therefore, the glass transition temperature Tg of the modified ENR25 can be continuously reduced during the modification. However, after the molar modification of 60%, the Tg of the modified product is not greatly affected.
  • Group 1 ENR25, polyoxyethylene lauryl ether carboxylic acid and a certain amount of molar catalyst were added into a 1L flask according to the ratio, heated to 50°C, reacted for 8h, cooled and then dried by microwave over-frequency flocculation to obtain the product.
  • Group 2 Add ENR25, polyoxyethylene lauryl ether carboxylic acid and a certain mole number of catalyst according to the proportion into a 1L flask, raise the temperature to 80°C, react for 8 hours, cool down and use microwave overfrequency flocculation and drying to obtain the product.
  • Group 3 Add ENR25, polyoxyethylene lauryl ether carboxylic acid and a certain mole number of catalyst according to the proportion into a 1L flask, raise the temperature to 110°C, react for 8 hours, cool down and use microwave overfrequency flocculation and drying to obtain the product.
  • Group 4 Add ENR25, polyoxyethylene lauryl ether carboxylic acid and a certain mole number of catalyst according to the proportion into a 1L flask, raise the temperature to 160°C, react for 8 hours, cool down and dry using microwave overfrequency flocculation to obtain the product.
  • the glass transition temperatures Tg of the four groups of products correspond to Figures 10-13 respectively.
  • the comparative example adopts ordinary heating modification. According to the formula in Table 1, add ENR25 containing 0.05 mol epoxy bonds and a certain number of moles of polyether amine into a 1L flask, raise the temperature to 140°C, react for 8 hours, cool down and use Microwave overfrequency flocculation and drying to obtain the product.
  • Figures 14 and 15 are obtained. From Figure 14, it can be seen that the Tg has not decreased. From the hydroxyl peak on the infrared spectrum of Figure 15, it can be seen that a ring-opening reaction has occurred, and the epoxy bond is still retained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明提出了一种改性环氧化橡胶及其制备方法和应用。所述改性环氧化橡胶得自以下组分:环氧化橡胶或环氧化弹性体以及聚醚类化合物;所述聚醚类化合物为聚醚醇类、聚醚胺类、聚醚羧酸类、聚醚巯基类和聚醚环氧类中的一种或多种。本发明通过聚醚类化合物对环氧化橡胶或环氧化弹性体进行环氧键开环接枝改性,降低了环氧化橡胶或环氧化弹性体的极性和改善了分子链柔顺性,尤为突出的是可以降低改性后的环氧化橡和环氧化弹性体的的玻璃化转变温度Tg,通过环氧键开环形成稳定键还有侧链引入稳定结构,提高了环氧化橡胶的耐温性能,尤其体现在耐低温性能。

Description

一种改性环氧化橡胶及其制备方法和应用 技术领域
本发明涉及橡胶改性领域,特别涉及一种改性环氧化橡胶及其制备方法和应用。
背景技术
一直以来,橡胶应用于各种领域,包括制品、轮胎、胶粘剂、减震和输送带等各个领域。橡胶制品的来源包括来自植物的天然橡胶(顺式和反式)以及来自石油的合成橡胶。近年来,石化资源使用过度,面临石化资源枯竭的危险,且石化资源在使用时也会造成大量二氧化碳的排放,导致地球变暖。面对我国碳中和、碳达峰的目标,从事橡胶行业的科研人员一直在寻找石化资源制备合成橡胶的替代产品。
天然植物资源可循环再生,且产自植物资源的天然橡胶本身具有很好的强度、耐磨性及回弹性,这引发科研人员的持续关注。但相比石化资源制备合成橡胶,天然橡胶在耐候性、耐臭氧性、阻燃性、阻尼性和极性等方面没有优势,且目前在半钢胎面为了降低滚动阻力、提高抗湿滑能力,会使用特种功能助剂油和树脂,填料会选取白炭黑,这些材料都带有极性,和天然橡胶的相容性不好。
针对相容性和极性,橡胶行业的科研人员,在天然橡胶的双键环氧化进行了探究。环氧化天然橡胶因极性环氧键,具有优异的耐油性、耐气密性、阻尼特性、良好的粘着性和良好的抗湿滑特性,环氧键可与白炭黑表面的羟基进行化学反应和形成物理氢键,提高白炭黑的分散。环氧化天然橡胶可以有效解决天然橡胶替代石化资源合成橡胶的极性和相容性问题。
天然橡胶的环氧化可以在溶液或胶乳体系进行,溶液法是先将干胶溶解在有机溶剂中配成一定浓度的溶液,然后进行环氧化,但是溶剂法产率低、能耗高,对环境存在污染,不适用于工业化生产。胶乳法操作简单、产物易得,对环境没有污染,反应较为平稳,因此是现今普遍采用接受的方式。但现有胶乳法生产环氧化天然橡胶技术,存在酸加入量过多、环氧键不稳定、开环副产物多的问题,且大量酸的条件下会导致天然橡胶分子链断裂,不仅影响分子量和玻璃化转变温度,过量酸还要用碱去处理,必然会产生大量废水,对于环境产生污染。
现有专利技术制备的产品,存在工艺上使用大量酸、控温不精准问题,开环副产物多,最终产品的稳定性和耐热老化性能差。环氧化天然橡胶制备工艺,理论上在酸性条件下采用过氧酸或碱性条件下采用过氧化物都可以使得不饱和碳-碳双键发生环氧化,但对于采用水性胶乳体系,要达到(1)反应体系适合水介质,并具有一定的稳定性;(2)反应速率和反应剧烈程度适中,反应温度易于控制;(3)反应体系副产物较少,且不会对应用性能有影响;(4)反应易终止,主产物分离,后处理比较方便,残留对产物无性能影响,则比较困难,目前没有任何的方法能够同时满足上述四 个条件。
环氧化天然橡胶可以改善天然橡胶替代石化资源合成橡胶的缺点,但目前现有技术所提供的天然橡胶环氧化产物,存在环氧键不稳定的问题,并且还存在环氧化天然橡胶玻璃化转变温度Tg远高于天然橡胶玻璃化转变温度Tg、耐热老化性能差这些缺点,这是由于天然橡胶在被环氧化后,分子链结构和环氧键的热稳定性发生了改变而引起的。但就现有的探究调研,科研人员并没有在环氧化天然橡胶的玻璃化转变温度的降低和耐热老化性能上进行研究,玻璃化转变温度Tg较天然橡胶的玻璃化转变温度Tg高,使环氧化天然橡胶的应用范围仍然受限,仅能使用在对温度要求不严格的特殊制品当中,极大限制了环氧化天然橡胶的应用。
因此,如果改善环氧化天然橡胶玻璃化转变温度升高和耐热老化性能下降,是亟需解决的问题。
发明内容
针对现有技术中的缺陷,本发明提出了一种改性环氧化橡胶及其制备方法和应用。本发明从环氧化橡胶/环氧化弹性体的环氧键极性出发,设计环氧键和柔性侧链开环接枝反应,使环氧化橡胶/环氧化弹性体的极性降低,同时引入一定量的柔性侧链,降低环氧化橡胶/环氧化弹性体的玻璃化转变温度Tg,从而对耐热老化性能起到改善作用,同时也改善了与非极性材料的相容性,拓宽环氧化天然橡胶的应用范围。
具体通过以下技术方案实现:
一种改性环氧化橡胶,其特征在于,其得自以下组分:
环氧化橡胶或环氧化弹性体;
聚醚类化合物。
在一个具体实施方案中,所述聚醚类化合物为聚醚醇类、聚醚胺类、聚醚羧酸类、聚醚巯基类和聚醚环氧类中的一种或多种。聚醚类化合物与环氧化橡胶或环氧化弹性体中的环氧键进行开环接枝反应,使环氧化橡胶或环氧化弹性体接枝上带有极性的柔性侧链,既保留一定的环氧键和极性,同时,柔性侧链可以对橡胶或环氧化弹性体的分子链起到改善柔顺性的作用,从而降低环氧化橡胶或环氧化弹性体的玻璃化转变温度。
在一个具体实施方案中,所述聚醚醇类为二乙二醇甲乙醚、乙二醇单辛醚、二聚乙二醇单甲基戊基醚、丙二醇单甲醚、双(1-甲基-2-羟乙基)醚、乙二醇甲醚、乙二醇单甲醚、2-羟乙基乙基硫醚、乙二醇单乙醚、乙二醇乙醚、1,4-丁二醇单甲醚、1,3-丙二醇单乙醚、乙二醇单烯丙基醚、二(2-羟乙基)硫醚、乙二醇单丁醚、二乙二醇单甲醚、二乙二醇单乙醚、二乙二醇单丁醚、三乙二醇单甲醚、三乙二醇单乙醚、二乙二醇单己醚、环己基-1,4-二甲醇单乙烯基醚、十一甘醇单甲醚、异丙基羟基棕榈基醚、丙二醇单烯丙基醚、三乙二醇单丁醚、二甘醇单烯丙基醚、四乙二醇单丁醚、丙二醇单乙醚、二丙二醇单乙醚、丙二醇丁基醚、丁炔二醇丙氧基化物、4-羟丁基乙烯基醚、四聚乙二醇单辛醚、三丙二醇单乙基醚、三丙二醇甲醚、六乙二醇单甲醚、五聚乙二 醇单甲醚、四乙二醇单甲醚、alpha-十三烷基-omega-羟基-聚氧乙烯醚、1,2,3-丙烷三醇缩水甘油基醚、一缩二丙二醇、二(2-羟丙基)醚、丙二醇聚醚、三丙二醇单甲醚、alpha-(2-甲基-1-氧代-2-丙烯-1-基)-omega-羟基-聚氧乙烯醚、三羟基聚氧化丙烯醚、八聚乙二醇单甲醚、、alpha-癸基-omega-羟基-聚氧乙烯醚、聚乙二醇单(2-乙基己基)醚、甘油二缩水甘油基醚、十聚乙二醇单甲醚、乙二醇单正丙基醚、二(3-羟基丙基)三硫醚、1,2-丙二醇-1-单丁醚、二丙二醇单丙醚、二丙二醇丁醚、六乙二醇单十二烷基醚、八乙二醇单月桂基醚、十二烷基七聚乙二醇醚、二丙二醇单甲醚、乙二醇双羟甲基醚、聚丙二醇单甲醚、四乙二醇单十四烷基醚、聚乙二醇300单壬基醚-、七乙二醇单癸基醚、1,3-二乙氧基-2-丙醇、二(2-羟基乙基)三硫醚、七甘醇单甲醚、三乙二醇十八烷基醚、丙二醇单丁醚、六乙二醇单十四烷基醚、六乙二醇单癸基醚、六乙二醇单十六烷基醚、聚丙二醇油醇醚、山梨糖醇聚氧丙烯醚、二(硫代羧基)四硫醚、二聚乙二醇单十六烷基醚、油醇聚醚-3、油醇聚醚-5、三乙二醇单庚基醚、三丙二醇单丁醚、四聚乙二醇单癸醚、三丙二醇正丁基醚、二(2-羧基乙基)醚、四聚乙二醇单十八烷基醚、九聚乙二醇单甲醚、异癸醇聚氧乙烯醚、异辛醇聚氧乙烯聚氧丙烯醚、聚氧乙烯-10月桂基醚、壬基酚聚氧乙烯醚、三羟甲基丙烷二烯丙基醚、2,2-二(烯丙基氧甲基)-1-丁醇、丙烷三甲醇单烯丙基醚、C16-18醇聚氧乙烯醚、C12-C14脂肪醇聚氧乙烯聚氧丙烯醚、C12-C15脂肪醇聚氧乙烯聚氧丙烯醚、C11-C15仲醇聚氧乙烯聚氧丙烯醚、C8-C10脂肪醇聚氧乙烯聚氧丙烯醚、1-甘油辛基醚、2-羟基乙基2-氯乙基硫醚、聚氧乙烯-20异十六烷基醚、甘油单异辛基醚、乙二醇单(1,1-二丙基丁基)醚、支链辛基酚聚乙二醇聚丙二醇单醚、聚甘油-2油醚、C8-10-脂肪醇聚氧乙烯醚、C12-C15脂肪醇聚氧丙烯醚、乙烯基乙二醇醚、月桂醇聚氧乙烯醚、环氧丙烷与环氧乙烷的共聚物;聚氧乙烯聚氧丙烯、聚丙二醇单丁醚、聚乙二醇单甲醚、聚乙二醇单丁醚、十六烷醇聚氧乙烯醚、油醇聚氧乙烯醚、十八烷醇聚氧乙烯醚、聚乙二醇单丁醚、聚氧丙烯单鲸蜡基醚、聚乙二醇聚丙二醇单丁基醚、异十三醇聚氧乙烯醚、聚氧乙基聚氧丙基甘油醚、二乙二醇单乙烯基醚、二(丙二醇)丙基醚和脂肪醇聚氧乙烯醚中的一种或多种。
在一个具体实施方案中,所述聚醚胺类为聚醚胺、聚乙二醇单(2-月桂酰胺基乙基)醚、乙二醇二(3-氨基丙基)醚、聚乙二醇单(2-十六碳酰胺基乙基)醚和二乙二醇二(3-氨基丙基)醚中的一种或多种。
在一个具体实施方案中,所述聚醚羧酸类为4,4'-二硫基二丁酸、3-羧丙基二硫醚、半胱氨酰高半胱氨酸混合物二硫醚、聚乙二醇双(2-羧基乙基)醚、胱硫醚、乙二醇双(2-氨基乙基醚)四乙酸、2-羧甲基-3-氨基丙基硒醚、支链C11-C14脂肪醇聚氧乙烯聚氧丙烯醚和聚氧乙烯月桂醚羧酸中的一种或多种。
在一个具体实施方案中,所述聚醚巯基类为二(二甲硫基氨基甲酰)三硫醚、2,2'-硫代双(乙硫醇)、双巯乙基硫醚、2-巯基乙基硫醚和二硫代氨基甲酰二硫醚中的一种或多种。
在一个具体实施方案中,所述聚醚环氧类为丙烯基环氧基封端聚醚中的一种或多 种。
理论上,1mol的所述聚醚类化合物与所述环氧化橡胶或环氧化弹性体中1mol的环氧键发生反应,从而使所述环氧化橡胶或环氧化弹性体改性。因此,在一个具体实施方案中,以未改性前的环氧化橡胶或环氧化弹性体的环氧键总摩尔量为基准,改性后的环氧化橡胶或改性后的环氧化弹性体的改性环氧键含量≥5mol%且≤60mol%,优选改性后的环氧化橡胶或改性后的环氧化弹性体的改性环氧键含量≥10mol%且≤55mol%。当环氧化橡胶或环氧化弹性体中的被改性的环氧键含量低于5mol%时,不能得到足够的抗滑性能;当高于60mol%时,橡胶的拉伸强度和耐磨性能开始下降,产生分子链间的交联,影响开环改性的效果,特别是对玻璃化转变温度的降低不利。
在一个具体实施方案中,1mol的环氧化橡胶或环氧化弹性体中环氧键被改性0.01mol至0.33mol。
环氧键含量的测试方法可以为化学滴定法、红外光谱(FTIR)分析法或核磁共振(NMR)分析法。
1)化学滴定法:环氧基是一个三元环的结构,有一定的张力,所以具有较大的化学活性,能与许多试剂发生化学反应而导致环的破裂,形成加成产物。化学滴定法测定环氧基团含量就是根据这一性质进行测定的。用HCl、HBr、四乙铵化溴或高氯酸滴定,提供一种简便而又快速测定具有低环氧化程度的方法。但对环氧化程度高的橡胶,发现由化学滴定法得到的结果偏低,这是由于相邻的环氧化基团的发生了呋喃化反应,反应原理如图:
式(a)为环氧化程度低时的HCl滴定反应,式(b)为环氧化程度高时的HCl滴定反应。
2)红外光谱(FTIR)分析法
FTIR分析法可以定性分析环氧基团及副反应,已知环氧基团的反对称伸缩振动峰在870cm-1处,随着环氧化程度的提高,此峰的吸收强度相应的升高。根据Lambert–Beer定律,物质对光的吸收程度与吸收层的厚度和物质的浓度乘积成正比,可以测定天然橡胶的环氧化程度和开环物含量,表达式如下:
C0=100-Ce-Cd
A1=A835,A2=A870-0.14A835,A3=A3460-0.019A1375
其中,Ce、Cd和C0分别表示环氧基团、双键和开环物的摩尔百分数含量。A835、A870、A1375和A3460分别对应835cm-1、870cm-1、1375cm-1和3460cm-1的吸光度。用NMR法和IR法分别测出Ce、Cd、C0和A835、A870、A1375、A3460,即可计算出k1和k2的值,分别为0.77和0.34。
3)核磁共振(NMR)分析法:
以氘代氯仿为溶剂(CDCl3),采用布鲁克傅立叶变换核磁共振谱仪扫描,得到橡胶或弹性体的1H NMR和13C NMR谱图。环氧化程度较低的可完全溶解在CDCl3中,但环氧化程度超过50%,由于凝胶的存在,有一小部分样品无法被CDCl3溶解。因此用NMR分析环氧化天然橡胶(ENR)时,也必须保证没有开环产物的存在。橡胶或弹性体的1H NMR谱图中烯烃质子的化学位移在5.14ppm,次甲基质子的化学位移2.70ppm处。因此,可以通过烯烃和环氧基团质子化学位移的积分面积来计算环氧化程度。
天然橡胶的13C NMR谱图的中环氧基团的化学位移在64.5ppm,烯烃的化学位移在124.4ppm、125.0ppm和125.6ppm。
在一个具体实施方案中,所述环氧化橡胶的胶乳来自环氧化天然胶乳、环氧化丁苯胶乳、环氧化丁腈胶乳、环氧化氯丁胶乳、环氧化顺丁胶乳、环氧化杜仲胶乳、环氧化合成异戊橡胶胶乳或环氧化合成反式聚异戊二烯胶乳中的一种或多种,优选为环氧化天然橡胶。所述环氧化弹性体可以是具有环氧键的苯乙烯类热塑性弹性体,如ESBS/ESIS/ESEBS,也可以是环氧化生物基聚酯等,例如带有环氧键的生物基聚衣康酸酯等。
在一个具体实施方案中,所述环氧化橡胶或环氧化弹性体的环氧度为5%-75%,优选20%-55%。所述“环氧度”为环氧化橡胶或环氧化弹性体中的环氧键含量占其总的化学键含量的百分比。
在一个具体实施方案中,所述环氧化橡胶或环氧化弹性体的制备方法包括:
S1:向橡胶或弹性体的水乳体系中添加表面活性剂;
S2:再向步骤S1的混合物中添加钼多金属氧酸盐和过氧化氢,反应后进行干燥,得到环氧化橡胶或环氧化弹性体,其中,过氧化氢提供环氧键。
在一个具体实施方案中,所述钼多金属氧酸盐为烷基铵钼酸盐、咪唑类钼酸盐和吡啶类钼酸盐中的一种或多种,优选为烷基铵钼酸盐,如四甲基铵钼酸盐、四乙基铵钼酸盐、四丁基铵钼酸盐、十六烷基三甲基铵钼酸盐、(1-丁基)三乙基铵钼酸盐、四丙基铵钼酸盐和四戊基铵钼酸盐等,更优选为四乙基铵钼酸盐。
在一个具体实施方案中,所述步骤S2的反应温度为30-80℃,优选40-60℃。
在一个具体实施方案中,所述表面活性剂为离子型表面活性剂、非离子型表面活性剂或两性表面活性剂中的一种或多种,优选为非离子型表面活性剂,如脂肪醇聚氧乙烯醚、十二烷基酚聚氧乙烯醚、壬基酚聚氧乙烯醚-10、辛基酚聚氧乙烯醚-10、聚氧乙烯蓖麻油、山梨醇酯和聚氧乙烯山梨醇酯等,更优选为脂肪醇聚氧乙烯醚。表面活性剂用于对橡胶或弹性体的水乳体系进行稳定,其中,脂肪醇聚氧乙烯醚具有最佳的稳定作用。
在一个具体实施方案中,步骤S2中,所述干燥为絮凝干燥,可以为传统热蒸汽絮凝、加入钙或镁的氯化盐或采用微波超频热絮凝等方式。优选地,通过微波高频热絮凝,可以实现絮凝干燥快,产品批次均一,产品不产生额外高盐废水,可以进行废气的液化回收,不会造成大气污染。
在一个具体实施方案中,橡胶或弹性体的水乳体系中,橡胶或弹性体的固含量为15-60%,优选为20-30%。
在一个具体实施方案中,所述表面活性剂的添加量为橡胶或弹性体质量的0.1-5%。
在一个具体实施方案中,过氧化氢的浓度为5%-75%,优选浓度为15%-30%。所述过氧化氢的添加量为橡胶或弹性体固体质量的1.5-27%,优选6-15%。
在一个具体实施方案中,步骤S1中,橡胶可以采用天然橡胶、丁苯橡胶、丁腈橡胶、氯丁橡胶、顺丁橡胶、杜仲橡胶、合成异戊橡胶、合成反式聚异戊二烯橡胶等,优选为天然橡胶和丁苯橡胶,更优选为天然橡胶。
在一个具体实施方案中,步骤S2中,钼多金属氧酸盐的用量为橡胶或弹性体中不饱和双键摩尔数的0.1%-10%,优选为0.5%-3%。所述钼多金属氧酸盐可以为采用烷基溴化铵和氢氧化钾反应制备成烷基季铵碱,再和钼酸铵反应,即可的烷基钼酸盐。本发明采用的钼多金属氧酸盐的合成是属于普遍广泛了解、且易制得的方法合成。
在一个具体实施方案中,步骤S2中,反应时间为3h-24h,优选为12h-18h,更优选为16-18h。
在一个具体实施方案中,步骤S2中,反应搅拌转速为50转/min-600转/min,优选为50转/min-150转/min。
本发明提供的环氧化橡胶或环氧化弹性体的制备方法与现有技术相比具有如下优点:
(1)制备过程是在水乳液体系进行,避免了使用有机溶剂,不会造成环境污染和人体危害;且合成温度控制较低,生产废水少,可以实现可控的回收处理,保护环境。
(2)与传统的加热或加入金属盐进行絮凝的方法不同,本发明采用特殊定制的设备进行微波高频热絮凝,可以进行废气的液化回收,不会造成大气污染。
(3)本方法使用的钼多金属氧酸盐具有易制备、化学性质稳定和环境友好的优点,且可以用来进行催化烯烃的环氧化、双羟基化等反应。
(4)改善现有专利技术中加入酸过量和产物开环副产物多问题,更突出的是可以对环氧化橡胶和环氧化弹性体的环氧键的稳定性和分布起到一定的调节,使得环氧 基团在分子主链上的分布均匀,避免因环氧键聚集形成的环氧键开环和耐老化性能差的问题。
当然,本发明所提供的改性环氧化橡胶中的环氧化橡胶或环氧化弹性体可以使用上述制备方法制得,也可以采用科研人员提出的现有工艺制备得到亦或直接采用现有市售产品。
在一个具体实施方案中,所述改性环氧化橡胶还包括催化剂。所述催化剂可以选自路易斯酸、或碱性催化剂,优选对甲苯磺酸或4-二甲氨基吡啶,更加优选为4-二甲氨基吡啶。
本发明还提供上述改性环氧化橡胶的制备方法,包括以下步骤:
S1:向环氧化橡胶或环氧化弹性体中加入聚醚类化合物;
S2:控制反应温度和反应时间,得到所述改性环氧化橡胶。
改性环氧化橡胶的制备方法对反应体系的状态没有特别的限制,可在任何状态的乳液、橡胶溶液或固态橡胶中进行。当在乳液中进行改性时,所用的环氧化橡胶或环氧化弹性体的乳液也没有特别的限制,可是是市售的氨水处理或者自己制备的原生环氧化橡胶/环氧化弹性体乳液。当在溶液中进行改性时,所使用的有机溶剂也没有限制,只要它本身不与环氧化橡胶/环氧化弹性体和聚醚类化合物反应即可,例如:芳香族碳氢化合物,如苯,氯苯、甲苯、二甲苯;脂肪族碳氢化合物,如正己烷,正戊烷和正辛烷;脂环族碳氢化合物,如环己烷,甲基环己烷,四氯化萘,萘烷,它们均可作为溶剂使用,而且,二氯甲烷也可用。当在固态橡胶中进行改性时,橡胶可由辊筒或挤出混合机直接混合改性。从费用和易于操作的角度考虑,本发明优选在乳液体系中进行。
在一个具体实施方案中,所述步骤S1中还包括加入催化剂。
在一个具体实施方案中,步骤S2中,所述反应温度为40℃-160℃。当反应温度低于40℃时,反应速率低且反应性降低;而如果温度高于160℃,则在反应过程中,聚合物倾向于胶凝,且产物经过长时间高温后的耐热稳定性下降。
在一个具体实施方案中,步骤S2中,所述反应时间为1.5-10h,优选为4-8h。如果反应时间少于1.5h,则改性反应进行的不充分,很难制得所要求的改性环氧化橡胶;如果反应时间超过10h,则聚合物倾向于胶凝,并且可能有副反应发生。
本发明还提供上述改性环氧化橡胶在制备橡胶制品中的应用,所述橡胶制品可以为轮胎类、力车胎类、橡胶机带类等。
综上,与现有技术相比,本发明达到了以下技术效果:
通过聚醚类化合物对环氧化橡胶或环氧化弹性体进行环氧键开环接枝改性,使得环氧化橡胶或环氧化弹性体侧链接枝上聚醚长链结构,引入了相应的柔性侧链,可以降低极性和提供分子链柔顺性,改善填料的分散,尤为突出的是可以降低改性后的环氧化橡和环氧化弹性体的的玻璃化转变温度Tg,通过环氧键开环形成稳定键还有侧链引入稳定结构,提高了环氧化橡胶的耐温性能,尤其体现在耐低温性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明提出的一种改性环氧橡胶的制备方法的流程示意图;
图2为实施例1的红外光谱图;
图3为实施例1的玻璃化转变温度测试结果;
图4为实施例2的玻璃化转变温度测试结果;
图5为实施例2的红外光谱图;
图6为实施例3的玻璃化转变温度测试结果;
图7为实施例3的红外光谱图;
图8为实施例4的玻璃化转变温度测试结果;
图9为实施例5的玻璃化转变温度测试结果;
图10为实施例6第一组产物的玻璃化转变温度测试结果;
图11为实施例6第二组产物的玻璃化转变温度测试结果;
图12为实施例6第三组的玻璃化转变温度测试结果;
图13为实施例6第四组的玻璃化转变温度测试结果;
图14为对比例的玻璃化转变温度测试结果;
图15为对比例的红外光谱图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
钼多金属氧酸盐的合成方式:
在氮气(N2)氛围的保护下,向反应瓶中加入物质的量为1:1.2的比例的烷基溴化铵与氢氧化钾,加入适量的无水乙醇中,使得烷基溴化铵与氢氧化钾充分溶解,将反应瓶中置于磁力搅拌器上室温条件下搅拌。在反应过程中有不溶于乙醇的溴化钾不断析出,反应结束后,除去溴化钾,将得到烷基季铵碱的乙醇溶液进行减压蒸馏除去大部分乙醇,转移到小烧杯中之后加入适量的水进行稀释。称取以物质的量为1:1.1的比例的钼酸铵放入反应瓶中,加水溶解后置于磁力搅拌器上,用恒压漏斗滴加烷基季铵碱的水溶液,室温搅拌24小时,将反应中析出的白色固体洗涤、除水、干燥后,得到催化剂烷基铵钼酸盐。
环氧化天然橡胶A
将重量份100份天然橡胶胶乳(60%固含量),加入到反应烧瓶中,取表面活性剂脂肪醇聚氧乙烯醚(平平加O)重量份0.5份,加入到天然橡胶胶乳中,以50转/min的转速进行搅拌20min,使得天然橡胶胶乳的乳液稳定,然后加入上述自制的催化剂四乙基铵钼酸盐,搅拌10min,使得乳液均匀,加入0.7%氨含量的氨水,使得乳液总体系的浓度维持在30%,即天然橡胶胶乳的固含量为30%。然后称量30%浓度的过氧化氢的水溶液重量份42份,进行滴加到稀释好的天然橡胶胶乳中,反应温度控制在50℃-55℃。滴加结束,控制反应时间为18h,反应结束,进行超频加热絮凝和干燥,既得环氧化天然橡胶A。
产物经过抽提提纯,然后进行核磁和红外的测试进行表征,分析结果为环氧度为35%,副产物为0.9%。
环氧化天然橡胶B
将重量份100份天然橡胶胶乳(60%固含量),加入到反应烧瓶中,取表面活性剂脂肪醇聚氧乙烯醚(平平加O)重量份0.5份,加入到天然橡胶胶乳中,以50转/min的转速进行搅拌20min,使得天然橡胶胶乳的乳液稳定,然后加入催化剂四丁基铵钼酸盐,搅拌10min,使得乳液均匀,加入0.7%氨含量的氨水,使得乳液总体系的浓度维持在30%,即天然橡胶胶乳的固含量为30%。然后称量30%浓度的过氧化氢的水溶液重量份42份,进行滴加到稀释好的天然橡胶胶乳中,反应温度控制在50℃-55℃。滴加结束,控制反应时间为18h,反应结束,进行超频加热絮凝和干燥,既得环氧化天然橡胶B。
产物经过抽提提纯,然后进行核磁和红外的测试进行表征,分析结果为环氧度为29%,副产物为0.7%。
环氧化天然橡胶C
将重量份100份天然橡胶胶乳(60%固含量),加入到反应烧瓶中,取表面活性剂脂肪醇聚氧乙烯醚(平平加O)重量份0.5份,加入到天然橡胶胶乳中,以50转/min的转速进行搅拌20min,使得天然橡胶胶乳的乳液稳定,然后加入上述自制的催化剂四乙基铵钼酸盐,搅拌10min,使得乳液均匀,加入0.7%氨含量的氨水,使得乳液总体系的浓度维持在30%,即胶乳的固含量为30%。然后称量30%浓度的过氧化氢的水溶液重量份42份,进行滴加到稀释好的天然橡胶胶乳中,反应温度控制在75℃。滴加结束,控制反应时间为18h,反应结束,进行超频加热絮凝和干燥,既得环氧化天然橡胶C。
产物经过抽提提纯,然后进行核磁和红外的测试进行表征,分析结果为环氧度为31%,副产物为4.1%。
环氧化天然橡胶D
将重量份100份天然橡胶胶乳(60%固含量),加入到反应烧瓶中,取表面活性剂脂肪醇聚氧乙烯醚(平平加O)重量份0.1份,加入到天然橡胶胶乳中,以50转/min的转速进行搅拌20min,使得天然橡胶胶乳的乳液稳定,然后加入上述自制的催化剂四乙基铵钼酸盐,搅拌10min,使得乳液均匀,加入0.7%氨含量的氨水,使得乳 液总体系的浓度维持在30%,既胶乳的固含量为30%。然后称量30%浓度的过氧化氢的水溶液重量份42份,进行滴加到稀释好的天然橡胶胶乳中,反应温度控制在50℃-55℃。滴加结束,控制反应时间为18h,反应结束,进行超频加热絮凝和干燥,即得环氧化天然橡胶D。
产物经过抽提提纯,然后进行核磁和红外的测试进行表征,分析结果为环氧度为23%,副产物为1.2%。
实施例1
(聚醚胺D230)、15%的环氧键改性率
表1.
按表1中的配方,将含0.05mol环氧键的ENR25和聚醚胺,加入1L烧瓶中,升温至140℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
产物经过表征得到图2和图3,从图2红外图谱上的羟基峰可以看出开环接枝成功,且还保留有环氧键,由图3可以看出Tg有降低。
实施例2
(聚醚胺D230)、30%的环氧键改性率
表2.
按表2中的配方,将含0.05mol环氧键的ENR25、聚醚胺和一定量摩尔数的催化剂,加入1L烧瓶中,升温至140℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
产物经过表征得到图4和图5,从图4可以看出Tg有降低,且比15%的摩尔数改性(即实施例1),玻璃化转变温度降低更多,说明在30%的改性ENR25中,对于 分子链的整体柔顺性和极性是有利的,从图5红外图谱上的羟基峰可以看出开环接枝成功,且还保留有环氧键。
实施例3
(聚醚胺D230)、45%的环氧键改性率
表3.
按表3中的配方,将含0.05mol环氧键的ENR25、聚醚胺和一定量摩尔数的催化剂,加入1L烧瓶中,升温至140℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
产物经过表征得到图6、7,从图6可以看出实施例3的Tg相对30%改性ENR25(即实施例2),在玻璃化转变温度Tg上,是一个升高的现象,分析其原因是双官能度的氨基导致的内部的分子链的交联,从而使得玻璃化转变温度有多上升。后续从不溶物凝胶测试分析,也证实此观点。不溶物凝胶测试是采用滤网把改性后橡胶包裹,放置到良溶剂中,经历48h以上的溶解,最后会有不溶物残留。图7为该改性样品的红外图谱。在3364cm-1和1106cm-1处,是末端伯胺反应变为仲胺的反应特征峰体现。
实施例4
(聚醚羧酸)、15%的环氧键改性率
表4.
按表4中的配方,将含0.05mol环氧键的ENR25、聚氧乙烯月桂醚羧酸和一定量摩尔数的催化剂,加入1L烧瓶中,升温至140℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
产物经过表征得到图8,由图8可以看出,Tg相对未改性ENR25(未改性的 ENR25的玻璃化转变温度在-40℃到-41℃之间),在玻璃化转变温度Tg上,降低3℃。
实施例5
(聚醚羧酸)、45%的环氧键改性率
表5.
按表5中的配方,将含0.05mol环氧键的ENR25、聚氧乙烯月桂醚羧酸和一定量摩尔数的催化剂,加入1L烧瓶中,升温至140℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
产物经过表征得到图9,由图9可以看出,实施例5的Tg相对未改性ENR25,在玻璃化转变温度Tg上,降低8℃左右,因其为单官能度,对于改性后产物,不存在交联现象,故在改性中可持续降低对于改性后的ENR25的玻璃化转变温度Tg,但是在60%的摩尔数改性后,对于改性后产物的Tg影响不大。
实施例6温度对改性结果的影响
(聚醚羧酸)、45%的环氧键改性率
表6.
以下进行四组平行对照实验,该四组实验均按表6中的配方,区别仅在于反应温度不同。
第一组:按配比将ENR25、聚氧乙烯月桂醚羧酸和一定量摩尔数的催化剂,加入1L烧瓶中,升温至50℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
第二组:按配比将ENR25、聚氧乙烯月桂醚羧酸和一定量摩尔数的催化剂,加入1L烧瓶中,升温至80℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
第三组:按配比将ENR25、聚氧乙烯月桂醚羧酸和一定量摩尔数的催化剂,加入1L烧瓶中,升温至110℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
第四组:按配比将ENR25、聚氧乙烯月桂醚羧酸和一定量摩尔数的催化剂,加入1L烧瓶中,升温至160℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
四组产物的玻璃化转变温度Tg分别对应图10-13。
对比例
表7.
对比例采用普通的加热改性,按表1中的配方,将含0.05mol环氧键的ENR25和一定摩尔数的聚醚胺,加入1L烧瓶中,升温至140℃,反应8h,降温后用微波超频絮凝烘干,得到产物。
产物经过表征得到图14和图15,由图14可以看出Tg无降低,从图15红外图谱上的羟基峰可以看出发生开环反应,且还保留有环氧键。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种改性环氧化橡胶,其特征在于,其得自以下组分:
    环氧化橡胶或环氧化弹性体;
    聚醚类化合物;
    所述聚醚类化合物为聚醚醇类、聚醚胺类、聚醚羧酸类、聚醚巯基类和聚醚环氧类中的一种或多种。
  2. 根据权利要求1所述的改性环氧化橡胶,其特征在于,所述聚醚醇类为二乙二醇甲乙醚、乙二醇单辛醚、二聚乙二醇单甲基戊基醚、丙二醇单甲醚、双(1-甲基-2-羟乙基)醚、乙二醇甲醚、乙二醇单甲醚、2-羟乙基乙基硫醚、乙二醇单乙醚、乙二醇乙醚、1,4-丁二醇单甲醚、1,3-丙二醇单乙醚、乙二醇单烯丙基醚、二(2-羟乙基)硫醚、乙二醇单丁醚、二乙二醇单甲醚、二乙二醇单乙醚、二乙二醇单丁醚、三乙二醇单甲醚、三乙二醇单乙醚、二乙二醇单己醚、环己基-1,4-二甲醇单乙烯基醚、十一甘醇单甲醚、异丙基羟基棕榈基醚、丙二醇单烯丙基醚、三乙二醇单丁醚、二甘醇单烯丙基醚、四乙二醇单丁醚、丙二醇单乙醚、二丙二醇单乙醚、丙二醇丁基醚、丁炔二醇丙氧基化物、4-羟丁基乙烯基醚、四聚乙二醇单辛醚、三丙二醇单乙基醚、三丙二醇甲醚、六乙二醇单甲醚、五聚乙二醇单甲醚、四乙二醇单甲醚、alpha-十三烷基-omega-羟基-聚氧乙烯醚、1,2,3-丙烷三醇缩水甘油基醚、一缩二丙二醇、二(2-羟丙基)醚、丙二醇聚醚、三丙二醇单甲醚、alpha-(2-甲基-1-氧代-2-丙烯-1-基)-omega-羟基-聚氧乙烯醚、三羟基聚氧化丙烯醚、八聚乙二醇单甲醚、、alpha-癸基-omega-羟基-聚氧乙烯醚、聚乙二醇单(2-乙基己基)醚、甘油二缩水甘油基醚、十聚乙二醇单甲醚、乙二醇单正丙基醚、二(3-羟基丙基)三硫醚、1,2-丙二醇-1-单丁醚、二丙二醇单丙醚、二丙二醇丁醚、六乙二醇单十二烷基醚、八乙二醇单月桂基醚、十二烷基七聚乙二醇醚、二丙二醇单甲醚、乙二醇双羟甲基醚、聚丙二醇单甲醚、四乙二醇单十四烷基醚、聚乙二醇300单壬基醚、七乙二醇单癸基醚、1,3-二乙氧基-2-丙醇、二(2-羟基乙基)三硫醚、七甘醇单甲醚、三乙二醇十八烷基醚、丙二醇单丁醚、六乙二醇单十四烷基醚、六乙二醇单癸基醚、六乙二醇单十六烷基醚、聚丙二醇油醇醚、山梨糖醇聚氧丙烯醚、二(硫代羧基)四硫醚、二聚乙二醇单十六烷基醚、油醇聚醚-3、油醇聚醚-5、三乙二醇单庚基醚、三丙二醇单丁醚、四聚乙二醇单癸醚、三丙二醇正丁基醚、二(2-羧基乙基)醚、四聚乙二醇单十八烷基醚、九聚乙二醇单甲醚、异癸醇聚氧乙烯醚、异辛醇聚氧乙烯聚氧丙烯醚、聚氧乙烯-10月桂基醚、壬基酚聚氧乙烯醚、三羟甲基丙烷二烯丙基醚、2,2-二(烯丙基氧甲基)-1-丁醇、丙烷三甲醇单烯丙基醚、C16-18醇聚氧乙烯醚、C12-C14脂肪醇聚氧乙烯聚氧丙烯醚、C12-C15脂肪醇聚氧乙烯聚氧丙烯醚、C11-C15仲醇聚氧乙烯聚氧丙烯醚、C8-C10脂肪醇聚氧乙烯聚氧丙烯醚、1-甘油辛基醚、2-羟基乙基2-氯乙基硫醚、聚氧乙烯-20异十六烷基醚、甘油单异辛基醚、乙二醇单(1,1-二丙基丁基)醚、支链辛基酚聚乙二醇聚丙二醇单醚、聚甘油-2油醚、C8-10-脂肪 醇聚氧乙烯醚、C12-C15脂肪醇聚氧丙烯醚、乙烯基乙二醇醚、月桂醇聚氧乙烯醚、环氧丙烷与环氧乙烷的共聚物、聚丙二醇单丁醚、聚乙二醇单甲醚、聚乙二醇单丁醚、十六烷醇聚氧乙烯醚、油醇聚氧乙烯醚、十八烷醇聚氧乙烯醚、聚乙二醇单丁醚、聚氧丙烯单鲸蜡基醚、聚乙二醇聚丙二醇单丁基醚、异十三醇聚氧乙烯醚、聚氧乙基聚氧丙基甘油醚、二乙二醇单乙烯基醚、二(丙二醇)丙基醚和脂肪醇聚氧乙烯醚中的一种或多种。
  3. 根据权利要求1所述的改性环氧化橡胶,其特征在于,所述聚醚胺类为聚醚胺、聚乙二醇单(2-月桂酰胺基乙基)醚、乙二醇二(3-氨基丙基)醚、聚乙二醇单(2-十六碳酰胺基乙基)醚和二乙二醇二(3-氨基丙基)醚中的一种或多种。
  4. 根据权利要求1所述的改性环氧化橡胶,其特征在于,所述聚醚羧酸类为4,4'-二硫基二丁酸、3-羧丙基二硫醚、半胱氨酰高半胱氨酸混合物二硫醚、聚乙二醇双(2-羧基乙基)醚、胱硫醚、乙二醇双(2-氨基乙基醚)四乙酸、2-羧甲基-3-氨基丙基硒醚、支链C11-C14脂肪醇聚氧乙烯聚氧丙烯醚和聚氧乙烯月桂醚羧酸中的一种或多种。
  5. 根据权利要求1所述的改性环氧化橡胶,其特征在于,所述聚醚巯基类为二(二甲硫基氨基甲酰)三硫醚、2,2'-硫代双(乙硫醇)、双巯乙基硫醚、2-巯基乙基硫醚和二硫代氨基甲酰二硫醚中的一种或多种。
  6. 根据权利要求1所述的改性环氧化橡胶,其特征在于,所述聚醚环氧类为丙烯基环氧基封端聚醚中的一种或多种。
  7. 根据权利要求1所述的改性环氧化橡胶,其特征在于,以未改性前的环氧化橡胶或环氧化弹性体的环氧键总摩尔量为基准,所述改性环氧化橡胶中被改性的环氧键含量≥5mol%且≤60mol%,优选所述改性环氧化橡胶中被改性的环氧键含量≥10mol%且≤55mol%。
  8. 根据权利要求1所述的改性环氧化橡胶,其特征在于,所述环氧化橡胶为环氧化天然胶乳、环氧化丁苯胶乳、环氧化丁腈胶乳、环氧化氯丁胶乳、环氧化顺丁胶乳、环氧化杜仲胶乳、环氧化合成异戊橡胶胶乳或环氧化合成反式聚异戊二烯胶乳中的一种或多种,优选为环氧化天然橡胶。
  9. 根据权利要求1所述的改性环氧化橡胶,其特征在于,所述环氧化橡胶或环氧化弹性体的制备方法包括:
    S1:向橡胶或弹性体的水乳体系中添加表面活性剂;
    S2:再向步骤S1的混合物中添加钼多金属氧酸盐和过氧化氢,反应后进行干燥,得到环氧化橡胶或环氧化弹性体。
  10. 根据权利要求9所述的改性环氧化橡胶,其特征在于,所述钼多金属氧酸盐为烷基铵钼酸盐、咪唑类钼酸盐和吡啶类钼酸盐中的一种或多种,优选为烷基铵钼酸盐,更优选为四乙基铵钼酸盐。
  11. 根据权利要求9所述的改性环氧化橡胶,其特征在于,所述步骤S2的反应温度为50-80℃。
  12. 根据权利要求9所述的改性环氧化橡胶,其特征在于,所述表面活性剂为离 子型表面活性剂、非离子型表面活性剂或两性表面活性剂中的一种或多种,优选为非离子型表面活性剂,更优选为脂肪醇聚氧乙烯醚。
  13. 根据权利要求1所述的改性环氧化橡胶,其特征在于,所述改性环氧化橡胶还包括催化剂。
  14. 一种权利要求1-13任一项所述改性环氧化橡胶的制备方法,其特征在于,包括以下步骤:
    S1:向环氧化橡胶或环氧化弹性体中加入聚醚类化合物;
    S2:控制反应温度和反应时间,得到所述改性环氧化橡胶。
  15. 根据权利要求14所述改性环氧化橡胶的制备方法,其特征在于,所述步骤S1中还包括加入催化剂。
  16. 根据权利要求14所述改性环氧化橡胶的制备方法,其特征在于,步骤S2中,所述反应温度为40℃-160℃。
  17. 根据权利要求14所述改性环氧化橡胶的制备方法,其特征在于,步骤S2中,所述反应时间为1.5-10h,优选为4-8h。
  18. 权利要求1-13任一项所述改性环氧化橡胶在橡胶制品中的应用。
PCT/CN2023/093417 2022-09-21 2023-05-11 一种改性环氧化橡胶及其制备方法和应用 WO2024060640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211149119.6A CN115505054A (zh) 2022-09-21 2022-09-21 一种改性环氧化橡胶及其制备方法和应用
CN202211149119.6 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024060640A1 true WO2024060640A1 (zh) 2024-03-28

Family

ID=84504771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093417 WO2024060640A1 (zh) 2022-09-21 2023-05-11 一种改性环氧化橡胶及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115505054A (zh)
WO (1) WO2024060640A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505054A (zh) * 2022-09-21 2022-12-23 江苏麒祥高新材料有限公司 一种改性环氧化橡胶及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542190A (en) * 1981-06-29 1985-09-17 Nippon Zeon Co Ltd Cis-1,4-polyisoprene rubber composition
CN1572825A (zh) * 2003-06-03 2005-02-02 住友橡胶工业株式会社 轮胎面用橡胶组合物及使用这种橡胶组合物的充气轮胎
US20140357794A1 (en) * 2013-05-30 2014-12-04 Arindam Mazumdar Method of making functionalized elastomer
CN107241906A (zh) * 2015-01-28 2017-10-10 Sabic环球技术有限责任公司 官能化弹性体、其制备方法以及用途
JP2019019221A (ja) * 2017-07-18 2019-02-07 宇部興産株式会社 エポキシ化ジエン系ポリマーの製造方法
CN114085538A (zh) * 2021-12-01 2022-02-25 宁国市瑞普密封件有限公司 一种耐高温天然橡胶材料及其制备方法
CN115505054A (zh) * 2022-09-21 2022-12-23 江苏麒祥高新材料有限公司 一种改性环氧化橡胶及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310819A (en) * 1992-01-23 1994-05-10 The United States Of America As Represented By The Secretary Of The Navy Surface epoxidation of elastomers
CN105859917B (zh) * 2015-01-23 2017-09-01 中国石油天然气股份有限公司 一种环氧化乳液聚合橡胶的制备方法
KR20220107237A (ko) * 2019-11-28 2022-08-02 에보니크 오퍼레이션즈 게엠베하 폴리에테르-개질된 폴리부타디엔 및 그의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542190A (en) * 1981-06-29 1985-09-17 Nippon Zeon Co Ltd Cis-1,4-polyisoprene rubber composition
CN1572825A (zh) * 2003-06-03 2005-02-02 住友橡胶工业株式会社 轮胎面用橡胶组合物及使用这种橡胶组合物的充气轮胎
US20140357794A1 (en) * 2013-05-30 2014-12-04 Arindam Mazumdar Method of making functionalized elastomer
CN107241906A (zh) * 2015-01-28 2017-10-10 Sabic环球技术有限责任公司 官能化弹性体、其制备方法以及用途
JP2019019221A (ja) * 2017-07-18 2019-02-07 宇部興産株式会社 エポキシ化ジエン系ポリマーの製造方法
CN114085538A (zh) * 2021-12-01 2022-02-25 宁国市瑞普密封件有限公司 一种耐高温天然橡胶材料及其制备方法
CN115505054A (zh) * 2022-09-21 2022-12-23 江苏麒祥高新材料有限公司 一种改性环氧化橡胶及其制备方法和应用

Also Published As

Publication number Publication date
CN115505054A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2024060640A1 (zh) 一种改性环氧化橡胶及其制备方法和应用
Gan et al. Partial conversion of epoxide groups to diols in epoxidized natural rubber
CN107739588B (zh) 一种端多烯基共聚醚粘合剂及其合成方法
Yu et al. Effects of dynamic covalent bond multiplicity on the performance of vitrimeric elastomers
CN103861649B (zh) 一种具有可见光响应的二氧化钛基复合光催化剂的制备方法
US20220056209A1 (en) Method for preparing reactive sealant resin
CN110387004A (zh) 一种环氧化三元乙丙橡胶、制备方法及弹性体
CN109180937A (zh) 一种制备脂肪族聚硫醚的方法
Liang et al. Bio-based organic-inorganic hybrid UV-curable hydrophobic coating prepared from epoxidized vegetable oils
CN107188802A (zh) 应用双酸型离子液体催化醇解聚3‑羟基丁酸酯的方法
Rasid et al. Physicochemical properties of liquid natural rubber bearing fluoro groups for hydrophobic surfaces
CN105503674B (zh) 一种基于丁香酚的多官能团不饱和单体、制备方法及其应用
CN103556294B (zh) 一种抗蠕变抗水解聚酯及其制备方法
Handayani et al. Synthesis and Characterisation of Copoly-(Eugenol-N, N'-Methylene Bis (Acrylamide)).
CN110183551A (zh) 一种生物基耐油杜仲酯弹性体及其制备方法
CN107915797B (zh) 液体聚丁二烯橡胶、环氧化液体聚丁二烯橡胶及其制备方法
Zhang et al. A novel method for preparation of epoxy resins using thiol–ene click reaction
CN111621002B (zh) 一种非离子型水性环氧树脂固化剂及其制备方法
Shafinaz et al. Preparation of reinforced hydroxyl terminated liquid epoxidized natural rubber nanocomposite by grafting of graphene oxide
Riyajan et al. Cationic cyclization of purified natural rubber in latex form with a trimethylsilyl triflate as a novel catalyst
CN113024793B (zh) 一种聚氧化乙烯的合成方法
Salehuddina et al. The Characterization of Hydroxyl Terminated Epoxidized Natural Rubber (HTENR) via Oxidation Degradation Method.
CN109999716B (zh) 一种非离子型含氟表面活性剂及其制备方法和应用
CN114031803A (zh) 一种基于点击化学制备聚酰胺-胺凝胶复合膜的方法与应用
CN1246307C (zh) 环丁烯砜加氢制备环丁砜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866937

Country of ref document: EP

Kind code of ref document: A1