WO2024060342A1 - 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法 - Google Patents

一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法 Download PDF

Info

Publication number
WO2024060342A1
WO2024060342A1 PCT/CN2022/126137 CN2022126137W WO2024060342A1 WO 2024060342 A1 WO2024060342 A1 WO 2024060342A1 CN 2022126137 W CN2022126137 W CN 2022126137W WO 2024060342 A1 WO2024060342 A1 WO 2024060342A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
aluminum nitride
coated
take
ceramic substrate
Prior art date
Application number
PCT/CN2022/126137
Other languages
English (en)
French (fr)
Inventor
欧阳鹏
贺贤汉
王斌
武威
刘洋
张进
Original Assignee
江苏富乐华半导体科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏富乐华半导体科技股份有限公司 filed Critical 江苏富乐华半导体科技股份有限公司
Publication of WO2024060342A1 publication Critical patent/WO2024060342A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials

Definitions

  • the present invention relates to the field of semiconductor technology, and specifically relates to a method for improving the heat cycle reliability of aluminum nitride-coated aluminum packaging liner.
  • IGBT power electronic device technology is developing in the direction of high voltage, large current, high power density, and high speed; aluminum nitride-coated aluminum ceramic substrate (DBA), as the packaging substrate of IGBT, also has Excellent heat cycle resistance, excellent interface bonding reliability, high thermal conductivity, and high insulation strength make it highly favored by third-generation SiC semiconductor devices.
  • DBA aluminum nitride-coated aluminum ceramic substrate
  • the purpose of the present invention is to provide a method for improving the heat cycle reliability of an aluminum nitride-coated packaging liner, so as to solve the problems raised in the above background technology.
  • the present invention provides the following technical solutions:
  • a method for improving the thermal cycle reliability of an aluminum nitride-coated aluminum packaging liner comprises the following steps:
  • step (2) Diffusion annealing: Take the nano-scale copper layer aluminum nitride-coated ceramic substrate in step (1) for vacuum sintering, keep it at 470-540°C for 2-3 hours, and then cool it to 22-25°C in the furnace;
  • the thickness of the aluminum layer on the surface of the aluminum nitride-coated ceramic substrate is 0.2 to 0.6 mm.
  • the copper plating process is a surface sputtering copper plating process, and the operating parameters are: power 5KW, Ar flow rate 30Sccm, sputtering pressure 0.4Pa for 10min.
  • step (1) the surface cleaning step is:
  • step B Prepare a 10-20% nitric acid aqueous solution, take the aluminum nitride-coated ceramic substrate in step A and immerse it in pickling for 90-100 seconds, take it out, wash it with pure water, dry it at 80-120°C, and set it aside.
  • the secondary zinc immersion step is: take NaOH and ZnO to configure the zinc immersion solution, the mass fraction of NaOH is 10%, the mass fraction of ZnO is 1.6%, and the rest is pure water, take the The treated aluminum nitride-coated ceramic substrate is immersed in the zinc immersion for 40 to 45 seconds, then taken out and washed; immersed in a 30% nitric acid aqueous solution for a second pickling of 90 to 100 seconds, taken out and washed; placed in the zinc immersion solution for a second time Soak in zinc for 30-35 seconds, take out and wash with pure water, set aside.
  • step (2) the diffusion annealing heating rate is 1 to 3°C/min, and the Vickers hardness of the aluminum surface after annealing is 27 to 35HV1.
  • step (3) the surface nickel plating process conditions are chemical plating at 80-85° C. for 20-60 min.
  • the electroless nickel plating solution is NiSO 4 ⁇ 7H 2 O: 25g/L, NaH 2 PO 2 ⁇ H 2 O: 36g/L, Na 3 C 6 H 5 O 7 ⁇ 2H 2 O: 12g/l, the rest is pure water; the pH value of the electroless nickel plating solution is 4.5 to 5.6.
  • the present invention first introduces trace amounts of copper elements into the aluminum surface layer through surface sputtering copper plating and vacuum diffusion sintering on the surface of aluminum nitride-coated ceramic substrates to form a uniform copper-aluminum solid solution hardened layer.
  • the surface is silvery white, and the Vickers hardness of the aluminum surface is 27-35HV1.
  • the surface is then nickel-plated to obtain the final aluminum nitride-coated aluminum packaging liner;
  • the beneficial effects achieved by the present invention are as follows: in the present invention, the aluminum layer hardening on the DBA surface has a gradient change characteristic, and the inner layer of the DBA substrate close to the AlN ceramic aluminum surface still has the toughness of Al, so that the product has high reliability in the bonding area, and the heat resistance reliability of the surface coating is significantly improved.
  • the surge in the surface roughness of the substrate during the thermal cycle test is prevented, the water ripples and cracks of the coating are reduced, and the heat resistance cycle reliability of the aluminum nitride coated aluminum substrate is further improved.
  • Figure 1 is a schematic flow diagram of the present invention
  • Figure 2 is a 3D topography scan of the surface of the package liner sample of Example 1 before the thermal cycle test (left picture) and after the thermal cycle test (right picture);
  • Figure 3 shows the 3D topography scan of the surface of the package liner sample of Comparative Example 1 before the thermal cycle test (left picture) and after the thermal cycle test (right picture);
  • FIG4 is a line graph of the surface roughness of Example 1 after 100 thermal cycles at -55°C/150°C;
  • Figure 5 is a line chart of the surface roughness of Comparative Example 1 after 100 thermal cycles at -55°C/150°C.
  • step (3) Surface sputtering copper plating: Take the cleaned aluminum nitride-coated ceramic substrate in step (2), and sputter copper-coating the surface of the aluminum nitride-coated ceramic substrate at a power of 5KW, an Ar flow rate of 30Sccm, and a sputtering pressure of 0.4 Sputter under Pa for 10 minutes, the thickness of the copper plating layer is 80nm, and after electroplating is completed, an aluminum nitride-coated aluminum ceramic substrate with a nanoscale copper layer on the aluminum surface is obtained;
  • Diffusion annealing Take the aluminum nitride aluminum-coated ceramic substrate in step (3) and perform vacuum sintering. Diffusion annealing is performed at 470°C for 2 hours. The heating rate of diffusion annealing is 1°C/min. After annealing is completed, the furnace is cooled to 22°C. After 2 hours of heat preservation, a copper-aluminum solid solution hardened layer is formed on the surface of the aluminum nitride-coated ceramic substrate. The thickness of the aluminum layer is 0.2mm;
  • the zinc immersion liquid contains 10% NaOH, 1.6% ZnO, and the rest is pure water. Take the aluminum nitride-coated ceramic substrate in step (4) and completely immerse it in the zinc immersion liquid.
  • the zinc immersion time is 40 seconds. Take it out and wash it, immerse it in 30% nitric acid aqueous solution and pickle it for a second time for 90 seconds. Take it out again and wash it with pure water. Place it in a zinc dipping solution and dip it in zinc for a second time for 30 seconds. Take it out and wash it with pure water and set it aside.
  • step (2) Prepare a 13% nitric acid aqueous solution. Take the aluminum nitride-coated ceramic substrate in step (1) and completely immerse it in the nitric acid solution. After pickling for 93 seconds, take it out, wash it with pure water, dry it at 90°C, and set it aside;
  • step (3) Surface sputtering copper plating: Take the cleaned aluminum nitride-coated ceramic substrate in step (2), and sputter copper-coating the surface of the aluminum nitride-coated ceramic substrate at a power of 5KW, an Ar flow rate of 30Sccm, and a sputtering pressure of 0.4 Sputter under Pa for 10 minutes, the thickness of the copper plating layer is 95nm, and after electroplating is completed, an aluminum nitride-coated aluminum ceramic substrate with a nanoscale copper layer on the aluminum surface is obtained;
  • Diffusion annealing Take the aluminum nitride aluminum-coated ceramic substrate in step (3) and perform vacuum sintering. Diffusion annealing is performed at 490°C for 2.5 hours. The diffusion annealing temperature rise rate is 2°C/min. After annealing is completed, the furnace is cooled to 23°C. , heat preservation for 2.5h, a copper-aluminum solid solution hardened layer is formed on the surface of the aluminum nitride-coated ceramic substrate, the thickness of the aluminum layer is 0.3mm;
  • the zinc immersion liquid contains 10% NaOH, 1.6% ZnO, and the rest is pure water. Take the aluminum nitride-coated ceramic substrate in step (4) and completely immerse it in the zinc immersion liquid.
  • the zinc immersion time is 42 seconds. Take it out and wash it, immerse it in 30% nitric acid aqueous solution and pickle it for a second time for 93 seconds. Take it out again and wash it with pure water. Place it in a zinc dipping solution and dip it in zinc for a second time for 32 seconds. Take it out and wash it with pure water and set it aside.
  • step (2) Prepare 18%% nitric acid aqueous solution, take the aluminum nitride aluminum-coated ceramic substrate in step (1) and completely immerse it in the nitric acid solution. After pickling for 97 seconds, take it out and wash it with pure water, dry it at 100°C and set it aside;
  • step (3) Sputtering copper plating on the surface: taking the aluminum nitride-coated ceramic substrate cleaned in step (2), sputtering copper on the surface of the aluminum nitride-coated ceramic substrate, sputtering for 10 min at a power of 5 kW, an Ar flow rate of 30 Sccm, and a sputtering pressure of 0.4 Pa, and the thickness of the copper plating layer is 105 nm.
  • an aluminum nitride-coated ceramic substrate with a nano-scale copper layer on the aluminum surface is obtained;
  • Diffusion annealing Take the aluminum nitride aluminum-coated ceramic substrate in step (3) and perform vacuum sintering. Diffusion annealing is performed at 510°C for 2.5 hours. The diffusion annealing temperature rise rate is 2°C/min. After annealing is completed, the furnace is cooled to 24°C. , heat preservation for 2.5h, a copper-aluminum solid solution hardened layer is formed on the surface of the aluminum nitride-coated ceramic substrate, the thickness of the aluminum layer is 0.4mm;
  • the zinc immersion liquid contains 10% NaOH, 1.6% ZnO, and the rest is pure water. Take the aluminum nitride-coated ceramic substrate in step (4) and completely immerse it in the zinc immersion liquid.
  • the zinc immersion time is 44 seconds. Take it out and wash it, immerse it in 30% nitric acid aqueous solution and pickle it for a second time for 97 seconds. Take it out again and wash it with pure water. Place it in a zinc dipping solution and dip it in zinc for a second time for 34 seconds. Take it out and wash it with pure water and set it aside.
  • step (2) Prepare 20%% nitric acid aqueous solution. Take the aluminum nitride aluminum-coated ceramic substrate in step (1) and completely immerse it in the nitric acid solution. After pickling for 100 seconds, take it out, wash it with pure water, dry it at 120°C, and set it aside;
  • step (3) Sputtering copper plating on the surface: taking the aluminum nitride-coated aluminum ceramic substrate cleaned in step (2), sputtering copper on the surface of the aluminum nitride-coated aluminum ceramic substrate, sputtering for 10 min at a power of 5 kW, an Ar flow rate of 30 Sccm, and a sputtering pressure of 0.4 Pa, and the thickness of the copper plating layer is 120 nm.
  • an aluminum nitride-coated aluminum ceramic substrate with a nano-scale copper layer on the aluminum surface is obtained;
  • step (3) the aluminum nitride-coated aluminum ceramic substrate in step (3) is subjected to vacuum sintering, diffusion annealing at 540° C. for 3 h, and the diffusion annealing heating rate is 3° C./min. After the annealing is completed, the substrate is cooled to 25° C. in the furnace and kept warm for 3 h to form a copper-aluminum solid solution hardened layer on the surface of the aluminum nitride-coated aluminum ceramic substrate. The thickness of the aluminum layer is 0.6 mm.
  • the zinc immersion liquid contains 10% NaOH, 1.6% ZnO, and the rest is pure water. Take the aluminum nitride-coated ceramic substrate in step (4) and completely immerse it in the zinc immersion liquid.
  • the zinc immersion time is 45 seconds. Take it out and wash it, immerse it in 30% nitric acid aqueous solution for a second pickling for 100 seconds, take it out again and wash it with pure water, place it in a zinc dipping solution and dip it in zinc for a second time for 35 seconds, take it out and wash it with pure water, and set it aside;
  • Comparative Example 1 took Example 1 as the control group, and changed the parameters to only plate nickel on the surface of the aluminum nitride-coated ceramic substrate.
  • step (2) Prepare a 10% nitric acid aqueous solution, completely immerse the aluminum nitride-coated ceramic substrate in step (1) into the nitric acid solution, pickle it for 90 seconds, take it out, wash it with pure water, and dry it at 80°C;
  • the zinc immersion liquid contains 10% NaOH, 1.6% ZnO, and the rest is pure water. Take the aluminum nitride-coated ceramic substrate in step (2) and completely immerse it in the zinc immersion liquid.
  • the zinc immersion time is 40 seconds. Take it out and wash it, immerse it in 30% nitric acid aqueous solution and pickle it for a second time for 90 seconds. Take it out again and wash it with pure water. Place it in a zinc dipping solution and dip it in zinc for a second time for 30 seconds. Take it out and wash it with pure water and set it aside.
  • step (3) Take the aluminum nitride aluminum-coated ceramic substrate cleaned in step (3), use the chemical plating process to plate nickel on the surface of the aluminum nitride aluminum-coated ceramic substrate, the chemical nickel plating liquid composition is 25g/ L of NiSO 4 ⁇ 7H 2 O, 36g/L of NaH 2 PO 2 ⁇ H 2 O, 12g/L of Na 3 C 6 H 5 O 7 ⁇ 2H 2 O, and the rest is pure water; control the pH value to 4.5, The nickel plating reaction conditions are electroless plating at 80°C for 20 minutes, and the thickness of the nickel plating layer is 3.5 ⁇ m. After the nickel plating is completed, the surface is washed with pure water to obtain an aluminum nitride-coated aluminum packaging liner.
  • Comparative Example 2 takes Comparative Example 1 as the control group, and changes the parameters by changing the thickness of the nickel plating layer on the surface of the aluminum nitride-coated ceramic substrate.
  • step (2) Prepare a 10% nitric acid aqueous solution, completely immerse the aluminum nitride-coated ceramic substrate in step (1) into the nitric acid solution, pickle it for 90 seconds, take it out, wash it with pure water, and dry it at 80°C;
  • the zinc immersion liquid contains 10% NaOH, 1.6% ZnO, and the rest is pure water. Take the aluminum nitride-coated ceramic substrate in step (2) and completely immerse it in the zinc immersion liquid.
  • the zinc immersion time is 40 seconds. Take it out and wash it, immerse it in 30% nitric acid aqueous solution and pickle it for a second time for 90 seconds. Take it out again and wash it with pure water. Place it in a zinc dipping solution and dip it in zinc for a second time for 30 seconds. Take it out and wash it with pure water and set it aside.
  • step (3) Take the aluminum nitride aluminum-coated ceramic substrate cleaned in step (3), use the chemical plating process to plate nickel on the surface of the aluminum nitride aluminum-coated ceramic substrate, the chemical nickel plating liquid composition is 25g/ L of NiSO 4 ⁇ 7H 2 O, 36g/L of NaH 2 PO 2 ⁇ H 2 O, 12g/L of Na 3 C 6 H 5 O 7 ⁇ 2H 2 O, and the rest is pure water; control the pH value to 4.5, The nickel plating reaction conditions are electroless plating at 80°C for 30 minutes, and the thickness of the nickel plating layer is 4.7 ⁇ m. After the nickel plating is completed, the surface is washed with pure water to obtain an aluminum nitride-coated aluminum packaging liner.
  • Table 1 Surface performance test of aluminized ceramic substrate
  • the surface roughness Ra of Examples 1 to 4 increases by about 20% after thermal cycling.
  • the surface roughness Ra of the sample increases by about 130% after thermal cycling; the profile after 100 thermal cycles
  • the surface of the samples of Comparative Examples 1 to 2 has large unevenness, while the surface of the samples of Examples 1 to 4 has no obvious unevenness and is relatively smooth; visual inspection shows that there is no cracking in the coating.
  • trace copper elements are introduced into the aluminum surface layer to form a surface hardened layer, and then the surface is nickel-plated. This reduces the risk of roughness surge and coating cracking caused by high temperature when the device is working in extreme cases, which can lead to device failure, and further improves the heat-resistant cycle reliability of the aluminum nitride-coated aluminum packaging liner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Laminated Bodies (AREA)

Abstract

一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,在氮化铝覆铝陶瓷基板表面溅射镀铜并进行真空扩散烧结,在铝表面层引入微量铜元素,形成均匀的铜铝固溶体硬化层,再对其进行表面进行化学镀镍处理在表面形成均匀镀镍层,处理后的氮化铝覆铝封装衬板在热循环前后的粗糙度对比相差不大,通过本方法,降低了镀层表面应力集中和镀层开裂情况,提高了氮化铝覆铝封装衬板在极端条件下的耐热循环可靠性。

Description

一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法 技术领域
本发明涉及半导体技术领域,具体为一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法。
背景技术
随着IGBT电力电子器件快速发展,电力电子器件技术正朝着高电压、大电流、大功率密度、高速方面的方向发展;氮化铝覆铝陶瓷基板(DBA)作为IGBT的封装基板,同时拥有优良的耐热循环性能、优秀的界面键合可靠性、高热导率、高绝缘强度,备受第三代SiC半导体器件青睐。
在器件耐热循环性能测试过程中,铝具有较低的屈服强度,晶粒通过塑性变形可以吸收部分损伤保护陶瓷,使得铝与氮化铝陶瓷键合界面相较铜与氮化铝陶瓷界面拥有更高的耐热循环可靠性,但随着耐热循环次数增加,其表面粗糙度激增,进而导致DBA基板表面镀Ni层容易出现水波纹、毛刺甚至开裂;实际应用环境下,表面镀层可靠性失效也将可能导致器件的失效,因此亟待开发一种提高氮化铝覆铝封装衬板耐热循环可靠性的方法,进而降低或解决在器件耐热循环的可靠性问题。
发明内容
本发明的目的在于提供一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,以解决上述背景技术中提出的问题。
为了解决上述技术问题,本发明提供如下技术方案:
一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,具体包括以下步骤:
(1)表面溅射镀铜:取氮化铝覆铝陶瓷基板进行表面清洗,然后镀铜,得到纳米级铜层的氮化铝覆铝陶瓷基板,镀铜层厚度为80~120nm;
(2)扩散退火:取步骤(1)中纳米级铜层氮化铝覆铝陶瓷基板进行真空烧 结,470~540℃下保温2~3h,随炉冷却至22~25℃;
(3)表面镀镍:取步骤(2)中处理后的氮化铝覆铝陶瓷基板,二次浸锌后浸入化学镀镍液进行表面镀镍,镀镍层厚度为3.5~7μm。
进一步地,步骤(1)中,氮化铝覆铝陶瓷基板表面铝层厚度为0.2~0.6mm。
进一步地,步骤(1)中,镀铜工艺为表面溅射镀铜工艺,工作参数为:功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min。
进一步地,步骤(1)中,表面清洗步骤为:
A.配置10~20%氢氧化钠水溶液,取氮化铝覆铝陶瓷基板浸入碱洗3~5min,取出用纯水洗净;
B.配置10~20%硝酸水溶液,取步骤A中氮化铝覆铝陶瓷基板浸入酸洗90~100s,取出用纯水洗净,80~120℃下烘干,备用。
进一步地,步骤(3)中,二次浸锌步骤为:取NaOH、ZnO配置浸锌液,NaOH质量分数为10%,ZnO质量分数为1.6%,其余为纯水,取步骤(2)中处理后的氮化铝覆铝陶瓷基板浸入,浸锌时间为40~45s,取出洗净;浸入30%硝酸水溶液中二次酸洗90~100s,取出洗净;置于浸锌液中二次浸锌30~35s,取出用纯水洗净,备用。
进一步地,步骤(2)中,扩散退火升温速度为1~3℃/min,退火后铝表面维氏硬度为27~35HV1。
进一步地,步骤(3)中,表面镀镍工艺条件为80~85℃下化学镀20~60min。
进一步地,步骤(3)中,化学镀镍液为化学镀镍药液为NiSO 4·7H 2O:25g/L,NaH 2PO 2·H 2O:36g/L,Na 3C 6H 5O 7·2H 2O:12g/l,其余为纯水;其中化学镀镍液的pH值为4.5~5.6。
与现有技术相比,本发明首先在氮化铝覆铝陶瓷基板表面通过表面溅射镀铜处理及真空扩散烧结处理,在铝表面层引入微量铜元素,形成均匀的铜铝固溶体硬化层,表面为银白色,铝表面维氏硬度为27~35HV1,接着再进行表面镀镍处理,得到最终氮化铝覆铝封装衬板;
本发明所达到的有益效果是:本发明中,在DBA表面铝层硬化具有梯度变化特征,DBA基板内层靠近AlN陶瓷铝面的仍然具有Al的韧性,使得产品拥有键合区高可靠性的同时,其表面镀层耐热可靠性显著提升。预防了热循环测试过 程中基板表面粗糙度的激增,降低了镀层水波纹、开裂等现象,进一步提高了氮化铝覆铝基板耐热循环可靠性。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明的流程示意图;
图2为热循环测试前(左图)和热循环测试后(右图)实施例1封装衬板样品表面3D形貌扫描图;
图3为热循环测试前(左图)和热循环测试后(右图)对比例1封装衬板样品表面3D形貌扫描图;
图4为实施例1在-55℃/150℃下热循环100次后表面粗糙度折线图;
图5为对比例1在-55℃/150℃下热循环100次后表面粗糙度折线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
实施例1
(1)配置质量百分比为10%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗3min后取出用纯水洗净;
(2)配置10%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗90s后取出用纯水洗净,80℃下烘干,备用;
(3)表面溅射镀铜:取步骤(2)洗净的氮化铝覆铝陶瓷基板,氮化铝覆铝陶瓷基板表面溅射镀铜,在功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射 10min,镀铜层厚度为80nm,电镀完成得到铝面具有纳米级铜层的氮化铝覆铝陶瓷基板;
(4)扩散退火:取步骤(3)中氮化铝覆铝陶瓷基板进行真空烧结,470℃下扩散退火2h,扩散退火升温速度为1℃/min,退火完成后随炉冷却至22℃,保温2h,在氮化铝覆铝陶瓷基板表面形成铜铝固溶体硬化层,铝层厚度为0.2mm;
(5)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(4)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为40s,取出洗净,浸入30%硝酸水溶液二次酸洗90s,再次取出用纯水洗净,置于浸锌液中二次浸锌30s,取出用纯水洗净,备用;
(6)表面镀镍:取步骤(5)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO 4·7H 2O、36g/L的NaH 2PO 2·H 2O、12g/L的Na 3C 6H 5O 7·2H 2O,其余为纯水;控制pH值为4.5,镀镍反应条件为80℃下化学镀20min,镀镍层厚度为3.5μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
实施例2
(1)配置质量百分比为13%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗4min后取出用纯水洗净;
(2)配置13%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗93s后取出用纯水洗净,90℃下烘干,备用;
(3)表面溅射镀铜:取步骤(2)洗净的氮化铝覆铝陶瓷基板,氮化铝覆铝陶瓷基板表面溅射镀铜,在功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min,镀铜层厚度为95nm,电镀完成得到铝面具有纳米级铜层的氮化铝覆铝陶瓷基板;
(4)扩散退火:取步骤(3)中氮化铝覆铝陶瓷基板进行真空烧结,490℃下扩散退火2.5h,扩散退火升温速度为2℃/min,退火完成后随炉冷却至23℃,保温2.5h,在氮化铝覆铝陶瓷基板表面形成铜铝固溶体硬化层,铝层厚度为0.3mm;
(5)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(4)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为42s,取出洗净,浸 入30%硝酸水溶液二次酸洗93s,再次取出用纯水洗净,置于浸锌液中二次浸锌32s,取出用纯水洗净,备用;
(6)表面镀镍:取步骤(5)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO 4·7H 2O、36g/L的NaH 2PO 2·H 2O、12g/L的Na 3C 6H 5O 7·2H 2O,其余为纯水;控制pH值为4.8,镀镍反应条件为82℃下化学镀35min,镀镍层厚度为5μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
实施例3
(1)配置质量百分比为18%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗4min后取出用纯水洗净;
(2)配置18%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗97s后取出用纯水洗净,100℃下烘干,备用;
(3)表面溅射镀铜:取步骤(2)洗净的氮化铝覆铝陶瓷基板,氮化铝覆铝陶瓷基板表面溅射镀铜,在功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min,镀铜层厚度为105nm,电镀完成得到铝面具有纳米级铜层的氮化铝覆铝陶瓷基板;
(4)扩散退火:取步骤(3)中氮化铝覆铝陶瓷基板进行真空烧结,510℃下扩散退火2.5h,扩散退火升温速度为2℃/min,退火完成后随炉冷却至24℃,保温2.5h,在氮化铝覆铝陶瓷基板表面形成铜铝固溶体硬化层,铝层厚度为0.4mm;
(5)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(4)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为44s,取出洗净,浸入30%硝酸水溶液二次酸洗97s,再次取出用纯水洗净,置于浸锌液中二次浸锌34s,取出用纯水洗净,备用;
(6)表面镀镍:取步骤(5)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO 4·7H 2O、36g/L的NaH 2PO 2·H 2O、12g/L的Na 3C 6H 5O 7·2H 2O,其余为纯水;控制pH值为5.2,镀镍反应条件为85℃下化学镀45min,镀镍层厚度为6μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
实施例4
(1)配置质量百分比为20%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗5min后取出用纯水洗净;
(2)配置20%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗100s后取出用纯水洗净,120℃下烘干,备用;
(3)表面溅射镀铜:取步骤(2)洗净的氮化铝覆铝陶瓷基板,氮化铝覆铝陶瓷基板表面溅射镀铜,在功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min,镀铜层厚度为120nm,电镀完成得到铝面具有纳米级铜层的氮化铝覆铝陶瓷基板;
(4)扩散退火:取步骤(3)中氮化铝覆铝陶瓷基板进行真空烧结,540℃下扩散退火3h,扩散退火升温速度为3℃/min,退火完成后随炉冷却至25℃,保温3h,在氮化铝覆铝陶瓷基板表面形成铜铝固溶体硬化层,铝层厚度为0.6mm;
(5)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(4)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为45s,取出洗净,浸入30%硝酸水溶液二次酸洗100s,再次取出用纯水洗净,置于浸锌液中二次浸锌35s,取出用纯水洗净,备用;
(6)表面镀镍:取步骤(5)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO 4·7H 2O、36g/L的NaH 2PO 2·H 2O、12g/L的Na 3C 6H 5O 7·2H 2O,其余为纯水;控制pH值为5.6,镀镍反应条件为85℃下化学镀60min,镀镍层厚度为7μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
对比例1
对比例1以实施例1为对照组,变更参数为仅在氮化铝覆铝陶瓷基板表面镀镍。
(1)配置质量百分比为10%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗3min后取出用纯水洗净;
(2)配置10%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗90s后取出用纯水洗净,80℃下烘干;
(3)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤 (2)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为40s,取出洗净,浸入30%硝酸水溶液二次酸洗90s,再次取出用纯水洗净,置于浸锌液中二次浸锌30s,取出用纯水洗净,备用;
(4)表面镀镍:取步骤(3)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO 4·7H 2O、36g/L的NaH 2PO 2·H 2O、12g/L的Na 3C 6H 5O 7·2H 2O,其余为纯水;控制pH值为4.5,镀镍反应条件为80℃下化学镀20min,镀镍层厚度为3.5μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
对比例2
对比例2以对比例1为对照组,变更参数为改变氮化铝覆铝陶瓷基板表面镀镍层厚度。
(1)配置质量百分比为10%的氢氧化钠水溶液,取氮化铝覆铝陶瓷基板产品完全浸入氢氧化钠溶液,碱洗3min后取出用纯水洗净;
(2)配置10%%硝酸水溶液,取步骤(1)中氮化铝覆铝陶瓷基板完全浸入硝酸溶液,酸洗90s后取出用纯水洗净,80℃下烘干;
(3)配置浸锌液:浸锌液包含10%NaOH、1.6%ZnO,其余为纯水,取步骤(2)中氮化铝覆铝陶瓷基板完全浸入浸锌液,浸锌时间为40s,取出洗净,浸入30%硝酸水溶液二次酸洗90s,再次取出用纯水洗净,置于浸锌液中二次浸锌30s,取出用纯水洗净,备用;
(4)表面镀镍:取步骤(3)中洗净的氮化铝覆铝陶瓷基板,采用化学镀工艺,在氮化铝覆铝陶瓷基板表面镀镍,化学镀镍液组成成分为25g/L的NiSO 4·7H 2O、36g/L的NaH 2PO 2·H 2O、12g/L的Na 3C 6H 5O 7·2H 2O,其余为纯水;控制pH值为4.5,镀镍反应条件为80℃下化学镀30min,镀镍层厚度为4.7μm,镀镍完成后用纯水洗净表面,得到氮化铝覆铝封装衬板。
实验
(1)取实施例1~3步骤(4)中氮化铝覆铝陶瓷基板,对比例1~2中氮化铝覆铝封装衬板,使用维氏硬度测试仪测量覆层表面硬度并计算平均值;
(2)取实施例1~3、对比例1~2中氮化铝覆铝封装衬板,使用表面粗糙度仪测量表面粗糙度并计算平均值,然后将实施例1~3、对比例1~2中氮化铝覆铝 封装衬板进行-55~150℃热循环测试,测试完成后再次测量其表面粗糙度并计算平均值。
实验(1)~(2)测试结果如下表1所示:
表1:覆铝陶瓷基板表面性能测试
  表面硬度(HV2) 热循环前粗糙度均值 热循环后粗糙度均值
实施例1 27.2 0.35 0.42
实施例2 29.5 0.34 0.43
实施例3 28.3 0.35 0.41
实施例4 29.6 0.34 0.40
对比例1 20.2 0.33 0.76
对比例2 21.4 0.32 0.74
可得,实施例1~4的表面粗糙Ra经热循环后增加约20%,对比例1~2中,样品经热循环后表面粗糙度Ra增加约130%;经热循环100次后轮廓度仪3D形貌表征所示,对比例1~2样品表面凹凸起伏度大,实施例1~4样品表面无明显凹凸起伏较为平滑;目视检查镀层均无开裂情况。
综上,在氮化铝覆铝陶瓷基板表面通过溅射镀铜及真空扩散烧结,在铝表面层引入微量铜元素,形成表层硬化层,然后再对其进行表面镀镍处理,降低了极端情况下器件工作时因高温导致的粗糙度激增、镀层开裂、引发器件失效的风险,进一步提高了氮化铝覆铝封装衬板的耐热循环可靠性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同 替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:具体操作步骤如下:
    (1)表面溅射镀铜:取氮化铝覆铝陶瓷基板进行表面清洗,然后镀铜,得到纳米级铜层的氮化铝覆铝陶瓷基板,镀铜层厚度为80~120nm;
    (2)扩散退火:取步骤(1)中纳米级铜层氮化铝覆铝陶瓷基板进行真空烧结,470~540℃下保温2~3h,随炉冷却至22~25℃;
    (3)表面镀镍:取步骤(2)中处理后的氮化铝覆铝陶瓷基板,二次浸锌后浸入化学镀镍液进行表面镀镍,镀镍层厚度为3.5~7μm。
  2. 根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(1)中,氮化铝覆铝陶瓷基板表面铝层厚度为0.2~0.6mm。
  3. 根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(1)中,镀铜工艺为表面溅射镀铜工艺,工作参数为:功率5KW,Ar流量30Sccm,溅射压力0.4Pa下溅射10min。
  4. 根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(1)中,表面清洗步骤为:
    A.配置10~20%氢氧化钠水溶液,取氮化铝覆铝陶瓷基板浸入碱洗3~5min,取出用纯水洗净;
    B.配置10~20%硝酸水溶液,取步骤A中氮化铝覆铝陶瓷基板浸入酸洗90~100s,取出用纯水洗净,80~120℃下烘干,备用。
  5. 根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(3)中,二次浸锌步骤为:取NaOH、ZnO配置浸锌液,NaOH质量分数为10%,ZnO质量分数为1.6%,其余为纯水,取步骤(2)中处理后的氮化铝覆铝陶瓷基板浸入,浸锌时间为40~45s,取出纯水洗净;浸入30%硝酸水溶液中二次酸洗90~100s,取出纯水洗净;置于浸锌液中二次浸锌30~35s,取出用纯水洗净,备用。
  6. 根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(2)中,扩散退火升温速度为1~3℃/min;退火后铝层表面维氏硬度为27~35HV1。
  7. 根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(3)中,表面镀镍工艺条件为80~85℃下化学镀20~60min。
  8. 根据权利要求1所述的一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法,其特征在于:步骤(3)中,化学镀镍液组成成分为25g/L的NiSO 4·7H 2O、36g/L的NaH 2PO 2·H 2O、12g/L的Na 3C 6H 5O 7·2H 2O,其余为纯水;其中化学镀镍液pH值为4.5~5.6。
PCT/CN2022/126137 2022-09-22 2022-10-19 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法 WO2024060342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211155745.6 2022-09-22
CN202211155745.6A CN115410925B (zh) 2022-09-22 2022-09-22 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法

Publications (1)

Publication Number Publication Date
WO2024060342A1 true WO2024060342A1 (zh) 2024-03-28

Family

ID=84166272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126137 WO2024060342A1 (zh) 2022-09-22 2022-10-19 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法

Country Status (2)

Country Link
CN (1) CN115410925B (zh)
WO (1) WO2024060342A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595535B (zh) * 2022-12-14 2024-02-09 江苏富乐华半导体科技股份有限公司 一种提高氮化铝覆铝陶瓷基板耐热循环可靠性的方法
CN116429817A (zh) * 2023-05-05 2023-07-14 江苏富乐华半导体科技股份有限公司 一种氮化铝覆铝陶瓷衬板热循环测试装置及方法
CN117161323B (zh) * 2023-09-07 2024-01-30 江苏富乐华半导体科技股份有限公司 一种衬板生产用成型模具及其成型方法
CN117756555B (zh) * 2023-12-22 2024-09-03 江苏富乐华半导体科技股份有限公司 一种高可靠性氮化铝覆铝基板的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301866A (ja) * 1988-01-29 1989-12-06 Tokin Corp 窒化アルミニウム表面に金属層を形成する方法
KR20050014186A (ko) * 2003-07-30 2005-02-07 한국생산기술연구원 마그네슘 합금에 대한 니켈 도금 방법
CN105937026A (zh) * 2016-06-25 2016-09-14 安徽柒柒塑业有限公司 一种铝合金化学镀镍的工艺
CN108265281A (zh) * 2018-02-11 2018-07-10 长春通行智能科技有限公司 一种铝合金复合材料及其制备方法
CN111364030A (zh) * 2020-04-07 2020-07-03 上海交通大学 一种改善铝基底化学镀NiP镀层平整性的前处理方法
CN112752414A (zh) * 2020-11-24 2021-05-04 贵研铂业股份有限公司 一种复合层氮化铝陶瓷电路板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887645B2 (ja) * 2005-07-19 2007-02-28 株式会社東芝 セラミックス回路基板の製造方法
KR101660520B1 (ko) * 2015-04-08 2016-09-29 한국생산기술연구원 구리 및 니켈의 연속 무전해 도금방법 및 이를 이용하여 제조된 도금층
CN112410742A (zh) * 2020-10-30 2021-02-26 东莞市烽元科技有限公司 一种在Al2O3陶瓷基体表面磁控溅射镀纳米级铜膜的方法
CN113501725B (zh) * 2021-07-21 2022-11-08 江苏富乐华半导体科技股份有限公司 一种覆铝陶瓷绝缘衬板的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301866A (ja) * 1988-01-29 1989-12-06 Tokin Corp 窒化アルミニウム表面に金属層を形成する方法
KR20050014186A (ko) * 2003-07-30 2005-02-07 한국생산기술연구원 마그네슘 합금에 대한 니켈 도금 방법
CN105937026A (zh) * 2016-06-25 2016-09-14 安徽柒柒塑业有限公司 一种铝合金化学镀镍的工艺
CN108265281A (zh) * 2018-02-11 2018-07-10 长春通行智能科技有限公司 一种铝合金复合材料及其制备方法
CN111364030A (zh) * 2020-04-07 2020-07-03 上海交通大学 一种改善铝基底化学镀NiP镀层平整性的前处理方法
CN112752414A (zh) * 2020-11-24 2021-05-04 贵研铂业股份有限公司 一种复合层氮化铝陶瓷电路板

Also Published As

Publication number Publication date
CN115410925B (zh) 2023-08-11
CN115410925A (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2024060342A1 (zh) 一种提高氮化铝覆铝封装衬板耐热循环可靠性的办法
TWI503419B (zh) Anodic oxidation treatment of aluminum alloy and anodized aluminum alloy components
KR100589815B1 (ko) 내부식성 및 내플라즈마성이 우수한 al 합금 부재
CN108588690B (zh) 一种金刚石-铝复合材料的化学镀镍方法
JP2003034894A (ja) 耐腐食性に優れたAl合金部材
EP0125352B1 (en) Zincating aluminium
WO2021114946A1 (zh) 一种微波介质陶瓷滤波器的表面处理方法
TWI824612B (zh) 金鈀金鍍膜結構及其製作方法
CN116103612A (zh) 一种氮化钛薄膜的制作方法
WO2018121219A1 (zh) 散热基板及其制备方法和应用以及电子元器件
CN113930733B (zh) 用于铁氧体加工的磁控溅射方法
CN115595535A (zh) 一种提高氮化铝覆铝陶瓷基板耐热循环可靠性的方法
KR101617677B1 (ko) 금속계 박막층과 세라믹 코팅층을 포함하는 고온 내식성이 향상된 복합 강판 및 이의 제조방법
CN111785643B (zh) 一种钛箔化学减薄方法
RU2347297C1 (ru) Способ монтажа кремниевых кристаллов на покрытую золотом поверхность
JP2014187072A (ja) パワーデバイス用ヒートシンクおよびその製造方法
CN117646214B (zh) 一种直接覆铝陶瓷基板蚀刻清洗方法
CN111593349B (zh) 一种用于制备超薄钛箔的化学铣切液及铣切方法
WO2018121216A1 (zh) 散热基板及其制备方法和应用以及电子元器件
CN117756555B (zh) 一种高可靠性氮化铝覆铝基板的制备方法
CN105132975B (zh) 一种提高铝硅组件镀覆镍金层结合力的方法
KR102201500B1 (ko) 세라믹 하우징 및 세라믹 기재의 도금 방법
TW555880B (en) Oxygen removal method of copper wire replacement deposition
JPH04255259A (ja) 半導体装置用リードフレーム
TW201428029A (zh) 聚二甲基矽氧烷溶膠,應用該聚二甲基矽氧烷溶膠對金屬基體進行表面處理的方法及製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959344

Country of ref document: EP

Kind code of ref document: A1