WO2024060258A1 - 箱体、电池及车辆 - Google Patents

箱体、电池及车辆 Download PDF

Info

Publication number
WO2024060258A1
WO2024060258A1 PCT/CN2022/121111 CN2022121111W WO2024060258A1 WO 2024060258 A1 WO2024060258 A1 WO 2024060258A1 CN 2022121111 W CN2022121111 W CN 2022121111W WO 2024060258 A1 WO2024060258 A1 WO 2024060258A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing
bearing plate
reinforcing beam
load
battery
Prior art date
Application number
PCT/CN2022/121111
Other languages
English (en)
French (fr)
Inventor
吴友鑫
王增忠
刘瑞堤
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280006393.XA priority Critical patent/CN116250141A/zh
Priority to PCT/CN2022/121111 priority patent/WO2024060258A1/zh
Priority to CN202223214334.8U priority patent/CN219086136U/zh
Publication of WO2024060258A1 publication Critical patent/WO2024060258A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a case, a battery and a vehicle.
  • Battery cells are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, electric tools, etc.
  • the battery cells may include cadmium-nickel battery cells, nickel-hydrogen battery cells, lithium-ion battery cells, secondary alkaline zinc-manganese battery cells, etc.
  • This application provides a box, a battery and a vehicle, which can improve the safety of the battery.
  • inventions of the present application provide a box for a battery.
  • the box body includes load-bearing plates and reinforcing beams.
  • the load-bearing plate is used to fix the battery cells.
  • the reinforcing beam is arranged on the side of the load-bearing plate away from the battery cell and is fixed to the load-bearing plate.
  • a reinforcing beam is provided on the side of the load-bearing plate facing away from the battery cell to improve the anti-extrusion ability of the load-bearing plate, reduce the deformation of the load-bearing plate when the battery is subjected to external impact, and reduce the crushing damage of the load-bearing plate reduce the risk of battery cells and improve battery safety.
  • the number of reinforcing beams includes multiple.
  • the impact force on the load-bearing plate can be dispersed to multiple reinforcing beams, thereby reducing the deformation of the load-bearing plate at multiple locations.
  • the positions of multiple reinforcing beams can be flexibly set according to the weak points of the load-bearing plate.
  • this technical solution can reduce the volume and weight of the reinforcing beams and increase the energy of the battery cells. density.
  • the plurality of reinforcing beams include a plurality of first reinforcing beams spaced apart along the first direction, and each first reinforcing beam extends along the second direction.
  • the thickness direction, the first direction and the second direction of the load-bearing plate intersect in pairs.
  • a plurality of first reinforcing beams can strengthen the stiffness of multiple areas of the load-bearing plate along the first direction, and each first reinforcing beam extending along the second direction can reduce the stiffness of the load-bearing plate along the second direction. deformation, thereby improving the overall anti-extrusion ability of the load-bearing plate, reducing the risk of the load-bearing plate crushing the battery cells, and improving the safety of the battery.
  • the plurality of reinforcing beams further include second reinforcing beams, and the second reinforcing beams connect adjacent first reinforcing beams.
  • the second reinforcing beam connects the adjacent first reinforcing beams.
  • the first reinforcing beam that receives the force can transmit the force to the adjacent third reinforcing beam through the second reinforcing beam. on the first reinforced beam, thereby effectively dispersing the force, reducing stress concentration, reducing the risk of deformation of the first reinforced beam and the risk of deformation of the load-bearing plate, and improving safety.
  • the second reinforcing beam can also strengthen the rigidity of the portion of the load-bearing plate located between the two first reinforcing beams and reduce the deformation of the load-bearing plate.
  • adjacent first reinforcing beams are connected by a plurality of second reinforcing beams.
  • a plurality of second reinforcing beams are arranged between adjacent first reinforcing beams to further enhance the anti-extrusion capability of the region of the load-bearing plate between two adjacent first reinforcing beams, reduce the risk of deformation of the load-bearing plate, and improve safety.
  • a ratio of a dimension of the first reinforcing beam along the second direction to a dimension of the bearing plate along the second direction is K, and K satisfies 0.5 ⁇ K ⁇ 1.
  • the smaller the value of K the smaller the size of the first reinforcing beam along the second direction, the less obvious the reinforcing effect of the first reinforcing beam on the load-bearing plate, and the higher the risk of deformation of the load-bearing plate.
  • the inventor found that limiting the value of K to greater than or equal to 0.5 can reduce the risk of deformation of the load-bearing plate.
  • the larger the value of K the larger the size of the first reinforcing beam along the second direction, the more obvious the reinforcing effect of the first reinforcing beam on the load-bearing plate, and the lower the risk of deformation of the load-bearing plate.
  • K the greater the value of K, the greater the weight and volume of the first reinforcing beam, and the lower the energy density of the battery.
  • limiting the value of K to less than or equal to 1 can reduce the risk of deformation of the load-bearing plate and reduce the loss of energy density of the battery.
  • the plurality of reinforcing beams also include a first reinforcing beam and a second reinforcing beam.
  • the first reinforcing beam is connected to the second reinforcing beam.
  • the first reinforcing beam extends along the second direction, and the second reinforcing beam Extend along the first direction.
  • the thickness direction, the first direction and the second direction of the load-bearing plate intersect in pairs.
  • the first reinforcing beam and the second reinforcing beam are arranged to intersect, which can increase the area of the load-bearing plate that is strengthened and reduce the deformation of the load-bearing plate.
  • the area of the load-bearing plate close to the connection of the first reinforcing beam and the second reinforcing beam can also be strengthened. effect.
  • the first reinforcement beam and the second reinforcement beam are integrally formed.
  • the first reinforced beam and the second reinforced beam are integrated as a whole, which can improve the overall stiffness of the first reinforced beam and the second reinforced beam and eliminate the need for the first reinforced beam and the second reinforced beam. Connection process to improve battery assembly efficiency.
  • the first reinforcing beam passes through the centerline of the load-bearing plate along the first direction.
  • the first reinforcing beam passes through the center of the load-bearing plate along the first direction to enhance the strength of the middle region of the load-bearing plate and reduce the risk of deformation of the middle region of the load-bearing plate.
  • the reinforcing beam includes a reinforcing part and connecting parts provided on both sides of the reinforcing part.
  • the connecting part is connected to the load-bearing plate, and the reinforcing part protrudes from a surface of the connecting part away from the load-bearing plate.
  • the reinforcing part protrudes from the connecting part, which can increase the size of the reinforcing beam in the thickness direction of the load-bearing plate, so that the reinforcing beam has higher strength and stiffness, thereby effectively limiting the deformation of the load-bearing plate.
  • the reinforcing beam is provided with a recess at a position corresponding to the reinforcing portion, and the recess is recessed relative to a surface of the connecting portion facing the load-bearing plate.
  • the recessed portion corresponding to the reinforced portion is provided on the reinforcing beam, which can reduce the weight of the reinforcing beam and thereby reduce the overall weight of the battery while ensuring that the overall strength of the reinforcing portion meets the requirements.
  • the reinforcing beam includes a plurality of reinforcing parts arranged at intervals, and adjacent reinforcing parts are connected through connecting parts.
  • the extrusion resistance of a single reinforcing beam can be increased.
  • Adjacent reinforcing parts are connected as a whole through connecting parts, so that there is only one or more reinforcing parts in the reinforcing beam.
  • the extrusion force can be dispersed to each reinforced part of the reinforced beam, thereby reducing the impact of the extrusion force on the reinforced beam.
  • the extrusion resistance of the reinforcing beam is further improved, thereby improving the overall strength of the box, and thereby improving the strength of the battery using the box.
  • a first frame is further included.
  • the first frame is connected to the carrier plate and is enclosed with the carrier plate to form a first cavity.
  • the battery cells are accommodated in the first cavity.
  • the reinforcing beam is connected to the first frame through fasteners.
  • a part of the reinforcing beam is connected to the first frame through fasteners, so that the reinforcing beam is not only fixedly connected to the load-bearing plate, but also fixedly connected to the first frame, thereby improving the stability of the reinforcing beam.
  • the load-bearing plate is squeezed or collided, part of the squeezing force or collision force can be transmitted to the reinforcing beam and the first frame through the load-bearing plate, dispersing the squeezing force or collision force of the load-bearing plate, further improving the overall stability of the box. strength.
  • a second frame is also included, and the second frame is disposed on a side of the carrier plate away from the battery cells and connected to the carrier plate.
  • the load-bearing plate and the second frame are enclosed to form a second cavity.
  • the battery includes a control unit accommodated in the second cavity, and the control unit is electrically connected to the battery cell.
  • a second frame that can store the control unit is provided on the load-bearing plate, thereby improving the integration level of the box and reducing the space occupied by the box in the vehicle.
  • the second frame can also disperse the impact force on the load-bearing plate and reduce the deformation of the load-bearing plate.
  • an end of the reinforcing beam facing away from the load-bearing plate does not exceed an end of the second frame facing away from the load-bearing plate.
  • the reinforcing beam and the second frame can share part of the space in the thickness direction, and the reinforcing beam does not additionally increase the maximum size of the battery in the thickness direction, thereby improving space utilization and the energy density of the battery.
  • the reinforcing beam is spaced apart from the second frame.
  • the reinforcing beam and the second frame are arranged at intervals, the risk of interference between the reinforcing beam and the second frame is reduced during the battery assembly process.
  • the second frame is used to protect the control unit. Setting the reinforcing beam and the second frame at intervals can reduce the force transmitted to the second frame and reduce the risk of the second frame deforming and squeezing the control unit.
  • an embodiment of the present application provides a battery, including a battery cell; and a plurality of boxes according to any embodiment of the first aspect, the box being used to accommodate the battery cells.
  • an embodiment of the present application provides a vehicle, including the battery of the embodiment of the second aspect, and the battery is used to provide electric energy.
  • the reinforcing beams are cross beams or longitudinal beams of the vehicle.
  • the reinforcing beam integrated on the battery can not only improve the overall rigidity of the battery, but also save the use of the vehicle center beam, reduce the superposition excess of the vehicle strength design, reduce the weight of the vehicle, and improve the integration of the vehicle.
  • the battery cells are located on the underside of the carrier plate; and an end of the battery cells away from the carrier plate is provided with a pressure relief mechanism.
  • the battery cell when the battery cell undergoes thermal runaway, the battery cell can release the high-temperature and high-pressure substances in the battery cell to the side away from the vehicle through the pressure relief mechanism, thereby reducing the risk of high-temperature and high-temperature substances harming the vehicle and passengers. risks and improve safety.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of a box provided by some embodiments of the present application.
  • Figure 4 is a schematic top structural view of a box provided by some embodiments of the present application.
  • Figure 5 is a schematic top structural view of a box provided by some embodiments of the present application.
  • FIG6 is an enlarged schematic diagram of the box shown in FIG4 at the circular frame Q;
  • Figure 7 is a schematic side structural view of a box provided by some embodiments of the present application.
  • X first direction
  • Y second direction
  • Z thickness direction
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can be a fixed connection
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • connection can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediate medium; it can be internal communication between two components.
  • “Plural” appearing in this application means two or more (including two).
  • battery cells may include lithium ion secondary battery cells, lithium ion primary battery cells, lithium sulfur battery cells, sodium lithium ion battery cells, sodium ion battery cells or magnesium ion battery cells, etc.
  • the embodiments of the present application are not limited to this.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cells of the battery are usually fixed to the load-bearing plate of the box.
  • the load-bearing plate will be subject to a larger force.
  • the load-bearing plate may deform due to insufficient rigidity, causing the load-bearing plate to crush the battery cells. risk to the body, thereby causing the risk of battery thermal runaway.
  • an embodiment of the present application provides a technical solution, in which the battery box includes a load-bearing plate and a reinforcing beam.
  • the load-bearing plate is used to fix the battery cell.
  • the reinforcing beam is arranged on the side of the load-bearing plate away from the battery cell and is fixed to the load-bearing plate.
  • This technical solution sets a reinforcing beam on the side of the load-bearing plate facing away from the battery cells to improve the extrusion resistance of the load-bearing plate, reduce the deformation of the load-bearing plate when the battery is subjected to external impact, and reduce the crushing of the battery cells by the load-bearing plate. risk and improve battery safety.
  • Electrical devices can be vehicles, cell phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • a battery 2000 is disposed inside the vehicle 1000, and the battery 2000 may be disposed at the bottom, head, or tail of the vehicle 1000.
  • the battery 2000 may be used to power the vehicle 1000, for example, the battery 2000 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may also include a controller 3000 and a motor 4000.
  • the controller 3000 is used to control the battery 2000 to provide power to the motor 4000, for example, to meet the power requirements for starting, navigation and driving of the vehicle 1000.
  • the battery 2000 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • Figure 2 is an exploded schematic diagram of a battery provided by some embodiments of the present application.
  • the battery 2000 includes a box 2010 and a battery cell 2020 .
  • the battery cell 2020 is accommodated in the box 2010 .
  • the battery cell 2020 may be one or multiple. If there are multiple battery cells 2020, the multiple battery cells 2020 can be connected in series, in parallel, or in mixed connection. Mixed connection means that the multiple battery cells 2020 are connected in series and in parallel. Multiple battery cells 2020 can be directly connected in series, parallel, or mixed together, and then the whole composed of multiple battery cells 2020 can be accommodated in the box 2010; of course, multiple battery cells 2020 can also be connected in series first. They may be connected in parallel or mixed to form a battery module, and multiple battery modules may be connected in series, parallel or mixed to form a whole, and be accommodated in the box 2010 .
  • FIG. 3 is a schematic diagram of the structure of a box provided in some embodiments of the present application.
  • the box 2010 in the embodiment of the present application is used for batteries.
  • the box 2010 includes a load-bearing plate 1 and a reinforcing beam 2 .
  • the carrying plate 1 is used to fix the battery cells 2020.
  • the reinforcing beam 2 is disposed on the side of the carrier plate 1 away from the battery cells 2020 and is fixed to the carrier plate 1 .
  • the embodiment of the present application does not limit the fixing method of the battery cell 2020 and the carrier plate 1 .
  • the battery cells 2020 can be fixed to the carrier plate 1 by bonding, snapping or other methods.
  • the material of the load-bearing plate 1 includes steel, aluminum, composite materials or other materials.
  • the embodiment of the present application does not limit the number, position and shape of the reinforcing beams 2 .
  • the reinforcing beam may be in a straight line, a curve, or other shapes.
  • the reinforcing beam 2 can be provided in the middle area of the load-bearing plate 1 , or can be provided in the edge area of the load-bearing plate 1 , or can be provided in both the middle area and the edge area of the load-bearing plate 1 .
  • the embodiment of the present application does not limit the extended size of the reinforcing beam 2 .
  • the size of the reinforcing beam 2 may be larger than, smaller than, or equal to the size of the load-bearing plate 1 .
  • the reinforcing beam 2 and the load-bearing plate 1 may be two components provided separately, and the two components may be connected by welding, threading, snapping, bonding or other means. In other examples, the reinforcing beam 2 and the load-bearing plate 1 may also be an integral structure.
  • the reinforcing beam 2 can be a solid structure or a hollow structure.
  • the reinforcing beam 2 and the bearing plate 1 may be made of the same material or different materials.
  • the compressive strength of the material of the reinforcing beam 2 is greater than the compressive strength of the material of the bearing plate 1 .
  • the reinforcing beam 2 fixed to the load-bearing plate 1 can limit the deformation of the load-bearing plate 1, improve the anti-extrusion capability of the load-bearing plate 1, and reduce the risk of crushing the battery by the load-bearing plate 1. Reduce the risk of monomers and improve battery safety.
  • the number of the reinforcing beam 2 includes a plurality.
  • the shapes and sizes of different reinforcing beams 2 may be the same or different.
  • the extension directions of the two reinforcing beams 2 may be the same or different.
  • the two reinforcing beams 2 may be connected or spaced apart.
  • the shape of the two reinforcing beams 2 may be They may or may not be the same.
  • the impact force received by the load-bearing plate 1 can be dispersed to multiple reinforcing beams 2 , thereby reducing the deformation of the load-bearing plate 1 at multiple locations.
  • the positions of the multiple reinforcing beams 2 can be flexibly set according to the weak points of the load-bearing plate 1.
  • the embodiment of the present application can reduce the volume and weight of the reinforcing beams 2 and improve the battery life.
  • the energy density of the monomer is compared with the integral reinforcing beams that cover scattered weak points at the same time.
  • the plurality of reinforcing beams 2 includes a plurality of first reinforcing beams 21 spaced apart along the first direction X, and each first reinforcing beam 21 extends along the second direction Y.
  • the thickness direction of the load-bearing plate 1, the first direction X and the second direction Y intersect in pairs.
  • the plurality of first reinforcing beams 21 may be arranged at equal intervals or at unequal intervals.
  • the dimensions of the two first reinforcing beams 21 along the second direction Y may be the same or different.
  • the embodiment of the present application does not limit the size of the first reinforcing beam 21 extending along the second direction Y.
  • the first reinforcing beam 21 may extend along the second direction Y to one or both sides of the two opposite edges of the load-bearing plate 1 along the second direction Y.
  • the first reinforcing beam 21 may extend from the edge of the load-bearing plate 1 to the center of the load-bearing plate 1 along the second direction Y.
  • first reinforcing beams 21 may be arranged side by side along the second direction Y on the load-bearing plate 1 . It should be noted that neither the length of the first reinforcing beam 21 extending along the second direction Y nor the sum of the lengths of the plurality of first reinforcing beams 21 extending along the second direction Y after the first reinforcing beams 21 are arranged side by side can be exceeds the length of the load bearing plate 1 along the second direction Y.
  • multiple first reinforcing beams 21 can strengthen the rigidity of multiple areas of the load-bearing plate 1 along the first direction X, and each first reinforcing beam 21 extending along the second direction Y can reduce the load-bearing capacity.
  • the deformation of the plate 1 along the second direction Y thereby improves the overall anti-extrusion ability of the load-bearing plate, reduces the risk of the load-bearing plate crushing the battery cells, and improves the safety of the battery.
  • the thickness direction of the carrier plate 1 , the first direction X and the second direction Y are perpendicular to each other.
  • Figure 4 is a schematic top view of the box provided by some embodiments of the present application.
  • the plurality of reinforcing beams 2 also include second reinforcing beams 22 , and the second reinforcing beams 22 connect adjacent first reinforcing beams 21 .
  • the second reinforcing beam 22 may extend along the first direction X, thereby connecting two adjacent first reinforcing beams 21 . In other examples of this embodiment, the second reinforcing beam 22 may extend in a direction that is at a predetermined angle with the first direction X, thereby connecting the two first reinforcing beams 21 .
  • the material of the first reinforcing beam 21 and the second reinforcing beam 22 may be the same. In other examples, the materials of the first reinforcing beam 21 and the second reinforcing beam 22 may be different.
  • the shape of the first reinforcing beam 21 and the shape of the second reinforcing beam 22 may be the same.
  • the size of the first reinforcing beam 21 and the size of the second reinforcing beam 22 may be the same.
  • the second reinforcing beam 22 may be provided with a clamping portion of a different shape than the first reinforcing beam 21 so that the first reinforcing beam 21 and the second reinforcing beam 22 respectively clamp different vehicle components.
  • the sizes of the multiple reinforcing beams 22 may be different; the shapes of the multiple reinforcing beams 2 may be different.
  • the second reinforcing beam 22 can be fixedly connected to the load-bearing plate 1 through bolts, welding, bonding, etc.
  • the second reinforcing beam 22 connects the adjacent first reinforcing beams 21.
  • the first reinforcing beam 21 subjected to the force can transfer the force to the adjacent first reinforcing beam 21 through the second reinforcing beam 22, thereby effectively dispersing the force, reducing stress concentration, reducing the risk of deformation of the first reinforcing beam 21 and the risk of deformation of the load-bearing plate, and improving safety.
  • the second reinforcing beam 22 can also strengthen the rigidity of the portion of the load-bearing plate 1 located between the two first reinforcing beams 21, reducing the deformation of the load-bearing plate 1.
  • any two adjacent first reinforcing beams 21 are connected by a second reinforcing beam 22 .
  • adjacent first reinforcing beams 21 are connected through a plurality of second reinforcing beams 22 .
  • a plurality of second reinforcing beams 22 are provided between adjacent first reinforcing beams 21 to further enhance the crush resistance of the area of the load-bearing plate 1 between the two adjacent first reinforcing beams 21 . pressure capacity, reducing the risk of deformation of the load-bearing plate 1 and improving safety.
  • the ratio of the size of the first reinforcing beam 21 along the second direction Y to the size of the load-bearing plate 1 along the second direction Y is K, and K satisfies 0.5 ⁇ K ⁇ 1.
  • the value of K may be 0.5, 0.6, 0.7, 0.8, 0.9 or 1.
  • K The smaller the value of K, the smaller the size of the first reinforcing beam 21 along the second direction Y, the less obvious the reinforcing effect of the first reinforcing beam 21 on the load-bearing plate 1 , and the higher the risk of deformation of the load-bearing plate 1 .
  • the inventor found that limiting the value of K to greater than or equal to 0.5 can reduce the risk of deformation of the load-bearing plate 1 .
  • the greater the value of K the greater the weight and volume of the first reinforcing beam 21, and the lower the energy density of the battery.
  • Figure 5 is a schematic top view of a box provided in some embodiments of the present application.
  • the plurality of reinforcing beams 2 also include a first reinforcing beam 21 and a second reinforcing beam 22.
  • the first reinforcing beam 21 and the second reinforcing beam 22 are connected and arranged.
  • the beam 21 extends along the second direction Y
  • the second reinforcing beam 22 extends along the first direction X.
  • the thickness direction of the load-bearing plate 1, the first direction X and the second direction Y intersect in pairs.
  • the number of the first reinforcing beam 21 is one, and the number of the second reinforcing beam 22 is one.
  • the first reinforcing beam 21 is located on the load-bearing plate 1 and extends along the second direction Y, and the second reinforcing beam 22 is one.
  • One end of the beam 22 is connected to the first reinforcing beam 21 , and the other end of the second reinforcing beam 22 can extend to the edge of the load-bearing plate 1 or to a preset area of the load-bearing plate 1 .
  • the first reinforcing beam 21 and the second reinforcing beam 22 are arranged to intersect, which can increase the reinforced area of the load-bearing plate 1 and reduce the deformation of the load-bearing plate 1 .
  • the connection of the load-bearing plate 1 close to the first reinforcing beam 21 and the second reinforcing beam 22 The area can also be strengthened.
  • the first reinforcing beam 21 and the second reinforcing beam 22 are integrally formed.
  • first reinforcing beam 21 and the second reinforcing beam 22 are formed as a whole, which can improve the overall rigidity of the first reinforcing beam 21 and the second reinforcing beam 22 and eliminate the need for the first reinforcing beam 21 and the second reinforcing beam 22 .
  • the first reinforcing beam 21 passes through the center line E1 of the load-bearing plate 1 along the first direction X.
  • the first reinforcing beam 21 is symmetrically arranged along the center line E1 of the first direction X.
  • the size of the portion of the first reinforcing beam 21 located on one side of the center line E1 along the first direction X may be larger than the size of the portion of the first reinforcing beam 21 located on the other side of the center line E1 along the first direction X. size.
  • the middle area of the load-bearing plate 1 is more easily deformed than the edge area of the load-bearing plate 1 .
  • the first reinforcing beam 21 passes through the center of the load-bearing plate 1 along the first direction
  • Figure 6 is an enlarged schematic view of the box shown in Figure 4 at the circular frame Q.
  • the reinforcing beam 2 includes a reinforcing portion 23 and connecting portions 24 provided on both sides of the reinforcing portion 23.
  • the connecting portion 24 is connected to the load-bearing plate 1, and the reinforcing portion 23 protrudes from the connecting portion 24. The surface facing away from the load bearing plate 1.
  • connection portion 24 is fixed to the support plate 1 by bolts, welding, bonding, clamping or the like.
  • the connecting part 24 and the reinforcing part 23 may be an integrally formed structure, or may be connected by bolts, welding, bonding, snapping, etc.
  • the number of the reinforcing part 23 may be one or more.
  • the reinforcing portion 23 protrudes from the connecting portion 24, which can increase the size of the reinforcing beam 2 in the thickness direction of the load-bearing plate 1, so that the reinforcing beam 2 has higher strength and stiffness, thereby effectively limiting the Deformation of the load-bearing plate.
  • the reinforcing beam 2 is provided with a recess 25 at a position corresponding to the reinforcing portion 23 , and the recess 25 is recessed relative to the surface of the connecting portion 24 facing the load-bearing plate 1 .
  • the reinforcing portion 23 is a portion protruding from the connecting portion 24, and the recessed portion 25 is located on the side of the reinforcing portion 23 facing the load-bearing plate 1, and is formed by the surface of the connecting portion 24 facing the load-bearing plate 1 being recessed. It can be understood that the recessed portion 25 reduces the thickness of the reinforcing portion 23. In some examples of this embodiment, the recessed shape of the recessed portion 25 matches the protruding shape of the reinforcing portion 23, so that the reinforcing portion 23 is a thin-walled structure, and the weight of the reinforcing beam 2 can be reduced as much as possible while ensuring the overall strength of the reinforcing portion 23.
  • the recess 25 on the reinforcing beam 2 penetrates the reinforcing beam 2 along the extending direction of the reinforcing beam 2 . In other examples of this embodiment, the recess 25 on the reinforcing beam 2 extends to a preset position of the reinforcing beam 2 along the extension direction of the reinforcing beam 2 . In other examples of this embodiment, a plurality of recesses 25 may be provided on the reinforcing beam 2 along the extending direction.
  • the recessed portion 25 corresponding to the reinforced portion 23 is provided on the reinforcing beam 2, which can reduce the weight of the reinforcing beam 2 and thereby reduce the battery life while ensuring that the overall strength of the reinforcing portion 23 meets the requirements. Overall weight.
  • the reinforcing beam 2 includes a plurality of spaced apart reinforcing parts 23 , and adjacent reinforcing parts 23 are connected through connecting parts 24 .
  • one reinforcing beam 2 may include a plurality of spaced apart reinforcing parts 23 .
  • a first reinforcing beam 21 includes a plurality of reinforcing parts 23 spaced apart along the first direction Reinforcement beam 21.
  • the connecting portion 24 between two adjacent reinforcing portions 23 can be shared, that is, a connecting portion 24 is provided between two adjacent reinforcing portions 23, and this connecting portion 24 can connect the adjacent reinforcing portions 23.
  • the two reinforcing parts 23 are connected as a whole, and the two reinforcing parts 23 may also be fixedly connected to the bearing plate 1 .
  • the plurality of reinforcing parts 23 on one reinforcing beam 2 may have different sizes and shapes.
  • the minimum spacing between the plurality of reinforcing parts 23 may also be different.
  • the compression resistance of a single reinforcing beam 2 can be increased, and adjacent reinforcing portions 23 are connected as a whole via connecting portions 24, so that when only one or more reinforcing portions 23 in the reinforcing beam 2 are subjected to external compression force, the compression force can be transmitted to the reinforcing portion 23 that is not subjected to the compression force via the connecting portion 24, and the compression force is dispersed to each reinforcing portion 23 of the reinforcing beam 2, thereby reducing the effect of the compression force on the reinforcing beam 2, further improving the compression resistance of the reinforcing beam 2, thereby improving the overall strength of the box body 2010, and further improving the strength of the battery using the box body 2010.
  • Figure 7 is a schematic side structural view of a box provided by some embodiments of the present application.
  • the box 2010 also includes a first frame 26.
  • the first frame 26 is connected to the carrier plate 1 and enclosed with the carrier plate 1 to form a first cavity.
  • the battery cells 2020 housed in the first cavity.
  • the reinforcing beam 2 is connected to the first frame 26 through fasteners.
  • the first frame 26 may be surrounded by multiple side beams, and the multiple side beams are fixed to each other to ensure the connection strength of the first frame 26 .
  • the shape enclosed by the first frame 26 includes a square, a rectangle, a circle, or other shapes.
  • a part of the reinforcing beam 2 is connected to the first frame 26 through fasteners, so that the reinforcing beam 2 is not only fixedly connected to the load-bearing plate 1, but also fixedly connected to the first frame 26, thereby improving the strength.
  • part of the extrusion force or collision force can be transferred to the reinforcing beam 2 and the first frame 26 through the load-bearing plate 1, dispersing the squeeze of the load-bearing plate 1. force or collision force, further improving the overall strength of the box 2010.
  • the box 2010 further includes a second frame 27 .
  • the second frame 27 is disposed on the side of the carrier plate 1 away from the battery cells 2020 and is connected to the carrier plate 1 .
  • the carrying plate 1 and the second frame 27 are enclosed to form a second cavity.
  • the battery 2000 includes a control unit accommodated in the second cavity, and the control unit is electrically connected to the battery cell 2020 .
  • the second frame 27 is located on a side of the carrier plate 1 facing away from the battery cells 2020 , and the second frame 27 is surrounded by a plurality of side walls.
  • the material of the side walls can be the same as the material of the carrier plate 1 .
  • Multiple control units can be placed in the second frame 27 , and the control units control the battery cells 2020 on the other side of the carrier plate 1 .
  • the second frame 27 can be fixed on the bearing plate 1 , or can be integrally formed with the bearing plate 1 . And part of the side wall of the second frame 27 can be fixedly connected to part of the structure of the first frame 26 through fasteners.
  • a second frame 27 for storing the control unit is provided on the carrier plate 1, so as to improve the integration of the box 2010 and reduce the space occupied by the box 2010 in the vehicle.
  • the second frame 27 can also disperse the impact force on the carrier plate 1 and reduce the deformation of the carrier plate.
  • control unit includes a high voltage box.
  • the end of the reinforcing beam 2 facing away from the load-bearing plate 1 does not exceed the end of the second frame 27 facing away from the load-bearing plate 1 .
  • the maximum dimension of the reinforcing beam 2 is smaller than the maximum dimension of the second frame 27 .
  • the reinforcing beam 2 and the second frame 27 can share part of the space in the thickness direction Z.
  • the reinforcing beam 2 will not additionally increase the maximum size of the battery in the thickness direction Z, thereby improving space utilization. and battery energy density.
  • the reinforcing beam 2 is spaced apart from the second frame 27 .
  • the reinforcing beam 2 and the second frame 27 are arranged at intervals, the risk of interference between the reinforcing beam 2 and the second frame 27 is reduced during the battery assembly process.
  • the second frame 27 is used to protect the control unit. Setting the reinforcing beam 2 and the second frame 27 at intervals can reduce the force transmitted to the second frame 27 and reduce the deformation and extrusion of the control unit. risks of.
  • the present application also provides a battery 2000, including a battery cell 2020, and a plurality of boxes 2010 of the battery 2000 of any of the above embodiments.
  • the box 2010 is used to accommodate the battery cells 2020.
  • the present application also provides a vehicle 1000, including the battery 2000 of the above embodiment, and the battery 2000 is used to provide electric energy.
  • the reinforcing beam 2 is a cross beam or a longitudinal beam of the vehicle 1000 .
  • the reinforcing beam 2 integrated on the battery can not only improve the overall stiffness of the battery, but also save the use of the center beam of the vehicle 1000, reduce the superposition of the vehicle strength design, reduce the weight of the vehicle, and improve the vehicle's strength. Integration.
  • the battery cells 2020 are located on the underside of the carrier plate 1 .
  • a pressure relief mechanism 2030 is provided at one end of the battery cell 2020 away from the load bearing plate 1 .
  • the battery 2000 is installed on the vehicle 1000, and the battery cell 2020 is located on the lower side of the carrier plate 1.
  • the carrier plate 1 is located on the side close to the vehicle 1000, and the battery cell 2020 is fixed on the carrier plate 1.
  • a pressure relief mechanism 2030 is provided at one end of the battery cell 2020 facing away from the load-bearing plate 1.
  • the battery cell 2020 can use the pressure relief mechanism 2030 to remove the high-temperature and high-pressure substances in the battery cell 2020. Released to the side away from the vehicle 1000, thereby reducing the risk of high-temperature substances harming the vehicle and passengers and improving safety.
  • the load plate 1 is fixed to the chassis of the vehicle.
  • the load-bearing plate 1 is fixed to the chassis of the vehicle by fasteners.
  • the poles and the pressure relief mechanism 2030 of the battery cell face downwards, which can share the bottom hitting space at the bottom of the box and improve the volume utilization of the battery.
  • the present application provides a box 2010.
  • Box 2010 is used for batteries.
  • the box 2010 includes a load-bearing plate 1 and a reinforcing beam 2 .
  • the load-bearing plate 1 is used to fix the battery cells 2020 .
  • the reinforcing beam 2 is disposed on the side of the carrier plate 1 away from the battery cells 2020 and is fixed to the carrier plate 1 .
  • the number of reinforcing beams 2 is multiple, and at least part of the reinforcing beams 2 is extended along a predetermined direction on the load-bearing plate 1 .
  • the application also provides a vehicle 1000.
  • the vehicle 1000 includes a battery 2000, and the battery 2000 includes a box 2010 for accommodating battery cells 2020.
  • the reinforcing beams 2 on the box 2010 can be replaced by cross beams or longitudinal beams on the vehicle 1000.

Abstract

本申请提供一种箱体、电池及车辆。箱体用于电池。箱体包括承载板和加强梁。承载板用于固定电池单体。加强梁设置于承载板背离电池单体的一侧并固定于承载板。本申请通过在承载板背向电池单体的一侧设置加强梁,以提高承载板的抗挤压能力,在电池受到外部冲击时减小承载板的变形,降低承载板压伤电池单体的风险,提高电池的安全性。

Description

箱体、电池及车辆 技术领域
本申请涉及电池技术领域,并且更具体地,涉及一种箱体、电池及车辆。
背景技术
电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。电池单体可以包括镉镍电池单体、氢镍电池单体、锂离子电池单体和二次碱性锌锰电池单体等。
在电池技术的发展中,如何改善电池的安全性,一直是电池技术中的一个研究方向。
发明内容
本申请提供了一种箱体、电池及车辆,其能提高电池的安全性。
第一方面,本申请实施例提供了一种箱体,用于电池。箱体包括承载板和加强梁。承载板用于固定电池单体。加强梁设置于承载板背离电池单体的一侧并固定于承载板。
在上述技术方案中,通过在承载板背向电池单体的一侧设置加强梁,以提高承载板的抗挤压能力,在电池受到外部冲击时减小承载板的变形,降低承载板压伤电池单体的风险,提高电池的安全性。
在一些实施方式中,加强梁的数量包括多个。
在上述技术方案中,在电池受到外部冲击时,承载板受到的冲击力可以分散到多个加强梁上,从而减小承载板在多个位置的变形。多个加强梁的位置可以根据承载板的薄弱点灵活设置,相较于同时覆盖分散的薄弱点的整体式加强梁,本技术方案可以减小加强梁的体积和重量,提高电池单体的能量密度。
在一些实施方式中,多个加强梁包括沿第一方向间隔设置的多个第一加强梁,各第一加强梁沿第二方向延伸。承载板的厚度方向、第一方向和第二方向两两相交。
在上述技术方案中,多个第一加强梁可以加强承载板沿第一方向的多个区域的刚度,沿第二方向延伸的每个第一加强梁均可以减小承载板的沿第二方向的变形,从而提高承载板整体的抗挤压能力,降低承载板压伤电池单体的风险,提高电池的安全性。
在一些实施方式中,多个加强梁还包括第二加强梁,第二加强梁连接相邻的第一加强梁。
在上述技术方案中,第二加强梁将相邻的第一加强梁连接,当电池受到外部冲击时,受到作用力的第一加强梁能够通过第二加强梁将作用力传递至相邻的第一加强梁上,从而有效地分散作用力,降低应力集中,减小第一加强梁变形的风险和承载板变形的风险,提高安全性。第二加强梁还能够加强承载板的位于两个第一加强梁之间的部分的刚度,减小承载板的变形。
在一些实施方式中,相邻的第一加强梁通过多个第二加强梁相连。
在上述技术方案中,在相邻的第一加强梁之间设置多个第二加强梁,进一步增强承载板的位于相邻的两个第一加强梁之间的区域的抗挤压能力,降低承载板变形的风险,提高安全性。
在一些实施方式中,第一加强梁沿第二方向的尺寸与承载板沿第二方向的尺寸之比为K,K满足0.5≤K≤1。
在上述技术方案中,K的值越小,第一加强梁沿第二方向的尺寸越小,第一加强梁对承载板的加强作用越不明显,承载板变形的风险越高。发明人在经过深入的研究和大量的实验之后发现,将K的值限定为大于或等于0.5,可降低承载板变形的风险。K的值越大,第一加强梁沿第二方向的尺寸越大,第一加强梁对承载板的加强作用越明显,承载板变形的风险越低。但是,K的值越大,第一加强梁的重量和体积越大,电池的能量密度越低。发明人在经过深入的研究和大量的实验之后发现,将K的值限定为小于或等于1,可降低承载板变形的风险,并减少电池的能量密度的损失。
在一些实施方式中,多个加强梁还包括一个第一加强梁和一个第二加强梁,第一加强梁与第二加强梁连接设置,第一加强梁沿第二方向延伸,第二加强梁沿第一方向延伸。承载板的厚度方向、第一方向和第二方向两两相交。
在上述技术方案中,将第一加强梁和第二加强梁相交设置,可以增大承载板的受到加强作用的区域,减小承载板的变形。例如,除了承载板的连接于第一加强梁的区域和承载板的连接于第二加强梁的区域外,承载板的靠近第一加强梁和第二加强梁的连接处的区域也可以受到加强作用。
在一些实施方式中,第一加强梁和第二加强梁一体成型。
在上述技术方案中,将第一加强梁和第二加强梁为一个整体,这样可以提高第一加强梁和第二加强梁构成的整体的刚度,省去第一加强梁和第二加强梁的连接工艺,提高电池的装配效率。
在一些实施方式中,第一加强梁经过承载板沿第一方向的中线。
在上述技术方案中,当承载板受力时,承载板的中部区域相较于承载板的边缘区域更容易变形。本技术方案使第一加强梁经过承载板沿第一方向的中心,以加强承载板中部区域的强度,减小承载板中部区域变形的风险。
在一些实施方式中,加强梁包括加强部和设置于加强部两侧的连接部,连接部连接于承载板,加强部凸出于连接部的背离承载板的表面。
在上述技术方案中,加强部凸出于连接部,这样可以增大加强梁在承载板的厚度方向的尺寸,以使加强梁具有更高的强度和刚度,进而有效地限制承载板的变形。
在一些实施方式中,加强梁在与加强部相对应的位置设有凹部,凹部相对于连 接部的面向承载板的表面凹陷。
在上述技术方案中,在加强梁上设置与加强部对应的凹部,可以在使加强部的整体强度的满足需求的前提下,减小加强梁的重量,进而减小电池的整体重量。
在一些实施方式中,加强梁包括多个间隔设置的加强部,相邻的加强部通过连接部连接。
在上述技术方案中,通过设置多个加强部,可增加单一加强梁的抗挤压能力,相邻的加强部之间通过连接部连接为一个整体,使得加强梁中只有一个或多个加强部受到外部挤压力时,可以通过连接部传递至未受到挤压力的加强部上,将挤压力分散到加强梁的每个加强部中,从而减小挤压力对加强梁的影响,进一步提高加强梁的抗挤压能力,从而提高箱体的整体强度,进而提高采用该箱体的电池的强度。
在一些实施方式中,还包括第一框体,第一框体连接于承载板并与承载板围合形成第一腔体,电池单体容纳于第一腔体。加强梁通过紧固件连接于第一框体。
在上述技术方案中,加强梁的一部分通过紧固件连接在第一框体上,使得加强梁不仅与承载板固定连接,还与第一框体固定连接,从而提高了加强梁的稳定性,在承载板受到的挤压或碰撞时,部分挤压力或碰撞力可以通过承载板传递至加强梁和第一框体,分散承载板受到的挤压力或碰撞力,进一步提高箱体的整体强度。
在一些实施方式中,还包括第二框体,第二框体设置于承载板背离电池单体的一侧并连接于承载板。承载板和第二框体围合形成第二腔体。电池包括容纳于第二腔体的控制单元,控制单元电连接于电池单体。
在上述技术方案中,在承载板上设置可以存放控制单元的第二框体,提高箱体的集成程度,减小箱体在整车中所占用的空间。在电池受到外部冲击时,第二框体还能够分散承载板受到的冲击力,减小承载板的变形。
在一些实施方式中,在承载板的厚度方向上,加强梁背离承载板的一端不超出第二框体背离承载板的一端。
在上述技术方案中,加强梁和第二框体可以在厚度方向上共用部分的空间,加强梁不会额外增大电池在厚度方向上的最大尺寸,从而提高空间利用率和电池的能量密度。
在一些实施方式中,加强梁与第二框体间隔设置。
在上述技术方案中,通过使加强梁与第二框体间隔设置,以在电池装配的过程中,降低加强梁与第二框体干涉的风险。第二框体用于保护控制单元,将加强梁与第二框体间隔设置,可减小传递至第二框体的作用力,降低第二框体变形、挤压控制单元的风险。
第二方面,本申请实施例提供了一种电池,包括电池单体;以及多个第一方面任一实施方式的箱体,箱体用于容纳电池单体。
第三方面,本申请实施例提供了一种车辆,包括第二方面实施方式的电池,电池用于提供电能。
在一些实施方式中,加强梁为车辆的横梁或纵梁。
在上述技术方案中,集成在电池上的加强梁既可以提高电池整体的刚度,还可 以节省车辆中梁的使用,减少车辆强度设计的叠加过剩,减小车辆的重量,提高车辆的集成度。
在一些实施方式中,电池单体位于承载板的下侧;电池单体背离承载板的一端设有泄压机构。
在上述技术方案中,当电池单体出现热失控时,电池单体可以通过泄压机构将电池单体体内的高温高压物质释放到远离车辆的一侧,从而降低高温高温物质危害车辆和乘客的风险,提高安全性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸示意图;
图3为本申请一些实施例提供的箱体的结构示意图;
图4为本申请一些实施例提供的箱体的俯视结构示意图;
图5为本申请又一些实施例提供的箱体的俯视结构示意图;
图6为图4所示的箱体在圆框Q处的放大示意图;
图7为本申请一些实施例提供的箱体的侧视结构示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1000、车辆;2000、电池;2010、箱体;2020、电池单体;2030、泄压机构;3000、控制器;4000、马达;
1、承载板;
2、加强梁;21、第一加强梁;22、第二加强梁;E1、中线;23、加强部;24、连接部;25、凹部;26、第一框体;27、第二框体
X、第一方向;Y、第二方向;Z、厚度方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为 了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
在相关技术中,电池的电池单体通常固定到箱体的承载板上。发明人注意到,承载板需要承受电池单体的重量,当电池受到外部冲击时,承载板会受到较大的作用力,承载板可能会因为刚性不足而出现变形,引发承载板压伤电池单体的风险,进而造成电池热失控的风险。
鉴于此,本申请实施例提供了一种技术方案,在该技术方案中,电池的箱体包括承载板和加强梁。承载板用于固定电池单体。加强梁设置于承载板背离电池单体的一侧并固定于承载板。
该技术方案通过在承载板背向电池单体的一侧设置加强梁,以提高承载板的抗挤压能力,在电池受到外部冲击时减小承载板的变形,降低承载板压伤电池单体的风 险,提高电池的安全性。
本申请实施例描述的技术方案适用于电池以及使用电池的用电装置。
用电装置可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一些实施例提供的车辆的结构示意图。
如图1所示,车辆1000的内部设置有电池2000,电池2000可以设置在车辆1000的底部或头部或尾部。电池2000可以用于车辆1000的供电,例如,电池2000可以作为车辆1000的操作电源。
车辆1000还可以包括控制器3000和马达4000,控制器3000用来控制电池2000为马达4000供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2000不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
图2为本申请一些实施例提供的电池的爆炸示意图。
如图2所示,电池2000包括箱体2010和电池单体2020,电池单体2020容纳于箱体2010内。
在电池2000中,电池单体2020可以是一个,也可以是多个。若电池单体2020为多个,多个电池单体2020之间可串联或并联或混联,混联是指多个电池单体2020中既有串联又有并联。多个电池单体2020之间可直接串联或并联或混联在一起,再将多个电池单体2020构成的整体容纳于箱体2010内;当然,也可以是多个电池单体2020先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体2010内。
图3为本申请一些实施例提供的箱体的结构示意图。
如图3所示,本申请实施例的箱体2010用于电池。箱体2010包括承载板1和加强梁2。承载板1用于固定电池单体2020。加强梁2设置于承载板1背离电池单体2020的一侧并固定于承载板1。
本申请实施例不限制电池单体2020与承载板1的固定方式。示例性地,电池单体2020可以通过粘接、卡接或其它方式固定于承载板1。
承载板1的材料包括钢材、铝材、复合材料或其它材料。
本申请实施例不限制加强梁2的数量、位置和形状。示例性地,加强梁2可以为一个,也可以为多个。示例性地,加强梁可以为直线形、曲线形或其它形状。
示例性地,加强梁2可以设置于承载板1的中部区域,也可以设置于承载板1的边缘区域,还可以同时设置于承载板1的中部区域和边缘区域。
本申请实施例不限制加强梁2延伸的尺寸。例如,在加强梁2的延伸方向上,加强梁2的尺寸可以大于、小于或等于承载板1的尺寸。
在一些示例中,加强梁2与承载板1可以是分开提供的两种部件,两种部件可通过焊接、螺纹连接、卡接、粘接或其它方式连接。在另一些示例中,加强梁2与承载板1也可为一体形成结构。
加强梁2可以是实心结构,也可以是空心结构。
加强梁2和承载板1可以由相同的材料制成,也可以由不同的材料制成。示例性地,加强梁2的材料的抗压强度大于承载板1的材料的抗压强度。
在本申请实施例中,在电池单体受到外部冲击时,固定于承载板1的加强梁2能够限制承载板1的变形,提高承载板1的抗挤压能力,降低承载板1压伤电池单体的风险,提高电池的安全性。
在一些实施例中,如图3所示,加强梁2的数量包括多个。
不同的加强梁2的形状、尺寸可以相同,也可以不相同。示例性地,对于任意两个加强梁2,这两个加强梁2的延伸方向可以相同也可以不相同,这两个加强梁2可以连接也可以间隔设置,这两个加强梁2的形状可以相同也可以不相同。
在本实施例中,在电池受到外部冲击时,承载板1受到的冲击力可以分散到多个加强梁2上,从而减小承载板1在多个位置的变形。多个加强梁2的位置可以根据承载板1的薄弱点灵活设置,相较于同时覆盖分散的薄弱点的整体式加强梁,本申请实施例可以减小加强梁2的体积和重量,提高电池单体的能量密度。
在一些实施例中,如图3所示,多个加强梁2包括沿第一方向X间隔设置的多个第一加强梁21,各第一加强梁21沿第二方向Y延伸。承载板1的厚度方向,第一方向X和第二方向Y两两相交。
在第一方向X上,多个第一加强梁21可以等间隔设置,也可以不等间隔设置。对于相邻的两个第一加强梁21,两个第一加强梁21沿第二方向Y的尺寸可以相同,也可以不相同。
本申请实施例不限制第一加强梁21沿第二方向Y延伸的尺寸。在本实施例的一些示例中,第一加强梁21可以沿第二方向Y延伸至承载板1沿第二方向Y相对的两侧边缘中的一侧边缘或两侧边缘。第一加强梁21可以沿第二方向Y由承载板1的边缘延伸至承载板1的中心。
在本实施例的另一些示例中,第一加强梁21可以在承载板1上沿第二方向Y并排设置多个。需要说明的是,第一加强梁21沿第二方向Y延伸的长度以及第一加强梁21沿第二方向Y并排后多个第一加强梁21沿第二方向Y延伸的长度之和均不能超过承载板1沿第二方向Y的长度。
在本申请实施例中,多个第一加强梁21可以加强承载板1沿第一方向X的多个区域的刚度,沿第二方向Y延伸的每个第一加强梁21均可以减小承载板1的沿第二方向Y的变形,从而提高承载板整体的抗挤压能力,降低承载板压伤电池单体的风险, 提高电池的安全性。
在一些实施例中,承载板1的厚度方向、第一方向X和第二方向Y两两垂直。
图4为本申请一些实施例提供的箱体的俯视结构示意图
在一些实施例中,如图4所示,多个加强梁2还包括第二加强梁22,第二加强梁22连接相邻的第一加强梁21。
在本实施例的一些示例中,第二加强梁22可以沿第一方向X延伸,从而连接相邻的两个第一加强梁21。在本实施例的另一些示例中,第二加强梁22可以沿与第一方向X呈预定角度的方向延伸,从而连接相信的两个第一加强梁21。
在一些示例中,第一加强梁21的材料与第二加强梁22的材料可以相同。在另一些示例中,第一加强梁21的材料与第二加强梁22的材料可以相异。
在一些示例中,第一加强梁21的形状与第二加强梁22的形状可以相同。在另一些示例中第一加强梁21的尺寸与第二加强梁22的尺寸可以相同。在又一些示例中,第二加强梁22上可以设置与第一加强梁21不同形状的卡固部,以便第一加强梁21与第二加强梁22分别卡固不同的整车部件。
需要说明的是,第二加强梁22的数量为多个时,多个加强梁2之间的尺寸可以相异;多个加强梁2之间的形状可以相异。
在一些示例中,第二加强梁22可以通过螺栓、焊接、粘接等方式与承载板1固定连接。
在本实施例中,第二加强梁22将相邻的第一加强梁21连接,当电池受到外部冲击时,受到作用力的第一加强梁21能够通过第二加强梁22将作用力传递至相邻的第一加强梁21上,从而有效地分散作用力,降低应力集中,减小第一加强梁21变形的风险和承载板变形的风险,提高安全性。第二加强梁22还能够加强承载板1的位于两个第一加强梁21之间的部分的刚度,减小承载板1的变形。
在一些实施例中,任意两个相邻的第一加强梁21通过第二加强梁22相连接。
在一些实施例中,如图4所示,相邻的第一加强梁21通过多个第二加强梁22相连。
在本实施例中,在相邻的第一加强梁21之间设置多个第二加强梁22,进一步增强承载板1的位于相邻的两个第一加强梁21之间的区域的抗挤压能力,降低承载板1变形的风险,提高安全性。
在一些实施例中,第一加强梁21沿第二方向Y的尺寸与承载板1沿第二方向Y的尺寸之比为K,K满足0.5≤K≤1。示例性地,K的值可为0.5、0.6、0.7、0.8、0.9或1。
K的值越小,第一加强梁21沿第二方向Y的尺寸越小,第一加强梁21对承载板1的加强作用越不明显,承载板1变形的风险越高。发明人在经过深入的研究和大量的实验之后发现,将K的值限定为大于或等于0.5,可降低承载板1变形的风险。
K的值越大,第一加强梁21沿第二方向Y的尺寸越大,第一加强梁21对承载板1的加强作用越明显,承载板1变形的风险越低。但是,K的值越大,第一加强梁21的重量和体积越大,电池的能量密度越低。发明人在经过深入的研究和大量的实验 之后发现,将K的值限定为小于或等于1,可降低承载板1变形的风险,并减少电池的能量密度的损失。
图5为本申请又一些实施例提供的箱体的俯视结构示意图
在一些实施例中,如图5所示,多个加强梁2还包括一个第一加强梁21和一个第二加强梁22,第一加强梁21与第二加强梁22连接设置,第一加强梁21沿第二方向Y延伸,第二加强梁22沿第一方向X延伸。承载板1的厚度方向,第一方向X和第二方向Y两两相交。
在本实施例的一些示例中,第一加强梁21的数量为一个,第二加强梁22的数量为一个,第一加强梁21位于承载板1上且沿第二方向Y延伸,第二加强梁22的一端与第一加强梁21连接,第二加强梁22的另一端可以延伸至承载板1的边缘,也可以延伸至承载板1的预设区域。
在本实施例中,将第一加强梁21和第二加强梁22相交设置,可以增大承载板1的受到加强作用的区域,减小承载板1的变形。例如,除了承载板1的连接于第一加强梁21的区域和承载板1的连接于第二加强梁22的区域外,承载板1的靠近第一加强梁21和第二加强梁22的连接处的区域也可以受到加强作用。
在一些实施例中,第一加强梁21和第二加强梁22一体成型。
在本实施例中,第一加强梁21和第二加强梁22为一个整体,这样可以提高第一加强梁21和第二加强梁22构成的整体的刚度,省去第一加强梁21和第二加强梁22的连接工艺,提高电池2000的装配效率。
在一些实施例中,如图5所示,第一加强梁21经过承载板1沿第一方向X的中线E1。
在一些示例中,第一加强梁21沿第一方向X的中线E1对称设置。在另一些示例中,第一加强梁21位于沿第一方向X的中线E1的一侧的部分的尺寸可大于第一加强梁21位于沿第一方向X的中线E1的另一侧的部分的尺寸。
当承载板1受力时,承载板1的中部区域相较于承载板1的边缘区域更容易变形。本申请实施例使第一加强梁21经过承载板1沿第一方向X的中心,以加强承载板1中部区域的强度,减小承载板1中部区域变形的风险。
图6为图4所示的箱体在圆框Q处的放大示意图。
在一些实施例中,如图6所示,加强梁2包括加强部23和设置于加强部23两侧的连接部24,连接部24连接于承载板1,加强部23凸出于连接部24的背离承载板1的表面。
连接部24通过螺栓、焊接、粘接以及卡接等方式与承载板1固定。
连接部24与加强部23可以为一体成型结构,也可以通过螺栓、焊接、粘接以及卡接等方式连接。
加强部23可以是一个,也可以是多个。
在本实施例中,加强部23凸出于连接部24,这样可以增大加强梁2在承载板1的厚度方向的尺寸,以使加强梁2具有更高的强度和刚度,进而有效地限制承载板的变形。
在一些实施例中,请继续参阅图6,加强梁2在与加强部23相对应的位置设有凹部25,凹部25相对于连接部24的面向承载板1的表面凹陷。
在一些示例中,加强部23是凸出于连接部24的部分,凹部25是位于加强部23朝向承载板1的一侧,并且由连接部24朝向承载板1的表面凹陷形成。可以理解的是,凹部25会使加强部23的厚度减小。在本实施例的一些示例中,凹部25的凹陷形状与加强部23的凸出形状匹配,使得加强部23为薄壁结构,在保证加强部23的整体强度的前提下,可以尽可能的减轻加强梁2的重量。
在本实施例的一些示例中,加强梁2上的凹部25沿加强梁2的延伸方向贯穿加强梁2。在本实施例的另一些示例中,加强梁2上的凹部25沿加强梁2的延伸方向延伸至加强梁2的预设位置。在本实施例的另一些示例中,加强梁2上可以沿延伸方向设置多个凹部25。
在本实施例中,在加强梁2上设置与加强部23对应的凹部25,可以在使加强部23的整体强度的满足需求的前提下,减小加强梁2的重量,进而减小电池的整体重量。
在一些实施例中,请继续参阅图5和图6,加强梁2包括多个间隔设置的加强部23,相邻的加强部23通过连接部24连接。
在本实施例的一些示例中,一个加强梁2上可以包括多个间隔设置的加强部23。示例性地,在一个第一加强梁21上包括沿第一方向X间隔设置的多个加强部23,相邻加强部23之间通过连接部24连接,使得多个加强部23为一个第一加强梁21。可以理解的是,相邻两个加强部23之间的连接部24可以是共用的,即相邻两个加强部23之间设置一个连接部24,这一个连接部24既可以将相邻的两个加强部23连接为一个整体,也可以将这两个加强部23固定连接在承载板1上。
在一些示例中,一个加强梁2上的多个加强部23可以具有不同的尺寸和形状。这多个加强部23之间的最小间距也可以是不同的。
在本实施例中,通过设置多个加强部23,可增加单一加强梁2的抗挤压能力,相邻的加强部23之间通过连接部24连接为一个整体,使得加强梁2中只有一个或多个加强部23受到外部挤压力时,可以通过连接部24传递至未受到挤压力的加强部23上,将挤压力分散到加强梁2的每个加强部23中,从而减小挤压力对加强梁2的影响,进一步提高加强梁2的抗挤压能力,从而提高箱体2010的整体强度,进而提高采用该箱体2010的电池的强度。
图7为本申请一些实施例提供的箱体的侧视结构示意图。
在一些实施例中,如图7所示,箱体2010还包括第一框体26,第一框体26连接于承载板1并与承载板1围合形成第一腔体,电池单体2020容纳于第一腔体。加强梁2通过紧固件连接于第一框体26。
在一些示例中,第一框体26可以由多个边梁围合形成,多个边梁之间互相固定,以保证第一框体26的连接强度。
在一些示例中,第一框体26围合形成的形状包括正方形、矩形、圆形或其他形状。
在本实施例中,加强梁2的一部分通过紧固件连接在第一框体26上,使得加强梁2不仅与承载板1固定连接,还与第一框体26固定连接,从而提高了加强梁2的稳定性,在承载板1受到的挤压或碰撞时,部分挤压力或碰撞力可以通过承载板1传递至加强梁2和第一框体26,分散承载板1受到的挤压力或碰撞力,进一步提高箱体2010的整体强度。在一些实施例中,请继续参阅图7,箱体2010还包括第二框体27,第二框体27设置于承载板1背离电池单体2020的一侧并连接于承载板1。承载板1和第二框体27围合形成第二腔体。电池2000包括容纳于第二腔体的控制单元,控制单元电连接于电池单体2020。
在一些示例中,第二框体27位于承载板1背向电池单体2020的一侧,第二框体27由多个侧壁围合形成。侧壁的材料可以和承载板1的材料相同。在第二框体27中可以放置多个控制单元,由控制单元控制承载板1另一侧的电池单体2020。可以理解的是第二框体27可以固定在承载板1上,也可以与承载板1一体成型。并且第二框体27的部分侧壁可以通过紧固件与第一框体26的部分结构固定连接。
在本实施例中,在承载板1上设置可以存放控制单元的第二框体27,提高箱体2010的集成程度,减小箱体2010在整车中所占用的空间。在电池受到外部冲击时,第二框体27还能够分散承载板1受到的冲击力,减小承载板的变形。
在一些实施例中,控制单元包括高压盒。
在一些实施例中,请继续参阅图7,在承载板1的厚度方向Z上,加强梁2背离承载板1的一端不超出第二框体27背离承载板1的一端。
在承载板1的厚度方向Z上,加强梁2的最大尺寸小于第二框体27的最大尺寸。
在本申请实施例中,加强梁2和第二框体27可以在厚度方向Z上共用部分的空间,加强梁2不会额外增大电池在厚度方向Z上的最大尺寸,从而提高空间利用率和电池的能量密度。
在一些实施例中,如图7所示,加强梁2与第二框体27间隔设置。
在本实施例中,通过使加强梁2与第二框体27间隔设置,以在电池装配的过程中,降低加强梁2与第二框体27干涉的风险。第二框体27用于保护控制单元,将加强梁2与第二框体27间隔设置,可减小传递至第二框体27的作用力,降低第二框体27变形、挤压控制单元的风险。
在一些实施例中,本申请还提供了一种电池2000,包括电池单体2020,以及多个以上任一实施例的电池2000的箱体2010,箱体2010用于容纳电池单体2020。
在一些实施例中,本申请还提供了一种车辆1000,包括以上实施例的电池2000,电池2000用于提供电能。
在一些实施例中,加强梁2为车辆1000的横梁或纵梁。
在本实施例中,集成在电池上的加强梁2既可以提高电池整体的刚度,还可以节省车辆1000中梁的使用,减少车辆强度设计的叠加过剩,减小车辆的的重量,提高车辆的集成度。
在一些实施例中,如图2所示,电池单体2020位于承载板1的下侧。电池单体 2020背离承载板1的一端设有泄压机构2030。
在本实施例中,电池2000安装在车辆1000上,电池单体2020是位于承载板1的下侧的,换言之,承载板1位于靠近车辆1000的一侧,电池单体2020固定在承载板1上,在电池单体2020背向承载板1的一端设置泄压机构2030,当电池单体2020出现热失控时,电池单体2020可以通过泄压机构2030将电池单体2020体内的高温高压物质释放到远离车辆1000的一侧,从而降低高温高温物质危害车辆和乘客的风险,提高安全性。
在一些实施例中,承载板1固定到车辆的底盘上。示例性地,承载板1通过紧固件固定到车辆的底盘上。
在一些实施例中,电池单体的极柱和泄压机构2030朝下,可共用箱体底部的底部球击空间,提高电池的体积利用率。
在一些实施例中,参照图2和图3,本申请提供了一种箱体2010。箱体2010用于电池。箱体2010包括承载板1和加强梁2,承载板1用于固定电池单体2020。加强梁2设置于承载板1背离电池单体2020的一侧并固定于承载板1。加强梁2的数量为多个,并且至少部分加强梁2沿预定方向延伸设置在承载板1上。本申请还提供了一种车辆1000。车辆1000包括电池2000,电池2000包括用于容纳电池单体2020的箱体2010,可以用车辆1000上的横梁或纵梁取代箱体2010上的加强梁2。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围

Claims (20)

  1. 一种箱体(2010),用于电池,包括:
    承载板(1),用于固定电池单体(2020);
    加强梁(2),设置于所述承载板(1)背离所述电池单体(2020)的一侧并固定于所述承载板(1)。
  2. 根据权利要求1所述的箱体(2010),其中,所述加强梁(2)的数量包括多个。
  3. 根据权利要求2所述的箱体(2010),其中,多个所述加强梁(2)包括沿第一方向(X)间隔设置的多个第一加强梁(21),各所述第一加强梁(21)沿第二方向延伸(Y);
    所述承载板(1)的厚度方向(Z)、所述第一方向(X)和所述第二方向(Y)两两相交。
  4. 根据权利要求3所述的箱体(2010),其中,多个所述加强梁(2)还包括第二加强梁(22),所述第二加强梁(22)连接相邻的所述第一加强梁(21)。
  5. 根据权利要求4所述的箱体(2010),其中,相邻的所述第一加强梁(21)通过多个所述第二加强梁(22)相连。
  6. 根据权利要求3-5任一项所述的箱体(2010),其中,所述第一加强梁(21)沿所述第二方向(Y)的尺寸与所述承载板(1)沿所述第二方向(Y)的尺寸之比为K,K满足0.5≤K≤1。
  7. 根据权利要求2所述的箱体(2010),其中,多个所述加强梁(2)包括一个第一加强梁(21)和一个第二加强梁(22),所述第一加强梁(21)与所述第二加强梁(22)连接设置,所述第一加强梁(21)沿第二方向(Y)延伸,所述第二加强梁(22)沿第一方向(X)延伸;
    所述承载板(1)的厚度方向(Z)、所述第一方向(X)和所述第二方向(Y)两两相交。
  8. 根据权利要求4-7任一项所述的箱体(2010),其中,所述第一加强梁(21)和所述第二加强梁(22)一体成型。
  9. 根据权利要求3-8任一项所述的箱体(2010),其中,所述第一加强梁(21) 经过所述承载板(1)沿所述第一方向(X)的中线(E1)。
  10. 根据权利要求1-9任一项所述的箱体(2010),其中,所述加强梁(2)包括加强部(23)和设置于所述加强部(23)两侧的连接部(24),所述连接部(24)连接于所述承载板(1),所述加强部(23)凸出于所述连接部(24)的背离所述承载板(1)的表面。
  11. 根据权利要求10所述的箱体(2010),其中,所述加强梁(2)在与所述加强部(23)相对应的位置设有凹部(25),所述凹部(25)相对于所述连接部(24)的面向所述承载板(1)的表面凹陷。
  12. 根据权利要求10或11所述的箱体(2010),其中,所述加强梁(2)包括多个间隔设置的所述加强部(23),相邻的所述加强部(23)通过所述连接部(24)连接。
  13. 根据权利要求1-12任一项所述的箱体(2010),还包括第一框体(26),所述第一框体(26)连接于所述承载板(1)并与所述承载板(1)围合形成第一腔体,所述电池单体(2020)容纳于所述第一腔体;
    所述加强梁(2)通过紧固件连接于所述第一框体(26)。
  14. 根据权利要求1-13任一项所述的箱体(2010),还包括第二框体(27),所述第二框体(27)设置于所述承载板(1)背离所述电池单体(2020)的一侧并连接于所述承载板(1);
    所述承载板(1)和所述第二框体(27)围合形成第二腔体;
    电池包括容纳于所述第二腔体的控制单元,所述控制单元电连接于所述电池单体(2020)。
  15. 根据权利要求14所述的箱体(2010),其中,在所述承载板(1)的厚度方向(Z)上,所述加强梁(2)背离所述承载板(1)的一端不超出所述第二框体(27)背离所述承载板(1)的一端。
  16. 根据权利要求14所述的箱体(2010),其中,所述加强梁(2)与所述第二框体(27)间隔设置。
  17. 一种电池,包括:
    电池单体(2020);以及
    如权利1-16任一项所述的箱体(2010),所述箱体(2010)用于容纳所述电池单体(2020)。
  18. 一种车辆(1000),包括根据权利要求17所述的电池,所述电池用于提供电能。
  19. 根据权利要求18所述的车辆(1000),其中,所述加强梁(2)为所述车辆(1000)的横梁或纵梁。
  20. 根据权利要求18所述的车辆(1000),其中,所述电池单体(2020)位于所述承载板(1)的下侧;所述电池单体(2020)背离所述承载板(1)的一端设有泄压机构(2030)。
PCT/CN2022/121111 2022-09-23 2022-09-23 箱体、电池及车辆 WO2024060258A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280006393.XA CN116250141A (zh) 2022-09-23 2022-09-23 箱体、电池及车辆
PCT/CN2022/121111 WO2024060258A1 (zh) 2022-09-23 2022-09-23 箱体、电池及车辆
CN202223214334.8U CN219086136U (zh) 2022-09-23 2022-12-01 箱体、电池及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121111 WO2024060258A1 (zh) 2022-09-23 2022-09-23 箱体、电池及车辆

Publications (1)

Publication Number Publication Date
WO2024060258A1 true WO2024060258A1 (zh) 2024-03-28

Family

ID=86402884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121111 WO2024060258A1 (zh) 2022-09-23 2022-09-23 箱体、电池及车辆

Country Status (2)

Country Link
CN (2) CN116250141A (zh)
WO (1) WO2024060258A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211858719U (zh) * 2020-03-30 2020-11-03 威睿电动汽车技术(宁波)有限公司 一种抗挤压电池包箱体、电池包及车辆
CN213007644U (zh) * 2020-04-24 2021-04-20 北京汽车股份有限公司 车辆侧护板结构以及车辆
CN216720172U (zh) * 2022-01-14 2022-06-10 宁德时代新能源科技股份有限公司 电池挂载机构及用电装置
CN216793854U (zh) * 2021-11-04 2022-06-21 北京车和家汽车科技有限公司 边梁、电池包及车辆
CN217281026U (zh) * 2022-06-08 2022-08-23 宁德时代新能源科技股份有限公司 电池箱体、电池以及用电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211858719U (zh) * 2020-03-30 2020-11-03 威睿电动汽车技术(宁波)有限公司 一种抗挤压电池包箱体、电池包及车辆
CN213007644U (zh) * 2020-04-24 2021-04-20 北京汽车股份有限公司 车辆侧护板结构以及车辆
CN216793854U (zh) * 2021-11-04 2022-06-21 北京车和家汽车科技有限公司 边梁、电池包及车辆
CN216720172U (zh) * 2022-01-14 2022-06-10 宁德时代新能源科技股份有限公司 电池挂载机构及用电装置
CN217281026U (zh) * 2022-06-08 2022-08-23 宁德时代新能源科技股份有限公司 电池箱体、电池以及用电装置

Also Published As

Publication number Publication date
CN116250141A (zh) 2023-06-09
CN219086136U (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
EP4044345B1 (en) Battery, electric apparatus, and method for manufacturing battery
US20220013851A1 (en) Pressure relief mechanism, battery box, battery cell, battery, preparation method and apparatus
CN216389633U (zh) 端板、电池模块、电池及用电设备
WO2023134479A1 (zh) 电池和用电设备
US20240097280A1 (en) Battery cell, battery, power consumption device, apparatus and method of manufacturing battery cell
WO2024060258A1 (zh) 箱体、电池及车辆
US20230344064A1 (en) Battery and power consumption device
WO2023207617A1 (zh) 采样组件、电池及用电装置
CN217114624U (zh) 电池及用电装置
WO2024021071A1 (zh) 电池的箱体、电池以及用电装置
WO2023134540A1 (zh) 电池包及电池包下箱体
CN218827511U (zh) 防护件、电池以及用电装置
CN217158339U (zh) 冷却装置、电池及用电装置
WO2024021054A1 (zh) 电池的箱体、电池以及用电装置
CN216698608U (zh) 电池和用电设备
CN212011061U (zh) 端板、电池模块、电池组及使用电池模块作为电源的装置
CN219476859U (zh) 电池箱体、电池以及用电装置
CN217788629U (zh) 用于电池的箱体、电池以及用电装置
WO2024021068A1 (zh) 电池箱体、电池以及用电装置
CN214848914U (zh) 一种电池模组与电池包
CN219436061U (zh) 电池的束缚件、电池及用电装置
CN219017779U (zh) 电池单体、电池及用电设备
WO2024065640A1 (zh) 电池的箱体、电池、用电设备、制备箱体的方法和设备
CN219979702U (zh) 电池箱、电池及用电装置
CN220753611U (zh) 箱体、电池以及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959260

Country of ref document: EP

Kind code of ref document: A1