WO2024060097A1 - 终端定位方法及装置 - Google Patents

终端定位方法及装置 Download PDF

Info

Publication number
WO2024060097A1
WO2024060097A1 PCT/CN2022/120358 CN2022120358W WO2024060097A1 WO 2024060097 A1 WO2024060097 A1 WO 2024060097A1 CN 2022120358 W CN2022120358 W CN 2022120358W WO 2024060097 A1 WO2024060097 A1 WO 2024060097A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
terminal
delay
base station
delay variation
Prior art date
Application number
PCT/CN2022/120358
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/120358 priority Critical patent/WO2024060097A1/zh
Priority to CN202280003312.0A priority patent/CN115777221A/zh
Publication of WO2024060097A1 publication Critical patent/WO2024060097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a terminal positioning method and device.
  • Satellite communication refers to communication carried out by radio communication equipment on the ground using satellites as relays.
  • the satellite communication system consists of the satellite part and the ground part.
  • the characteristics of satellite communication are: large communication range; communication can be carried out from any two points as long as it is within the coverage of the radio waves emitted by the satellite; it is not easily affected by land disasters (high reliability). Satellite communication is a supplement to the current terrestrial cellular communication system. It is foreseeable that in future wireless communication systems, satellite communication systems and terrestrial cellular communication systems will gradually achieve deep integration, truly realizing the intelligent connection of all things.
  • the terminal needs to maintain uplink synchronization based on Global Navigation Satellite System (GNSS) measurements and some auxiliary information.
  • GNSS Global Navigation Satellite System
  • current standardization discussions have determined the introduction of delay parameters to compensate for transmission delays.
  • the terminal needs to report location information. The terminal can obtain its own location information based on its own GNSS measurement and report it to the network side.
  • the location information obtained by the terminal based on GNSS has some unreliable factors (such as false location information reported by the terminal, false location information of the terminal).
  • GNSS information is tampered with, etc.), which can easily lead to inaccurate terminal positioning.
  • the network side can provide location information to verify whether the location information reported by the terminal is reliable.
  • the location information of the terminal can be obtained through Multi-Round Trip Time (Multi-RTT).
  • Multi-RTT Multi-Round Trip Time
  • the present disclosure provides a terminal positioning method and device, which can reduce the positioning error of the terminal and accurately obtain the location information of the terminal.
  • a first aspect embodiment of the present disclosure provides a terminal positioning method, the method is executed by a base station, and the method includes:
  • the location of the terminal is determined based on the round-trip delay.
  • determining the first delay variation of the feeder link corresponding to the terminal includes:
  • the delay difference is determined as the first delay variation of the feeder link corresponding to the terminal.
  • the method further includes:
  • the sum of the delay variations of the first delay variation and the second delay variation is determined, and the sum of the delay variations is used to determine the round-trip delay from the base station to the terminal.
  • the method further includes:
  • the method further includes:
  • Satellite indication information is sent to the terminal, where the satellite indication information includes second configuration information of the target satellite, and the second configuration information includes information that determines the operating trajectory and operating speed of the target satellite.
  • the method further includes:
  • the method further includes:
  • the second indication signaling is used to indicate the correspondence between the uplink RS transmission information and the second delay variation, where the second indication signaling is a high-layer signaling or physical layer signaling;
  • the uplink RS transmission information includes one of the following:
  • a second aspect embodiment of the present disclosure provides a terminal positioning method, the method is executed by the terminal, and the method includes:
  • the method further includes:
  • Receive satellite indication information sent by the base station includes second configuration information of the target satellite, and the second configuration information includes information that determines the operating trajectory and operating speed of the target satellite;
  • the second delay variation is determined according to the time interval between the downlink RS reception and the uplink RS transmission, and the satellite indication information.
  • determining the time interval between receiving a downlink RS and sending an uplink RS includes:
  • the signal transmission time of the uplink RS is determined among multiple preset transmission times, and the time interval between receiving the downlink RS and transmitting the uplink RS is determined based on the signal transmission time and the signal reception time. .
  • the method further includes:
  • First configuration information sent by the base station is received, where the first configuration information includes multiple preset sending times for sending uplink RSs.
  • reporting the second delay variation regarding the service link to the base station includes:
  • the second delay variation is explicitly reported to the base station through an uplink channel indicated by the uplink resource, where the uplink channel is an uplink control channel or an uplink data channel.
  • the method further includes:
  • a first indication signaling sent by the base station is received, where the first indication signaling is used to indicate an uplink resource for sending an uplink RS.
  • reporting the second delay variation regarding the service link to the base station includes:
  • the second delay variation is implicitly reported to the base station according to the uplink RS transmission information.
  • determining the correspondence between the uplink RS transmission information and the second delay variation includes:
  • the second indication signaling is used to indicate the correspondence between the uplink RS transmission information and the second delay variation.
  • the second indication signaling is a high layer Signaling or physical layer signaling;
  • the uplink RS transmission information includes one of the following:
  • implicitly reporting the second delay variation to the base station according to the uplink RS transmission information includes:
  • the second delay variation is implicitly reported.
  • a third embodiment of the present disclosure provides a terminal positioning device, which includes:
  • a processing module used to determine the first delay variation of the feeder link corresponding to the terminal
  • a receiving module configured to receive the second delay variation reported by the terminal regarding the service link
  • the processing module is also used for:
  • the location of the terminal is determined based on the round-trip delay.
  • a fourth embodiment of the present disclosure provides a terminal positioning device, which includes:
  • a sending module configured to report a second delay variation regarding the service link to the base station, where the second delay variation is used to determine the round-trip delay from the base station to the device.
  • a fifth aspect embodiment of the present disclosure provides a communication device.
  • the communication device includes: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to control the transceiver by executing computer-executable instructions on the memory.
  • wireless signal transceiver and can implement the method as in the embodiment of the first aspect or the embodiment of the second aspect of the present disclosure.
  • a sixth embodiment of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the computer-executable instructions can implement the first embodiment or the third aspect of the present disclosure.
  • a sixth embodiment of the present disclosure provides a communication system, including a base station and a terminal.
  • the base station includes the terminal positioning device of the third embodiment
  • the terminal includes the terminal positioning device of the fourth embodiment.
  • Embodiments of the present disclosure provide a terminal positioning method and device, which can calculate the delay changes on the feeder link and the service link when the satellite is moving rapidly, and determine the round-trip delay from the base station to the terminal through the delay changes. , and achieve accurate positioning of the terminal based on the round-trip delay, reducing terminal positioning errors caused by rapid movement of satellites.
  • Figure 1 is a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure
  • Figure 2 is a schematic flow chart of a terminal positioning method according to an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of a process of a terminal positioning method according to an embodiment of the present disclosure.
  • FIG7 is a timing diagram of a terminal positioning method according to an embodiment of the present disclosure.
  • Figure 8 is a block diagram of a terminal positioning device according to an embodiment of the present disclosure.
  • Figure 9 is a block diagram of a terminal positioning device according to an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • the terminal In satellite communication systems, due to the long signal transmission distance between the sending end and the receiving end, data transmission takes a long time. For transmissions with uplink and downlink relationships, current standardization discussions have determined the introduction of delay parameters to compensate for transmission delays. In order to determine the delay parameters, the terminal needs to report location information.
  • the terminal can obtain its own position information based on its own Global Navigation Satellite System (GNSS) measurement and report it to the network side.
  • GNSS Global Navigation Satellite System
  • the position information obtained by the terminal based on GNSS has some unreliable factors ( For example, if the terminal reports false location information, the terminal's GNSS information is tampered with, etc.), the terminal positioning may not be accurate enough.
  • the network side can provide location information to verify whether the location information reported by the terminal is reliable.
  • the location information of the terminal can be obtained through Multi-Round Trip Time (Multi-RTT).
  • Multi-RTT Multi-Round Trip Time
  • the rapid movement of the satellite will lead to relatively large positioning errors, making it impossible to reduce the positioning error of the terminal and to accurately obtain the position information of the terminal.
  • the present disclosure proposes a terminal positioning method and device, which can reduce the positioning error of the terminal and accurately obtain the location information of the terminal.
  • Figure 1 shows a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure. As shown in Figure 1, the method should be performed by the base station and may include the following steps.
  • Step 101 Determine the first delay variation of the feeder link corresponding to the terminal, and receive the second delay variation of the service link reported by the terminal.
  • the terminal is the terminal equipment (User Equipment, UE) to be positioned
  • the feed link is the communication link between the satellite and the ground base station
  • the service link is the communication link between the satellite and the terminal.
  • the base station when determining the delay variation caused by satellite movement on the terminal, can be used to determine the first delay variation of the feeder link corresponding to the terminal, and the terminal can be used to determine the second delay related to the service link.
  • the terminal reports the second delay change to the base station, so that the base station can position the terminal based on the first delay change of the feeder link and the second delay change of the service link.
  • Step 102 Determine the round-trip delay from the base station to the terminal based on the first delay variation and the second delay variation, and determine the location of the terminal based on the round-trip delay.
  • the first delay variation and the second delay variation can be The sum is determined as the total delay change caused by satellite movement, and then the total delay change is added to the total delay calculated using the traditional method. It can be determined that under the influence of satellite movement, the base station The real round-trip time to the terminal (Round-Trip Time, RTT).
  • RTT Real round-trip Time
  • multiple (at least 3) final RTTs can be calculated by repeating the above steps multiple times.
  • the terminal can be located at multiple locations with the base station as the center and a radius of c*RTT (c is the speed of light). On the circle, the intersection of multiple circles is the true position of the terminal.
  • the delay changes on the feeder link and the service link can be calculated, and the round-trip delay from the base station to the terminal can be determined through the delay changes, and Accurate positioning of the terminal is achieved based on the round-trip delay, and the terminal positioning error caused by the rapid movement of satellites is reduced.
  • Figure 2 shows a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure. The method is executed by the base station, is based on the embodiment shown in Figure 1, is shown in Figure 2, and may include the following steps.
  • Step 201 Determine the transmission delay on the feeder link when sending the downlink reference signal RS to the terminal, and determine the reception delay on the feeder link when receiving the uplink RS sent by the terminal. Determine the reception delay. and the transmission delay, and the delay difference is determined as the first delay variation of the terminal's corresponding feed link.
  • the transmission delay of the feeder link is determined to be D1; the base station receives At the time point when the terminal sends the uplink RS such as the channel sounding reference signal (Sounding Reference Signal, SRS), the reception delay of the feeder link is determined to be D2; the base station further determines the feeder chain based on the reception delay and transmission delay.
  • the first delay variation on the road is D2-D1.
  • Step 202 Receive the second delay variation reported by the terminal regarding the service link.
  • the first configuration information before receiving the second delay variation of the service link reported by the terminal, the first configuration information may also be sent to the terminal.
  • the first configuration information includes multiple presets for sending uplink RS.
  • the sending time allows the terminal to select the signal sending time of the uplink RS from multiple preset sending times based on the first configuration information, and determine the time between receiving the downlink RS and sending the uplink RS based on the signal sending time and the signal receiving time of the downlink RS. time interval, wherein the first configuration information may be high-layer signaling or physical layer signaling.
  • the base station may also send satellite indication information to the terminal, so that the terminal determines the second delay change amount related to the service link based on the time interval between receiving the downlink RS and sending the uplink RS and the satellite indication information.
  • the satellite indication information includes second configuration information of the target satellite, and the second configuration information includes information that determines the operating trajectory and operating speed of the target satellite.
  • first indication signaling may also be sent to the terminal.
  • the first indication signaling is used to indicate the uplink resource for sending the uplink RS, so that the The terminal explicitly reports the second delay variation of the service link to the base station through the uplink channel indicated by the uplink resource; or, it may also send second indication signaling to the terminal, and the second indication signaling is used to indicate the uplink RS.
  • the corresponding relationship between the transmission information and the second delay variation so that the terminal determines the uplink RS transmission information based on the correspondence between the uplink RS transmission information and the second delay variation, and conceals it to the base station based on the uplink RS transmission information.
  • the method reports the second delay variation of the service link.
  • the second indication signaling is high-layer signaling or physical layer signaling, and the uplink RS transmission information includes the following: time domain resources occupied by uplink RS transmission; frequency domain resources occupied by uplink RS transmission; RS sequence.
  • High-level signaling may include system information, Radio Resource Control (Radio Resource Control, RRC) signaling, or the Control Element (Control Element, CE) of Media Access Control (Media Access Control, MAC).
  • Step 203 Determine the sum of delay changes of the first delay change and the second delay change. The sum of delay changes is used to determine the round-trip delay from the base station to the terminal.
  • the base station when the satellite is moving rapidly, the base station can be used to determine the first delay change on the feeder link, and the terminal can be used to determine the second delay change on the service link. Finally, the base station is used to determine the real round-trip delay from the base station to the terminal under the influence of satellite movement based on the first delay change and the second delay change, and the terminal is accurately positioned based on the round-trip delay, reducing the risk of rapid satellite movement. Terminal positioning error caused by movement.
  • Fig. 3 is a flow chart of a terminal positioning method according to an embodiment of the present disclosure. The method is executed by the terminal, and the method may include the following steps.
  • Step 301 Determine the time interval between receiving downlink RS and sending uplink RS.
  • the terminal can determine the time interval between receiving the downlink RS sent by the base station and performing the uplink RS transmission.
  • the time interval can be determined independently by the terminal.
  • the terminal can The time interval between receiving downlink RS and sending uplink RS is predefined as a fixed value.
  • the specific value of the time interval can be set based on the reference signal type, the data transmission capability of the terminal, etc., and is not specifically limited here.
  • the time interval can be determined by the terminal according to the configuration information of the base station.
  • the terminal can use the local clock to record the signal reception time of the downlink RS, and record the signal reception time in a pre-configured time of the base station. Or select any time after the signal reception time from multiple preset transmission times as the signal transmission time to send the uplink RS to the base station, and further calculate the time difference between the selected signal transmission time and the signal reception time. , determined as the time interval between receiving the downlink RS and sending the uplink RS.
  • step 301 of the embodiment may specifically include: obtaining a predefined time interval between receiving the downlink RS and transmitting the uplink RS; or, based on the signal reception time of the downlink RS, determining the uplink RS in multiple preset transmission times.
  • the signal sending time determines the time interval between receiving the downlink RS and sending the uplink RS based on the signal sending time and the signal receiving time.
  • the plurality of preset transmission times are sent by the base station to the terminal.
  • it may also include: receiving the first configuration information sent by the base station, and the first configuration information includes multiple transmission times for uplink RS.
  • a preset sending time, and the first configuration information may be high-layer signaling or physical layer signaling.
  • Step 302 Receive satellite indication information sent by the base station.
  • the satellite indication information includes second configuration information of the target satellite.
  • the second configuration information includes information that determines the operating trajectory and operating speed of the target satellite.
  • the base station can further obtain the satellite indication information of the satellite after determining the satellite that plays a relay role in communicating with the terminal, and send the satellite indication information to the terminal.
  • the terminal after receiving the satellite indication information, the terminal can accurately determine the target satellite's operation trajectory and speed based on the information carried by the second configuration information in the satellite indication information for determining the target satellite's operation trajectory and speed.
  • the operating speed is based on the operating trajectory and operating speed of the target satellite to accurately calculate the second delay change of the terminal on the service link under the influence of the operation of the satellite, so as to facilitate the accurate positioning of the terminal.
  • Step 303 Determine the second delay variation based on the time interval between downlink RS reception and uplink RS transmission, and satellite indication information.
  • the time interval between the downlink RS and the sending of the uplink RS can be calculated by fusing the time interval between the downlink RS and the sending of the uplink RS with the satellite's operating trajectory, operating speed and other information.
  • the second delay variation of the service link On the service link, the calculated delay information is associated with the satellite movement information, thereby ensuring the accuracy of the determined second delay variation of the service link, facilitating accurate positioning of the terminal, and reducing the risk of Terminal positioning error caused by rapid movement of satellites.
  • Figure 4 shows a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure. The method is executed by the terminal, is based on the embodiment shown in Figure 3, is shown in Figure 4, and may include the following steps.
  • Step 401 Report a second delay variation on a service link to a base station, where the second delay variation is used to determine a round-trip delay from the base station to the terminal.
  • the second delay variation can be reported to the base station, so that the base station can
  • the first delay variation of the link and the second delay variation of the service link are used to determine the round-trip delay from the base station to the terminal, and the location of the terminal is determined based on the round-trip delay.
  • explicit reporting and implicit reporting may be used.
  • the embodiment steps may specifically include: : Explicitly report the second delay variation on the service link to the base station; or, implicitly report the second delay variation on the service link to the base station.
  • reporting the second delay change amount explicitly, refer to the relevant descriptions in steps 501 to 502 of the embodiment; when reporting the second delay change amount implicitly, refer to the steps 601 to 602 of the embodiment.
  • the terminal positioning method when the terminal reports the second delay change of the service link to the base station, it can selectively adopt an explicit or implicit reporting form.
  • the expression form of information reporting can be enriched, so that the second delay change report can better meet the actual communication needs.
  • Figure 5 shows a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure. The method is executed by the terminal, is based on the embodiments shown in Figures 3 and 4, is shown in Figure 5, and may include the following steps.
  • Step 501 Receive the first indication signaling sent by the base station.
  • the first indication signaling is used to indicate the uplink resource for sending the uplink RS.
  • the base station may send a first indication to the terminal for indicating uplink resources for uplink RS transmission. signaling, the terminal may respond to the first instruction signaling, determine the uplink resources used to send the uplink RS, and explicitly report the second delay variation to the base station based on the uplink resources indicated by the base station; as a possible implementation manner , the terminal can also obtain the uplink resources pre-configured by the base station for explicit reporting, so as to explicitly report the second delay variation to the base station based on the pre-configured uplink resources.
  • Step 502 Determine the uplink resource for sending the uplink RS according to the first indication signaling sent by the base station, and explicitly report the second delay variation to the base station through the uplink channel indicated by the uplink resource.
  • the terminal after receiving the first instruction signaling sent by the base station, the terminal can determine the uplink resource for sending the uplink RS according to the first instruction signaling, and explicitly report the service information to the base station through the uplink channel on the uplink resource.
  • the second delay variation of the link, where the uplink channel may be an uplink control channel or an uplink data channel.
  • the second delay variation can be reported to the base station in an explicit reporting manner, so that The base station determines the real round-trip delay from the base station to the terminal under the influence of satellite movement according to the first delay variation of the feed link and the second delay variation of the service link, so as to realize the detection of the terminal based on the round-trip delay.
  • Precise positioning reduces terminal positioning errors caused by rapid movement of satellites.
  • Figure 6 shows a schematic flowchart of a terminal positioning method according to an embodiment of the present disclosure. The method is executed by the terminal, is based on the embodiment shown in Figures 3 and 4, and is shown in Figure 6, and may include the following steps.
  • Step 601 Determine the correspondence between the uplink RS transmission information and the second delay variation.
  • the uplink RS transmission information includes the following: time domain resources occupied by uplink RS transmission; frequency domain resources occupied by uplink RS transmission; RS sequence of uplink RS transmission.
  • the information such as the time domain resources, frequency domain resources occupied by the uplink RS transmission, or the RS sequence of the uplink RS transmission can be used to implicitly report the second delay variation amount to the base station.
  • the formula carries the variation information related to the delay. Since the same type of uplink RS transmission information may also include multiple categories, when the second delay variation is different, the corresponding selected categories of uplink RS transmission information are different. Therefore, for the embodiment of the present disclosure, each uplink RS transmission may be determined first. Correspondence between the information and the second delay variation, so as to quickly extract uplink RS transmission information matching the second delay variation based on the correspondence.
  • step 601 of the embodiment may include: determining the correspondence between the uplink RS transmission information and the second delay variation in the protocol configuration; or receiving the second indication signaling sent by the base station, and the second indication signaling is used
  • the second indication signaling is high layer signaling or physical layer signaling.
  • High-level signaling may include system information, Radio Resource Control (Radio Resource Control, RRC) signaling, or the Control Element (Control Element, CE) of Media Access Control (Media Access Control, MAC).
  • Step 602 Determine the uplink RS transmission information based on the correspondence between the uplink RS transmission information and the second delay variation, and implicitly report the second delay variation to the base station based on the uplink RS transmission information.
  • the terminal knows in advance or determines the RS sequence value and the second delay variation (such as The corresponding relationship (TA change amount) is shown in Table 1:
  • the second delay variation (TA variation) of the terminal on the service link is calculated to be TA variation 2 based on steps 301 to 303 of the embodiment, then the correspondence between the RS sequence value and the TA variation shown in Table 1 can be relationship, it is determined that the matching uplink RS transmission information can be RS sequence 2, and then the RS sequence 2 can be used to implicitly report the second delay variation of the service link to the base station.
  • the terminal can also know in advance or determine the corresponding relationship between the time domain or frequency domain resources of RS transmission and the second delay variation based on the high-level signaling or physical layer signaling sent by the base station, and then based on The corresponding relationship between the time domain or frequency domain resources and the second delay variation is determined, and the matching time domain resources or matching frequency domain resources are used to send the uplink to the base station.
  • the second delay variation related to the service link is implicitly carried.
  • the second delay variation can be reported to the base station in an implicit reporting manner, so that The base station determines the real round-trip delay from the base station to the terminal under the influence of satellite movement according to the first delay variation of the feed link and the second delay variation of the service link, so as to realize the detection of the terminal based on the round-trip delay.
  • Precise positioning reduces terminal positioning errors caused by rapid movement of satellites.
  • FIG. 7 is a sequence diagram of a terminal positioning method according to an embodiment of the present disclosure. This method is applied to a satellite communication system for terminal positioning.
  • the system includes: a base station and a terminal.
  • the base station calculates the first delay variation of the feed link corresponding to the terminal; the base station sends multiple presets including sending uplink RS to the terminal.
  • the first configuration information of the transmission time, and the satellite indication information; the terminal determines the time interval between receiving the downlink RS and transmitting the uplink RS according to multiple preset transmission times of the uplink RS; the terminal determines the time interval between receiving the downlink RS and transmitting the uplink RS.
  • the terminal reports the second delay change amount about the service link to the base station;
  • the base station calculates the second delay change amount about the service link according to the first delay change amount and the second delay variation to determine the round-trip delay from the base station to the terminal, and determine the location of the terminal based on the round-trip delay.
  • the method includes the following steps.
  • Step 701 The base station calculates the first delay variation of the feeder link corresponding to the terminal.
  • the base station can determine the transmission delay on the feeder link when sending a downlink reference signal RS to the terminal, and determine the reception delay on the feeder link when receiving the uplink RS sent by the terminal, determine the delay difference between the reception delay and the transmission delay, and determine the delay difference as the first delay change of the feeder link corresponding to the terminal.
  • Step 702 The base station sends first configuration information including multiple preset transmission times for transmitting uplink RS, and satellite indication information to the terminal.
  • the satellite indication information includes second configuration information of the target satellite, and the second configuration information includes information that determines the target satellite's operating trajectory and operating speed.
  • Step 703 The terminal determines the time interval between receiving the downlink RS and sending the uplink RS based on multiple preset transmission times of the uplink RS.
  • the terminal can obtain the predefined time interval between receiving the downlink RS and sending the uplink RS; as a possible implementation method, the terminal can obtain the signal reception time based on the downlink RS. , determine the signal sending time of the uplink RS among multiple preset sending times, and calculate the time interval between receiving the downlink RS and sending the uplink RS based on the signal sending time and the signal receiving time. Among them, multiple preset sending times are sent by the base station to the terminal.
  • Step 704 The terminal determines the second delay variation of the service link based on the time interval between receiving the downlink RS and sending the uplink RS, and the received satellite indication information.
  • Step 705 The terminal reports the second delay variation of the service link to the base station.
  • the terminal when the terminal explicitly reports the second delay variation to the base station, as a possible implementation manner, the terminal can respond to the base station instruction and determine the uplink resources for uplink RS transmission based on the base station instruction.
  • the uplink resources of the base station are used to explicitly report the second delay variation to the base station; as a possible implementation method, the terminal can also obtain the uplink resources pre-configured by the base station for explicit reporting, and use the pre-configured uplink resources to report the second delay variation amount to the base station. 2.
  • the delay variation is explicitly reported to the base station.
  • the terminal when the terminal implicitly reports the second delay variation to the base station, the terminal can determine the correspondence between the uplink RS transmission information and the second delay variation, where the uplink RS transmission information includes the uplink RS transmission information. Any one of the occupied time domain resources, frequency domain resources, or RS sequence for uplink RS transmission; according to the correspondence between the uplink RS transmission information and the second delay variation, determine the matching uplink RS transmission information, according to The matching uplink RS transmission information implicitly reports the second delay variation of the service link to the base station.
  • the terminal can determine the correspondence between the uplink RS transmission information and the second delay variation, where the uplink RS transmission information includes the uplink RS transmission information. Any one of the occupied time domain resources, frequency domain resources, or RS sequence for uplink RS transmission; according to the correspondence between the uplink RS transmission information and the second delay variation, determine the matching uplink RS transmission information, according to The matching uplink RS transmission information implicitly reports the second delay variation of the service link to the base station.
  • Step 706 The base station determines the round-trip delay from the base station to the terminal based on the first delay variation and the second delay variation, and determines the location of the terminal based on the round-trip delay.
  • the delay of the first delay variation and the second delay variation can be added to determine the total delay variation caused by satellite movement, and then the total delay variation is added to the total delay calculated using the traditional method to calculate the real round-trip time (RTT) from the base station to the terminal under the influence of satellite movement.
  • RTT real round-trip time
  • multiple (at least 3) final RTTs can be calculated by repeating the above steps multiple times, and the terminal can be located on multiple circles with the base station as the center and a radius of c*RTT (c is the speed of light). The intersection of multiple circles is the real position of the terminal.
  • the base station when the satellite is moving rapidly, the base station can be used to calculate the first delay variation on the feeder link, and the terminal can be used to calculate the second delay variation on the service link. Finally, The base station is used to determine the real round-trip delay from the base station to the terminal under the influence of satellite movement based on the first delay variation and the second delay variation, so as to achieve accurate positioning of the terminal based on the round-trip delay and reduce the impact caused by the rapid movement of the satellite. terminal positioning error.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of base stations and terminals respectively.
  • the base station and the terminal may include a hardware structure and a software module to implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the present disclosure also provides a terminal positioning device. Since the terminal positioning device provided by the embodiments of the present disclosure corresponds to the terminal positioning methods provided by the above embodiments, the terminal The implementation of the positioning method is also applicable to the terminal positioning device provided in this embodiment, and will not be described in detail in this embodiment.
  • FIG. 8 is a schematic structural diagram of a terminal positioning device 800 according to an embodiment of the present disclosure.
  • the terminal positioning device 800 may be a base station.
  • the device 800 may include:
  • the processing module 810 may be used to determine the first delay variation of the feeder link corresponding to the terminal;
  • the receiving module 820 may be configured to receive the second delay variation reported by the terminal regarding the service link;
  • the processing module 810 can also be used to:
  • processing module 810 may be used to:
  • the delay difference is determined as the first delay variation of the feeder link corresponding to the terminal.
  • the determining module 820 may be used to determine the sum of the delay changes of the first delay change and the second delay change, and the sum of the delay changes is used to determine whether the device 800 The round trip delay of the terminal.
  • the device further includes: a sending module 830;
  • the sending module 830 may be configured to send first configuration information to the terminal, where the first configuration information includes multiple preset sending times for sending the uplink RS.
  • the sending module 830 may be used to send satellite indication information to the terminal.
  • the satellite indication information includes second configuration information of the target satellite, and the second configuration information includes determining the operating trajectory and operating speed of the target satellite. information.
  • the sending module 830 may be configured to send first indication signaling to the terminal, where the first indication signaling is used to indicate the uplink resource for sending the uplink RS.
  • the sending module 830 may be used to send second indication signaling to the terminal.
  • the second indication signaling is used to indicate the correspondence between the uplink RS transmission information and the second delay variation,
  • the second indication signaling is high-layer signaling or physical layer signaling;
  • the uplink RS transmission information includes the following:
  • FIG. 9 is a schematic structural diagram of a terminal positioning device 900 according to an embodiment of the present disclosure.
  • the terminal positioning device 900 may be a terminal.
  • the apparatus 900 may include:
  • the sending module 910 may be configured to report the second delay variation regarding the service link to the base station, and the second delay variation is used to determine the round-trip delay from the base station to the device 900 .
  • the apparatus further includes: a processing module 920 , a receiving module 930 ;
  • the processing module 920 may be used to determine the time interval between receiving the downlink RS and sending the uplink RS;
  • the receiving module 930 may be configured to receive satellite indication information sent by the base station.
  • the satellite indication information includes second configuration information of the target satellite, and the second configuration information includes information that determines the operating trajectory and operating speed of the target satellite;
  • the processing module 920 may also be configured to determine the second delay variation based on the time interval between downlink RS reception and uplink RS transmission, as well as satellite indication information.
  • the processing module 920 can be used to obtain a predefined time interval between receiving the downlink RS and sending the uplink RS; or, based on the signal reception time of the downlink RS, in multiple preset transmission times Determine the signal transmission time of the uplink RS, and determine the time interval between receiving the downlink RS and transmitting the uplink RS based on the signal transmission time and the signal reception time.
  • the receiving module 930 may be configured to receive the first configuration information sent by the base station, where the first configuration information includes multiple preset sending times for sending uplink RS.
  • the sending module 910 may be configured to determine the uplink resource for sending the uplink RS according to the first indication signaling sent by the base station, and explicitly report the second time to the base station through the uplink channel indicated by the uplink resource.
  • the uplink channel is the uplink control channel or the uplink data channel.
  • the receiving module 930 may be configured to receive the first indication signaling sent by the base station, where the first indication signaling is used to indicate the uplink resource for sending the uplink RS.
  • the sending module 910 when implicitly reporting the second delay variation on the service link to the base station, may be used to determine the difference between the uplink RS transmission information and the second delay variation. Correspondence: determine the uplink RS transmission information according to the correspondence between the uplink RS transmission information and the second delay variation, and implicitly report the second delay variation to the base station based on the uplink RS transmission information.
  • the sending module 910 when determining the correspondence between the uplink RS transmission information and the second delay variation, may be used to determine the uplink RS transmission information and the second delay in the protocol configuration. Correspondence between the changes; or, receive the second indication signaling sent by the base station, the second indication signaling is used to indicate the correspondence between the uplink RS transmission information and the second delay variation, the second indication signaling It is high-layer signaling or physical layer signaling;
  • the uplink RS transmission information includes the following:
  • the sending module 910 when implicitly reporting the second delay variation to the base station based on the uplink RS transmission information, the sending module 910 may be configured to implicitly report the second delay variation to the base station when using the uplink RS transmission information to send the uplink reference signal to the base station.
  • the second delay variation is reported in the following formula.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 may be a network device, a user equipment, a chip, a chip system, or a processor that supports network equipment to implement the above method, or a chip, a chip system, or a processor that supports user equipment to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1000 may include one or more processors 1001.
  • the processor 1001 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1000 may also include one or more memories 1002, on which a computer program 1004 may be stored.
  • the processor 1001 executes the computer program 1004, so that the communication device 1000 executes the method described in the above method embodiment.
  • the memory 1002 may also store data.
  • the communication device 1000 and the memory 1002 can be provided separately or integrated together.
  • the communication device 1000 may also include a transceiver 1005 and an antenna 1006.
  • the transceiver 1005 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1005 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1000 may also include one or more interface circuits 1007.
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001 .
  • the processor 1001 executes code instructions to cause the communication device 1000 to perform the method described in the above method embodiment.
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1001 may store a computer program 1003, and the computer program 1003 runs on the processor 1001, causing the communication device 1000 to perform the method described in the above method embodiment.
  • the computer program 1003 may be solidified in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or user equipment, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 10 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device can be:
  • the IC set may also include a storage component for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 11 refer to the schematic structural diagram of the chip shown in FIG. 11 .
  • the chip shown in Figure 11 includes a processor 1101 and an interface 1102.
  • the number of processors 1101 may be one or more, and the number of interfaces 1102 may be multiple.
  • the chip also includes a memory 1103, which is used to store necessary computer programs and data.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • a computer program product includes one or more computer programs.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from a website, computer, server or data center via a wireline (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (for example, magnetic disks, optical disks, memories, programmable logic devices (PLD)), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: local area network (LAN), wide area network (WAN), and the Internet.
  • Computer systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了一种终端定位方法及装置,属于无线通信技术领域,根据本公开提供了的终端定位方法及装置,其中基站可确定终端对应馈电链路的第一时延变化量,以及接收终端上报的关于服务链路的第二时延变化量(101);根据第一时延变化量和第二时延变化量确定基站到终端的往返时延,根据往返时延确定终端的位置(102)。本公开能够降低终端的定位误差,精准获取到终端的位置信息。

Description

终端定位方法及装置 技术领域
本公开涉及无线通信技术领域,特别涉及一种终端定位方法及装置。
背景技术
在无线通信技术的研究中,卫星通信被认为是未来无线通信技术发展的一个重要方面。卫星通信是指地面上的无线电通信设备利用卫星作为中继而进行的通信。卫星通信系统由卫星部分和地面部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高)。卫星通信作为目前地面的蜂窝通信系统的补充,可以预见,在未来的无线通信系统中,卫星通信系统和陆地上的蜂窝通信系统会逐步的实现深度的融合,真正的实现万物智联。
在卫星通信系统中,由于较大的传播距离导致上下行定时有较大的偏差。终端需要基于全球导航卫星系统(Global Navigation Satellite System,GNSS)测量以及一些辅助信息来维持上行的同步。对于卫星通信的场景下,由于发送端与接收端存在较长的信号传输距离,导致数据传输有较大的时间。对于存在有上下行关系的传输,目前的标准化讨论中确定了引入时延参数来补偿传输时延。为了确定所述时延参数,需要终端上报位置信息。终端可以基于自己的GNSS测量获取自己的位置信息并上报给网络侧,然而对于网络侧来说,终端基于GNSS获取的位置信息由于存在一些不可靠因素(如存在终端上报假的位置信息、终端的GNSS信息被篡改等),容易导致终端定位不够精准。
在现有的方法中,可以通过网络侧提供位置信息的方式来验证终端所上报的位置信息是否可靠。在一种现有的方法下,可以通过多次往返时间(Multi-Round Trip Time,Multi-RTT)的方式来获取终端的位置信息。然而,对于通过单颗卫星实现定位的方式下,卫星的快速移动会导致定位的误差比较大,从而无法降低终端的定位误差,不能够精准获取到终端的位置信息。
发明内容
本公开提供了一种终端定位方法及装置,能够降低终端的定位误差,精准获取到终端的位置信息。
本公开的第一方面实施例提供了一种终端定位方法,所述方法由基站执行,所述方法包括:
确定终端对应馈电链路的第一时延变化量;
接收所述终端上报的关于服务链路的第二时延变化量;
根据所述第一时延变化量和所述第二时延变化量确定基站到所述终端的往返时延,以及
根据所述往返时延确定所述终端的位置。
在本公开的一些实施例中,所述确定终端对应馈电链路的第一时延变化量,包括:
确定向所述终端发送下行参考信号RS时,在所述馈电链路上的发送时延;
确定接收到所述终端发送的上行RS时,在所述馈电链路上的接收时延;
确定所述接收时延和所述发送时延的时延差值;
将所述时延差值确定为所述终端对应馈电链路的第一时延变化量。
在本公开的一些实施例中,所述方法还包括:
确定所述第一时延变化量和所述第二时延变化量的时延变化量加和,所述时延变化量加和用于确定基站到所述终端的往返时延。
在本公开的一些实施例中,所述方法还包括:
向所述终端发送第一配置信息,所述第一配置信息中包含发送上行RS的多个预置发送时间。
在本公开的一些实施例中,所述方法还包括:
向所述终端发送卫星指示信息,所述卫星指示信息包括目标卫星的第二配置信息,所述第二配置信息包括确定所述目标卫星的运行轨迹和运行速度的信息。
在本公开的一些实施例中,所述方法还包括:
向所述终端发送第一指示信令,所述第一指示信令用于指示发送上行RS的上行资源。
在本公开的一些实施例中,所述方法还包括:
向所述终端发送第二指示信令,所述第二指示信令用于指示上行RS传输信息与所述第二时延变化量之间的对应关系,所述第二指示信令为高层信令或物理层信令;
其中,所述上行RS传输信息包括以下一种:
上行RS传输所占用的时域资源;
上行RS传输所占用的频域资源;
上行RS传输的RS序列。
本公开的第二方面实施例提供了一种终端定位方法,所述方法由终端执行,所述方法包括:
向基站上报关于服务链路的第二时延变化量,所述第二时延变化量用于确定基站到所述终端的往返时延。
在本公开的一些实施例中,所述方法还包括:
确定接收下行RS与发送上行RS之间的时间间隔;
接收基站发送的卫星指示信息,所述卫星指示信息包括目标卫星的第二配置信息,所述第二配置信息包括确定所述目标卫星的运行轨迹和运行速度的信息;
根据所述下行RS接收与执行上行RS传输之间的时间间隔,以及所述卫星指示信息,确定所述第二时延变化量。
在本公开的一些实施例中,所述确定接收下行RS与发送上行RS之间的时间间隔,包括:
获取预先定义的接收下行RS与发送上行RS之间的时间间隔;或,
基于下行RS的信号接收时间,在多个预置发送时间中确定上行RS的信号发送时间,根据所述信号发送时间和所述信号接收时间,确定接收下行RS与发送上行RS之间的时间间隔。
在本公开的一些实施例中,所述方法还包括:
接收所述基站发送的第一配置信息,所述第一配置信息中包含发送上行RS的多个预置发送时间。
在本公开的一些实施例中,所述向基站上报关于服务链路的第二时延变化量,包括:
根据所述基站发送的第一指示信令确定发送上行RS的上行资源;
通过所述上行资源所指示的上行信道,向基站显式上报所述第二时延变化量,所述上行信道为上行控制信道或上行数据信道。
在本公开的一些实施例中,所述方法还包括:
接收所述基站发送的第一指示信令,所述第一指示信令用于指示发送上行RS的上行资源。
在本公开的一些实施例中,所述向基站上报关于服务链路的第二时延变化量,包括:
确定上行RS传输信息与所述第二时延变化量之间的对应关系;
根据所述上行RS传输信息与所述第二时延变化量之间的对应关系,确定上行RS传输信息;
根据所述上行RS传输信息向基站隐式上报所述第二时延变化量。
在本公开的一些实施例中,所述确定上行RS传输信息与所述第二时延变化量之间的对应关系,包括:
在协议配置中确定上行RS传输信息与所述第二时延变化量之间的对应关系;或,
接收所述基站发送的第二指示信令,所述第二指示信令用于指示上行RS传输信息与所述第二时延变化量之间的对应关系,所述第二指示信令为高层信令或物理层信令;
其中,所述上行RS传输信息包括以下一种:
上行RS传输所占用的时域资源;
上行RS传输所占用的频域资源;
上行RS传输的RS序列。
在本公开的一些实施例中,所述根据所述上行RS传输信息向基站隐式上报所述第二时延变化量, 包括:
在利用所述上行RS传输信息向所述基站发送上行参考信号时,隐式上报所述第二时延变化量。
本公开的第三方面实施例提供了一种终端定位装置,所述装置包括:
处理模块,用于确定终端对应馈电链路的第一时延变化量;
接收模块,用于接收所述终端上报的关于服务链路的第二时延变化量;
所述处理模块,还用于:
根据所述第一时延变化量和所述第二时延变化量确定所述装置到所述终端的往返时延,以及
根据所述往返时延确定所述终端的位置。
本公开的第四方面实施例提供了一种终端定位装置,所述装置包括:
发送模块,用于向基站上报关于服务链路的第二时延变化量,所述第二时延变化量用于确定基站到所述装置的往返时延。
本公开的第五方面实施例提供了一种通信设备,该通信设备包括:收发器;存储器;处理器,分别与收发器及存储器连接,配置为通过执行存储器上的计算机可执行指令,控制收发器的无线信号收发,并能够实现如本公开第一方面实施例或第二方面实施例的方法。
本公开的第六方面实施例提供了一种计算机存储介质,其中,计算机存储介质存储有计算机可执行指令;计算机可执行指令被处理器执行后,能够实现如本公开第一方面实施例或第二方面实施例的方法。
本公开的第六方面实施例提供了一种通信系统,包括基站以及终端,基站包括第三方面实施例的终端定位装置,所述终端包括第四方面实施例的终端定位装置。
本公开实施例提供了一种终端定位方法及装置,可在卫星快速移动时,计算馈电链路和服务链路上的时延变化,通过时延变化确定基站到所述终端的往返时延,并且根据所述往返时延实现对所述终端的精准定位,降低因卫星快速移动造成的终端定位误差。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开实施例的一种终端定位方法的流程示意图;
图2为根据本公开实施例的一种终端定位方法的流程示意图;
图3为根据本公开实施例的一种终端定位方法的流程示意图;
图4为根据本公开实施例的一种终端定位方法的流程示意图;
图5为根据本公开实施例的一种终端定位方法的流程示意图;
图6为根据本公开实施例的一种终端定位方法的流程示意图;
图7为根据本公开实施例的一种终端定位方法的时序图;
图8为根据本公开实施例的一种终端定位装置的框图;
图9为根据本公开实施例的一种终端定位装置的框图;
图10为根据本公开实施例的一种通信装置的结构示意图;
图11为本公开实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在卫星通信系统中,由于发送端与接收端存在较长的信号传输距离,导致数据传输有较大的时间。 对于存在有上下行关系的传输,目前的标准化讨论中确定了引入时延参数来补偿传输时延。为了确定时延参数,需要终端上报位置信息。终端可以基于自己的全球导航卫星系统(Global Navigation Satellite System,GNSS)测量获取自己的位置信息并上报给网络侧,然而对于网络侧来说,终端基于GNSS获取的位置信息由于存在一些不可靠因素(如存在终端上报假的位置信息、终端的GNSS信息被篡改等),容易导致终端定位不够精准。在现有机制中,可以通过网络侧提供位置信息的方式来验证终端所上报的位置信息是否可靠。如可以通过多次往返时间(Multi-Round Trip Time,Multi-RTT)的方式来获取终端的位置信息。然而,对于通过单颗卫星实现定位的方式下,卫星的快速移动会导致定位的误差比较大,从而无法降低终端的定位误差,不能够精准获取到终端的位置信息。
为此,本公开提出了一种终端定位方法及装置,能够降低终端的定位误差,精准获取到终端的位置信息。
下面结合附图对本申请所提供的终端定位方法及装置进行详细地介绍。
图1示出了根据本公开实施例的一种终端定位方法的流程示意图。如图1所示,该方法应由基站执行,且可以包括以下步骤。
步骤101、确定终端对应馈电链路的第一时延变化量,以及接收终端上报的关于服务链路的第二时延变化量。
其中,终端为待进行定位的终端设备(User Equipment,UE),馈电链路为卫星与地面基站之间的通信链路,服务链路为卫星与终端之间的通信链路。
对于本公开实施例,在确定卫星移动对终端造成的时延变化量时,可利用基站确定终端对应馈电链路的第一时延变化量,利用终端确定关于服务链路的第二时延变化量,并由终端将第二时延变化量上报至基站,以使基站根据馈电链路的第一时延变化量和服务链路的第二时延变化量实现对终端的定位。
步骤102、根据第一时延变化量和第二时延变化量确定基站到终端的往返时延,以及根据往返时延确定终端的位置。
对于本实施例,在确定出馈电链路的第一时延变化量和服务链路的第二时延变化量后,可将第一时延变化量和第二时延变化量的时延加和确定为卫星移动造成的总的时延变化量,进而将总的时延变化量与利用传统方式计算出来的时延总量进行相加,即可确定得到在卫星移动的影响下,基站到终端的真实往返时延(Round-Trip Time,RTT)。在确定终端的位置时,可通过重复多次上述步骤,计算得到多个(至少3个)最终的RTT,可定位终端位于以基站为圆心,半径为c*RTT(c为光速)的多个圆上,在多个圆的交汇处便是终端的真实位置。
综上,根据本公开实施例提供的终端定位方法,可在卫星快速移动时,计算馈电链路和服务链路上的时延变化,通过时延变化确定基站到终端的往返时延,并且根据往返时延实现对终端的精准定位,降低因卫星快速移动造成的终端定位误差。
图2示出了根据本公开实施例的一种终端定位方法的流程示意图。该方法由基站执行,基于图1所示实施例,如图2所示,且可以包括以下步骤。
步骤201、确定向终端发送下行参考信号RS时,在馈电链路上的发送时延,以及确定接收到终端发送的上行RS时,在馈电链路上的接收时延,确定接收时延和发送时延的时延差值,将时延差值确定为终端对应馈电链路的第一时延变化量。
示例性的,基站在向终端发送下行参考信号(Reference Signal,RS)如定位参考信号(Positioning  Reference Signal,PRS)的时间点上,确定馈电链路的发送时延为D1;基站在接收到终端发送的上行RS如信道探测参考信号(Sounding Reference Signal,SRS)的时间点上,确定馈电链路的接收时延为D2;基站进一步基于接收时延和发送时延,确定得到馈电链路上的第一时延变化量为D2-D1。
步骤202、接收终端上报的关于服务链路的第二时延变化量。
在具体的应用场景中,在接收到终端上报的关于服务链路的第二时延变化量之前,还可向终端发送第一配置信息,第一配置信息中包含发送上行RS的多个预置发送时间,以使终端基于第一配置信息在多个预置发送时间中选取上行RS的信号发送时间,并根据信号发送时间和下行RS的信号接收时间,确定接收下行RS与发送上行RS之间的时间间隔,其中,第一配置信息可以是高层信令或是物理层信令。此外,基站还可向终端发送卫星指示信息,以使终端根据下行RS接收与发送上行RS之间的时间间隔以及卫星指示信息,确定关于服务链路的第二时延变化量。其中,卫星指示信息包括目标卫星的第二配置信息,第二配置信息包括确定目标卫星的运行轨迹和运行速度的信息。
相应的,在接收到终端上报的关于服务链路的第二时延变化量之前,还可向终端发送第一指示信令,第一指示信令用于指示发送上行RS的上行资源,以使终端通过上行资源所指示的上行信道,向基站显式上报关于服务链路的第二时延变化量;或者,还可向终端发送第二指示信令,第二指示信令用于指示上行RS传输信息与第二时延变化量之间的对应关系,以使终端根据上行RS传输信息与第二时延变化量之间的对应关系,确定上行RS传输信息,根据上行RS传输信息向基站隐式上报关于服务链路的第二时延变化量。其中,第二指示信令为高层信令或物理层信令,上行RS传输信息包括以下一种:上行RS传输所占用的时域资源;上行RS传输所占用的频域资源;上行RS传输的RS序列。高层信令可包括系统信息,无线资源控制(Radio Resource Control,RRC)信令,或是媒体访问控制(Media Access Control,MAC)的控制元素(Control Element,CE)。
步骤203、确定第一时延变化量和第二时延变化量的时延变化量加和,时延变化量加和用于确定基站到终端的往返时延。
综上,根据本公开实施例提供的终端定位方法,可在卫星快速移动时,利用基站确定馈电链路上的第一时延变化量,利用终端确定服务链路上的第二时延变化量,最终利用基站根据第一时延变化量和第二时延变化量确定在卫星移动影响下,基站到终端的真实往返时延,根据往返时延实现对终端的精准定位,降低因卫星快速移动造成的终端定位误差。
图3为根据本公开实施例的一种终端定位方法的流程示意图。该方法由终端执行,且该方法可以包括以下步骤。
步骤301、确定接收下行RS与发送上行RS之间的时间间隔。
对于本公开实施例,可由终端确定接收到基站发送的下行RS与执行上行RS传输之间的时间间隔,作为一种可能的实现方式,该时间间隔可由终端自主进行确定,具体的,终端可将接收下行RS与发送上行RS之间的时间间隔预先定义为固定值,示例性的,时间间隔的具体数值可基于参考信号类型、终端的数据发送能力等进行设定,在此不进行具体的限定。作为一种可能的实现方式,该时间间隔可由终端按照基站的配置信息确定,具体的,终端可在接收到下行RS后,利用本地时钟记录下行RS的信号接收时间,并在基站预先配置的一个或是多个预置发送时间中选取在信号接收时间之后的任一一个时间,作为向基站发送上行RS的信号发送时间,进一步将所选取出的信号发送时间与信号接收时间之间的时间差,确定为接收下行RS与发送上行RS之间的时间间隔。
相应的,实施例步骤301具体可以包括:获取预先定义的接收下行RS与发送上行RS之间的时间间 隔;或,基于下行RS的信号接收时间,在多个预置发送时间中确定上行RS的信号发送时间,根据信号发送时间和信号接收时间,确定接收下行RS与发送上行RS之间的时间间隔。其中,多个预置发送时间是基站向终端发送的,相应的,在执行本实施例步骤之前,还可包括:接收基站发送的第一配置信息,第一配置信息中包含发送上行RS的多个预置发送时间,第一配置信息可以是高层信令或是物理层信令。
步骤302、接收基站发送的卫星指示信息,卫星指示信息包括目标卫星的第二配置信息,第二配置信息包括确定目标卫星的运行轨迹、运行速度的信息。
在具体的应用场景中,基站可在确定出与终端通信中起到中继作用的卫星后,进一步获取卫星的卫星指示信息,并将卫星指示信息发送至终端。对于本公开实施例,终端可在接收到卫星指示信息后,根据卫星指示信息中第二配置信息携带的用于确定目标卫星的运行轨迹、运行速度的信息,精准确定出目标卫星的运行轨迹、运行速度,以基于目标卫星的运行轨迹、运行速度,准确计算出在卫星的运行影响下,终端关于服务链路的第二时延变化量,便于实现对终端的精准定位。
步骤303、根据下行RS接收与执行上行RS传输之间的时间间隔,以及卫星指示信息,确定第二时延变化量。
综上,根据本公开实施例提供的终端定位方法,可在卫星快速移动时,通过将下行RS与发送上行RS之间的时间间隔与卫星的运行轨迹、运行速度等信息进行融合,计算得到关于服务链路的第二时延变化量。使得在服务链路上,计算得到的时延信息与卫星移动信息相关联,进而能够保证所确定出服务链路的第二时延变化量的精准性,便于实现对终端的准确定位,降低因卫星快速移动造成的终端定位误差。
图4示出了根据本公开实施例的一种终端定位方法的流程示意图。该方法由终端执行,基于图3所示实施例,如图4所示,且可以包括以下步骤。
步骤401、向基站上报关于服务链路的第二时延变化量,第二时延变化量用于确定基站到终端的往返时延。
对于本公开实施例,在基于上述实施例步骤301至303确定出终端关于服务链路的第二时延变化量后,可将第二时延变化量上报至基站,以使基站根据馈电链路的第一时延变化量,以及服务链路的第二时延变化量确定出基站到终端的往返时延,并基于往返时延确定终端的位置。其中,在向基站上报关于服务链路的第二时延变化量时,可采用显式上报以及隐式上报的两种方式,相应的,相应的,对于本实施例,实施例步骤具体可以包括:向基站显式上报关于服务链路的第二时延变化量;或,向基站隐式上报关于服务链路的第二时延变化量。具体的,在显式上报第二时延变化量时,可参见实施例步骤501至502中的相关描述;在隐式上报第二时延变化量时,可参见实施例步骤601至602中的相关描述。
综上,根据本公开实施例提供的终端定位方法,在终端向基站上报关于服务链路的第二时延变化量时,可选择性的采用显式或是隐式的上报形式,通过提供多种上报类型,可丰富信息上报的表现形式,使第二时延变化量上报更能符合实际的通信需求。
图5示出了根据本公开实施例的一种终端定位方法的流程示意图。该方法由终端执行,基于图3、图4所示实施例,如图5所示,且可以包括以下步骤。
步骤501、接收基站发送的第一指示信令,第一指示信令用于指示发送上行RS的上行资源。
对于本公开实施例,在终端向基站显式上报第二时延变化量的情况下,作为一种可能的实现方式, 基站可向终端发送用于指示进行上行RS传输的上行资源的第一指示信令,终端可响应于第一指示信令,确定用于发送上行RS的上行资源,以基于基站指示的上行资源将第二时延变化量显式上报至基站;作为一种可能的实现方式,终端还可获取基站预先配置的用于显式上报的上行资源,以基于预先配置的上行资源将第二时延变化量显式上报至基站。
步骤502、根据基站发送的第一指示信令确定发送上行RS的上行资源,通过上行资源所指示的上行信道,向基站显式上报第二时延变化量。
对于本公开实施例,终端在接收到基站发送的第一指示信令后,可根据第一指示信令确定发送上行RS的上行资源,在上行资源上通过上行信道,向基站显式上报关于服务链路的第二时延变化量,其中,上行信道可为上行控制信道或上行数据信道。
综上,根据本公开实施例提供的终端定位方法,在终端计算出关于服务链路的第二时延变化量后,可将第二时延变化量通过显式上报方式上报给基站,以使基站根据馈电链路的第一时延变化量,以及服务链路的第二时延变化量确定在卫星移动影响下,基站到终端的真实往返时延,以基于往返时延实现对终端的精准定位,降低因卫星快速移动造成的终端定位误差。
图6示出了根据本公开实施例的一种终端定位方法的流程示意图。该方法由终端执行,基于图3、图4所示实施例,如图6所示,且可以包括以下步骤。
步骤601、确定上行RS传输信息与第二时延变化量之间的对应关系。
其中,上行RS传输信息包括以下一种:上行RS传输所占用的时域资源;上行RS传输所占用的频域资源;上行RS传输的RS序列。
对于本公开实施例,在终端向基站隐式上报第二时延变化量的情况下,可以通过上行RS传输所占用的时域资源、频域资源或是上行RS传输的RS序列等信息,隐式的携带时延相关的变化量信息。因同一种上行RS传输信息还可包含有多个类别,当第二时延变化量不同时,对应选取的上行RS传输信息的类别不同,故对于本公开实施例,可首先确定各个上行RS传输信息与第二时延变化量之间的对应关系,以基于对应关系快速提取出与第二时延变化量所匹配的上行RS传输信息。
作为一种可能的实现方式,在确定上行RS传输信息与第二时延变化量之间的对应关系时,终端可在协议配置中预先获知,或是根据基站发送的高层信令或是物理层信令确定上行RS传输信息与第二时延变化量之间的对应关系。相应的,实施例步骤601可以包括:在协议配置中确定上行RS传输信息与第二时延变化量之间的对应关系;或,接收基站发送的第二指示信令,第二指示信令用于指示上行RS传输信息与第二时延变化量之间的对应关系,第二指示信令为高层信令或物理层信令。高层信令可包括系统信息,无线资源控制(Radio Resource Control,RRC)信令,或是媒体访问控制(Media Access Control,MAC)的控制元素(Control Element,CE)。
步骤602、根据上行RS传输信息与第二时延变化量之间的对应关系,确定上行RS传输信息,根据上行RS传输信息向基站隐式上报第二时延变化量。
其中,以上行RS传输信息为上行RS传输的RS序列为例,若终端预先获知或是根据基站发送的高层信令或是物理层信令,确定RS序列值与第二时延变化量(如TA变化量)的对应关系如表1所示:
表1:
RS序列值 TA变化量
RS序列1 TA变化量1
RS序列2 TA变化量2
RS序列3 TA变化量3
若基于实施例步骤301至303计算出终端关于服务链路的第二时延变化量(TA变化量)为TA变化量2,则可基于表1所示的RS序列值与TA变化量的对应关系,确定出匹配的上行RS传输信息可为RS序列2,进而可利用RS序列2向基站隐式上报关于服务链路的第二时延变化量。
基于同样的原理,终端还可以预先获知或是根据基站发送的高层信令或是物理层信令,确定RS传输的时域或是频域资源与第二时延变化量的对应关系,进而基于时域或是频域资源与第二时延变化量的对应关系,确定匹配的时域资源或是匹配的频域资源,在利用匹配的时域资源或是匹配的频域资源向基站发送上行参考信号时,隐式携带关于服务链路的第二时延变化量。
综上,根据本公开实施例提供的终端定位方法,在终端计算出关于服务链路的第二时延变化量后,可将第二时延变化量通过隐式上报方式上报给基站,以使基站根据馈电链路的第一时延变化量,以及服务链路的第二时延变化量确定在卫星移动影响下,基站到终端的真实往返时延,以基于往返时延实现对终端的精准定位,降低因卫星快速移动造成的终端定位误差。
图7为根据本公开实施例的一种终端定位方法的时序图。该方法应用于一种终端定位的卫星通信系统,该系统包括:基站、终端,基站计算终端对应馈电链路的第一时延变化量;基站向终端发送包含发送上行RS的多个预置发送时间的第一配置信息,以及卫星指示信息;终端根据上行RS的多个预置发送时间,确定接收下行RS与发送上行RS之间的时间间隔;终端根据接收下行RS与发送上行RS之间的时间间隔,以及所接收到的卫星指示信息,计算关于服务链路的第二时延变化量;终端向基站上报关于服务链路的第二时延变化量;基站根据第一时延变化量和第二时延变化量确定基站到终端的往返时延,根据往返时延确定终端的位置。
参见图7,该方法包括如下步骤。
步骤701、基站计算终端对应馈电链路的第一时延变化量。
对于本公开实施例,基站可确定向终端发送下行参考信号RS时,在馈电链路上的发送时延,以及确定接收到终端发送的上行RS时,在馈电链路上的接收时延,确定接收时延和发送时延的时延差值,将时延差值确定为终端对应馈电链路的第一时延变化量。
步骤702、基站向终端发送包含发送上行RS的多个预置发送时间的第一配置信息,以及卫星指示信息。
其中,卫星指示信息包括目标卫星的第二配置信息,第二配置信息包括确定目标卫星的运行轨迹、和运行速度的信息。
步骤703、终端根据上行RS的多个预置发送时间,确定接收下行RS与发送上行RS之间的时间间隔。
对于本公开实施例,作为一种可能的实现方式,终端可获取预先定义的接收下行RS与发送上行RS之间的时间间隔;作为一种可能的实现方式,终端可基于下行RS的信号接收时间,在多个预置发送时间中确定上行RS的信号发送时间,根据信号发送时间和信号接收时间,计算接收下行RS与发送上行RS之间的时间间隔。其中,多个预置发送时间是基站向终端发送的。
步骤704、终端根据接收下行RS与发送上行RS之间的时间间隔,以及所接收到的卫星指示信息,确定关于服务链路的第二时延变化量。
步骤705、终端向基站上报关于服务链路的第二时延变化量。
对于本公开实施例,在向基站上报关于服务链路的第二时延变化量时,可采用显式上报以及隐式上报的两种可选方式。
相应的,在终端向基站显式上报第二时延变化量的情况下,作为一种可能的实现方式,终端可响应于基站指示,确定用于进行上行RS传输的上行资源,以基于基站指示的上行资源将第二时延变化量显式上报至基站;作为一种可能的实现方式,终端还可获取基站预先配置的用于显式上报的上行资源,以基于预先配置的上行资源将第二时延变化量显式上报至基站。其具体实现过程可参见实施例步骤501至502中的相关描述,在此不再赘述。
相应的,在终端向基站隐式上报第二时延变化量的情况下,终端可确定上行RS传输信息与第二时延变化量之间的对应关系,其中上行RS传输信息包括上行RS传输所占用的时域资源、频域资源,或者上行RS传输的RS序列中的任意一种;根据上行RS传输信息与第二时延变化量之间的对应关系,确定匹配的上行RS传输信息,根据匹配的上行RS传输信息向基站隐式上报关于服务链路的第二时延变化量。其具体实现过程可参见实施例步骤601至602中的相关描述,在此不再赘述。
步骤706、基站根据第一时延变化量和第二时延变化量确定基站到终端的往返时延,根据往返时延确定终端的位置。
对于本公开实施例,可将第一时延变化量和第二时延变化量的时延加和确定为卫星移动造成的总的时延变化量,进而将总的时延变化量与利用传统方式计算出来的时延总量进行相加,即可计算得到在卫星移动的影响下,基站到终端的真实往返时延(Round-Trip Time,RTT)。在确定终端的位置时,可通过重复多次上述步骤,计算得到多个(至少3个)最终的RTT,可定位终端位于以基站为圆心,半径为c*RTT(c为光速)的多个圆上,在多个圆的交汇处便是终端的真实位置。
通过应用本实施例提供的终端定位方法,可在卫星快速移动时,利用基站计算馈电链路上的第一时延变化量,利用终端计算服务链路上的第二时延变化量,最终利用基站根据第一时延变化量和第二时延变化量确定在卫星移动影响下,基站到终端的真实往返时延,以基于往返时延实现对终端的精准定位,降低因卫星快速移动造成的终端定位误差。
上述本申请提供的实施例中,分别从基站、终端的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,基站、终端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
与上述几种实施例提供的终端定位方法相对应,本公开还提供一种终端定位装置,由于本公开实施例提供的终端定位装置与上述几种实施例提供的终端定位方法相对应,因此终端定位方法的实施方式也适用于本实施例提供的终端定位装置,在本实施例中不再详细描述。
图8为根据本公开实施例提供的一种终端定位装置800的结构示意图,该终端定位装置800可为基站。
如图8所示,该装置800可包括:
处理模块810,可以用于确定终端对应馈电链路的第一时延变化量;
接收模块820,可以用于接收终端上报的关于服务链路的第二时延变化量;
处理模块810,还可以用于:
根据第一时延变化量和第二时延变化量确定装置800到终端的往返时延,以及
根据往返时延确定终端的位置。
在本公开的一些实施例中,处理模块810,可以用于:
确定向终端发送下行参考信号RS时,在馈电链路上的发送时延;
确定接收到终端发送的上行RS时,在馈电链路上的接收时延;
确定接收时延和发送时延的时延差值;
将时延差值确定为终端对应馈电链路的第一时延变化量。
在本公开的一些实施例中,确定模块820,可以用于确定第一时延变化量和第二时延变化量的时延变化量加和,时延变化量加和用于确定装置800到终端的往返时延。
在本公开的一些实施例中,如图8所示,该装置还包括:发送模块830;
发送模块830,可以用于向终端发送第一配置信息,第一配置信息中包含发送上行RS的多个预置发送时间。
在本公开的一些实施例中,发送模块830,可以用于向终端发送卫星指示信息,卫星指示信息包括目标卫星的第二配置信息,第二配置信息包括确定目标卫星的运行轨迹和运行速度的信息。
在本公开的一些实施例中,发送模块830,可以用于向终端发送第一指示信令,第一指示信令用于指示发送上行RS的上行资源。
在本公开的一些实施例中,发送模块830,可以用于向终端发送第二指示信令,第二指示信令用于指示上行RS传输信息与第二时延变化量之间的对应关系,第二指示信令为高层信令或物理层信令;
其中,上行RS传输信息包括以下一种:
上行RS传输所占用的时域资源;
上行RS传输所占用的频域资源;
上行RS传输的RS序列。
图9为根据本公开实施例提供的一种终端定位装置900的结构示意图,该终端定位装置900可为终端。
如图9所示,该装置900可包括:
发送模块910,可以用于向基站上报关于服务链路的第二时延变化量,第二时延变化量用于确定基站到装置900的往返时延。
在本公开的一些实施例中,如图9所示,该装置还包括:处理模块920、接收模块930;
处理模块920,可以用于确定接收下行RS与发送上行RS之间的时间间隔;
接收模块930,可以用于接收基站发送的卫星指示信息,卫星指示信息包括目标卫星的第二配置信息,第二配置信息包括确定目标卫星的运行轨迹和运行速度的信息;
处理模块920,还可以用于根据下行RS接收与执行上行RS传输之间的时间间隔,以及卫星指示信息,确定第二时延变化量。
在本公开的一些实施例中,处理模块920,可以用于获取预先定义的接收下行RS与发送上行RS之间的时间间隔;或,基于下行RS的信号接收时间,在多个预置发送时间中确定上行RS的信号发送时间,根据信号发送时间和信号接收时间,确定接收下行RS与发送上行RS之间的时间间隔。
在本公开的一些实施例中,接收模块930,可以用于接收基站发送的第一配置信息,第一配置信息中包含发送上行RS的多个预置发送时间。
在本公开的一些实施例中,发送模块910,可以用于根据基站发送的第一指示信令确定发送上行RS的上行资源,通过上行资源所指示的上行信道,向基站显式上报第二时延变化量,上行信道为上行控制信道或上行数据信道。
在本公开的一些实施例中,接收模块930,可以用于接收基站发送的第一指示信令,第一指示信令用于指示发送上行RS的上行资源。
在本公开的一些实施例中,在向基站隐式上报关于服务链路的第二时延变化量时,发送模块910,可以用于确定上行RS传输信息与第二时延变化量之间的对应关系;根据上行RS传输信息与第二时延变化量之间的对应关系,确定上行RS传输信息,根据上行RS传输信息向基站隐式上报第二时延变化量。
在本公开的一些实施例中,在确定上行RS传输信息与第二时延变化量之间的对应关系时,发送模块910,可以用于在协议配置中确定上行RS传输信息与第二时延变化量之间的对应关系;或,接收基站发送的第二指示信令,第二指示信令用于指示上行RS传输信息与第二时延变化量之间的对应关系,第二指示信令为高层信令或物理层信令;
其中,上行RS传输信息包括以下一种:
上行RS传输所占用的时域资源;
上行RS传输所占用的频域资源;
上行RS传输的RS序列。
在本公开的一些实施例中,在根据上行RS传输信息向基站隐式上报第二时延变化量时,发送模块910,可以用于在利用上行RS传输信息向基站发送上行参考信号时,隐式上报第二时延变化量。
请参见图10,图10是本申请实施例提供的一种通信装置1000的结构示意图。通信装置1000可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1004,处理器1001执行计算机程序1004,以使得通信装置1000执行上述方法实施例中描述的方法。可选的,存储器1002中还可以存储有数据。通信装置1000和存储器1002可以单独设置,也可以集成在一起。
可选的,通信装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行代码指令以使通信装置1000执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1001可以存有计算机程序1003,计算机程序1003在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,该电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者用户设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如该通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图11所示的芯片的结构示意图。图11所示的 芯片包括处理器1101和接口1102。其中,处理器1101的数量可以是一个或多个,接口1102的数量可以是多个。
可选的,芯片还包括存储器1103,存储器1103用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交 互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
此外,应该理解,本申请的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (21)

  1. 一种终端定位方法,其特征在于,所述方法由基站执行,所述方法包括:
    确定终端对应馈电链路的第一时延变化量;
    接收所述终端上报的关于服务链路的第二时延变化量;
    根据所述第一时延变化量和所述第二时延变化量确定基站到所述终端的往返时延,以及
    根据所述往返时延确定所述终端的位置。
  2. 根据权利要求1所述的方法,其特征在于,所述确定终端对应馈电链路的第一时延变化量,包括:
    确定向所述终端发送下行参考信号RS时,在所述馈电链路上的发送时延;
    确定接收到所述终端发送的上行RS时,在所述馈电链路上的接收时延;
    确定所述接收时延和所述发送时延的时延差值;
    将所述时延差值确定为所述终端对应馈电链路的第一时延变化量。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述第一时延变化量和所述第二时延变化量的时延变化量加和,所述时延变化量加和用于确定基站到所述终端的往返时延。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第一配置信息,所述第一配置信息中包含发送上行RS的多个预置发送时间。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述终端发送卫星指示信息,所述卫星指示信息包括目标卫星的第二配置信息,所述第二配置信息包括确定所述目标卫星的运行轨迹和运行速度的信息。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第一指示信令,所述第一指示信令用于指示发送上行RS的上行资源。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述终端发送第二指示信令,所述第二指示信令用于指示上行RS传输信息与所述第二时延变化量之间的对应关系,所述第二指示信令为高层信令或物理层信令;
    其中,所述上行RS传输信息包括以下一种:
    上行RS传输所占用的时域资源;
    上行RS传输所占用的频域资源;
    上行RS传输的RS序列。
  8. 一种终端定位方法,其特征在于,所述方法由终端执行,所述方法包括:
    向基站上报关于服务链路的第二时延变化量,所述第二时延变化量用于确定基站到所述终端的往返 时延。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    确定接收下行RS与发送上行RS之间的时间间隔;
    接收基站发送的卫星指示信息,所述卫星指示信息包括目标卫星的第二配置信息,所述第二配置信息包括确定所述目标卫星的运行轨迹和运行速度的信息;
    根据所述下行RS接收与执行上行RS传输之间的时间间隔,以及所述卫星指示信息,确定所述第二时延变化量。
  10. 根据权利要求9所述的方法,其特征在于,所述确定接收下行RS与发送上行RS之间的时间间隔,包括:
    获取预先定义的接收下行RS与发送上行RS之间的时间间隔;或,
    基于下行RS的信号接收时间,在多个预置发送时间中确定上行RS的信号发送时间,根据所述信号发送时间和所述信号接收时间,确定接收下行RS与发送上行RS之间的时间间隔。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第一配置信息,所述第一配置信息中包含发送上行RS的多个预置发送时间。
  12. 根据权利要求8所述的方法,其特征在于,所述向基站上报关于服务链路的第二时延变化量,包括:
    根据所述基站发送的第一指示信令确定发送上行RS的上行资源;
    通过所述上行资源所指示的上行信道,向基站显式上报所述第二时延变化量,所述上行信道为上行控制信道或上行数据信道。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的第一指示信令,所述第一指示信令用于指示发送上行RS的上行资源。
  14. 根据权利要求8所述的方法,其特征在于,所述向基站上报关于服务链路的第二时延变化量,包括:
    确定上行RS传输信息与所述第二时延变化量之间的对应关系;
    根据所述上行RS传输信息与所述第二时延变化量之间的对应关系,确定上行RS传输信息;
    根据所述上行RS传输信息向基站隐式上报所述第二时延变化量。
  15. 根据权利要求14所述的方法,其特征在于,所述确定上行RS传输信息与所述第二时延变化量之间的对应关系,包括:
    在协议配置中确定上行RS传输信息与所述第二时延变化量之间的对应关系;或,
    接收所述基站发送的第二指示信令,所述第二指示信令用于指示上行RS传输信息与所述第二时延变化量之间的对应关系,所述第二指示信令为高层信令或物理层信令;
    其中,所述上行RS传输信息包括以下一种:
    上行RS传输所占用的时域资源;
    上行RS传输所占用的频域资源;
    上行RS传输的RS序列。
  16. 根据权利要求14所述的方法,其特征在于,所述根据所述上行RS传输信息向基站隐式上报所述第二时延变化量,包括:
    在利用所述上行RS传输信息向所述基站发送上行参考信号时,隐式上报所述第二时延变化量。
  17. 一种终端定位装置,其特征在于,所述装置包括:
    处理模块,用于确定终端对应馈电链路的第一时延变化量;
    接收模块,用于接收所述终端上报的关于服务链路的第二时延变化量;
    所述处理模块,还用于:
    根据所述第一时延变化量和所述第二时延变化量确定所述装置到所述终端的往返时延,以及
    根据所述往返时延确定所述终端的位置。
  18. 一种终端定位装置,其特征在于,所述装置包括:
    发送模块,用于向基站上报关于服务链路的第二时延变化量,所述第二时延变化量用于确定基站到所述装置的往返时延。
  19. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-16中任一项所述的方法。
  20. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-16中任一项所述的方法。
  21. 一种通信系统,包括基站以及终端,所述基站包括如权利要求17所述的终端定位装置,所述终端包括如权利要求18所述的终端定位装置。
PCT/CN2022/120358 2022-09-21 2022-09-21 终端定位方法及装置 WO2024060097A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/120358 WO2024060097A1 (zh) 2022-09-21 2022-09-21 终端定位方法及装置
CN202280003312.0A CN115777221A (zh) 2022-09-21 2022-09-21 终端定位方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120358 WO2024060097A1 (zh) 2022-09-21 2022-09-21 终端定位方法及装置

Publications (1)

Publication Number Publication Date
WO2024060097A1 true WO2024060097A1 (zh) 2024-03-28

Family

ID=85393721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120358 WO2024060097A1 (zh) 2022-09-21 2022-09-21 终端定位方法及装置

Country Status (2)

Country Link
CN (1) CN115777221A (zh)
WO (1) WO2024060097A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913703A (zh) * 2006-07-31 2007-02-14 华为技术有限公司 多扇区小区对rtt测量值进行校正的方法及系统
WO2014169823A1 (zh) * 2013-04-19 2014-10-23 华为终端有限公司 定位信息获取方法、终端及移动宽带接口模型mbim设备
WO2019237998A1 (zh) * 2018-06-13 2019-12-19 索尼公司 电子设备、用户设备、无线通信方法和存储介质
CN113271167A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 一种确定定时提前的方法、通信装置
CN113839722A (zh) * 2021-08-18 2021-12-24 中国信息通信研究院 用于测试卫星通信系统性能的系统及方法、装置、电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913703A (zh) * 2006-07-31 2007-02-14 华为技术有限公司 多扇区小区对rtt测量值进行校正的方法及系统
WO2014169823A1 (zh) * 2013-04-19 2014-10-23 华为终端有限公司 定位信息获取方法、终端及移动宽带接口模型mbim设备
WO2019237998A1 (zh) * 2018-06-13 2019-12-19 索尼公司 电子设备、用户设备、无线通信方法和存储介质
CN113271167A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 一种确定定时提前的方法、通信装置
CN113839722A (zh) * 2021-08-18 2021-12-24 中国信息通信研究院 用于测试卫星通信系统性能的系统及方法、装置、电子设备

Also Published As

Publication number Publication date
CN115777221A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2023168716A1 (zh) 一种载波相位定位的方法及其装置
WO2023216080A1 (zh) 一种用于触发位置信息上报的方法及其装置
CN114402655B (zh) 一种位置信息的确定方法及其装置
WO2023240516A1 (zh) 全球导航卫星系统gnss定位测量方法及装置
US20230239831A1 (en) Timing-based positioning techniques
WO2023155201A1 (zh) 一种位置信息的确定方法及其装置
US20180302188A1 (en) System and method for simultaneous transmission of the same radio signal packet from multiple anchor nodes
WO2024060097A1 (zh) 终端定位方法及装置
WO2024065197A1 (zh) 全球导航卫星系统gnss信息的生效时间确定方法及装置
CN116157706A (zh) 全球导航卫星系统gnss定位测量方法及装置
WO2024065223A1 (zh) 全球导航卫星系统gnss信息的测量方法及装置
WO2024060155A1 (zh) 定位验证方法及装置
WO2024092825A1 (zh) 终端设备位置验证方法及装置
CN114557066A (zh) 使用精细时间测量(ftm)的接入点(ap)布置
WO2023216034A1 (zh) 一种校验位置信息的方法及其装置
WO2024060144A1 (zh) 终端位置信息的验证方法、装置、通信设备及存储介质
CN116195314A (zh) 定位方法及装置
WO2024007344A1 (zh) 测量间隔配置方法及装置
WO2024092773A1 (zh) 时频同步的调整方法及装置
WO2024000526A1 (zh) 预编码方法及装置
WO2023168719A1 (zh) 一种载波相位定位的方法及其装置
WO2023212962A1 (zh) 定位管理功能网元选择方法及装置
WO2024000527A1 (zh) 轨道角动量oam模态指示方法及装置
WO2023240417A1 (zh) 一种指示全球导航卫星系统gnss测量的方法及其装置
WO2023240556A1 (zh) 一种上报方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959107

Country of ref document: EP

Kind code of ref document: A1