WO2024059956A1 - 可调节的望远镜聚焦指示器 - Google Patents

可调节的望远镜聚焦指示器 Download PDF

Info

Publication number
WO2024059956A1
WO2024059956A1 PCT/CN2022/119501 CN2022119501W WO2024059956A1 WO 2024059956 A1 WO2024059956 A1 WO 2024059956A1 CN 2022119501 W CN2022119501 W CN 2022119501W WO 2024059956 A1 WO2024059956 A1 WO 2024059956A1
Authority
WO
WIPO (PCT)
Prior art keywords
focus
focus indicator
tube
longitudinal direction
indicator
Prior art date
Application number
PCT/CN2022/119501
Other languages
English (en)
French (fr)
Inventor
孙玉峰
霍凤霞
Original Assignee
南通斯密特森光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通斯密特森光电科技有限公司 filed Critical 南通斯密特森光电科技有限公司
Priority to PCT/CN2022/119501 priority Critical patent/WO2024059956A1/zh
Publication of WO2024059956A1 publication Critical patent/WO2024059956A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices

Definitions

  • the present invention relates to the field of optical instruments, such as telescopes. Some aspects of the present invention provide adjustable focus indicators for optical instruments such as telescopes.
  • Optical instruments used to view or capture images of a scene usually include an objective lens or primary mirror.
  • a lens (or mirror) has an associated focal length fo.
  • the focal length of a lens (or mirror) is a measure of how strongly the lens or mirror converges or diverges light.
  • a lens or mirror with a relatively small focal length bends light relatively sharply (focusing it over a shorter distance).
  • the focal length is the distance at which collimated (parallel) input rays (such as rays from infinity) are focused.
  • the plane perpendicular to the optical axis of the lens (or mirror) on which the object image is focused is called the image plane.
  • the image plane corresponds to the focal plane (focal plane) at a distance from the principal plane fo of the lens (or mirror) (i.e., the plane perpendicular to the optical axis of the lens (or mirror)) .
  • the image plane will be different from the focal plane.
  • an optical instrument such as a telescope, etc.
  • a telescope in addition to the objective lens (or primary mirror), a telescope usually includes an eyepiece.
  • the purpose of the eyepiece is to amplify the light from the objective lens (or primary mirror).
  • the eyepiece will have its own lens and/or mirror, each with its own focal length, providing the effective focal length (fe) of the eyepiece.
  • the magnification of a telescope is given by given.
  • the objective lens (or primary mirror) and eyepiece of an optical instrument form a compound optical system, which has its own effective focal length.
  • Focus adjustment typically involves moving one or more optical elements of the system relative to each other to focus (as much as possible) the light from the object at the desired imaging location (e.g., at the user's eye, at the imaging sensor, etc.) .
  • Focus adjustment can be thought of as adjusting the relative position of one or more optical elements of the system so that the image plane (the plane where light from the object converges as much as possible) is at the desired imaging position.
  • the image will appear clear and crisp, that is, focused. If the light from the object is not well focused at the desired imaging location, the image may appear blurry, that is, out of focus.
  • the focal length of an optical system is related to its magnification, that is, the longer the focal length, the higher the magnification.
  • the optical property related to magnification is "depth of field". Depth of field is a measure of the distance between the nearest and farthest objects in a scene that produces an image that is judged or perceived to be in focus. In terms of optical principles, the longer the focal length of the optical system, the shallower the depth of field; the shorter the focal length, the deeper the depth of field.
  • an image of a scene viewed through an optical system with a relatively long focal length will have out-of-focus portions of the scene blurred more than an image of the same scene viewed through an optical system with a relatively short focal length.
  • Telescopes typically have relatively long focal lengths (i.e., higher magnification) compared to other optical instruments because most telescopes are used to observe objects that are far away from the user, such as celestial bodies. Therefore, the depth of field of most telescopes is relatively shallow compared to other optical instruments. Therefore, in a telescope, even small adjustments in focus can cause large differences in the sharpness and blur of the image at the image location. Additionally, images of objects viewed through a telescope tend to appear darker when the object's image is out of focus. Therefore, when the image of an object is out of focus, it may be difficult for the user to identify the object in the image.
  • the issues outlined above may hinder the user's ability to easily find the correct focus on a desired object.
  • the user may have to make many focus adjustments before the user finds the correct focus. In some cases, the user may not be able to find the correct focus.
  • auxiliary optics such as different eyepieces, cameras, etc.
  • auxiliary optical devices usually have their own optical properties (such as effective focal length), which in turn affect the optical properties of the entire optical system (ie, the combination of the telescope and the auxiliary optical device).
  • the user may wish to adapt the use of the telescope to different "focus reference regimes".
  • focus reference state refers to the focus characteristics of a specific optical system. Different optical systems may have different focusing characteristics and thus may be considered to have or be in different “focus reference states.” For example, a telescope coupled to a first eyepiece may provide an optical system having a first focus reference state. When the same telescope is coupled to a second (different) eyepiece, the resulting second optical system may have a second focus reference state that is different from the first focus reference state.
  • the fixed focus reference indicators e.g., line marks, dial marks, numbers, etc.
  • Some telescopes have implemented various forms of focusing assistance to assist the user.
  • FIG. 1 schematically shows a conventional prior art telescope 10 with a focus assist mark 2.
  • the prior art telescope 10 may be a Maksutov telescope or a Schmidt-Cassegrain telescope.
  • the prior art telescope 10 comprises a focus adjustment dial 1.
  • the focus adjustment dial 1 may be rotated around a focus adjustment axis 1A (extending into and out of the page in the view shown in FIG. 1 ).
  • a double-headed arrow 5 indicates the direction of rotation of the focus adjustment dial 1 around the focus adjustment axis 1A.
  • the focus assist mark 2 may be defined on the surface of the focus adjustment dial 1.
  • the focus aid mark 2 includes a conical arc 2A.
  • One end of the tapered arc 2A has a narrower width, while the other end of the tapered arc 2A has a wider width, so that the tapered arc 2A tapers gradually from the wide end to the narrower end.
  • the focus assist mark 2 of the prior art telescope 10 also includes a mark 3 with the symbol " ⁇ ", which represents focus at infinity. Marker 3 is located near the narrower end of tapered arc 2A.
  • the focus assist mark 2 assists the user in focus adjustment by informing the user that the rotation of the focus adjustment dial 1 in the rotation direction 5A around the focus adjustment axis 1A results in relative movement of the optical components of the telescope 10 so that the focus can accommodate objects closer to infinity.
  • rotation of the focus adjustment dial 1 in the rotation direction 5B about the focus adjustment axis 1A causes a relative movement of the optical components of the telescope 10 so that the focus is adapted to objects closer to the telescope until the focus reaches the optical limit of the telescope 10 .
  • the focus assist mark 2 of the prior art telescope 10 indicates the direction of focus adjustment to the user.
  • the prior art telescope 10 has no markings indicating the focal length of the telescope 10 (ie, the distance between the telescope 10 and the object on which it is focused).
  • the focus assist mark 2 is defined on the focus adjustment dial 1 and is not adjustable, for example when the telescope 10 is used in conjunction with different auxiliary optical devices.
  • FIG. 2 schematically shows another conventional prior art telescope 20 with focus aid markings 12 .
  • prior art telescope 20 may be a reflecting telescope or a Newtonian telescope.
  • Prior art telescope 20 includes a base 14 and a focus adjustment tube 16 coupled to base 14 .
  • the focus adjustment tube 16 is movable in the axial (longitudinal) direction 11 relative to the base 14 . Movement of the focus adjustment tube 16 relative to the base 14 in the axial direction 11 causes the optical components of the telescope 20 to move relative to each other, thereby adjusting the focus of the telescope 20 .
  • Focus assist mark 12 is printed or otherwise marked on focus adjustment tube 16 .
  • the focus assist mark 12 includes a plurality of line marks to represent the focus reference. The user can rely on the line markings to determine a specific focus reference along a direction 15 which is substantially parallel to the axial direction 11 .
  • the prior art telescope 20 has the same disadvantages as the prior art telescope 10 .
  • Prior art telescopes 20 have no markings indicating the focal length of the telescope 20 (ie, the distance between the telescope 20 and the object on which it is focused).
  • the line markings of the prior art telescope 20 allow the user a focus reference measured in direction 15, the line markings are fixed to the focus adjustment tube 16 and are not adjustable, for example when the telescope 20 is used in conjunction with different auxiliary optics.
  • One aspect of the invention provides an adjustable focus indicator system for an optical instrument.
  • the system includes a first tube extending in a longitudinal direction; a second tube extending in the longitudinal direction, the second tube including an aperture defining surface shaped to define an aperture extending in the longitudinal direction, wherein the first tube At least a portion is located in the hole; a focus indicator supported by one of the first tube and the second tube and movable in a longitudinal direction relative to one of the first tube and the second tube, the focus indicator including a user-visible a first focus indicator mark; wherein one of the first tube and the second tube and the other of the first tube and the second tube are moveable relative to each other in a longitudinal direction such that in the first tube and the second tube on the other to move the focus indicator and the first focus indicator mark relative to the second focus indicator mark visible to the user.
  • One of the first and second tubes may be the second tube, and the other of the first and second tubes may be the first tube.
  • the second tube may be shaped to define a first opening extending from an outer surface of the second tube to the aperture in the longitudinal direction and in a direction perpendicular to the longitudinal direction.
  • the focus indicator may be movably supported to move in the longitudinal direction in the first opening.
  • the focus indicator may be constrained to move in the longitudinal direction.
  • the focus indicator may form a friction fit within the first opening to prevent the focus indicator from moving in the longitudinal direction relative to the second tube without external force.
  • the second tube may include a guide extending in the longitudinal direction for facilitating movement of the focus indicator in the longitudinal direction relative to the second tube.
  • the focus indicator may be constrained to move in the longitudinal direction.
  • the focus indicator may form a friction fit with the guide to prevent the focus indicator from moving in the longitudinal direction relative to the second tube without external force.
  • the system may include a locking mechanism lockable to prevent longitudinal movement of the focus indicator relative to the second tube and unlockable to facilitate longitudinal movement of the focus indicator relative to the second tube.
  • the focus indicator may be shaped to define a second opening extending from an outer surface of the focus indicator to an inner surface of the focus indicator in a longitudinal direction and a direction perpendicular to the longitudinal direction such that the second focus indicator mark passes through the second opening. Two openings are visible.
  • One of the first tube and the second tube may be the first tube, and the other of the first tube and the second tube may be the second tube.
  • the second tube may be shaped to define a first opening extending from an outer surface of the second tube to the aperture in the longitudinal direction and in a direction perpendicular to the longitudinal direction such that the focus indicator is visible through the first opening.
  • the first tube may include a longitudinally extending guide for facilitating movement of the focus indicator in the guide in a longitudinal direction relative to the first tube.
  • the focus indicator can be restricted from moving in the longitudinal direction.
  • the focus indicator may form a friction fit with the guide to prevent the focus indicator from moving in the longitudinal direction relative to the first tube without external force.
  • the first tube may be shaped to define a second opening extending in the longitudinal direction, and the focus indicator is movably supported for movement in the second opening in the longitudinal direction.
  • the focus indicator can be restricted from moving in the longitudinal direction.
  • the focus indicator may form a friction fit with the second opening to prevent the focus indicator from moving in the longitudinal direction relative to the first tube without external force.
  • the system may include a locking mechanism lockable to prevent longitudinal movement of the focus indicator relative to the first tube and unlockable to facilitate longitudinal movement of the focus indicator relative to the first tube.
  • One of the first focus indicator mark and the second focus indicator mark may provide a single mark at a specific longitudinal position, and the other of the first and second focus indicator marks may provide a plurality of marks spaced apart in the longitudinal direction.
  • Another aspect of the present invention provides a method for calibrating an optical instrument disclosed herein.
  • the method includes: focusing an optical system on an object at a known distance from the optical system (or from an objective lens or a primary mirror of the optical system); and, after focusing the optical system on the object, moving a focus indicator in a longitudinal direction relative to one of a first tube and a second tube until a single mark of one of the first focus indicator mark and the second focus indicator mark is aligned at a specific position at a plurality of spaced marks relative to the other of the first focus indicator mark and the second focus indicator mark.
  • the plurality of spaced marks of the other of the first focus indicator mark and the second focus indicator mark may include a plurality of focus indicator values, and the particular location may indicate a focus indicator value corresponding to a known distance.
  • Another aspect of the invention provides a method for adjusting a focus reference state of an optical instrument disclosed herein.
  • the method includes adjusting a position of the focus indicator in a longitudinal direction relative to one of the first tube and the second tube.
  • the method may include adding, removing, or otherwise changing one or more auxiliary optics of the optical instrument before adjusting the position of the focus indicator.
  • Another aspect of the present invention provides a method for adjusting the focus reference state of an optical instrument disclosed herein.
  • the method includes: focusing the optical instrument on a first object and observing a first alignment of a single mark of one of a first focus indicator mark and a second focus indicator mark relative to a plurality of spaced marks of the other of the first focus indicator mark and the second focus indicator mark; adding, removing or otherwise changing one or more auxiliary optical devices of the optical instrument; and, after adding, removing or otherwise changing one or more auxiliary optical devices of the optical instrument: refocusing the optical instrument on the first object; adjusting the position of the focus indicator in the longitudinal direction relative to one of the first tube and the second tube to achieve the first alignment.
  • the method may include calibrating the optical instrument according to the methods disclosed herein before focusing the optical instrument on the first object.
  • Figure 1 is a cross-sectional view of a telescope with a conventional prior art focus indicator.
  • Figure 2 is a top view of a telescope with another conventional prior art focus indicator.
  • 3A and 3B are partial schematic diagrams of different configurations of a telescope system with an adjustable focus indicator in a first focus reference state according to example embodiments.
  • 3C and 3D are partial schematic diagrams of different configurations of a telescope system with an adjustable focus indicator in a second focus reference state, according to example embodiments.
  • FIG. 4 is a partial cross-sectional view of the telescope system of FIGS. 3A-D (collectively, FIG. 3 ) according to an example embodiment.
  • 5A and 5B are partial schematic diagrams of different configurations of another telescope system with an adjustable focus indicator in a first focus reference state according to another example embodiment.
  • 5C and 5D are partial schematic diagrams of different configurations of another telescope system with an adjustable focus indicator in a second focus reference state according to another example embodiment.
  • Figure 6 is a partial cross-sectional view of the telescope system of Figures 5A-D (collectively Figure 5), according to an example embodiment.
  • FIG. 7 is a partial cross-sectional view of another telescope system having an adjustable focus indicator according to another exemplary embodiment.
  • FIG. 8 is a partial cross-sectional view of another telescope system having an adjustable focus indicator according to another exemplary embodiment.
  • FIG. 9 is a schematic diagram of a method for adjusting the telescope system of FIG. 3 to accommodate different focus reference conditions, according to certain embodiments.
  • An adjustable focus indicator for optical instruments such as telescopes is disclosed.
  • Figures 3A-D (collectively Figure 3) schematically illustrate a partial view of a telescope system 100 according to an example embodiment of the present invention.
  • 3A and 3B illustrate the telescope system 100 in a first focus reference state.
  • Figures 3C and 3D illustrate the telescope system 100 in a second focus reference state.
  • Telescope system 100 may include, but is not limited to, a Maksutov telescope or a Schmidt-Cassegrain telescope. Telescope system 100 includes an adjustable focus indicator 108 that accommodates different focus reference states, described in more detail below.
  • telescope system 100 includes base 102 and focus adjustment tube 106 .
  • Both the base 102 and the focus adjustment tube 106 are tubular and extend in a longitudinal direction (indicated by the double-headed arrow) 101 .
  • the diameter of base 102 is greater than the diameter of focus adjustment tube 106 such that the inner surface of base 102 is shaped to define a hole and focus adjustment tube 106 extends into and through the hole of base 102 .
  • the portion of focus adjustment tube 106 within the bore of base 102 is shown in dashed lines.
  • the focus adjustment tube 106 is movable in the longitudinal direction 101 relative to the base 102 .
  • Base 102 may be shaped to define opening 105 on surface 102A of base 102 . Opening 105 may be defined by one or more walls 104A-D of base 102 and may extend from outer surface 102A of base 102 to an inner surface of base 102 .
  • the adjustable focus indicator 108 may be positioned within the opening 105 and supported by the base 102 (eg, by the walls 104A, 104B) for longitudinal movement within the opening 105 .
  • the adjustable focus indicator 108 may include a generally rectangular perimeter with edges 108A and 108B extending along the longitudinal direction 101 and edges 108C and 108D extending along the direction 103, although this specific shape is generally not required.
  • Edge 108A of adjustable focus indicator 108 may be adjacent and contact wall 104A of base 102 .
  • Edge 108B of adjustable focus indicator 108 may be adjacent and contact wall 104B of base 102 .
  • the static friction between edge 108A and wall 104A and the static friction between edge 108B and wall 104B are sufficient such that the adjustable focus indicator 108 moves relative to the base without exerting any external force other than gravity. 102 and is fixed in position relative to the opening 105 .
  • edges 108A, 108B and/or walls 104A, 104B may include friction-enhancing features, such as ridges, grooves, etc., to help secure the adjustable focus indicator relative to base 102 and opening 105 without external force.
  • the location of device 108 In some embodiments, a locking mechanism may be provided to secure the position of the adjustable focus indicator 108 relative to the base 102 and opening 105 .
  • opening 105 may be replaced by a guide that facilitates longitudinal movement of adjustable focus indicator 108 relative to base 102 and provides for positioning adjustable focus indicator 108 relative to base 102 (e.g., A mechanism (e.g., a friction fit or locking mechanism) that remains in place in the absence of external force or unless the locking mechanism is unlocked.
  • a mechanism e.g., a friction fit or locking mechanism
  • telescope system 100 is described herein by reference to opening 105 , it being understood that, unless context dictates otherwise, opening 105 may be replaced by a suitable guide to allow for adjustable focus indicator 108 to be positioned longitudinally relative to base 102 move.
  • the adjustable focus indicator 108 is movable in the longitudinal direction 101 relative to the base 102 (within the opening 105 ) and the focus adjustment tube 106 .
  • the adjustable focus indicator 108 may be constrained (by the interaction of the adjustable focus indicator 108 and the opening 105 ) from moving in the longitudinal direction 101 relative to the base 102 .
  • the adjustable focus indicator 108 may move relative to the base 102 in the longitudinal direction 101A through the opening gap 105A until an edge 108C of the adjustable focus indicator 108 abuts the wall 104C of the base 102 .
  • the adjustable focus indicator 108 can also be moved in the longitudinal direction 101B relative to the base 102 through the opening gap 105B until an edge 108D of the adjustable focus indicator 108 abuts the wall 104D of the base 102 .
  • the adjustable focus indicator 108 itself may be shaped to define an opening 109 defined by one or more walls 110A-D of the adjustable focus indicator 108 . Opening 109 may extend from first surface 108E of adjustable focus indicator 108 through an opposing second surface (not visible in FIG. 3A ) of adjustable focus indicator 108 to allow outer surface 106A of focus adjustment tube 106 to pass through opening 109 visible.
  • the adjustable focus indicator 108 may include a focus assist mark 111 defined on the first (visible) surface 108E.
  • Focus assist mark 111 may be printed or otherwise marked on first surface 108E of focus indicator 108 and may be visible through opening 105 .
  • Focus assist mark 111 may include linear focus assist mark 111A (e.g., extending parallel to direction 103) and/or other types of focus assist mark and/or focus indicator value 111B, such as "8M", "50M", " ⁇ " wait.
  • Other types of focus assist marks 111 including other types of combinations of linear focus assist marks 111A and/or focus indicator values 111B) are possible.
  • a focus indicator mark (e.g., a focus indicator line, a focus indicator arrow, etc.) 112 may be defined (e.g., printed or otherwise marked) on the outer surface 106A of the focus adjustment tube 106 and may be visible through the opening 109.
  • the focus indicator mark 112 also moves the same distance relative to the base 102 and relative to the adjustable focus indicator 108.
  • the focus indicator mark 112 also moves relative to the focus assist mark 111, allowing a user to track a focus reference (i.e., the position of the focus indicator mark 112 relative to the focus assist mark 111) while adjusting the focus of the telescope system 100.
  • the focus reference i.e., the position of the focus indicator mark 112 relative to the focus assist mark 111 together with the adjustability of the adjustable focus indicator may be used to determine the focal length (i.e., the distance between the telescope system 100 and the focused object) in different focus reference states, as discussed in more detail below.
  • the focus reference i.e., the focus indicator
  • the relative position between the adjustable focus indicator 108 and the base 102 can be adjusted to correspond to different focus reference states of the telescope system 100 . That is, the relative position of the adjustable focus indicator 108 and the base 102 (the position of the adjustable focus indicator 108 within the opening 105) may correspond to a particular focus reference state.
  • telescope system 100 operates in a first focus reference state corresponding to a particular relative position between adjustable focus indicator 108 and base 102, where adjustable focus indicator 108 is located A position relatively close to the middle of the opening 105 .
  • focus adjustment tube 106 is positioned such that focus indicator mark 112 in position 112A is aligned with line mark 111A corresponding to "50M" focus indication value 111B.
  • the focus reference can in turn indicate a focal length of 50 meters from the objective lens (or primary mirror) of the telescope, that is, an object 50 meters away from the objective lens (or primary mirror) is focused at the desired imaging position.
  • the focus reference state is the same as in configuration A of Figure 3A, which means that in configurations A and B, the base 102 and the adjustable focus indicator 108 (the adjustable focus indicator 108 are positioned opposite to each other) The relative positions between the middle part (near the opening 105) are the same.
  • focus adjustment has been performed within the first focus reference state.
  • configuration B of FIG. 3B compared to configuration A of FIG. 3A
  • the focus adjustment tube 106 has been moved in the longitudinal direction 101A relative to the base 102 and the adjustable focus indicator 108 .
  • the focus indicator mark 112 has also moved the same distance in the longitudinal direction 101A relative to the base 102 and the adjustable focus indicator 108 .
  • Focus indicator mark 112 is now located at position 112B and aligned with line mark 111A corresponding to the " ⁇ " focus indicator value 111B.
  • this focus reference indicates that the focal length is infinite, i.e. objects far away from the objective (or primary mirror) are focused at the desired imaging position.
  • Figures 3C and 3D schematically illustrate telescope system 100 in configurations C and D, wherein telescope system 100 is in a second focus reference state that is different from the first focus reference state shown in Figures 3A and 3B.
  • the focus reference state of telescope system 100 may change for a variety of reasons.
  • the auxiliary optics of the telescope system 100 eg, eyepieces - not shown
  • the focusing characteristics (eg, effective focal length) of the telescope system 100 may be changed, thereby changing the focusing characteristics (eg, effective focal length) of the telescope system 100 . If the focusing characteristics (e.g., effective focal length) of the telescope system 100 (including the telescope and any ancillary optics) change, if the adjustable focus indicator 108 remains in the same position relative to the base 102 and opening 105, the adjustable focus indicator 108 will Does not provide an accurate focus reference.
  • the focus reference of configuration A of Figure 3A is 50m, indicating that an object at 50m is focused at the desired image position, but if the eyepiece of the telescope system 100 is replaced with an eyepiece with a different focal length, the telescope system 100 will have to refocus, Bring the object's image to the desired focus position again.
  • This refocusing of the telescope system 100 will produce a different focus reference, ie the focus indicator mark 112 will be aligned with a different focus assist mark 111 even though the distance to the object has not changed.
  • This lack of adjustability to different focus reference states is a shortcoming of prior art systems.
  • the adjustable focus indicator 108 may move in the longitudinal direction 101 relative to the base 102 (eg, in the opening 105 101) within the longitudinal direction to correspond to the second focus reference state and provide a correspondingly updated focus reference. Comparing configurations C and D of FIGS. 3C and 3D (second focus reference state) with configurations A and B (first focus reference state) of FIGS. 3A and 3B , the adjustable focus indicator 108 has been positioned within the opening 105 Movement in longitudinal direction 101A (toward wall 104C of base 102 and to the left in the view shown).
  • the position 112D of the focus indicator mark 112 relative to the adjustable focus indicator 108 is different from the position 112B of the focus indicator mark 112 relative to the adjustable focus indicator 108 in FIG. 3B .
  • the position of the adjustable focus indicator 108 in the second focus reference state of FIGS. 3C and 3D relative to the first focus reference state of FIGS. 3A and 3B creates a different focus reference for the second focus state relative to the first focus state. (ie different positions of focus indicator mark 112 relative to focus assist mark 111).
  • the user may adjust the adjustable focus indicator 108 to establish a new focus reference state by following the steps below.
  • First based on the focus reference from the first configuration as in the first focus reference state of configuration A of FIG. 3A (ie, the focus indicator mark 112 is aligned with the focus assist mark 111), the user can know the telescope system 100 and the observed The distance between objects (or more precisely, the distance between lenses (or mirrors) of telescope system 100).
  • the focus indicator mark 112 moves accordingly with the focus adjustment tube 106 .
  • the user can move the adjustable focus indicator in the longitudinal direction 101 since the user knows the distance of the object from the telescope system 100 108 until the correct focus reference is obtained (ie, the focus indicator mark 112 is aligned with the correct focus assist mark 111).
  • the user has adjusted the adjustable focus indicator 108 to a second focus reference state, at a different relative position between the adjustable focus indicator 108 and the base 102 (the adjustable focus indicator 108 is in the longitudinal direction 101 relative to different positions of opening 105).
  • Adjustment of the adjustable focus indicator 108 may be manually controlled by the user or electronically driven by a motor and controlled by a processor (not shown). In some embodiments, the adjustable focus indicator 108 may be automatically adjusted by the program to accommodate different focus reference states.
  • the method 500 begins at step 505, which involves focusing on an object in a first focus reference state.
  • the first focus state of step 505 may involve using the telescope system 100 including a first auxiliary optical element (e.g., a first eyepiece).
  • step 505 may optionally involve calibrating the telescope system 100 (or the adjustable focus indicator 108) in a first focus reference state. For example, the position of the object being focused on in step 505 (more specifically, the distance of the step 505 object from the telescope system 100) is known. If this is the case, then once focus is established on the object in step 505, step 505 may optionally involve adjusting the position of the adjustable focus indicator 108 to obtain a focus reference that matches the known distance of the object.
  • step 505 may involve adjusting the position of the adjustable focus indicator 108 by moving the adjustable focus indicator 108 in one of the longitudinal directions 101 until the focus indicator mark 112 is aligned with the focus indicator value 111B of 20m (or a specific line mark 111A indicating 20m).
  • the telescope system 100 or the adjustable focus indicator 108 is then calibrated for the first focus reference state.
  • the telescope system 100 may be used to observe other objects in the first focus reference state, eg, focus the other objects in the first focus reference state.
  • the distances of those other objects will correspond to to the focus reference (i.e., corresponding to the focus indication value 111B or the specific line mark 111A aligned with the focus indicator mark 112).
  • calibration is an optional part of step 505 and is not required. In some embodiments, calibration may be performed before step 505 is performed.
  • Focus reference 515 may correspond to focus indicator mark 112 relative to the position of adjustable focus indicator 108 , particularly focus assist mark 111 (eg, linear focus assist mark 111A and/or associated focus indication value 111B). .
  • the focus reference 515 may include a specific focus assist mark 111 (eg, a specific line mark 111A and/or a specific focus indication value 111B) to which the focus indicator mark 112 points when the object is in focus at step 505 .
  • focus reference 515 may be obtained electronically.
  • Method 500 then proceeds to step 520 where auxiliary optics of telescope system 100 are added, removed, and/or changed. As discussed above, the addition, removal, and/or changes of such auxiliary optics may have an impact on the focusing characteristics (eg, effective focal length) of the telescope system 100 .
  • the method 500 then proceeds to step 525, which involves focusing the modified telescope system 100 (ie, the telescope system 100 modified in step 520) on the same object (ie, the object focused on in step 505).
  • refocusing on the same object in step 530 will involve the adjustment of the focus adjustment tube 106 relative to the base 102 Movement and corresponding movement of focus indicator mark 112 relative to adjustable focus indicator 108 and focus assist mark 111 .
  • step 530 includes adjusting the position of adjustable focus indicator 108 to match step 510 focus reference 515 .
  • step 530 includes moving the adjustable focus indicator 108 in one of the longitudinal directions 101 up to the focus indicator mark. 112 is again aligned with the focus indicator value 111B (or specific line mark 111A) of 20m.
  • telescope system 100 (or adjustable focus indicator 108 ) is calibrated in the first focus reference state (eg, as part of step 505 or prior to performance of step 505 ), then telescope system 100 (or adjustable focus indicator 108 ) is calibrated in the first focus reference state.
  • Focus indicator 108) will be calibrated in the second focus reference state by performing the steps of method 500 (ie, ending at step 530).
  • the telescope system 100 can be used to observe other objects in the second focus reference state, such as focusing in the second focus reference state. other objects.
  • telescope system 100 When telescope system 100 (or adjustable focus indicator 108 ) is aligned in the second focus reference state and telescope system 100 is focused on other objects in the second focus reference state, those other objects (distance from telescope system 100 ) The distance will correspond to a focus reference (eg, corresponding to focus indicator value 111B or a specific line mark 111A aligned with focus indicator mark 112).
  • a focus reference eg, corresponding to focus indicator value 111B or a specific line mark 111A aligned with focus indicator mark 112
  • those other objects when telescope system 100 (or adjustable focus indicator 108 ) is calibrated in a particular focus reference state and telescope system 100 is focused on other objects in that particular focus reference state, those other objects (distances from telescope system 100 ) will correspond to a focus reference (eg, corresponding to focus indicator value 111B or a specific line mark 111A aligned with focus indicator mark 112).
  • telescope system 100 may then operate in the second focus reference state.
  • Configurations C and D of Figures 3C and 3D illustrate use of the telescope system 100 in the second focus reference state.
  • the adjustable focus indicator 108 is in the same position relative to the base 102 and relative to the opening 105, indicating that configurations C and D are in the same (second) focus reference state.
  • the longitudinal position of focus adjustment tube 106 is different (eg, focused on a different object).
  • the longitudinal position of the focus indicator mark 112 and the focus reference ie, the longitudinal position of the focus indicator mark 112 relative to the focus assist mark 111 also differ between configurations C and D of FIGS. 3C and 3D.
  • method 500 is performed after calibrating telescope system 100 (or adjustable focus indicator 108 ) in a first focus reference state (eg, the first focus reference state of FIGS. 3A and 3B ), then telescope system 100 (or adjustable focus indicator 108 )
  • the indicator 108) will be calibrated in a second focus reference state (e.g. the second focus reference state of Figures 3C and 3D) and the focus reference of configuration C (Figure 3C) indicates an object at a distance of 8m, configuration D ( Figure 3D)
  • the focus reference indicates an object at a distance of 50m.
  • the telescope system 100 can Establish a focus reference using the telescope system 100 (and know the corresponding object distances described above).
  • telescope system 100 may operate in the new focus reference state, as indicated by focus indicator markers 112 and adjustable focus indicator 108 (especially The relative position of the focus aid mark 111) provides a useful focus reference.
  • Conventional prior art telescopes without an adjustable focus indicator 108 cannot adjust their focus reference to accommodate different focus reference states when the telescope is coupled to different auxiliary optics. Therefore, the static, non-adjustable focus reference of such prior art telescopes becomes less useful when the prior art telescope is used in conjunction with different auxiliary optics.
  • FIG. 4 schematically illustrates a partial cross-sectional view of a telescope system 100 including an adjustable focus indicator 108 .
  • Telescope system 100 may include a light admission tube 114 coupled to focus adjustment tube 106 .
  • Optical element 116 may also be coupled to focus adjustment tube 106 .
  • Optical element 116 may include an objective or primary mirror for, for example, telescope system 100 .
  • optical element 116 is shaped to define an aperture through which focus adjustment tube 106 can extend longitudinally into and through such that the outer surface of focus adjustment tube 106 abuts and supports the inner surface of optical element 116 .
  • opening 105 may be defined in base 102 that connects to and supports focus adjustment tube 106 .
  • the adjustable focus indicator 108 may be located within the opening 105 and may be supported by the base 102 in the opening 105 (eg, by a wall of the opening 105 ). As described elsewhere herein, the adjustable focus indicator 108 can move in the longitudinal direction 101 relative to the base 102 (within the opening 105) and can be locked in place within the opening 105 (eg, in the absence of external force).
  • Adjustable focus indicator 108 may be shaped to define opening 109 such that focus indicator markings 112 on outer surface 106A of focus adjustment tube 106 are visible through opening 109 .
  • the adjustable focus indicator 108 may have focus assist markings 111 defined (eg, printed or otherwise marked) on its surface.
  • the focus auxiliary mark 111 includes a plurality of linear focus auxiliary marks and focus indication values “ ⁇ ”, “25M”, “10M” and “7M”. Other types of focus assist marks and/or focus indication values are possible.
  • Figures 5A-D illustrate a partial view of a telescope system 200 according to another example embodiment.
  • 5A and 5B illustrate telescope system 200 in a first focus reference state.
  • Figures 5C and 5D illustrate telescope system 200 in a second focus reference state.
  • telescope system 200 includes base 202 having outer surface 202A and focus adjustment tube 206 having outer surface 206A. Both base 202 and focus adjustment tube 206 are tubular and extend in longitudinal direction 101 .
  • the diameter of base 202 is greater than the diameter of focus adjustment tube 206
  • the inner surface of base 202 is shaped to define a hole such that focus adjustment tube 206 extends into and through the hole of base 202 .
  • the portion of focus adjustment tube 206 within the hole in base 202 is shown in dashed lines.
  • the focus adjustment tube 206 is movable in the longitudinal direction 101 relative to the base 202 .
  • Base 202 may be shaped to define opening 205 on surface 202A of base 202 .
  • the opening 205 may be defined by one or more walls 204A-D and may extend from the outer surface 202A of the base 202 to the inner surface of the base 202 such that the inner bore of the base 202 is visible from outside the outer surface 202A.
  • Transparent material can be inserted into opening 205.
  • the outer surface 206A of the focus adjustment tube 206 may be shaped to define a guide 209, which may be defined by one or more walls 210A-D. Portions of walls 210A-D located in the holes of base 202 are shown in dashed outline. In the embodiment shown in Figure 5, portions of walls 210A-B overlap walls 204A-B, but this is generally not required.
  • guide 209 may have a different area or shape than opening 205.
  • the adjustable focus indicator 208 may be located in the guide 209 and may be supported in the guide 209 by the focus adjustment tube 206 (eg, walls 210A, 210B of the guide 209). Edge 208A of adjustable focus indicator 208 may be adjacent and contact wall 210A of focus adjustment tube 206 . Edge 208B of adjustable focus indicator 208 may be adjacent and contact wall 210B of focus adjustment tube 206 . In some embodiments, the stiction between edge 208A and wall 210A and the stiction between edge 208B and wall 210B are sufficient such that the adjustable focus indicator 208 is in relative position relative to the focus adjustment tube 206 and relative to the guide 209 is held in place with no external force exerted except gravity.
  • edges 208A, 208B and/or walls 210A, 210B may include friction-enhancing features (e.g., ridges, grooves, etc.) to help secure the adjustable focus indicator 208 relative to the focus without external force. Adjust the position of tube 206 and guide 209.
  • a locking mechanism may be provided to secure the position of the adjustable focus indicator 208 relative to the focus adjustment tube 206 and guide 209.
  • Focus indicator markings 212 may be defined (eg, printed or otherwise marked) on the surface of the adjustable focus indicator 208 .
  • the adjustable focus indicator 208 is moveable in the longitudinal direction 101 relative to the base 202 and the focus adjustment tube 206 (within the guide 209). As the adjustable focus indicator 208 moves in the longitudinal direction 101 , the focus indicator mark 212 also moves the same distance in the longitudinal direction 101 .
  • the adjustable focus indicator 208 may be constrained (by the interaction of the adjustable focus indicator 208 and the guide 209 ) to move in the longitudinal direction 101 relative to the focus adjustment tube 206 .
  • Focus assist marks 211 may be defined (eg, printed or otherwise marked) on outer surface 202A of base 202 .
  • Focus assist mark 211 may include linear focus assist mark 211A and/or other types of marks and/or focus indicator values 211B, such as " ⁇ ", “25M”, “10M”, “7M”, etc. Other types of focus assist marks 211 or other focus indication values 211B are possible.
  • the combination of focus indicator mark 212 and focus assist mark 211 provides a focus reference, ie, the position of focus indicator mark 212 relative to focus assist mark 211 . For example, in configuration A of FIG. 3A , the focus reference is between “ ⁇ ” and “25M”, and in configuration B of FIG. 3B , the focus reference is between 10m and 25m.
  • the focus reference of the telescope system 200 does not change even if the relative position between the base 102 and the focus adjustment tube 106 does not change. (ie, the position of the focus indicator mark 212 relative to the focus assist mark 211) changes.
  • the relative position between the adjustable focus indicator 208 and the focus adjustment tube 206 can be adjusted to correspond to different focus reference states of the telescope system 200 . That is, the relative positions of the adjustable focus indicator 208 and the focus adjustment tube 206 (the adjustable focus indicator 208 within the guide 209) may correspond to a specific focus reference state.
  • telescope system 200 operates in a first focus reference state corresponding to a particular relative position between adjustable focus indicator 208 and focus adjustment tube 206, wherein adjustable focus indicator 208 208 is located relatively close to the middle of the guide 209 .
  • telescope system 200 operates in a second focus reference state corresponding to a specific relative position between adjustable focus indicator 208 and focus adjustment tube 206, wherein adjustable focus indicator 208 208 is located relatively close to the right hand side of opening 109 .
  • Configurations A and B of Figures 5A and 5B illustrate use of telescope system 200 in a first focus reference state.
  • the adjustable focus indicator 208 is in the same position relative to the focus adjustment tube 206 and relative to the guide 209 in configurations A and B of Figures 5A and 5B, indicating that configurations A and B of Figures 5A and 5B are in the same (first ) is in the focus base state.
  • the longitudinal position of focus adjustment tube 206 (relative to base 202) is different (eg, focused on a different object). Therefore, the longitudinal position of the focus indicator mark 212 and the focus reference (ie, the longitudinal position of the focus indicator mark 212 relative to the focus assist mark 211) also differ between configurations A and B of FIGS. 5A and 5B.
  • Figures 5C and 5D illustrate the telescope system 200 in a second focus reference state that is different from the first focus reference state shown in Figures 5A and 5B.
  • the focus reference of the telescope system 200 can be adjusted to accommodate different focus reference states.
  • the relative position between the adjustable focus indicator 208 and the focus adjustment tube 206 (the position of the focus indicator 208 within the guide 209) is different from that of the adjustable focus indicator 208 and the adjustable focus indicator 208 in Figures 5A and 5B.
  • the relative position between focus adjustment tubes 206 (focus indicator 208 position within guide 209).
  • the focus indicator mark 212 is in a different alignment state with respect to the focus assist mark 211 , so that in FIG. Different focus references are provided between the first focus reference state of FIG. 5A and the second focus reference state of FIG. 5C.
  • the focus reference state of telescope system 200 may change for a variety of reasons.
  • the auxiliary optics of telescope system 200 eg, eyepieces - not shown
  • the focusing characteristics (eg, effective focal length) of telescope system 200 may be changed, thereby changing the focusing characteristics (eg, effective focal length) of telescope system 200 .
  • the adjustable focus can be adjusted if the adjustable focus indicator 208 remains in the same position relative to the focus adjustment tube 206 and guide 209 Indicator 208 will not provide an accurate focus reference. This lack of adjustability for different focus reference states is a shortcoming of prior art systems.
  • the adjustable focus indicator 208 may be positioned relative to the focus adjustment tube 206 (e.g., within the guide 209 (along the longitudinal direction 101) along the longitudinal direction 101 to correspond to the second focus reference state and provide a correspondingly updated focus reference. Comparing configurations C and D of FIGS. 5C and 5D (second focus reference state) with configurations A and B (first focus reference state) of FIGS. 5A and 5B , the adjustable focus indicator 208 has been positioned within the guide 209 Movement in longitudinal direction 101 (toward wall 210D of focus adjustment tube 206 and to the right in the view shown).
  • a user may use the following steps to adjust the focus reference state of telescope system 200 .
  • the user can know the distance between the telescope system 200 and the last observed object in the previous focus reference state.
  • the user can move the focus adjustment tube 206 in the longitudinal direction 101 relative to the base 202 until the user finds the correct focus.
  • the user can then move the adjustable focus indicator 208 in the longitudinal direction 101 within the guide 209 until the focus indicator mark 212 aligns with the correct focus indicator value of the focus assist mark 211 .
  • the method 500 of FIG. 9 may be used to change the focus reference state of the telescope system 200 , except that instead of moving the adjustable focus in the longitudinal direction 101 relative to the base 102 (within the opening 105 ) as is the case with the telescope system 100 Indicator 108 changes the focus reference state of telescope system 200 by moving adjustable focus indicator 208 in longitudinal direction 101 relative to focus adjustment tube 206 (within guide 209).
  • Telescope system 200 may also be calibrated in a manner similar to telescope system 100 (or adjustable focus indicator 108 ) discussed above, except not in the longitudinal direction 101 as is the case with calibrating telescope system 100
  • the collimated telescope system 200 includes a focus adjustment tube 206 (within the guide 209 ) relative to the longitudinal direction 101 ) moves the adjustable focus indicator 208.
  • telescope system 200 (or adjustable focus indicator 208 ) is calibrated in the first focus reference state (e.g., as part of step 505 or before step 505 is performed in method 500 )
  • the telescope system 200 (or the adjustable focus indicator 208 ) will then be calibrated in the second focus reference state by performing the steps of the method 500 (ie, at the end of step 530 ).
  • telescope system 200 (or adjustable focus indicator 208 ) is calibrated in a particular focus reference state and telescope system 200 is focused on other objects in that particular focus reference state, those other objects (distances from telescope system 200 ) will correspond to a focus reference (eg, corresponding to focus indicator value 211B or specific line mark 211A aligned with focus indicator mark 212).
  • a focus reference eg, corresponding to focus indicator value 211B or specific line mark 211A aligned with focus indicator mark 212).
  • telescope system 200 can then operate in the second focus reference state.
  • Configurations C and D of FIGS. 5C and 5D illustrate use of telescope system 200 in a second focus reference state (different from the first focus reference state of FIGS. 5A and 5B).
  • adjustable focus indicator 208 is in the same relative position relative to focus adjustment tube 206 and relative to guide 209, indicating that configurations C and D are in the same (second) focus reference state.
  • the longitudinal position of focus adjustment tube 106 is different (e.g., focused on different objects).
  • the longitudinal position of focus indicator mark 212 is also different between configurations C and D of 5C and 5D.
  • method 500 is performed after calibrating telescope system 200 (or adjustable focus indicator 208) in a first focus reference state (e.g., the first focus reference state of FIGS. 5A and 5B ), then telescope system 200 (or adjustable focus indicator 208) will be calibrated in a second focus reference state (e.g., the second focus reference state of FIGS. 5C and 5D ), and the focus reference of configuration C ( FIG. 5C ) indicates an object at a distance of approximately 20 m, and the focus reference of configuration D ( FIG. 5D ) indicates an object at a distance of 8.5 m.
  • FIG. 6 schematically illustrates a partial cross-sectional view of a telescope system 200 including an adjustable focus indicator 208 .
  • Telescope system 200 is similar to telescope system 100 in some respects. Components of telescope system 200 that are identical to telescope system 100 are labeled with the same reference numerals.
  • Surface 206A of focus adjustment tube 206 is shaped to define guide 209 .
  • Adjustable focus indicator 208 may be located within guide 209 and may be supported in guide 209 by focus adjustment tube 206 (eg, walls 210A, 210B of guide 209) such that adjustable focus indicator 208 may be positioned between walls 210C and 210D. moves relative to the focus adjustment tube 206 along the longitudinal direction 101 .
  • Focus indicator markings 212 may be defined (eg, printed or otherwise marked) on the surface of the adjustable focus indicator 208 .
  • Focus assist marks 211 may be defined (eg, printed or otherwise marked) on surface 202A of base 202 .
  • the focus adjustment tube 206 may move relative to the base 202 in order to adjust the focus of the telescope system 200 .
  • the adjustable focus indicator 208 moves with the focus adjustment tube 206 as the focus adjustment tube 206 moves relative to the base 202 .
  • the focus indicator mark 212 moves with the focus adjustment tube 206 . Accordingly, the focus indicator mark 212 moves relative to the focus assist mark 211 and thus assists the user in tracking focus.
  • FIG. 7 schematically shows a partial cross-sectional view of a telescope 300 according to another example embodiment.
  • Telescope 300 includes an adjustable focus indicator 308 .
  • Telescope 300 may be, but is not limited to, a reflecting telescope or a Newtonian telescope.
  • Telescope 300 includes base 302 having outer surface 302A, and focus adjustment tube 306 having outer surface 306A.
  • the focus adjustment tube 306 is movable in the longitudinal direction 101 relative to the base 302 .
  • the outer surface 306A of the focus adjustment tube 306 is shaped to define a guide 309 .
  • the adjustable focus indicator 308 may be located within the guide 309 and may be moveable relative to the focus adjustment tube 306 in the longitudinal direction 101 within the guide 309 (eg, between walls 304A and 304B).
  • Focus indicator markings 312 may be defined (eg, printed or otherwise marked) on the surface of the adjustable focus indicator 308 .
  • Focus assist marks 311 are defined (eg, printed or otherwise marked) on outer surface 302A of base 302 . Focus assist mark 311 may contain any suitable mark or focus indicator value to assist the user in determining focus. Because the adjustable focus indicator 308 moves in the longitudinal direction relative to the focus adjustment tube 306, focus adjustment, calibration, and changing focus reference states of the telescope 300 can be similar to the telescope system 200 described elsewhere herein.
  • Fig. 8 schematically shows a partial cross-sectional view of a telescope 400 according to another example embodiment.
  • the telescope 400 includes an adjustable focus indicator 408.
  • the telescope 400 may be, but is not limited to, a reflecting telescope or a Newtonian telescope.
  • Telescope 400 includes base 402 having outer surface 402A and focus adjustment tube 406 having outer surface 406A.
  • the focus adjustment tube 406 is movable in the longitudinal direction 101 relative to the base 402 .
  • Base 402 is shaped to define opening 405 .
  • the adjustable focus indicator 408 is located within the opening 405 (the boundaries of which are shown in dashed lines) and is movable in the longitudinal direction 101 relative to the base 402 (within the opening 405 ).
  • Focus assist markings 411 may be defined (eg, printed or otherwise marked) on the surface of the adjustable focus indicator 408 .
  • Adjustable focus indicator 408 may be shaped to define opening 409 .
  • Focus indicator markings 412 may be defined (eg, printed or otherwise marked) on outer surface 406A of focus adjustment tube 406 such that focus indicator markings 412 are visible through openings 405, 409.
  • adjustable focus indicator 408 moves in the longitudinal direction relative to the base 402
  • focus adjustment, calibration, and changing focus reference states of the telescope 400 may be similar to the telescope system 100 described elsewhere herein.
  • the telescope focusing mechanism is not limited to the tube of the telescope system itself.
  • the focusing mechanism may additionally or alternatively be implemented in other parts of the system.
  • the focusing mechanism may additionally or alternatively be implemented in the eyepiece of some optical systems and/or in a focusing subsystem located optically adjacent to the eyepiece and/or telescope tube.
  • the bases described herein eg, bases 102, 202, 302, 402
  • focus adjustment tubes eg, focus adjustment tubes 106, 206, 306 , 406 in other parts.
  • another pair of tubes in a different part of such an optical system may have similar features to those described for the base and focus adjustment tubes described herein.
  • a component e.g., software module, processor, component, device, circuit, etc.
  • reference to the component shall be construed to include reference to that component as such.
  • Equivalents of Components Any component that performs the function of the described component (ie, a functional equivalent) includes components that are not structurally equivalent to the disclosed structure that performs the function in the illustrated exemplary embodiments of the invention.
  • connection means any direct or indirect connection or connection between two or more elements; the connection or connection between elements may be physical, logical or their combination;
  • a and/or B includes (A and B) and (A or B);
  • Words indicating direction such as “vertical”, “sideways”, “horizontal”, “up”, “down”, “forward”, “backward”, “inward”, “outward”, “left” “, “right”, “front”, “rear”, “top”, “bottom”, “bottom”, “upper”, “below” as used in this specification and any appended claims (if any) etc., depending on the particular orientation of the device being described and illustrated. The subject matter described herein may take various alternative orientations. Therefore, these directional terms are not strictly defined and should not be interpreted narrowly.
  • ranges include all subranges of that range.
  • a declaration of a range is intended to support the values located at the endpoints of the range and any intervening values to one-tenth of a unit of the lower limit of the range, and any subrange or set of subranges. Unless the context clearly dictates otherwise, no part of the stated range is are expressly excluded. Where the stated range includes one or both endpoints of the range, ranges excluding one or both of those included endpoints are also included in the invention.
  • the value is 10;
  • the value is in the range of 9.5 to 10.5;
  • the numerical value is in the range of C to D, where C and D are the lower and upper endpoints, respectively, of the range including all those values that provide substantial equivalents to the value of 10
  • Any enumerated method may be performed in the order of events enumerated, or in any other order logically possible.
  • process steps or steps are presented in a given order, alternative examples may perform a routine with steps, or employ a system with steps in a different order, and some process steps may be deleted, moved, added, subdivided, combined or steps, and/or modifications to provide alternatives or subcombinations.
  • Each of these process steps or steps can be implemented in a variety of different ways.
  • process steps or steps are sometimes shown as being performed serially, these process steps or steps may alternatively be performed in parallel, simultaneously, or at different times.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Telescopes (AREA)

Abstract

一种用于光学仪器的可调节聚焦指示器(108)系统,包括:第一和第二纵向延伸管(102,106),第二管(102)包括孔限定表面,孔限定表面被成形为限定纵向延伸孔,其中第一管(106)的至少一部分位于孔中;聚焦指示器(108)由第一管(106)和第二管(102)中的一个管支撑并可沿纵向方向相对于其中一个管移动,聚焦指示器(108)包括第一聚焦指示器标记(111)。第一和第二管(102,106)中的一个和第一和第二管(102,106)中的另一个可沿纵向相对于彼此移动,从而使聚焦指示器(108)和第一聚焦指示器标记(111)相对于第一管和第二管(102,106)中的另一个上的第二聚焦指示器标记(112)移动。

Description

可调节的望远镜聚焦指示器 技术领域
本发明涉及光学仪器领域,例如望远镜等。本发明的一些方面为诸如望远镜等的光学仪器提供可调节的聚焦指示器。
背景技术
用于查看或捕捉场景图像的光学仪器(例如望远镜等)通常包括物镜或主镜。透镜(或镜)具有相关的焦距fo。透镜(或镜)的焦距是衡量透镜或镜会聚或发散光的强度的指标。焦距相对较小的透镜或反射镜会相对急剧地弯曲光线(使光线在较短的距离内聚焦)。对于空气中薄透镜的特殊情况,焦距是准直(平行)输入光线(例如来自无穷远处的光线)聚焦的距离。物体图像聚焦的垂直于透镜(或镜)光轴的平面称为像平面(image plane)。当物体位于无穷远处(平行输入光线)时,像平面对应于在距离透镜(或镜)的主平面fo处的焦平面(focal plane)(即垂直于透镜(或镜)光轴的平面)。当物体距离物镜(或主镜)较近时,像平面将不同于焦平面。
通常,光学仪器(例如望远镜等)是包括多于一个透镜或光学镜的复合光学系统。例如,除了物镜(或主镜)外,望远镜通常还包括目镜。目镜的作用是放大来自物镜(或主镜)的光。目镜将有自己的透镜和/或镜,每个透镜和/或镜都有自己的焦距,为目镜提供有效焦距(fe)。望远镜的放大倍数由
Figure PCTCN2022119501-appb-000001
给出。光学仪器(例如望远镜等)的物镜(或主镜)和目镜形成一个复合光学系统,该系统具有自己的有效焦距。
大多数光学仪器(例如望远镜等)允许用户在查看或捕获物体的图像时调节光学仪器的聚焦。聚焦调节通常涉及相对于彼此移动系统的一个或多个光学元件以使来自物体的光会聚(尽可能多地)在所需的成像位置(例如,在用户的眼睛处、在成像传感器等处)。聚焦调节可以被认为是调节系统的一个或多个光学元件的相对位置,使得像平面(来自物体的光尽可能会聚的平面)位于所需的成像位置。当来自物体的光会聚在所需的成像位置时,图像会显得清晰明快,即聚焦。如果来自物体的光不能很好地汇聚在所需的成像位置,则图像可能会显得模糊,即失焦。
较长的焦距往往放大在期望成像位置处聚焦和失焦的物体的图像之间的外观差异。光学系统的焦距与其放大倍数相关,即焦距越长,放大倍数越高。与放大倍数相关的光学特性是“景深”(depth of field)。景深是对产生被判断或认为是聚焦的图像的场景中最近和最远物体之间距离的度量。就光学原理而言, 光学系统的焦距越长,景深越浅;焦距越短,景深越深。换句话说,在其他条件相同的情况下,通过焦距相对较长的光学系统观看场景的图像,与通过焦距相对较短的光学系统观看同一场景的图像相比,失焦的场景部分会更加模糊。
与其他光学仪器相比,望远镜通常具有相对较长的焦距(即,更高的放大倍数),因为大多数望远镜用于观察远离用户的物体,例如天体。因此,与其他光学仪器相比,大多数望远镜的景深相对较浅。因此,在望远镜中,即使聚焦的微小调节也可能导致图像位置处图像的清晰度和模糊度出现很大差异。此外,当物体的图像失焦时,通过望远镜观察到的物体的图像往往会变暗。因此,当物体的图像失焦时,用户可能难以识别图像中的物体。
上面概述的问题可能妨碍用户容易地找到对期望物体的正确聚焦的能力。在实践中,用户可能必须在用户找到正确聚焦之前进行许多聚焦调节。在某些情况下,用户可能无法找到正确聚焦。
此外,通常希望将望远镜与不同类型的辅助光学装置结合使用,例如不同的目镜、照相机等。这些不同类型的辅助光学装置通常具有其自身的光学特性(例如有效焦距),进而影响整个光学系统的光学特性(即望远镜与辅助光学装置的组合)。当用户在与望远镜结合使用的不同辅助光学装置之间切换(例如,在不同目镜之间)时,用户可能希望将望远镜的使用适应不同的“聚焦基准状态(focus reference regimes)”。
在本公开中,“聚焦基准状态”是指特定光学系统的聚焦特性。不同的光学系统可能具有不同的聚焦特性,因此可以被认为具有或处于不同的“聚焦基准状态”。例如,联接到第一目镜的望远镜可以提供具有第一聚焦基准状态的光学系统。当同一望远镜联接到第二(不同)目镜时,所得的第二光学系统可以具有与第一聚焦基准状态不同的第二聚焦基准状态。与传统望远镜相关的固定聚焦基准指示器(例如线标记、刻度盘标记、数字等)使得用户不容易适应不同的聚焦基准状态。
一些望远镜已经实施了各种形式的聚焦辅助来帮助用户。
图1示意性地示出了具有聚焦辅助标记2的传统现有技术望远镜10。作为非限制性示例,现有技术望远镜10可以是马克苏托夫(Maksutov)望远镜或施密特卡塞格林式(Schmidt-Cassegrain)望远镜。现有技术望远镜10包括聚焦调节转盘1。聚焦调节转盘1可以围绕聚焦调节轴1A(在图1所示视图中延伸进出页面)旋转。双头箭头5表示聚焦调节转盘1围绕聚焦调节轴1A的旋转方向。聚焦辅助标记2可以被定义在聚焦调节转盘1的表面上。
对于图1所示的现有技术望远镜10,聚焦辅助标记2包括锥形弧2A。锥形弧2A的一端宽度较窄,而锥形弧2A的另一端宽度较宽,使得锥形弧2A从宽端向较窄端逐渐变细。现有技术望远镜10的聚焦辅助标记2还包括符号“∞” 的标记3,其表示无穷远处的聚焦。标记3位于锥形弧2A的较窄端附近。
聚焦辅助标记2通过告知用户聚焦调节转盘1在旋转方向5A上围绕聚焦调节轴1A的旋转导致望远镜10的光学组件的相对移动,从而帮助用户聚焦调节,使得该聚焦可以容纳更接近无穷远的物体。另一方面,聚焦调节转盘1围绕聚焦调节轴1A沿旋转方向5B的旋转引起望远镜10的光学部件的相对移动,使得该聚焦适应更靠近望远镜的物体,直到该聚焦达到望远镜10的光学极限。
现有技术望远镜10的聚焦辅助标记2向用户指示聚焦调节的方向。然而,现有技术望远镜10没有指示望远镜10的焦距(即望远镜10和聚焦的物体之间的距离)的标记。此外,根据现有技术望远镜10的规格,聚焦辅助标记2被限定在聚焦调节转盘1上,并且例如当望远镜10与不同的辅助光学装置结合使用时,聚焦辅助标记2是不可调节的。
图2示意性地示出了具有聚焦辅助标记12的另一传统现有技术望远镜20。作为非限制性示例,现有技术望远镜20可以是反射式望远镜或牛顿望远镜。现有技术望远镜20包括基部14和联接到基部14的聚焦调节管16。聚焦调节管16可以沿轴向(纵向)方向11相对于基部14移动。聚焦调节管16相对于基部14沿轴向方向11的移动使得望远镜20的光学部件相对于彼此移动,从而调节望远镜20的聚焦。
聚焦辅助标记12被印刷或以其他方式标记在聚焦调节管16上。聚焦辅助标记12包括多个线标记以表示聚焦基准。用户可以依靠线标记来确定沿方向15的特定聚焦基准,该方向15基本上平行于轴向方向11。
现有技术望远镜20具有与现有技术望远镜10相同的缺点。现有技术望远镜20没有指示望远镜20焦距(即望远镜20和聚焦的物体之间的距离)的标记。此外,虽然现有技术望远镜20的线标记允许用户沿方向15测量的聚焦基准,但线标记固定在聚焦调节管16上并且例如当望远镜20与不同的辅助光学器件结合使用时不可调节。
因此,仍然需要一种望远镜聚焦指示器,其是可调节的并且允许用户使用相对简单和/或不太耗时的技术来找到正确聚焦。
发明内容
本发明的一个方面提供了一种用于光学仪器的可调节聚焦指示器系统。该系统包括:沿纵向方向延伸的第一管;沿纵向方向延伸的第二管,该第二管包括孔限定表面,该孔限定表面成形为限定沿纵向方向延伸的孔,其中第一管的至少一部分位于该孔中;聚焦指示器,其由第一管和第二管中的一个支撑并可沿纵向方向相对于第一管和第二管中的一个移动,聚焦指示器包括对用户可见的第一聚焦指示器标记;其中第一管和第二管中的一个与第一管和第二管中的另一个可 在纵向方向相对于彼此移动,从而在第一管和第二管中的另一个上使聚焦指示器和第一聚焦指示器标记相对于对用户可见的第二聚焦指示器标记移动。
第一管和第二管中的一个可以是第二管,并且第一管和第二管中的另一个可以是第一管。
第二管可以成形为限定第一开口,该第一开口沿纵向方向和垂直于纵向方向的方向从第二管的外表面延伸到孔。
聚焦指示器可以被可移动地支撑以在第一开口中沿纵向方向移动。
通过聚焦指示器和第一开口的一个或多个边缘的相互作用,聚焦指示器可以被限制在纵向方向上移动。
聚焦指示器可以在第一开口内形成摩擦配合,以防止聚焦指示器在没有外力的情况下相对于第二管沿纵向方向移动。
第二管可以包括引导件,该引导件在纵向方向上延伸,用于促进聚焦指示器相对于第二管在纵向方向上移动。
通过聚焦指示器与引导件的相互作用,聚焦指示器可以被限制在纵向方向上移动。
聚焦指示器可以与引导件形成摩擦配合,以防止聚焦指示器在没有外力的情况下相对于第二管在纵向方向上移动。
该系统可以包括锁定机构,该锁定机构可锁定以防止聚焦指示器相对于第二管沿纵向方向移动,并且可解锁以促进聚焦指示器相对于第二管沿纵向方向移动。
聚焦指示器可以成形为限定第二开口,该第二开口沿纵向方向和垂直于纵向方向的方向从聚焦指示器的外表面延伸到聚焦指示器的内表面,使得第二聚焦指示器标记通过第二个开口可见。
第一管和第二管中的一个可以是第一管,第一管和第二管中的另一个可以是第二管。
第二管可成形为限定第一开口,该第一开口沿纵向方向和垂直于纵向方向的方向从第二管的外表面延伸到孔,使得聚焦指示器通过该第一开口可见。
第一管可以包括纵向延伸的引导件,用于促进聚焦指示器在引导件中相对于第一管在纵向方向上移动。
通过聚焦指示器和引导件的相互作用,聚焦指示器可以被限制在纵向方向上移动。
聚焦指示器可以与引导件形成摩擦配合,以防止聚焦指示器在没有外力的情况下相对于第一管在纵向方向上移动。
第一管可以成形为限定沿纵向方向延伸的第二开口,并且聚焦指示器被可移动地支撑以在第二开口中沿纵向方向移动。
通过聚焦指示器和第二开口的相互作用,聚焦指示器可以被限制在纵向方向上移动。
聚焦指示器可以与第二开口形成摩擦配合,以防止聚焦指示器在没有外力的情况下相对于第一管沿纵向方向移动。
该系统可以包括锁定机构,该锁定机构可锁定以防止聚焦指示器相对于第一管沿纵向方向移动,并且可解锁以促进聚焦指示器相对于第一管沿纵向方向移动。
第一聚焦指示器标记和第二聚焦指示器标记中的一个可以在特定纵向位置处提供单个标记,并且第一和第二聚焦指示器标记中的另一个可以提供在纵向方向上间隔开的多个标记。
本发明的另一方面提供了一种用于校准本文公开的光学仪器的方法。该方法包括:将光学系统聚焦在距光学系统(或距光学系统的物镜或主镜)已知距离的物体上;并且,在将光学系统聚焦在物体上之后,相对于第一管和第二管中的一个在纵向方向上移动聚焦指示器,直到第一聚焦指示器标记和第二聚焦指示器标记中的一个的单个标记对准在相对于第一聚焦指示器标记和第二聚焦指示器标记中的另一个的多个间隔标记处的特定位置。
第一聚焦指示器标记和第二聚焦指示器标记中的另一个的多个间隔标记可以包括多个聚焦指示器值,并且该特定位置可以指示对应于已知距离的聚焦指示器值。
本发明的另一方面提供了一种用于调节本文所公开的光学仪器的聚焦基准状态的方法。该方法包括调节聚焦指示器在纵向方向上相对于第一管和第二管中的一个的位置。
该方法可以包括,在调节聚焦指示器的位置之前,添加、移除或以其他方式改变光学仪器的一个或多个辅助光学装置。
本发明的另一方面提供了一种用于调节本文所公开的光学仪器的聚焦基准状态的方法。该方法包括:将光学仪器聚焦在第一物体上并观察第一聚焦指示器标记和第二聚焦指示器标记中的一个的单个标记相对于第一聚焦指示器标记和第二聚焦指示器标记中的另一个的多个间隔标记的第一对准;添加、移除或以其他方式改变光学仪器的一个或多个辅助光学装置;并且,在添加、移除或以其他方式改变光学仪器的一个或多个辅助光学装置之后:将光学仪器重新聚焦在第一物体上;调节聚焦指示器在纵向方向上相对于第一管和第二管中的一个的位置,以实现第一对准。
该方法可以包括在将光学仪器聚焦在第一物体上之前根据本文公开的方法校准该光学仪器。
本发明的其他方面提供了具有如本文所述的任何新的和创造性的特征、 特征的组合或特征的子组合的装置。
本发明的其他方面提供具有如本文所述的任何新的和创造性的步骤、动作、步骤和/或动作的组合或步骤和/或动作的子组合的方法。
需要强调的是,本发明涉及上述特征的所有组合,即使这些在不同的权利要求中叙述。
在附图中示出和/或在以下描述中进行描述进一步的方面和示例实施例。
附图说明
附图说明了本发明的非限制性示例实施例。
图1是带有传统现有技术聚焦指示器的望远镜的剖视图。
图2是带有另一种传统现有技术聚焦指示器的望远镜的俯视图。
图3A和图3B是根据示例实施例的在第一聚焦基准状态下具有可调节聚焦指示器的望远镜系统的不同配置的局部示意图。
图3C和图3D是根据示例实施例的在第二聚焦基准状态下具有可调节聚焦指示器的望远镜系统的不同配置的局部示意图。
图4是根据示例实施例的图3A-D(统称为图3)的望远镜系统的局部剖视图。
图5A和图5B是根据另一示例实施例的在第一聚焦基准状态下具有可调节聚焦指示器的另一望远镜系统的不同配置的局部示意图。
图5C和图5D是根据另一示例实施例的在第二聚焦基准状态下具有可调节聚焦指示器的另一望远镜系统的不同配置的局部示意图。
图6是根据实例实施例的图5A-D(统称为图5)的望远镜系统的局部剖视图。
图7是根据另一个示例性实施例的具有可调节聚焦指示器的另一个望远镜系统的局部剖视图。
图8是根据另一个示例性实施例的具有可调节聚焦指示器的另一个望远镜系统的局部剖视图。
图9是根据特定实施例的用于调节图3望远镜系统以适应不同的聚焦基准状态的方法的示意图。
具体实施方式
公开了一种用于诸如望远镜之类的光学仪器的可调节聚焦指示器。
在整个以下描述中,阐述了具体细节以便提供对本发明的更透彻的理解。然而,可以在没有这些细节的情况下实施本发明。在其他情况下,没有详细示出或描述众所周知的元件以避免不必要地模糊本发明。因此,说明书和附图被认为 是说明性的,而不是限制性的。
图3A-D(统称为图3)示意性地示出了根据本发明示例实施例的望远镜系统100的局部视图。图3A和3B示出了处于第一聚焦基准状态的望远镜系统100。图3C和3D示出了处于第二聚焦基准状态的望远镜系统100。
望远镜系统100可以包括但不限于马克苏托夫(Maksutov)望远镜或施密特卡塞格林式(Schmidt-Cassegrain)望远镜。望远镜系统100包括可调节聚焦指示器108,其适应不同的聚焦基准状态,下面将更详细描述。
在所示实施例中,望远镜系统100包括基部102和聚焦调节管106。基部102和聚焦调节管106都是管状的并且在纵向方向(由双头箭头指示)101上延伸。在图3的实施例中,基部102的直径大于聚焦调节管106的直径,使得基部102的内表面成形为限定有孔并且聚焦调节管106延伸进入并穿过基部102的孔。基部102的孔内的聚焦调节管106的部分以虚线示出。聚焦调节管106可以相对于基部102在纵向方向101上移动。
基部102可以成形为在基部102的表面102A上限定开口105。开口105可以由基部102的一个或多个壁104A-D限定并且可以从基部102的外表面102A延伸到基部102的内表面。可调节聚焦指示器108可位于开口105内并由基部102支撑(例如由壁104A、104B)用于在开口105中纵向移动。可调节聚焦指示器108可包括大致矩形周边,具有沿纵向方向101延伸的边缘108A和108B和沿方向103延伸的边缘108C和108D,尽管这种特定形状通常不是必需的。
可调节聚焦指示器108的边缘108A可以与基部102的壁104A相邻并与之接触。可调节聚焦指示器108的边缘108B可以与基部102的壁104B相邻并与之接触。在一些实施例中,边缘108A和壁104A之间的静摩擦力以及边缘108B和壁104B之间的静摩擦力足够大,使得可调节聚焦指示器108在除了重力没有施加任何外力的情况下相对于基部102和相对于开口105被固定在适当位置。在一些实施例中,边缘108A、108B和/或壁104A、104B可以包括摩擦增强特征,例如脊部、凹槽等,以在没有外力情况下帮助相对于基部102和开口105固定可调节聚焦指示器108的位置。在一些实施例中,可提供锁定机构以相对于基部102和开口105固定可调节聚焦指示器108的位置。
在一些实施例中,开口105可以由引导件代替,该引导件有利于可调节聚焦指示器108相对于基部102的纵向移动并且提供用于将可调节聚焦指示器108相对于基部102(例如,在没有外力的情况下或除非锁定机构解锁的情况下)保持在适当位置的机构(例如,摩擦配合或锁定机构)。为简洁起见,望远镜系统100在本文中通过参考开口105进行描述,应理解,除非上下文另有说明,否则开口105可以由合适的引导件代替,以允许可调节聚焦指示器108相对于基部102纵向移动。
可调节聚焦指示器108可以相对于基部102(在开口105内)和聚焦调节管106沿纵向方向101移动。可调节聚焦指示器108可以被限制(通过可调节聚焦指示器108和开口105的相互作用)在纵向方向101上相对于基部102移动。可调节聚焦指示器108可以相对于基部102在纵向101A上通过开口间隙105A移动,直到可调节聚焦指示器108的边缘108C邻接基部102的壁104C。可调节聚焦指示器108也可以相对于基部102沿纵向方向101B移动穿过开口间隙105B直到可调节聚焦指示器108的边缘108D邻接基部102的壁104D。
可调节聚焦指示器108本身可以成形为限定由可调节聚焦指示器108的一个或多个壁110A-D限定的开口109。开口109可以从可调节聚焦指示器108的第一表面108E延伸通过可调节聚焦指示器108的相对的第二表面(在图3A中不可见)以使聚焦调节管106的外表面106A通过开口109可见。
可调节聚焦指示器108可以包括定义在第一(可见)表面108E上的聚焦辅助标记111。聚焦辅助标记111可以印刷或以其他方式标记在对焦指示器108的第一表面108E上并且可以通过开口105可见。聚焦辅助标记111可以包括线型聚焦辅助标记111A(例如平行于方向103延伸)和/或其他类型的对焦辅助标记和/或聚焦指示器值111B,例如“8M”、“50M”、“∞”等。其他类型的聚焦辅助标记111(包括其他类型线型聚焦辅助标记111A和/或聚焦指示器值111B的组合)是可能的。
聚焦指示器标记(例如聚焦指示线、聚焦指示箭头等)112可以被定义(例如印刷或以其他方式标记)在聚焦调节管106的外表面106A上并且可以是通过开口109可见的。当聚焦调节管106在纵向方向101上相对于基部102和相对于可调节聚焦指示器108移动时,聚焦指示器标记112也相对于基部102和相对于可调节聚焦指示器108移动相同的距离。因此,聚焦指示器标记112也相对于聚焦辅助标记111移动,允许用户在调节望远镜系统100的聚焦的同时跟踪聚焦基准(即聚焦指示器标记112相对于聚焦辅助标记111的位置)。聚焦基准(即聚焦指示器标记112相对于聚焦辅助标记111的位置)连同可调焦点指示的可调节性可用于确定在不同的聚焦基准状态中的焦距(即望远镜系统100与聚焦物体之间的距离),如下文更详细讨论的。
当可调节聚焦指示器108相对于基部102和开口105在纵向方向101上移动时,即使当基部102与聚焦调节管106之间的相对位置没有改变时,望远镜系统100的聚焦基准(即聚焦指示器标记112相对于聚焦辅助标记111的位置)改变。可调节聚焦指示器108和基部102之间的相对位置可以被调节以对应望远镜系统100的不同聚焦基准状态。即,可调节聚焦指示器108和基部102的相对位置(可调节聚焦指示器108在开口105内的位置)可以对应于特定的聚焦基准状态。在图3A和3B的配置A和B中,望远镜系统100在对应于可调节聚 焦指示器108和基部102之间的特定相对位置的第一聚焦基准状态下操作,其中可调节聚焦指示器108位于相对靠近开口105的中部的位置。
在图3A的配置A中,聚焦调节管106的位置使得位置112A中的聚焦指示器标记112与对应于“50M”聚焦指示值111B的线标记111A对准的位置。当望远镜系统100被适当校准时,该聚焦基准又可以指示焦距距离望远镜的物镜(或主镜)50米,即距物镜(或主镜)50m的物体被聚焦在所需的成像位置。
在图3B的配置B中,聚焦基准状态与图3A的配置A中的相同,这意味着在配置A和配置B下,基部102和可调节聚焦指示器108(可调节聚焦指示器108位置相对靠近开口105的中部)之间的相对位置是相同的。然而,图3A的配置A和图3B的配置B之间,已经在第一聚焦基准状态内进行了聚焦调节。在图3B的配置B中(与图3A的配置A相比),聚焦调节管106已经相对于基部102和可调节聚焦指示器108在纵向方向101A上移动。因此,聚焦指示器标记112也已经在纵向方向101A上相对于基部102和可调节聚焦指示器108移动的距离相同。聚焦指示器标记112现在位于位置112B并与对应于“∞”聚焦指示器值111B的线标记111A对准。当望远镜系统被适当校准时,这个聚焦基准会接着指示焦距是无限远的,即距离物镜(或主镜)很远的物体被聚焦在所需的成像位置。
图3C和3D示意性地示出了配置C和D的望远镜系统100,其中望远镜系统100处于不同于图3A和3B所示的第一聚焦基准状态的第二聚焦基准状态。
望远镜系统100的聚焦基准状态会由于多种原因而改变。例如,可以改变望远镜系统100的辅助光学装置(例如目镜-未示出),从而改变望远镜系统100的聚焦特性(例如有效焦距)。如果望远镜系统100(包括望远镜和任何辅助光学装置)的聚焦特性(例如有效焦距)改变,如果可调节聚焦指示器108保持在相对于基部102和开口105的相同位置,可调节聚焦指示器108将不会提供准确的聚焦基准。例如,图3A的配置A的聚焦基准是50m,表示50m处的物体在期望的图像位置聚焦,但是如果望远镜系统100的目镜更换为具有不同焦距的目镜,则望远镜系统100将不得不重新聚焦,使物体的图像再次位于所需的聚焦位置。望远镜系统100的这种重新聚焦将产生不同的聚焦基准,即聚焦指示器标记112将与不同的聚焦辅助标记111对准,即使到物体的距离没有改变。这种对不同聚焦基准状态缺乏可调节性是现有技术系统的缺点。
因此,需要为多个聚焦基准状态建立准确的聚焦基准。这种需要可以通过如本文所述的图3实施例中可调节聚焦指示器108的可调节性来解决。在(图3A和3B的)第一聚焦基准状态和(图3C和3D的)第二聚焦基准状态之间,可调节聚焦指示器108可以相对于基部102沿纵向方向101移动(例如在开口105内的纵向方向101)以对应于第二聚焦基准状态并提供相应更新的聚焦基准。将图3C和3D的配置C和D(第二聚焦基准状态)与在图3A和3B的配置A和B(第 一聚焦基准状态)相比较,可调节聚焦指示器108已经在开口105内沿纵向方向101A移动(朝向基部102的壁104C并且在所示视图中向左)。
比较图3A和3C,可以看出聚焦指示器标记112和基部102的相对位置以及基部102和聚焦调节管106的相对位置是相同的。然而,聚焦指示器标记112相对于图3C中的可调节聚焦指示器108的位置112C不同于聚焦指示器标记112相对于图3A中的可调节聚焦指示器108的位置112A。类似地,比较图3B和图3D,可以看出聚焦指示器标记112与基部102的相对位置和基部102与聚焦调节管106的相对位置相同。然而,在图3D中,聚焦指示器标记112相对于可调节聚焦指示器108的位置112D不同于图3B中的聚焦指示器标记112相对于可调节聚焦指示器108的位置112B。可调节聚焦指示器108在图3C和3D中的第二聚焦基准状态中相对于图3A和3B的第一聚焦基准状态的位置创建了相对于第一聚焦状态的第二聚焦状态的不同聚焦基准(即聚焦指示器标记112相对于聚焦辅助标记111的不同位置)。
在操作中,用户可以通过以下步骤调节可调节聚焦指示器108以建立新的聚焦基准状态。首先,基于如在图3A的配置A的第一聚焦基准状态下来自第一配置的聚焦基准(即,聚焦指示器标记112与聚焦辅助标记111对准),用户可以知晓望远镜系统100和所观察的物体之间的距离(或更准确地说,望远镜系统100的透镜(或镜)之间的距离)。其次,在改变望远镜系统100的聚焦特性之后(例如通过改变望远镜系统100的诸如目镜之类的辅助光学装置),用户然后可以在纵向方向101上调节聚焦调节管106,直到用户找到对同一物体正确聚焦。聚焦指示器标记112相应地随着聚焦调节管106移动。第三,在对于通过结合了新的辅助光学装置的望远镜系统100观察到的同一物体找到正确聚焦之后,由于用户知道物体与望远镜系统100的距离,因此用户可以沿纵向方向101移动可调节聚焦指示器108直到获得正确的聚焦基准(即聚焦指示器标记112与正确的聚焦辅助标记111对准)。此时,用户已经将可调节聚焦指示器108调节到第二聚焦基准状态,在可调节聚焦指示器108和基部102之间的不同相对位置(可调节聚焦指示器108在纵向方向101上相对于开口105的不同位置)。可调节聚焦指示器108的调节可以由用户手动控制或由电机电子驱动并由处理器(图中未示出)控制。在一些实施例中,可调节聚焦指示器108可以由程序自动调节以适应不同的聚焦基准状态。
图9是根据特定实施例的用于调节可调节聚焦指示器108在开口105内的位置以适应不同聚焦基准状态的方法500的示意图。方法500开始于步骤505,其涉及在第一聚焦基准状态中聚焦于物体。步骤505的第一聚焦状态可以涉及使用包括第一辅助光学元件(例如第一目镜)的望远镜系统100。
在一些实施例中,步骤505可以可选地涉及在第一聚焦基准状态中校准望远镜系统100(或可调节聚焦指示器108)。例如,在步骤505中被聚焦的物体的位置(更具体地,步骤505物体距望远镜系统100的距离)是已知的。如果是这种情况,则一旦在步骤505中在物体上建立聚焦,步骤505可以可选地涉及调节可调节聚焦指示器108的位置以获得与物体的已知距离匹配的聚焦基准。例如,如果已知步骤505物体在20m处,则步骤505可涉及通过在纵向方向101之一上移动可调节聚焦指示器108直到聚焦指示器标记112与20m的聚焦指示器值111B(或指示20m的特定线标记111A)对准。望远镜系统100(或可调节聚焦指示器108)然后针对第一聚焦基准状态进行校准。
一旦校准,望远镜系统100可用于观察处于第一聚焦基准状态的其他物体,例如,在第一聚焦基准状态聚焦其他物体。当望远镜系统100(或可调节聚焦指示器108)在特定聚焦基准状态校准并且望远镜系统100在该特定聚焦基准状态中聚焦在其他物体上时,那些其他物体(距望远镜系统100)的距离将对应于聚焦基准(即对应于聚焦指示值111B或与聚焦指示器标记112对齐的特定线标记111A)。应当理解,校准是步骤505的可选部分,不是必需的。在一些实施例中,可以在执行步骤505之前执行校准。
一旦望远镜系统100在步骤505中聚焦在物体上,方法500进行到步骤510,步骤510包括确定聚焦基准515。聚焦基准515可以相对于可调节聚焦指示器108,特别地相对于聚焦辅助标记111的位置(例如,线型聚焦辅助标记111A和/或相关联的聚焦指示值111B)对应于聚焦指示器标记112。聚焦基准515可以包括特定聚焦辅助标记111(例如特定线标记111A和/或特定聚焦指示值111B),当步骤505物体在聚焦时,聚焦指示器标记112指向该特定聚焦辅助标记111。如上所述,在一些实施例中,聚焦基准515可以电子方式获得。
方法500然后进行到步骤520,其中望远镜系统100的辅助光学装置被添加、移除和/或改变。如上所述,这种辅助光学装置的添加、移除和/或改变可能对望远镜系统100的聚焦特性(例如有效焦距)产生影响。方法500然后进行到步骤525,其涉及在同一物体(即在步骤505中聚焦的物体)上使得修改的望远镜系统100(即在步骤520中修改的望远镜系统100)聚焦。就望远镜系统100的焦距随着步骤520中辅助光学组件的添加、移除和/或改变而改变的程度而言,在步骤530中重新聚焦于同一物体将涉及聚焦调节管106相对于基部102的移动以及聚焦指示器标记112相对于可调节聚焦指示器108和聚焦辅助标记111的相应移动。
一旦同一物体再次聚焦,方法500进行到步骤530,其包括调节可调节聚焦指示器108的位置以匹配步骤510聚焦基准515。例如,如果在步骤510中获得的聚焦基准515是20m的聚焦指示器值111B(或特定线标记111A),步骤530 包括在纵向方向101之一上移动可调节聚焦指示器108直到聚焦指示器标记112再次与20m的聚焦指示器值111B(或特定的线标记111A)对准。一旦可调节聚焦指示器108沿纵向方向101之一移动直到聚焦指示器标记112再次与聚焦基准515对准,则建立新的(第二)聚焦状态。
应当理解,如果望远镜系统100(或可调节聚焦指示器108)在第一聚焦基准状态中被校准(例如,作为步骤505的一部分或在步骤505的执行之前),则望远镜系统100(或可调节聚焦指示器108)通过执行方法500的步骤(即,在步骤530结束),将在第二聚焦基准状态中校准。当望远镜系统100(或可调节聚焦指示器108)在第二聚焦基准状态中被校准时,望远镜系统100可用于在第二聚焦基准状态中观察其他物体,例如在第二个聚焦基准状态中聚焦其他物体。当望远镜系统100(或可调节聚焦指示器108)在第二聚焦基准状态中被校准并且望远镜系统100在第二聚焦基准状态中聚焦在其他物体上时,那些其他物体(距望远镜系统100)的距离将对应于聚焦基准(例如,对应于聚焦指示器值111B或与聚焦指示器标记112对准的特定线标记111A)。一般而言,当望远镜系统100(或可调节聚焦指示器108)在特定聚焦基准状态下校准并且望远镜系统100在该特定聚焦基准状态下聚焦在其他物体上时,那些其他物体(距望远镜系统100)的距离将对应于聚焦基准(例如,对应于聚焦指示器值111B或与聚焦指示器标记112对准的特定线标记111A)。
一旦建立了第二聚焦状态(例如,在方法500结束时),望远镜系统100然后可以在第二聚焦基准状态中操作。图3C和3D的配置C和D示出了在第二聚焦基准状态中使用望远镜系统100。在配置C和D中,可调节聚焦指示器108相对于基部102和相对于开口105处于相同位置,表明配置C和D处于相同(第二)聚焦基准状态。然而,比较图3C和3D的配置C和D,可以看出聚焦调节管106的纵向位置(相对于基部102)是不同的(例如,聚焦在不同的物体上)。因此,聚焦指示器标记112的纵向位置和聚焦基准(即聚焦指示器标记112相对于聚焦辅助标记111的纵向位置)在图3C和3D的配置C和D之间也不同。假设方法500是在第一聚焦基准状态(例如图3A和3B的第一聚焦基准状态)中校准望远镜系统100(或可调节聚焦指示器108)之后执行的,则望远镜系统100(或可调节聚焦指示器108)将在第二聚焦基准状态(例如图3C和3D的第二聚焦基准状态)中被校准并且配置C(图3C)的聚焦基准指示距离为8m的物体,配置D(图3D)的聚焦基准指示距离为50m的物体。
因此,当望远镜系统100结合不同的辅助光学装置(例如不同的目镜)时,即使在这种辅助光学装置使望远镜系统100具有不同的整体聚焦特性(例如不同的有效焦距),对于望远镜系统100可以建立使用望远镜系统100聚焦基准(和知晓上述相应的物体距离)。与传统望远镜不同,一旦调节到新的聚焦基准 状态(例如使用方法500),望远镜系统100可以在新的聚焦基准状态下操作,其中由聚焦指示器标记112和可调节聚焦指示器108(特别是聚焦辅助标记111)的相对位置提供有用的聚焦基准。当望远镜与不同的辅助光学装置联接时,没有可调节聚焦指示器108的传统现有技术望远镜不能调节它们的聚焦基准以适应不同的聚焦基准状态。因此,当现有技术望远镜与不同的辅助光学装置结合使用时,这种现有技术望远镜的静态的不可调节的聚焦基准变得不那么有用。
图4示意性地示出了包括可调节聚焦指示器108的望远镜系统100的局部剖视图。
望远镜系统100可以包括联接到聚焦调节管106的光准入管114。光学元件116也可以联接到聚焦调节管106。光学元件116可以包括用于例如望远镜系统100的物镜或主镜。在一些实施例中,光学元件116被成形为限定有孔,聚焦调节管106可以通过该孔纵向延伸进入并穿过,使得聚焦调节管106的外表面抵靠并支撑光学元件116的内表面。
如上所述,开口105(其边界以虚线示出)可以限定在基部102中,基部102连接并支撑聚焦调节管106。可调节聚焦指示器108可以位于开口105内并且可以在开口105中由基部102(例如由开口105的壁)支撑。如本文其他地方所述,可调节聚焦指示器108可以相对于基部102(在开口105内)在纵向方向101上移动并且可以锁定在开口105内的适当位置(例如在没有外力的情况下)。可调节聚焦指示器108可以成形为限定开口109,使得聚焦调节管106的外表面106A上的聚焦指示器标记112通过开口109可见。
可调节聚焦指示器108可以具有在其表面上定义(例如印刷或以其他方式标记)的聚焦辅助标记111。在图4所示的实施例中,聚焦辅助标记111包括多个线型聚焦辅助标记和聚焦指示值“∞”、“25M”、“10M”和“7M”。其他类型的聚焦辅助标记和/或聚焦指示值是可能的。
图5A-D(统称为图5)示出了根据另一示例实施例的望远镜系统200的局部视图。图5A和5B示出了处于第一聚焦基准状态的望远镜系统200。图5C和5D示出了处于第二聚焦基准状态的望远镜系统200。
参考图5A,望远镜系统200包括具有外表面202A的基部202和具有外表面206A的聚焦调节管206。基部202和聚焦调节管206都是管状的并且沿纵向方向101延伸。在图5的实施例中,基部202的直径大于聚焦调节管206的直径,并且基部202的内表面成形为限定孔,使得聚焦调节管206延伸进入并穿过基部202的孔。在基部202的孔内的聚焦调节管206的部分以虚线示出。聚焦调节管206可以相对于基部202在纵向方向101上移动。
基部202可以成形为在基部202的表面202A上限定开口205。开口205可以由一个或多个壁204A-D限定并且可以从基部202的外表面202A延伸到基部 202的内表面,使得基部202的内孔从外表面202A的外侧可见。透明材料可插入开口205中。聚焦调节管206的外表面206A可成形为限定引导件209,引导件209可由一个或多个壁210A-D限定。位于基部202的孔中的壁210A-D的部分以虚线轮廓示出。在图5所示的实施例中,壁210A-B的部分与壁204A-B重叠,但这通常不是必需的。在其他实施例中,引导件209可以具有与开口205不同的面积或形状。
可调节聚焦指示器208可以位于引导件209中并且可以由聚焦调节管206(例如引导件209的壁210A、210B)支撑在引导件209中。可调节聚焦指示器208的边缘208A可以与聚焦调节管206的壁210A相邻并接触。可调节聚焦指示器208的边缘208B可以与聚焦调节管206的壁210B相邻并接触。在一些实施例中,边缘208A和壁210A之间的静摩擦力以及边缘208B和壁210B之间的静摩擦力足够大,使得可调节聚焦指示器208相对于聚焦调节管206和相对于引导件209在除了重力没有施加外力的情况下被固定在适当位置。在一些实施例中,边缘208A、208B和/或壁210A、210B可以包括摩擦增强特征(例如脊部、凹槽等),以在没有外力的情况下帮助固定可调节聚焦指示器208相对于聚焦调节管206和引导件209的位置。在一些实施例中,可以提供锁定机构来固定可调节聚焦指示器208相对于聚焦调节管206和引导件209的位置。
可在可调节聚焦指示器208的表面上定义(例如印刷或以其他方式标记)聚焦指示器标记212。可调节聚焦指示器208可相对于基部202和聚焦调节管206(在引导件209内)在纵向方向101上移动。当可调节聚焦指示器208在纵向方向101上移动时,聚焦指示器标记212也在纵向方向101上移动相同的距离。可调节聚焦指示器208可被限制(通过可调节聚焦指示器208和引导件209的相互作用)以相对于聚焦调节管206在纵向方向101上移动。
聚焦辅助标记211可以被定义(例如印刷或以其他方式标记)在基部202的外表面202A上。聚焦辅助标记211可以包括线型聚焦辅助标记211A和/或其他类型的标记和/或聚焦指示器值211B,例如“∞”、“25M”、“10M”和“7M”等。其他类型的聚焦辅助标记211或其他聚焦指示值211B是可能的。聚焦指示器标记212和聚焦辅助标记211的组合提供聚焦基准,即聚焦指示器标记212相对于聚焦辅助标记211的位置。例如,在图3A的配置A中,聚焦基准在“∞”和“25M”之间,并且在图3B的配置B中,聚焦基准在10m和25m之间。
当可调节聚焦指示器208相对于聚焦调节管206和引导件209沿纵向方向101移动时,即使在基部102和聚焦调节管106之间的相对位置没有改变的情况下,望远镜系统200的聚焦基准(即聚焦指示器标记212相对于聚焦辅助标记211的位置)改变。可调节聚焦指示器208和聚焦调节管206之间的相对位置可以调节以对应望远镜系统200的不同聚焦基准状态。也就是说,可调 节聚焦指示器208和聚焦调节管206的相对位置(引导件209内的可调节聚焦指示器208)可以对应于特定的聚焦基准状态。在图5A和5B的配置A和B中,望远镜系统200在对应于可调节聚焦指示器208和聚焦调节管206之间的特定相对位置的第一聚焦基准状态下操作,其中可调节聚焦指示器208位于相对靠近引导件209的中部。在图5C和5D的配置C和D中,望远镜系统200在对应于可调节聚焦指示器208和聚焦调节管206之间的特定相对位置的第二聚焦基准状态下操作,其中可调节聚焦指示器208位于相对靠近开口109的右手侧。
图5A和5B的配置A和B示出了望远镜系统200在第一聚焦基准状态中的使用。可调节聚焦指示器208处于相对于聚焦调节管206和相对于图5A和5B的配置A和B中的引导件209的相同位置,指示图5A和5B的配置A和B处于相同的(第一)聚焦基准状态中。然而,比较图5A和5B的配置A和B,可以看出聚焦调节管206的纵向位置(相对于基部202)是不同的(例如,聚焦在不同的物体上)。因此,聚焦指示器标记212的纵向位置和聚焦基准(即,聚焦指示器标记212相对于聚焦辅助标记211的纵向位置)在图5A和5B的配置A和B之间也不同。
图5C和5D示出了处于不同于图5A和5B所示的第一聚焦基准状态的第二聚焦基准状态的望远镜系统200。通过在纵向方向101上相对于聚焦调节管206(在引导件209内)移动可调节聚焦指示器208,可以调节望远镜系统200的聚焦基准以适应不同的聚焦基准状态。在图5C和5D中,可调节聚焦指示器208和聚焦调节管206之间的相对位置(聚焦指示器208在引导件209内的位置)不同于图5A和5B中可调节聚焦指示器208和聚焦调节管206之间的相对位置(在引导件209内的聚焦指示器208位置)。因此,即使当聚焦调节管206与基部202处于相同的相对位置时(例如在图5A和5C的情况下),聚焦指示器标记212相对于聚焦辅助标记211处于不同的对准状态,从而在图5A的第一聚焦基准状态和图5C的第二聚焦基准状态之间提供不同的聚焦基准。
望远镜系统200的聚焦基准状态可能由于多种原因而改变。例如,可以改变望远镜系统200的辅助光学装置(例如目镜-未示出),从而改变望远镜系统200的聚焦特性(例如有效焦距)。如果望远镜系统200(包括望远镜和任何辅助光学装置)的聚焦特性(例如有效焦距)发生变化,如果可调节聚焦指示器208保持在相对于聚焦调节管206和引导件209的相同位置,可调节聚焦指示器208将不会提供准确的聚焦基准。这种缺乏对于不同聚焦基准状态的可调节性是现有技术系统的缺点。
因此,需要为多个聚焦基准状态建立准确的聚焦基准。如本文所述,该需要可以通过图5实施例中的可调节聚焦指示器208的可调节性来解决。在(图5A和5B的)第一聚焦基准状态和(图5C和5D的)第二聚焦基准状态之间,可调节聚焦指示器208可以相对于聚焦调节管206(例如,在引导件209内沿纵向方向 101)沿纵向方向101移动,以对应于第二聚焦基准状态并提供相应更新的聚焦基准。将图5C和5D的配置C和D(第二聚焦基准状态)与图5A和5B的配置A和B(第一聚焦基准状态)相比较,可调节聚焦指示器208已经在引导件209内沿纵向方向101移动(朝向聚焦调节管206的壁210D并且在所示视图中向右)。
类似于以上关于望远镜系统100概述的方法,用户可以使用以下步骤来调节望远镜系统200的聚焦基准状态。首先,用户可以知道望远镜系统200和在先前聚焦基准状态下最后观察到的物体之间的距离。在望远镜系统200的聚焦特性已经改变(例如通过改变诸如目镜之类的辅助光学装置)之后,用户可以在纵向方向101上相对于基部202移动聚焦调节管206,直到用户找到正确聚焦。然后,由于用户知道到物体的距离,用户然后可以在引导件209内沿纵向方向101移动可调节聚焦指示器208,直到聚焦指示器标记212与聚焦辅助标记211的正确聚焦指示器值对准。
在一些实施例中,图9的方法500可用于改变望远镜系统200的聚焦基准状态,除了不是像望远镜系统100的情况那样在纵向方向101上相对于基部102(在开口105内)移动可调节聚焦指示器108,通过在纵向方向101上相对于聚焦调节管206(在引导件209内)移动可调节聚焦指示器208来改变望远镜系统200的聚焦基准状态。望远镜系统200(或可调节聚焦指示器208)也可以以类似于上面讨论的望远镜系统100(或可调节聚焦指示器108)的方式校准,除了不是与校准望远镜系统100的情况一样在纵向方向101上相对于基部102(在开口105内)移动可调节聚焦指示器108,校准望远镜系统200(或可调节聚焦指示器208)包括在纵向方向101上相对于聚焦调节管206(在引导件209内)移动可调节聚焦指示器208。
如上面讨论的望远镜系统100的情况,如果望远镜系统200(或可调节聚焦指示器208)在第一聚焦基准状态中被校准(例如,作为步骤505的一部分或在方法500中的步骤505执行之前),然后望远镜系统200(或可调节聚焦指示器208)将通过执行方法500的步骤(即在步骤530结束时)在第二聚焦基准状态中被校准。一般而言,当望远镜系统200(或可调节聚焦指示器208)在特定聚焦基准状态下校准并且望远镜系统200在该特定聚焦基准状态下聚焦在其他物体上时,那些其他物体(距望远镜系统200)的距离将对应于聚焦基准(例如,对应于聚焦指示器值211B或与聚焦指示器标记212对准的特定线标记211A)。
一旦建立了第二聚焦状态(例如,在方法500结束时),望远镜系统200然后可以在第二聚焦基准状态中操作。图5C和5D的配置C和D示出望远镜系统200在第二聚焦基准状态(不同于图5A和5B的第一聚焦基准状态)中的使用。在配置C和D中,可调节聚焦指示器208相对于聚焦调节管206和相对于引导件209处于相同的相对位置,表明配置C和D处于相同的(第二)聚焦基准状态中。然 而,比较图5C和5D的配置C和D,可以看出聚焦调节管106的纵向位置(相对于基部102)是不同的(例如,聚焦在不同的物体上)。因此,聚焦指示器标记212的纵向位置也与5C和5D的配置C和D之间不同。假设方法500是在第一聚焦基准状态(例如图5A和5B的第一聚焦基准状态)中校准望远镜系统200(或可调节聚焦指示器208)之后执行的,则望远镜系统200(或可调节聚焦指示器208)将在第二聚焦基准状态(例如图5C和5D的第二聚焦基准状态)中被校准,并且配置C(图5C)的聚焦基准指示在大约20m的距离处的物体,配置D(图5D)的聚焦基准指示在距离为8.5m的物体。
图6示意性地示出了包括可调节聚焦指示器208的望远镜系统200的局部剖视图。
望远镜系统200在一些方面类似于望远镜系统100。望远镜系统200与望远镜系统100相同的组件用相同的标号标记。聚焦调节管206的表面206A成形为限定引导件209。可调节聚焦指示器208可以位于引导件209内并且可以由聚焦调节管206(例如引导件209的壁210A、210B)支撑在引导件209中,使得可调节聚焦指示器208可以在壁210C和210D之间沿纵向方向101相对于聚焦调节管206移动。聚焦指示器标记212可以被定义(例如印刷或以其他方式标记)在可调节聚焦指示器208的表面上。聚焦辅助标记211可以被定义(例如,印刷或以其他方式标记)在基部202的表面202A上。
在操作中,为了调节望远镜系统200的聚焦,聚焦调节管206可以相对于基部202移动。当聚焦调节管206相对于基部202移动时,可调节聚焦指示器208随着聚焦调节管206移动。接着,聚焦指示器标记212随着聚焦调节管206移动。因此,聚焦指示器标记212相对于聚焦辅助标记211移动并且因此帮助用户跟踪聚焦。
图7示意性地示出了根据另一示例实施例的望远镜300的局部剖视图。望远镜300包括可调节聚焦指示器308。望远镜300可以是但不限于反射式望远镜或牛顿望远镜。
望远镜300包括具有外表面302A的基部302,以及具有外表面306A的聚焦调节管306。聚焦调节管306可以相对于基部302在纵向方向101移动。
聚焦调节管306的外表面306A成形为限定引导件309。可调节聚焦指示器308可位于引导件309内并且可相对于聚焦调节管306在引导件309内沿纵向方向101移动(例如在壁304A和304B之间)。聚焦指示器标记312可以被定义(例如印刷或以其他方式标记)在可调节聚焦指示器308的表面上。聚焦辅助标记311被定义(例如,印刷或以其他方式标记)在基部302的外表面302A上。聚焦辅助标记311可以包含任何合适的标记或聚焦指示器值以帮助用户确定聚焦。因为可调节聚焦指示器308相对于聚焦调节管306在纵向方向 上移动,所以望远镜300的聚焦调节、校准和改变聚焦基准状态可以类似于本文其他地方描述的望远镜系统200。
图8示意性地示出了根据另一示例实施例的望远镜400的局部剖视图。望远镜400包括可调节聚焦指示器408。望远镜400可以是但不限于反射式望远镜或牛顿望远镜。
望远镜400包括具有外表面402A的基部402和具有外表面406A的聚焦调节管406。聚焦调节管406可以相对于基部402在纵向方向101上移动。基部402成形为限定开口405。可调节聚焦指示器408位于开口405内(其边界以虚线示出)并且可以相对于基部402(在开口405内)在纵向方向101上移动。聚焦辅助标记411可以被限定(例如印刷或以其他方式标记)在可调节聚焦指示器408的表面上。可调节聚焦指示器408可以成形为限定开口409。聚焦指示器标记412可以在聚焦调节管406的外表面406A上定义(例如印刷或以其他方式标记),使得聚焦指示器标记412通过开口405、409可见。
因为可调节聚焦指示器408相对于基部402在纵向方向上移动,所以望远镜400的聚焦调节、校准和改变聚焦基准状态可以与本文别处描述的望远镜系统100类似。
望远镜聚焦机构不限于望远镜系统本身的管。在一些望远镜系统或其他光学系统中,聚焦机构可以附加地或替代地在系统的其他部分中实现。例如,聚焦机构可以附加地或替代地在一些光学系统的目镜中和/或在光学上位置邻近于目镜和/或望远镜管的聚焦子系统中实现。在这方面,本文所述的基部(例如基部102、202、302、402)可以附加地或替代地设置在它们各自的望远镜系统或光学系统和聚焦调节管(例如聚焦调节管106、206、306、406)的其他部分中。例如,在这种光学系统的不同部分中的另一对管可以具有与本文所述的基部和聚焦调节管所描述的那些相似的特征。
在本文中提及部件(例如,软件模块、处理器、组件、装置、电路等)的情况下,除非另有说明,否则提及该部件(包括提及“装置”)应解释为包括作为该部件的等同物的执行所描述部件的功能的任何部件(即,功能等同物),包括在结构上不等同于执行本发明所示示例性实施例中的功能的所公开结构的部件。
术语解释
除非上下文另有明确要求,否则在整个说明书和权利要求书中:
·“包括”、“包含”等应被解释为包容性的,而不是排他性或穷举性的;也就是说,在“包括但不限于”的意义上;
·“连接”、“联接”或其任何变体,是指两个或多个元素之间的任何直接或间接连接或联接;元素之间的联接或连接可以是物理的、逻辑的或它们的组合;
·“本文”、“以上”、“以下”和类似含义的词语,在用于描述本说明书时,应作为一个整体来指代本说明书,而不是指本说明书的任何特定部分;
·“或”在提及包含两个或多个项目的列表时,涵盖该词的以下所有解释:列表中的任何项目、列表中的所有项目以及列表中项目的任何组合列表;
·单数形式“一”、“一个”和“该”还包括任何适当的复数形式的含义。除非另有说明,否则这些术语(“一”、“一个”和“该”)表示一个或多个;
·“和/或”用于表示可能出现一种或两种情况,例如A和/或Β包括(A和Β)和(A或Β);
·当应用于数值时,“大约”是指数值±10%;
·在特征被描述为“可选”或“可选地”存在或被描述为“在一些实施例中”存在的情况下,本公开旨在涵盖其中存在该特征的实施例和其中该特征不一定存在的其他实施例以及排除该特征的其他实施例。此外,在本申请中描述了任何特征组合的情况下,该声明旨在作为使用与特征组合以及特征组合相关的排他性术语(例如“单独”、“仅”等)的先行基础。使用“负面限制”来排除其他特征的存在;和
·“第一”和“第二”是用于描述的目的,不能被理解为表示或暗示相对重要性或表示所指技术特征的数量。
指示方向的词,例如“垂直”、“横向”、“水平”、“向上”、“向下”、“向前”、“向后”、“向内”、“向外”、“向左”、“在本说明书和任何所附权利要求(如果存在)中使用的“右”、“前”、“后”、“顶”、“底”、“下”、“上”、“以下”等,取决于描述和说明的设备的特定方向。本文描述的主题可以采取各种替代方向。因此,这些方向性术语没有严格定义,不应狭义地解释。
在规定了值的范围的情况下,所述范围包括该范围的所有子范围。范围的声明旨在支持位于范围端点的值以及范围下限的十分之一单位的任何中间值,以及任何子范围或子范围的集,除非上下文另有明确规定,否则所述范围的任何部分都被明确排除在外。当所述范围包括该范围的一个或两个端点时,排除那些包括的端点中的一个或两个的范围也包括在本发明中。
本文所述的某些数值前面带有“约”。在此上下文中,“约”为其前面的确切数值、确切数值±5%以及接近或近似等于该数值的所有其他数值提供字面支持。除非另有说明,特定数值包括在“约”具体列举的数值中,其中该具体数值提供了具体列举的数值在其中呈现具体列举的数值的上下文中的基本等同物。例如,某事物的数值为“大约10”的语句将被解释为:语句集:
·在一些实施例中,数值是10;
·在一些实施例中,数值在9.5至10.5的范围内;
并且如果从上下文中本领域普通技术人员将理解某个范围内的值基本上等于10,因为具有该范围的值将被理解为提供与值10基本上相同的结果,则“大约10”还包括:
·在一些实施例中,数值在C至D的范围内,其中C和D分别是范围的下端点和上端点,该范围包括提供与值10基本等价的所有那些值
为了说明的目的,本文已经描述了系统、方法和装置的具体示例。这些只是示例。这里提供的技术可以应用于除了上述示例系统之外的系统。在本发明的实践中,许多改变、修改、添加、省略和置换都是可能的。本发明包括对本领域技术人员显而易见的所描述实施例的变体,包括通过以下方式获得的变体:用等效特征、元素和/或动作替换特征、元素和/或动作;来自不同实施例的特征、元素和/或动作的混合和匹配;将来自本文所述的实施例的特征、元素和/或动作与其他技术的特征、元素和/或动作相结合;和/或从所描述的实施例中省略组合特征、元素和/或动作。
如本领域技术人员在阅读本公开内容时将显而易见的,在不脱离本发明的范围情况下,本文描述和图示的各个实施例中的每一个具有可容易地与任何其他描述的实施例的特征分离或组合的离散组件和特征。
以上关于装置描述的任何方面也可以应用于方法,反之亦然。
可以以所列举的事件的顺序或以逻辑上可能的任何其他顺序来执行任何列举的方法。例如,虽然过程步骤或步骤以给定的顺序呈现,但替代示例可以执行具有步骤的例程,或采用具有不同顺序的步骤的系统,并且可以删除、移动、添加、细分、组合一些过程步骤或步骤,和/或修改以提供替代或子组合。这些过程步骤或步骤中的每一个可以以各种不同的方式来实现。此外,虽然过程步骤或步骤有时被显示为串行执行,但这些过程步骤或步骤可以替代地并行、同时或在不同时间执行。
各种特征在本文中被描述为存在于“一些实施例”中。这样的特征不是强制性的并且可能不存在于所有实施例中。本发明的实施例可以包括零个、任何一个或两个或更多个这样的特征的任何组合。即使在不同附图中示出和/或在不同部分或段落中描述这些特征的情况下,本公开也涵盖这些特征的所有可能组合。这仅限于这样的特征中的某些特征与这些特征中的其他特征不兼容的程度,即本领域普通技术人员不可能构建组合这些不兼容特征的实际实施例。因此,“一些实施例”具有特征A和“一些实施例”具有特征B的描述应被解释为明确表示发明人还设想了结合特征A和B的实施例(除非描述另有说明或特征A和B根本不兼容)。即使特征A和B在不同的附图中示出和/或在不同的段落、部分或句子中提及也是如此。
因此,旨在将以下所附权利要求和下文介绍的权利要求解释为包括可合理推断的所有此类修改、置换、添加、省略和子组合。权利要求的范围不应受限于实施例中阐述的优选实施例,而应给予与整个描述一致的最广泛的解释。

Claims (29)

  1. 一种用于光学仪器的可调节聚焦指示器系统,该系统包括:
    沿纵向方向延伸的第一管;
    沿该纵向方向延伸的第二管,该第二管包括孔限定表面,该孔限定表面成形为限定沿所述纵向方向延伸的孔,其中所述第一管的至少一部分位于该孔中;和
    聚焦指示器,其由所述第一管和所述第二管中的一个支撑并能够沿所述纵向方向相对于所述第一管和所述第二管之一移动,该聚焦指示器包括用户可见的第一聚焦指示器标记;
    其中所述第一管和所述第二管中的一个与所述第一管和所述第二管中的另一个能够沿所述纵向方向彼此相对移动,从而使所述聚焦指示器和所述第一聚焦指示器标记相对于所述第一管和所述第二管中的另一个上的用户可见的第二聚焦指示器标记移动。
  2. 根据权利要求1或本文任何其他权利要求所述的系统,其中所述第一管和所述第二管中的一个是所述第二管,所述第一管和所述第二管中的另一个是所述第一管。
  3. 根据权利要求2或本文中任何其他权利要求所述的系统,其中所述第二管成形为限定第一开口,该第一开口沿所述纵向方向和垂直于所述纵向方向的方向从所述第二管的外表面延伸到所述孔。
  4. 根据权利要求3或本文中任何其他权利要求所述的系统,其中所述聚焦指示器被可移动地支撑以在所述第一开口中沿所述纵向方向移动。
  5. 根据权利要求4或本文任何其他权利要求所述的系统,其中,所述聚焦指示器通过所述聚焦指示器和所述第一开口的一个或多个边缘的相互作用而被限制在沿所述纵向方向移动。
  6. 根据权利要求4至5中的任一项或本文中的任何其他权利要求所述的系统,其中所述聚焦指示器在所述第一开口内形成摩擦配合,以防止所述聚焦指示器在没有外力的情况下相对于所述第二管沿所述纵向方向移动。
  7. 根据权利要求2或本文中任何其他权利要求所述的系统,其中所述第二管包括引导件,该引导件沿所述纵向方向延伸,用于促进所述聚焦指示器相对于 所述第二管沿所述纵向方向移动。
  8. 根据权利要求7或本文中任何其他权利要求所述的系统,其中通过所述聚焦指示器与所述引导件的相互作用,所述聚焦指示器被限制为沿所述纵向方向移动。
  9. 根据权利要求7至8中任一项或本文中任何其他权利要求所述的系统,其中所述聚焦指示器与所述引导件形成摩擦配合,以防止所述聚焦指示器在没有外力的情况下相对于所述第二管沿所述纵向方向移动。
  10. 根据权利要求2至9中任一项或本文中任何其他权利要求所述的系统,包括锁定机构,该锁定机构能够锁定以防止所述聚焦指示器相对于所述第二管沿所述纵向方向移动,并且能够解锁以促进所述聚焦指示器相对于所述第二管沿所述纵向方向移动。
  11. 根据权利要求2至10中任一项或本文中任何其他权利要求所述的系统,其中所述聚焦指示器被成形为限定第二开口,该第二开口沿所述纵向方向和垂直于所述纵向方向的方向从所述聚焦指示器的外表面延伸到所述聚焦指示器的内表面,使得所述第二聚焦指示器标记通过所述第二开口可见。
  12. 根据权利要求1或本文中任何其他权利要求所述的系统,其中所述第一管和所述第二管中的一个是所述第一管,所述第一管和所述第二管中的另一个是所述第二管。
  13. 根据权利要求12或本文任何其他权利要求所述的系统,其中所述第二管成形为限定第一开口,该第一开口沿所述纵向方向和垂直于所述纵向方向的方向从所述第二管的外表面延伸到所述孔,使得所述聚焦指示器通过所述第一开口可见。
  14. 根据权利要求13或本文任何其他权利要求所述的系统,其中所述第一管包括纵向延伸的引导件,用于促进所述聚焦指示器在所述引导件中相对于所述第一管沿所述纵向方向移动。
  15. 根据权利要求14或本文中任何其他权利要求所述的系统,其中所述聚焦指示器通过所述聚焦指示器和所述引导件的相互作用而被限制为沿所述纵向方向 移动。
  16. 根据权利要求13至14中任一项或本文中的任何其他权利要求所述的系统,其中所述聚焦指示器与所述引导件形成摩擦配合,以防止所述聚焦指示器在没有外力的情况下相对于所述第一管沿所述纵向方向移动。
  17. 根据权利要求13或本文中任何其他权利要求所述的系统,其中所述第一管成形为限定第二开口,该第二开口沿所述纵向方向延伸,并且所述聚焦指示器被可移动地支撑以在所述第二开口中沿所述纵向方向移动。
  18. 根据权利要求17或本文中任何其他权利要求所述的系统,其中所述聚焦指示器通过所述聚焦指示器和所述第二开口的相互作用被限制为沿所述纵向方向移动。
  19. 根据权利要求17至18中任一项或本文中任何其他权利要求所述的系统,其中所述聚焦指示器与所述第二开口形成摩擦配合,以防止在没有外力的情况下所述聚焦指示器相对于所述第一管沿所述纵向方向移动。
  20. 根据权利要求12至19中任一项或本文中任何其他权利要求所述的系统,包括锁定机构,该锁定机构能够锁定以防止所述聚焦指示器相对于所述第一管沿所述纵向方向移动,并且能够解锁以促进所述聚焦指示器相对于所述第一管沿所述纵向方向移动。
  21. 根据权利要求1至20中任一项所述的系统,其中所述第一聚焦指示器标记和所述第二聚焦指示器标记中的一个在特定纵向位置处提供单个标记,并且所述第一聚焦指示器标记和所述第二聚焦指示器标记中的另一个提供在所述纵向方向间隔开的多个标记。
  22. 一种用于校准如权利要求21或本文任何其他权利要求所述的光学仪器的方法,该方法包括:
    将所述光学系统聚焦在距所述光学系统或距所述光学系统的物镜或主镜已知距离的物体上;
    在将所述光学系统聚焦在所述物体上之后,相对于所述第一管和所述第二管中的一个沿所述纵向方向移动所述聚焦指示器,直到所述第一聚焦指示器标记和所述第二聚焦指示器标记中的一个的单个标记相对于所述第一聚焦指示器标记 和第二聚焦指示器标记中的另一个的间隔开的多个标记在特定位置处被对准。
  23. 根据权利要求22或本文中任何其他权利要求所述的方法,其中第一聚焦指示器标记和所述第二聚焦指示器标记中的另一个的间隔开的多个标记包括多个聚焦指示器值,所述特定位置指示对应的到所述已知距离的聚焦指示器值。
  24. 一种用于调节根据权利要求21或本文任何其他权利要求所述的光学仪器的聚焦基准状态的方法,该方法包括:
    调节所述聚焦指示器沿所述纵向方向相对于所述第一管和所述第二管中的一个的位置。
  25. 根据权利要求24或本文任何其他权利要求所述的方法,包括在调节所述聚焦指示器的位置之前,添加、移除或以其他方式改变所述光学仪器的一个或多个辅助光学装置。
  26. 一种用于调节权利要求21或本文任何其他权利要求的光学仪器的聚焦基准状态的方法,该方法包括:
    将所述光学仪器聚焦在第一物体上并观察所述第一聚焦指示器标记和所述第二聚焦指示器标记中的一个的单个标记相对于所述第一聚焦指示器标记和所述第二聚焦指示器标记中的另一个的间隔开的多个标记的第一对准;
    添加、移除或以其他方式改变所述光学仪器的一个或多个辅助光学装置;和
    在增加、移除或以其他方式改变所述光学仪器的一个或多个辅助光学装置后:
    将所述光学仪器重新聚焦在所述第一物体上;和
    调节所述聚焦指示器沿所述纵向方向相对于所述第一管和所述第二管中的一个的位置以实现所述第一对准。
  27. 根据权利要求26或本文任何其他权利要求所述的方法,包括在将所述光学仪器聚焦在所述第一物体上之前根据权利要求22至23中任一项所述的方法校准所述光学仪器。
  28. 具有如本文所述的任何新的和创造性的特征、特征的组合或特征的子组合的设备。
  29. 具有如本文所述的任何新的和创造性的步骤、动作、步骤和/或动作的组合或步骤和/或动作的子组合的方法。
PCT/CN2022/119501 2022-09-19 2022-09-19 可调节的望远镜聚焦指示器 WO2024059956A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119501 WO2024059956A1 (zh) 2022-09-19 2022-09-19 可调节的望远镜聚焦指示器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119501 WO2024059956A1 (zh) 2022-09-19 2022-09-19 可调节的望远镜聚焦指示器

Publications (1)

Publication Number Publication Date
WO2024059956A1 true WO2024059956A1 (zh) 2024-03-28

Family

ID=90453596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119501 WO2024059956A1 (zh) 2022-09-19 2022-09-19 可调节的望远镜聚焦指示器

Country Status (1)

Country Link
WO (1) WO2024059956A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062673A (ja) * 1996-08-23 1998-03-06 Minolta Co Ltd 双眼鏡
CN1310329A (zh) * 2000-02-25 2001-08-29 株式会社汉康商事 瞄准望远镜
US20050062870A1 (en) * 2003-09-24 2005-03-24 Pentax Corporation Binoculars
CN109983296A (zh) * 2016-11-22 2019-07-05 德本集团工业有限公司 望远式瞄准器
CN211928297U (zh) * 2020-03-18 2020-11-13 云南汉瑞光学仪器有限公司 一种望远镜目镜调节机构
CN112817139A (zh) * 2019-11-15 2021-05-18 施华洛世奇光学两合公司 双筒望远镜
CN216523944U (zh) * 2021-12-22 2022-05-13 中国人民解放军96963部队 一种光管组合箱

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062673A (ja) * 1996-08-23 1998-03-06 Minolta Co Ltd 双眼鏡
CN1310329A (zh) * 2000-02-25 2001-08-29 株式会社汉康商事 瞄准望远镜
US20050062870A1 (en) * 2003-09-24 2005-03-24 Pentax Corporation Binoculars
CN109983296A (zh) * 2016-11-22 2019-07-05 德本集团工业有限公司 望远式瞄准器
CN112817139A (zh) * 2019-11-15 2021-05-18 施华洛世奇光学两合公司 双筒望远镜
CN211928297U (zh) * 2020-03-18 2020-11-13 云南汉瑞光学仪器有限公司 一种望远镜目镜调节机构
CN216523944U (zh) * 2021-12-22 2022-05-13 中国人民解放军96963部队 一种光管组合箱

Similar Documents

Publication Publication Date Title
US10330906B2 (en) Imaging assemblies with rapid sample auto-focusing
US6542295B2 (en) Trinocular field glasses with digital photograph capability and integrated focus function
JP5396612B2 (ja) カメラホルダと光学系アダプタとを備えたカメラアダプタ
KR20180058730A (ko) 라인 스캔 영상내 실시간 포커싱
US7869139B2 (en) Modular afocal variator optical system providing focus with constant magnification
US7178997B2 (en) Arrangement for holding a camera behind a monocular or binocular
JP4754832B2 (ja) 実体顕微鏡
US7851735B2 (en) Microscope automatic focusing device and method thereof
JP2008152251A5 (zh)
US20090015913A1 (en) Fixed focus microscope objective lens
US20090040600A1 (en) Telescope Adapter for Supporting a Camera
US20070247541A1 (en) Image recording device for connection to an observation device and observation device having an image recording device of this type
JP2005331923A (ja) 光学装置及びそれを用いた撮影装置
RU2576485C2 (ru) Оптическое стереоустройство и способ его автофокусировки
WO2024059956A1 (zh) 可调节的望远镜聚焦指示器
JP4997834B2 (ja) 顕微鏡
WO2021139889A1 (en) Oblique plane microscope and method for correcting an aberration in an oblique plane microscope
US20200028995A1 (en) Adapter system for mounting an image and video capturing device to an optical viewing device and a method of observing the images and videos
US8155513B2 (en) Off center motor, ground glass on center post with ball bearing(S), X-Y image position adjustment and on-the-fly back focus adjustment with lock down on 35mm spinning ground glass adapters
JPH09189849A (ja) 顕微鏡用焦点検出装置
US8023210B2 (en) Optical accessory holder
JP4431381B2 (ja) 顕微鏡鏡筒
JP2006323189A (ja) 一眼レフカメラによる顕微鏡撮影用光学装置
JP2002350740A (ja) 顕微鏡用カメラアダプタ
KR101473088B1 (ko) 전자 확대경

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958970

Country of ref document: EP

Kind code of ref document: A1