WO2024058462A1 - Binder-active material particle composite, cathode comprising same for lithium secondary battery, and method for preparing same - Google Patents

Binder-active material particle composite, cathode comprising same for lithium secondary battery, and method for preparing same Download PDF

Info

Publication number
WO2024058462A1
WO2024058462A1 PCT/KR2023/012766 KR2023012766W WO2024058462A1 WO 2024058462 A1 WO2024058462 A1 WO 2024058462A1 KR 2023012766 W KR2023012766 W KR 2023012766W WO 2024058462 A1 WO2024058462 A1 WO 2024058462A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
active material
material particle
positive electrode
solvent
Prior art date
Application number
PCT/KR2023/012766
Other languages
French (fr)
Korean (ko)
Inventor
김찬훈
강지수
이정은
윤기로
홍영선
강병수
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2024058462A1 publication Critical patent/WO2024058462A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder-active material particle composite, a positive electrode for a lithium secondary battery containing the same, and a method for manufacturing the same.
  • Secondary batteries are an energy source that can be reused through charging, and are used as large-capacity power storage batteries such as electric vehicles and ESS (Energy Storage Systems) and small-sized energy sources in electronic devices such as mobile phones, laptops, and vacuum cleaners.
  • ESS Electronic Storage Systems
  • the secondary battery market has expanded rapidly with the development of electric vehicle technology, and in order to respond to the increased carbon tax and CO2 emissions management as environmental issues have recently emerged, the direction is to lower carbon emissions throughout the entire process of secondary battery production, use, and disposal. It is being demanded.
  • the currently used lithium secondary battery positive electrode manufacturing process is a wet electrode process, which requires a drying process of the organic solvent used to dissolve the polymer binder, and this process consumes considerable energy and time.
  • NMP N-Methylpyrrolidone
  • NMP N-Methylpyrrolidone
  • the energy used to dry it accounts for 40% of the entire cell manufacturing process.
  • Korea a renewable energy-poor country, processes that consume a lot of energy generate a lot of CO 2 , so improving the energy efficiency of the secondary battery process is essential for improving the performance of secondary batteries and making them low-carbon.
  • the purpose of the present invention is to solve the above problems, and to provide a lithium secondary battery electrode drying process that can save a lot of energy by omitting the slurry drying process, which is a process that consumes a lot of energy among the existing lithium secondary battery electrode processes. there is.
  • the aim is to provide a binder-active material particle complex that can be used in a dry process and can dramatically improve the electrical conductivity of the surface of the active material by strengthening the adhesion between positive electrode active material particles and allowing the conductive material to directly contact the surface of the positive active material.
  • the goal is to provide a positive electrode for lithium secondary batteries that can be manufactured through a dry process and has excellent lifespan characteristics when used in lithium secondary batteries.
  • the shell 200 may have a network shape formed of fibers containing the binder.
  • the pore diameter of the shell 200 may be 0.05 to 2 ⁇ m.
  • the binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE) ), polyvinyl pyrrolidinone, polyethyleneoxide, polyethyleneglycol, polyacrylonitrile, polyvinylchloride, polymethylmethacrylate, polypropylene It may include one or more selected from the group consisting of polypropyleneoxide, polydimethylsiloxane, polyvinylidenecarbonate, nitrile butadiene rubber (NBR), and combinations thereof.
  • PVdF polyvinylidene fluoride
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • PVdF-TFE polyvinylidene fluoride-tetrafluor
  • the binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE) ) and combinations thereof.
  • PVdF polyvinylidene fluoride
  • PVdF-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • PVdF-TFE polyvinylidene fluoride-tetrafluoroethylene copolymer
  • the positive electrode active material may be in the form of granules.
  • the size of the positive electrode active material may be 1 to 20 ⁇ m.
  • the positive electrode active material is lithium nickel cobalt manganese oxide (NCM), lithium iron phosphate (LiFePO 4 ), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LiCoO 2 ), lithium It may include one or more types selected from the group consisting of nickel-based oxide (LiNiO 2 ) and lithium manganese-based oxide (LiMn 2 O 4 ).
  • lithium nickel cobalt manganese oxide may be represented by structural formula 1 below.
  • x is 0.6 ⁇ x ⁇ 0.95
  • y is 0.01 ⁇ y ⁇ 0.2
  • z is 0.01 ⁇ z ⁇ 0.2.
  • the binder-active material particle composite further includes a conductive material located in the pores, and the conductive material contacts and connects with the positive electrode active material particles of the core and the positive active material particles of other cores adjacent to the core, respectively. You can.
  • the conductive material may include one or more selected from the group consisting of carbon black, acetylene black, Ketjen black, carbon fiber, carbon nanotube, graphene, and Denka black.
  • the binder-active material particle composite may include 100 parts by weight of the positive electrode active material; 1 to 20 parts by weight of the binder; and 1 to 20 parts by weight of the conductive material.
  • a positive electrode including the binder-active material particle complex; cathode; A lithium secondary battery including an electrolyte is provided.
  • NIPS nonsolvent induced phase separation
  • the mixed solution may include 0.5 to 2 parts by weight of the binder based on 100 parts by weight of the solvent.
  • the solvent may include one or more selected from the group consisting of dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and dimethylformamide (DMF).
  • DMSO dimethyl sulfoxide
  • DMAC dimethylacetamide
  • DMF dimethylformamide
  • the non-solvent may be 300 to 2,000 parts by weight based on 100 parts by weight of the mixed solution.
  • the non-solvent may include one or more selected from the group consisting of water, ethanol, n-propanol, iso-propanol, hexane, and n-hexane.
  • a method for manufacturing a positive electrode for a lithium secondary battery is provided.
  • step (4) may be performed as a dry process.
  • the electrostatic spraying may be performed at a voltage of 5 to 30 V.
  • the rolling may be performed using a roll press heated to 20 to 150° C. and at a speed of 1 to 20 mm/s.
  • the binder-active material particle composite of the present invention strengthens the adhesion between active material particles by forming a binder coated on the surface of the positive electrode active material into a porous shell shape and allows the conductive material to directly contact the surface of the positive active material, thereby dramatically improving the electrical conductivity of the surface of the active material. You can do it.
  • the positive electrode for lithium secondary batteries containing the binder-active material particle composite of the present invention can be manufactured through a dry process, so the slurry drying process, which is a process that consumes a lot of energy among the existing lithium secondary battery electrode processes, can be omitted, thereby saving a lot of energy. You can save.
  • a lithium secondary battery including a positive electrode for a lithium secondary battery including the binder-active material particle composite of the present invention has excellent lifespan characteristics.
  • FIG. 1 is a schematic diagram of a binder-active material particle composite according to one embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the process of manufacturing a binder-active material particle composite according to one embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the process of manufacturing a positive electrode for a lithium secondary battery according to one embodiment of the present invention.
  • Figure 5 shows the first cycle results of Device Example 1 and Device Comparative Example 1 at a current density of 0.1 C.
  • Figure 6 shows the life characteristics results of Device Example 1 and Device Comparative Example 1 at a current density of 1 C.
  • first, second, etc. which will be used below, may be used to describe various components, but the components are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • a component when referred to as being “formed” or “laminated” on another component, it may be formed or laminated directly on the entire surface or one side of the surface of the other component, but may also mean that the component is “formed” or “laminated” on another component. It should be understood that other components may exist.
  • the binder-active material particle composite the positive electrode for a lithium secondary battery containing the same, and the manufacturing method thereof will be described in detail.
  • this is presented as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later.
  • FIG. 1 is a schematic diagram of a binder-active material particle composite according to one embodiment of the present invention.
  • the present invention includes a core 100 containing positive electrode active material particles; and a shell 200 located on the core 100, including a binder, binding the core and other neighboring cores together, and having pores formed therein.
  • the shell 200 may have a network shape formed of fibers containing the binder.
  • the pore diameter of the shell 200 may be 0.05 to 2 ⁇ m. If the pore diameter is 0.05 ⁇ m, it is undesirable because it is difficult for the conductive material to directly contact the surface of the active material particle. If it exceeds 2 ⁇ m, the adhesion between the binder and the active material particle may be excessively low, which is undesirable.
  • the binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE) ), polyvinyl pyrrolidinone, polyethyleneoxide, polyethyleneglycol, polyacrylonitrile, polyvinylchloride, polymethylmethacrylate, polypropylene It may include at least one selected from the group consisting of polypropyleneoxide, polydimethylsiloxane, polyvinylidenecarbonate, nitrile butadiene rubber (NBR), and combinations thereof, and preferably is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluor
  • the positive electrode active material may be in the form of granules.
  • the size of the positive electrode active material may be 1 to 20 ⁇ m, preferably 3 to 10 ⁇ m. If the size of the positive active material is less than 3 ⁇ m, it is undesirable because the overall surface area increases and a larger amount of binder is needed to maintain adhesion, and if it exceeds 10 ⁇ m, it is undesirable because it is difficult to form a uniform electrode. don't do it
  • the positive electrode active material is lithium nickel cobalt manganese oxide (NCM), lithium iron phosphate (LiFePO 4 ), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LiCoO 2 ), lithium It may include one or more types selected from the group consisting of nickel-based oxide (LiNiO 2 ) and lithium manganese-based oxide (LiMn 2 O 4 ).
  • lithium nickel cobalt manganese oxide may be represented by structural formula 1 below.
  • x is 0.6 ⁇ x ⁇ 0.95
  • y is 0.01 ⁇ y ⁇ 0.2
  • z is 0.01 ⁇ z ⁇ 0.2.
  • the binder-active material particle composite further includes a conductive material located in the pores, and the conductive material contacts and connects with the positive electrode active material particles of the core and the positive active material particles of other cores adjacent to the core, respectively. You can.
  • the conductive material may include one or more selected from the group consisting of carbon black, acetylene black, Ketjen black, carbon fiber, carbon nanotube, graphene, and Denka black, and may preferably include carbon black. .
  • the binder-active material particle composite may include 1 to 20 parts by weight of the binder, preferably 2 to 10 parts by weight, based on 100 parts by weight of the positive electrode active material. If the binder is less than 2 parts by weight, it is not desirable because it cannot provide sufficient adhesion between active material particles, and if it is more than 20 parts by weight, the energy density of the electrode may be excessively low, which is undesirable.
  • the binder-active material particle composite may include 1 to 20 parts by weight of the conductive material, preferably 3 to 10 parts by weight, based on 100 parts by weight of the positive electrode active material. If the conductive material is less than 1 part by weight, it is undesirable because it is difficult to secure sufficient electrical conductivity of the electrode, and if it exceeds 20 parts by weight, the energy density of the electrode may be excessively low, which is undesirable.
  • the present invention provides a positive electrode comprising the binder-active material particle composite; cathode; It provides a lithium secondary battery including; and an electrolyte.
  • Figure 2 is a schematic diagram showing the process of manufacturing a binder-active material particle composite according to one embodiment of the present invention.
  • the present invention includes the steps of (a) mixing a positive electrode active material, a binder, and a solvent to prepare a mixed solution; and (b) adding the mixed solution to a non-solvent to induce nonsolvent induced phase separation (NIPS) to prepare a binder-active material particle composite, wherein the solvent dissolves the binder and , wherein the non-solvent does not dissolve the binder, providing a method for producing a binder-active material particle composite.
  • NIPS nonsolvent induced phase separation
  • the mixed solution may include 0.5 to 2 parts by weight of the binder based on 100 parts by weight of the solvent. If the binder is less than 0.5 parts by weight, it is undesirable because the binder may not be uniformly coated on the surface of the active material. If it exceeds 2 parts by weight, agglomeration between active material particles may occur, which is undesirable.
  • the solvent may include one or more selected from the group consisting of dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and dimethylformamide (DMF), and preferably includes dimethyl sulfoxide. .
  • DMSO dimethyl sulfoxide
  • DMAC dimethylacetamide
  • DMF dimethylformamide
  • the non-solvent may contain 300 to 2,000 parts by weight, preferably 500 to 1,500 parts by weight, and more preferably 800 to 1,200 parts by weight, based on 100 parts by weight of the mixed solution. If the non-solvent is less than 300 parts by weight, solvent-non-solvent exchange does not occur sufficiently, making it difficult to form a porous shell containing a binder on the surface of the positive electrode active material, which is undesirable, and if it exceeds 2,000 parts by weight, the concentration during electrostatic spraying is low, so it is difficult to form a porous shell containing a binder on the surface of the positive electrode active material. This is undesirable because it takes a long time and is inefficient.
  • the non-solvent may include one or more selected from the group consisting of water, ethanol, n-propanol, iso-propanol, hexane, and n-hexane, and preferably includes water and ethanol.
  • Figure 3 is a schematic diagram showing the process of manufacturing a positive electrode for a lithium secondary battery according to an embodiment of the present invention.
  • the present invention includes the steps of (1) mixing a positive electrode active material, a binder, and a solvent to prepare a mixed solution; (2) adding the mixed solution to a non-solvent to prepare a first mixture including a binder-active material particle complex through non-solvent induced phase separation; (3) preparing a second mixture by dispersing a conductive material in the first mixture; (4) coating the second mixture on a current collector by electrostatic spraying; and (5) manufacturing a positive electrode by rolling the current collector coated with the second mixture.
  • step (4) may be performed as a dry process.
  • the electrostatic spraying may be performed at a voltage of 5 to 30 V. If the electrostatic spraying is performed at a voltage of less than 5 V, it is undesirable because residual solvent may exist in the current collector, and if the electrostatic spraying is performed at a voltage of less than 30 V, it is undesirable because it may become difficult to maintain a stable spray speed during electrostatic spraying.
  • the rolling may be performed using a roll press heated to 20 to 150°C. If the rolling is performed using a roll press heated to less than 20°C, it is undesirable because residual solvent may exist in the current collector, and if it exceeds 150°C, it is undesirable because the binder may deteriorate.
  • the rolling may be performed at a speed of 1 to 20 mm/s. If the rolling is performed at a speed of less than 1 mm/s, it is undesirable because it takes too much time to form the electrode and is inefficient, and if it exceeds 20 mm/s, it is undesirable because defects in the electrode may occur.
  • FIG. 2 is a schematic diagram showing the process of manufacturing a binder-active material particle composite according to one embodiment of the present invention. Referring to FIG. 2, the binder-active material particle composite of Example 1 was prepared.
  • a mixed solution was prepared by adding polyvinylidene fluoride (PVdF) binder and NCM-based positive electrode active material (Li(Ni 8 Co 1 Mn 1 )O 2 ) to dimethyl sulfoxide (DMSO) solvent. At this time, the concentration of the binder in the mixed solution was adjusted to 0.7 wt%, and 5 parts by weight of the binder was added based on 100 parts by weight of the active material particles.
  • PVdF polyvinylidene fluoride
  • DMSO dimethyl sulfoxide
  • a non-solvent mixed with distilled water and ethanol in a 1:1 volume ratio was added to the mixed solution.
  • the non-solvent was adjusted to 1,000 parts by weight based on 100 parts by weight of the mixed solution.
  • the mixture was stirred at 300 rpm for 5 minutes to prepare a binder-active material particle complex through non-solvent induced phase transition.
  • Figure 3 is a schematic diagram showing the process of manufacturing a positive electrode for a lithium secondary battery according to one embodiment of the present invention. Referring to FIG. 3, a positive electrode for a lithium secondary battery used in the lithium secondary battery cell of Device Example 1 was manufactured.
  • the conductive material (super P conductive carbon black) in ethanol
  • the binder-active material particle complex including solvent, non-solvent, and binder-active material particle complex
  • the conductive material was adjusted to contain 5 parts by weight based on 100 parts by weight of the active material particles.
  • the second mixture was coated on an aluminum (Al) current collector through electrostatic spraying. Electrostatic spraying was performed with one nozzle of 19 G and a voltage of 24 V. Afterwards, rolling was performed using a roll press heated to 150°C without a drying process, and a positive electrode for a lithium secondary battery having an electrode density of 5 mg cm -2 was finally manufactured without a separate drying process.
  • NCM-based positive electrode active material Li(Ni 8 Co 1 Mn 1 )O 2 particles as the positive electrode active material
  • 90 wt% of positive electrode active material 5 wt% of polyvinylidene fluoride (PVdF) binder
  • conductive material super P
  • a positive electrode was manufactured by mixing 5 wt% of conductive carbon black, slurry coating it on an aluminum foil (Al current collector) substrate, drying and rolling it, and then punching it to a certain size.
  • a 2032R Coin cell was manufactured using Comparative Example 1 as the anode, a PP separator, electrolyte (1.2 M LiPF6 in EC-EMC (EC:EMC, 3:7 by vol%) and 2 wt% VC), and a lithium metal anode.
  • a lithium secondary battery cell was manufactured.
  • Test Example 1 Confirmation of manufacture of binder-active material particle composite
  • Example 1 a core containing positive electrode active material particles and a network-shaped shell formed of fibers containing a binder on the core were formed. Additionally, it can be confirmed that the positive electrode active material is in the shape of granules.
  • Figure 5 shows the first cycle results of Device Example 1 and Device Comparative Example 1 at a current density of 0.1 C.
  • Figure 5 shows the voltage when the lithium secondary battery cell manufactured according to Device Example 1 and Device Comparative Example 1 was charged and discharged at a voltage range of 2.7 to 4.3 V and an applied current of 0.1 C (20 mAh g -1 ). This indicates capacity.
  • Figure 6 shows the life characteristics results of Device Example 1 and Device Comparative Example 1 at a current density of 1 C.
  • Figure 6 shows the voltage when the lithium secondary battery cell manufactured according to Device Example 1 and Device Comparative Example 1 was charged and discharged at a voltage range of 2.7 to 4.3 V and an applied current of 1 C (20 mAh g -1 ). This indicates capacity.
  • the lithium secondary battery cell manufactured according to Device Example 1 maintains a high reversible capacity equivalent to 92.5% of the reversible capacity of the lithium secondary battery manufactured according to Device Comparative Example 1 made by a wet process even after 300 cycles. It can be confirmed that the battery characteristics are similar to the performance level of cells manufactured using the existing wet process only through the dry process, which does not require a drying process because it does not use NMP.

Abstract

Provided are a binder-active material particle composite, a cathode comprising same for a lithium secondary battery, and a method for preparing same. The binder-active particle composite comprises: a core (100) containing a cathode active material particle; and a shell (200) disposed on the core (100) and having pores, the shell containing a binder to allow the core and another adjacent core to adhere to each other, so that the binder-active particle composite can enhance adhesive strength between cathode active materials and bring a conductive material into direct contact with the surface of the cathode active material, leading to a significant improvement in surface electrical conductivity of the active material.

Description

바인더-활물질 입자 복합체, 그를 포함하는 리튬이차전지용 양극 및 그의 제조방법Binder-active material particle composite, positive electrode for lithium secondary battery containing the same, and method of manufacturing the same
본 발명은 바인더-활물질 입자 복합체, 그를 포함하는 리튬이차전지용 양극 및 그의 제조방법에 관한 것이다.The present invention relates to a binder-active material particle composite, a positive electrode for a lithium secondary battery containing the same, and a method for manufacturing the same.
이차전지는 충전을 통해 재사용 할 수 있는 에너지원으로, 전기 자동차나 ESS(Energy Storage System) 등의 대용량 전력 저장 전지와 휴대 전화, 노트북, 청소기 등 전자기기의 소형 에너지원으로 사용되고 있다. 전기 자동차의 기술 개발에 따라 이차전지 시장이 급격하게 확대되었으며, 최근 환경 문제가 대두되면서 높아진 탄소세 및 CO2 배출량 관리에 대응하기 위해 이차전지의 생산-사용-폐기 전 과정에서 탄소 배출량을 낮추는 방향이 요구되고 있다. Secondary batteries are an energy source that can be reused through charging, and are used as large-capacity power storage batteries such as electric vehicles and ESS (Energy Storage Systems) and small-sized energy sources in electronic devices such as mobile phones, laptops, and vacuum cleaners. The secondary battery market has expanded rapidly with the development of electric vehicle technology, and in order to respond to the increased carbon tax and CO2 emissions management as environmental issues have recently emerged, the direction is to lower carbon emissions throughout the entire process of secondary battery production, use, and disposal. It is being demanded.
그러나 현재 사용되고 있는 리튬이차전지 양극의 제조 공정은 습식 전극 공정으로 고분자 바인더를 녹이기 위해 사용하는 유기 용매의 건조 공정이 필수적이며, 이 공정에 상당한 에너지와 시간이 소요된다. 또한, 일반적으로 높은 비점과 낮은 증기압을 갖는 N-Methylpyrrolidone (NMP)가 바인더를 녹이기 위한 유기 용매로 사용되는데 이를 건조하기 위해 사용되는 에너지가 전체 셀 제조 공정 중 40 %에 상당한다. 재생에너지 빈국인 우리나라에서 에너지 소모가 큰 공정은 그 만큼 CO2를 많이 발생시키기 때문에 이차전지 공정의 에너지 효율화는 이차전지의 성능 향상과 더불어 저탄소화를 위해서 필수적이다. However, the currently used lithium secondary battery positive electrode manufacturing process is a wet electrode process, which requires a drying process of the organic solvent used to dissolve the polymer binder, and this process consumes considerable energy and time. In addition, N-Methylpyrrolidone (NMP), which has a high boiling point and low vapor pressure, is generally used as an organic solvent to dissolve the binder, and the energy used to dry it accounts for 40% of the entire cell manufacturing process. In Korea, a renewable energy-poor country, processes that consume a lot of energy generate a lot of CO 2 , so improving the energy efficiency of the secondary battery process is essential for improving the performance of secondary batteries and making them low-carbon.
따라서, CO2를 발생시키지 않으면서 전기전도도가 우수한 리튬이차전지용 양극 및 그의 제조방법에 관한 연구가 필요하다.Therefore, research is needed on a positive electrode for lithium secondary batteries that does not generate CO 2 and has excellent electrical conductivity and a method of manufacturing the same.
본 발명의 목적은 상기 문제점들을 해결하기 위한 것으로, 기존의 리튬이차전지 전극 공정 중 많은 에너지가 소모되는 공정인 슬러리 건조 공정을 생략하여 많은 에너지를 절약할 수 있는 리튬이차전지 전극 건식 공정을 제공하는데 있다.The purpose of the present invention is to solve the above problems, and to provide a lithium secondary battery electrode drying process that can save a lot of energy by omitting the slurry drying process, which is a process that consumes a lot of energy among the existing lithium secondary battery electrode processes. there is.
또한, 건식 공정에 사용가능하며, 양극 활물질 입자간 접착력을 강화시키고 도전재가 양극 활물질 표면에 직접 맞닿을 수 있도록 하여 활물질 표면 전기전도도를 획기적으로 향상시킬 수 있는 바인더-활물질 입자 복합체를 제공하는데 있다.In addition, the aim is to provide a binder-active material particle complex that can be used in a dry process and can dramatically improve the electrical conductivity of the surface of the active material by strengthening the adhesion between positive electrode active material particles and allowing the conductive material to directly contact the surface of the positive active material.
또한, 건식 공정으로 제조 가능하며 리튬이차전지에 사용했을 때 수명특성이 우수한 리튬이차전지용 양극을 제공하는데 있다.In addition, the goal is to provide a positive electrode for lithium secondary batteries that can be manufactured through a dry process and has excellent lifespan characteristics when used in lithium secondary batteries.
본 발명의 일 측면에 따르면, 양극 활물질 입자를 포함하는 코어(100); 및 상기 코어(100) 상에 위치하고, 바인더를 포함하고, 코어 및 이웃하는 다른 코어를 서로 결착하고, 기공이 형성된 쉘(200);을 포함하는 바인더-활물질 입자 복합체(10)를 제공한다.According to one aspect of the present invention, a core 100 including positive electrode active material particles; and a shell 200 located on the core 100, including a binder, binding the core and other neighboring cores together, and having pores formed therein.
또한, 상기 쉘(200)이 상기 바인더를 포함하는 섬유로 형성된 네트워크 형상을 갖는 것일 수 있다.Additionally, the shell 200 may have a network shape formed of fibers containing the binder.
또한, 상기 쉘(200)의 기공의 직경이 0.05 내지 2 μm일 수 있다.Additionally, the pore diameter of the shell 200 may be 0.05 to 2 μm.
또한, 상기 바인더가 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE), 폴리비닐피롤리디논(polyvinyl pyrrolidinone), 폴리에틸렌옥사이드(polyethyleneoxide), 폴리에틸렌글리콜(polyethyleneglycol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐클로라이드(polyvinylchloride), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리프로필렌옥사이드(polypropyleneoxide), 폴리디메틸실록산(polydimethylsiloxane), 폴리비닐리덴카보네이트(polyvinylidenecarbonate), 니트릴부타디엔러버(NBR, nitrile butadiene rubber) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.In addition, the binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE) ), polyvinyl pyrrolidinone, polyethyleneoxide, polyethyleneglycol, polyacrylonitrile, polyvinylchloride, polymethylmethacrylate, polypropylene It may include one or more selected from the group consisting of polypropyleneoxide, polydimethylsiloxane, polyvinylidenecarbonate, nitrile butadiene rubber (NBR), and combinations thereof.
또한, 상기 바인더가 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.In addition, the binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE) ) and combinations thereof.
또한, 상기 양극 활물질이 과립(granule) 형상일 수 있다.Additionally, the positive electrode active material may be in the form of granules.
또한, 상기 양극 활물질의 크기가 1 내지 20 μm일 수 있다.Additionally, the size of the positive electrode active material may be 1 to 20 μm.
또한, 상기 양극 활물질이 리튬니켈코발트망간계 산화물(NCM), 리튬철인산염계 산화물(lithium iron phosphate, LiFePO4), 리튬니켈코발트알루미늄계 산화물(NCA), 리튬코발트계 산화물(LiCoO2), 리튬니켈계 산화물(LiNiO2) 및 리튬망간계 산화물(LiMn2O4)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.In addition, the positive electrode active material is lithium nickel cobalt manganese oxide (NCM), lithium iron phosphate (LiFePO 4 ), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LiCoO 2 ), lithium It may include one or more types selected from the group consisting of nickel-based oxide (LiNiO 2 ) and lithium manganese-based oxide (LiMn 2 O 4 ).
또한, 상기 리튬니켈코발트망간계 산화물(NCM)이 아래 구조식 1로 표시되는 것일 수 있다.Additionally, the lithium nickel cobalt manganese oxide (NCM) may be represented by structural formula 1 below.
[구조식 1][Structural Formula 1]
Li(NixCoyMnz)O2 Li(Ni x Co y Mn z )O 2
상기 구조식 1에서,In structural formula 1,
x + y + z = 1이고, x + y + z = 1,
x는 0.6 ≤ x ≤ 0.95 이고, x is 0.6 ≤ x ≤ 0.95,
y는 0.01 ≤ y ≤ 0.2 이고,y is 0.01 ≤ y ≤ 0.2,
z는 0.01 ≤ z ≤ 0.2 이다.z is 0.01 ≤ z ≤ 0.2.
또한, 상기 바인더-활물질 입자 복합체가 상기 기공 내에 위치하는 도전재를 추가로 포함하고, 상기 도전재가 상기 코어의 양극 활물질 입자 및 상기 코어와 이웃하는 다른 코어의 양극 활물질 입자와 각각 접하여 서로 연결하는 것일 수 있다.In addition, the binder-active material particle composite further includes a conductive material located in the pores, and the conductive material contacts and connects with the positive electrode active material particles of the core and the positive active material particles of other cores adjacent to the core, respectively. You can.
또한, 상기 도전재가 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브, 그래핀 및 덴카 블랙으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Additionally, the conductive material may include one or more selected from the group consisting of carbon black, acetylene black, Ketjen black, carbon fiber, carbon nanotube, graphene, and Denka black.
또한, 상기 바인더-활물질 입자 복합체가 상기 양극 활물질 100 중량부; 상기 바인더 1 내지 20 중량부; 및 상기 도전재 1 내지 20 중량부;를 포함할 수 있다.Additionally, the binder-active material particle composite may include 100 parts by weight of the positive electrode active material; 1 to 20 parts by weight of the binder; and 1 to 20 parts by weight of the conductive material.
본 발명의 다른 하나의 측면에 따르면, 상기 바인더-활물질 입자 복합체를 포함하는 양극; 음극; 및 전해질;을 포함하는 리튬 이차전지가 제공된다.According to another aspect of the present invention, a positive electrode including the binder-active material particle complex; cathode; A lithium secondary battery including an electrolyte is provided.
본 발명의 또 다른 하나의 측면에 따르면, (a) 양극 활물질, 바인더 및 용매를 혼합하여 혼합용액을 제조하는 단계; 및 (b) 상기 혼합용액을 비용매에 첨가하여 비용매유도 상분리(nonsolvent induced phase separation, NIPS)를 유도하여 바인더-활물질 입자 복합체를 제조하는 단계;를 포함하고, 상기 용매는 상기 바인더를 용해시키고, 상기 비용매는 상기 바인더를 용해시키지 않는 것인, 바인더-활물질 입자 복합체의 제조방법이 제공된다.According to another aspect of the present invention, (a) preparing a mixed solution by mixing a positive electrode active material, a binder, and a solvent; and (b) adding the mixed solution to a non-solvent to induce nonsolvent induced phase separation (NIPS) to prepare a binder-active material particle composite, wherein the solvent dissolves the binder and A method for producing a binder-active material particle composite is provided, wherein the non-solvent does not dissolve the binder.
또한, 상기 혼합용액이 상기 용매 100 중량부를 기준으로 상기 바인더 0.5 내지 2 중량부를 포함할 수 있다.Additionally, the mixed solution may include 0.5 to 2 parts by weight of the binder based on 100 parts by weight of the solvent.
또한, 상기 용매가 디메틸설폭사이드(DMSO), 디메틸아세트아미드(DMAC) 및 디메틸포름아미드(DMF)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Additionally, the solvent may include one or more selected from the group consisting of dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and dimethylformamide (DMF).
또한, 상기 비용매가 상기 혼합용액 100 중량부를 기준으로 300 내지 2,000 중량부일 수 있다.Additionally, the non-solvent may be 300 to 2,000 parts by weight based on 100 parts by weight of the mixed solution.
또한, 상기 비용매가 물, 에탄올, n-프로판올, iso-프로판올, 헥세인 및 n-헥세인으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Additionally, the non-solvent may include one or more selected from the group consisting of water, ethanol, n-propanol, iso-propanol, hexane, and n-hexane.
본 발명의 또 다른 하나의 측면에 따르면, (1) 양극 활물질, 바인더 및 용매를 혼합하여 혼합용액을 제조하는 단계; (2) 상기 혼합용액을 비용매에 첨가하여 비용매유도 상분리를 통해 바인더-활물질 입자 복합체를 포함하는 제1 혼합물을 제조하는 단계; (3) 상기 제1 혼합물에 도전재를 분산시켜 제2 혼합물을 제조하는 단계; (4) 상기 제2 혼합물을 집전체 상에 정전분무하여 코팅하는 단계; 및 (5) 제2 혼합물이 코팅된 상기 집전체를 압연하여 양극을 제조하는 단계;를 포함하는 리튬이차전지용 양극의 제조방법이 제공된다.According to another aspect of the present invention, (1) preparing a mixed solution by mixing a positive electrode active material, a binder, and a solvent; (2) adding the mixed solution to a non-solvent to prepare a first mixture including a binder-active material particle complex through non-solvent induced phase separation; (3) preparing a second mixture by dispersing a conductive material in the first mixture; (4) coating the second mixture on a current collector by electrostatic spraying; and (5) manufacturing a positive electrode by rolling the current collector coated with the second mixture. A method for manufacturing a positive electrode for a lithium secondary battery is provided.
또한, 상기 단계 (4)가 건식 공정으로 수행되는 것일 수 있다.Additionally, step (4) may be performed as a dry process.
또한, 상기 정전분무가 5 내지 30 V의 전압으로 수행될 수 있다.Additionally, the electrostatic spraying may be performed at a voltage of 5 to 30 V.
또한, 상기 압연이 20 내지 150 ℃로 가열된 롤프레스를 사용하고, 1 내지 20 mm/s의 속도로 수행될 수 있다.Additionally, the rolling may be performed using a roll press heated to 20 to 150° C. and at a speed of 1 to 20 mm/s.
본 발명의 바인더-활물질 입자 복합체는 양극 활물질 표면에 코팅된 바인더가 다공성 쉘 형상으로 형성됨으로써 활물질 입자간 접착력을 강화시키고 도전재가 양극 활물질 표면에 직접 맞닿을 수 있도록 하여 활물질 표면 전기전도도를 획기적으로 향상시킬 수 있다.The binder-active material particle composite of the present invention strengthens the adhesion between active material particles by forming a binder coated on the surface of the positive electrode active material into a porous shell shape and allows the conductive material to directly contact the surface of the positive active material, thereby dramatically improving the electrical conductivity of the surface of the active material. You can do it.
또한, 본 발명의 바인더-활물질 입자 복합체를 포함하는 리튬이차전지용 양극은 건식 공정으로 제조가능하여 기존의 리튬이차전지 전극 공정 중 많은 에너지가 소모되는 공정인 슬러리 건조 공정을 생략할 수 있어 많은 에너지를 절약할 수 있다.In addition, the positive electrode for lithium secondary batteries containing the binder-active material particle composite of the present invention can be manufactured through a dry process, so the slurry drying process, which is a process that consumes a lot of energy among the existing lithium secondary battery electrode processes, can be omitted, thereby saving a lot of energy. You can save.
또한, 본 발명의 본 발명의 바인더-활물질 입자 복합체를 포함하는 리튬이차전지용 양극을 포함하는 리튬이차전지는 수명특성이 우수한 효과가 있다.In addition, a lithium secondary battery including a positive electrode for a lithium secondary battery including the binder-active material particle composite of the present invention has excellent lifespan characteristics.
이 도면들은 본 발명의 예시적인 실시예를 설명하는데 참조하기 위함이므로, 본 발명의 기술적 사상을 첨부한 도면에 한정해서 해석하여서는 아니 된다.Since these drawings are for reference in explaining exemplary embodiments of the present invention, the technical idea of the present invention should not be interpreted as limited to the attached drawings.
도 1은 본 발명 하나의 실시예에 따른 바인더-활물질 입자 복합체의 모식도이다.1 is a schematic diagram of a binder-active material particle composite according to one embodiment of the present invention.
도 2는 본 발명 하나의 실시예에 따라 바인더-활물질 입자 복합체를 제조하는 과정을 나타낸 개략도이다.Figure 2 is a schematic diagram showing the process of manufacturing a binder-active material particle composite according to one embodiment of the present invention.
도 3은 본 발명 하나의 실시예에 따라 리튬이차전지용 양극을 제조하는 과정을 나타낸 개략도이다.Figure 3 is a schematic diagram showing the process of manufacturing a positive electrode for a lithium secondary battery according to one embodiment of the present invention.
도 4a는 실시예 1에 따라 제조된 바인더-활물질 입자 복합체의 SEM 이미지(Bar scale = 2 μm)를 나타낸 것이다.Figure 4a shows an SEM image (Bar scale = 2 μm) of the binder-active material particle composite prepared according to Example 1.
도 4b는 실시예 1에 따라 제조된 바인더-활물질 입자 복합체의 SEM 이미지(Bar scale = 500 nm)를 나타낸 것이다.Figure 4b shows an SEM image (Bar scale = 500 nm) of the binder-active material particle complex prepared according to Example 1.
도 5는 소자실시예 1 및 소자비교예 1의 전류밀도 0.1 C에서 첫번째 사이클 결과를 나타낸 것이다.Figure 5 shows the first cycle results of Device Example 1 and Device Comparative Example 1 at a current density of 0.1 C.
도 6은 소자실시예 1 및 소자비교예 1의 전류밀도 1 C에서 수명특성 결과를 나타낸 것이다.Figure 6 shows the life characteristics results of Device Example 1 and Device Comparative Example 1 at a current density of 1 C.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings so that those skilled in the art can easily implement the present invention.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following description is not intended to limit the present invention to specific embodiments, and in describing the present invention, if it is determined that a detailed description of related known technology may obscure the gist of the present invention, the detailed description will be omitted. .
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is only used to describe specific embodiments and is not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, or a combination thereof described in the specification, but are not intended to indicate the presence of one or more other features or It should be understood that this does not exclude in advance the possibility of the presence or addition of numbers, steps, operations, components, or combinations thereof.
또한, 이하에서 사용될 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Additionally, terms including ordinal numbers, such as first, second, etc., which will be used below, may be used to describe various components, but the components are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
또한, 어떤 구성요소가 다른 구성요소 상에 "형성되어" 있다거나 "적층되어" 있다고 언급된 때에는, 그 다른 구성요소의 표면 상의 전면 또는 일면에 직접 부착되어 형성되어 있거나 적층되어 있을 수도 있지만, 중간에 다른 구성요소가 더 존재할 수도 있다고 이해되어야 할 것이다.Additionally, when a component is referred to as being "formed" or "laminated" on another component, it may be formed or laminated directly on the entire surface or one side of the surface of the other component, but may also mean that the component is "formed" or "laminated" on another component. It should be understood that other components may exist.
이하, 바인더-활물질 입자 복합체, 그를 포함하는 리튬이차전지용 양극 및 그의 제조방법에 대하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.Hereinafter, the binder-active material particle composite, the positive electrode for a lithium secondary battery containing the same, and the manufacturing method thereof will be described in detail. However, this is presented as an example, and the present invention is not limited thereby, and the present invention is only defined by the scope of the claims to be described later.
도 1은 본 발명 하나의 실시예에 따른 바인더-활물질 입자 복합체의 모식도이다.1 is a schematic diagram of a binder-active material particle composite according to one embodiment of the present invention.
도 1을 참고하면, 본 발명은 양극 활물질 입자를 포함하는 코어(100); 및 상기 코어(100) 상에 위치하고, 바인더를 포함하고, 코어 및 이웃하는 다른 코어를 서로 결착하고, 기공이 형성된 쉘(200);을 포함하는 바인더-활물질 입자 복합체(10)를 제공한다.Referring to Figure 1, the present invention includes a core 100 containing positive electrode active material particles; and a shell 200 located on the core 100, including a binder, binding the core and other neighboring cores together, and having pores formed therein.
또한, 상기 쉘(200)이 상기 바인더를 포함하는 섬유로 형성된 네트워크 형상을 갖는 것일 수 있다.Additionally, the shell 200 may have a network shape formed of fibers containing the binder.
또한, 상기 쉘(200)의 기공의 직경이 0.05 내지 2 μm일 수 있다. 상기 기공 직경이 0.05 μm일 경우 도전재가 활물질 입자 표면에 직접 맞닿기 어려워 바람직하지 않고, 2 μm를 초과할 경우 바인더와 활물질 입자 간 접착력이 지나치게 낮아질 수 있어 바람직하지 않다.Additionally, the pore diameter of the shell 200 may be 0.05 to 2 μm. If the pore diameter is 0.05 μm, it is undesirable because it is difficult for the conductive material to directly contact the surface of the active material particle. If it exceeds 2 μm, the adhesion between the binder and the active material particle may be excessively low, which is undesirable.
또한, 상기 바인더가 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE), 폴리비닐피롤리디논(polyvinyl pyrrolidinone), 폴리에틸렌옥사이드(polyethyleneoxide), 폴리에틸렌글리콜(polyethyleneglycol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐클로라이드(polyvinylchloride), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리프로필렌옥사이드(polypropyleneoxide), 폴리디메틸실록산(polydimethylsiloxane), 폴리비닐리덴카보네이트(polyvinylidenecarbonate), 니트릴부타디엔러버(NBR, nitrile butadiene rubber) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 보다 바람직하게는 폴리비닐리덴 플루오라이드(PVdF)를 포함할 수 있다.In addition, the binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE) ), polyvinyl pyrrolidinone, polyethyleneoxide, polyethyleneglycol, polyacrylonitrile, polyvinylchloride, polymethylmethacrylate, polypropylene It may include at least one selected from the group consisting of polypropyleneoxide, polydimethylsiloxane, polyvinylidenecarbonate, nitrile butadiene rubber (NBR), and combinations thereof, and preferably is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE), and these It may include one or more types selected from the group consisting of combinations, and more preferably may include polyvinylidene fluoride (PVdF).
또한, 상기 양극 활물질이 과립(granule) 형상일 수 있다.Additionally, the positive electrode active material may be in the form of granules.
또한, 상기 양극 활물질의 크기가 1 내지 20 μm 일 수 있고, 바람직하게는 3 내지 10 μm 일 수 있다. 상기 양극 활물질의 크기가 3 μm이하일 경우 전체적인 표면적이 증가하기 때문에 접착력을 유지시키기 위해서 더 많은 양의 바인더가 필요하기 때문에 바람직하지 않고, 10 μm를 초과할 경우 균일한 전극이 형성되기 어렵기 때문에 바람직하지 않다. Additionally, the size of the positive electrode active material may be 1 to 20 μm, preferably 3 to 10 μm. If the size of the positive active material is less than 3 μm, it is undesirable because the overall surface area increases and a larger amount of binder is needed to maintain adhesion, and if it exceeds 10 μm, it is undesirable because it is difficult to form a uniform electrode. don't do it
또한, 상기 양극 활물질이 리튬니켈코발트망간계 산화물(NCM), 리튬철인산염계 산화물(lithium iron phosphate, LiFePO4), 리튬니켈코발트알루미늄계 산화물(NCA), 리튬코발트계 산화물(LiCoO2), 리튬니켈계 산화물(LiNiO2) 및 리튬망간계 산화물(LiMn2O4)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.In addition, the positive electrode active material is lithium nickel cobalt manganese oxide (NCM), lithium iron phosphate (LiFePO 4 ), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LiCoO 2 ), lithium It may include one or more types selected from the group consisting of nickel-based oxide (LiNiO 2 ) and lithium manganese-based oxide (LiMn 2 O 4 ).
또한, 상기 리튬니켈코발트망간계 산화물(NCM)이 아래 구조식 1로 표시되는 것일 수 있다.Additionally, the lithium nickel cobalt manganese oxide (NCM) may be represented by structural formula 1 below.
[구조식 1][Structural Formula 1]
Li(NixCoyMnz)O2 Li(Ni x Co y Mn z )O 2
상기 구조식 1에서,In structural formula 1,
x + y + z = 1이고, x + y + z = 1,
x는 0.6 ≤ x ≤ 0.95 이고, x is 0.6 ≤ x ≤ 0.95,
y는 0.01 ≤ y ≤ 0.2 이고,y is 0.01 ≤ y ≤ 0.2,
z는 0.01 ≤ z ≤ 0.2 이다.z is 0.01 ≤ z ≤ 0.2.
또한, 상기 바인더-활물질 입자 복합체가 상기 기공 내에 위치하는 도전재를 추가로 포함하고, 상기 도전재가 상기 코어의 양극 활물질 입자 및 상기 코어와 이웃하는 다른 코어의 양극 활물질 입자와 각각 접하여 서로 연결하는 것일 수 있다.In addition, the binder-active material particle composite further includes a conductive material located in the pores, and the conductive material contacts and connects with the positive electrode active material particles of the core and the positive active material particles of other cores adjacent to the core, respectively. You can.
또한, 상기 도전재가 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브, 그래핀 및 덴카 블랙으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 카본 블랙을 포함할 수 있다. In addition, the conductive material may include one or more selected from the group consisting of carbon black, acetylene black, Ketjen black, carbon fiber, carbon nanotube, graphene, and Denka black, and may preferably include carbon black. .
또한, 상기 바인더-활물질 입자 복합체가 상기 양극 활물질 100 중량부를 기준으로 상기 바인더 1 내지 20 중량부를 포함할 수 있고, 바람직하게는 2 내지 10 중량부를 포함할 수 있다. 상기 바인더가 2 중량부 미만일 경우 활물질 입자 간 충분한 접착력을 제공할 수 없어 바람직하지 않고, 20 중량부를 초과할 경우 전극의 에너지 밀도가 지나치게 낮아질 수 있어 바람직하지 않다.Additionally, the binder-active material particle composite may include 1 to 20 parts by weight of the binder, preferably 2 to 10 parts by weight, based on 100 parts by weight of the positive electrode active material. If the binder is less than 2 parts by weight, it is not desirable because it cannot provide sufficient adhesion between active material particles, and if it is more than 20 parts by weight, the energy density of the electrode may be excessively low, which is undesirable.
또한, 상기 바인더-활물질 입자 복합체가 상기 양극 활물질 100 중량부를 기준으로 상기 도전재 1 내지 20 중량부를 포함할 수 있고, 바람직하게는 3 내지 10 중량부를 포함할 수 있다. 상기 도전재가 1 중량부 미만일 경우 전극의 충분한 전기전도도를 확보하기 어려워 바람직하지 않고, 20 중량부를 초과할 경우 전극의 에너지 밀도가 지나치게 낮아질 수 있어 바람직하지 않다. Additionally, the binder-active material particle composite may include 1 to 20 parts by weight of the conductive material, preferably 3 to 10 parts by weight, based on 100 parts by weight of the positive electrode active material. If the conductive material is less than 1 part by weight, it is undesirable because it is difficult to secure sufficient electrical conductivity of the electrode, and if it exceeds 20 parts by weight, the energy density of the electrode may be excessively low, which is undesirable.
본 발명은 상기 바인더-활물질 입자 복합체를 포함하는 양극; 음극; 및 전해질;을 포함하는 리튬 이차전지를 제공한다.The present invention provides a positive electrode comprising the binder-active material particle composite; cathode; It provides a lithium secondary battery including; and an electrolyte.
도 2는 본 발명 하나의 실시예에 따라 바인더-활물질 입자 복합체를 제조하는 과정을 나타낸 개략도이다.Figure 2 is a schematic diagram showing the process of manufacturing a binder-active material particle composite according to one embodiment of the present invention.
도 2를 참고하면, 본 발명은 (a) 양극 활물질, 바인더 및 용매를 혼합하여 혼합용액을 제조하는 단계; 및 (b) 상기 혼합용액을 비용매에 첨가하여 비용매유도 상분리(nonsolvent induced phase separation, NIPS)를 유도하여 바인더-활물질 입자 복합체를 제조하는 단계;를 포함하고, 상기 용매는 상기 바인더를 용해시키고, 상기 비용매는 상기 바인더를 용해시키지 않는 것인, 바인더-활물질 입자 복합체의 제조방법을 제공한다.Referring to Figure 2, the present invention includes the steps of (a) mixing a positive electrode active material, a binder, and a solvent to prepare a mixed solution; and (b) adding the mixed solution to a non-solvent to induce nonsolvent induced phase separation (NIPS) to prepare a binder-active material particle composite, wherein the solvent dissolves the binder and , wherein the non-solvent does not dissolve the binder, providing a method for producing a binder-active material particle composite.
또한, 상기 혼합용액이 상기 용매 100 중량부를 기준으로 상기 바인더 0.5 내지 2 중량부를 포함할 수 있다. 상기 바인더가 0.5 중량부 미만일 경우 활물질 표면에 바인더가 균일하게 코팅되지 않을 수 있어 바람직하지 않고, 2 중량부를 초과할 경우 활물질 입자 간 뭉침 현상이 발생할 수 있어 바람직하지 않다. Additionally, the mixed solution may include 0.5 to 2 parts by weight of the binder based on 100 parts by weight of the solvent. If the binder is less than 0.5 parts by weight, it is undesirable because the binder may not be uniformly coated on the surface of the active material. If it exceeds 2 parts by weight, agglomeration between active material particles may occur, which is undesirable.
또한, 상기 용매가 디메틸설폭사이드(DMSO), 디메틸아세트아미드(DMAC) 및 디메틸포름아미드(DMF)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 디메틸 설폭사이드를 포함할 수 있다.In addition, the solvent may include one or more selected from the group consisting of dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and dimethylformamide (DMF), and preferably includes dimethyl sulfoxide. .
또한, 상기 비용매가 상기 혼합용액 100 중량부를 기준으로 300 내지 2,000 중량부를 포함할 수 있고, 바람직하게는 500 내지 1,500 중량부를 포함할 수 있고, 보다 바람직하게는 800 내지 1,200 중량부를 포함할 수 있다. 상기 비용매가 300 중량부 미만일 경우 용매-비용매 교환이 충분히 일어나지 않아 양극 활물질 표면에 바인더를 포함하는 다공성 쉘을 형성하기 어려워 바람직하지 않고, 2,000 중량부를 초과할 경우 정전분무 시 농도가 낮아서 극판 코팅에 소요되는 시간이 길어져 비효율적이므로 바람직하지 않다. In addition, the non-solvent may contain 300 to 2,000 parts by weight, preferably 500 to 1,500 parts by weight, and more preferably 800 to 1,200 parts by weight, based on 100 parts by weight of the mixed solution. If the non-solvent is less than 300 parts by weight, solvent-non-solvent exchange does not occur sufficiently, making it difficult to form a porous shell containing a binder on the surface of the positive electrode active material, which is undesirable, and if it exceeds 2,000 parts by weight, the concentration during electrostatic spraying is low, so it is difficult to form a porous shell containing a binder on the surface of the positive electrode active material. This is undesirable because it takes a long time and is inefficient.
또한, 상기 비용매가 물, 에탄올, n-프로판올, iso-프로판올, 헥세인 및 n-헥세인으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있고, 바람직하게는 물 및 에탄올을 포함할 수 있다. Additionally, the non-solvent may include one or more selected from the group consisting of water, ethanol, n-propanol, iso-propanol, hexane, and n-hexane, and preferably includes water and ethanol.
도 3은 본 발명 하나의 실시예에 따라 리튬이차전지용 양극을 제조하는 과정을 나타낸 개략도이다.Figure 3 is a schematic diagram showing the process of manufacturing a positive electrode for a lithium secondary battery according to an embodiment of the present invention.
도 3을 참고하면, 본 발명은 (1) 양극 활물질, 바인더 및 용매를 혼합하여 혼합용액을 제조하는 단계; (2) 상기 혼합용액을 비용매에 첨가하여 비용매유도 상분리를 통해 바인더-활물질 입자 복합체를 포함하는 제1 혼합물을 제조하는 단계; (3) 상기 제1 혼합물에 도전재를 분산시켜 제2 혼합물을 제조하는 단계; (4) 상기 제2 혼합물을 집전체 상에 정전분무하여 코팅하는 단계; 및 (5) 제2 혼합물이 코팅된 상기 집전체를 압연하여 양극을 제조하는 단계;를 포함하는 양극의 제조방법을 제공한다.Referring to Figure 3, the present invention includes the steps of (1) mixing a positive electrode active material, a binder, and a solvent to prepare a mixed solution; (2) adding the mixed solution to a non-solvent to prepare a first mixture including a binder-active material particle complex through non-solvent induced phase separation; (3) preparing a second mixture by dispersing a conductive material in the first mixture; (4) coating the second mixture on a current collector by electrostatic spraying; and (5) manufacturing a positive electrode by rolling the current collector coated with the second mixture.
또한, 상기 단계 (4)가 건식 공정으로 수행될 수 있다.Additionally, step (4) may be performed as a dry process.
또한, 상기 정전분무가 5 내지 30 V의 전압으로 수행될 수 있다. 상기 정전분무가 5 V 미만의 전압으로 수행될 경우 집전체에 잔류 용매가 존재할 수 있어 바람직하지 않고, 30 V를 초과할 경우 정전분무 시 안정적인 분무 속도의 유지가 어려워질 수 있어 바람직하지 않다.Additionally, the electrostatic spraying may be performed at a voltage of 5 to 30 V. If the electrostatic spraying is performed at a voltage of less than 5 V, it is undesirable because residual solvent may exist in the current collector, and if the electrostatic spraying is performed at a voltage of less than 30 V, it is undesirable because it may become difficult to maintain a stable spray speed during electrostatic spraying.
또한, 상기 압연이 20 내지 150 ℃로 가열된 롤프레스를 사용하여 수행될 수 있다. 상기 압연이 20 ℃ 미만으로 가열된 롤프레스를 사용하여 수행될 경우 집전체에 잔류 용매가 존재할 수 있어 바람직하지 않고, 150 ℃를 초과할 경우 바인더가 열화될 수 있어 바람직하지 않다.Additionally, the rolling may be performed using a roll press heated to 20 to 150°C. If the rolling is performed using a roll press heated to less than 20°C, it is undesirable because residual solvent may exist in the current collector, and if it exceeds 150°C, it is undesirable because the binder may deteriorate.
또한, 상기 압연이 1 내지 20 mm/s의 속도로 수행될 수 있다. 상기 압연이 1 mm/s 미만의 속도로 수행될 경우 전극 형성 시 지나치게 많은 시간이 소요되어 비효율적이므로 바람직하지 않고, 20 mm/s를 초과하면 전극의 결함이 발생할 수 있어 바람직하지 않다.Additionally, the rolling may be performed at a speed of 1 to 20 mm/s. If the rolling is performed at a speed of less than 1 mm/s, it is undesirable because it takes too much time to form the electrode and is inefficient, and if it exceeds 20 mm/s, it is undesirable because defects in the electrode may occur.
[실시예] [Example]
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to preferred embodiments. However, this is for illustrative purposes only and does not limit the scope of the present invention.
바인더-활물질 입자 복합체 제조Binder-active material particle composite manufacturing
실시예 1Example 1
도 2는 본 발명 하나의 실시예에 따라 바인더-활물질 입자 복합체를 제조하는 과정을 나타낸 개략도이다. 도 2를 참고하여 실시예 1의 바인더-활물질 입자 복합체를 제조하였다.Figure 2 is a schematic diagram showing the process of manufacturing a binder-active material particle composite according to one embodiment of the present invention. Referring to FIG. 2, the binder-active material particle composite of Example 1 was prepared.
폴리비닐리덴 플루오라이드(PVdF) 바인더와 NCM계 양극 활물질(Li(Ni8Co1Mn1)O2)을 dimethyl sulfoxide(DMSO) 용매에 첨가하여 혼합용액을 제조하였다. 이때 혼합용액 속 바인더의 농도는 0.7 wt%로 조절하였으며, 상기 바인더는 상기 활물질 입자 100 중량부를 기준으로 5 중량부를 첨가하였다. A mixed solution was prepared by adding polyvinylidene fluoride (PVdF) binder and NCM-based positive electrode active material (Li(Ni 8 Co 1 Mn 1 )O 2 ) to dimethyl sulfoxide (DMSO) solvent. At this time, the concentration of the binder in the mixed solution was adjusted to 0.7 wt%, and 5 parts by weight of the binder was added based on 100 parts by weight of the active material particles.
회전 혼합기를 이용해서 2 분간 1,000 rpm으로 교반한 후에 증류수과 에탄올이 1:1 부피비로 혼합된 비용매를 상기 혼합용액에 첨가하였다. 이때 상기 비용매는 상기 혼합용액 100 중량부를 기준으로 1,000 중량부가 되도록 맞췄다. 이후 5 분간 300 rpm으로 교반하여 비용매유도 상전이를 통해 바인더-활물질 입자 복합체를 제조하였다.After stirring at 1,000 rpm for 2 minutes using a rotary mixer, a non-solvent mixed with distilled water and ethanol in a 1:1 volume ratio was added to the mixed solution. At this time, the non-solvent was adjusted to 1,000 parts by weight based on 100 parts by weight of the mixed solution. Afterwards, the mixture was stirred at 300 rpm for 5 minutes to prepare a binder-active material particle complex through non-solvent induced phase transition.
양극 제조anode manufacturing
실시예 2Example 2
도 3은 본 발명 하나의 실시예에 따라 리튬이차전지용 양극을 제조하는 과정을 나타낸 개략도이다. 도 3을 참고하여 소자실시예 1의 리튬이차전지 셀에 사용되는 리튬이차전지용 양극을 제조하였다.Figure 3 is a schematic diagram showing the process of manufacturing a positive electrode for a lithium secondary battery according to one embodiment of the present invention. Referring to FIG. 3, a positive electrode for a lithium secondary battery used in the lithium secondary battery cell of Device Example 1 was manufactured.
도전재(super P conductive carbon black)를 에탄올에 분산시킨 후 바인더-활물질 입자 복합체를 포함하는 제1 혼합물(용매, 비용매 및 바인더-활물질 입자 복합체 포함)에 넣고 5 분간 300 rpm으로 교반하여 제2 혼합물을 제조하였다. 이때 상기 도전재는 상기 활물질 입자 100 중량부를 기준으로 5 중량부 포함하도록 조절하였다. After dispersing the conductive material (super P conductive carbon black) in ethanol, it was added to the first mixture containing the binder-active material particle complex (including solvent, non-solvent, and binder-active material particle complex) and stirred at 300 rpm for 5 minutes to form the second mixture. A mixture was prepared. At this time, the conductive material was adjusted to contain 5 parts by weight based on 100 parts by weight of the active material particles.
상기 제2 혼합물을 정전분무를 통해 알루미늄(Al) 집전체에 코팅하는 코팅하였다. 정전분무시 노즐은 19 G 1개, 전압은 24 V에서 수행되었다. 그 후 건조과정 없이 150 ℃로 가열된 롤프레스를 통해 압연이 진행되었으며 따로 건조공정 없이 최종적으로 5 mg cm-2의 전극 밀도를 갖는 리튬이차전지용 양극을 제조하였다.The second mixture was coated on an aluminum (Al) current collector through electrostatic spraying. Electrostatic spraying was performed with one nozzle of 19 G and a voltage of 24 V. Afterwards, rolling was performed using a roll press heated to 150°C without a drying process, and a positive electrode for a lithium secondary battery having an electrode density of 5 mg cm -2 was finally manufactured without a separate drying process.
비교예 1Comparative Example 1
NCM계 양극 활물질(Li(Ni8Co1Mn1)O2)입자를 양극 활물질로 이용하여, 양극활물질 90 wt%, 폴리비닐리덴 플루오라이드(PVdF) 바인더 5 wt%, 및 도전재(super P conductive carbon black)를 5 wt%를 혼합하여, 알루미늄 호일(Al current collector) 기판 위에 슬러리 코팅하고, 건조 및 압연한 후 일정 크기로 펀칭(pouching)하여 양극을 제조하였다.Using NCM-based positive electrode active material (Li(Ni 8 Co 1 Mn 1 )O 2 ) particles as the positive electrode active material, 90 wt% of positive electrode active material, 5 wt% of polyvinylidene fluoride (PVdF) binder, and conductive material (super P A positive electrode was manufactured by mixing 5 wt% of conductive carbon black, slurry coating it on an aluminum foil (Al current collector) substrate, drying and rolling it, and then punching it to a certain size.
리튬이차전지 셀 제조Lithium secondary battery cell manufacturing
소자실시예 1Device Example 1
상기 실시예 2의 리튬이차전지용 양극, PP 세퍼레이터, 전해액(1.2 M LiPF6 in EC-EMC (EC:EMC, 3:7 by vol%) and 2 wt% VC) 및 리튬 금속 음극을 사용하여 2032R Coin셀로 제작하여 리튬이차전지 셀을 제조하였다. 2032R Coin cell using the positive electrode for lithium secondary battery of Example 2, PP separator, electrolyte (1.2 M LiPF6 in EC-EMC (EC:EMC, 3:7 by vol%) and 2 wt% VC) and lithium metal negative electrode. A lithium secondary battery cell was manufactured.
소자비교예 1Device comparison example 1
상기 비교예 1을 양극으로, PP 세퍼레이터, 전해액(1.2 M LiPF6 in EC-EMC (EC:EMC, 3:7 by vol%) and 2 wt% VC) 및 리튬 금속 음극을 사용하여 2032R Coin셀로 제작하여 리튬이차전지 셀을 제조하였다.A 2032R Coin cell was manufactured using Comparative Example 1 as the anode, a PP separator, electrolyte (1.2 M LiPF6 in EC-EMC (EC:EMC, 3:7 by vol%) and 2 wt% VC), and a lithium metal anode. A lithium secondary battery cell was manufactured.
[시험예][Test example]
시험예 1: 바인더-활물질 입자 복합체 제조 확인Test Example 1: Confirmation of manufacture of binder-active material particle composite
도 4a는 실시예 1에 따라 제조된 바인더-활물질 입자 복합체의 SEM 이미지(Bar scale = 2 μm)를 나타낸 것이고, 도 4b는 실시예 1에 따라 제조된 바인더-활물질 입자 복합체의 SEM 이미지(Bar scale = 500 nm)를 나타낸 것이다.Figure 4a shows an SEM image (Bar scale = 2 μm) of the binder-active material particle composite prepared according to Example 1, and Figure 4b shows an SEM image (Bar scale) of the binder-active material particle composite prepared according to Example 1. = 500 nm).
도 4a 및 4b에 따르면 실시예 1은 양극 활물질 입자를 포함하는 코어와 상기 코어 상에 바인더를 포함하는 섬유로 형성된 네트워크 형상의 쉘이 형성된 것을 확인할 수 있다. 또한, 상기 양극 활물질이 과립(granule) 형상인 것을 확인할 수 있다. According to FIGS. 4A and 4B, it can be seen that in Example 1, a core containing positive electrode active material particles and a network-shaped shell formed of fibers containing a binder on the core were formed. Additionally, it can be confirmed that the positive electrode active material is in the shape of granules.
시험예 2: 리튬이차전지 셀의 수명테스트Test Example 2: Life test of lithium secondary battery cell
도 5는 소자실시예 1 및 소자비교예 1의 전류밀도 0.1 C에서 첫번째 사이클 결과를 나타낸 것이다. 상세하게는 상기 도 5는 소자실시예 1 및 소자비교예 1에 따라 제조된 리튬이차전지 셀을 전압범위 2.7 내지 4.3 V, 인가전류 0.1 C (20 mAh g-1)에서 충방전을 하였을 때 전압과 용량(capacity)을 나타낸 것이다.Figure 5 shows the first cycle results of Device Example 1 and Device Comparative Example 1 at a current density of 0.1 C. In detail, Figure 5 shows the voltage when the lithium secondary battery cell manufactured according to Device Example 1 and Device Comparative Example 1 was charged and discharged at a voltage range of 2.7 to 4.3 V and an applied current of 0.1 C (20 mAh g -1 ). This indicates capacity.
도 5에 따르면, 소자실시예 1은 소자비교예 1과 거의 비슷한 가역용량을 나타내는 것을 확인할 수 있다. According to Figure 5, it can be seen that Device Example 1 shows a reversible capacity that is almost similar to Device Comparative Example 1.
도 6은 소자실시예 1 및 소자비교예 1의 전류밀도 1 C에서 수명특성 결과를 나타낸 것이다. 상세하게는 상기 도 6은 소자실시예 1 및 소자비교예 1에 따라 제조된 리튬이차전지 셀을 전압범위 2.7 내지 4.3 V, 인가전류 1 C (20 mAh g-1)에서 충방전을 하였을 때 전압과 용량(capacity)을 나타낸 것이다.Figure 6 shows the life characteristics results of Device Example 1 and Device Comparative Example 1 at a current density of 1 C. In detail, Figure 6 shows the voltage when the lithium secondary battery cell manufactured according to Device Example 1 and Device Comparative Example 1 was charged and discharged at a voltage range of 2.7 to 4.3 V and an applied current of 1 C (20 mAh g -1 ). This indicates capacity.
도 6에 따르면, 소자실시예 1에 따라 제조된 리튬이차전지 셀은 300 사이클 후에도 습식공정으로 만들어진 소자비교예 1에 따라 제조된 리튬이차전지의 가역용량의 92.5%에 해당하는 높은 가역 용량을 유지하는 것을 확인 할 수 있으며 NMP를 사용하지 않아 건조 공정이 필요없는 건식 공정 만으로도 기존의 습식 공정으로 제작된 셀의 성능 수준과 유사한 전지 특성을 보이는 것을 확인할 수 있다.According to Figure 6, the lithium secondary battery cell manufactured according to Device Example 1 maintains a high reversible capacity equivalent to 92.5% of the reversible capacity of the lithium secondary battery manufactured according to Device Comparative Example 1 made by a wet process even after 300 cycles. It can be confirmed that the battery characteristics are similar to the performance level of cells manufactured using the existing wet process only through the dry process, which does not require a drying process because it does not use NMP.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention. do.

Claims (20)

  1. 양극 활물질 입자를 포함하는 코어; 및A core containing positive electrode active material particles; and
    상기 코어 상에 위치하고, 바인더를 포함하고, 코어 및 이웃하는 다른 코어를 서로 결착하고, 기공이 형성된 쉘;을 A shell located on the core, including a binder, binding the core and other neighboring cores together, and having pores formed therein;
    포함하는 바인더-활물질 입자 복합체.A binder-active material particle complex comprising:
  2. 제1항에 있어서,According to paragraph 1,
    상기 쉘이 상기 바인더를 포함하는 섬유로 형성된 네트워크 형상을 갖는 것을 특징으로 하는 바인더-활물질 입자 복합체.A binder-active material particle composite, characterized in that the shell has a network shape formed of fibers containing the binder.
  3. 제1항에 있어서,According to paragraph 1,
    상기 쉘의 기공의 직경이 0.05 내지 2 μm인 것을 특징으로 하는 바인더-활물질 입자 복합체.A binder-active material particle composite, characterized in that the pore diameter of the shell is 0.05 to 2 μm.
  4. 제1항에 있어서,According to paragraph 1,
    상기 바인더가 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE), 폴리비닐피롤리디논(polyvinyl pyrrolidinone), 폴리에틸렌옥사이드(polyethyleneoxide), 폴리에틸렌글리콜(polyethyleneglycol), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐클로라이드(polyvinylchloride), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리프로필렌옥사이드(polypropyleneoxide), 폴리디메틸실록산(polydimethylsiloxane), 폴리비닐리덴카보네이트(polyvinylidenecarbonate), 니트릴부타디엔러버(NBR, nitrile butadiene rubber) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 바인더-활물질 입자 복합체.The binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE), Polyvinyl pyrrolidinone, polyethyleneoxide, polyethyleneglycol, polyacrylonitrile, polyvinylchloride, polymethylmethacrylate, polypropylene oxide ( A binder-active material characterized in that it contains at least one selected from the group consisting of polypropyleneoxide, polydimethylsiloxane, polyvinylidenecarbonate, nitrile butadiene rubber (NBR), and combinations thereof. Particle complex.
  5. 제4항에 있어서,According to clause 4,
    상기 바인더가 폴리비닐리덴 플루오라이드(PVdF), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 폴리비닐리덴플루오라이드-테트라플루오로에틸렌의 코폴리머(PVdF-TFE) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 바인더-활물질 입자 복합체.The binder is polyvinylidene fluoride (PVdF), polyvinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP), polyvinylidene fluoride-tetrafluoroethylene copolymer (PVdF-TFE), and A binder-active material particle complex comprising at least one selected from the group consisting of combinations thereof.
  6. 제1항에 있어서,According to paragraph 1,
    상기 양극 활물질이 과립(granule) 형상인 것을 특징으로 하는 바인더-활물질 입자 복합체.A binder-active material particle composite, characterized in that the positive electrode active material is in a granule shape.
  7. 제1항에 있어서,According to paragraph 1,
    상기 양극 활물질의 크기가 1 내지 20 μm인 것을 특징으로 하는 바인더-활물질 입자 복합체.A binder-active material particle complex, wherein the positive electrode active material has a size of 1 to 20 μm.
  8. 제1항에 있어서,According to paragraph 1,
    상기 양극 활물질이 리튬니켈코발트망간계 산화물(NCM), 리튬철인산염계 산화물(lithium iron phosphate, LiFePO4), 리튬니켈코발트알루미늄계 산화물(NCA), 리튬코발트계 산화물(LiCoO2), 리튬니켈계 산화물(LiNiO2) 및 리튬망간계 산화물(LiMn2O4)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 바인더-활물질 입자 복합체.The positive electrode active material is lithium nickel cobalt manganese oxide (NCM), lithium iron phosphate (LiFePO 4 ), lithium nickel cobalt aluminum oxide (NCA), lithium cobalt oxide (LiCoO 2 ), and lithium nickel oxide. A binder-active material particle complex comprising at least one selected from the group consisting of oxide (LiNiO 2 ) and lithium manganese oxide (LiMn 2 O 4 ).
  9. 제8항에 있어서,According to clause 8,
    상기 리튬니켈코발트망간계 산화물(NCM)이 아래 구조식 1로 표시되는 것을 특징으로 하는 바인더-활물질 입자 복합체.A binder-active material particle composite, characterized in that the lithium nickel cobalt manganese-based oxide (NCM) is represented by structural formula 1 below.
    [구조식 1][Structural Formula 1]
    Li(NixCoyMnz)O2 Li(Ni x Co y Mn z )O 2
    상기 구조식 1에서,In structural formula 1,
    x + y + z = 1이고, x + y + z = 1,
    x는 0.6 ≤ x ≤ 0.95 이고, x is 0.6 ≤ x ≤ 0.95,
    y는 0.01 ≤ y ≤ 0.2 이고,y is 0.01 ≤ y ≤ 0.2,
    z는 0.01 ≤ z ≤ 0.2 이다.z is 0.01 ≤ z ≤ 0.2.
  10. 제1항에 있어서,According to paragraph 1,
    상기 바인더-활물질 입자 복합체가 상기 기공 내에 위치하는 도전재를 추가로 포함하고,The binder-active material particle complex further includes a conductive material located in the pores,
    상기 도전재가 상기 코어의 양극 활물질 입자 및 상기 코어와 이웃하는 다른 코어의 양극 활물질 입자와 각각 접하여 서로 연결하는 것을 특징으로 하는 바인더-활물질 입자 복합체.A binder-active material particle complex, wherein the conductive material contacts and connects with the positive electrode active material particles of the core and the positive active material particles of other cores adjacent to the core.
  11. 제10항에 있어서,According to clause 10,
    상기 도전재가 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브, 그래핀 및 덴카 블랙으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 바인더-활물질 입자 복합체.A binder-active material particle composite, wherein the conductive material includes one or more selected from the group consisting of carbon black, acetylene black, Ketjen black, carbon fiber, carbon nanotube, graphene, and Denka black.
  12. 제10항에 있어서,According to clause 10,
    상기 바인더-활물질 입자 복합체가The binder-active material particle complex
    상기 양극 활물질 100 중량부; 100 parts by weight of the positive electrode active material;
    상기 바인더 1 내지 20 중량부; 및1 to 20 parts by weight of the binder; and
    상기 도전재 1 내지 20 중량부;를 포함하는 것을 특징으로 하는 바인더-활물질 입자 복합체.A binder-active material particle composite comprising 1 to 20 parts by weight of the conductive material.
  13. 제1항의 바인더-활물질 입자 복합체를 포함하는 양극;A positive electrode comprising the binder-active material particle complex of claim 1;
    음극; 및cathode; and
    전해질;을 electrolyte;
    포함하는 리튬 이차전지.Lithium secondary battery containing.
  14. (a) 양극 활물질, 바인더 및 용매를 혼합하여 혼합용액을 제조하는 단계;(a) preparing a mixed solution by mixing a positive electrode active material, a binder, and a solvent;
    (b) 상기 혼합용액을 비용매에 첨가하여 비용매유도 상분리(nonsolvent induced phase separation, NIPS)를 유도하여 바인더-활물질 입자 복합체를 제조하는 단계;를 포함하고,(b) adding the mixed solution to a non-solvent to induce nonsolvent induced phase separation (NIPS) to produce a binder-active material particle complex;
    상기 용매는 상기 바인더를 용해시키고, 상기 비용매는 상기 바인더를 용해시키지 않는 것인, 바인더-활물질 입자 복합체의 제조방법.The solvent dissolves the binder, and the non-solvent does not dissolve the binder.
  15. 제14항에 있어서,According to clause 14,
    상기 혼합용액이 상기 용매 100 중량부를 기준으로 상기 바인더 0.5 내지 2 중량부를 포함하는 것을 특징으로 하는 바인더-활물질 입자 복합체의 제조방법.A method for producing a binder-active material particle composite, characterized in that the mixed solution contains 0.5 to 2 parts by weight of the binder based on 100 parts by weight of the solvent.
  16. 제14항에 있어서,According to clause 14,
    상기 용매가 디메틸설폭사이드(DMSO), 디메틸아세트아미드(DMAC) 및 디메틸포름아미드(DMF)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 바인더-활물질 입자 복합체의 제조방법.A method for producing a binder-active material particle complex, wherein the solvent includes at least one selected from the group consisting of dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and dimethylformamide (DMF).
  17. 제14항에 있어서,According to clause 14,
    상기 비용매가 상기 혼합용액 100 중량부를 기준으로 300 내지 2,000 중량부인 것을 특징으로 하는 바인더-활물질 입자 복합체의 제조방법.A method for producing a binder-active material particle composite, characterized in that the non-solvent is 300 to 2,000 parts by weight based on 100 parts by weight of the mixed solution.
  18. 제14항에 있어서,According to clause 14,
    상기 비용매가 물, 에탄올, n-프로판올, iso-프로판올, 헥세인 및 n-헥세인으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 바인더-활물질 입자 복합체의 제조방법.A method for producing a binder-active material particle complex, wherein the non-solvent includes one or more selected from the group consisting of water, ethanol, n-propanol, iso-propanol, hexane, and n-hexane.
  19. (1) 양극 활물질, 바인더 및 용매를 혼합하여 혼합용액을 제조하는 단계; (1) preparing a mixed solution by mixing a positive electrode active material, a binder, and a solvent;
    (2) 상기 혼합용액을 비용매에 첨가하여 비용매유도 상분리를 통해 바인더-활물질 입자 복합체를 포함하는 제1 혼합물을 제조하는 단계;(2) adding the mixed solution to a non-solvent to prepare a first mixture including a binder-active material particle complex through non-solvent induced phase separation;
    (3) 상기 제1 혼합물에 도전재를 분산시켜 제2 혼합물을 제조하는 단계; (3) preparing a second mixture by dispersing a conductive material in the first mixture;
    (4) 상기 제2 혼합물을 집전체 상에 정전분무하여 코팅하는 단계; 및(4) coating the second mixture on a current collector by electrostatic spraying; and
    (5) 제2 혼합물이 코팅된 상기 집전체를 압연하여 양극을 제조하는 단계;를 (5) manufacturing a positive electrode by rolling the current collector coated with the second mixture;
    포함하는 리튬이차전지용 양극의 제조방법.A method of manufacturing a positive electrode for a lithium secondary battery comprising:
  20. 제19항에 있어서,According to clause 19,
    상기 단계(4)가 건식 공정으로 수행되는 것을 특징으로 하는 리튬이차전지용 양극의 제조방법.A method of manufacturing a positive electrode for a lithium secondary battery, characterized in that step (4) is performed in a dry process.
PCT/KR2023/012766 2022-09-15 2023-08-29 Binder-active material particle composite, cathode comprising same for lithium secondary battery, and method for preparing same WO2024058462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220116589A KR20240037721A (en) 2022-09-15 2022-09-15 Binder-active material particle composite, cathode for lithium secondary battery comprising same, and method of preparing same
KR10-2022-0116589 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024058462A1 true WO2024058462A1 (en) 2024-03-21

Family

ID=90275227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012766 WO2024058462A1 (en) 2022-09-15 2023-08-29 Binder-active material particle composite, cathode comprising same for lithium secondary battery, and method for preparing same

Country Status (2)

Country Link
KR (1) KR20240037721A (en)
WO (1) WO2024058462A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052774A1 (en) * 1999-03-04 2000-09-08 Japan Storage Battery Co., Ltd. Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell
KR20150100028A (en) * 2014-02-24 2015-09-02 (주)오렌지파워 Electrode material for rechargeable battery and method of fabricating the same
KR20160069385A (en) * 2014-12-08 2016-06-16 주식회사 엘지화학 Electrode composite, electrochemical device comprising the same and preparation method of the electrode composite
KR20180001519A (en) * 2016-06-27 2018-01-04 주식회사 네패스 Manufacturing method of anode for lithium secondary battery
KR20180087668A (en) * 2017-01-25 2018-08-02 한양대학교 산학협력단 Slurry composition for Lithium ion secondary battery composite electrodes, manufacturing method of composite electrode using the same and lithium ion secondary battery comprising the same
KR20210123480A (en) * 2020-04-03 2021-10-14 주식회사 엘지에너지솔루션 Anode for lithium secondary battery and secondary battery including the same
JP2022058020A (en) * 2020-09-30 2022-04-11 国立研究開発法人産業技術総合研究所 Manufacturing method of electrode mixture used for all-solid-state sodium storage battery, and manufacturing method of all-solid-state sodium storage battery using electrode mixture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000052774A1 (en) * 1999-03-04 2000-09-08 Japan Storage Battery Co., Ltd. Composite active material and method for preparing active material, electrode and method for preparing electrode, and non-aqueous electrolyte cell
KR20150100028A (en) * 2014-02-24 2015-09-02 (주)오렌지파워 Electrode material for rechargeable battery and method of fabricating the same
KR20160069385A (en) * 2014-12-08 2016-06-16 주식회사 엘지화학 Electrode composite, electrochemical device comprising the same and preparation method of the electrode composite
KR20180001519A (en) * 2016-06-27 2018-01-04 주식회사 네패스 Manufacturing method of anode for lithium secondary battery
KR20180087668A (en) * 2017-01-25 2018-08-02 한양대학교 산학협력단 Slurry composition for Lithium ion secondary battery composite electrodes, manufacturing method of composite electrode using the same and lithium ion secondary battery comprising the same
KR20210123480A (en) * 2020-04-03 2021-10-14 주식회사 엘지에너지솔루션 Anode for lithium secondary battery and secondary battery including the same
JP2022058020A (en) * 2020-09-30 2022-04-11 国立研究開発法人産業技術総合研究所 Manufacturing method of electrode mixture used for all-solid-state sodium storage battery, and manufacturing method of all-solid-state sodium storage battery using electrode mixture

Also Published As

Publication number Publication date
KR20240037721A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2019103465A1 (en) Anode for lithium secondary battery and method for manufacturing same
WO2019108039A2 (en) Anode and secondary battery comprising same
WO2012165758A1 (en) Lithium secondary battery
WO2011145871A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2015020338A1 (en) Flexible current collector, method for manufacturing same, and secondary battery using same
WO2015065090A1 (en) Method for manufacturing electrode-separation film complex, electrode-separation film complex manufactured by manufacturing method therefor and lithium secondary battery comprising same
WO2019078544A1 (en) Negative electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2018044013A1 (en) Method for manufacturing electrode using current collector having penetration-type pores or holes formed thereon
WO2019103311A1 (en) Positive electrode for all-solid state lithium-polymer secondary battery, method for manufacturing same, and secondary battery comprising same
WO2016032211A1 (en) Carbon-silicon composite electrode material and method for preparing same
WO2019013557A2 (en) Negative electrode for lithium secondary battery, lithium secondary battery comprising same, and method for manufacturing same
WO2016114474A1 (en) Slurry composition for electrode, electrode, and secondary battery
WO2022108132A1 (en) Non-carbon nanoparticles/polymer composite nanoparticles, anode comprising same for lithium secondary battery, and manufacturing method for non-carbon nanoparticles/polymer composite nanoparticles
WO2018097455A1 (en) Electrode for secondary battery including electrode protection layer
WO2020226448A1 (en) Method for manufacturing solid-state battery electrode and solid-state battery electrode manufactured using same
WO2016148447A1 (en) Electrode provided with porous binder coating layer, method for producing same, and lithium secondary battery comprising same
WO2019045552A1 (en) Method for manufacturing flexible battery, and flexible battery manufactured thereby
WO2018194345A1 (en) Anode for lithium secondary battery, lithium secondary battery comprising same, and manufacturing method therefor
WO2020122459A1 (en) Anode active material for lithium secondary battery and secondary battery comprising same
WO2022086098A1 (en) Anode active material comprising graphene-silicon composite, manufacturing method therefor, and lithium secondary battery comprising same
WO2018038479A1 (en) Electrode for secondary battery comprising fine holes
WO2024058462A1 (en) Binder-active material particle composite, cathode comprising same for lithium secondary battery, and method for preparing same
WO2020242257A1 (en) Negative electrode and secondary battery comprising negative electrode
WO2020149618A1 (en) Method for preparing negative electrode active material
CN112670592A (en) Pole piece and diaphragm compounding process and lithium battery cell preparation process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865761

Country of ref document: EP

Kind code of ref document: A1