WO2022108132A1 - Non-carbon nanoparticles/polymer composite nanoparticles, anode comprising same for lithium secondary battery, and manufacturing method for non-carbon nanoparticles/polymer composite nanoparticles - Google Patents

Non-carbon nanoparticles/polymer composite nanoparticles, anode comprising same for lithium secondary battery, and manufacturing method for non-carbon nanoparticles/polymer composite nanoparticles Download PDF

Info

Publication number
WO2022108132A1
WO2022108132A1 PCT/KR2021/014713 KR2021014713W WO2022108132A1 WO 2022108132 A1 WO2022108132 A1 WO 2022108132A1 KR 2021014713 W KR2021014713 W KR 2021014713W WO 2022108132 A1 WO2022108132 A1 WO 2022108132A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
carbon
polyacrylonitrile
polymer
layer
Prior art date
Application number
PCT/KR2021/014713
Other languages
French (fr)
Korean (ko)
Inventor
박종혁
리핑
이기라
윤정훈
Original Assignee
연세대학교 산학협력단
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단, 성균관대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2022108132A1 publication Critical patent/WO2022108132A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-carbon nanoparticle/polymer composite nanoparticle, an anode for a lithium secondary battery comprising the same, and a method for manufacturing the non-carbon nanoparticle/polymer composite nanoparticle.
  • Secondary batteries capable of charging and discharging have been widely used as power supplies for portable electronic devices such as notebook computers, digital cameras, and mobile phones. Recently, as a power supply for hybrid and electric vehicles, and as a power storage device to solve the intermittent power generation of solar and wind power and improve power quality, it has attracted great attention. Accordingly, market demands for cost reduction, high energy density, excellent cycling performance, etc. in relation to secondary batteries are continuously increasing, and efforts and research to develop electrode materials for secondary batteries having improved electrochemical performance are being concentrated.
  • lithium ion secondary batteries a type of secondary battery that operates on the principle of generating electricity while lithium ions move between the positive and negative electrodes, silicon is attracting attention as a material to replace carbon, which has a theoretical capacity limit. to be.
  • Lithium which is in an ionic state, is inserted and desorbed from the positive and negative active materials of the lithium ion secondary battery, and is charged and discharged by a reversible reaction thereof.
  • silicon has a problem in that it is difficult to secure stable output performance due to a serious volume change due to lithium ion removal and insertion during charging and discharging, and long-term stability is deteriorated.
  • the long-term cycle stability of the electrode has been improved by trying to form a nanostructure such as a composite of silicon and carbon, a nanotube or a nanowire, etc., but it is still difficult to secure excellent output characteristics.
  • Patent Document 1 Korea Patent Publication No. 2018-0001518
  • an object of the present invention is to provide a method for manufacturing non-carbon nanoparticles/polymer composite nanoparticles that prevent volume expansion due to lithium ion deintercalation and have improved electrical conductivity.
  • Another object of the present invention is to provide a non-carbon nanoparticle/polymer composite nanoparticle in which a polymer shell layer including a polymer layer and a cross-linking layer is formed on a non-carbon nanoparticle core layer.
  • Another object of the present invention is to provide a non-carbon nanoparticle/polymer composite nanoparticle in which a cross-linked polymer shell layer is formed on a non-carbon nanoparticle core layer.
  • Another object of the present invention is to provide an anode active material for a lithium secondary battery comprising the non-carbon nanoparticles/polymer composite nanoparticles.
  • Another object of the present invention is to provide a negative electrode for a lithium secondary battery comprising the negative electrode active material.
  • Another object of the present invention is to provide a lithium secondary battery including the negative electrode.
  • Another object of the present invention is to provide a device including the lithium secondary battery.
  • the present invention comprises the steps of preparing a dispersion solution by mixing a non-carbon-based nanoparticle dispersion, a polyacrylonitrile-based polymer solution, and a surfactant; removing the organic solvent contained in the dispersion solution while stirring the dispersion solution; forming a polyacrylonitrile-based polymer layer on the surface of the non-carbon-based nanoparticles by centrifuging the dispersion solution from which the organic solvent has been removed; and heat-treating the non-carbon-based nanoparticles on which the polyacrylonitrile-based polymer layer is formed to cross-link two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other to form a cross-linking layer
  • Preparing non-carbon nanoparticles/polymer composite nanoparticles includes, wherein the cross-linking layer is any one of the nitrile groups of the polyacrylonitrile-based polymer present on the surface of the polyacrylonit
  • the present invention is a non-carbon nanoparticle core layer; and a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer, wherein the polymer shell layer includes a polyacrylonitrile-based polymer layer and the polyacrylonitrile-based polymer layer formed on the non-carbon nanoparticle core layer.
  • nitrile group of the ronitrile-based polymer and the other azide group of the polyacrylonitrile-based polymer are cross-linked with each other by a nitrile azide cycloaddition reaction, and the non-carbon nanoparticles are silicon nanoparticles or silica nanoparticles. Phosphorus non-carbon nanoparticles/polymer composite nanoparticles are provided.
  • the present invention is a non-carbon nanoparticle core layer; and a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer and cross-linked, wherein the polymer shell layer is composed of one polyacrylonitrile-co-vinylidene azide nitrile group and the other polyacrylonitrile.
  • Composite nanoparticles are provided.
  • the present invention also provides an anode active material for a lithium secondary battery comprising the non-carbon nanoparticles/polymer composite nanoparticles.
  • the present invention also provides a negative electrode for a lithium secondary battery comprising the negative electrode active material.
  • the present invention also provides a lithium secondary battery including the negative electrode.
  • the present invention provides a device including the lithium secondary battery, wherein the device is any one selected from a communication device, a transportation device, and an energy storage device.
  • the non-carbon nanoparticles/polymer composite nanoparticles according to the present invention form a polymer shell layer cross-linked on the surface of the non-carbon nanoparticles to produce non-carbon nanoparticles/polymer composite nanoparticles, thereby preventing volume expansion due to lithium ion deintercalation. and can have improved electrical conductivity.
  • it since it has excellent affinity with the electrolyte, it is possible to significantly improve the output characteristics and long-term stability of the battery when it is applied as an anode active material.
  • Example 1 is a process diagram schematically illustrating a method for manufacturing a silicon/polymer composite nanoparticle according to Example 1 of the present invention.
  • Figure 2 is a view showing the structure of the silicon / polymer composite nanoparticles according to an embodiment of the present invention.
  • FIG. 3 schematically shows electrode stability after a charge/discharge cycle depending on whether a cross-linking layer is formed for silicon/polymer composite nanoparticles according to an embodiment of the present invention.
  • Example 4 shows the TEM (a, b, c) and EDS (c, d, e) analysis results of the silicon/polymer composite nanoparticles prepared in Example 1 of the present invention.
  • Example 5 shows the results of FT-IR analysis of the PANVDA polymer used in Example 1 of the present invention.
  • Example 6 is a charge-discharge voltage profile (a), C-rate value (0.2 to 100 C) of the lithium secondary battery to which the silicon/polymer composite nanoparticles prepared in Example 1 and Comparative Example 1 of the present invention are applied. The results of measuring the discharge capacity (b) and the discharge capacity (c) according to the number of cycles are shown.
  • the present invention relates to a non-carbon nanoparticle/polymer composite nanoparticle, an anode for a lithium secondary battery comprising the same, and a method for manufacturing the non-carbon nanoparticle/polymer composite nanoparticle.
  • silicon has a problem in that it is difficult to secure stable output performance due to severe volume change due to lithium ion removal and insertion during charging and discharging.
  • problems of poor long-term stability, changes in structural characteristics, and rapid capacity reduction were still problems to be solved.
  • non-carbon nanoparticles/polymer composite nanoparticles by forming a polymer shell layer cross-linked on the surface of the non-carbon nanoparticles to prepare non-carbon nanoparticles/polymer composite nanoparticles, it is possible to prevent volume expansion due to deintercalation of lithium ions and have improved electrical conductivity.
  • it since it has excellent affinity with the electrolyte, it is possible to significantly improve the output characteristics and long-term stability of the battery when it is applied as an anode active material.
  • silicon nanoparticles or silica nanoparticles may be used as the non-carbon nanoparticles.
  • the present invention comprises the steps of preparing a dispersion solution by mixing a non-carbon-based nanoparticle dispersion, a polyacrylonitrile-based polymer solution, and a surfactant; removing the organic solvent contained in the dispersion solution while stirring the dispersion solution; forming a polyacrylonitrile-based polymer layer on the surface of the non-carbon-based nanoparticles by centrifuging the dispersion solution from which the organic solvent has been removed; and heat-treating the non-carbon-based nanoparticles on which the polyacrylonitrile-based polymer layer is formed to cross-link two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other to form a cross-linking layer
  • Preparing non-carbon nanoparticles/polymer composite nanoparticles includes, wherein the cross-linking layer is any one of the nitrile groups of the polyacrylonitrile-based polymer present on the surface of the polyacrylon
  • the non-carbon-based nanoparticle dispersion may be prepared by dispersing the non-carbon-based nanoparticles in a first organic solvent.
  • the first organic solvent may be at least one selected from the group consisting of toluene, methanol, ethanol, benzene, xylene and ethylbenzene, and toluene may be preferably used.
  • the non-carbon-based nanoparticles may have an average particle size of 10 to 2000 nm, preferably 50 to 200 nm, more preferably 50 to 100 nm, and most preferably 50 to 80 nm. At this time, if the average particle size of the non-carbon-based nanoparticles is less than 10 nm, the non-carbon-based nanoparticles aggregate together before the polymer layer is formed on the surface of the non-carbon-based nanoparticles, and the electrochemical performance may be reduced. Electrode stability may be deteriorated due to deterioration of the performance of the non-carbon-based nanoparticles.
  • the polyacrylonitrile-based polymer solution may be prepared by mixing the polyacrylonitrile-based polymer with the second organic solvent.
  • the second organic solvent is N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetrahydrofuran, ethylene carbonate, diethyl carbonate, dimethyl It may be at least one selected from the group consisting of carbonate, tetramethylene sulfone, anisole, diphenyl ether, nitrobenzene, benzonitrile, cresol, and phenol.
  • it may be N,N-dimethylformamide, N,N-dimethylacetamide, or a mixture thereof, and most preferably, it may be N,N-dimethylformamide.
  • the polyacrylonitrile-based polymer has excellent bonding strength with non-carbon-based nanoparticles and at the same time good affinity with electrolytes, it is possible to significantly improve charge/discharge characteristics and long-term cycle stability of the battery.
  • the polyacrylonitrile-based polymer may be a polyacrylonitrile-based random copolymer in which a nitrile group and an azide group are randomly present, and specific examples include polyacrylonitrile-co-vinylidene azide, polyacrylonitrile, polyacrylonitrile, and polyacrylonitrile.
  • polyacrylonitrile-co-methylmethacrylate poly(acrylonitrile-co-methacrylic acid), poly(acrylonitrile-co-methylacrylonitrile, and poly(acrylonitrile-co-methacrylic acid lithium)
  • PANVDA polyacrylonitrile-co-vinylidene azide
  • n and m are the number of repetitions of each repeating unit, n is an integer of 60 to 110, preferably 70 to 100, more preferably 80 to 90, m is 1 to 30, preferably It is an integer from 5 to 20, more preferably from 12 to 17.
  • the surfactant prevents the non-carbon-based nanoparticles from aggregating with each other, and is mixed to maximize coating efficiency so that a polyacrylonitrile-based polymer layer can be formed evenly with a uniform thickness on the surface of the non-carbon-based nanoparticles.
  • the surfactant include polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer, polyoxypropylene-polyoxyethylene block copolymer, propylene glycol-ethylene glycol block copolymer and polyethylene oxide-polypropylene oxide block copolymer It may be at least one selected from the group consisting of.
  • a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer may be used as the surfactant.
  • the dispersion solution may include 1 to 20% by weight of a non-carbon-based nanoparticle dispersion, 1 to 20% by weight of a polyacrylonitrile-based polymer solution, and 60 to 98% by weight of a surfactant.
  • a surfactant Preferably, it may contain 3 to 7% by weight of the non-carbon-based nanoparticle dispersion, 4 to 6% by weight of the polyacrylonitrile-based polymer solution, and 87 to 93% by weight of the surfactant.
  • the step of preparing the dispersion solution may be stirred at a rotation speed of 9,000 to 15,000 rpm for 30 seconds to 30 minutes, preferably at 11,000 to 13,000 rpm for 30 seconds to 2 minutes, and most preferably at 12,000 rpm for 1 minute. .
  • a rotation speed of 9,000 to 15,000 rpm for 30 seconds to 30 minutes, preferably at 11,000 to 13,000 rpm for 30 seconds to 2 minutes, and most preferably at 12,000 rpm for 1 minute.
  • the step of removing the organic solvent contained in the dispersion solution in order to effectively remove the organic solvent remaining in the non-carbon-based nanoparticles contained in the dispersion solution, 60 to 90 ° C. for 24 to 48 hours, preferably 75 to 85 ° C. 18 to 26 hours, most preferably at 80 ° C. for 24 hours.
  • the organic solvent remains on the surface of the non-carbon-based nanoparticles, so that the polymer layer is not properly formed or a polymer layer of non-uniform thickness is formed, thereby reducing battery stability.
  • centrifugation is performed at 10,000 to 14,000 rpm for 20 minutes to 1 hour, preferably at 11,000 to 13,000 rpm for 20 to 40 minutes using a centrifuge to perform non-carbon-based nano
  • a polyacrylonitrile-based polymer layer may be formed on the surface of the particles.
  • the heat treatment may be performed at 110 to 150° C. for 30 minutes to 6 hours. Preferably, it may be carried out at 120 to 140° C. for 60 minutes to 3 hours, and most preferably at 130° C. for 2 hours. In this case, if the heat treatment temperature is less than 110° C. or the heat treatment time is less than 30 minutes, cross-linking may not occur sufficiently, so that the cross-linking layer may not be properly formed on the surface of the polymer layer. Conversely, if the heat treatment temperature is more than 150 ° C. or the heat treatment time is more than 6 hours, crosslinking to the polyacrylonitrile-based polymer layer is excessively formed, so that the volume expansion of the non-carbon-based nanoparticles may occur due to deintercalation of lithium ions. .
  • the crosslinking layer may be formed by crosslinking two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other by a 1,3-dipolar cycloaddition reaction.
  • the cross-linking layer is one of the nitrile groups of the polyacrylonitrile-based polymer present on the surface of the polyacrylonitrile-based polymer layer and the other azide group of the polyacrylonitrile-based polymer is nitrile without a separate catalyst. It may be formed by crosslinking with each other by an azide cycloaddition reaction.
  • the cross-linking layer contains acrylonitrile functional groups, it is possible to effectively impregnate the liquid electrolyte to maximize the electrochemical reaction on the surface of the silicon anode, and the cross-linked polymer layer secures very high mechanical strength during long-term charging and discharging. It is possible to stably reduce the volume expansion of the silicon anode material that occurs in
  • the non-carbon nanoparticles/polymer composite nanoparticles contain the non-carbon nanoparticles and the polyacrylonitrile-based polymer in a weight ratio of 50:50 to 95:5, preferably 60:40 to 90:10 by weight, more preferably 66.6 :33.4 to 70:30 weight ratio, most preferably 66.6:33.4 weight ratio may be mixed.
  • the content of the polyacrylonitrile-based polymer is less than 50 weight ratio, the polymer layer of an appropriate thickness may not be properly formed on the surface of the non-carbon-based nanoparticles, and on the contrary, if it exceeds 5 weight ratio, the polymer layer is excessively formed.
  • the output characteristics of the silicon cathode may be deteriorated.
  • the non-carbon nanoparticles/polymer composite prepared by changing the following conditions After applying the nanoparticles to the silicon anode, charging and discharging were performed 500 times at 300 °C.
  • the non-carbon-based nanoparticles are silicon nanoparticles
  • 2 the non-carbon-based nanoparticles have an average particle size of 50 to 80 nm
  • 3 the polyacrylonitrile-based polymer is polyacrylonitrile-co-vinylidene azide
  • the surfactant is a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer
  • 5 the dispersion solution is a non-carbon-based nanoparticle dispersion 3 to 7% by weight
  • 6 preparing the dispersion solution is to stir at 11,000 to 13,000 rpm for 30 seconds to 2 minutes
  • 7 preparing the non-carbon nanoparticles/polymer composite nanoparticles In the heat treatment is performed at 120 to 140 °C for 60 minutes to 3 hours
  • 8 The non-carbon nanoparticles / polymer composite nanoparticles are non-carbon
  • FIG. 1 is a process diagram schematically illustrating a method for manufacturing a silicon/polymer composite nanoparticle according to Example 1 of the present invention.
  • Figure 2 is a view showing the structure of the silicon / polymer composite nanoparticles according to an embodiment of the present invention. 1 and 2, after preparing a dispersion solution by mixing a non-carbon-based nanoparticle dispersion, a polyacrylonitrile-based polymer solution, and a surfactant, the organic solvent in the dispersion is removed. Then, a reaction product in which a polymer layer is formed on the surface of the silicon nanoparticles is obtained by centrifugation. Next, a process of forming a cross-linking layer by cross-linking two types of polyacrylonitrile-based polymers present on the surface of the polymer layer by heat-treating the reactant is shown.
  • FIG. 3 schematically shows electrode stability after a charge/discharge cycle depending on whether a cross-linking layer is formed for silicon/polymer composite nanoparticles according to an embodiment of the present invention.
  • the polymer layer is separated by repeated volume expansion/contraction of the silicon particles after a charge/discharge cycle, and the silicon nanoparticles are formed on the electrode. It shows that the electrode stability is reduced as the polymer layer is separated as the physical stress is concentrated on a specific surface.
  • the present invention is a non-carbon nanoparticle core layer; and a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer, wherein the polymer shell layer includes a polyacrylonitrile-based polymer layer and the polyacrylonitrile-based polymer layer formed on the non-carbon nanoparticle core layer.
  • nitrile group of the ronitrile-based polymer and the other azide group of the polyacrylonitrile-based polymer are cross-linked with each other by a nitrile azide cycloaddition reaction, and the non-carbon nanoparticles are silicon nanoparticles or silica nanoparticles. Phosphorus non-carbon nanoparticles/polymer composite nanoparticles are provided.
  • the present invention is a non-carbon nanoparticle core layer; and a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer and cross-linked, wherein the polymer shell layer is composed of one polyacrylonitrile-co-vinylidene azide nitrile group and the other polyacrylonitrile.
  • Composite nanoparticles are provided.
  • the non-carbon nanoparticles may be silicon nanoparticles or silica nanoparticles, preferably silicon nanoparticles.
  • the polymer shell layer may have a thickness of 1 to 100 nm, preferably 2 to 50 nm, more preferably 3 to 10 nm, and most preferably 5 nm. At this time, if the thickness of the polymer shell layer is less than 1 nm, the outer surface of the non-carbon nanoparticle core layer cannot be sufficiently coated, so that when applied as a silicon anode, volume expansion may occur due to deintercalation of lithium ions. Conversely, if it exceeds 100 nm, the thickness of the polymer shell layer is too thick, so lithium ions are not properly inserted and removed, so that the output characteristics of the battery may be remarkably deteriorated.
  • the polymer shell layer may form a crosslinking layer by crosslinking some nitrile groups and azide groups of two types of polyacrylonitrile-based polymers on the surface of the polyacrylonitrile-based polymer layer, and the polyacrylonitrile-based polymer Due to most of the nitrile groups remaining in the layer, the rate-limiting properties can be maintained.
  • the polyacrylonitrile-based polymer may be a polyacrylonitrile-based random copolymer in which a nitrile group and an azide group are randomly present, and specific examples include polyacrylonitrile-co-vinylidene azide, polyacrylonitrile, polyacrylonitrile, and polyacrylonitrile.
  • (acrylonitrile-co-methylmethacrylate), poly(acrylonitrile-co-methacrylic acid), poly(acrylonitrile-co-methylacrylonitrile, and poly(acrylonitrile-co-methacrylic acid lithium) ) may be at least one selected from the group consisting of.
  • the polyacrylonitrile-based polymer is polyacrylonitrile-co-vinylidene azide (PANVDA) represented by the following Chemical Formula 1 can be used
  • n and m are the number of repetitions of each repeating unit, n is an integer of 60 to 110, preferably 70 to 100, more preferably 80 to 90, m is 1 to 30, preferably It is an integer from 5 to 20, more preferably from 12 to 17.
  • the copolymer may be a compound represented by the following formula (2).
  • n, m, and z are the repeating numbers of each repeating unit, n is an integer from 60 to 110, m is an integer from 1 to 30, and z is an integer from 1 to 60.
  • n is preferably an integer of 70 to 100, more preferably 80 to 90, m is preferably an integer of 5 to 20, more preferably 12 to 17, and z is preferably 1 to 30, more preferably an integer from 1 to 20.
  • the present invention provides an anode active material comprising the non-carbon nanoparticles/polymer composite nanoparticles.
  • the present invention provides an anode including the anode active material.
  • the present invention provides a lithium secondary battery including the negative electrode.
  • the present invention provides a device including the lithium secondary battery, wherein the device is any one selected from a communication device, a transportation device, and an energy storage device.
  • a silicon nanoparticle dispersion was prepared by dispersing 0.2 g of silicon nanoparticles in 10 g of toluene, and 0.1 g of polyacrylonitrile-co-vinylidene azide (PANVDA) was mixed with 10 g of dimethylformamide (Dimethylformanide, DMF). ) to prepare a polyacrylonitrile-based polymer solution. Then, 5% by weight of the silicon nanoparticle dispersion, 5% by weight of the polymer solution, and 90% by weight of the surfactant solution were added, and stirred at 12,000 rpm for 1 minute to prepare a dispersion solution.
  • the surfactant used was a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer dissolved in 200 ml of formamide.
  • Non-carbon nanoparticles/polymer composite nanoparticles were obtained that were cross-linked by nitrile azide cycloaddition reaction and formed with a PANVDAC cross-linking layer.
  • Silicon/polymer composite nanoparticles were prepared in the same manner as in Example 1, except that a polyacrylonitrile polymer layer was formed on the outer surface of the silicon nanoparticles without forming a cross-linking layer.
  • the shape and structure of the silicon/polymer composite nanoparticles prepared in Example 1 were analyzed using TEM and EDS, and the results are shown in FIG. 4 .
  • FIG. 4 shows the TEM (a, b, c) and EDS (d, e, f) analysis results of the silicon/polymer composite nanoparticles prepared in Example 1 above.
  • TEM (a) photograph in FIG. 4 it was confirmed that silicon/polymer composite nanoparticles having a spherical shape were formed.
  • TEM (b, c) photograph it was confirmed that a polymer shell layer (outermost gray border) including a PANVDA layer and a crosslinking layer was formed on the outer surface of the silicon nanoparticle core layer (dark black). .
  • FT-IR analysis was performed on the PANVDAC polymer, which is the polyacrylonitrile-based polymer used in Example 1, to analyze the chemical structure, and the results are shown in FIG. 5 .
  • FIG. 5 shows the results of FT-IR analysis of the PANVDAC polymer, which is the cross-linked polyacrylonitrile-based polymer used in Example 1.
  • FIG. 1 The PANVDAC polymer of Example 1 synthesized PANVDA by substituting a chlorine group with an azide group in PANVDC, which is a polyacrylonitrile-based polymer containing a chlorine group, as shown in Scheme 1, and then adding two types of PANVDA to a nitrile azide ring. It is synthesized as a PANVDAC polymer by crosslinking with each other by reaction (nitrile azide cycloaddition).
  • PANVDA PANVDA and PANVDAC polymers
  • the crosslinking layer may be formed by crosslinking two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other by a 1,3-dipolar cycloaddition reaction.
  • the cross-linking layer is one of the nitrile groups of the polyacrylonitrile-based polymer present on the surface of the polyacrylonitrile-based polymer layer and the other azide group of the polyacrylonitrile-based polymer is nitrile without a separate catalyst. It may be formed by crosslinking with each other by an azide cycloaddition reaction.
  • a lithium secondary battery was manufactured by a conventional method using the silicon/polymer composite nanoparticles prepared in Example 1 and Comparative Example 1 as an anode.
  • 1 M LiPF 6 EC/EMC 3:7 vol%) was used as the electrolyte
  • fluoroethylene carbonate (FEC) and vinyl carbonate (VC) were used as electrolyte additives.
  • the charging/discharging experiment using the lithium secondary battery was conducted under a current condition of 0.2C to 100C and a voltage condition of 0.01V to 2V, and the results are shown in FIG. 6 .
  • 6 is a discharge according to a change in the charge/discharge voltage profile (a) and C-rate value (0.2 to 100 C) for the lithium secondary battery to which the silicon/polymer composite nanoparticles prepared in Example 1 and Comparative Example 1 are applied.
  • the results of measuring the capacity (b) and the discharge capacity (c) according to the number of cycles are shown.
  • 6A shows the charge/discharge voltage profile in the first and second cycles of Example 1, and it was confirmed that the battery had a high capacity of about 2000 mAh/g.
  • FIG. 6(b) it was found that both Example 1 and Comparative Example 1 had a similar level of discharge capacity in each C-rate range.
  • FIG. 6A shows the charge/discharge voltage profile in the first and second cycles of Example 1, and it was confirmed that the battery had a high capacity of about 2000 mAh/g.
  • FIG. 6(b) it was found that both Example 1 and Comparative Example 1 had a similar level of discharge capacity in each C-rate range.
  • Example 6(c) the discharge capacity of Example 1 was maintained high at about 1900 mAh/g even as the number of cycles increased, whereas in Comparative Example 1, the discharge capacity was rapidly decreased as the number of cycles increased. , it was confirmed that the discharge capacity decreased to about 1000 mAh/g after 300 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to non-carbon nanoparticles/polymer composite nanoparticles, an anode comprising same for a lithium secondary battery, and a manufacturing method for non-carbon nanoparticles/polymer composite nanoparticles. More specifically, the non-carbon nanoparticles/polymer composite nanoparticles are manufactured by forming a cross-linked polymer shell layer on the surface of a core layer of the non-carbon nanoparticles, thereby preventing volume expansion due to the intercalation and deintercalation of lithium ions and attaining improved electrical conductivity. Furthermore, the nanoparticles have excellent affinity for an electrolyte, so that the application of the nanoparticles to an anode active material can significantly improve output characteristics and long-term stability of a battery.

Description

비탄소 나노입자/고분자 복합나노입자, 이를 포함하는 리튬이차전지용 음극 및 상기 비탄소 나노입자/고분자 복합나노입자의 제조방법Non-carbon nanoparticles/polymer composite nanoparticles, anode for lithium secondary battery including the same, and method for manufacturing the non-carbon nanoparticles/polymer composite nanoparticles
본 발명은 비탄소 나노입자/고분자 복합나노입자, 이를 포함하는 리튬이차전지용 음극 및 상기 비탄소 나노입자/고분자 복합나노입자의 제조방법에 관한 것이다.The present invention relates to a non-carbon nanoparticle/polymer composite nanoparticle, an anode for a lithium secondary battery comprising the same, and a method for manufacturing the non-carbon nanoparticle/polymer composite nanoparticle.
충전 및 방전이 가능한 이차전지는 노트북, 디지털 카메라, 휴대폰과 같은 휴대용 전자 기기의 전력 공급원으로 널리 사용되어 왔다. 최근에는 하이브리드 자동차 및 전기 자동차의 전력 공급원, 태양광 발전 및 풍력 발전의 간헐성을 해결하고 전력품질을 향상시키기 위한 전력저장 장치로 크게 주목을 받고 있다. 이에 따라 이차전지와 관련하여 비용 절감, 높은 에너지 밀도, 우수한 사이클링 성능 등에 관한 시장 요구가 지속적으로 증가하고 있어 향상된 전기화학 성능을 가지는 이차전지용 전극 물질을 개발하려는 노력과 연구가 집중되고 있는 실정이다.Secondary batteries capable of charging and discharging have been widely used as power supplies for portable electronic devices such as notebook computers, digital cameras, and mobile phones. Recently, as a power supply for hybrid and electric vehicles, and as a power storage device to solve the intermittent power generation of solar and wind power and improve power quality, it has attracted great attention. Accordingly, market demands for cost reduction, high energy density, excellent cycling performance, etc. in relation to secondary batteries are continuously increasing, and efforts and research to develop electrode materials for secondary batteries having improved electrochemical performance are being concentrated.
특히 리튬이온이 양극과 음극을 상호 이동하면서 전기를 생성시키는 원리에 의해 작동하는 이차전지의 일종인 리튬이온 이차전지에서 실리콘은 이론적 용량의 한계를 갖고 있는 탄소를 대체할 소재로서 주목받고 있는 음극재이다. 리튬이온 이차전지의 양극 및 음극 활물질에서 이온상태인 리튬이 삽입과 탈리되고, 이의 가역반응에 의해 충전 및 방전된다.In particular, in lithium ion secondary batteries, a type of secondary battery that operates on the principle of generating electricity while lithium ions move between the positive and negative electrodes, silicon is attracting attention as a material to replace carbon, which has a theoretical capacity limit. to be. Lithium, which is in an ionic state, is inserted and desorbed from the positive and negative active materials of the lithium ion secondary battery, and is charged and discharged by a reversible reaction thereof.
그러나 실리콘은 충전 및 방전 시 리튬이온의 탈삽입에 따른 심각한 부피변화로 인해 안정적인 출력성을 확보하는 것이 어려우며, 장기 안정성이 저하되는 문제가 있다. 뿐만 아니라 구조특성이 변화하고, 이차전지의 급격한 용량감소 현상이 발생하는 문제가 있다. 이를 해결하기 위해 실리콘과 탄소의 복합화, 나노튜브 또는 나노와이어 등의 나노구조 형상화 등을 시도하여 전극의 장기 사이클 안정성은 향상시켰으나, 우수한 출력 특성을 확보하는 것이 여전히 어려운 문제가 있다.However, silicon has a problem in that it is difficult to secure stable output performance due to a serious volume change due to lithium ion removal and insertion during charging and discharging, and long-term stability is deteriorated. In addition, there is a problem in that the structural characteristics change and a sudden decrease in capacity of the secondary battery occurs. In order to solve this problem, the long-term cycle stability of the electrode has been improved by trying to form a nanostructure such as a composite of silicon and carbon, a nanotube or a nanowire, etc., but it is still difficult to secure excellent output characteristics.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 한국공개특허 제2018-0001518호(Patent Document 1) Korea Patent Publication No. 2018-0001518
상기와 같은 문제 해결을 위하여, 본 발명은 리튬이온의 탈삽입에 따른 부피 팽창을 방지하고 향상된 전기 전도성을 가지는 비탄소 나노입자/고분자 복합나노입자의 제조방법을 제공하는 것을 그 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide a method for manufacturing non-carbon nanoparticles/polymer composite nanoparticles that prevent volume expansion due to lithium ion deintercalation and have improved electrical conductivity.
또한 본 발명은 비탄소 나노입자 코어층 상에 고분자층 및 가교결합층을 포함하는 고분자 쉘층이 형성된 비탄소 나노입자/고분자 복합나노입자를 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a non-carbon nanoparticle/polymer composite nanoparticle in which a polymer shell layer including a polymer layer and a cross-linking layer is formed on a non-carbon nanoparticle core layer.
또한 본 발명은 비탄소 나노입자 코어층 상에 가교 결합된 고분자 쉘층이 형성된 비탄소 나노입자/고분자 복합나노입자를 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a non-carbon nanoparticle/polymer composite nanoparticle in which a cross-linked polymer shell layer is formed on a non-carbon nanoparticle core layer.
또한 본 발명은 상기 비탄소 나노입자/고분자 복합 나노입자를 포함하는 리튬이차전지용 음극 활물질을 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide an anode active material for a lithium secondary battery comprising the non-carbon nanoparticles/polymer composite nanoparticles.
또한 본 발명은 상기 음극 활물질을 포함하는 리튬이차전지용 음극을 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a negative electrode for a lithium secondary battery comprising the negative electrode active material.
또한 본 발명은 상기 음극을 포함하는 리튬이차전지를 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a lithium secondary battery including the negative electrode.
또한 본 발명은 상기 리튬이차전지를 포함하는 장치를 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a device including the lithium secondary battery.
본 발명은 비탄소계 나노입자 분산액, 폴리아크릴로니트릴계 고분자 용액 및 계면활성제를 혼합하여 분산용액을 제조하는 단계; 상기 분산용액을 교반하면서 상기 분산용액에 함유된 유기용매를 제거하는 단계; 상기 유기용매가 제거된 분산용액을 원심분리하여 비탄소계 나노입자의 표면 상에 폴리아크릴로니트릴계 고분자층을 형성하는 단계; 및 상기 폴리아크릴로니트릴계 고분자층이 형성된 비탄소계 나노입자를 열처리하여 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들을 서로 가교 결합시켜 가교결합층이 형성된 비탄소 나노입자/고분자 복합나노입자를 제조하는 단계;를 포함하고, 상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 어느 하나인 폴리아크릴로니트릴계 고분자의 니트릴기와 다른 하나인 폴리아크릴로니트릴계 고분자의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 서로 가교 결합되어 형성되고, 상기 비탄소계 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법을 제공한다. The present invention comprises the steps of preparing a dispersion solution by mixing a non-carbon-based nanoparticle dispersion, a polyacrylonitrile-based polymer solution, and a surfactant; removing the organic solvent contained in the dispersion solution while stirring the dispersion solution; forming a polyacrylonitrile-based polymer layer on the surface of the non-carbon-based nanoparticles by centrifuging the dispersion solution from which the organic solvent has been removed; and heat-treating the non-carbon-based nanoparticles on which the polyacrylonitrile-based polymer layer is formed to cross-link two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other to form a cross-linking layer Preparing non-carbon nanoparticles/polymer composite nanoparticles; includes, wherein the cross-linking layer is any one of the nitrile groups of the polyacrylonitrile-based polymer present on the surface of the polyacrylonitrile-based polymer layer and the other one Non-carbon nanoparticles/polymer composite nanoparticles in which the azide groups of the polyacrylonitrile-based polymer are cross-linked with each other by a nitrile azide cycloaddition reaction, and the non-carbon-based nanoparticles are silicon nanoparticles or silica nanoparticles A method for preparing particles is provided.
또한 본 발명은 비탄소 나노입자 코어층; 및 상기 비탄소 나노입자 코어층의 외표면에 형성된 고분자 쉘층;을 포함하고, 상기 고분자 쉘층은 상기 비탄소 나노입자 코어층 상에 형성된 폴리아크릴로니트릴계 고분자층 및 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들이 서로 가교 결합되어 형성된 가교결합층을 포함하고, 상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 어느 하나인 폴리아크릴로니트릴계 고분자의 니트릴기와 다른 하나인 폴리아크릴로니트릴계 고분자의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 서로 가교 결합되어 형성되고, 상기 비탄소 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자를 제공한다.In addition, the present invention is a non-carbon nanoparticle core layer; and a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer, wherein the polymer shell layer includes a polyacrylonitrile-based polymer layer and the polyacrylonitrile-based polymer layer formed on the non-carbon nanoparticle core layer. and a crosslinking layer formed by crosslinking two types of polyacrylonitrile-based polymers present on the surface of the The nitrile group of the ronitrile-based polymer and the other azide group of the polyacrylonitrile-based polymer are cross-linked with each other by a nitrile azide cycloaddition reaction, and the non-carbon nanoparticles are silicon nanoparticles or silica nanoparticles. Phosphorus non-carbon nanoparticles/polymer composite nanoparticles are provided.
또한 본 발명은 비탄소 나노입자 코어층; 및 상기 비탄소 나노입자 코어층의 외표면에 형성되어 가교 결합된 고분자 쉘층;을 포함하고, 상기 고분자 쉘층은 하나의 폴리아크릴로니트릴-코-비닐리덴 아지드의 니트릴기와 다른 하나의 폴리아크릴로니트릴-코-비닐리덴 아지드의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 가교된 공중합체로 이루어지고, 상기 비탄소 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자를 제공한다.In addition, the present invention is a non-carbon nanoparticle core layer; and a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer and cross-linked, wherein the polymer shell layer is composed of one polyacrylonitrile-co-vinylidene azide nitrile group and the other polyacrylonitrile. Non-carbon nanoparticles/polymers in which the azide group of nitrile-co-vinylidene azide is crosslinked by a nitrile azide cycloaddition reaction, and the non-carbon nanoparticles are silicon nanoparticles or silica nanoparticles. Composite nanoparticles are provided.
또한 본 발명은 상기 비탄소 나노입자/고분자 복합 나노입자를 포함하는 리튬이차전지용 음극 활물질을 제공한다.The present invention also provides an anode active material for a lithium secondary battery comprising the non-carbon nanoparticles/polymer composite nanoparticles.
또한 본 발명은 상기 음극 활물질을 포함하는 리튬이차전지용 음극을 제공한다.The present invention also provides a negative electrode for a lithium secondary battery comprising the negative electrode active material.
또한 본 발명은 상기 음극을 포함하는 리튬이차전지를 제공한다.The present invention also provides a lithium secondary battery including the negative electrode.
또한 본 발명은 상기 리튬이차전지를 포함하는 장치로서, 상기 장치는 통신장치, 운송장치 및 에너지저장 장치 중에서 선택되는 어느 하나인 장치를 제공한다.Also, the present invention provides a device including the lithium secondary battery, wherein the device is any one selected from a communication device, a transportation device, and an energy storage device.
본 발명에 따른 비탄소 나노입자/고분자 복합나노입자는 비탄소 나노입자 표면에 가교 결합된 고분자 쉘층을 형성하여 비탄소 나노입자/고분자 복합나노입자를 제조함으로써 리튬이온의 탈삽입에 따른 부피 팽창을 방지하고 향상된 전기 전도성을 가질 수 있다. 또한 전해질과의 친화력이 우수하여 이를 음극 활물질로 적용 시 전지의 출력 특성 및 장기 안정성을 현저히 향상시킬 수 있다.The non-carbon nanoparticles/polymer composite nanoparticles according to the present invention form a polymer shell layer cross-linked on the surface of the non-carbon nanoparticles to produce non-carbon nanoparticles/polymer composite nanoparticles, thereby preventing volume expansion due to lithium ion deintercalation. and can have improved electrical conductivity. In addition, since it has excellent affinity with the electrolyte, it is possible to significantly improve the output characteristics and long-term stability of the battery when it is applied as an anode active material.
본 발명의 효과는 이상에서 언급한 효과로 한정되지 않는다. 본 발명의 효과는 이하의 설명에서 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 할 것이다.The effects of the present invention are not limited to the above-mentioned effects. It should be understood that the effects of the present invention include all effects that can be inferred from the following description.
도 1은 본 발명의 실시예 1에 따른 실리콘/고분자 복합나노입자의 제조방법을 계략적으로 나타낸 공정도이다. 1 is a process diagram schematically illustrating a method for manufacturing a silicon/polymer composite nanoparticle according to Example 1 of the present invention.
도 2는 본 발명의 일 구현예에 따른 실리콘/고분자 복합나노입자의 구조를 나타낸 도면이다. Figure 2 is a view showing the structure of the silicon / polymer composite nanoparticles according to an embodiment of the present invention.
도 3은 본 발명의 일 구현예에 따른 실리콘/고분자 복합나노입자에 대하여 가교결합층 형성 여부에 따른 충방전 사이클 후 전극 안정성을 계략적으로 나타낸 것이다.3 schematically shows electrode stability after a charge/discharge cycle depending on whether a cross-linking layer is formed for silicon/polymer composite nanoparticles according to an embodiment of the present invention.
도 4는 본 발명의 실시예 1에서 제조된 실리콘/고분자 복합나노입자의 TEM(a, b, c) 및 EDS(c, d, e) 분석 결과를 나타낸 것이다. 4 shows the TEM (a, b, c) and EDS (c, d, e) analysis results of the silicon/polymer composite nanoparticles prepared in Example 1 of the present invention.
도 5는 본 발명의 실시예 1에서 사용된 PANVDA 고분자의 FT-IR 분석 결과를 나타낸 것이다.5 shows the results of FT-IR analysis of the PANVDA polymer used in Example 1 of the present invention.
도 6은 본 발명의 실시예 1 및 비교예 1에서 제조된 실리콘/고분자 복합나노입자를 적용한 리튬이차전지에 대하여 충방전 전압 프로파일(a), C-rate값(0.2 내지 100 C)의 변화에 따른 방전용량(b) 및 싸이클 수에 따른 방전용량(c)을 측정한 결과를 나타낸 것이다. 6 is a charge-discharge voltage profile (a), C-rate value (0.2 to 100 C) of the lithium secondary battery to which the silicon/polymer composite nanoparticles prepared in Example 1 and Comparative Example 1 of the present invention are applied. The results of measuring the discharge capacity (b) and the discharge capacity (c) according to the number of cycles are shown.
이하에서는 본 발명을 하나의 실시예로 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail by way of one embodiment.
본 발명은 비탄소 나노입자/고분자 복합나노입자, 이를 포함하는 리튬이차전지용 음극 및 상기 비탄소 나노입자/고분자 복합나노입자의 제조방법에 관한 것이다.The present invention relates to a non-carbon nanoparticle/polymer composite nanoparticle, an anode for a lithium secondary battery comprising the same, and a method for manufacturing the non-carbon nanoparticle/polymer composite nanoparticle.
앞서 설명한 바와 같이, 실리콘은 충전 및 방전 시 리튬이온의 탈삽입에 따른 심각한 부피변화로 인해 안정적인 출력성을 확보하는 것이 어려운 문제가 있다. 또한 장기 안정성이 좋지 않으며, 구조 특성이 변화하고 급격한 용량감소 현상이 발생하는 문제가 여전히 해결과제로 남아 있었다.As described above, silicon has a problem in that it is difficult to secure stable output performance due to severe volume change due to lithium ion removal and insertion during charging and discharging. In addition, the problems of poor long-term stability, changes in structural characteristics, and rapid capacity reduction were still problems to be solved.
이에 본 발명에서는 비탄소 나노입자 표면에 가교 결합된 고분자 쉘층을 형성하여 비탄소 나노입자/고분자 복합나노입자를 제조함으로써 리튬이온의 탈삽입에 따른 부피 팽창을 방지하고 향상된 전기 전도성을 가질 수 있다. 또한 전해질과의 친화력이 우수하여 이를 음극 활물질로 적용 시 전지의 출력 특성 및 장기 안정성을 현저히 향상시킬 수 있다. 이때, 상기 비탄소 나노입자로는 실리콘 나노입자 또는 실리카 나노입자를 사용할 수 있다.Accordingly, in the present invention, by forming a polymer shell layer cross-linked on the surface of the non-carbon nanoparticles to prepare non-carbon nanoparticles/polymer composite nanoparticles, it is possible to prevent volume expansion due to deintercalation of lithium ions and have improved electrical conductivity. In addition, since it has excellent affinity with the electrolyte, it is possible to significantly improve the output characteristics and long-term stability of the battery when it is applied as an anode active material. In this case, silicon nanoparticles or silica nanoparticles may be used as the non-carbon nanoparticles.
구체적으로 본 발명은 비탄소계 나노입자 분산액, 폴리아크릴로니트릴계 고분자 용액 및 계면활성제를 혼합하여 분산용액을 제조하는 단계; 상기 분산용액을 교반하면서 상기 분산용액에 함유된 유기용매를 제거하는 단계; 상기 유기용매가 제거된 분산용액을 원심분리하여 비탄소계 나노입자의 표면 상에 폴리아크릴로니트릴계 고분자층을 형성하는 단계; 및 상기 폴리아크릴로니트릴계 고분자층이 형성된 비탄소계 나노입자를 열처리하여 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들을 서로 가교 결합시켜 가교결합층이 형성된 비탄소 나노입자/고분자 복합나노입자를 제조하는 단계;를 포함하고, 상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 어느 하나인 폴리아크릴로니트릴계 고분자의 니트릴기와 다른 하나인 폴리아크릴로니트릴계 고분자의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 서로 가교 결합되어 형성되고, 상기 비탄소계 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법을 제공한다. Specifically, the present invention comprises the steps of preparing a dispersion solution by mixing a non-carbon-based nanoparticle dispersion, a polyacrylonitrile-based polymer solution, and a surfactant; removing the organic solvent contained in the dispersion solution while stirring the dispersion solution; forming a polyacrylonitrile-based polymer layer on the surface of the non-carbon-based nanoparticles by centrifuging the dispersion solution from which the organic solvent has been removed; and heat-treating the non-carbon-based nanoparticles on which the polyacrylonitrile-based polymer layer is formed to cross-link two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other to form a cross-linking layer Preparing non-carbon nanoparticles/polymer composite nanoparticles; includes, wherein the cross-linking layer is any one of the nitrile groups of the polyacrylonitrile-based polymer present on the surface of the polyacrylonitrile-based polymer layer and the other one Non-carbon nanoparticles/polymer composite nanoparticles in which the azide groups of the polyacrylonitrile-based polymer are cross-linked with each other by a nitrile azide cycloaddition reaction, and the non-carbon-based nanoparticles are silicon nanoparticles or silica nanoparticles A method for preparing particles is provided.
상기 비탄소계 나노입자 분산액은 제1 유기용매에 비탄소계 나노입자를 분산시켜 제조할 수 있다. 이때, 상기 제1 유기용매는 톨루엔, 메탄올, 에탄올, 벤젠, 자일렌 및 에틸벤젠으로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 톨루엔을 사용할 수 있다.The non-carbon-based nanoparticle dispersion may be prepared by dispersing the non-carbon-based nanoparticles in a first organic solvent. In this case, the first organic solvent may be at least one selected from the group consisting of toluene, methanol, ethanol, benzene, xylene and ethylbenzene, and toluene may be preferably used.
상기 비탄소계 나노입자는 평균 입자크기가 10 내지 2000 nm, 바람직하게는 50 내지 200 nm, 더욱 바람직하게는 50 내지 100 nm, 가장 바람직하게는 50 내지 80 nm일 수 있다. 이때, 상기 비탄소계 나노입자의 평균 입자크기가 10 nm 미만이면 비탄소계 나노입자 표면에 고분자층이 형성되기 전에 비탄소계 나노입자들끼리 응집되어 전기 화학적 성능이 저하될 수 있고, 반대로 2000 nm 초과이면 비탄소계 나노입자의 성능 저하로 인하여 전극 안정성이 떨어질 수 있다. The non-carbon-based nanoparticles may have an average particle size of 10 to 2000 nm, preferably 50 to 200 nm, more preferably 50 to 100 nm, and most preferably 50 to 80 nm. At this time, if the average particle size of the non-carbon-based nanoparticles is less than 10 nm, the non-carbon-based nanoparticles aggregate together before the polymer layer is formed on the surface of the non-carbon-based nanoparticles, and the electrochemical performance may be reduced. Electrode stability may be deteriorated due to deterioration of the performance of the non-carbon-based nanoparticles.
상기 폴리아크릴로니트릴계 고분자 용액은 제2 유기용매에 폴리아크릴로니트릴계 고분자를 혼합하여 제조할 수 있다. 이때, 상기 제2 유기용매는 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, 디메틸설폭사이드, 테트라하이드로퓨란, 에틸렌카보네이트, 디에틸카보네이트, 디메틸카보네이트, 테트라메틸렌설폰, 아니졸, 디페닐에테르, 니트로벤젠, 벤조니트릴, 크레졸 및 페놀로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 N,N-디메틸포름아미드, N,N-디메틸아세트아미드 또는 이들의 혼합물일 수 있고, 가장 바람직하게는 N,N-디메틸포름아미드일 수 있다.The polyacrylonitrile-based polymer solution may be prepared by mixing the polyacrylonitrile-based polymer with the second organic solvent. In this case, the second organic solvent is N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, tetrahydrofuran, ethylene carbonate, diethyl carbonate, dimethyl It may be at least one selected from the group consisting of carbonate, tetramethylene sulfone, anisole, diphenyl ether, nitrobenzene, benzonitrile, cresol, and phenol. Preferably, it may be N,N-dimethylformamide, N,N-dimethylacetamide, or a mixture thereof, and most preferably, it may be N,N-dimethylformamide.
상기 폴리아크릴로니트릴계 고분자는 비탄소계 나노입자와 결합력이 우수하면서 동시에 전해질과도 친화력이 좋기 때문에 전지의 충방전 특성 및 장기 사이클 안정성을 현저히 향상시킬 수 있다. 상기 폴리아크릴로니트릴계 고분자는 니트릴기와 아지드기가 랜덤하게 존재하는 폴리아크릴로니트릴계 랜덤 공중합체일 수 있으며, 구체적인 예로는 폴리아크릴로니트릴-코-비닐리덴 아지드, 폴리아크릴로니트릴, 폴리(아크릴로니트릴-코-메틸메타크릴레이트), 폴리(아크릴로니트릴-코-메타크릴산), 폴리(아크릴로니트릴-코-메틸아크릴로니트릴 및 폴리(아크릴로니트릴-코메타크릴산 리튬)으로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 상기 폴리아크릴로니트릴계 고분자는 하기 화학식 1로 표시되는 폴리아크릴로니트릴-코-비닐리덴 아지드(Polyacrylonitrile-co-vinylidene azide, PANVDA)를 사용할 수 있다.Since the polyacrylonitrile-based polymer has excellent bonding strength with non-carbon-based nanoparticles and at the same time good affinity with electrolytes, it is possible to significantly improve charge/discharge characteristics and long-term cycle stability of the battery. The polyacrylonitrile-based polymer may be a polyacrylonitrile-based random copolymer in which a nitrile group and an azide group are randomly present, and specific examples include polyacrylonitrile-co-vinylidene azide, polyacrylonitrile, polyacrylonitrile, and polyacrylonitrile. (acrylonitrile-co-methylmethacrylate), poly(acrylonitrile-co-methacrylic acid), poly(acrylonitrile-co-methylacrylonitrile, and poly(acrylonitrile-co-methacrylic acid lithium) ) may be at least one selected from the group consisting of. Preferably, the polyacrylonitrile-based polymer is polyacrylonitrile-co-vinylidene azide (PANVDA) represented by the following Chemical Formula 1 can be used
Figure PCTKR2021014713-appb-img-000001
Figure PCTKR2021014713-appb-img-000001
(상기 화학식 1에서, n 및 m은 각 반복단위의 반복수로서 n은 60 내지 110, 바람직하게는 70 내지 100, 더욱 바람직하게는 80 내지 90의 정수이고, m은 1 내지 30, 바람직하게는 5 내지 20, 더욱 바람직하게는 12 내지 17의 정수이다.) (In Formula 1, n and m are the number of repetitions of each repeating unit, n is an integer of 60 to 110, preferably 70 to 100, more preferably 80 to 90, m is 1 to 30, preferably It is an integer from 5 to 20, more preferably from 12 to 17.)
상기 계면활성제는 상기 비탄소계 나노입자가 서로 응집되는 것을 방지하고, 상기 비탄소계 나노입자의 표면에 폴리아크릴로니트릴계 고분자층이 균일한 두께로 고르게 형성될 수 있도록 코팅 효율을 극대화하기 위해 혼합될 수 있다. 상기 계면활성제의 구체적인 예로는 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 트리블록 공중합체, 폴리옥시프로필렌-폴리옥시에틸렌 블록 공중합체, 프로필렌글리콜-에틸렌글리콜 블록 공중합체 및 폴리에틸렌옥사이드-폴리프로필렌옥사이드 블록 공중합체로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 상기 계면활성제로 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 트리블록 공중합체를 사용할 수 있다. The surfactant prevents the non-carbon-based nanoparticles from aggregating with each other, and is mixed to maximize coating efficiency so that a polyacrylonitrile-based polymer layer can be formed evenly with a uniform thickness on the surface of the non-carbon-based nanoparticles. can Specific examples of the surfactant include polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer, polyoxypropylene-polyoxyethylene block copolymer, propylene glycol-ethylene glycol block copolymer and polyethylene oxide-polypropylene oxide block copolymer It may be at least one selected from the group consisting of. Preferably, a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer may be used as the surfactant.
상기 분산용액은 비탄소계 나노입자 분산액 1 내지 20 중량%, 폴리아크릴로니트릴계 고분자 용액 1 내지 20 중량% 및 계면활성제 60 내지 98 중량%를 포함할 수 있다. 바람직하게는 비탄소계 나노입자 분산액 3 내지 7 중량%, 폴리아크릴로니트릴계 고분자 용액 4 내지 6 중량% 및 계면활성제 87 내지 93 중량%를 포함할 수 있다.The dispersion solution may include 1 to 20% by weight of a non-carbon-based nanoparticle dispersion, 1 to 20% by weight of a polyacrylonitrile-based polymer solution, and 60 to 98% by weight of a surfactant. Preferably, it may contain 3 to 7% by weight of the non-carbon-based nanoparticle dispersion, 4 to 6% by weight of the polyacrylonitrile-based polymer solution, and 87 to 93% by weight of the surfactant.
상기 분산용액을 제조하는 단계는 9,000 내지 15,000 rpm의 회전속도에서 30초 내지 30분, 바람직하게는 11,000 내지 13,000 rpm에서 30초 내지 2분, 가장 바람직하게는 12,000 rpm에서 1분 동안 교반할 수 있다. 이때, 상기 회전속도 및 시간 조건을 모두 만족하지 않는 경우 비탄소계 나노입자들끼리 서로 응집되어 균일한 분산이 어려울 수 있다. The step of preparing the dispersion solution may be stirred at a rotation speed of 9,000 to 15,000 rpm for 30 seconds to 30 minutes, preferably at 11,000 to 13,000 rpm for 30 seconds to 2 minutes, and most preferably at 12,000 rpm for 1 minute. . In this case, when both the rotation speed and the time conditions are not satisfied, the non-carbon-based nanoparticles aggregate with each other and uniform dispersion may be difficult.
상기 분산용액에 함유된 유기용매를 제거하는 단계는 상기 분산용액에 함유된 비탄소계 나노입자에 잔존하는 유기용매를 효과적으로 제거하기 위해 60 내지 90 ℃에서 24 내지 48 시간, 바람직하게는 75 내지 85 ℃에서 18 내지 26 시간, 가장 바람직하게는 80 ℃에서 24 시간 동안 수행할 수 있다. 이때, 상기 온도 및 시간 조건을 동시에 만족하지 않으면 상기 비탄소계 나노입자 표면에 유기용매가 잔존하여 고분자층이 제대로 형성되지 않거나 불균일한 두께의 고분자층이 형성되어 전지 안정성이 저하될 수 있다.In the step of removing the organic solvent contained in the dispersion solution, in order to effectively remove the organic solvent remaining in the non-carbon-based nanoparticles contained in the dispersion solution, 60 to 90 ° C. for 24 to 48 hours, preferably 75 to 85 ° C. 18 to 26 hours, most preferably at 80 ° C. for 24 hours. At this time, if the temperature and time conditions are not satisfied at the same time, the organic solvent remains on the surface of the non-carbon-based nanoparticles, so that the polymer layer is not properly formed or a polymer layer of non-uniform thickness is formed, thereby reducing battery stability.
상기 폴리아크릴로니트릴계 고분자층을 형성하는 단계는 원심분리기를 이용하여 10,000 내지 14,000 rpm으로 20분 내지 1 시간, 바람직하게는 11,000 내지 13,000 rpm으로 20 내지 40분 동안 원심분리를 수행하여 비탄소계 나노입자의 표면 상에 폴리아크릴로니트릴계 고분자층을 형성할 수 있다.In the step of forming the polyacrylonitrile-based polymer layer, centrifugation is performed at 10,000 to 14,000 rpm for 20 minutes to 1 hour, preferably at 11,000 to 13,000 rpm for 20 to 40 minutes using a centrifuge to perform non-carbon-based nano A polyacrylonitrile-based polymer layer may be formed on the surface of the particles.
상기 비탄소 나노입자/고분자 복합나노입자를 제조하는 단계에서 열처리는 110 내지 150 ℃에서 30 분 내지 6 시간 동안 수행할 수 있다. 바람직하게는 120 내지 140 ℃에서 60 분 내지 3 시간 동안 수행할 수 있고, 가장 바람직하게는 130 ℃에서 2 시간 동안 수행할 수 있다. 이때, 상기 열처리 온도가 110 ℃ 미만이거나, 열처리 시간이 30 분 미만이면 가교 결합이 충분히 일어나지 않아 상기 고분자층 표면 상에 가교결합층이 제대로 형성되지 않을 수 있다. 반대로 상기 열처리 온도가 150 ℃ 초과이거나, 열처리 시간이 6 시간 초과이면 상기 폴리아크릴로니트릴계 고분자층까지 가교 결합이 과도하게 이루어져 리튬이온의 탈삽입에 의해 비탄소계 나노입자의 부피 팽창이 발생할 수 있다. In the step of preparing the non-carbon nanoparticles/polymer composite nanoparticles, the heat treatment may be performed at 110 to 150° C. for 30 minutes to 6 hours. Preferably, it may be carried out at 120 to 140° C. for 60 minutes to 3 hours, and most preferably at 130° C. for 2 hours. In this case, if the heat treatment temperature is less than 110° C. or the heat treatment time is less than 30 minutes, cross-linking may not occur sufficiently, so that the cross-linking layer may not be properly formed on the surface of the polymer layer. Conversely, if the heat treatment temperature is more than 150 ° C. or the heat treatment time is more than 6 hours, crosslinking to the polyacrylonitrile-based polymer layer is excessively formed, so that the volume expansion of the non-carbon-based nanoparticles may occur due to deintercalation of lithium ions. .
상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들이 1,3-이극성 고리 첨가 반응에 의해 서로 가교 결합되어 형성된 것일 수 있다. 구체적으로 상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 어느 하나인 폴리아크릴로니트릴계 고분자의 니트릴기와 다른 하나인 폴리아크릴로니트릴계 고분자의 아지드기가 별도의 촉매 없이 니트릴 아지드 고리첨가 반응에 의해 서로 가교 결합되어 형성된 것일 수 있다.The crosslinking layer may be formed by crosslinking two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other by a 1,3-dipolar cycloaddition reaction. Specifically, the cross-linking layer is one of the nitrile groups of the polyacrylonitrile-based polymer present on the surface of the polyacrylonitrile-based polymer layer and the other azide group of the polyacrylonitrile-based polymer is nitrile without a separate catalyst. It may be formed by crosslinking with each other by an azide cycloaddition reaction.
상기 가교결합층은 아크릴로니트릴 작용기를 포함하고 있기 때문에 액체전해질을 효과적으로 함침시켜 실리콘 음극 표면에서의 전기화학 반응을 극대화할 수 있으며, 가교된 고분자층이 매우 높은 기계적 강도를 확보함으로써 장기 충방전 시에 일어나는 실리콘 음극 소재의 부피팽창을 안정적으로 감소시킬 수 있다.Since the cross-linking layer contains acrylonitrile functional groups, it is possible to effectively impregnate the liquid electrolyte to maximize the electrochemical reaction on the surface of the silicon anode, and the cross-linked polymer layer secures very high mechanical strength during long-term charging and discharging. It is possible to stably reduce the volume expansion of the silicon anode material that occurs in
상기 비탄소 나노입자/고분자 복합나노입자는 비탄소계 나노입자와 상기 폴리아크릴로니트릴계 고분자가 50:50 내지 95:5 중량비, 바람직하게는 60:40 내지 90:10 중량비, 더욱 바람직하게는 66.6:33.4 내지 70:30 중량비, 가장 바람직하게는 66.6:33.4 중량비로 혼합될 수 있다. 특히, 상기 폴리아크릴로니트릴계 고분자의 함량이 50 중량비 미만이면 상기 비탄소계 나노입자의 표면 상에 적정 두께의 고분자층이 제대로 형성되지 않을 수 있고, 반대로 5 중량비 초과이면 고분자층이 과도하게 형성되어 실리콘 음극의 출력 특성이 저하될 수 있다. The non-carbon nanoparticles/polymer composite nanoparticles contain the non-carbon nanoparticles and the polyacrylonitrile-based polymer in a weight ratio of 50:50 to 95:5, preferably 60:40 to 90:10 by weight, more preferably 66.6 :33.4 to 70:30 weight ratio, most preferably 66.6:33.4 weight ratio may be mixed. In particular, if the content of the polyacrylonitrile-based polymer is less than 50 weight ratio, the polymer layer of an appropriate thickness may not be properly formed on the surface of the non-carbon-based nanoparticles, and on the contrary, if it exceeds 5 weight ratio, the polymer layer is excessively formed. The output characteristics of the silicon cathode may be deteriorated.
특히, 하기 실시예 또는 비교예 등에는 명시적으로 기재하지는 않았지만, 본 발명에 따른 비탄소 나노입자/고분자 복합나노입자의 제조방법에 있어서, 하기 조건들을 달리하여 제조된 비탄소 나노입자/고분자 복합나노입자를 실리콘 음극에 적용한 후 300 ℃에서 500회 충방전을 실시하였다.In particular, although not explicitly described in the following Examples or Comparative Examples, in the method for preparing non-carbon nanoparticles/polymer composite nanoparticles according to the present invention, the non-carbon nanoparticles/polymer composite prepared by changing the following conditions After applying the nanoparticles to the silicon anode, charging and discharging were performed 500 times at 300 °C.
그 결과, 다른 조건 및 다른 수치 범위에서와는 달리, 아래 조건을 모두 만족하였을 때 기존의 실리콘 음극과는 달리 고온에서 500회 충방전 사이클 이후에도 충방전 용량이 15,000 mAh/g 이상으로 높게 유지하였으며, 고온에서의 열 안정성이 우수한 것을 알 수 있었다.As a result, unlike other conditions and different numerical ranges, when all of the following conditions were satisfied, the charge/discharge capacity was maintained as high as 15,000 mAh/g or more even after 500 charge/discharge cycles at high temperature, unlike the conventional silicon anode, and at high temperature It was found that the thermal stability of
① 상기 비탄소계 나노입자는 실리콘 나노입자이고, ② 상기 비탄소계 나노입자는 평균 입자크기가 50 내지 80 nm이고, ③ 상기 폴리아크릴로니트릴계 고분자는 폴리아크릴로니트릴-코-비닐리덴 아지드이고, ④ 상기 계면활성제는 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 트리블록 공중합체이고, ⑤ 상기 분산용액은 비탄소계 나노입자 분산액 3 내지 7 중량%, 폴리아크릴로니트릴계 고분자 용액 4 내지 6 중량% 및 계면활성제 87 내지 93 중량%를 포함하고, ⑥ 상기 분산용액을 제조하는 단계는 11,000 내지 13,000 rpm에서 30초 내지 2 분 동안 교반하는 것이고, ⑦ 상기 비탄소 나노입자/고분자 복합나노입자를 제조하는 단계에서 열처리는 120 내지 140 ℃에서 60 분 내지 3 시간 동안 수행하고, ⑧ 상기 비탄소 나노입자/고분자 복합나노입자는 비탄소계 나노입자와 폴리아크릴로니트릴계 고분자가 66.6:33.4 내지 70:30 중량비로 혼합된 것일 수 있다.① the non-carbon-based nanoparticles are silicon nanoparticles, ② the non-carbon-based nanoparticles have an average particle size of 50 to 80 nm, and ③ the polyacrylonitrile-based polymer is polyacrylonitrile-co-vinylidene azide , ④ The surfactant is a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer, ⑤ the dispersion solution is a non-carbon-based nanoparticle dispersion 3 to 7% by weight, polyacrylonitrile-based polymer solution 4 to 6% by weight and 87 to 93% by weight of a surfactant, ⑥ preparing the dispersion solution is to stir at 11,000 to 13,000 rpm for 30 seconds to 2 minutes, ⑦ preparing the non-carbon nanoparticles/polymer composite nanoparticles In the heat treatment is performed at 120 to 140 ℃ for 60 minutes to 3 hours, ⑧ The non-carbon nanoparticles / polymer composite nanoparticles are non-carbon-based nanoparticles and polyacrylonitrile-based polymer in a weight ratio of 66.6:33.4 to 70:30 may be mixed.
다만, 상기 8 가지 조건 중 어느 하나라도 충족되지 않는 경우에는 고온에서 장시간 충방전이 지속되지 못하였고, 300회 충방전 사이클 이후부터는 전지 용량이 급격하게 저하되었으며, 전지의 출력특성 및 안정성이 좋지 않았다.However, if any one of the above eight conditions was not satisfied, charging and discharging could not be continued for a long time at high temperature, and after 300 charge/discharge cycles, the battery capacity rapidly decreased, and the output characteristics and stability of the battery were not good. .
도 1은 본 발명의 실시예 1에 따른 실리콘/고분자 복합나노입자의 제조방법을 계략적으로 나타낸 공정도이다. 또한 도 2는 본 발명의 일 구현예에 따른 실리콘/고분자 복합나노입자의 구조를 나타낸 도면이다. 상기 도 1 및 2를 참조하면, 비탄소계 나노입자 분산액, 폴리아크릴로니트릴계 고분자 용액 및 계면활성제를 혼합하여 분산용액을 제조한 후 상기 분산용액 내 유기용매를 제거한다. 그 다음 원심분리에 의해 실리콘 나노입자의 표면에 고분자층이 형성된 반응물을 수득한다. 그 다음 상기 반응물을 열처리하여 상기 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들을 가교 결합시켜 가교결합층을 형성하는 과정을 보여준다.1 is a process diagram schematically illustrating a method for manufacturing a silicon/polymer composite nanoparticle according to Example 1 of the present invention. In addition, Figure 2 is a view showing the structure of the silicon / polymer composite nanoparticles according to an embodiment of the present invention. 1 and 2, after preparing a dispersion solution by mixing a non-carbon-based nanoparticle dispersion, a polyacrylonitrile-based polymer solution, and a surfactant, the organic solvent in the dispersion is removed. Then, a reaction product in which a polymer layer is formed on the surface of the silicon nanoparticles is obtained by centrifugation. Next, a process of forming a cross-linking layer by cross-linking two types of polyacrylonitrile-based polymers present on the surface of the polymer layer by heat-treating the reactant is shown.
도 3은 본 발명의 일 구현예에 따른 실리콘/고분자 복합나노입자에 대하여 가교결합층 형성 여부에 따른 충방전 사이클 후 전극 안정성을 계략적으로 나타낸 것이다. 상기 도 3을 참조하면, 상기 실리콘 나노입자의 고분자층 상에 가교결합층이 형성되지 않은 경우 충방전 사이클 후 상기 고분자층이 실리콘 입자의 반복적인 부피팽창/수축에 의해 분리되면서 실리콘 나노입자가 전극의 기공을 막을 수 있고, 물리적 스트레스가 특정면에 집중됨에 따라 고분자층이 분리되면서 전극 안정성이 저하되는 것을 보여준다. 3 schematically shows electrode stability after a charge/discharge cycle depending on whether a cross-linking layer is formed for silicon/polymer composite nanoparticles according to an embodiment of the present invention. Referring to FIG. 3 , when a cross-linking layer is not formed on the polymer layer of the silicon nanoparticles, the polymer layer is separated by repeated volume expansion/contraction of the silicon particles after a charge/discharge cycle, and the silicon nanoparticles are formed on the electrode. It shows that the electrode stability is reduced as the polymer layer is separated as the physical stress is concentrated on a specific surface.
반면에, 상기 고분자층 상에 가교결합층이 도입된 경우 충방전 사이클 후 상기 가교결합층의 물리적인 저항으로 물리적 스트레스가 이동하여 고르게 분산됨으로써 상기 고분자층이 분리되지 않고 안정적으로 유지되어 전지의 안정적인 출력특성을 확보할 수 있으며, 전극 안정성을 향상시킬 수 있다.On the other hand, when a cross-linking layer is introduced on the polymer layer, the physical stress is transferred to the physical resistance of the cross-linking layer after a charge/discharge cycle and is evenly dispersed, so that the polymer layer is not separated and is stably maintained, resulting in stable battery life. Output characteristics can be secured and electrode stability can be improved.
한편, 본 발명은 비탄소 나노입자 코어층; 및 상기 비탄소 나노입자 코어층의 외표면에 형성된 고분자 쉘층;을 포함하고, 상기 고분자 쉘층은 상기 비탄소 나노입자 코어층 상에 형성된 폴리아크릴로니트릴계 고분자층 및 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들이 서로 가교 결합되어 형성된 가교결합층을 포함하고, 상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 어느 하나인 폴리아크릴로니트릴계 고분자의 니트릴기와 다른 하나인 폴리아크릴로니트릴계 고분자의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 서로 가교 결합되어 형성되고, 상기 비탄소 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자를 제공한다.On the other hand, the present invention is a non-carbon nanoparticle core layer; and a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer, wherein the polymer shell layer includes a polyacrylonitrile-based polymer layer and the polyacrylonitrile-based polymer layer formed on the non-carbon nanoparticle core layer. and a crosslinking layer formed by crosslinking two types of polyacrylonitrile-based polymers present on the surface of the The nitrile group of the ronitrile-based polymer and the other azide group of the polyacrylonitrile-based polymer are cross-linked with each other by a nitrile azide cycloaddition reaction, and the non-carbon nanoparticles are silicon nanoparticles or silica nanoparticles. Phosphorus non-carbon nanoparticles/polymer composite nanoparticles are provided.
또한, 본 발명은 비탄소 나노입자 코어층; 및 상기 비탄소 나노입자 코어층의 외표면에 형성되어 가교 결합된 고분자 쉘층;을 포함하고, 상기 고분자 쉘층은 하나의 폴리아크릴로니트릴-코-비닐리덴 아지드의 니트릴기와 다른 하나의 폴리아크릴로니트릴-코-비닐리덴 아지드의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 가교된 공중합체로 이루어지고, 상기 비탄소 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자를 제공한다.In addition, the present invention is a non-carbon nanoparticle core layer; and a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer and cross-linked, wherein the polymer shell layer is composed of one polyacrylonitrile-co-vinylidene azide nitrile group and the other polyacrylonitrile. Non-carbon nanoparticles/polymers in which the azide group of nitrile-co-vinylidene azide is crosslinked by a nitrile azide cycloaddition reaction, and the non-carbon nanoparticles are silicon nanoparticles or silica nanoparticles. Composite nanoparticles are provided.
상기 비탄소 나노입자는 실리콘 나노입자 또는 실리카 나노입자일 수 있고, 바람직하게는 실리콘 나노입자일 수 있다.The non-carbon nanoparticles may be silicon nanoparticles or silica nanoparticles, preferably silicon nanoparticles.
상기 고분자 쉘층은 두께가 1 내지 100 nm, 바람직하게는 2 내지 50 nm, 더욱 바람직하게는 3 내지 10 nm 가장 바람직하게는 5 nm일 수 있다. 이때, 상기 고분자 쉘층의 두께가 1 nm 미만이면 상기 비탄소 나노입자 코어층의 외표면을 충분히 코팅하지 못하여 실리콘 음극으로 적용 시 리튬이온의 탈삽입에 의해 부피팽창이 발생할 수 있다. 반대로 100 nm 초과이면 상기 고분자 쉘층의 두께가 너무 두꺼워져 리튬이온의 탈삽입이 제대로 이루어지지 않아 전지의 출력 특성이 현저하게 저하될 수 있다.The polymer shell layer may have a thickness of 1 to 100 nm, preferably 2 to 50 nm, more preferably 3 to 10 nm, and most preferably 5 nm. At this time, if the thickness of the polymer shell layer is less than 1 nm, the outer surface of the non-carbon nanoparticle core layer cannot be sufficiently coated, so that when applied as a silicon anode, volume expansion may occur due to deintercalation of lithium ions. Conversely, if it exceeds 100 nm, the thickness of the polymer shell layer is too thick, so lithium ions are not properly inserted and removed, so that the output characteristics of the battery may be remarkably deteriorated.
상기 고분자 쉘층은 상기 폴리아크릴로니트릴계 고분자층의 표면에서 2종의 폴리아크릴로니트릴계 고분자들의 일부 니트릴기와 아지드기가 가교 결합되어 가교결합층을 형성할 수 있고, 상기 폴리아크릴로니트릴계 고분자층 내에 남아있는 대부분의 니트릴기로 인해 율속 특성이 그대로 유지될 수 있다. The polymer shell layer may form a crosslinking layer by crosslinking some nitrile groups and azide groups of two types of polyacrylonitrile-based polymers on the surface of the polyacrylonitrile-based polymer layer, and the polyacrylonitrile-based polymer Due to most of the nitrile groups remaining in the layer, the rate-limiting properties can be maintained.
상기 폴리아크릴로니트릴계 고분자는 니트릴기와 아지드기가 랜덤하게 존재하는 폴리아크릴로니트릴계 랜덤 공중합체일 수 있으며, 구체적인 예로는 폴리아크릴로니트릴-코-비닐리덴 아지드, 폴리아크릴로니트릴, 폴리(아크릴로니트릴-코-메틸메타크릴레이트), 폴리(아크릴로니트릴-코-메타크릴산), 폴리(아크릴로니트릴-코-메틸아크릴로니트릴 및 폴리(아크릴로니트릴-코메타크릴산 리튬)으로 이루어진 군에서 선택된 1종 이상일 수 있다. 바람직하게는 상기 폴리아크릴로니트릴계 고분자는 하기 화학식 1로 표시되는 폴리아크릴로니트릴-코-비닐리덴 아지드(Polyacrylonitrile-co-vinylidene azide, PANVDA)를 사용할 수 있다.The polyacrylonitrile-based polymer may be a polyacrylonitrile-based random copolymer in which a nitrile group and an azide group are randomly present, and specific examples include polyacrylonitrile-co-vinylidene azide, polyacrylonitrile, polyacrylonitrile, and polyacrylonitrile. (acrylonitrile-co-methylmethacrylate), poly(acrylonitrile-co-methacrylic acid), poly(acrylonitrile-co-methylacrylonitrile, and poly(acrylonitrile-co-methacrylic acid lithium) ) may be at least one selected from the group consisting of. Preferably, the polyacrylonitrile-based polymer is polyacrylonitrile-co-vinylidene azide (PANVDA) represented by the following Chemical Formula 1 can be used
[화학식 1][Formula 1]
Figure PCTKR2021014713-appb-img-000002
Figure PCTKR2021014713-appb-img-000002
(상기 화학식 1에서, n 및 m은 각 반복단위의 반복수로서 n은 60 내지 110, 바람직하게는 70 내지 100, 더욱 바람직하게는 80 내지 90의 정수이고, m은 1 내지 30, 바람직하게는 5 내지 20, 더욱 바람직하게는 12 내지 17의 정수이다.) (In Formula 1, n and m are the number of repetitions of each repeating unit, n is an integer of 60 to 110, preferably 70 to 100, more preferably 80 to 90, m is 1 to 30, preferably It is an integer from 5 to 20, more preferably from 12 to 17.)
상기 공중합체는 하기 화학식 2로 표시되는 화합물일 수 있다.The copolymer may be a compound represented by the following formula (2).
Figure PCTKR2021014713-appb-img-000003
Figure PCTKR2021014713-appb-img-000003
(상기 화학식 2에서, n, m 및 z는 각 반복단위의 반복수로서 n은 60 내지 110의 정수이고, 상기 m은 1 내지 30의 정수이며, 상기 z는 1 내지 60의 정수이다.)(In Formula 2, n, m, and z are the repeating numbers of each repeating unit, n is an integer from 60 to 110, m is an integer from 1 to 30, and z is an integer from 1 to 60.)
상기 화학식 2에서 n은 바람직하게는 70 내지 100, 더욱 바람직하게는 80 내지 90의 정수이고, m은 바람직하게는 5 내지 20, 더욱 바람직하게는 12 내지 17의 정수이며, z는 바람직하게는 1 내지 30, 더욱 바람직하게는 1 내지 20의 정수이다.)In Formula 2, n is preferably an integer of 70 to 100, more preferably 80 to 90, m is preferably an integer of 5 to 20, more preferably 12 to 17, and z is preferably 1 to 30, more preferably an integer from 1 to 20.)
또한, 본 발명은 상기 비탄소 나노입자/고분자 복합 나노입자를 포함하는 음극 활물질을 제공한다.In addition, the present invention provides an anode active material comprising the non-carbon nanoparticles/polymer composite nanoparticles.
또한, 본 발명은 상기 음극 활물질을 포함하는 음극을 제공한다.In addition, the present invention provides an anode including the anode active material.
또한, 본 발명은 상기 음극을 포함하는 리튬이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery including the negative electrode.
또한, 본 발명은 상기 리튬이차전지를 포함하는 장치로서, 상기 장치는 통신장치, 운송장치 및 에너지저장 장치 중에서 선택되는 어느 하나인 장치를 제공한다.In addition, the present invention provides a device including the lithium secondary battery, wherein the device is any one selected from a communication device, a transportation device, and an energy storage device.
이하 본 발명을 실시예에 의거하여 더욱 구체적으로 설명하겠는 바, 본 발명이 다음 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited by the following examples.
실시예 1Example 1
[반응식 1][Scheme 1]
Figure PCTKR2021014713-appb-img-000004
Figure PCTKR2021014713-appb-img-000004
(상기 반응식 1에서 n은 85이고, m은 15이다.)(In Scheme 1, n is 85 and m is 15.)
0.2 g의 실리콘 나노입자를 10 g의 톨루엔에 분산시켜 실리콘 나노입자 분산액을 제조하고, 0.1 g 의 폴리아크릴로니트릴-코-비닐리덴 아지드(PANVDA)를 10 g 의 디메틸포름아미드(Dimethylformanide, DMF)에 용해시켜 폴리아크릴로니트릴계 고분자 용액을 제조하였다. 그 다음 상기 실리콘 나노입자 분산액 5 중량%, 상기 고분자 용액 5 중량% 및 계면활성제 용액 90 중량%를 투입하고, 12,000 rpm으로 1 분간 교반하여 분산용액을 제조하였다. 이때 계면활성제는 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 트리블록 공중합체를 200 ㎖의 포름아미드에 용해시킨 것을 사용하였다. A silicon nanoparticle dispersion was prepared by dispersing 0.2 g of silicon nanoparticles in 10 g of toluene, and 0.1 g of polyacrylonitrile-co-vinylidene azide (PANVDA) was mixed with 10 g of dimethylformamide (Dimethylformanide, DMF). ) to prepare a polyacrylonitrile-based polymer solution. Then, 5% by weight of the silicon nanoparticle dispersion, 5% by weight of the polymer solution, and 90% by weight of the surfactant solution were added, and stirred at 12,000 rpm for 1 minute to prepare a dispersion solution. In this case, the surfactant used was a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer dissolved in 200 ml of formamide.
그 다음 상기 분산용액을 80 ℃에서 24 시간 동안 교반하면서 분산되어 있는 실리콘 나노입자 내 톨루엔과 디메틸포름아미드를 제거하였다. 이렇게 얻어진 분산용액을 원심분리기를 이용하여 12,000 rpm 으로 30분간 수행한 후 에탄올로 12,000 rpm에서 15 분간, 3번 세척하여 실리콘 나노입자 표면에 PANVDA 고분자층을 형성하였다. 그 다음 PANVDA 고분자층이 형성된 실리콘 나노입자를 130 ℃에서 2 시간 동안 열처리하여 상기 반응식 1과 같이 상기 PANVDA 고분자층의 표면에 존재하는 어느 하나인 PANVDA 고분자의 니트릴기와 다른 하나인 PANVDA 고분자의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 가교 결합되어 PANVDAC 가교결합층이 형성된 비탄소 나노입자/고분자 복합나노입자를 수득하였다.Then, while stirring the dispersion solution at 80° C. for 24 hours, toluene and dimethylformamide in the dispersed silicon nanoparticles were removed. The dispersion solution thus obtained was carried out at 12,000 rpm for 30 minutes using a centrifuge, and then washed 3 times with ethanol at 12,000 rpm for 15 minutes to form a PANVDA polymer layer on the surface of the silicon nanoparticles. Then, the silicon nanoparticles on which the PANVDA polymer layer is formed are heat-treated at 130° C. for 2 hours to form any one of the nitrile groups of the PANVDA polymer present on the surface of the PANVDA polymer layer and the other azide group of the PANVDA polymer present on the surface of the PANVDA polymer layer as shown in Scheme 1. Non-carbon nanoparticles/polymer composite nanoparticles were obtained that were cross-linked by nitrile azide cycloaddition reaction and formed with a PANVDAC cross-linking layer.
비교예 1Comparative Example 1
상기 실시예 1과 동일한 방법으로 실시하되, 가교결합층을 형성하지 않고 실리콘 나노입자의 외표면에 폴리아크릴로니트릴 고분자층을 형성시킨 실리콘/고분자 복합나노입자를 제조하였다.Silicon/polymer composite nanoparticles were prepared in the same manner as in Example 1, except that a polyacrylonitrile polymer layer was formed on the outer surface of the silicon nanoparticles without forming a cross-linking layer.
실험예 1: 실리콘/고분자 복합나노입자의 TEM 및 EDS 분석Experimental Example 1: TEM and EDS analysis of silicon/polymer composite nanoparticles
상기 실시예 1에서 제조된 실리콘/고분자 복합나노입자에 대하여 TEM 및 EDS를 이용하여 형태와 구조를 분석하였으며, 그 결과는 도 4에 나타내었다.The shape and structure of the silicon/polymer composite nanoparticles prepared in Example 1 were analyzed using TEM and EDS, and the results are shown in FIG. 4 .
도 4는 상기 실시예 1에서 제조된 실리콘/고분자 복합나노입자의 TEM(a, b, c) 및 EDS(d, e, f) 분석 결과를 나타낸 것이다. 상기 도 4에서 TEM(a) 사진을 참조하면, 구형 형상을 갖는 실리콘/고분자 복합나노입자들이 형성된 것을 확인하였다. 또한 상기 TEM(b, c) 사진의 경우 실리콘 나노입자 코어층(짙은 검정색)의 외표면 상에 PANVDA층 및 가교결합층을 포함하는 고분자 쉘층(최외각 회색 테두리)이 형성되어 있는 것을 확인할 수 있었다. 또한 상기 EDS(d, e, f)의 경우 Si가 상대적으로 C 원소에 비해 거의 대부분을 차지할 정도로 고르게 분포되어 있는 것을 확인하였다. 또한 상기 C 원소는 실리콘 나노입자 표면에 고르게 코팅된 폴리아크릴로니트릴계 고분자 내 카본으로 인해서 관찰되어 Si에 비해 매우 얇은 두께로 형성되어 있는 것을 알 수 있었다.4 shows the TEM (a, b, c) and EDS (d, e, f) analysis results of the silicon/polymer composite nanoparticles prepared in Example 1 above. Referring to the TEM (a) photograph in FIG. 4, it was confirmed that silicon/polymer composite nanoparticles having a spherical shape were formed. In addition, in the case of the TEM (b, c) photograph, it was confirmed that a polymer shell layer (outermost gray border) including a PANVDA layer and a crosslinking layer was formed on the outer surface of the silicon nanoparticle core layer (dark black). . In addition, in the case of the EDS (d, e, f), it was confirmed that Si was relatively evenly distributed to occupy most of the C element. In addition, the C element was observed due to carbon in the polyacrylonitrile-based polymer evenly coated on the surface of the silicon nanoparticles, and it was found that it was formed to a very thin thickness compared to Si.
실험예 2: PANVDAC 고분자의 FT-IR 분석Experimental Example 2: FT-IR analysis of PANVDAC polymer
상기 실시예 1에서 사용된 폴리아크릴로니트릴계 고분자인 PANVDAC 고분자에 대하여 FT-IR 분석을 실시하여 화학식 구조를 분석하였으며, 그 결과는 도 5에 나타내었다.FT-IR analysis was performed on the PANVDAC polymer, which is the polyacrylonitrile-based polymer used in Example 1, to analyze the chemical structure, and the results are shown in FIG. 5 .
도 5는 상기 실시예 1에서 사용된 가교된 폴리아크릴로니트릴계 고분자인 PANVDAC 고분자의 FT-IR분석 결과를 나타낸 것이다. 상기 실시예 1의 PANVDAC 고분자는 상기 반응식 1에 나타낸 바와 같이 클로린기를 포함하는 폴리아크릴로니트릴계 고분자인 PANVDC에서 클로린기를 아지드기로 치환하여 PANVDA를 합성한 후 2종의 PANVDA를 니트릴 아지드 고리첨가 반응(Nitrile azide cycloaddition)에 의해 서로 가교 결합시켜 PANVDAC 고분자로 합성된 것이다.5 shows the results of FT-IR analysis of the PANVDAC polymer, which is the cross-linked polyacrylonitrile-based polymer used in Example 1. FIG. The PANVDAC polymer of Example 1 synthesized PANVDA by substituting a chlorine group with an azide group in PANVDC, which is a polyacrylonitrile-based polymer containing a chlorine group, as shown in Scheme 1, and then adding two types of PANVDA to a nitrile azide ring. It is synthesized as a PANVDAC polymer by crosslinking with each other by reaction (nitrile azide cycloaddition).
상기 도 5를 참조하면, PANVDC, PANVDA 및 PANVDAC 고분자는 2247 cm-1에서 니트릴기가 모두 관찰이 되었고, PANVDA 고분자의 경우 2212 cm-1에서 아지드기가 확인되었으며, PANVDA 고분자를 가교한 PANVDAC에서 모든 아지드기가 사라지고, 1181, 1097 및 1039 cm-1에서 테트라졸 구조가 형성이 되며, 아지드 니트릴 고리중합 반응에 의하여 폴리아크릴로니트릴계 고분자인 PANVDA가 PANVDAC로 성공적으로 가교된 것을 알 수 있었다.5, in the PANVDC, PANVDA and PANVDAC polymers, all nitrile groups were observed at 2247 cm -1 , and in the case of PANVDA polymers, an azide group was confirmed at 2212 cm -1 , and all azide groups in PANVDAC cross-linked PANVDA polymers The zeide group disappeared, and a tetrazole structure was formed at 1181, 1097 and 1039 cm -1 , and it was found that PANVDA, a polyacrylonitrile-based polymer, was successfully cross-linked with PANVDAC by azide nitrile cyclic polymerization.
상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들이 1,3-이극성 고리 첨가 반응에 의해 서로 가교 결합되어 형성된 것일 수 있다. 구체적으로 상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 어느 하나인 폴리아크릴로니트릴계 고분자의 니트릴기와 다른 하나인 폴리아크릴로니트릴계 고분자의 아지드기가 별도의 촉매 없이 니트릴 아지드 고리첨가 반응에 의해 서로 가교 결합되어 형성된 것일 수 있다.The crosslinking layer may be formed by crosslinking two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other by a 1,3-dipolar cycloaddition reaction. Specifically, the cross-linking layer is one of the nitrile groups of the polyacrylonitrile-based polymer present on the surface of the polyacrylonitrile-based polymer layer and the other azide group of the polyacrylonitrile-based polymer is nitrile without a separate catalyst. It may be formed by crosslinking with each other by an azide cycloaddition reaction.
실험예 3: 리튬이차전지의 충방전 평가Experimental Example 3: Evaluation of charging and discharging of lithium secondary batteries
상기 실시예 1 및 비교예 1에서 제조된 실리콘/고분자 복합나노입자를 음극으로 사용하여 통상의 방법에 의해 리튬이차전지를 제작하였다. 이때, 전해액은 1 M LiPF6 EC/EMC(3:7 부피%)을 사용하였고, 전해액 첨가제로 FEC(fluoroethylene carbonate) 및 VC(Vinylene Carbonate)를 사용하였다. 상기 리튬이차전지를 이용한 충방전 실험은 0.2C ~ 100C 전류조건 및 0.01V ~ 2V 전압 조건에서 실시하였으며, 그 결과는 도 6에 나타내었다. A lithium secondary battery was manufactured by a conventional method using the silicon/polymer composite nanoparticles prepared in Example 1 and Comparative Example 1 as an anode. In this case, 1 M LiPF 6 EC/EMC (3:7 vol%) was used as the electrolyte, and fluoroethylene carbonate (FEC) and vinyl carbonate (VC) were used as electrolyte additives. The charging/discharging experiment using the lithium secondary battery was conducted under a current condition of 0.2C to 100C and a voltage condition of 0.01V to 2V, and the results are shown in FIG. 6 .
도 6은 상기 실시예 1 및 비교예 1에서 제조된 실리콘/고분자 복합나노입자를 적용한 리튬이차전지에 대하여 충방전 전압 프로파일(a), C-rate값(0.2 내지 100 C)의 변화에 따른 방전용량(b) 및 싸이클 수에 따른 방전용량(c)을 측정한 결과를 나타낸 것이다. 상기 도 6의 (a)는 상기 실시예 1의 1회 및 2회 사이클에서의 충방전 전압 프로파일을 나타낸 것으로 전지 용량이 약 2000 mAh/g로 높은 용량을 가지는 것을 확인하였다. 또한 상기 도 6의 (b)는 상기 실시예 1 및 비교예 1이 모두 각 C-rate 범위에서 유사한 수준의 방전 용량을 갖는 것을 알 수 있었다. 아울러, 상기 도 6의 (c)는 상기 실시예 1은 사이클 수가 증가함에도 약 1900 mAh/g로 방전 용량이 높게 유지되는 반면에 상기 비교예 1은 사이클 수가 증가함에 따라 방전 용량이 급격하게 저하되었으며, 300 사이클 이후에는 방전 용량이 약 1000 mAh/g로 저하되는 것을 확인하였다. 6 is a discharge according to a change in the charge/discharge voltage profile (a) and C-rate value (0.2 to 100 C) for the lithium secondary battery to which the silicon/polymer composite nanoparticles prepared in Example 1 and Comparative Example 1 are applied. The results of measuring the capacity (b) and the discharge capacity (c) according to the number of cycles are shown. 6A shows the charge/discharge voltage profile in the first and second cycles of Example 1, and it was confirmed that the battery had a high capacity of about 2000 mAh/g. In addition, in FIG. 6(b), it was found that both Example 1 and Comparative Example 1 had a similar level of discharge capacity in each C-rate range. In addition, in FIG. 6(c), the discharge capacity of Example 1 was maintained high at about 1900 mAh/g even as the number of cycles increased, whereas in Comparative Example 1, the discharge capacity was rapidly decreased as the number of cycles increased. , it was confirmed that the discharge capacity decreased to about 1000 mAh/g after 300 cycles.

Claims (17)

  1. 비탄소계 나노입자 분산액, 폴리아크릴로니트릴계 고분자 용액 및 계면활성제를 혼합하여 분산용액을 제조하는 단계;preparing a dispersion solution by mixing a non-carbon-based nanoparticle dispersion, a polyacrylonitrile-based polymer solution, and a surfactant;
    상기 분산용액을 교반하면서 상기 분산용액에 함유된 유기용매를 제거하는 단계;removing the organic solvent contained in the dispersion solution while stirring the dispersion solution;
    상기 유기용매가 제거된 분산용액을 원심분리하여 비탄소계 나노입자의 표면 상에 폴리아크릴로니트릴계 고분자층을 형성하는 단계; 및forming a polyacrylonitrile-based polymer layer on the surface of the non-carbon-based nanoparticles by centrifuging the dispersion solution from which the organic solvent has been removed; and
    상기 폴리아크릴로니트릴계 고분자층이 형성된 비탄소계 나노입자를 열처리하여 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들을 서로 가교 결합시켜 가교결합층이 형성된 비탄소 나노입자/고분자 복합나노입자를 제조하는 단계;The non-carbon-based nanoparticles on which the polyacrylonitrile-based polymer layer is formed are heat-treated to cross-link two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer to each other to form a cross-linking layer preparing carbon nanoparticles/polymer composite nanoparticles;
    를 포함하고,including,
    상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 어느 하나인 폴리아크릴로니트릴계 고분자의 니트릴기와 다른 하나인 폴리아크릴로니트릴계 고분자의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 서로 가교 결합되어 형성되고,In the crosslinking layer, the nitrile group of the polyacrylonitrile-based polymer, which is any one present on the surface of the polyacrylonitrile-based polymer layer, and the azide group of the other polyacrylonitrile-based polymer, which are present on the surface of the polyacrylonitrile-based polymer layer, are in the nitrile azide ring addition reaction. formed by crosslinking with each other by
    상기 비탄소계 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법.The non-carbon-based nanoparticles are silicon nanoparticles or silica nanoparticles. Non-carbon nanoparticles/polymer composite nanoparticles manufacturing method.
  2. 제1항에 있어서,The method of claim 1,
    상기 비탄소계 나노입자는 평균 입자크기가 10 nm 내지 2000 nm인 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법. The non-carbon-based nanoparticles have an average particle size of 10 nm to 2000 nm.
  3. 제1항에 있어서,The method of claim 1,
    상기 폴리아크릴로니트릴계 고분자는 폴리아크릴로니트릴-코-비닐리덴 아지드, 폴리아크릴로니트릴, 폴리(아크릴로니트릴-코-메틸메타크릴레이트), 폴리(아크릴로니트릴-코-메타크릴산), 폴리(아크릴로니트릴-코-메틸아크릴로니트릴 및 폴리(아크릴로니트릴-코메타크릴산 리튬)으로 이루어진 군에서 선택된 1종 이상인 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법.The polyacrylonitrile-based polymer is polyacrylonitrile-co-vinylidene azide, polyacrylonitrile, poly(acrylonitrile-co-methylmethacrylate), poly(acrylonitrile-co-methacrylic acid) ), poly (acrylonitrile-co-methylacrylonitrile, and poly (acrylonitrile- lithium comethacrylate) to at least one selected from the group consisting of non-carbon nanoparticles / polymer composite nanoparticles manufacturing method.
  4. 제1항에 있어서,According to claim 1,
    상기 계면활성제는 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 트리블록 공중합체, 폴리옥시프로필렌-폴리옥시에틸렌 블록 공중합체, 프로필렌글리콜-에틸렌글리콜 블록 공중합체 및 폴리에틸렌옥사이드-폴리프로필렌옥사이드 블록 공중합체로 이루어진 군에서 선택된 1종 이상인 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법. The surfactant is a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer, polyoxypropylene-polyoxyethylene block copolymer, propylene glycol-ethylene glycol block copolymer and polyethylene oxide-polypropylene oxide block copolymer. A method of manufacturing non-carbon nanoparticles/polymer composite nanoparticles that is at least one selected from
  5. 제1항에 있어서,The method of claim 1,
    상기 분산용액은 비탄소계 나노입자 분산액 1 내지 20 중량%, 폴리아크릴로니트릴계 고분자 용액 1 내지 20 중량% 및 계면활성제 60 내지 98 중량%를 포함하는 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법.The dispersion solution is a non-carbon nanoparticle / polymer composite nanoparticles comprising 1 to 20% by weight of a non-carbon-based nanoparticle dispersion, 1 to 20% by weight of a polyacrylonitrile-based polymer solution, and 60 to 98% by weight of a surfactant manufacturing method.
  6. 제1항에 있어서,The method of claim 1,
    상기 분산용액을 제조하는 단계는 9,000 내지 15,000 rpm의 회전속도에서 30초 내지 30분 동안 교반하는 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법.The step of preparing the dispersion solution is a method of producing non-carbon nanoparticles / polymer composite nanoparticles by stirring for 30 seconds to 30 minutes at a rotation speed of 9,000 to 15,000 rpm.
  7. 제1항에 있어서,The method of claim 1,
    상기 비탄소 나노입자/고분자 복합나노입자를 제조하는 단계에서 열처리는 110 내지 150 ℃에서 30 분 내지 6 시간 동안 수행하는 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법.In the step of preparing the non-carbon nanoparticles/polymer composite nanoparticles, the heat treatment is performed at 110 to 150° C. for 30 minutes to 6 hours.
  8. 제1항에 있어서,According to claim 1,
    상기 비탄소 나노입자/고분자 복합나노입자는 비탄소계 나노입자와 폴리아크릴로니트릴계 고분자가 50:50 내지 95:5 중량비로 혼합된 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법. The non-carbon nanoparticles/polymer composite nanoparticles are non-carbon nanoparticles and polyacrylonitrile-based polymer in a weight ratio of 50:50 to 95:5 mixed in a non-carbon nanoparticle/polymer composite nanoparticle manufacturing method.
  9. 제1항에 있어서,According to claim 1,
    상기 비탄소계 나노입자는 실리콘 나노입자이고,The non-carbon-based nanoparticles are silicon nanoparticles,
    상기 비탄소계 나노입자는 평균 입자크기가 50 내지 80 nm이고,The non-carbon-based nanoparticles have an average particle size of 50 to 80 nm,
    상기 폴리아크릴로니트릴계 고분자는 폴리아크릴로니트릴-코-비닐리덴 아지드이고,The polyacrylonitrile-based polymer is polyacrylonitrile-co-vinylidene azide,
    상기 계면활성제는 폴리에틸렌옥사이드-폴리프로필렌옥사이드-폴리에틸렌옥사이드 트리블록 공중합체이고,The surfactant is a polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymer,
    상기 분산용액은 비탄소계 나노입자 분산액 3 내지 7 중량%, 폴리아크릴로니트릴계 고분자 용액 4 내지 6 중량% 및 계면활성제 87 내지 93 중량%를 포함하고,The dispersion solution contains 3 to 7% by weight of a non-carbon-based nanoparticle dispersion, 4 to 6% by weight of a polyacrylonitrile-based polymer solution, and 87 to 93% by weight of a surfactant,
    상기 분산용액을 제조하는 단계는 11,000 내지 13,000 rpm에서 30초 내지 2분 동안 교반하는 것이고,The step of preparing the dispersion solution is to stir at 11,000 to 13,000 rpm for 30 seconds to 2 minutes,
    상기 비탄소 나노입자/고분자 복합나노입자를 제조하는 단계에서 열처리는 120 내지 140 ℃에서 60 분 내지 3 시간 동안 수행하고,In the step of preparing the non-carbon nanoparticles / polymer composite nanoparticles, the heat treatment is performed at 120 to 140 ° C. for 60 minutes to 3 hours,
    상기 비탄소 나노입자/고분자 복합나노입자는 비탄소계 나노입자와 폴리아크릴로니트릴계 고분자가 66.6:33.4 내지 70:30 중량비로 혼합된 것인 비탄소 나노입자/고분자 복합나노입자의 제조방법.The non-carbon nanoparticles / polymer composite nanoparticles are non-carbon nanoparticles and polyacrylonitrile-based polymer is mixed in a weight ratio of 66.6:33.4 to 70:30 non-carbon nanoparticles / polymer composite nanoparticles manufacturing method.
  10. 비탄소 나노입자 코어층; 및a non-carbon nanoparticle core layer; and
    상기 비탄소 나노입자 코어층의 외표면에 형성된 고분자 쉘층;을 포함하고,Including; a polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer,
    상기 고분자 쉘층은 상기 비탄소 나노입자 코어층 상에 형성된 폴리아크릴로니트릴계 고분자층 및 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 2종의 폴리아크릴로니트릴계 고분자들이 서로 가교 결합되어 형성된 가교결합층을 포함하고,The polymer shell layer is formed by crosslinking the polyacrylonitrile-based polymer layer formed on the non-carbon nanoparticle core layer and two types of polyacrylonitrile-based polymers present on the surface of the polyacrylonitrile-based polymer layer. a cross-linking layer;
    상기 가교결합층은 상기 폴리아크릴로니트릴계 고분자층의 표면에 존재하는 어느 하나인 폴리아크릴로니트릴계 고분자의 니트릴기와 다른 하나인 폴리아크릴로니트릴계 고분자의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 서로 가교 결합되어 형성되고, In the crosslinking layer, the nitrile group of the polyacrylonitrile-based polymer, which is any one present on the surface of the polyacrylonitrile-based polymer layer, and the azide group of the other polyacrylonitrile-based polymer, which are present on the surface of the polyacrylonitrile-based polymer layer, are in the nitrile azide ring addition reaction. formed by crosslinking with each other by
    상기 비탄소 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자.The non-carbon nanoparticles are silicon nanoparticles or silica nanoparticles. Non-carbon nanoparticles/polymer composite nanoparticles.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 고분자 쉘층은 두께가 1 내지 100 nm인 것인 비탄소 나노입자/고분자 복합나노입자.The polymer shell layer is non-carbon nanoparticles / polymer composite nanoparticles having a thickness of 1 to 100 nm.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 폴리아크릴로니트릴계 고분자는 하기 화학식 1로 표시되는 폴리아크릴로니트릴-코-비닐리덴 아지드(Polyacrylonitrile-co-vinylidene azide, PANVDA)인 것인 비탄소 나노입자/고분자 복합나노입자.The polyacrylonitrile-based polymer is polyacrylonitrile-co-vinylidene azide (PANVDA) represented by the following formula (1) Non-carbon nanoparticles / polymer composite nanoparticles.
    [화학식 1][Formula 1]
    Figure PCTKR2021014713-appb-img-000005
    Figure PCTKR2021014713-appb-img-000005
    (상기 화학식 1에서, n 및 m은 각 반복단위의 반복수로서 n은 60 내지 110의 정수이고, m은 1 내지 30의 정수이다.)(In Formula 1, n and m are the number of repeats of each repeating unit, n is an integer of 60 to 110, and m is an integer of 1 to 30.)
  13. 비탄소 나노입자 코어층; 및a non-carbon nanoparticle core layer; and
    상기 비탄소 나노입자 코어층의 외표면에 형성되어 가교 결합된 고분자 쉘층;을 포함하고,A polymer shell layer formed on the outer surface of the non-carbon nanoparticle core layer and cross-linked;
    상기 고분자 쉘층은 하나의 폴리아크릴로니트릴-코-비닐리덴 아지드의 니트릴기와 다른 하나의 폴리아크릴로니트릴-코-비닐리덴 아지드의 아지드기가 니트릴 아지드 고리첨가 반응에 의해 가교된 공중합체로 이루어지고,The polymer shell layer is a copolymer in which the nitrile group of one polyacrylonitrile-co-vinylidene azide and the azide group of the other polyacrylonitrile-co-vinylidene azide are crosslinked by a nitrile azide cycloaddition reaction. is made of,
    상기 비탄소 나노입자는 실리콘 나노입자 또는 실리카 나노입자인 것인 비탄소 나노입자/고분자 복합나노입자.The non-carbon nanoparticles are silicon nanoparticles or silica nanoparticles. Non-carbon nanoparticles/polymer composite nanoparticles.
  14. 제10항 또는 제13항에 따른 비탄소 나노입자/고분자 복합 나노입자를 포함하는 리튬이차전지용 음극 활물질.A negative active material for a lithium secondary battery comprising the non-carbon nanoparticles/polymer composite nanoparticles according to claim 10 or 13.
  15. 제14항에 따른 음극 활물질을 포함하는 리튬이차전지용 음극.A negative electrode for a lithium secondary battery comprising the negative active material according to claim 14 .
  16. 제15항에 따른 음극을 포함하는 리튬이차전지.A lithium secondary battery comprising the negative electrode according to claim 15.
  17. 제16항에 따른 리튬이차전지를 포함하는 장치로서,A device comprising the lithium secondary battery according to claim 16,
    상기 장치는 통신장치, 운송장치 및 에너지저장 장치 중에서 선택되는 어느 하나인 장치.The device is any one selected from a communication device, a transportation device, and an energy storage device.
PCT/KR2021/014713 2020-11-17 2021-10-20 Non-carbon nanoparticles/polymer composite nanoparticles, anode comprising same for lithium secondary battery, and manufacturing method for non-carbon nanoparticles/polymer composite nanoparticles WO2022108132A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200153827A KR102334001B1 (en) 2020-11-17 2020-11-17 Silicon/polymer composite nanoparticles, anode for lithium secondary battery comprising the same, and method for manufacturing the silicon/polymer composite nanoparticles
KR10-2020-0153827 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022108132A1 true WO2022108132A1 (en) 2022-05-27

Family

ID=78867019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014713 WO2022108132A1 (en) 2020-11-17 2021-10-20 Non-carbon nanoparticles/polymer composite nanoparticles, anode comprising same for lithium secondary battery, and manufacturing method for non-carbon nanoparticles/polymer composite nanoparticles

Country Status (2)

Country Link
KR (1) KR102334001B1 (en)
WO (1) WO2022108132A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023018156A1 (en) * 2021-08-10 2023-02-16 네오 배터리 머티리얼즈 엘티디 Composite nanoparticles comprising non-carbon-based nanoparticles and carbonization layer, lithium secondary battery anode comprising same, and preparation method therefor
KR102496671B1 (en) * 2022-04-21 2023-02-08 (주) 매그나텍 Manufacturing method of silicon negative active material with nano silicon mixture inserted into pores of coffee grounds
WO2023204585A1 (en) * 2022-04-21 2023-10-26 (주) 매그나텍 Method for preparing silicon anode active material in which nano-silicon mixture is inserted into pores of coffee grounds

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018486A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
KR20160037006A (en) * 2014-09-26 2016-04-05 삼성전자주식회사 Negative active material, lithium battery including the material, and method for manufacturing the material
KR20190118278A (en) * 2018-04-10 2019-10-18 충남대학교산학협력단 Binder for secondary battery anode and anode for secondary battery comprising the same and lithium secondary battery comprising the same
KR20200090643A (en) * 2019-01-21 2020-07-29 주식회사 엘지화학 Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180001518A (en) 2016-06-27 2018-01-04 주식회사 네패스 Composition for lithium secondary battery anode, manufacturing method of lithium secondary battery anode using the same, lithium secondary battery anode and lithium secondary battery made therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018486A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
KR20160037006A (en) * 2014-09-26 2016-04-05 삼성전자주식회사 Negative active material, lithium battery including the material, and method for manufacturing the material
KR20190118278A (en) * 2018-04-10 2019-10-18 충남대학교산학협력단 Binder for secondary battery anode and anode for secondary battery comprising the same and lithium secondary battery comprising the same
KR20200090643A (en) * 2019-01-21 2020-07-29 주식회사 엘지화학 Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG MIN-SANG, CHANG GEEWOO, JUNG DAE-WOONG, KWON MOON-SEOK, LI PING, KU JUN-HWAN, CHOI JAE-MAN, ZHANG KAN, YI GI-RA, CUI YI, PARK: "Strategy for Boosting Li-Ion Current in Silicon Nanoparticles", ACS ENERGY LETTERS, vol. 3, no. 9, 14 September 2018 (2018-09-14), pages 2252 - 2258, XP055934025, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.8b01114 *

Also Published As

Publication number Publication date
KR102334001B1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2022108132A1 (en) Non-carbon nanoparticles/polymer composite nanoparticles, anode comprising same for lithium secondary battery, and manufacturing method for non-carbon nanoparticles/polymer composite nanoparticles
WO2011145871A2 (en) Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2014042485A1 (en) Lithium secondary battery having improved electrochemical properties, and method for manufacturing same
WO2011159083A2 (en) Electrolyte for an electrochemical device, method for preparing same, and electrochemical device comprising same
WO2011159051A2 (en) Electrolyte for electrochemical device, manufacturing method therefor, and electrochemical device including the electrolyte
WO2010079949A2 (en) Positive electrode active material for lithium secondary battery
WO2013002457A1 (en) Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
WO2013062313A1 (en) Method for manufacturing cathode active material, cathode active material, and lithium secondary battery including same
WO2019078690A2 (en) Negative active material, negative electrode comprising negative active material, and secondary battery comprising negative electrode
WO2020149622A1 (en) Anode and secondary battery comprising said anode
WO2016032211A1 (en) Carbon-silicon composite electrode material and method for preparing same
WO2019103311A1 (en) Positive electrode for all-solid state lithium-polymer secondary battery, method for manufacturing same, and secondary battery comprising same
WO2019093830A1 (en) Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
WO2019093820A1 (en) Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
WO2020226448A1 (en) Method for manufacturing solid-state battery electrode and solid-state battery electrode manufactured using same
WO2018212446A1 (en) Lithium secondary battery
CN112520719B (en) Polyimide modified carbon-silicon negative electrode material and preparation method thereof
WO2019050216A2 (en) Anode active material, anode comprising same anode active material, and secondary battery comprising same anode
WO2022045852A1 (en) Negative electrode and secondary battery comprising same
WO2018174619A1 (en) Method for producing slurry composition for secondary battery positive electrode, positive electrode for secondary battery produced using same, and lithium secondary battery comprising same
WO2020242257A1 (en) Negative electrode and secondary battery comprising negative electrode
WO2020149618A1 (en) Method for preparing negative electrode active material
WO2019103498A1 (en) Silicon-based particle-polymer composite, and cathode active material containing same
WO2018186558A1 (en) Negative electrode for secondary battery, and method for producing same
WO2013100652A1 (en) Film-type negative electrode filled with active material and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894904

Country of ref document: EP

Kind code of ref document: A1