WO2024058074A1 - 接合性導体ペースト - Google Patents

接合性導体ペースト Download PDF

Info

Publication number
WO2024058074A1
WO2024058074A1 PCT/JP2023/032896 JP2023032896W WO2024058074A1 WO 2024058074 A1 WO2024058074 A1 WO 2024058074A1 JP 2023032896 W JP2023032896 W JP 2023032896W WO 2024058074 A1 WO2024058074 A1 WO 2024058074A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
conductive
group
organic solvent
bondable
Prior art date
Application number
PCT/JP2023/032896
Other languages
English (en)
French (fr)
Inventor
瑠美 永井
智哉 江川
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2024058074A1 publication Critical patent/WO2024058074A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits

Definitions

  • the present disclosure relates to a bondable conductive paste suitable for forming sintered bodies such as conductor wiring and bonded structures for connecting electronic devices. More specifically, the present disclosure relates to a bonding conductive paste suitable for use in forming conductor wiring and bonding structures for connecting electronic devices such as power semiconductor devices and LED devices.
  • This application claims priority to Japanese Patent Application No. 2022-146294 filed in Japan on September 14, 2022, and its contents are incorporated herein.
  • a method for forming the above-mentioned conductor wiring for example, a method is known in which a conductor paste containing conductive particles and an organic solvent is applied onto an insulating substrate by a printing method, and then the conductor wiring is manufactured by sintering. There is.
  • Patent Document 1 discloses a bondable conductive paste containing conductive particles and a specific ether solvent. It is stated that by using the bonding conductive paste, it is possible to print evenly and to form highly accurate conductor wiring and bonded structures that can connect substrates and electronic devices with high bonding strength. ing.
  • the conductor paste using an ether-based solvent has good wettability to the substrate, the solvent tends to bleed, which may cause printing defects.
  • the solvent may not volatilize sufficiently, resulting in the generation of voids and deterioration of bonding properties.
  • an object of the present disclosure is to provide a bondable conductive paste that can reduce solvent bleeding to improve printing suitability, reduce the generation of voids, and improve bonding properties.
  • a bonding conductive paste containing conductive particles, a hydroxyl group-containing ether solvent, and a urea compound suppresses solvent bleeding. It has been found that the suitability for printing is improved, the generation of voids during the formation of a sintered body can be suppressed, and the bondability can be improved.
  • the present disclosure relates to something completed based on these findings.
  • the present disclosure contains conductive particles, a dispersion medium containing a hydroxyl group-containing ether solvent, and a urea compound
  • the present invention relates to a bondable conductor paste in which the content of the urea compound is 1 to 20 parts by mass based on 100 parts by mass of the entire dispersion medium containing the hydroxyl group-containing ether solvent.
  • the present disclosure includes conductive particles, a dispersion medium containing a hydroxyl group-containing ether solvent, and a urea compound,
  • the content of the urea compound relative to 100 parts by mass of the conductive particles is 0.1 to 2 parts by mass in the bondable conductor paste.
  • the hydroxyl group-containing ether solvent has the following formula (A): R a -O-(R b -O) n -OH (A) (In formula (A), R a represents an alkyl group, an aryl group, or an aralkyl group, and R b represents an alkylene group having 1 to 6 carbon atoms. n represents an integer of 1 or more). May contain.
  • the urea compound may be at least one selected from the group consisting of modified urea, urea-modified urethane, polymeric urea derivatives, and urea-modified polyamide.
  • the conductive particles may include silver particles.
  • the conductive particles may include conductive nanoparticles (A) having an average particle diameter of 1 nm or more and less than 100 nm,
  • the conductive nanoparticles (A) may be conductive nanoparticles whose surfaces are coated with a protective agent containing an amine.
  • the proportion of the conductive nanoparticles (A) may be 50% by mass or less of the total amount (100% by mass) of the conductive particles contained in the bondable conductor paste.
  • the protective agent in the conductive nanoparticles (A) is an amine
  • An aliphatic hydrocarbon monoamine (1) consisting of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms in the aliphatic hydrocarbon group is 6 or more
  • an aliphatic hydrocarbon monoamine (2) consisting of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms in the aliphatic hydrocarbon group is 5 or less
  • an aliphatic hydrocarbon monoamine (2) consisting of an aliphatic hydrocarbon group and two amino groups and at least one of the aliphatic hydrocarbon diamines (3) in which the total number of carbon atoms in the aliphatic hydrocarbon group is 8 or less.
  • the conductive particles include, in addition to the conductive nanoparticles (A), spherical conductive particles (B) having an average particle diameter of 0.5 ⁇ m or more and 1 ⁇ m or less, and spherical conductive particles (B) having an average particle diameter of 1 ⁇ m or more. It may also contain flat conductive flakes (C) of 10 ⁇ m or less.
  • the total content of the conductive nanoparticles (A), spherical conductive particles (B), and flat conductive flakes (C) in the total amount (100% by mass) of the bonding conductor paste may be between 80 and 99.5% by weight.
  • the dispersion medium is a mutually different compound and contains an organic solvent (a), an organic solvent (b), and an organic solvent (c) that satisfy the following formulas (1) to (6). It's okay to stay.
  • 150°C ⁇ Ta ⁇ 250°C (1) 150°C ⁇ Tb ⁇ 250°C (2) 250°C ⁇ Tc ⁇ 350°C (3) ⁇ a ⁇ 10.0 (4) ⁇ c ⁇ 9.0 (5) ⁇ c ⁇ b ⁇ a (6)
  • Ta to Tc represent the boiling points of the organic solvents (a) to (c), respectively, and ⁇ a to ⁇ c represent the Hansen solubility parameters of the organic solvents (a) to (c), respectively. ]
  • the present disclosure relates to a sintered body obtained by sintering a bondable conductive paste.
  • the present disclosure relates to a bonded structure that is bonded using a sintered body obtained by sintering a bondable conductor paste.
  • the bondable conductor paste of the present disclosure it is possible to suppress solvent bleeding and suppress the generation of voids during formation of a sintered body. For this reason, printing suitability is improved when forming sintered bodies such as conductor wiring and bonded structures for connecting electronic devices using the above-mentioned bonding conductor paste, and voids are less likely to occur. It is possible to produce sintered bodies such as conductor wiring and bonded structures having high bonding strength, and electronic devices equipped with these.
  • Figure 1(a) shows the SAT image of the surface of the sintered body after measuring the die shear strength of the sample prepared in Example 3
  • Figure 1(b) shows the SAT image of the surface of the sintered body after measuring the die shear strength of the sample prepared in Comparative Example 2.
  • This is a SAT image of the surface of a solid.
  • Figure 2(a) shows an SEM image of the cross section of the sintered body after measuring the die shear strength of the sample manufactured in Example 3
  • Figure 2(b) shows the SEM image of the cross section of the sintered body after measuring the die shear strength of the sample manufactured in Comparative Example 2. This is a SEM image of a cross section of a solid body.
  • the bondable conductor paste of the present disclosure is a paste-like composition that can form a conductor and bond members together using the conductor.
  • the above-mentioned bonding conductor paste is, for example, a bonding conductor paste for forming a sintered body (eg, conductor wiring, bonding structure) for connecting electronic elements.
  • the bonding conductor paste includes conductive particles, a dispersion medium containing a hydroxyl group-containing ether solvent, and a urea compound.
  • the conductive particles are dispersed in the dispersion medium.
  • the conductive particles are particles that are fused by sintering the bonding conductive paste to form a conductive sintered body.
  • the conductive substance constituting the conductive particles is not particularly limited as long as it has conductivity; for example, metals, metal oxides, nonconductors whose surfaces are coated with metal, semiconductor particles, etc. may be used. Can be done.
  • Examples of the metal constituting the conductive particles include metals having conductivity, such as gold, silver, copper, nickel, aluminum, rhodium, cobalt, ruthenium, platinum, palladium, chromium, indium, and alloys thereof. Examples include. Examples of the metal oxide constituting the conductive particles include metal oxides having conductivity, such as chromium oxide, nickel oxide, copper oxide, titanium oxide, zirconium oxide, indium oxide, aluminum oxide, zinc oxide, Examples include tin oxide or composite oxides thereof, such as a composite oxide of indium oxide and tin oxide (ITO), a composite oxide of tin oxide and phosphorus oxide (PTO), and the like. These conductive substances can be used alone or in combination of two or more.
  • ITO indium oxide and tin oxide
  • PTO composite oxide of tin oxide and phosphorus oxide
  • the conductive substance metals with excellent conductivity are more preferable, and gold, silver, copper, etc. are more preferable, and among them, they are fused together at a temperature of about 100°C and are conductive even on general-purpose plastic substrates with low heat resistance.
  • Silver is preferable because it can form connecting members such as electronic parts having properties. That is, the conductive particles are preferably silver particles.
  • the conductive particles are conductive nanoparticles having an average particle diameter of 1 nm or more and less than 100 nm, and have a structure in which the surface is coated with a protective agent containing an amine. It is preferable to include conductive nanoparticles (herein sometimes referred to as "conductive nanoparticles (A)") having a configuration in which lone pairs of electrons are electrically coordinated.
  • conductive nanoparticles (A) By having the above structure, the conductive nanoparticles (A) are prevented from reagglomerating among themselves, and can stably maintain a highly dispersed state in the bonding conductive paste.
  • the conductive nanoparticles (A) may be used alone or in combination of two or more.
  • the average particle diameter of the conductive nanoparticles (A) is 1 nm or more and less than 100 nm, preferably 2 to 80 nm, more preferably 5 to 70 nm, and still more preferably 10 to 60 nm.
  • the above average particle diameter is the size excluding the protective agent coating the surface (that is, the size of the conductive nanoparticle itself).
  • the above average particle diameter is calculated as the average particle diameter (median diameter) converted into volume distribution, assuming that the particles have an aspect ratio of 1, based on the particle diameter determined by transmission electron microscopy (TEM) observation. It will be done.
  • TEM transmission electron microscopy
  • the conductive nanoparticles (A) are surface-modified conductive nanoparticles having a structure in which the surface of the conductive nanoparticles is coated with a protective agent containing an amine.
  • the above amines may be used alone or in combination of two or more.
  • the above-mentioned protective agent may contain a compound other than the above-mentioned amine.
  • the above amine is a compound in which at least one hydrogen atom of ammonia is replaced with a hydrocarbon group, and includes primary amines, secondary amines, and tertiary amines. Moreover, the above-mentioned amine may be a monoamine or a polyvalent amine such as a diamine.
  • the above amine is represented by the following formula (a-1), in which R 1 , R 2 , and R 3 are the same or different, and hydrogen atoms or monovalent hydrocarbon groups (R 1 , R 2 , R 3 are both hydrogen atoms) and has a total number of carbon atoms of 6 or more, represented by the following formula (a-1), in which R 1 , R 2 , R A monoamine (2) in which 3 are the same or different and are a hydrogen atom or a monovalent hydrocarbon group (excluding when R 1 , R 2 , R 3 are all hydrogen atoms) and the total number of carbon atoms is 5 or less , and is represented by the following formula (a-2), in which R 8 is a divalent hydrocarbon group, and R 4 to R 7 are the same or different and are a hydrogen atom or a monovalent hydrocarbon group. , preferably contains at least one selected from diamines (3) having a total carbon number of 8 or less, and particularly contains monoamines (1) together with monoamines (2) and/
  • hydrocarbon group examples include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. Among these, aliphatic hydrocarbon groups and alicyclic hydrocarbon groups are preferred, and aliphatic hydrocarbon groups are particularly preferred. Therefore, as the monoamine (1), monoamine (2), and diamine (3), aliphatic monoamine (1), aliphatic monoamine (2), and aliphatic diamine (3) are preferable.
  • Examples of monovalent aliphatic hydrocarbon groups include alkyl groups and alkenyl groups.
  • Examples of the monovalent alicyclic hydrocarbon group include a cycloalkyl group and a cycloalkeni group.
  • Examples of the divalent aliphatic hydrocarbon group include an alkylene group and an alkenylene group.
  • Examples of the divalent alicyclic hydrocarbon group include a cycloalkylene group and a cycloalkenylene group.
  • Examples of the monovalent hydrocarbon group for R 1 , R 2 , and R 3 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, and pentyl group.
  • an alkyl group having about 1 to 20 carbon atoms such as hexyl group, decyl group, dodecyl group, tetradecyl group, octadecyl group; vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, Alkenyl groups having about 2 to 20 carbon atoms such as 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 5-hexenyl group; cyclopropyl group, Examples include cycloalkyl groups having about 3 to 20 carbon atoms such as cyclobutyl group, cyclopentyl group, cyclohexyl group and cyclooctyl group; cycloalkenyl groups having about 3 to 20 carbon atoms such as cyclopentenyl group and cyclohexy
  • Examples of the monovalent hydrocarbon groups for R 4 to R 7 include those having 7 or less carbon atoms among those exemplified as the monovalent hydrocarbon groups for R 1 , R 2 , and R 3 .
  • the divalent hydrocarbon group for R 8 is, for example, a carbon number 1 group such as a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a heptamethylene group, etc. ⁇ 8 alkylene groups; Examples include alkenylene groups having 2 to 8 carbon atoms such as vinylene, propenylene, 1-butenylene, 2-butenylene, butadienylene, pentenylene, hexenylene, heptenylene, octenylene, etc. .
  • the hydrocarbon groups in R 1 to R 8 above include various substituents [e.g., halogen atom, oxo group, hydroxy group, substituted oxy group (e.g., C 1-4 alkoxy group, C 6-10 aryloxy group, C 7-16 aralkyloxy group, C 1-4 acyloxy group, etc.), carboxy group, substituted oxycarbonyl group (e.g., C 1-4 alkoxycarbonyl group, C 6-10 aryloxycarbonyl group, C 7-16 aralkyloxycarbonyl group) group), cyano group, nitro group, sulfo group, heterocyclic group, etc.].
  • the above-mentioned hydroxy group or carboxy group may be protected with a protecting group commonly used in the field of organic synthesis.
  • the monoamine (1) is a compound that has the function of imparting high dispersibility to the conductive nanoparticles (A), and includes, for example, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, and triamine.
  • Primary amines having a linear alkyl group such as decylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine; Primary amines having a branched alkyl group; Primary amines having a cycloalkyl group such as cyclohexylamine; Primary amines having an alkenyl group such as oleylamine; N,N-dipropylamine, N,N -dibutylamine, N,N-dipentylamine, N,N-dihexylamine, N,N-dipeptylamine, N,N-dioctylamine, N,N-dinonylamine, N,N-didecylamine, N,N-diundecylamine , N,N-didodecylamine, N-propyl-N-butyl
  • monoamines (1) when the amino group is adsorbed on the surface of conductive nanoparticles, it is possible to secure more space between them and other conductive nanoparticles, which improves the effect of preventing aggregation of conductive nanoparticles.
  • amines (especially primary amines) having a linear alkyl group having a total of 6 or more carbon atoms are preferred.
  • the upper limit of the total number of carbon atoms in the monoamine (1) is preferably about 18, more preferably 16, particularly preferably 12, from the viewpoint of ease of availability and ease of removal during sintering.
  • Particularly preferred monoamines (1) include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, and the like.
  • the monoamines (1) when an amine having a branched alkyl group (especially a primary amine) is used, the branched chain Due to the steric factor of the alkyl group, high dispersibility can be imparted to the conductive nanoparticles (A) with a smaller amount. Therefore, during sintering, especially during low-temperature sintering, the amine can be efficiently removed and a sintered body with better conductivity can be obtained, which is preferable.
  • the above-mentioned amine having a branched alkyl group is particularly preferably an amine having a branched alkyl group having a total of 6 to 16 carbon atoms (preferably 6 to 10), such as isohexylamine and 2-ethylhexylamine.
  • amines having a branched alkyl group having a branched structure at the second carbon atom from the nitrogen atom, such as 2-ethylhexylamine are effective.
  • the monoamine (1) preferably includes an aliphatic hydrocarbon monoamine consisting of an aliphatic hydrocarbon group and one amino group, and in which the total number of carbon atoms in the aliphatic hydrocarbon group is 6 or more.
  • Monoamine (2) has a shorter hydrocarbon chain than monoamine (1), so it is thought that it has a lower ability to impart high dispersibility to conductive nanoparticles, but it is more polar than monoamine (1). Since it has a high coordination ability to conductive nanoparticles, it is thought to have the effect of promoting complex formation. In addition, because the hydrocarbon chain is short, it can be removed from the surface of conductive nanoparticles in a short time (for example, 30 minutes or less, preferably 20 minutes or less) even during low-temperature sintering, resulting in a sintered body with excellent conductivity. is obtained.
  • Examples of the monoamine (2) include linear amines such as ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, and tert-pentylamine.
  • linear amines such as ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, and tert-pentylamine.
  • Primary amines having a total of 2 to 5 carbon atoms and having a branched or branched alkyl group N-methyl-N-propylamine, N-ethyl-N-propylamine, N,N-dimethylamine, N,N- Examples include secondary amines having a total of 2 to 5 carbon atoms and having a linear or branched alkyl group, such as diethylamine.
  • Monoamines (2) include, among others, total carbon atoms having a linear or branched alkyl group, such as n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine, etc.
  • Primary amines having 2 to 5 carbon atoms are preferred, and in particular primary amines having 2 to 5 total carbon atoms (preferably 4 total carbon atoms) having a linear alkyl group such as n-butylamine. -5) Primary amines are preferred.
  • the monoamine (2) is preferably an aliphatic hydrocarbon monoamine (2) consisting of an aliphatic hydrocarbon group and one amino group, and in which the total number of carbon atoms in the aliphatic hydrocarbon group is 5 or less.
  • the total number of carbon atoms in diamine (3) is 8 or less (for example, 1 to 8), and it is more polar than monoamine (1) and has a higher coordination ability to conductive nanoparticles, so it is thought to have the effect of promoting complex formation. It will be done.
  • diamine (3) has the effect of promoting thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition process of the complex, and using diamine (3) makes the production of conductive nanoparticles (A) more efficient. can be done.
  • the conductive nanoparticles (A) coated with a protective agent containing diamine (3) exhibit excellent dispersion stability in a dispersion medium containing a highly polar solvent.
  • diamine (3) since diamine (3) has a short hydrocarbon chain, it can be removed from the surface of conductive nanoparticles in a short time (e.g., 30 minutes or less, preferably 20 minutes or less) even during low-temperature sintering. A sintered body with excellent properties can be obtained.
  • Examples of the diamine (3) include ethylenediamine, 1,3-propanediamine, 2,2-dimethyl-1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, and 1,6-hexane.
  • R 4 to R 7 in formula (a-2) are hydrogen atoms, such as diamine, 1,7-heptanediamine, 1,8-octanediamine, 1,5-diamino-2-methylpentane, and R 8 is a linear or branched alkylene group; N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N'-dimethyl-1,3-propanediamine, N,N'-diethyl -1,3-propanediamine, N,N'-dimethyl-1,4-butanediamine, N,N'-diethyl-1,4-butanediamine, N,N'-dimethyl-1,6-hexanediamine, etc.
  • R 4 and R 6 are the same or h is different and are a linear or branched alkyl group
  • R 5 and R 7 are hydrogen atoms
  • R 8 is a linear or diamine which is a branched alkylene group
  • R 4 in formula (a-2) such as N,N-dimethyl-1,4-butanediamine, N,N-diethyl-1,4-butanediamine, N,N-dimethyl-1,6-hexanediamine, etc.
  • R 5 is the same or different and is a linear or branched alkyl group
  • R 6 and R 7 are hydrogen atoms
  • R 8 is a linear or branched alkylene group, etc. .
  • R 4 and R 5 in formula (a-2) are the same or different and are a linear or branched alkyl group
  • R 6 and R 7 are hydrogen atoms
  • R 8 is a linear or branched alkyl group.
  • diamine which is a linear or branched alkylene group [particularly, R 4 and R 5 in formula (a-2) are linear alkyl groups, R 6 and R 7 are hydrogen atoms, and R 8 is a linear diamine which is a chain alkylene group] is preferred.
  • diamines having a total carbon number of 6 or less are preferred, and diamines having a total carbon number of 5 or less (for example, 1 to 5 ) diamines are more preferred.
  • aliphatic hydrocarbon diamines (3) consisting of an aliphatic hydrocarbon group and two amino groups, and in which the total number of carbon atoms in the aliphatic hydrocarbon groups is 8 or less.
  • the ratio of these to be used is not particularly limited, but the total amount of amines [monoamine (1) + monoamine (2) + diamine (3); 100 mol %], the following range is preferable.
  • Content of monoamine (1) For example, 5 to 65 mol% (the lower limit is preferably 10 mol%, more preferably 15 mol%. The upper limit is preferably 50 mol%, more preferably 40 mol%) , more preferably 35 mol%)
  • Total content of monoamine (2) and diamine (3) for example, 35 to 95 mol% (the lower limit is preferably 50 mol%, more preferably 60 mol%, and even more preferably 65 mol%. , preferably 90 mol%, more preferably 85 mol%)
  • monoamine (2) for example, 5 to 70 mol% (the lower limit is preferably 10 mol%, more preferably 15 mol%.
  • the upper limit is preferably 65 mol%, more preferably 60 mol%)
  • Diamine (3) For example, 5 to 50 mol% (the lower limit is preferably 10 mol%.
  • the upper limit is preferably 45 mol%, more preferably 40 mol%)
  • the content of monoamine (1) is at least the above lower limit, the dispersion stability of the conductive nanoparticles is excellent, and when it is at most the above upper limit, the amine tends to be easily removed by low-temperature sintering.
  • the surface-modified conductive nanoparticles (A) having a structure coated with a protective agent containing diamine (3) exhibit excellent dispersion stability in a dispersion medium containing a highly polar solvent.
  • the amount of monoamine (1) used can be adjusted depending on the proportion of their use. In the case of sintering at low temperature and in a short time, these amines are easily removed from the surface of the conductive nanoparticles, and the sintering of the conductive nanoparticles can proceed sufficiently.
  • the amine used as the organic protective agent may contain other amines than monoamine (1), monoamine (2), and diamine (3).
  • the proportion of the total content of monoamine (1), monoamine (2), and diamine (3) in all the amines contained in the protective agent is preferably, for example, 60% by mass or more (for example, 60 to 100% by mass), and more preferably is 80% by mass or more, more preferably 90% by mass or more. That is, the content of the other amines is preferably 40% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less.
  • the amount of the above amine is not particularly limited, but is 1 to 50 mol per 1 mol of the conductive substance that is the raw material for the conductive nanoparticles.
  • the amount is preferably from 2 to 50 mol, particularly preferably from 6 to 50 mol, in that the surface-modified conductive nanoparticles (A) can be obtained in substantially no solvent.
  • the amount of the amine used is equal to or higher than the lower limit, it is difficult for conductive substances that are not converted into a complex to remain in the complex generation process, and the uniformity of the conductive nanoparticles becomes high in the subsequent thermal decomposition process. It is possible to suppress the enlargement of particles and the remaining of conductive substances that do not thermally decompose.
  • the above-mentioned protective agent may contain other protective agents other than the above-mentioned amine.
  • the other protective agents mentioned above include aliphatic monocarboxylic acids. By using an aliphatic monocarboxylic acid, the dispersibility of the conductive nanoparticles (A) tends to be further improved.
  • Examples of the aliphatic monocarboxylic acids include butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, Saturated aliphatic monocarboxylic acids with 4 or more carbon atoms such as heptadecanoic acid, octadecanoic acid, nonadecanoic acid, and icosanoic acid; unsaturated aliphatic acids with 8 or more carbon atoms such as oleic acid, elaidic acid, linoleic acid, palmitoleic acid, eicosenoic acid, etc. Examples include monocarboxylic acids.
  • saturated or unsaturated aliphatic monocarboxylic compounds having 8 to 18 carbon atoms are preferred.
  • the saturated or unsaturated aliphatic hydrocarbon chain having 8 to 18 carbon atoms acts as a steric hindrance, causing other conductive nanoparticles to form a steric hindrance. It is possible to secure a distance between the conductive nanoparticles and the conductive nanoparticles, thereby improving the effect of preventing aggregation of conductive nanoparticles.
  • the aliphatic monocarboxylic acid is preferred because it is easily available and can be easily removed during sintering.
  • the amount of the aliphatic monocarboxylic acid to be used is, for example, about 0.05 to 10 mol, preferably 0.1 to 5 mol, more preferably 0. .5 to 2 moles.
  • the amount of the aliphatic monocarboxylic acid used is equal to or greater than the lower limit, the effect of improving stability is more likely to be obtained.
  • the above usage amount is below the above upper limit, while the effects of the aliphatic monocarboxylic acid are sufficiently obtained, excess aliphatic monocarboxylic acid is difficult to remain.
  • the conductive nanoparticles (A) whose surfaces are coated with a protective agent containing an amine can be produced by a known or commonly used method. For example, a step of mixing a compound containing a conductive substance and a protective agent containing an amine to generate a complex containing the compound and the amine (complex generation step), a step of thermally decomposing the complex (thermal decomposition step)
  • the conductive nanoparticles (A) can be produced through a step of washing the reaction product (washing step) as necessary.
  • the above-mentioned bonding conductive paste may contain conductive particles other than the conductive nanoparticles (A).
  • the use of a combination of conductive particles (groups) with different average particle diameters can form conductive wiring and bonded structures with even lower electrical resistance and excellent electrical properties. This is preferable because it can be done.
  • Examples of the shapes of the other conductive particles mentioned above include spherical, flat, polyhedral, etc. Conductive particles of different shapes may be used in combination, or only conductive particles of the same shape may be used. You can.
  • Spherical conductive particles (B) When spherical conductive particles (B) having a larger size than the conductive nanoparticles (A) are included in combination with the conductive nanoparticles (A), the sintered body formed has spherical conductive particles having a relatively large diameter.
  • the relatively small-diameter conductive nanoparticles (A) are filled in the gaps between the conductive particles (B), making it possible to form more dense conductor wiring and bonded structures, and having high bonding strength and high conductivity. can be taken as a thing. Only one type of spherical conductive particles (B) may be used, or two or more types may be used.
  • the spherical conductive nanoparticles (B) may be surface conductive particles having a structure in which the surface of the conductive particles is coated with a protective agent.
  • Surface-modified conductive particles ensure spacing between conductive particles, suppress agglomeration, and have excellent dispersibility in organic solvents.
  • the conductive substance constituting the spherical conductive particles (B) examples include conductive metals, metal oxides, nonconductors whose surfaces are coated with metal, and semiconductor particles.
  • the conductive nanoparticles ( The metals and metal oxides constituting A) include those exemplified and explained.
  • the conductive substance preferably contains the same conductive substance as the conductive nanoparticles (A) from the viewpoint of increasing the bonding strength, and more preferably silver particles.
  • the above-mentioned protective agent is not particularly limited, and includes known or commonly used protective agents used as protective agents (stabilizers) for conductive particles.
  • protective agents include carboxy groups, hydroxy groups, carbonyl groups, amide groups, ether groups, amino groups, sulfo groups, sulfonyl groups, sulfinic acid groups, sulfenic acid groups, mercapto groups, phosphoric acid groups, and phosphorous acid groups.
  • Examples include protective agents having functional groups such as groups.
  • the above protective agents may be used alone or in combination of two or more.
  • the average particle diameter (median diameter) of the spherical conductive particles (B) is 0.5 to 1 ⁇ m, preferably 0.6 to 0.9 ⁇ m.
  • the above average particle diameter can be measured by a laser diffraction/scattering method.
  • the above average particle diameter refers to the average particle diameter of all the spherical conductive particles (B).
  • Flat conductive flakes (C) When flat conductive flakes (C) are included in combination with conductive nanoparticles (A), the flat conductive flakes (C) themselves are sintered, and the necking between the conductive particles becomes thicker, resulting in stronger sintering. It becomes possible to obtain a solid body. Only one type of flat conductive flakes (C) may be used, or two or more types may be used.
  • the flat conductive flakes (C) may be surface-modified conductive flakes in which the surface of the metal flakes is coated with a protective agent.
  • the surface-modified conductive flakes ensure spacing between the conductive flakes, suppress agglomeration, and have excellent dispersibility in organic solvents.
  • Examples of the conductive substance constituting the flat conductive flakes (C) include conductive metals, metal oxides, nonconductors whose surfaces are coated with metal, and semiconductor flat particles.
  • Examples of the conductive substances constituting the nanoparticles (A) include those exemplified and explained.
  • the conductive substance preferably contains the same metal as the conductive nanoparticles (A), more preferably silver particles, from the viewpoint of higher bonding strength.
  • the above-mentioned protective agent is not particularly limited, and includes known or commonly used organic protective agents used as protective agents (stabilizers) for conductive particles.
  • organic protective agents used as protective agents (stabilizers) for conductive particles.
  • examples of the above-mentioned protective agents include carboxy groups, hydroxy groups, carbonyl groups, amide groups, ether groups, amino groups, sulfo groups, sulfonyl groups, sulfinic acid groups, sulfenic acid groups, mercapto groups, phosphoric acid groups, and phosphorous acid groups.
  • Examples include organic protective agents having a functional group such as a group.
  • the above protective agents may be used alone or in combination of two or more.
  • the average particle diameter (median diameter) of the flat conductive flakes (C) is 1 to 10 ⁇ m, preferably 2 to 5 ⁇ m.
  • the above average particle diameter can be measured by a laser diffraction/scattering method.
  • the above average particle diameter refers to the average particle diameter of all flat conductive flakes (C).
  • the content of conductive nanoparticles (A) in 100% by mass of conductive particles contained in the bonding conductive paste is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the content ratio is preferably 50% by mass or less, more preferably 30% by mass or less, still more preferably 20% by mass or less.
  • the amount of the spherical conductive particles (B) and the flat conductive flakes (C) can be made sufficient.
  • the content of spherical conductive particles (B) in 100% by mass of conductive particles contained in the bonding conductive paste is preferably 30% by mass or more, more preferably 40% by mass or more, and still more preferably 50% by mass. It's super. When the above-mentioned content ratio is 30% by mass or more, the effect of blending the spherical conductive particles (B) is more likely to be obtained.
  • the content ratio is preferably 85% by mass or less, more preferably 80% by mass or less, still more preferably 70% by mass or less. When the content ratio is 85% by mass or less, the amount of the conductive nanoparticles (A) and the flat conductive flakes (C) can be made sufficient.
  • the content of flat conductive flakes (C) in 100% by mass of conductive particles contained in the bonding conductor paste is preferably 10% by mass or more, more preferably 15% by mass or more. When the content ratio is 10% by mass or more, the effect of blending the flat conductive flakes (C) is more likely to be obtained.
  • the content ratio is preferably 65% by mass or less, more preferably 50% by mass or less, still more preferably 40% by mass or less. When the content ratio is 65% by mass or less, the amount of conductive nanoparticles (A) and spherical conductive particles (B) can be made sufficient.
  • the total content of conductive nanoparticles (A), spherical conductive particles (B), and flat conductive flakes (C) with respect to 100% by mass of the total amount of conductive particles contained in the bonding conductive paste is as follows:
  • the content is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass or more.
  • the content ratio is 70% by mass or more, the dispersibility of the conductive particles is excellent, and the continuous discharge stability and storage stability are also excellent. Further, the content ratio may be 99.5% by mass or less, preferably 99% by mass or less.
  • the dispersion medium includes a hydroxyl group-containing ether solvent.
  • the "hydroxyl group-containing ether solvent” may be any compound that has one or more (for example, one or two, preferably one) hydroxyl group and ether bond in the molecule and can be used as a solvent. Since the bonding conductor paste of the present disclosure contains a hydroxyl group-containing ether solvent as a dispersion medium, the bonding conductor paste has excellent dispersion stability of the conductive particles and is volatile enough to be suitable for printing. can.
  • the boiling point (at 1 atm) of the hydroxyl group-containing ether solvent is preferably 130°C or higher (for example, 130 to 300°C), more preferably 140 to 280°C, even more preferably 150 to 260°C, particularly preferably The temperature is 160-240°C.
  • the hydroxyl group-containing ether solvent preferably has a vapor pressure of, for example, 0.01 to 10.0 mmHg at 30°C from the viewpoint of having appropriate volatility, more preferably 0.05 to 8.0 mmHg, and more preferably 0.05 to 8.0 mmHg. Preferably 0.1 to 6.0 mmHg, most preferably 0.3 to 4.0 mmHg.
  • the viscosity of the hydroxyl group-containing ether solvent at 25° C. and a shear rate of 10 s ⁇ 1 is preferably 0.1 to 20 mPa ⁇ s, more preferably 0.5 to 10 mPa ⁇ s in order to make the ink a viscosity suitable for printing. , more preferably 1 to 9 mPa ⁇ s, particularly preferably 3 to 8 mPa ⁇ s.
  • hydroxyl group-containing ether solvent for example, the following formula (A) R a -(O-R b ) n -OH (A) (In the formula, R a represents an alkyl group, an aryl group, or an aralkyl group, and R b represents an alkylene group having 1 to 6 carbon atoms. n represents an integer of 1 or more)
  • a compound represented by ((poly)alkylene glycol monoalkyl ether) is preferred.
  • Examples of the alkyl group for R a in formula (A) include linear or branched alkyl groups having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms).
  • Examples of the aryl group include aryl groups having 6 to 10 carbon atoms (eg, phenyl group, etc.).
  • Examples of aralkyl groups include groups in which a linear or branched alkyl group having 1 to 10 carbon atoms (preferably 1 to 5 carbon atoms) is substituted with an aryl group having 6 to 10 carbon atoms (for example, a benzyl group, etc.) be able to.
  • Examples of the alkylene group for R b in formula (A) include methylene group, methylmethylene group, dimethylmethylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, etc. be able to.
  • an alkylene group having 1 to 4 carbon atoms is preferred, an alkylene group having 1 to 3 carbon atoms is particularly preferred, and an alkylene group having 2 to 3 carbon atoms is most preferred.
  • n is an integer of 1 or more, for example an integer of 1 to 8, preferably an integer of 1 to 3, particularly preferably an integer of 2 to 3.
  • the boiling point of the compound represented by formula (A) is, for example, 130°C or higher (eg, 130 to 310°C), preferably 170°C or higher, particularly preferably 200°C or higher.
  • Examples of the compound represented by the formula (A) include ethylene glycol monomethyl ether (boiling point: 124°C), ethylene glycol monoisopropyl ether (boiling point: 141.8°C), and ethylene glycol monobutyl ether (boiling point: 171.2°C).
  • the dispersion medium may be an ether solvent other than the hydroxyl group-containing ether solvent, an ester solvent (for example, (poly)alkylene glycol dialkyl ether, (poly)alkylene glycol monoalkyl ether monoester, (poly)alkylene glycol diester, ( (poly)alkylene glycol monoester), terpene-based solvents, alcohol-based solvents (excluding hydroxyl group-containing ether-based solvents), urea-based solvents, aprotic polar solvents, ketone-based solvents, amine-based solvents, alkane-based solvents, etc. You can stay there.
  • an ester solvent for example, (poly)alkylene glycol dialkyl ether, (poly)alkylene glycol monoalkyl ether monoester, (poly)alkylene glycol diester, ( (poly)alkylene glycol monoester), terpene-based solvents, alcohol-based solvents (excluding
  • the dispersion medium used in the present disclosure preferably contains organic solvent (a), organic solvent (b), and organic solvent (c) from the viewpoints of excellent stability during continuous ejection and storage stability, and suppressing the generation of voids during the formation of a sintered body.
  • the organic solvents (a), (b), and (c) are different compounds and satisfy the following formulas (1) to (6). Only one type of organic solvent (a), organic solvent (b), and organic solvent (c) may be used, or two or more types may be used.
  • Ta to Tc represent the boiling points of the organic solvents (a) to (c), respectively, and ⁇ a to ⁇ c represent the Hansen solubility parameters of the organic solvents (a) to (c), respectively.
  • the Hansen solubility parameter is referred to as "SP value" and may be expressed as " ⁇ ".
  • organic solvents (a) to (c) may be those that uniformly dissolve and become liquid when mixed in the mixing ratio used for the above-mentioned bonding conductor paste, and each of them alone is liquid at room temperature. It may be in a solid form.
  • the organic solvent (a) at least satisfies formula (1). That is, the boiling point Ta of the organic solvent (a) satisfies 150°C ⁇ Ta ⁇ 250°C, preferably 150°C ⁇ Ta ⁇ 250°C, more preferably 155°C ⁇ Ta ⁇ 220°C, and even more preferably 160°C ⁇ Ta. ⁇ 200°C.
  • the organic solvent (a) having a boiling point within the above range the dispersion medium is easily volatilized during sintering, and a sintered body can be easily formed.
  • the organic solvent (a) at least satisfies formula (4) [ ⁇ a ⁇ 10.0].
  • the SP value ⁇ a of the organic solvent (a) is 10.0 or more, preferably 10.3 or more, and more preferably 10.4 or more within the range that satisfies formula (6).
  • ⁇ a is 10.0 or more, the conductive nanoparticles (A) have excellent dispersibility, and separation between the conductive particles and the dispersion medium can be made difficult.
  • the ⁇ a of the organic solvent (a) is, for example, 16.0 or less, and may be 15.0 or less.
  • the organic solvent (a) is an alcohol solvent, a urea solvent, an aprotic polar solvent, etc., which satisfies the above formulas (1) and (4), and has a relationship with the organic solvents (b) and (c). Examples include those that satisfy formula (6).
  • the alcohol solvent include compounds having one or more hydroxy groups, and among them, tertiary alcohols and hydroxyl group-containing ether solvents are preferred.
  • the alcoholic solvent may have two or more hydroxy groups.
  • the hydroxyl group-containing ether solvent include (poly)alkylene glycol monoalkyl ether represented by the above formula (A), an alkoxy group-substituted alcohol, and the like.
  • organic solvent (a) examples include pinacol ( ⁇ 10.7, boiling point 172°C), tetramethylurea ( ⁇ 10.6, boiling point 177°C), and 3-methoxybutanol ( ⁇ 10.6, boiling point 161°C). ), 1-methylcyclohexanol ( ⁇ 10.4, boiling point 155°C), and methyl carbitol (diethylene glycol monomethyl ether) ( ⁇ 10.7, boiling point 193°C).
  • the organic solvent (b) satisfies at least formula (2). That is, the boiling point Tb of the organic solvent (b) satisfies 150°C ⁇ Tb ⁇ 250°C, preferably 150°C ⁇ Tb ⁇ 250°C, more preferably 180°C ⁇ Tb ⁇ 248°C, and even more preferably 200°C ⁇ Tb. ⁇ 245°C.
  • the organic solvent (b) having a boiling point within the above range the dispersion medium is easily volatilized during sintering, and a sintered body can be easily formed. Further, by using the organic solvent (b) having a boiling point of 250° C. or lower, it is possible to suppress the generation of voids during sintering.
  • the organic solvent (b) satisfies at least formula (6).
  • the SP value ⁇ b of the organic solvent (b) is preferably 8.0 to 12.0, more preferably 8.5 to 11.0, even more preferably 9.0 to 10, within the range satisfying formula (6). It is .5.
  • the compatibility of the organic solvent (a) and the organic solvent (c) is improved, they tend to be difficult to separate, and the continuous discharge stability and storage stability tend to be better.
  • Organic solvents (b) include alcohol solvents, ester solvents, ketone solvents, amine solvents, etc., which satisfy formula (2), and which satisfy formula (6) in relation to organic solvents (a) and (c). ).
  • Examples of the alcoholic solvent include solvent compounds having one or more hydroxy groups, and among them, tertiary alcohols, hydroxyl group-containing ether solvents, and ester alcohols are preferred.
  • Examples of the hydroxyl group-containing ether solvent include (poly)alkylene glycol monoalkyl ether represented by the above formula (A), alkoxy group-substituted alcohol, and the like.
  • Ester alcohol is a compound having an ester bond and a hydroxyl group, and examples include (poly)alkylene glycol monoalkyl ether monoester.
  • ester solvent include diacetate of diol such as (poly)alkylene glycol.
  • ketone solvent cyclic ketones are preferred.
  • amine solvent an alkylamine is preferable.
  • the organic solvent (b) is selected on the premise that formula (6) is satisfied in relation to the organic solvents (a) and (c), and specifically, for example, d-Camphor ( camphor) ( ⁇ 10.4, boiling point 204°C), 1-heptanol ( ⁇ 10.0, boiling point 177°C), butyl carbitol (diethylene glycol monobutyl ether) ( ⁇ 10.2, boiling point 231°C), ethyl carbitol (diethylene glycol monoethyl ether) ( ⁇ 10.5, boiling point 196°C), tripropylene glycol monomethyl ether ( ⁇ 9.4, boiling point 243°C), ⁇ -terpineol ( ⁇ 9.3, boiling point 220°C), dihydroterpineol ( ⁇ 9.0, boiling point 210°C) ), 1,3-butanediol diacetate ( ⁇ 9.2, boiling point 232°C), propylene glycol diacetate ( ⁇ 9.3, boiling point 190°C), butyl carbitol
  • the boiling point Tb of the organic solvent (b) is higher than the boiling point Ta of the organic solvent (a), that is, Tb>Ta.
  • the temperature difference [Tb-Ta] between Tb and Ta is preferably 2°C or more, more preferably 5°C or more, even more preferably 10°C or more. When the temperature difference is 2° C. or more, the generation of voids during sintering can be further suppressed.
  • the organic solvent (c) satisfies at least formula (3). That is, the boiling point Tc of the organic solvent (c) satisfies 250°C ⁇ Tc ⁇ 350°C, preferably 250°C ⁇ Tc ⁇ 350°C, more preferably 250°C ⁇ Tc ⁇ 320°C, even more preferably 250°C ⁇ Tc. ⁇ 300°C.
  • the organic solvent (c) having a boiling point within the above range it is possible to suppress rapid volatilization of the organic solvent (a) and the organic solvent (b) during sintering, and to suppress the generation of voids.
  • the organic solvent (c) at least satisfies formula (5) [ ⁇ c ⁇ 9.0].
  • the SP value ⁇ c of the organic solvent (c) is 9.0 or less, preferably 8.7 or less, and more preferably 8.5 or less. When the above-mentioned ⁇ is 9.0 or less, generation of voids during sintering can be suppressed.
  • the ⁇ c of the organic solvent (c) is, for example, 6.0 or more, and may be 7.0 or more.
  • the organic solvent (c) is an ether solvent, an alkane solvent, an ester solvent, etc., which satisfies the above formulas (3) and (5), and has the formula in relation to the organic solvents (a) and (b). Examples include those that satisfy (6).
  • the ether solvent include (poly)alkylene glycol dialkyl ether.
  • the alkane solvent an alkane having 14 or more carbon atoms (for example, 14 to 20 carbon atoms) is preferable.
  • ester solvents include esters of (poly)alkylene glycol alkyl ether and fatty acids.
  • the organic solvent (c) includes, for example, dibutyl carbitol (diethylene glycol dibutyl ether) ( ⁇ 8.3, boiling point 255°C), tetradecane ( ⁇ 7.9, boiling point 254°C), hexadecane ( ⁇ 8.0, boiling point 287°C).
  • dibutyl carbitol diethylene glycol dibutyl ether
  • tetradecane ⁇ 7.9, boiling point 254°C
  • hexadecane ⁇ 8.0, boiling point 287°C
  • the boiling point Tc of the organic solvent (c) is higher than the boiling point Tb of the organic solvent (b), that is, Tc>Tb.
  • the temperature difference [Tc-Tb] between Tc and Tb is preferably 2°C or more, more preferably 6°C or more, even more preferably 10°C or more. When the temperature difference is 2° C. or more, the generation of voids during sintering can be further suppressed.
  • the boiling point Tc of the organic solvent (c) is higher than the boiling point Ta of the organic solvent (a), that is, Tc>Ta.
  • the temperature difference [Tc-Ta] between Tc and Ta is preferably 30°C or higher, more preferably 50°C or higher, and even more preferably 60°C or higher. When the temperature difference is 30° C. or more, the generation of voids during sintering can be further suppressed.
  • the SP value ⁇ a of the organic solvent (a), the SP value ⁇ b of the organic solvent (b), and the SP value ⁇ c of the organic solvent (c) have a relationship that satisfies the above formula (6) [ ⁇ c ⁇ b ⁇ a].
  • ⁇ b be higher than ⁇ c, that is, ⁇ c ⁇ b.
  • ⁇ a be higher than ⁇ b, that is, ⁇ b ⁇ a.
  • the difference between ⁇ b and ⁇ c [ ⁇ b ⁇ c] is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.5 or more.
  • the above difference is preferably 2.0 or less, more preferably 1.5 or less, still more preferably 1.3 or less.
  • the difference is 2.0 or less, the conductive particles and the dispersion medium are difficult to separate, resulting in better continuous discharge stability and storage stability.
  • the difference between ⁇ a and ⁇ b [ ⁇ a ⁇ b] is preferably 0.1 or more, more preferably 0.2 or more, and still more preferably 0.5 or more.
  • the above difference is preferably 2.5 or less, more preferably 2.0 or less, still more preferably 1.8 or less.
  • the difference is 2.5 or less, the conductive particles and the dispersion medium are difficult to separate, resulting in better continuous discharge stability and storage stability.
  • the difference [ ⁇ a ⁇ c] between ⁇ a and ⁇ c is 1.0 or more, preferably 1.5 or more, and more preferably 2.0 or more based on formulas (4) and (5).
  • the above difference is preferably 5.0 or less, more preferably 4.0 or less, still more preferably 3.0 or less.
  • the difference is 5.0 or less, the conductive particles and the dispersion medium are difficult to separate, resulting in better continuous discharge stability and storage stability.
  • Ratio of organic solvent (a) to 100% by mass of the total amount of organic solvent (a), organic solvent (b), and organic solvent (c) [organic solvent (a)/ ⁇ organic solvent (a) + organic solvent (b) )+organic solvent (c) ⁇ ] is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, even more preferably 15 to 50% by weight.
  • the ratio is within the above range, the dispersion medium is easily volatilized during sintering, a sintered body can be easily formed, and the dispersibility of the metal particles is more excellent.
  • Ratio of organic solvent (b) to 100% by mass of the total amount of organic solvent (a), organic solvent (b), and organic solvent (c) [organic solvent (b)/ ⁇ organic solvent (a) + organic solvent (b) )+organic solvent (c) ⁇ ] is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, even more preferably 15 to 50% by weight.
  • the ratio is within the above range, the compatibility of each organic solvent is excellent, and the continuous discharge stability and storage stability are also excellent.
  • Ratio of organic solvent (c) to 100% by mass of organic solvent (a), organic solvent (b), and organic solvent (c) [organic solvent (c)/ ⁇ organic solvent (a) + organic solvent (b) )+organic solvent (c) ⁇ ] is preferably 5 to 70% by weight, more preferably 10 to 60% by weight, even more preferably 15 to 50% by weight. When the ratio is within the above range, the generation of voids during sintering can be further suppressed.
  • the content of the organic solvent (c) per 100 parts by mass of the organic solvent (a) is preferably 20 to 400 parts by mass, more preferably 30 to 300 parts by mass, and even more preferably 50 to 200 parts by mass.
  • the blending amounts of the organic solvent (a) and the organic solvent (c) are well balanced, resulting in better void suppression properties and metal particle dispersibility during sintering.
  • the content of organic solvent (b) relative to 100 parts by mass of the total amount of organic solvent (a) and organic solvent (c) is preferably 10 to 200 parts by mass, more preferably 20 to 150 parts by mass, still more preferably 40 to 200 parts by mass. It is 100 parts by mass.
  • the compatibility between the organic solvent (a) and the organic solvent (c) is further improved, and continuous discharge stability and low-temperature storage stability are improved.
  • the dispersion medium may contain other solvents (organic solvents) other than the organic solvent (a), the organic solvent (b), and the organic solvent (c).
  • the total content of organic solvent (a), organic solvent (b), and organic solvent (c) in the dispersion medium is preferably 50% by mass or more, and more preferably
  • the content is preferably 70% by mass or more, more preferably 80% by mass or more, even more preferably 90% by mass or more, particularly preferably 95% by mass or more.
  • the content is 50% by mass or more, the dispersibility of the conductive particles and the compatibility of each organic solvent are excellent, and the continuous discharge stability, storage stability, and void formation suppression property during sintering are excellent.
  • organic solvent (a), organic solvent (b), and organic solvent (c) dissolves uniformly at room temperature and does not cause phase separation. Further, it is preferable that the organic solvent (a), organic solvent (b), and organic solvent (c) in the bonding conductor paste dissolve uniformly at room temperature and do not cause phase separation. In particular, it is preferable that phase separation does not occur at 22 to 28°C (preferably 10 to 30°C, more preferably 0 to 35°C).
  • the content of the hydroxyl group-containing ether solvent in the total amount (100% by mass) of the dispersion medium is preferably 10 to 60% from the viewpoint of dispersion stability of the conductive particles and volatility of the dispersion medium during sintering.
  • the amount is preferably 15 to 55% by weight, and even more preferably 25 to 45% by weight. It is preferable that the content of the hydroxyl group-containing ether solvent in the total 100% by mass of the organic solvent (a), organic solvent (b), and organic solvent (c) in the bonding conductor paste is within the above range.
  • an embodiment in which the dispersion medium is composed only of the hydroxyl group-containing ether solvent (100% by mass) is also preferable.
  • the content ratio of the hydroxyl group-containing ether solvent to 100 parts by mass of the conductive particles is preferably 1 to 15 parts by mass, more preferably 1.5 to 12 parts by mass, and even more preferably 2 to 10 parts by mass. When the content ratio is within the above range, the conductive particles have excellent dispersion stability and volatility during sintering.
  • the content ratio of the dispersion medium to 100 parts by mass of the conductive particles is preferably 4 to 20 parts by mass, more preferably 5 to 15 parts by mass, and still more preferably 6 to 12 parts by mass.
  • the conductive particles have excellent dispersion stability and volatility during sintering. It is preferable that the total content ratio of organic solvent (a), organic solvent (b), and organic solvent (c) to 100 parts by mass of the conductive particles is within the above range.
  • the bonding conductive paste of the present disclosure contains a urea compound as an essential component.
  • the bonding conductor paste of the present disclosure suppresses solvent bleeding and improves printing suitability when forming sintered bodies such as conductor wiring and bonded structures for connecting electronic devices. Can be done. Further, void generation during formation of the sintered body is suppressed, and sintered bodies such as conductor wiring and bonded structures having high bonding strength, and electronic devices equipped with these can be manufactured.
  • the urea compound is preferably a rheology control agent having a urea group (urea-based rheology control agent), and includes modified urea-based rheology control agents such as modified urea, urea-modified urethane, and polymeric urea derivatives, as well as urea-modified medium-polar polyamides and urea-modified low-polar polyamides.
  • modified urea-based rheology control agents such as modified urea, urea-modified urethane, and polymeric urea derivatives, as well as urea-modified medium-polar polyamides and urea-modified low-polar polyamides.
  • modified urea-based rheology control agents such as modified urea, urea-modified urethane, and polymeric urea derivatives, as well as urea-modified medium-polar polyamides and urea-modified low-polar polyamides.
  • examples include urea-mod
  • the urea compound forms a three-dimensional network structure in the bonding conductor paste containing the hydroxyl group-containing ether solvent in which the conductive particles are dispersed, due to the hydrogen bonding force and association effect due to the strong polarity of the urea group, and thickens the paste appropriately. It is thought that this suppresses solvent bleeding, prevents bumping of the solvent, and suppresses the generation of voids. From the viewpoint of more efficiently suppressing solvent bleeding and the generation of voids, modified urea, urea-modified urethane, and urea-modified polyamide are preferred. These urea compounds can be used alone or in combination of two or more.
  • Modified urea is a compound in which a main chain having one or more urea groups is copolymerized or a substituent has been introduced
  • urea-modified urethane is a compound in which a part of the main chain having one or more urea groups is a urethane chain.
  • Examples of compounds and urea-modified polyamides include compounds having one or more urea groups and a portion of the main chain being an amide chain.
  • polymeric urea derivative examples include urea derivatives having one or more urea groups and having a number average molecular weight of 1,000 to 70,000 in terms of polystyrene by GPC method.
  • compounds having two or more urea groups and a number average molecular weight of 3,000 to 70,000 as measured by GPC in terms of polystyrene are preferred.
  • the urea compound it is easy to stably form a three-dimensional network structure, and from the viewpoint of improving dispersibility, it is preferable to mix it with a solvent in advance to form a mixture with the urea compound.
  • the solvent is preferably selected from pyrrolidone derivatives, polyalkylene glycols, aliphatic alcohols, aromatic alcohols, glycol ethers, and hydrocarbon solvents, and more preferably pyrrolidone derivatives, polyalkylene glycols, amide ethers, and amide esters. It is preferable to select it from among these, and most preferably, it is a pyrrolidone derivative.
  • each urea compound can easily form a three-dimensional network structure stably, and the dispersibility can be easily improved. .
  • a pyrrolidone derivative when using modified urea, it is preferable to use a pyrrolidone derivative in consideration of improved dispersibility.
  • the pyrrolidone derivative include N-methylpyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, 2-pyrrolidone, etc., but in consideration of further improving dispersibility, it is preferable to use N-methylpyrrolidone.
  • polyalkylene glycol When using urea-modified urethane, it is similarly preferable to use polyalkylene glycol.
  • examples of the polyalkylene glycol include polyethylene glycol, polypropylene glycol, etc., but in consideration of further improving dispersibility, it is preferable to use polypropylene glycol.
  • aliphatic alcohols include methanol, ethanol, 1-propanol, 2-propanol, isopropanol, isobutanol, and t-butanol
  • glycol ethers include ethylene glycol monophenyl ether (monophenyl glycol) and propylene glycol monomethyl. Examples include ether, propylene glycol monoethyl ether, diethylene glycol dimethyl ether, 3-methoxybutanol, 3-methoxy-3-methylbutanol, etc.
  • Hydrocarbon solvents include benzene, toluene, xylene, solvent naphtha, octane, mineral spirit, etc. However, in consideration of further improving dispersibility, it is preferable to select from isopropanol, isobutanol, ethylene glycol monophenyl ether (monophenyl glycol), propylene glycol monomethyl ether, solvent naphtha, and mineral spirit. Considering this, it is preferable to use isopropanol, ethylene glycol monophenyl ether (monophenyl glycol), and solvent naphtha.
  • BYK-410 main component: modified urea
  • BYK-411 main component: modified urea
  • BYK-415 main component: polymeric urea derivative
  • BYK-420 main component: modified urea
  • BYK-425 main component: urea-modified urethane
  • BYK-430 main component: urea
  • BYK-431 main component: urea-modified low-polar polyamide
  • BYK-7420 main component: modified urea
  • the content ratio of the urea compound to 100 parts by mass of the hydroxyl group-containing ether solvent is preferably 3 to 50 parts by mass, more preferably 3.5 to 30 parts by mass, and still more preferably 4 to 20 parts by mass. It is considered that when the content ratio is 3 parts by mass or more, a three-dimensional network structure is formed in the bondable conductive paste, the viscosity increases appropriately, solvent bleeding is suppressed, and printing suitability is improved. Further, it is considered that when the above-mentioned content ratio is 50 parts by mass or less, sintering inhibition caused by the urea compound remaining to cover the entire silver particle is suppressed, and high bonding strength is exhibited.
  • the above-mentioned content ratio is within the above-mentioned range, solvent bleeding can be suppressed, and printing suitability can be improved when forming sintered bodies such as conductor wiring and bonded structures for connecting electronic devices. .
  • the generation of voids during the formation of the sintered body is suppressed, and sintered bodies such as conductor wiring and bonded structures having high bonding strength, as well as electronic devices equipped with these, can be manufactured.
  • the content ratio of the urea compound to 100 parts by mass of the entire dispersion medium containing the hydroxyl group-containing ether solvent is preferably 1 to 20 parts by mass, more preferably 2 to 15 parts by mass, and even more preferably 3 to 12 parts by mass. . It is thought that when the content ratio is 1 part by mass or more, a three-dimensional network structure is formed in the bondable conductive paste, the viscosity increases appropriately, solvent bleeding is suppressed, and printing suitability is improved. Furthermore, it is considered that when the above-mentioned content ratio is 20 parts by mass or less, sintering inhibition caused by the urea compound remaining to cover the entire silver particle is suppressed, and high bonding strength is exhibited.
  • the content ratio is within the above range, solvent bleeding can be suppressed and printing suitability can be improved when forming sintered bodies such as conductor wiring and bonded structures for connecting electronic devices. . Further, void generation during formation of the sintered body is suppressed, and sintered bodies such as conductor wiring and bonded structures having high bonding strength, and electronic devices equipped with these can be manufactured. Further, it is preferable that the content ratio of the urea compound to a total of 100 parts by mass of the organic solvent (a), organic solvent (b), and organic solvent (c) in the bonding conductor paste is within the above range.
  • the content ratio of the urea compound to 100 parts by mass of the conductive particles is preferably 0.1 to 2 parts by mass, more preferably 0.2 to 1.5 parts by mass, and even more preferably 0.3 to 1.2 parts by mass. Department. It is thought that when the content ratio is 0.1 parts by mass or more, a three-dimensional network structure is formed in the bondable conductive paste, the viscosity increases appropriately, solvent bleeding is suppressed, and printing suitability is improved. Furthermore, it is considered that when the above-mentioned content ratio is 2 parts by mass or less, sintering inhibition caused by the urea compound remaining to cover the entire silver particle is suppressed, and high bonding strength is exhibited.
  • the content ratio is within the above range, solvent bleeding can be suppressed and printing suitability can be improved when forming sintered bodies such as conductor wiring and bonded structures for connecting electronic devices. . Further, void generation during formation of the sintered body is suppressed, and sintered bodies such as conductor wiring and bonded structures having high bonding strength, and electronic devices equipped with these can be manufactured. Further, it is preferable that the content ratio of the urea compound to a total of 100 parts by mass of the organic solvent (a), organic solvent (b), and organic solvent (c) in the bonding conductor paste is within the above range.
  • the content ratio of the urea compound to 100 parts by mass of the conductive particles and the dispersion medium is preferably 0.09 to 1.8 parts by mass, more preferably 0.15 to 1.4 parts by mass, and even more preferably 0. .25 to 1.1 parts by mass. It is thought that when the content ratio is 0.09 parts by mass or more, a three-dimensional network structure is formed in the bondable conductive paste, the viscosity increases appropriately, solvent bleeding is suppressed, and printing suitability is improved. Furthermore, it is considered that when the above-mentioned content ratio is 1.8 parts by mass or less, sintering inhibition caused by the urea compound remaining to cover the entire silver particle is suppressed, and high bonding strength is exhibited.
  • the content ratio of the conductive particles in the bonding conductive paste is preferably 70 to 99.5% by mass, more preferably 80 to 98% by mass, even more preferably is 85 to 95% by mass.
  • the content ratio is within the above range, the dispersibility of the conductive particles is excellent, and the continuous discharge stability and storage stability are also excellent.
  • the total content of the conductive nanoparticles (A), spherical conductive particles (B), and flat conductive flakes (C) in the bonding conductive paste is within the above range.
  • the content of the dispersion medium (particularly organic solvent) in the bonding conductor paste is preferably 0.5 to 30% by mass, more preferably 2 to 20% by mass, based on 100% by mass of the total amount of the bonding conductor paste. %, more preferably 5 to 15% by mass.
  • the content ratio is within the above range, the dispersibility of the conductive particles is better.
  • the total content ratio of the organic solvent (a), the organic solvent (b), and the organic solvent (c) in the bonding conductor paste is within the above range.
  • the content of the hydroxyl group-containing ether solvent in the bonding conductor paste is preferably 0.5 to 15% by mass, more preferably 1 to 13% by mass, based on 100% by mass of the total amount of the bonding conductor paste. More preferably, it is 2 to 12% by mass. When the content ratio is within the above range, the dispersibility of the conductive particles and the volatility during sintering are better.
  • the total content of the conductive particles and the dispersion medium in the bonding conductive paste is preferably 70% by mass or more, more preferably 80% by mass or more, based on 100% by mass of the total amount of the bonding conductor paste.
  • the content is preferably 90% by mass or more, particularly preferably 95% by mass or more.
  • the content of the urea compound in the bonding conductor paste is preferably 0.09 to 1.8% by mass, more preferably 0.15 to 1.4% by mass, based on 100% by mass of the total amount of the bonding conductor paste. % by mass, more preferably 0.25 to 1.1% by mass. It is thought that when the content is 0.09% by mass or more, a three-dimensional network structure is formed in the bondable conductive paste, the viscosity increases appropriately, solvent bleeding is suppressed, and printing suitability is improved. Further, it is considered that when the content ratio is 1.8% by mass or less, sintering inhibition caused by the urea compound remaining to cover the entire silver particle is suppressed, and high bonding strength is exhibited.
  • the above-mentioned bonding conductive paste may contain other components than the metal particles, the dispersion medium, and the urea compound.
  • the bonding conductive paste may contain, for example, an adhesive or an additive (for example, a polymer compound having a molecular weight of 10,000 or more, such as an epoxy resin, a silicone resin, or an acrylic resin).
  • an adhesive or an additive for example, a polymer compound having a molecular weight of 10,000 or more, such as an epoxy resin, a silicone resin, or an acrylic resin.
  • the content thereof is, for example, 10% by mass or less, preferably 5% by mass or less, more preferably 3% by mass or less, particularly preferably 1% by mass or less, based on the total amount of 100% by mass of the bondable conductor paste. It is.
  • the non-conductive component derived from the polymer compound does not inhibit the interaction between conductive particles or between conductive particles and the substrate, so that conductive wiring with excellent conductivity can be achieved.
  • Bonded structure electrical resistance value is, for example, 10 ⁇ 10 -6 ⁇ cm or less, preferably 9.0 ⁇ 10 -6 ⁇ cm or less, more preferably 8.5 ⁇ 10 -6 ⁇ cm or less, and It is preferably 7.0 ⁇ 10 ⁇ 6 ⁇ cm or less.
  • the bonding conductor paste of the present disclosure contains a urea compound as a rheology control agent to form a three-dimensional network structure in the bonding conductor paste and increase its viscosity appropriately, thereby suppressing solvent bleeding and preventing solvent volatilization. It is thought that the formation of voids is suppressed by promoting the formation of voids. Therefore, solvent bleeding is suppressed, and printing suitability can be improved when forming sintered bodies such as conductor wiring and bonded structures for connecting electronic devices. In addition, the generation of voids during the formation of the sintered body is suppressed, and sintered bodies such as conductor wiring and bonded structures having high bonding strength, as well as electronic devices equipped with these, can be manufactured.
  • the bondable conductive paste of the present disclosure is applied to a substrate by a printing method (specifically, a dispenser printing method, a mask printing method, a screen printing method, an inkjet printing method, etc.), and then sintered to form a sintered body. It is possible to form conductive wiring and bonded structures. Among these, it is preferable to print the bonding conductive paste by a dispenser printing method from the viewpoint of excellent continuous discharge stability.
  • the above sintering temperature is, for example, 150°C or more and less than 300°C, preferably 170 to 250°C. Further, the sintering time is, for example, 0.1 to 2 hours, preferably 0.5 to 1 hour.
  • the above sintering may be performed in an air atmosphere, a nitrogen atmosphere, an argon atmosphere, etc. However, it is economical to perform the sintering in an air atmosphere, and the conductor wiring has a lower electrical resistance value. This is preferable in that a bonded structure can be obtained.
  • the thickness of the bonding conductive paste applied to the substrate is such that the thickness of the conductor wiring or bonded structure formed by the above method is, for example, 15 to 400 ⁇ m, preferably 20 to 250 ⁇ m, more preferably 40 to 200 ⁇ m. This is the range.
  • Examples of the substrate for forming conductor wiring and bonded structures include ceramic substrates, SiC substrates, gallium nitride substrates, metal substrates, glass epoxy substrates, BT resin substrates, glass substrates, and resin substrates.
  • the shape of the conductor wiring and the bonded structure is not particularly limited as long as it is a shape that allows connection of electronic elements.
  • a sintered body (for example, a conductor wiring or a bonded structure) formed on a substrate using the above-mentioned bonding conductive paste is produced by densely gathering conductive particles through sintering and melting them together. , can exhibit excellent bonding strength to the substrate, for example, the bonding strength (according to JIS Z3198) when bonding a silver-plated copper substrate and a silver-plated Si chip is preferably 30 MPa. More preferably, it is 40 MPa or more.
  • the void ratio measured using an ultrasonic imaging device (SAT) in a sintered body (e.g., conductor wiring or bonded structure) formed on a substrate using the above-mentioned bonding conductive paste is 30% or less. is preferable, more preferably 15% or less, still more preferably less than 8%.
  • the void ratio is 30% or less, the bonding strength becomes higher.
  • a high void ratio indicates that there are many voids at the bonding interface, etc., and it is thought that the heat transfer area between the bonded body and the bonded part decreases.
  • the void ratio can be measured by the method described in Examples.
  • the above-mentioned bonding conductive paste has the above-mentioned characteristics, it can be preferably used, for example, for the purpose of manufacturing electronic components (for example, power semiconductor modules, LED modules, etc.) using a printing method.
  • electronic components for example, power semiconductor modules, LED modules, etc.
  • the average particle diameter (median diameter) of the conductive nanoparticles (A) was measured by the following method.
  • the suspension containing the surface-modified silver nanoparticles prepared in Preparation Example 1 was observed using a transmission electron microscope. Observation was carried out at 100,000 times magnification in 4 fields of view x 50 pieces. In addition, the observation locations were selected as locations where large and small particles coexist.
  • the number and particle size distribution was determined by analyzing the images. This number particle size distribution was converted into a volume particle size distribution using a known conversion formula and assuming that the particles had an aspect ratio of 1.
  • the average particle diameter (median diameter) was determined from this particle size distribution and was defined as the average particle diameter of the conductive nanoparticles (A).
  • the metal particles, solvent, and urea compound used are as follows.
  • ⁇ DHTP Dihydroterpineol, ⁇ 9.0, boiling point 210°C, manufactured by Yasuhara Chemical Co., Ltd.
  • solvent (III) Low polarity solvent
  • ⁇ DBC dibutyl carbitol, ⁇ 8.3, boiling point 255°C, manufactured by Tokyo Chemical Industry Co., Ltd.
  • urea compound ⁇ BYK-430: Product name "BYK-430", manufactured by BYK-Chemie Japan Co., Ltd., main component: urea-modified medium polar polyamide
  • ⁇ BYK-420 product name "BYK-420", manufactured by BYK-Chemie Japan Co., Ltd., main component: modified urea
  • Preparation Example 1 (Preparation of surface-modified silver nanoparticles) Silver oxalate (molecular weight: 303.78) was obtained from silver nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) and oxalic acid dihydrate (manufactured by Wako Pure Chemical Industries, Ltd.). A 500 mL flask was charged with 40.0 g (0.1317 mol) of the silver oxalate, and 60 g of n-butanol was added thereto to prepare an n-butanol slurry of silver oxalate.
  • Example 1 (Preparation of bondable conductor paste)
  • Product name "41-104" 25.50g
  • AG-2-8F 59.50g
  • tetramethylurea 3.40g
  • tripropylene glycol methyl ether 3.40g
  • BYK-420 (0 .6 g) was added thereto and mixed using a rotation/revolution mixer (manufactured by THINKY Co., Ltd., ARE-310) to prepare liquid A.
  • the boards and equipment used are as follows.
  • [substrate] ⁇ Silver plating base material (manufactured by Nippon Test Panel Co., Ltd.)
  • Substrate Copper (1.0mm x 9mm x 60mm)
  • Base Electroless nickel plating (5 ⁇ m)
  • Top surface Semi-bright silver plating (1.0 ⁇ m) ⁇ Silicon chip (manufactured by Yamanaka Hutech Co., Ltd.) Silicon (0.525mm x 3mm x 3mm)
  • Base Titanium 500nm sputter
  • Top surface Silver 2 ⁇ m sputter [Equipment] ⁇ Sintering furnace (reflow furnace) RSS-450-210-FA (manufactured by UNITEMP)
  • Figure 1(a) shows a SAT image of the surface of the sintered body after measuring the die shear strength of the sample manufactured in Example 3
  • Figure 1(b) shows the SAT image of the sintered body after measuring the die shear strength of the sample manufactured in Comparative Example 2.
  • a SAT image of the surface is shown. In Example 3, no voids were observed, whereas in Comparative Example 2, many voids were observed.
  • the bonding conductive paste of the example contains conductive particles and a dispersion medium containing tripropylene glycol monomethyl ether as a hydroxyl group-containing ether solvent, and further contains a predetermined amount of a urea compound.
  • the printing evaluation no chipping or bleeding was observed, indicating excellent printing suitability, and the SAT evaluation also showed low void generation and excellent bonding strength.
  • Comparative Example 1 which does not contain a urea compound, exhibited low void generation and excellent bonding strength in the SAT evaluation, but bleeding was observed in the printing evaluation.
  • Comparative Example 2 which contains a predetermined amount of urea compound but does not contain a hydroxyl group-containing ether solvent as a dispersion medium, showed excellent bonding strength, but chipping and bleeding were observed in the printing evaluation, and 30% or more A void rate of 100% was observed. Furthermore, in Comparative Example 3 containing a urea compound exceeding a predetermined amount, chipping and bleeding were observed in the printing evaluation, and no sintering occurred in the die shear strength test. It was thought that the excess urea compound coated the silver particles and inhibited sintering. Comparative Example 4, which contained less than the predetermined amount of urea compound, showed low void generation and excellent bonding strength in the SAT evaluation, but bleeding was observed in the printing evaluation.
  • [Appendix 1] Contains conductive particles, a dispersion medium containing a hydroxyl group-containing ether solvent, and a urea compound,
  • the content ratio of the urea compound to 100 parts by mass of the entire dispersion medium containing the hydroxyl group-containing ether solvent is 1 to 20 parts by mass (preferably 2 to 15 parts by mass, more preferably 3 to 12 parts by mass), conductor paste.
  • [Appendix 2] Contains conductive particles, a dispersion medium containing a hydroxyl group-containing ether solvent, and a urea compound, The content ratio of the urea compound to 100 parts by mass of the conductive particles is 0.1 to 2 parts by mass (preferably 0.2 to 1.5 parts by mass, more preferably 0.3 to 1.2 parts by mass). There is a bonding conductor paste.
  • the content ratio of the urea compound to 100 parts by mass of the hydroxyl group-containing ether solvent is 3 to 50 parts by mass (preferably 3.5 to 30 parts by mass, more preferably 4 to 20 parts by mass).
  • the bondable conductive paste according to Supplementary Note 1 or 2.
  • the content ratio of the urea compound to 100 parts by mass of the conductive particles and the dispersion medium is 0.09 to 1.8 parts by mass (preferably 0.15 to 1.4 parts by mass, more preferably 0.15 to 1.4 parts by mass). 0.25 to 1.1 parts by mass), the bonding conductive paste according to any one of Supplementary Notes 1 to 3.
  • the content of the urea compound relative to the total amount of 100% by mass of the bonding conductive paste is 0.09 to 1.8% by mass (preferably 0.15 to 1.4% by mass, more preferably 0.25% by mass) ⁇ 1.1% by mass), the bonding conductive paste according to any one of Supplementary Notes 1 to 4.
  • the urea compound is at least one selected from the group consisting of modified urea, urea-modified urethane, polymeric urea derivatives, and urea-modified polyamides (for example, urea-modified medium polar polyamide, urea-modified low polar polyamide, etc.)
  • the bondable conductive paste according to any one of Supplementary Notes 1 to 5, which is.
  • the conductive particles include conductive nanoparticles (A) with an average particle diameter of 1 nm or more and less than 100 nm (preferably 2 to 80 nm, more preferably 5 to 70 nm, even more preferably 10 to 60 nm), 8.
  • the protective agent in the conductive nanoparticles (A) is an amine
  • An aliphatic hydrocarbon monoamine (1) consisting of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms in the aliphatic hydrocarbon group is 6 or more
  • an aliphatic hydrocarbon monoamine (2) consisting of an aliphatic hydrocarbon group and one amino group, and the total number of carbon atoms in the aliphatic hydrocarbon group is 5 or less
  • the bondable conductor paste according to Supplementary Note 8 comprising at least one of the aliphatic hydrocarbon diamines (3) consisting of and in which the total number of carbon atoms in the aliphatic hydrocarbon group is 8 or less.
  • the upper limit is: (preferably 90 mol%, more preferably 85 mol%) [Appendix 11]
  • the respective contents of monoamine (2) and diamine (3) are the total amount of amine [monoamine (1) + monoamine (2) + diamine (3)]. ); 100 mol%], the bonding conductive paste according to appendix 9, which is in the following range.
  • Monoamine (2) 5 to 70 mol% (the lower limit is preferably 10 mol%, more preferably 15 mol%.
  • the upper limit is preferably 65 mol%, more preferably 60 mol%)
  • the conductive particles include spherical conductive particles (B) having an average particle diameter of 0.5 ⁇ m or more and 1 ⁇ m or less (preferably 0.6 to 0.9 ⁇ m). , and flat conductive flakes (C) having an average particle diameter of 1 ⁇ m or more and 10 ⁇ m or less (preferably 2 to 5 ⁇ m), the bonding conductive paste according to any one of Supplementary Notes 8 to 11.
  • the proportion of the conductive nanoparticles (A) is 50% by mass or less (preferably 30% by mass or less, more The bondable conductive paste according to any one of Supplementary Notes 8 to 12, which is preferably 20% by mass or less.
  • the proportion of the conductive nanoparticles (A) is 5% by mass or more (preferably 10% by mass or more) of the total amount (100% by mass) of the conductive particles contained in the bonding conductive paste.
  • the content of spherical conductive particles (B) is 30% by mass or more (preferably 40% by mass or more, more The bonding conductive paste according to any one of Supplementary Notes 12 to 14, wherein the bonding conductive paste is preferably more than 50% by mass) and 85% by mass or less (preferably 80% by mass or less, more preferably 70% by mass or less).
  • the content of flat conductive flakes (C) is 10% by mass or more (preferably 15% by mass or more) of the total amount of conductive particles (100% by mass) contained in the bondable conductive paste. and 65% by mass or less (preferably 50% by mass or less, more preferably 40% by mass or less), the bonding conductive paste according to any one of Supplementary Notes 12 to 15.
  • the total content of the conductive nanoparticles (A), spherical conductive particles (B), and flat conductive flakes (C) in the total amount (100% by mass) of the bonding conductive paste is Supplementary note 12, which is 70% by mass or more (preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more) and 99.5% by mass or less (preferably 99% by mass or less). 16.
  • the bonding conductive paste according to any one of items 1 to 16.
  • the boiling point (at 1 atm) of the hydroxyl group-containing ether solvent is 130°C or higher (for example, 130 to 300°C, preferably 140 to 280°C, more preferably 150 to 260°C, even more preferably 160 to 240°C).
  • the vapor pressure at 30°C of the hydroxyl group-containing ether solvent is 0.01 to 10.0 mmHg (preferably 0.05 to 8.0 mmHg, more preferably 0.1 to 6.0 mmHg, even more preferably 0.3 to 4.0 mmHg), the bondable conductive paste according to any one of Supplementary Notes 1 to 18.
  • the viscosity of the hydroxyl group-containing ether solvent at 25°C and a shear rate of 10 s -1 is 0.1 to 20 mPa ⁇ s (preferably 0.5 to 10 mPa ⁇ s, more preferably 1 to 9 mPa ⁇ s,
  • the hydroxyl group-containing ether solvent has the following formula (A) R a -O-(R b -O) n -OH (A) (In formula (A), R a represents an alkyl group, an aryl group, or an aralkyl group, and R b represents an alkylene group having 1 to 6 carbon atoms. n represents an integer of 1 or more).
  • the compound represented by the formula (A) has a boiling point of 130°C or higher (for example, 130 to 310°C, preferably 170°C or higher, more preferably 200°C or higher), according to Supplementary Note 21.
  • Bondable conductor paste [Additional Note 23] Additional Note 1, wherein the dispersion medium is a mutually different compound and contains an organic solvent (a), an organic solvent (b), and an organic solvent (c) that satisfy the following formulas (1) to (6).
  • the bonding conductive paste according to any one of items 1 to 22.
  • Ta to Tc represent the boiling points of the organic solvents (a) to (c), respectively, and ⁇ a to ⁇ c represent the Hansen solubility parameters of the organic solvents (a) to (c), respectively.
  • the boiling point Ta of the organic solvent (a) satisfies 150°C ⁇ Ta ⁇ 250°C (preferably 155°C ⁇ Ta ⁇ 220°C, more preferably 160°C ⁇ Ta ⁇ 200°C). The bondable conductor paste described.
  • the SP value ⁇ b of the organic solvent (b) is 8.0 to 12.0 (preferably 8.5 to 11.0, more preferably 9.0 to 10.5), Additional Note 23 to 27.
  • [Appendix 33] The bonding according to any one of Appendices 23 to 32, wherein the temperature difference between Tc and Tb [Tc-Tb] is 2°C or more (preferably 6°C or more, more preferably 10°C or more) conductor paste.
  • [Appendix 34] The bonding according to any one of Appendices 23 to 33, wherein the temperature difference between Tc and Ta [Tc-Ta] is 30°C or more (preferably 50°C or more, more preferably 60°C or more) conductor paste.
  • [Appendix 35] The bondable conductive paste according to any one of Appendices 23 to 34, which satisfies ⁇ c ⁇ b.
  • [Appendix 36] The bondable conductive paste according to any one of Appendices 23 to 35, which satisfies ⁇ b ⁇ a.
  • the difference between ⁇ b and ⁇ c [ ⁇ b ⁇ c] is 0.1 or more (preferably 0.2 or more, more preferably 0.5 or more), as described in any one of Supplementary notes 23 to 36. bondable conductor paste.
  • the difference between ⁇ b and ⁇ c [ ⁇ b ⁇ c] is 2.0 or less (preferably 1.5 or less, more preferably 1.3 or less), as described in any one of Appendices 23 to 37. bondable conductor paste.
  • Ratio of organic solvent (b) to 100% by mass of the total amount of organic solvent (a), organic solvent (b), and organic solvent (c) [organic solvent (b)/ ⁇ organic solvent (a) + Organic solvent (b) + organic solvent (c) ⁇ ] is 5 to 70% by mass (preferably 10 to 60% by mass, more preferably 15 to 50% by mass), any one of Supplementary notes 23 to 43.
  • Ratio of organic solvent (c) to 100% by mass of the total amount of organic solvent (a), organic solvent (b), and organic solvent (c) [organic solvent (c)/ ⁇ organic solvent (a) + Organic solvent (b) + organic solvent (c) ⁇ ] is 5 to 70% by mass (preferably 10 to 60% by mass, more preferably 15 to 50% by mass), any one of Supplementary notes 23 to 44.
  • the content of the organic solvent (c) relative to 100 parts by mass of the organic solvent (a) is 20 to 400 parts by mass (preferably 30 to 300 parts by mass, more preferably 50 to 200 parts by mass). 23.
  • the content of organic solvent (b) is 10 to 200 parts by mass (preferably 20 to 150 parts by mass, more preferably 40 parts by mass) with respect to 100 parts by mass of the total amount of organic solvent (a) and organic solvent (c). ⁇ 100 parts by mass), the bonding conductive paste according to any one of appendices 23 to 46.
  • the content of the hydroxyl group-containing ether solvent in the total amount (100 mass%) of the dispersion medium is 10 to 60 mass% (preferably 15 to 55 mass%, more preferably 25 to 45 mass%).
  • the content of the conductive particles is 70 to 99.5% by mass (preferably 80 to 98% by mass, more preferably 85 to 95% by mass) with respect to the total amount of 100% by mass of the bonding conductive paste. , the bonding conductive paste according to any one of Supplementary Notes 1 to 51.
  • the content of the dispersion medium is 0.5 to 30 mass % (preferably 2 to 20 mass %, more preferably 5 to 15 mass %) with respect to the total amount of 100 mass % of the above-mentioned bonding conductor paste. %), the bonding conductive paste according to any one of Supplementary Notes 1 to 52.
  • the content of the hydroxyl group-containing ether solvent based on 100% by mass of the total amount of the bonding conductive paste is 0.5 to 15% by mass (preferably 1 to 13% by mass, more preferably 2 to 12% by mass).
  • the total content of the dispersion medium with respect to the total amount of the bonding conductive paste (100% by mass) is 70% by mass or more (preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass) above), the bonding conductive paste according to any one of Supplementary Notes 1 to 54.
  • the bonding strength (according to JIS Z3198) when a silver-plated copper substrate and a silver-plated Si chip are bonded via the sintered body of the bondable conductive paste is 30 MPa or more ( The bondable conductive paste according to any one of Supplementary Notes 1 to 55, which has a pressure of preferably 40 MPa or higher.
  • Appendix 58 A sintered body obtained by sintering the bondable conductive paste according to any one of Appendices 1 to 57.
  • [Additional Note 59] A bonded structure joined with a sintered body obtained by sintering the bondable conductive paste according to any one of Appendices 1 to 57.
  • Appendix 60 An electronic device comprising the sintered body according to Appendix 58.
  • the bonding conductive paste of the present disclosure is suitable for use in forming conductor wiring and bonding structures for connecting electronic devices such as power semiconductor devices and LED devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)

Abstract

本開示は、溶剤滲みを低減して印刷適正を向上し、ボイドの発生を低減して接合性を向上することができる接合性導体ペーストを提供することを目的とする。 本開示の接合性導体ペーストは、導電性粒子と、水酸基含有エーテル系溶剤を含む分散媒と、ウレア化合物とを含有する。前記水酸基含有エーテル系溶剤を含む分散媒全体100質量部に対する前記ウレア化合物の含有割合は、1~20質量部であるか、又は、前記導電性粒子100質量部に対する前記ウレア化合物の含有割合は、0.1~2質量部である。

Description

接合性導体ペースト
 本開示は、電子素子を接続するための、例えば導体配線および接合構造体等の焼結体を形成するのに適する接合性導体ペーストに関する。本開示は、より具体的には、パワー半導体素子、LED素子などの電子素子を接続するための導体配線や接合構造体を形成する用途に適する接合性導体ペーストに関する。本願は、2022年9月14日に日本に出願した特願2022-146294の優先権を主張し、その内容をここに援用する。
 パワー半導体素子、LED素子などの電子素子を実装する際には複数の材料間を高強度に接合する必要があり、そのために導体配線や接合構造体、あるいはこれらを備えた配線基板が用いられる。
 上記導体配線の形成方法としては、例えば、導電性粒子および有機溶剤を含む導体ペーストを印刷法によって絶縁基板の上に塗布し、その後、焼結することにより導体配線を製造する方法が知られている。
 例えば、特許文献1には、導電性粒子と特定のエーテル系溶剤とを含む接合性導体ペーストが開示されている。当該接合性導体ペーストを使用することで、ムラ無く印字することができ、基板と電子素子とを高い接合強度で接続可能な高精度の導体配線や接合構造体を形成することができると記載されている。
特開2020-194786号公報
 しかしながら、エーテル系溶剤を用いた導体ペーストは基板への濡れ性は良好であるものの、溶剤滲みができやすく、印刷欠陥が生じる場合があった。また、10mm四方以上の大面積チップでは溶剤の揮発が不十分になり、ボイドが発生して接合性が低下する場合があった。
 従って、本開示の目的は、溶剤滲みを低減して印刷適正を向上し、ボイドの発生を低減して接合性を向上することができる接合性導体ペーストを提供することにある。
 本開示の発明者らは、上記課題を解決するため鋭意検討した結果、導電性粒子と、水酸基含有エーテル系溶剤と、ウレア化合物とを含有する接合性導体ペーストによれば、溶剤滲みが抑制されて印刷適正が向上し、焼結体形成時のボイド発生を抑制して接合性を向上することができることを見出した。本開示は、これらの知見に基づいて完成されたものに関する。
 すなわち、本開示は、導電性粒子と、水酸基含有エーテル系溶剤を含む分散媒と、ウレア化合物とを含有し、
前記水酸基含有エーテル系溶剤を含む分散媒全体100質量部に対する前記ウレア化合物の含有割合は、1~20質量部である、接合性導体ペーストに関する。
 また、本開示は、導電性粒子と、水酸基含有エーテル系溶剤を含む分散媒と、ウレア化合物とを含有し、
前記導電性粒子100質量部に対する前記ウレア化合物の含有割合は、0.1~2質量部である、接合性導体ペーストに関する。
 前記接合性導体ペーストにおいて、前記水酸基含有エーテル系溶剤が、下記式(A)
   Ra-O-(Rb-O)n-OH   (A)
(式(A)中、Raはアルキル基、アリール基又はアラルキル基を示し、Rbは炭素数1~6のアルキレン基を示す。nは1以上の整数を示す)で表される化合物を含んでいてもよい。
 前記接合性導体ペーストにおいて、前記ウレア化合物は、変性ウレア、ウレア変性ウレタン、高分子ウレア誘導体、及びウレア変性ポリアマイドからなる群から選ばれる少なくとも1種であってもよい。
 前記接合性導体ペーストにおいて、前記導電性粒子は銀粒子を含んでいてもよい。
 前記接合性導体ペーストにおいて、前記導電性粒子は、平均粒子径が1nm以上100nm未満の導電性ナノ粒子(A)を含んでいてもよく、
 前記導電性ナノ粒子(A)は、アミンを含む保護剤で表面が被覆された構成を有する導電性ナノ粒子であってもよい。
 前記接合性導体ペーストにおいて、前記接合性導体ペーストに含まれる前記導電性粒子全量(100質量%)のうち、前記導電性ナノ粒子(A)の割合は50質量%以下であってもよい。
 前記接合性導体ペーストにおいて、前記導電性ナノ粒子(A)における保護剤は、アミンとして、
 脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(1)を含み、
 さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(2)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(3)のうちの少なくとも一方を含んでいてもよい。
 前記接合性導体ペーストにおいて、前記導電性粒子が、前記導電性ナノ粒子(A)以外に、平均粒子径が0.5μm以上1μm以下の球状導電性粒子(B)、及び平均粒子径が1μm以上10μm以下の扁平状導電性フレーク(C)を含んでいてもよい。
 前記接合性導体ペーストにおいて、前記接合性導体ペースト全量(100質量%)における、前記導電性ナノ粒子(A)、球状導電性粒子(B)、及び扁平状導電性フレーク(C)の合計の含有量が80~99.5重量%であってもよい。
 前記接合性導体ペーストにおいて、前記分散媒が、互いに異なる化合物であり、下記式(1)~(6)を満たす、有機溶剤(a)、有機溶剤(b)、及び有機溶剤(c)を含んでいてもよい。
 150℃≦Ta≦250℃ (1)
 150℃≦Tb≦250℃ (2)
 250℃≦Tc≦350℃ (3)
 δa≧10.0      (4)
 δc≦9.0       (5)
 δc≦δb≦δa     (6)
[式中、Ta~Tcはそれぞれ有機溶剤(a)~(c)の沸点を示し、δa~δcはそれぞれ有機溶剤(a)~(c)のハンセン溶解度パラメータを示す。]
 また、本開示は、接合性導体ペーストを焼結した、焼結体に関する。
 また、本開示は、接合性導体ペーストを焼結した焼結体で接合された接合構造体に関する。
 本開示の接合性導体ペーストによれば、溶剤滲みが抑制され、焼結体形成時のボイド発生を抑制することができる。このため、上記接合性導体ペーストを使用して、電子素子を接続するための導体配線、接合構造体等の焼結体を形成する際の印刷適正が向上し、また、ボイドが発生しにくいため、高い接合強度を有する導体配線、接合構造体等の焼結体、およびこれらを備えた電子デバイスを作製することができる。
図1(a)は、実施例3で作製した試料におけるダイシェア強度測定後の焼結体表面のSAT画像を、図1(b)は、比較例2で作製した試料におけるダイシェア強度測定後の焼結体表面のSAT画像である。 図2(a)は、実施例3で作製した試料におけるダイシェア強度測定後の焼結体断面のSEM画像を、図2(b)は、比較例2で作製した試料におけるダイシェア強度測定後の焼結体断面のSEM画像である。
[接合性導体ペースト]
 本開示の接合性導体ペーストは、導体を形成し、当該導体により部材同士を接合することが可能なペースト状組成物である。上記接合性導体ペーストは、例えば、電子素子を接続するための焼結体(例えば、導体配線、接合構造体)を形成するための接合性導体ペーストである。
 上記接合性導体ペーストは、導電性粒子と、水酸基含有エーテル系溶剤を含む分散媒と、ウレア化合物とを含む。上記接合性導体ペーストにおいて、導電性粒子は上記分散媒に分散している。
(導電性粒子)
 前記導電性粒子は、上記接合性導体ペーストを焼結することにより融合し、導電性の焼結体を形成するための粒子である。前記導電性粒子を構成する導電性物質としては、導電性を有するものである限り特に限定されず、例えば、金属、金属酸化物、表面が金属被覆された不導体、半導体粒子などを使用することができる。
 前記導電性粒子を構成する金属としては、導電性を有する金属が挙げられ、例えば、金、銀、銅、ニッケル、アルミニウム、ロジウム、コバルト、ルテニウム、プラチナ、パラジウム、クロム、インジウム、及びこれらの合金などが挙げられる。前記導電性粒子を構成する金属酸化物としては、導電性を有する金属酸化物が挙げられ、例えば、酸化クロム、酸化ニッケル、酸化銅、酸化チタン、酸化ジルコニウム、酸化インジウム、酸化アルミニウム、酸化亜鉛、酸化スズ、又は、これらの複合酸化物、例えば、酸化インジウムと酸化スズとの複合酸化物(ITO)、酸化スズと酸化リンとの複合酸化物子(PTO)等が挙げられる。これら導電性物質は、単独または2種以上組み合わせて使用することができる。上記導電性物質としては、導電性に優れる金属がより好ましく、金、銀、銅等がより好ましく、中でも、100℃程度の温度で相互に融着し、耐熱性の低い汎用プラスチック基板上でも導電性を有する電子部品等の接続部材を形成することができる点で銀が好ましい。すなわち、前記導電性粒子はとしては銀粒子が好ましい。
 前記導電性粒子は、平均粒子径が1nm以上100nm未満の導電性ナノ粒子であって、アミンを含む保護剤で表面が被覆された構成、より詳細には、前記導電性ナノ粒子表面にアミンの非共有電子対が電気的に配位した構成を有する導電性ナノ粒子(本明細書において、「導電性ナノ粒子(A)」と称する場合がある。)を含むことが好ましい。導電性ナノ粒子(A)は、上記構成を有することにより導電性ナノ粒子相互間の再凝集が防止され、接合性導体ペースト中において、高分散した状態を安定的に維持することができる。導電性ナノ粒子(A)は、一種のみを使用してもよいし、二種以上を使用してもよい。
 導電性ナノ粒子(A)の平均粒子径は、1nm以上100nm未満であり、好ましくは2~80nm、より好ましくは5~70nm、さらに好ましくは10~60nmである。上記平均粒子径は、表面を被覆している保護剤を除外した大きさ(すなわち、導電性ナノ粒子自体の大きさ)である。なお、上記平均粒子径は、透過型電子顕微鏡(TEM)観察により求められる粒子径をもとに、粒子をアスペクト比1と仮定した上で体積分布に換算した平均粒子径(メジアン径)として求められる。導電性ナノ粒子(A)が二種以上含まれる場合、上記平均粒子径は、全ての導電性ナノ粒子(A)の平均粒子径をいう。
 導電性ナノ粒子(A)は、導電性ナノ粒子の表面がアミンを含む保護剤で被覆された構成を有する表面修飾導電性ナノ粒子である。上記アミンは、一種のみを使用してもよいし、二種以上を使用してもよい。また、上記保護剤は、上記アミン以外の化合物を含んでいてもよい。
 上記アミンはアンモニアの少なくとも1つの水素原子が炭化水素基で置換された化合物であり、第一級アミン、第二級アミン、および第三級アミンが挙げられる。また、上記アミンはモノアミンであってもよく、ジアミン等の多価アミンであってもよい。
 上記アミンとしては、中でも、下記式(a-1)で表され、式中のR1、R2、R3が同一または異なって、水素原子または一価の炭化水素基(R1、R2、R3が共に水素原子である場合は除く)であり、総炭素数が6以上であるモノアミン(1)、下記式(a-1)で表され、式中のR1、R2、R3が同一または異なって、水素原子または一価の炭化水素基(R1、R2、R3が共に水素原子である場合は除く)であり、総炭素数が5以下であるモノアミン(2)、および下記式(a-2)で表され、式中のR8が二価の炭化水素基であり、R4~R7は同一または異なって、水素原子または一価の炭化水素基であり、総炭素数が8以下であるジアミン(3)から選択される少なくとも一種を含有することが好ましく、特に、モノアミン(1)と、モノアミン(2)および/またはジアミン(3)とを併せて含有することが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記炭化水素基としては、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基が挙げられる。中でも、脂肪族炭化水素基、脂環式炭化水素基が好ましく、特に脂肪族炭化水素基が好ましい。従って、上記モノアミン(1)、モノアミン(2)、ジアミン(3)としては、脂肪族モノアミン(1)、脂肪族モノアミン(2)、脂肪族ジアミン(3)が好ましい。
 一価の脂肪族炭化水素基としては、アルキル基、アルケニル基などが挙げられる。一価の脂環式炭化水素基としては、シクロアルキル基、シクロアルケニなどが挙げられる。二価の脂肪族炭化水素基としては、アルキレン基、アルケニレン基などが挙げられる。二価の脂環式炭化水素基としては、シクロアルキレン基、シクロアルケニレン基などが挙げられる。
 R1、R2、R3における一価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、デシル基、ドデシル基、テトラデシル基、オクタデシル基等の炭素数1~20程度のアルキル基;ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基等の炭素数2~20程度のアルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等の炭素数3~20程度のシクロアルキル基;シクロペンテニル基、シクロへキセニル基等の炭素数3~20程度のシクロアルケニル基などが挙げられる。
 R4~R7における一価の炭化水素基としては、例えば、R1、R2、R3における一価の炭化水素基として例示されたもののうち、炭素数7以下のものが挙げられる。
 R8における二価の炭化水素基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘプタメチレン基等の炭素数1~8のアルキレン基;ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8のアルケニレン基などが挙げられる。
 上記R1~R8における炭化水素基は、種々の置換基[例えば、ハロゲン原子、オキソ基、ヒドロキシ基、置換オキシ基(例えば、C1-4アルコキシ基、C6-10アリールオキシ基、C7-16アラルキルオキシ基、C1-4アシルオキシ基等)、カルボキシ基、置換オキシカルボニル基(例えば、C1-4アルコキシカルボニル基、C6-10アリールオキシカルボニル基、C7-16アラルキルオキシカルボニル基等)、シアノ基、ニトロ基、スルホ基、複素環式基等]を有していてもよい。上記ヒドロキシ基やカルボキシ基は有機合成の分野で慣用の保護基で保護されていてもよい。
 モノアミン(1)は、導電性ナノ粒子(A)に高分散性を付与する機能を有する化合物であり、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の直鎖状アルキル基を有する第一級アミン;イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等の分岐鎖状アルキル基を有する第一級アミン;シクロヘキシルアミン等のシクロアルキル基を有する第一級アミン;オレイルアミン等のアルケニル基を有する第一級アミン等;N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジペンチルアミン、N,N-ジヘキシルアミン、N,N-ジペプチルアミン、N,N-ジオクチルアミン、N,N-ジノニルアミン、N,N-ジデシルアミン、N,N-ジウンデシルアミン、N,N-ジドデシルアミン、N-プロピル-N-ブチルアミン等の直鎖状アルキル基を有する第二級アミン;N,N-ジイソヘキシルアミン、N,N-ジ(2-エチルヘキシル)アミン等の分岐鎖状アルキル基を有する第二級アミン;トリブチルアミン、トリヘキシルアミン等の直鎖状アルキル基を有する第三級アミン;トリイソヘキシルアミン、トリ(2-エチルヘキシル)アミン等の分岐鎖状アルキル基を有する第三級アミンなどが挙げられる。
 モノアミン(1)の中でも、アミノ基が導電性ナノ粒子表面に吸着した際に他の導電性ナノ粒子との間隔をより確保できるため、導電性ナノ粒子同士の凝集を防ぐ作用が向上する点で、総炭素数6以上の直鎖状アルキル基を有するアミン(特に、第一級アミン)が好ましい。また、モノアミン(1)における総炭素数の上限は、入手のし易さ、および焼結時における除去のし易さの点で、18程度が好ましく、さらに好ましくは16、特に好ましくは12である。モノアミン(1)としては、特に、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン等が好ましい。
 また、モノアミン(1)の中でも、分岐鎖状アルキル基を有するアミン(特に、第一級アミン)を用いると、同じ総炭素数の直鎖状アルキル基を有するアミンを用いる場合に比べ、分岐鎖状アルキル基の立体的因子により、より少ない量で、導電性ナノ粒子(A)に高分散性を付与することができる。そのため、焼結時において、特に低温焼結時において、上記アミンを効率よく除去することができ、より導電性に優れた焼結体が得られる点で好ましい。
 上記分岐鎖状アルキル基を有するアミンとしては、特に、イソヘキシルアミン、2-エチルヘキシルアミン等の総炭素数6~16(好ましくは6~10)の分枝鎖状アルキル基を有するアミンが好ましく、特に、立体的因子の観点から、2-エチルヘキシルアミン等の、窒素原子から2番目の炭素原子において枝分かれしている構造を有する分岐鎖状アルキル基を有するアミンが有効である。
 モノアミン(1)としては、中でも、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミンを含むことが好ましい。
 モノアミン(2)は、モノアミン(1)に比べると炭化水素鎖が短いので、それ自体は導電性ナノ粒子に高分散性を付与する機能は低いと考えられるが、モノアミン(1)より極性が高く導電性ナノ粒子への配位能が高いため、錯体形成促進効果を有すると考えられる。また、炭化水素鎖が短いため、低温焼結においても、短時間(例えば30分間以下、好ましくは20分間以下)で導電性ナノ粒子表面から除去することができ、導電性に優れた焼結体が得られる。
 モノアミン(2)としては、例えば、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等の、直鎖状または分岐鎖状アルキル基を有する総炭素数2~5の第一級アミン;N-メチル-N-プロピルアミン、N-エチル-N-プロピルアミン、N,N-ジメチルアミン、N,N-ジエチルアミン等の、直鎖状または分岐鎖状アルキル基を有する総炭素数2~5の第二級アミンなどが挙げられる。
 モノアミン(2)としては、中でも、n-ブチルアミン、イソブチルアミン、sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等の直鎖状または分岐鎖状アルキル基を有する総炭素数2~5(好ましくは、総炭素数4~5)の第一級アミンが好ましく、特にn-ブチルアミン等の直鎖状アルキル基を有する総炭素数2~5(好ましくは、総炭素数4~5)の第一級アミンが好ましい。
 モノアミン(2)は、中でも、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(2)が好ましい。
 ジアミン(3)の総炭素数は8以下(例えば、1~8)であり、モノアミン(1)より極性が高く導電性ナノ粒子への配位能が高いため、錯体形成促進効果を有すると考えられる。また、ジアミン(3)は、錯体の熱分解工程において、より低温且つ短時間での熱分解を促進する効果があり、ジアミン(3)を使用すると導電性ナノ粒子(A)製造をより効率的に行うことができる。さらに、ジアミン(3)を含む保護剤で被覆された構成を有する導電性ナノ粒子(A)は、極性の高い溶剤を含む分散媒体中において優れた分散安定性を発揮する。さらに、ジアミン(3)は、炭化水素鎖が短いため、低温焼結においても、短時間(例えば30分間以下、好ましくは20分間以下)で導電性ナノ粒子表面から除去することができ、導電性に優れた焼結体が得られる。
 ジアミン(3)としては、例えば、エチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,5-ジアミノ-2-メチルペンタン等の、式(a-2)中のR4~R7が水素原子であり、R8が直鎖状または分岐鎖状アルキレン基であるジアミン;N,N'-ジメチルエチレンジアミン、N,N'-ジエチルエチレンジアミン、N,N'-ジメチル-1,3-プロパンジアミン、N,N'-ジエチル-1,3-プロパンジアミン、N,N'-ジメチル-1,4-ブタンジアミン、N,N'-ジエチル-1,4-ブタンジアミン、N,N'-ジメチル-1,6-ヘキサンジアミン等の式(a-2)中のR4、R6が同一またhは異なって直鎖状または分岐鎖状アルキル基であり、R5、R7が水素原子であり、R8が直鎖状または分岐鎖状アルキレン基であるジアミン;N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン等の式(a-2)中のR4、R5が同一または異なって直鎖状または分岐鎖状アルキル基であり、R6、R7が水素原子であり、R8が直鎖状または分岐鎖状アルキレン基であるジアミンなどが挙げられる。
 これらの中でも、式(a-2)中のR4、R5が同一または異なって直鎖状または分岐鎖状アルキル基であり、R6、R7が水素原子であり、R8が直鎖状または分岐鎖状アルキレン基であるジアミン[特に、式(a-2)中のR4、R5が直鎖状アルキル基であり、R6、R7が水素原子であり、R8が直鎖状アルキレン基であるジアミン]が好ましい。
 式(a-2)中のR4、R5が同一または異なって直鎖状または分岐鎖状アルキル基であり、R6、R7が水素原子であるジアミン、すなわち第一級アミノ基と第三級アミノ基を有するジアミンは、上記第一級アミノ基は金属原子に対して高い配位能を有するが、上記第三級アミノ基は金属原子に対する配位能に乏しいため、形成される錯体が過剰に複雑化することが防止され、それにより、錯体の熱分解工程において、より低温且つ短時間での熱分解が可能となる。これらの中でも、低温焼結において短時間で導電性ナノ粒子表面から除去できる点から、総炭素数6以下(例えば、1~6)のジアミンが好ましく、総炭素数5以下(例えば、1~5)のジアミンがより好ましい。
 ジアミン(3)は、中でも、脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(3)が好ましい。
 上記アミンとして、モノアミン(1)と、モノアミン(2)および/またはジアミン(3)とを併せて含有する場合において、これらの使用割合は、特に限定されないが、アミン全量[モノアミン(1)+モノアミン(2)+ジアミン(3);100モル%]を基準として、下記範囲であることが好ましい。
 モノアミン(1)の含有量:例えば5~65モル%(下限は、好ましくは10モル%、より好ましくは15モル%である。また、上限は、好ましくは50モル%、より好ましくは40モル%、さらに好ましくは35モル%である)
 モノアミン(2)とジアミン(3)の合計含有量:例えば35~95モル%(下限は、好ましくは50モル%、より好ましくは60モル%、さらに好ましくは65モル%である。また、上限は、好ましくは90モル%、より好ましくは85モル%である)
 さらに、モノアミン(2)とジアミン(3)を共に使用する場合、モノアミン(2)とジアミン(3)の各含有量は、アミン全量[モノアミン(1)+モノアミン(2)+ジアミン(3);100モル%]を基準として、下記範囲であることが好ましい。
 モノアミン(2):例えば5~70モル%(下限は、好ましくは10モル%、より好ましくは15モル%である。また、上限は、好ましくは65モル%、より好ましくは60モル%である)
 ジアミン(3):例えば5~50モル%(下限は、好ましくは10モル%である。また、上限は、好ましくは45モル%、より好ましくは40モル%である)
 モノアミン(1)の含有量が上記下限値以上であると、導電性ナノ粒子の分散安定性に優れ、上記上限値以下であると低温焼結によってアミンが除去されやすい傾向がある。
 モノアミン(2)の含有量が上記範囲内であると、錯体形成促進効果が得られやすい。また、低温且つ短時間での焼結が可能となり、さらに、焼結時にジアミン(3)が導電性ナノ粒子表面から除去されやすくなる。
 ジアミン(3)の含有量が上記範囲内であると、錯体形成促進効果および錯体の熱分解促進効果が得られやすい。また、ジアミン(3)を含む保護剤で被覆された構成を有する表面修飾導電性ナノ粒子(A)は、極性の高い溶剤を含む分散媒体中において優れた分散安定性を発揮する。
 上記接合性導体ペーストにおいては、導電性ナノ粒子への配位能が高いモノアミン(2)および/またはジアミン(3)を用いると、それらの使用割合に応じて、モノアミン(1)の使用量を減量することができ、低温短時間での焼結の場合において、これらアミンが導電性ナノ粒子表面から除去されやすくなり、導電性ナノ粒子の焼結を充分に進行させることができるようになる。
 上記有機保護剤として使用するアミンは、モノアミン(1)、モノアミン(2)、およびジアミン(3)以外のその他のアミンを含有していてもよい。保護剤に含まれる全アミンにおけるモノアミン(1)、モノアミン(2)、およびジアミン(3)の合計含有量の占める割合は、例えば60質量%以上(例えば60~100質量%)が好ましく、より好ましくは80質量%以上、さらに好ましくは90質量%以上である。すなわち、上記その他のアミンの含有量は、40質量%以下が好ましく、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。
 上記アミン[特に、モノアミン(1)+モノアミン(2)+ジアミン(3)]の使用量は特に限定されないが、導電性ナノ粒子の原料である導電性物質1モルに対して、1~50モル程度が好ましく、実質的に無溶剤中において表面修飾導電性ナノ粒子(A)が得られる点で、2~50モルが好ましく、特に好ましくは6~50モルである。上記アミンの使用量が上記下限値以上であると、錯体の生成工程において、錯体に変換されない導電性物質が残存しにくく、その後の熱分解工程において、導電性ナノ粒子の均一性が高くなり、粒子の肥大化や、熱分解しない導電性物質の残存を抑制することができる。
 上記保護剤は、上記アミン以外のその他の保護剤を含んでいてもよい。上記その他の保護剤としては、例えば、脂肪族モノカルボン酸が挙げられる。脂肪族モノカルボン酸を使用することで、導電性ナノ粒子(A)の分散性がさらに向上する傾向がある。
 上記脂肪族モノカルボン酸としては、例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸、エイコセン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。
 これらの中でも、炭素数8~18の飽和または不飽和の脂肪族モノカルボン(特に、オクタン酸、オレイン酸等)が好ましい。上記脂肪族モノカルボン酸のカルボキシ基が導電性ナノ粒子表面に吸着した際に、炭素数8~18の飽和または不飽和の脂肪族炭化水素鎖が立体障害となることにより他の導電性ナノ粒子との間隔を確保することができ、導電性ナノ粒子同士の凝集を防ぐ作用が向上する。また、上記脂肪族モノカルボン酸は入手し易く、焼結時には除去し易い点でも好ましい。
 上記脂肪族モノカルボン酸の使用量としては、導電性ナノ粒子を構成する導電性物質1モルに対して、例えば0.05~10モル程度、好ましくは0.1~5モル、より好ましくは0.5~2モルである。上記脂肪族モノカルボン酸の使用量が、上記下限値以上であると、安定性向上効果がより得られやすい。上記使用量が上記上限値以下であると、脂肪族モノカルボン酸の効果を充分に得ながら、過剰の脂肪族モノカルボン酸が残存しにくい。
 アミンを含む保護剤で表面被覆された導電性ナノ粒子(A)は、公知乃至慣用の方法により作製することができる。例えば、導電性物質を含む化合物と、アミンを含む保護剤とを混合して、上記化合物とアミンを含む錯体を生成させる工程(錯体生成工程)、上記錯体を熱分解させる工程(熱分解工程)、および、必要に応じて反応生成物を洗浄する工程(洗浄工程)を経て導電性ナノ粒子(A)を作製することができる。
 上記接合性導体ペーストは、導電性ナノ粒子(A)以外のその他の導電性粒子を含んでいてもよい。上記接合性導体ペーストは、中でも、平均粒子径が異なる導電性粒子(群)を組み合わせて使用することが、より一層電気抵抗値が低く、電気特性に優れた導体配線や接合構造体を形成することができる点で好ましい。
 上記その他の導電性粒子の形状としては、例えば、球状、扁平な形状、多面体などが挙げられ、形状の異なる導電性粒子を組み合わせて使用してもよく、同じ形状の導電性粒子のみを使用してもよい。
 上記その他の導電性ナノ粒子としては、特に、平均粒子径が0.5~1μmである球状導電性粒子(B)、平均粒子径が1~10μmの扁平状導電性フレーク(C)が好ましい。
(球状導電性粒子(B))
 導電性ナノ粒子(A)よりもサイズが大きい球状導電性粒子(B)を導電性ナノ粒子(A)と組み合わせて含むと、形成される焼結体において、相対的に大径である球状導電性粒子(B)の隙間に相対的に小径である導電性ナノ粒子(A)が充填され、より緻密な導体配線や接合構造体を形成することができ、高い結合強度や高い導電性を有するものとすることができる。球状導電性粒子(B)は一種のみを使用してもよいし、二種以上を使用してもよい。
 球状導電性ナノ粒子(B)は、導電性粒子の表面が保護剤で被覆された構成を有する表面導電性粒子であってもよい。表面修飾導電性粒子は、導電性粒子間の間隔が確保されて凝集が抑制され、有機溶媒中の分散性に優れる。
 球状導電性粒子(B)を構成する導電性物質としては、導電性を有する金属、金属酸化物、表面が金属被覆された不導体、半導体粒子が挙げられ、例えば、上述の導電性ナノ粒子(A)を構成する金属、金属酸化物として例示および説明されたものが挙げられる。上記導電性物質としては、中でも、接合強度がより高くなる観点から導電性ナノ粒子(A)と同じ導電性物質を含むことが好ましく、より好ましくは銀粒子である。 
 上記保護剤としては、特に限定されず、導電性粒子の保護剤(安定剤)として用いられる公知乃至慣用の保護剤が挙げられる。上記保護剤としては、例えば、カルボキシ基、ヒドロキシ基、カルボニル基、アミド基、エーテル基、アミノ基、スルホ基、スルホニル基、スルフィン酸基、スルフェン酸基、メルカプト基、リン酸基、亜リン酸基等の官能基を有する保護剤が挙げられる。上記保護剤は、一種のみを使用してもよいし、二種以上を使用してもよい。
 球状導電性粒子(B)の平均粒子径(メジアン径)は、0.5~1μmであり、好ましくは0.6~0.9μmである。上記平均粒子径は、レーザー回折・散乱法により測定することができる。球状導電性粒子(B)が二種以上含まれる場合、上記平均粒子径は、全ての球状導電性粒子(B)の平均粒子径をいう。
(扁平状導電性フレーク(C))
 扁平状導電性フレーク(C)を導電性ナノ粒子(A)と組み合わせて含むと、扁平状導電性フレーク(C)自体の焼結も合わさり、導電性粒子間のネッキングが太くなりより強固な焼結体を得ることが可能となる。扁平状導電性フレーク(C)は一種のみを使用してもよいし、二種以上を使用してもよい。
 扁平状導電性フレーク(C)は、金属フレークの表面が保護剤で被覆された構成を有する表面修飾導電性フレークであってもよい。表面修飾導電性フレークは、導電性フレーク間の間隔が確保されて凝集が抑制され、有機溶媒中の分散性に優れる。
 扁平状導電性フレーク(C)を構成する導電性物質としては、導電性を有する金属、金属酸化物、表面が金属被覆された不導体、半導体扁平状粒子が挙げられ、例えば、上述の導電性ナノ粒子(A)を構成する導電性物質として例示および説明されたものが挙げられる。上記導電性物質としては、中でも、接合強度がより高くなる観点から導電性ナノ粒子(A)と同じ金属を含むことが好ましく、より好ましくは銀粒子である。 
 上記保護剤としては、特に限定されず、導電性粒子の保護剤(安定剤)として用いられる公知乃至慣用の有機保護剤が挙げられる。上記保護剤としては、例えば、カルボキシ基、ヒドロキシ基、カルボニル基、アミド基、エーテル基、アミノ基、スルホ基、スルホニル基、スルフィン酸基、スルフェン酸基、メルカプト基、リン酸基、亜リン酸基等の官能基を有する有機保護剤が挙げられる。上記保護剤は、一種のみを使用してもよいし、二種以上を使用してもよい。
 扁平状導電性フレーク(C)の平均粒子径(メジアン径)は、1~10μmであり、好ましくは2~5μmである。上記平均粒子径は、レーザー回折・散乱法により測定することができる。扁平状導電性フレーク(C)が二種以上含まれる場合、上記平均粒子径は、全ての扁平状導電性フレーク(C)の平均粒子径をいう。
 上記接合性導体ペーストに含まれる、導電性粒子100質量%中、導電性ナノ粒子(A)の含有割合は、5質量%以上が好ましく、より好ましくは10質量%以上である。上記含有割合が5質量%以上であると、より緻密な導体配線や接合構造体を形成することができる。上記含有割合は、50質量%以下が好ましく、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。上記含有割合が50質量%以下であると、球状導電性粒子(B)および扁平状導電性フレーク(C)の配合量を充分とすることができる。
 上記接合性導体ペーストに含まれる、導電性粒子100質量%中、球状導電性粒子(B)の含有割合は、30質量%以上が好ましく、より好ましくは40質量%以上、さらに好ましくは50質量%超である。上記含有割合が30質量%以上であると、球状導電性粒子(B)を配合する効果がより得られやすい。上記含有割合は、85質量%以下が好ましく、より好ましくは80質量%以下、さらに好ましくは70質量%以下である。上記含有割合が85質量%以下であると、導電性ナノ粒子(A)および扁平状導電性フレーク(C)の配合量を充分とすることができる。
 上記接合性導体ペーストに含まれる、導電性粒子100質量%中、扁平状導電性フレーク(C)の含有割合は、10質量%以上が好ましく、より好ましくは15質量%以上である。上記含有割合が10質量%以上であると、扁平状導電性フレーク(C)を配合する効果がより得られやすい。上記含有割合は、65質量%以下が好ましく、より好ましくは50質量%以下、さらに好ましくは40質量%以下である。上記含有割合が65質量%以下であると、導電性ナノ粒子(A)および球状導電性粒子(B)の配合量を充分とすることができる。
 上記接合性導体ペーストに含まれる導電性粒子の総量100質量%に対する、導電性ナノ粒子(A)、球状導電性粒子(B)、および扁平状導電性フレーク(C)の合計の含有割合は、70質量%以上が好ましく、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上である。上記含有割合が70質量%以上であると、導電性粒子の分散性により優れ、連続吐出安定性、および保存安定性により優れる。また、前記含有割合は、99.5質量%以下であってもよく、好ましくは99質量%以下であってもよい。
(分散媒)
 上記分散媒は、水酸基含有エーテル系溶剤を含む。前記「水酸基含有エーテル系溶剤」は、分子内に1個以上(例えば、1又は2個、好ましくは1個)の水酸基、及びエーテル結合を有し、溶剤として使用可能な化合物であればよい。本開示の接合性導体ペーストが、分散媒として、水酸基含有エーテル系溶剤を含むことにより、前記導電性粒子の分散安定性に優れ、印刷に適した揮発性である接合性導体ペーストとすることができる。
 前記水酸基含有エーテル系溶剤の沸点(1気圧における)は、130℃以上(例えば130~300℃)であることが好ましく、より好ましくは140~280℃、さらに好ましくは150~260℃、特に好ましくは160~240℃である。
 前記水酸基含有エーテル系溶剤としては、30℃における蒸気圧が例えば0.01~10.0mmHgであることが、適度な揮発性を有する点で好ましく、より好ましくは0.05~8.0mmHg、さらに好ましくは0.1~6.0mmHg、最も好ましくは0.3~4.0mmHgである。
 前記水酸基含有エーテル系溶剤の25℃、せん断速度10s-1における粘度は、インクを印刷に適した粘度とする点から0.1~20mPa・sが好ましく、より好ましくは0.5~10mPa・s、さらに好ましくは1~9mPa・s、特に好ましくは3~8mPa・sである。
 前記水酸基含有エーテル系溶剤としては、例えば、下記式(A)
  Ra-(O-Rbn-OH   (A)
(式中、Raはアルキル基、アリール基又はアラルキル基を示し、Rbは炭素数1~6のアルキレン基を示す。nは1以上の整数を示す)
で表される化合物((ポリ)アルキレングリコールモノアルキルエーテル)が好ましい。
 式(A)中のRaにおけるアルキル基としては、例えば、炭素数1~10(好ましくは1~5)の直鎖状又は分岐鎖状アルキル基を挙げることができる。アリール基としては、例えば、炭素数6~10のアリール基(例えば、フェニル基等)を挙げることができる。アラルキル基としては、炭素数1~10(好ましくは1~5)の直鎖状又は分岐鎖状アルキル基に、炭素数6~10のアリール基が置換した基(例えば、ベンジル基等)を挙げることができる。
 式(A)中のRbにおけるアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等を挙げることができる。なかでも、炭素数1~4のアルキレン基が好ましく、特に好ましくは炭素数1~3のアルキレン基、最も好ましくは炭素数2~3のアルキレン基である。
 nは1以上の整数であり、例えば1~8の整数、好ましくは1~3の整数、特に好ましくは2~3の整数である。
 式(A)で表される化合物の沸点は、例えば130℃以上(例えば、130~310℃)であり、好ましくは170℃以上、特に好ましくは200℃以上である。
 前記式(A)で表される化合物としては、例えば、エチレングリコールモノメチルエーテル(沸点:124℃)、エチレングリコールモノイソプロピルエーテル(沸点:141.8℃)、エチレングリコールモノブチルエーテル(沸点:171.2℃)、エチレングリコールモノイソブチルエーテル(沸点:160.5℃)、エチレングリコールモノヘキシルエーテル(沸点:208℃)、エチレングリコールモノ-2-エチルヘキシルエーテル(沸点:229℃)、エチレングリコールモノフェニルエーテル(沸点:244.7℃)、エチレングリコールモノベンジルエーテル(沸点:256℃)、ジエチレングリコールモノメチルエーテル(沸点:194℃)、ジエチレングリコールモノブチルエーテル(=ブチルカルビトール、沸点:230℃)、ジエチレングリコールモノイソブチルエーテル(沸点:220℃)、ジエチレングリコールモノイソプロピルエーテル(沸点:207℃)、ジエチレングリコールモノペンチルエーテル(沸点:162℃)、ジエチレングリコールモノイソペンチルエーテル、ジエチレングリコールモノヘキシルエーテル(=ヘキシルカルビトール、沸点:259.1℃)、ジエチレングリコールモノ-2-エチルヘキシルエーテル(沸点:272℃)、ジエチレングリコールモノフェニルエーテル(沸点:283℃)、ジエチレングリコールモノベンジルエーテル(沸点:302℃)、トリエチレングリコールモノメチルエーテル(沸点:249℃)、トリエチレングリコールモノブチルエーテル(沸点:271.2℃)、ジプロピレングリコールモノメチルエーテル(沸点:188℃)、ジプロピレングリコール-n-プロピルエーテル(沸点:212℃)、ジプロピレングリコール-n-ブチルエーテル(沸点:229℃)、トリプロピレングリコールメチルエーテル(沸点:242℃)等を挙げることができる。これらの溶剤は1種を単独で、又は2種以上を組み合わせて使用することができる。
 上記分散媒は、前記水酸基含有エーテル系溶剤以外のエーテル系溶剤、エステル系溶剤(例えば、(ポリ)アルキレングリコールジアルキルエーテル、(ポリ)アルキレングリコールモノアルキルエーテルモノエステル、(ポリ)アルキレングリコールジエステル、(ポリ)アルキレングリコールモノエステル)、テルペン系溶剤、アルコール系溶剤(水酸基含有エーテル系溶剤を除く)、尿素系溶剤、非プロトン性極性溶媒、ケトン系溶剤、アミン系溶剤、アルカン系溶剤などを含んでいてもよい。
 本開示で用いる分散媒は、連続吐出時の安定性および保存安定性に優れ、焼結体形成時のボイド発生を抑制することができる観点から、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)を含むことが好ましい。有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)は、互いに異なる化合物であり、下記式(1)~(6)を満たすものである。有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)は、それぞれ、一種のみを使用してもよいし、二種以上を使用してもよい。
 150℃≦Ta≦250℃ (1)
 150℃≦Tb≦250℃ (2)
 250℃≦Tc≦350℃ (3)
 δa≧10.0      (4)
 δc≦9.0       (5)
 δc≦δb≦δa     (6)
 式中、Ta~Tcはそれぞれ有機溶剤(a)~(c)の沸点を示し、δa~δcはそれぞれ有機溶剤(a)~(c)のハンセン溶解度パラメータを示す。なお、本明細書において、ハンセン溶解度パラメータを「SP値」と称し、「δ」と表記する場合がある。
 なお、有機溶剤(a)~(c)は、上記接合性導体ペーストに使用される配合比において混合した際に均一溶解して液状となるものであればよく、それぞれ単独では室温において液状であってもよいし固形状であってもよい。
 有機溶剤(a)は式(1)を少なくとも満たす。すなわち、有機溶剤(a)の沸点Taは、150℃≦Ta≦250℃を満たし、好ましくは150℃<Ta<250℃、より好ましくは155℃≦Ta≦220℃、さらに好ましくは160℃≦Ta≦200℃を満たす。上記範囲内の沸点を有する有機溶剤(a)を使用することにより、焼結時に分散媒が揮発しやすく、容易に焼結体を形成することができる。
 有機溶剤(a)は式(4)[δa≧10.0]を少なくとも満たす。有機溶剤(a)のSP値δaは、式(6)を満たす範囲内において、10.0以上であり、好ましくは10.3以上、さらに好ましくは10.4以上である。上記δaが10.0以上であることにより、導電性ナノ粒子(A)の分散性に優れ、導電性粒子と分散媒との分離を起こりにくくすることができる。有機溶剤(a)のδaは、例えば16.0以下であり、15.0以下であってもよい。
 有機溶剤(a)としては、アルコール系溶剤、尿素系溶剤、非プロトン性極性溶媒などのうち前記式(1)、及び(4)を満たし、及び有機溶剤(b)および(c)との関係において式(6)を満たすものが挙げられる。上記アルコール溶剤としては、1以上のヒドロキシ基を有する化合物が挙げられ、中でも、三級アルコール、水酸基含有エーテル系溶剤が好ましい。上記アルコール系溶剤は、ヒドロキシ基を2以上有していてもよい。水酸基含有エーテル系溶剤としては、前記式(A)で表される(ポリ)アルキレングリコールモノアルキルエーテル、アルコキシ基置換アルコールなどが挙げられる。
 有機溶剤(a)としては、具体的には、例えば、ピナコール(δ10.7、沸点172℃)、テトラメチルウレア(δ10.6、沸点177℃)、3-メトキシブタノール(δ10.6、沸点161℃)、1-メチルシクロヘキサノール(δ10.4、沸点155℃)、メチルカルビトール(ジエチレングリコールモノメチルエーテル)(δ10.7、沸点193℃)などが挙げられる。
 有機溶剤(b)は式(2)を少なくとも満たす。すなわち、有機溶剤(b)の沸点Tbは、150℃≦Tb≦250℃を満たし、好ましくは150℃<Tb<250℃、より好ましくは180℃≦Tb≦248℃、さらに好ましくは200℃≦Tb≦245℃を満たす。上記範囲内の沸点を有する有機溶剤(b)を使用することにより、焼結時に分散媒が揮発しやすく、容易に焼結体を形成することができる。また、250℃以下の沸点を有する有機溶剤(b)を使用することにより、焼結時のボイド発生を抑制することができる。
 有機溶剤(b)は式(6)を少なくとも満たす。有機溶剤(b)のSP値δbは、式(6)を満たす範囲内において、8.0~12.0が好ましく、より好ましくは8.5~11.0、さらに好ましくは9.0~10.5である。上記δbが上記範囲内であると、有機溶剤(a)および有機溶剤(c)の相溶性が向上し、分離しにくく、連続吐出安定性および保存安定性により優れる傾向がある。
 有機溶剤(b)としては、アルコール系溶剤、エステル系溶剤、ケトン系溶剤、アミン系溶剤などのうち式(2)を満たし、及び有機溶剤(a)および(c)との関係において式(6)を満たすものが挙げられる。上記アルコール系溶剤としては、1以上のヒドロキシ基を有する溶剤化合物が挙げられ、中でも、三級アルコール、水酸基含有エーテル系溶剤、エステルアルコールが好ましい。水酸基含有エーテル系溶剤としては、前記式(A)で表される(ポリ)アルキレングリコールモノアルキルエーテル、アルコキシ基置換アルコールなどが挙げられる。エステルアルコールは、エステル結合およびヒドロキシ基を有する化合物であり、(ポリ)アルキレングリコールモノアルキルエーテルモノエステルなどが挙げられる。エステル系溶剤としては、(ポリ)アルキレングリコール等のジオールのジアセテートなどが挙げられる。ケトン系溶剤としては環状ケトンが好ましい。アミン系溶剤としては、アルキルアミンが好ましい。
 有機溶剤(b)としては、有機溶剤(a)および(c)との関係において式(6)を満たすことを前提として選択されるものであるが、具体的には、例えば、d-Camphor(樟脳)(δ10.4、沸点204℃)、1-ヘプタノール(δ10.0、沸点177℃)、ブチルカルビトール(ジエチレングリコールモノブチルエーテル)(δ10.2、沸点231℃)、エチルカルビトール(ジエチレングリコールモノエチルエーテル)(δ10.5、沸点196℃)、トリプロピレングリコールモノメチルエーテル(δ9.4、沸点243℃)、α-ターピネオール(δ9.3、沸点220℃)、ジヒドロターピネオール(δ9.0、沸点210℃)、1,3-ブタンジオールジアセテート(δ9.2、沸点232℃)、プロピレングリコールジアセテート(δ9.3、沸点190℃)、ブチルカルビトールアセテート(δ9.0、沸点247℃)、ジプロピレングリコールブチルエーテル(δ9.2、沸点230℃)、イソホロン(δ9.5、沸点213℃)、1-デカノール(δ9.6、沸点230℃)、プロピレングリコールモノブチルエーテル(δ9.0、沸点170℃)、1-ノナノール(δ9.8、沸点214℃)などが使用され得る。
 有機溶剤(b)の沸点Tbは有機溶剤(a)の沸点Taよりも高いこと、すなわちTb>Taであることが好ましい。TbとTaの温度差[Tb-Ta]は、2℃以上が好ましく、より好ましくは5℃以上、さらに好ましくは10℃以上である。上記温度差が2℃以上であると、焼結時のボイド発生をより抑制することができる。
 有機溶剤(c)は式(3)を少なくとも満たす。すなわち、有機溶剤(c)の沸点Tcは、250℃≦Tc≦350℃を満たし、好ましくは250℃<Tc<350℃、より好ましくは250℃<Tc≦320℃、さらに好ましくは250℃<Tc≦300℃を満たす。上記範囲内の沸点を有する有機溶剤(c)を使用することにより、焼結時において有機溶剤(a)および有機溶剤(b)の急激な揮発を抑制し、ボイド発生を抑制することができる。
 有機溶剤(c)は式(5)[δc≦9.0]を少なくとも満たす。有機溶剤(c)のSP値δcは、9.0以下であり、好ましくは8.7以下、さらに好ましくは8.5以下である。上記δが9.0以下であることにより、焼結時におけるボイド発生を抑制することができる。有機溶剤(c)のδcは、例えば6.0以上であり、7.0以上であってもよい。
 有機溶剤(c)としては、エーテル系溶剤、アルカン系溶剤、エステル系溶剤などのうち前記式(3)、及び(5)を満たし、及び有機溶剤(a)および(b)との関係において式(6)を満たすものが挙げられる。エーテル系溶剤としては、(ポリ)アルキレングリコールジアルキルエーテルなどが挙げられる。アルカン系溶剤としては、炭素数14以上(例えば炭素数14~20)のアルカンが好ましい。エステル系溶剤としては(ポリ)アルキレングリコールアルキルエーテルと脂肪酸とのエステルが挙げられる。
 有機溶剤(c)としては、具体的には、例えば、ジブチルカルビトール(ジエチレングリコールジブチルエーテル)(δ8.3、沸点255℃)、テトラデカン(δ7.9、沸点254℃)、ヘキサデカン(δ8.0、沸点287℃)などが挙げられる。
 有機溶剤(c)の沸点Tcは有機溶剤(b)の沸点Tbよりも高いこと、すなわちTc>Tbであることが好ましい。TcとTbの温度差[Tc-Tb]は、2℃以上が好ましく、より好ましくは6℃以上、さらに好ましくは10℃以上である。上記温度差が2℃以上であると、焼結時のボイド発生をより抑制することができる。
 有機溶剤(c)の沸点Tcは有機溶剤(a)の沸点Taよりも高いこと、すなわちTc>Taであることが好ましい。TcとTaの温度差[Tc-Ta]は、30℃以上が好ましく、より好ましくは50℃以上、さらに好ましくは60℃以上である。上記温度差が30℃以上であると、焼結時のボイド発生をより抑制することができる。
 有機溶剤(a)のSP値δa、有機溶剤(b)のSP値δb、および有機溶剤(c)のSP値δcは、上記式(6)[δc≦δb≦δa]を満たす関係にある。中でも、δbはδcよりも高いこと、すなわちδc<δbを満たすことが好ましい。また、δaはδbよりも高いこと、すなわちδb<δaを満たすことが好ましい。
 δbとδcの差[δb-δc]は、0.1以上が好ましく、より好ましくは0.2以上、さらに好ましくは0.5以上である。上記差が0.1以上であると、導電性粒子の分散性により優れ、連続吐出安定性により優れる。上記差は、2.0以下が好ましく、より好ましくは1.5以下、さらに好ましくは1.3以下である。上記差が2.0以下であると、導電性粒子と分散媒とが分離しにくく、連続吐出安定性および保存安定性により優れる。
 δaとδbの差[δa-δb]は、0.1以上が好ましく、より好ましくは0.2以上、さらに好ましくは0.5以上である。上記差が0.1以上であると、導電性粒子の分散性により優れ、連続吐出安定性により優れる。上記差は、2.5以下が好ましく、より好ましくは2.0以下、さらに好ましくは1.8以下である。上記差が2.5以下であると、導電性粒子と分散媒とが分離しにくく、連続吐出安定性および保存安定性により優れる。
 δaとδcの差[δa-δc]は、式(4)および式(5)に基づき1.0以上であり、好ましくは1.5以上、より好ましくは2.0以上である。上記差が1.0以上であると、焼結時のボイド発生をより抑制することができる。上記差は、5.0以下が好ましく、より好ましくは4.0以下、さらに好ましくは3.0以下である。上記差が5.0以下であると、導電性粒子と分散媒とが分離しにくく、連続吐出安定性および保存安定性により優れる。
 有機溶剤(a)の、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の総量100質量%に対する割合[有機溶剤(a)/{有機溶剤(a)+有機溶剤(b)+有機溶剤(c)}]は、5~70質量%が好ましく、より好ましくは10~60質量%、さらに好ましくは15~50質量%である。上記割合が上記範囲内であると、焼結時に分散媒が揮発しやすく、容易に焼結体を形成することができ、また、金属粒子の分散性により優れる。
 有機溶剤(b)の、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の総量100質量%に対する割合[有機溶剤(b)/{有機溶剤(a)+有機溶剤(b)+有機溶剤(c)}]は、5~70質量%が好ましく、より好ましくは10~60質量%、さらに好ましくは15~50質量%である。上記割合が上記範囲内であると、各有機溶剤の相溶性に優れ、連続吐出安定性および保存安定性により優れる。
 有機溶剤(c)の、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の総量100質量%に対する割合[有機溶剤(c)/{有機溶剤(a)+有機溶剤(b)+有機溶剤(c)}]は、5~70質量%が好ましく、より好ましくは10~60質量%、さらに好ましくは15~50質量%である。上記割合が上記範囲内であると、焼結時のボイド発生をより抑制することができる。
 有機溶剤(a)100質量部に対する有機溶剤(c)の含有量は、20~400質量部が好ましく、より好ましくは30~300質量部、さらに好ましくは50~200質量部である。上記含有量が上記範囲内であると、有機溶剤(a)と有機溶剤(c)との配合量のバランスが良く、焼結時のボイド抑制性および金属粒子の分散性がより良好となる。
 有機溶剤(a)および有機溶剤(c)の合計量100質量部に対する有機溶剤(b)の含有量は、10~200質量部が好ましく、より好ましくは20~150質量部、さらに好ましくは40~100質量部である。上記含有量が上記範囲内であると、有機溶剤(a)と有機溶剤(c)との相溶性がより向上し、連続吐出安定性および低温保存性により優れる。
 上記分散媒は、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)以外のその他の溶剤(有機溶剤)を含んでいてもよい。上記分散媒中の有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の合計の含有割合は、上記分散媒の総量100質量%に対して、50質量%以上が好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上である。上記含有割合が50質量%以上であると、導電性粒子の分散性および各有機溶剤の相溶性により優れ、連続吐出安定性、保存安定性、および焼結時のボイド形成抑制性により優れる。
 上記接合性導体ペーストに使用される配合比において有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)を混合した際、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)は、常温で均一に溶解し相分離を生じないことが好ましい。また、上記接合性導体ペーストにおいて有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)は、常温で均一に溶解し相分離を生じないことが好ましい。特に、22~28℃(好ましくは10~30℃、より好ましくは0~35℃)で相分離を生じないことが好ましい。
 上記分散媒の全量(100質量%)における、前記水酸基含有エーテル系溶剤の含有量は、前記導電性粒子の分散安定性、焼結時の分散媒の揮発性の観点から、好ましくは10~60質量%、より好ましくは15~55質量%、さらに好ましくは25~45質量%である。上記接合性導体ペースト中の有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の合計100質量%における前記水酸基含有エーテル系溶剤の含有割合が上記範囲内であることが好ましい。また、上記分散媒が、前記水酸基含有エーテル系溶剤のみから構成される態様(100質量%)も好ましい。
 前記導電性粒子100質量部に対する前記水酸基含有エーテル系溶剤の含有割合は、好ましくは1~15質量部、より好ましくは1.5~12質量部、さらに好ましくは2~10質量部である。上記含有割合が上記範囲内であると、前記導電性粒子の分散安定性、焼結時の揮発性に優れる。
 前記導電性粒子100質量部に対する前記分散媒の含有割合は、好ましくは4~20質量部、より好ましくは5~15質量部、さらに好ましくは6~12質量部である。上記含有割合が上記範囲内であると、前記導電性粒子の分散安定性、焼結時の揮発性に優れる。
 前記導電性粒子100質量部に対する有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の合計の含有割合が上記範囲内であることが好ましい。
(ウレア化合物)
 本開示の接合性導体ペーストは、ウレア化合物を必須成分として含有する。本開示の接合性導体ペーストがウレア化合物を含むことにより、溶剤滲みが抑制され、電子素子を接続するための導体配線、接合構造体等の焼結体を形成する際の印刷適正を向上することができる。また、焼結体形成時のボイド発生が抑制され、高い接合強度を有する導体配線、接合構造体等の焼結体、およびこれらを備えた電子デバイスを作製することができる。
 前記ウレア化合物は、ウレア基を有するレオロジーコントロール剤(ウレア系レオロジーコントロール剤)が好ましく、変性ウレア、ウレア変性ウレタン、高分子ウレア誘導体などの変性ウレア系、さらにウレア変性中極性ポリアマイド、ウレア変性低極性ポリアマイドなどのウレア変性ポリアマイドが挙げられる。前記ウレア化合物は、ウレア基の強い極性による水素結合力と会合作用によって、前記導電性粒子が分散した水酸基含有エーテル系溶剤を含む接合性導体ペーストに3次元網目構造を形成して適度に増粘させることにより溶剤滲みが抑制され、溶剤の突沸を防止してボイドの発生を抑制すると考えられる。溶剤滲み、ボイドの発生をより効率的に抑制する観点から、変性ウレア、ウレア変性ウレタン、ウレア変性ポリアマイドが好ましい。これらウレア化合物は、単独または2種以上組み合わせて使用することができる。
 変性ウレアとしては、ウレア基を1つ以上有する主鎖に対して共重合または置換基が導入されている化合物、ウレア変性ウレタンとしては、ウレア基を1つ以上有する主鎖の1部がウレタン鎖である化合物、ウレア変性ポリアマイドとしては、ウレア基を1つ以上有する主鎖の1部がアミド鎖である化合物が挙げられる。
 高分子ウレア誘導体としては、ウレア基を1つ以上有し、GPC法によるポリスチレン換算の数平均分子量が1,000~70,000のウレア誘導体が挙げられる。なかでも、ウレア基を2つ以上有し、GPC法によるポリスチレン換算の数平均分子量3,000~70,000の化合物が好ましい。
 前記ウレア化合物については、3次元網目構造を安定的に形成しやすく、分散性向上を考慮すれば、予め溶剤と混合して前記ウレア化合物との混合物とすることが好ましく、より考慮すれば、溶剤としては、ピロリドン誘導体、ポリアルキレングリコール、脂肪族アルコール、芳香族アルコール、グリコールエーテル、炭化水素系溶剤の中から選択することが好ましく、より好ましくは、ピロリドン誘導体、ポリアルキレングリコール、アミドエーテル、アミドエステルの中から選択することが好ましく、最も好ましくは、ピロリドン誘導体である。
 また、前記ウレア化合物は、各ウレア化合物において、それぞれ主溶剤として、特定の溶剤を主溶剤として用いることで、各ウレア化合物が3次元網目構造を安定的に形成しやすく、分散性を向上しやすい。
 そこで、変性ウレアを用いる場合は、分散性向上を考慮すれば、ピロリドン誘導体を用いることが好ましい。ピロリドン誘導体としては、N-メチルピロリドン、N-エチルピロリドン、N-ビニルピロリドン、2-ピロリドン等が挙げられるが、より分散性向上を考慮すれば、N-メチルピロリドンを用いることが好ましい。
 ウレア変性ウレタンを用いる場合は、同様に、ポリアルキレングリコールを用いることが好ましい。ポリアルキレングリコールとしては、ポリエチレングリコール、ポリプロピレングリコール等が挙げられるが、より分散性向上を考慮すれば、ポリプロピレングリコールを用いることが好ましい。
 ウレア変性ポリアマイドを用いる場合は、同様に、脂肪族アルコール、グリコールエーテル、炭化水素系溶剤の中から選択することが好ましい。脂肪族アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、イソプロパノール、イソブタノール、t-ブタノールなどが挙げられ、グリコールエーテルとしては、エチレングリコールモノフェニルエーテル(モノフェニルグリコール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、3-メトキシブタノール、3-メトキシ-3-メチルブタノール等が挙げられ、炭化水素系溶剤としては、ベンゼン、トルエン、キシレン、ソルベントナフサ、オクタン、ミネラルスピリット等が挙げられるが、より分散性向上を考慮すれば、イソプロパノール、イソブタノール、エチレングリコールモノフェニルエーテル(モノフェニルグリコール)、プロピレングリコールモノメチルエーテル、ソルベントナフサ、ミネラルスピリットの中から選択することが好ましく、より考慮すれば、イソプロパノール、エチレングリコールモノフェニルエーテル(モノフェニルグリコール)、ソルベントナフサを用いることが好ましい。
 前記変性ウレア、ウレア変性ウレタン、ウレア変性ポリアマイドとしては、市販品を使用することができ、具体的には、ビックケミー・ジャパン社製のBYK-410(主成分:変性ウレア)、BYK-411(主成分:変性ウレア)、BYK-415(主成分:高分子ウレア誘導体)、BYK-420(主成分:変性ウレア)、BYK-425(主成分:ウレア変性ウレタン)、BYK-430(主成分:ウレア変性中極性ポリアマイド)、BYK-431(主成分:ウレア変性低極性ポリアマイド)、BYK-7420(主成分:変性ウレア)等が挙げられる。
 前記水酸基含有エーテル系溶剤100質量部に対する前記ウレア化合物の含有割合は、好ましくは3~50質量部、より好ましくは3.5~30質量部、さらに好ましくは4~20質量部である。上記含有割合が3質量部以上であることにより、前記接合性導体ペーストに3次元網目構造が形成されて適度に増粘して、溶剤滲みが抑制され印刷適正が向上すると考えられる。また、上記含有割合が50質量部以下であることにより、ウレア化合物が銀粒子全体を被覆するように残ることによる焼結阻害が抑制され、高い接合強度を示すと考えられる。従って、上記含有割合が上記範囲内であると、溶剤滲みが抑制され、電子素子を接続するための導体配線、接合構造体等の焼結体を形成する際の印刷適正を向上することができる。また、焼結体形成時のボイド発生が抑制され、高い接合強度を有する導体配線、接合構造体等の焼結体、およびこれらを備えた電子デバイスを作製することができる。
 前記水酸基含有エーテル系溶剤を含む分散媒全体100質量部に対する前記ウレア化合物の含有割合は、好ましくは1~20質量部、より好ましくは2~15質量部、さらに好ましくは3~12質量部である。上記含有割合が1質量部以上であることにより、前記接合性導体ペーストに3次元網目構造が形成されて適度に増粘して、溶剤滲みが抑制され印刷適正が向上すると考えられる。また、上記含有割合が20質量部以下であることにより、ウレア化合物が銀粒子全体を被覆するように残ることによる焼結阻害が抑制され、高い接合強度を示すと考えられる。従って、上記含有割合が上記範囲内であると、溶剤滲みが抑制され、電子素子を接続するための導体配線、接合構造体等の焼結体を形成する際の印刷適正を向上することができる。また、焼結体形成時のボイド発生が抑制され、高い接合強度を有する導体配線、接合構造体等の焼結体、およびこれらを備えた電子デバイスを作製することができる。また、上記接合性導体ペースト中の有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の合計100質量部に対する前記ウレア化合物の含有割合が上記範囲内であることが好ましい。
 前記導電性粒子100質量部に対する前記ウレア化合物の含有割合は、好ましくは0.1~2質量部、より好ましくは0.2~1.5質量部、さらに好ましくは0.3~1.2質量部である。上記含有割合が0.1質量部以上であることにより、前記接合性導体ペーストに3次元網目構造が形成されて適度に増粘して、溶剤滲みが抑制され印刷適正が向上すると考えられる。また、上記含有割合が2質量部以下であることにより、ウレア化合物が銀粒子全体を被覆するように残ることによる焼結阻害が抑制され、高い接合強度を示すと考えられる。従って、上記含有割合が上記範囲内であると、溶剤滲みが抑制され、電子素子を接続するための導体配線、接合構造体等の焼結体を形成する際の印刷適正を向上することができる。また、焼結体形成時のボイド発生が抑制され、高い接合強度を有する導体配線、接合構造体等の焼結体、およびこれらを備えた電子デバイスを作製することができる。また、上記接合性導体ペースト中の有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の合計100質量部に対する前記ウレア化合物の含有割合が上記範囲内であることが好ましい。
 前記導電性粒子と分散媒の合計100質量部に対する前記ウレア化合物の含有割合は、好ましくは0.09~1.8質量部、より好ましくは0.15~1.4質量部、さらに好ましくは0.25~1.1質量部である。上記含有割合が0.09質量部以上であることにより、前記接合性導体ペーストに3次元網目構造が形成されて適度に増粘して、溶剤滲みが抑制され印刷適正が向上すると考えられる。また、上記含有割合が1.8質量部以下であることにより、ウレア化合物が銀粒子全体を被覆するように残ることによる焼結阻害が抑制され、高い接合強度を示すと考えられる。従って、上記含有割合が上記範囲内であると、溶剤滲みが抑制され、電子素子を接続するための導体配線、接合構造体等の焼結体を形成する際の印刷適正を向上することができる。また、焼結体形成時のボイド発生が抑制され、高い接合強度を有する導体配線、接合構造体等の焼結体、およびこれらを備えた電子デバイスを作製することができる。
(接合性導体ペースト)
 上記接合性導体ペースト中の導電性粒子の含有割合は、上記接合性導体ペーストの総量100質量%に対して、70~99.5質量%が好ましく、より好ましくは80~98質量%、さらに好ましくは85~95質量%である。上記含有割合が上記範囲内であると、導電性粒子の分散性により優れ、連続吐出安定性、および保存安定性により優れる。また、上記接合性導体ペースト中の、導電性ナノ粒子(A)、球状導電性粒子(B)、および扁平状導電性フレーク(C)の合計の含有割合が上記範囲内であることが好ましい。
 上記接合性導体ペースト中の分散媒(特に有機溶剤)の含有割合は、上記接合性導体ペーストの総量100質量%に対して、0.5~30質量%が好ましく、より好ましくは2~20質量%、さらに好ましくは5~15質量%である。上記含有割合が上記範囲内であると、導電性粒子の分散性により優れる。また、上記接合性導体ペースト中の有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の合計の含有割合が上記範囲内であることが好ましい。
 上記接合性導体ペースト中の水酸基含有エーテル系溶剤の含有割合は、上記接合性導体ペーストの総量100質量%に対して、0.5~15質量%が好ましく、より好ましくは1~13質量%、さらに好ましくは2~12質量%である。上記含有割合が上記範囲内であると、導電性粒子の分散性、焼結時の揮発性により優れる。
 上記接合性導体ペースト中の導電性粒子および分散媒の合計の含有割合は、上記接合性導体ペーストの総量100質量%に対して、70質量%以上が好ましく、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上である。
 上記接合性導体ペースト中のウレア化合物の含有割合は、上記接合性導体ペーストの総量100質量%に対して、好ましくは0.09~1.8質量%、より好ましくは0.15~1.4質量%、さらに好ましくは0.25~1.1質量%である。上記含有割合が0.09質量%以上であることにより、前記接合性導体ペーストに3次元網目構造が形成されて適度に増粘して、溶剤滲みが抑制され印刷適正が向上すると考えられる。また、上記含有割合が1.8質量%以下であることにより、ウレア化合物が銀粒子全体を被覆するように残ることによる焼結阻害が抑制され、高い接合強度を示すと考えられる。従って、上記含有割合が上記範囲内であると、溶剤滲みが抑制され、電子素子を接続するための導体配線、接合構造体等の焼結体を形成する際の印刷適正を向上することができる。また、焼結体形成時のボイド発生が抑制され、高い接合強度を有する導体配線、接合構造体等の焼結体、およびこれらを備えた電子デバイスを作製することができる。
 上記接合性導体ペーストは、金属粒子、分散媒、及びウレア化合物以外のその他の成分を含んでいてもよい。上記接合性導体ペーストは、例えば、接着剤や添加剤(例えば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂等の分子量10000以上の高分子化合物)を含有してもよい。但し、その含有割合は、接合性導体ペーストの総量100質量%に対して、例えば10質量%以下であり、好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは1質量%以下である。そのため、上記接合性導体ペーストによれば、高分子化合物由来の非導電成分によって、導電性粒子間や導電性粒子と基板とのインタラクションが阻害されることが無く、導電性に優れた導体配線や接合構造体[電気抵抗値は、例えば10×10-6Ω・cm以下、好ましくは9.0×10-6Ω・cm以下、より好ましくは8.5×10-6Ω・cm以下、さらに好ましくは7.0×10-6Ω・cm以下である]を形成することができる。
 本開示の接合性導体ペーストは、レオロジーコントロール剤としてウレア化合物を含むことにより、接合性導体ペーストに3次元網目構造を形成して適度に増粘させることにより溶剤滲みが抑制され、溶剤の揮発を促進してボイドの発生を抑制すると考えられる。従って、溶剤滲みが抑制され、電子素子を接続するための導体配線、接合構造体等の焼結体を形成する際の印刷適正を向上することができる。また、焼結体形成時のボイド発生が抑制され、高い接合強度を有する導体配線、接合構造体等の焼結体、およびこれらを備えた電子デバイスを作製することができる。
(焼結体)
 本開示の接合性導体ペーストを印刷法(具体的には、ディスペンサー印刷法、マスク印刷、スクリーン印刷法、インクジェット印刷法等)などにより基板に塗布し、その後、焼結することにより焼結体を形成し、導体配線や接合構造体を形成することができる。中でも、上記接合性導体ペーストは連続吐出安定性に優れる観点から、ディスペンサー印刷法により印刷することが好ましい。
 上記焼結温度は、例えば150℃以上300℃未満、好ましくは170~250℃である。また、焼結時間は、例えば0.1~2時間、好ましくは0.5~1時間である。
 上記焼結は、空気雰囲気下、窒素雰囲気下、アルゴン雰囲気下などのいずれで行ってもよいが、中でも空気雰囲気下で行うことが、経済的であり、且つ、より電気抵抗値が低い導体配線や接合構造体が得られる点で好ましい。
 上記接合性導体ペーストを基板上に塗布する厚さとしては、上記方法で形成される導体配線や接合構造体の厚みが、例えば15~400μm、好ましくは20~250μm、より好ましくは40~200μmとなる範囲である。
 導体配線や接合構造体を形成する基板としては、例えば、セラミック基板、SiC基板、窒化ガリウム基板、金属基板、ガラスエポキシ基板、BTレジン基板、ガラス基板、樹脂基板などが挙げられる。導体配線や接合構造体の形状としては、電子素子を接続することが可能な形状であれば特に限定されない。
 上記接合性導体ペーストを使用して基板上に形成された焼結体(例えば、導体配線や接合構造体)は、焼結によって導電性粒子が密に集合し、導電性粒子同士が溶け合うことにより、基板に対して優れた接合強度を発揮することができ、例えば銀メッキを施した銅基板と銀メッキを施したSiチップとを接合した際の接合強度(JIS Z3198準拠)は、好ましくは30MPa以上、より好ましくは40MPa以上である。
 上記接合性導体ペーストを使用して基板上に形成された焼結体(例えば、導体配線や接合構造体)中の超音波映像装置(SAT)を用いて測定されるボイド率は、30%以下が好ましく、より好ましくは15%以下、さらに好ましくは8%未満である。上記ボイド率が30%以下であると、接合強度がより高くなる。ボイド率が高いことは接合界面などにおける空隙が多いことを示し、接合体における被接合部との伝熱面積が減少すると考えられる。半導体の動作時において、熱を逃がす上で伝熱面積が狭くなることは致命的であり、ヒートスポットが発生して故障に繋がる可能性が高くなる。上記ボイド率は、具体的には実施例に記載の方法で測定することができる。
 上記接合性導体ペーストは上記特性を有するため、例えば、印刷法を用いて電子部品(例えば、パワー半導体モジュール、LEDモジュール等)を製造する目的に好ましく使用することができる。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。各実施形態における各構成およびそれらの組み合わせ等は、一例であって、本開示の趣旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、およびその他の変更が可能である。また、本開示に係る各発明は、実施形態や以下の実施例によって限定されることはなく、特許請求の範囲によってのみ限定される。
 以下に、実施例に基づいて本開示の一実施形態をより詳細に説明する。
(導電性ナノ粒子(A)の平均粒子径)
 以下において、導電性ナノ粒子(A)の平均粒子径(メジアン径)は以下の方法により測定した。
 調製例1で作製した表面修飾銀ナノ粒子を含む懸濁液を透過型電子顕微鏡により観察を行った。観察は10万倍で4視野×50個とした。また観察箇所は大小の粒子が共存している箇所とした。画像を解析することで個数粒径分布を求めた。この個数粒径分布に対して公知の換算式を用い粒子をアスペクト比1と仮定した上で体積粒径分布へ変換を行った。この粒径分布より平均粒子径(メジアン径)を求め、導電性ナノ粒子(A)の平均粒子径とした。
(球状導電性粒子(B)、扁平状導電性フレーク(C)の平均粒子径)
 レーザー回折・散乱法により測定した値である。
 使用した金属粒子、溶剤、およびウレア化合物は、以下のとおりである。
[金属粒子]
・表面修飾銀ナノ粒子(調製例1):平均粒子径(メジアン径)50nm
・AG-2-8F:商品名「AG-2-8F」、DOWAエレクトロニクス(株)製、球状銀粒子、平均粒子径(メジアン径)0.8μm
・41-104:商品名「41-104」、Technic社製、扁平状銀フレーク、平均粒子径(メジアン径)3.3μm
[溶剤(I):高極性溶媒]
・TMU:テトラメチルウレア、δ10.6、沸点177℃、(株)ダイセル製
[溶剤(II):中極性溶媒]
・TPM:トリプロピレングリコールモノメチルエーテル、δ9.4、沸点243℃、安藤パラケミー(株)製
・DHTP:ジヒドロターピネオール、δ9.0、沸点210℃、ヤスハラケミカル(株)製
[溶剤(III):低極性溶媒]
・DBC:ジブチルカルビトール、δ8.3、沸点255℃、東京化成工業(株)製
[ウレア化合物]
・BYK-430:商品名「BYK-430」、ビックケミー・ジャパン社製、主成分:ウレア変性中極性ポリアマイド
・BYK-420:商品名「BYK-420」、ビックケミー・ジャパン社製、主成分:変性ウレア
 調製例1(表面修飾銀ナノ粒子の調製)
 硝酸銀(和光純薬工業(株)製)とシュウ酸二水和物(和光純薬工業(株)製)から、シュウ酸銀(分子量:303.78)を得た。
 500mLフラスコに前記シュウ酸銀40.0g(0.1317モル)を仕込み、これに、60gのn-ブタノールを添加し、シュウ酸銀のn-ブタノールスラリーを調製した。
 得られたスラリーに、30℃で、n-ブチルアミン(分子量:73.14、東京化成工業(株)製試薬)115.58g(1.5802モル)、2-エチルヘキシルアミン(分子量:129.25、和光純薬工業(株)製試薬)51.06g(0.3950モル)、及びn-オクチルアミン(分子量:129.25、東京化成工業(株)製試薬)17.02g(0.1317モル)のアミン混合液を滴下した。
 滴下後、30℃で1時間撹拌して、シュウ酸銀とアミンの錯形成反応を進行させた。
 シュウ酸銀-アミン錯体の形成後に、110℃にて1時間加熱して、シュウ酸銀-アミン錯体を熱分解させて、濃青色の、表面修飾銀ナノ粒子を含む懸濁液を得た。
 得られた懸濁液を冷却し、これにメタノール(和光純薬工業(株)製試薬、特級)120gを加えて撹拌し、その後、遠心分離により表面修飾銀ナノ粒子を沈降させ、上澄み液を除去した。次に、ジブチルカルビトール120gを加えて撹拌し、その後、遠心分離により表面修飾銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、ジブチルカルビトールを含む湿った状態の表面修飾銀ナノ粒子を得た。SII社製TG/DTA6300を用いた熱天秤の測定結果から、湿潤状態の表面修飾銀ナノ粒子全量(100重量%)において表面修飾銀ナノ粒子の含有量は81.6重量%であった。すなわち、湿潤状態の表面修飾銀ナノ粒子に、ジブチルカルビトールが18.4重量%含まれていた。
 また、湿潤状態の表面修飾銀ナノ粒子について、走査型電子顕微鏡(日本電子社製、JSM-6700F)を用いて観察し、SEM写真において任意に選ばれた10個の銀ナノ粒子の粒子径を求め、それらの平均値を平均粒子径とした。表面修飾銀ナノ粒子における銀ナノ粒子部分の平均粒子径(1次粒子径)は50nmであった。
 実施例1(接合性導体ペーストの調製)
 商品名「41-104」(25.50g)、AG-2-8F(59.50g)、テトラメチルウレア(3.40g)、トリプロピレングリコールメチルエーテル(3.40g)、およびBYK-420(0.6g)を加えて、自転公転ミキサー((株)THINKY製、ARE-310)で混合して液Aを調製した。
 調製例1で得られた湿潤状態の表面修飾銀ナノ粒子(ジブチルカルビトールを18.4質量%含む)18.40gに液Aを92.40g加え、自転公転ミキサー((株)THINKY製、ARE-310)で混合し、黒灰色の接合性導体ペースト(1)を得た。
 実施例2~6、比較例1~4
 表1に示す通りに処方を変更したこと以外は実施例1と同様にして接合性導体ペーストを作製した。なお、表1に示す各成分の数値は「質量部」を示す。
 <評価>
 実施例および比較例で得られた接合性導体ペーストについて、以下の評価を行った。結果を表1に示した。
 使用した基板、機器は、以下のとおりである。
[基板]
・銀メッキ基材(日本テストパネル(株)製)
 基板:銅(1.0mm×9mm×60mm)
 下地:無電解ニッケルめっき(5μm)
 最表面:半光沢銀めっき(1.0μm)
・シリコンチップ(ヤマナカヒューテック(株)製)
 シリコン(0.525mm×3mm×3mm)
 下地:チタン500nmスパッタ
 最表面:銀2μmスパッタ
[機器]
・焼結炉(リフロー炉)
 RSS-450-210-FA(UNITEMP製)
(1)印刷評価
 上記基板に、サイズ5×5mmの開口がスペース2.5mmで3×3個配列したメタルマスクを介して、上記実施例、比較例で得られた接合性導体ペーストを印刷した。
 印刷適正を以下の基準にて評価した。結果を表1に示す。
・銀メッキ基材において5×5mmの開口に印刷された接合性導体ペーストの形が保持されており、分散媒もペーストから滲み出していない・・・○(良好)
・銀メッキ基材において5×5mmの開口に印刷された接合性導体ペーストの形が崩れている、もしくは分散媒がペーストから滲み出している・・・×(不良)
(2)ダイシェア強度
 次に、形成された塗膜の上に、基板(1)と同じ基板(2)を載せたものを、上記リフロー炉を使用して、以下の条件で無加圧で加熱して焼結を行って試料(基板(1)/焼結された接合性導体ペースト/基板(2))を作成した。
・大気下:
 25℃→200℃(昇温速度:5℃/min)
 200℃で60minホールド
 得られた試料(n=4)について、ダイシェアテスターSERIES4000(DAGE製)を使用して、室温条件下、以下の条件で、基板(1)と基板(2)間の接合強度を測定して接合性を評価した。
 銀メッキ基材、シリコンチップを用いた場合の接合強度(MPa)の平均値を表1に示す。
 テスト速度:50μm/s
 テスト高さ:50μm
(3)SAT評価
 ダイシェア強度の評価において作製した試料について、超音波映像装置を使用し、25MHzの反射法用プローブを用いて接合界面の剥離状態を観察した。この観察結果の画像を100分割し、各拡大画像において白色部分の長辺の長さが100μm以上となっている箇所をボイドとした。100分割した画像それぞれにおいて画像処理により白色部分が占める面積をボイド率とし、全体のボイド率の平均値をボイド率とした。このボイド率が8%未満のものを〇、8%以上30%未満のものを△、30%以上のものを×とした。
 図1(a)に実施例3で作製した試料におけるダイシェア強度測定後の焼結体表面のSAT画像を、図1(b)に比較例2で作製した試料におけるダイシェア強度測定後の焼結体表面のSAT画像を示す。実施例3ではボイドの発生が認められなかったのに対して、比較例2では多数のボイドの発生が認められた。
(4)SEM画像結果
 ダイシェア強度の評価において作製した試料について、チップ中央をカットしてミリング装置を使用して、断面を研磨した。次に、走査電子顕微鏡を使用し、倍率を調整して接合断面を観察した。
 図2(a)に実施例3で作製した試料におけるダイシェア強度測定後の焼結体断面のSEM画像を、図2(b)に比較例2で作製した試料におけるダイシェア強度測定後の焼結体断面のSEM画像を示す。実施例3ではボイドの発生が認められなかったのに対して、比較例2ではボイドの発生が認められた。
(5)総合評価
 以下の評価基準を全て満たすものを〇、一つでも満たさないものを×と評価した。
・印刷評価が〇
・ダイシェア強度が、30MPa以上
・SAT評価が〇
Figure JPOXMLDOC01-appb-T000002
 表1に示されるように、導電性粒子と、水酸基含有エーテル系溶剤としてトリプロピレングリコールモノメチルエーテルを含む分散媒とを含み、さらに所定量のウレア化合物を含有する実施例の接合性導体ペーストは、印刷評価において、欠けや滲みが認められず、優れた印刷適正を示し、SAT評価でもボイドの発生が低く、優れた接合強度を示した。
 一方、ウレア化合物を含まない比較例1は、SAT評価でもボイドの発生が低く、優れた接合強度を示したが、印刷評価において、滲みが認められた。
 また、所定量のウレア化合物を含むが、分散媒として水酸基含有エーテル系溶剤を含まない比較例2は、優れた接合強度を示したが、印刷評価において、欠けや滲みが認められ、30%以上のボイド率が認められた。
 また、所定量を超えるウレア化合物を含む比較例3は、印刷評価において、欠けや滲みが認められ、ダイシェア強度試験において焼結しなかった。過剰のウレア化合物が銀粒子を被覆し、焼結を阻害したと考えられた。
 また、所定量より少ないウレア化合物を含む比較例4は、SAT評価でもボイドの発生が低く、優れた接合強度を示したが、印刷評価において、滲みが認められた。
 以下、本開示に係る発明のバリエーションを記載する。
〔付記1〕導電性粒子と、水酸基含有エーテル系溶剤を含む分散媒と、ウレア化合物とを含有し、
 前記水酸基含有エーテル系溶剤を含む分散媒全体100質量部に対する前記ウレア化合物の含有割合は、1~20質量部(好ましくは2~15質量部、より好ましくは3~12質量部)である、接合性導体ペースト。
〔付記2〕導電性粒子と、水酸基含有エーテル系溶剤を含む分散媒と、ウレア化合物とを含有し、
 前記導電性粒子100質量部に対する前記ウレア化合物の含有割合は、0.1~2質量部(好ましくは0.2~1.5質量部、より好ましくは0.3~1.2質量部)である、接合性導体ペースト。
〔付記3〕前記水酸基含有エーテル系溶剤100質量部に対する前記ウレア化合物の含有割合は、3~50質量部(好ましくは3.5~30質量部、より好ましくは4~20質量部)である、付記1又は2に記載の接合性導体ペースト。
〔付記4〕前記導電性粒子と分散媒の合計100質量部に対する前記ウレア化合物の含有割合は、0.09~1.8質量部(好ましくは0.15~1.4質量部、より好ましくは0.25~1.1質量部)である、付記1~3のいずれか1つに記載の接合性導体ペースト。
〔付記5〕前記接合性導体ペーストの総量100質量%に対するウレア化合物の含有割合は、0.09~1.8質量%(好ましくは0.15~1.4質量%、より好ましくは0.25~1.1質量%)である、付記1~4のいずれか1つに記載の接合性導体ペースト。
〔付記6〕前記ウレア化合物が、変性ウレア、ウレア変性ウレタン、高分子ウレア誘導体、及びウレア変性ポリアマイド(例えば、ウレア変性中極性ポリアマイド、ウレア変性低極性ポリアマイドなど)からなる群から選ばれる少なくとも1種である、付記1~5のいずれか1つに記載の接合性導体ペースト。
〔付記7〕前記導電性粒子が銀粒子を含む、付記1~6のいずれか1つに記載の接合性導体ペースト。
〔付記8〕前記導電性粒子が、平均粒子径が1nm以上100nm未満(好ましくは2~80nm、より好ましくは5~70nm、さらに好ましくは10~60nm)の導電性ナノ粒子(A)を含み、
 前記導電性ナノ粒子(A)は、アミンを含む保護剤で表面が被覆された構成を有する導電性ナノ粒子である、付記1~7のいずれか1つに記載の接合性導体ペースト。
〔付記9〕前記導電性ナノ粒子(A)における保護剤が、アミンとして、
 脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(1)を含み、
 さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(2)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(3)のうちの少なくとも一方を含む、付記8に記載の接合性導体ペースト。
〔付記10〕アミン全量[モノアミン(1)+モノアミン(2)+ジアミン(3);100モル%]を基準として、下記範囲である、付記9に記載の接合性導体ペースト。
 モノアミン(1)の含有量:5~65モル%(下限は、好ましくは10モル%、より好ましくは15モル%である。また、上限は、好ましくは50モル%、より好ましくは40モル%、さらに好ましくは35モル%である)
 モノアミン(2)とジアミン(3)の合計含有量:35~95モル%(下限は、好ましくは50モル%、より好ましくは60モル%、さらに好ましくは65モル%である。また、上限は、好ましくは90モル%、より好ましくは85モル%である)
〔付記11〕モノアミン(2)とジアミン(3)を共に使用する場合、モノアミン(2)とジアミン(3)の各含有量は、アミン全量[モノアミン(1)+モノアミン(2)+ジアミン(3);100モル%]を基準として、下記範囲である、付記9に記載の接合性導体ペースト。
 モノアミン(2):5~70モル%(下限は、好ましくは10モル%、より好ましくは15モル%である。また、上限は、好ましくは65モル%、より好ましくは60モル%である)
 ジアミン(3):5~50モル%(下限は、好ましくは10モル%である。また、上限は、好ましくは45モル%、より好ましくは40モル%である)
〔付記12〕前記導電性粒子が、前記導電性ナノ粒子(A)以外に、平均粒子径が0.5μm以上1μm以下(好ましくは0.6~0.9μm)の球状導電性粒子(B)、及び平均粒子径が1μm以上10μm以下(好ましくは2~5μm)の扁平状導電性フレーク(C)を含む、付記8~11のいずれか1つに記載の接合性導体ペースト。
〔付記13〕前記接合性導体ペーストに含まれる前記導電性粒子全量(100質量%)のうち、前記導電性ナノ粒子(A)の割合が、50質量%以下(好ましくは30質量%以下、より好ましくは20質量%以下)である、付記8~12のいずれか1つに記載の接合性導体ペースト。
〔付記14〕前記接合性導体ペーストに含まれる前記導電性粒子全量(100質量%)のうち、前記導電性ナノ粒子(A)の割合が、5質量%以上(好ましくは10質量%以上)である、付記8~13のいずれか1つに記載の接合性導体ペースト。
〔付記15〕前記接合性導体ペーストに含まれる前記導電性粒子全量(100質量%)のうち、球状導電性粒子(B)の含有割合が、30質量%以上(好ましくは40質量%以上、より好ましくは50質量%超)であり、85質量%以下(好ましくは80質量%以下、より好ましくは70質量%以下)である、付記12~14のいずれか1つに記載の接合性導体ペースト。
〔付記16〕前記接合性導体ペーストに含まれる前記導電性粒子全量(100質量%)のうち、扁平状導電性フレーク(C)の含有割合が、10質量%以上(好ましくは15質量%以上)であり、65質量%以下(好ましくは50質量%以下、より好ましくは40質量%以下)である、付記12~15のいずれか1つに記載の接合性導体ペースト。
〔付記17〕前記接合性導体ペースト全量(100質量%)における、前記導電性ナノ粒子(A)、球状導電性粒子(B)、及び扁平状導電性フレーク(C)の合計の含有量が、70質量%以上(好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上)であり、99.5質量%以下(好ましくは99質量%以下)である、付記12~16のいずれか1つに記載の接合性導体ペースト。
〔付記18〕前記水酸基含有エーテル系溶剤の沸点(1気圧における)は、130℃以上(例えば130~300℃、好ましくは140~280℃、より好ましくは150~260℃、さらに好ましくは160~240℃)である、付記1~17のいずれか1つに記載の接合性導体ペースト。
〔付記19〕前記水酸基含有エーテル系溶剤の30℃における蒸気圧が、0.01~10.0mmHg(好ましくは0.05~8.0mmHg、より好ましくは0.1~6.0mmHg、さらに好ましくは0.3~4.0mmHg)である、付記1~18のいずれか1つに記載の接合性導体ペースト。
〔付記20〕前記水酸基含有エーテル系溶剤の25℃、せん断速度10s-1における粘度は、0.1~20mPa・s(好ましくは0.5~10mPa・s、より好ましくは1~9mPa・s、さらに好ましくは3~8mPa・s)である、付記1~19のいずれか1つに記載の接合性導体ペースト。
〔付記21〕前記水酸基含有エーテル系溶剤が、下記式(A)
   Ra-O-(Rb-O)n-OH   (A)
(式(A)中、Raはアルキル基、アリール基又はアラルキル基を示し、Rbは炭素数1~6のアルキレン基を示す。nは1以上の整数を示す)で表される化合物を含む、付記1~20のいずれか1つに記載の接合性導体ペースト。
〔付記22〕前記式(A)で表される化合物の沸点は、130℃以上(例えば、130~310℃、好ましくは170℃以上、より好ましくは200℃以上)である、付記21に記載の接合性導体ペースト。
〔付記23〕前記分散媒が、互いに異なる化合物であり、下記式(1)~(6)を満たす、有機溶剤(a)、有機溶剤(b)、及び有機溶剤(c)を含む、付記1~22のいずれか1つに記載の接合性導体ペースト。
 150℃≦Ta≦250℃ (1)
 150℃≦Tb≦250℃ (2)
 250℃≦Tc≦350℃ (3)
 δa≧10.0      (4)
 δc≦9.0       (5)
 δc≦δb≦δa     (6)
[式中、Ta~Tcはそれぞれ有機溶剤(a)~(c)の沸点を示し、δa~δcはそれぞれ有機溶剤(a)~(c)のハンセン溶解度パラメータを示す。]
〔付記24〕前記有機溶剤(a)の沸点Taは、150℃<Ta<250℃(好ましくは155℃≦Ta≦220℃、より好ましくは160℃≦Ta≦200℃)を満たす、付記23に記載の接合性導体ペースト。
〔付記25〕前記有機溶剤(a)のSP値δaは、10.3以上(好ましくは10.4以上)である、付記23又は24に記載の接合性導体ペースト。
〔付記26〕前記有機溶剤(a)のSP値δaは、16.0以下(又は、15.0以下)である、付記23~25のいずれか1つに記載の接合性導体ペースト。
〔付記27〕前記有機溶剤(b)の沸点Tbは、150℃<Tb<250℃(好ましくは180℃≦Tb≦248℃、より好ましくは200℃≦Tb≦245℃)を満たす、付記23~26のいずれか1つに記載の接合性導体ペースト。
〔付記28〕有機溶剤(b)のSP値δbは、8.0~12.0(好ましくは8.5~11.0、より好ましくは9.0~10.5)である、付記23~27のいずれか1つに記載の接合性導体ペースト。
〔付記29〕TbとTaの温度差[Tb-Ta]は、2℃以上(好ましくは5℃以上、より好ましくは10℃以上)である、付記23~28のいずれか1つに記載の接合性導体ペースト。
〔付記30〕有機溶剤(c)の沸点Tcは、250℃<Tc<350℃(好ましくは250℃<Tc≦320℃、より好ましくは250℃<Tc≦300℃)を満たす、付記23~29のいずれか1つに記載の接合性導体ペースト。
〔付記31〕有機溶剤(c)のSP値δcは、8.7以下(好ましくは8.5以下)である、付記23~30のいずれか1つに記載の接合性導体ペースト。
〔付記32〕有機溶剤(c)のSP値δcは、6.0以上(又は、7.0以上である、付記23~31のいずれか1つに記載の接合性導体ペースト。
〔付記33〕TcとTbの温度差[Tc-Tb]は、2℃以上(好ましくは6℃以上、より好ましくは10℃以上)である、付記23~32のいずれか1つに記載の接合性導体ペースト。
〔付記34〕TcとTaの温度差[Tc-Ta]は、30℃以上(好ましくは50℃以上、より好ましくは60℃以上)である、付記23~33のいずれか1つに記載の接合性導体ペースト。
〔付記35〕δc<δbを満たす、付記23~34のいずれか1つに記載の接合性導体ペースト。
〔付記36〕δb<δaを満たす、付記23~35のいずれか1つに記載の接合性導体ペースト。
〔付記37〕δbとδcの差[δb-δc]は、0.1以上(好ましくは0.2以上、より好ましくは0.5以上)である、付記23~36のいずれか1つに記載の接合性導体ペースト。
〔付記38〕δbとδcの差[δb-δc]は、2.0以下(好ましくは1.5以下、より好ましくは1.3以下)である、付記23~37のいずれか1つに記載の接合性導体ペースト。
〔付記39〕δaとδbの差[δa-δb]は、0.1以上(好ましくは0.2以上、より好ましくは0.5以上)である、付記23~38のいずれか1つに記載の接合性導体ペースト。
〔付記40〕δaとδbの差[δa-δb]は、2.5以下(好ましくは2.0以下、より好ましくは1.8以下)である、付記23~39のいずれか1つに記載の接合性導体ペースト。
〔付記41〕δaとδcの差[δa-δc]は、1.5以上(好ましくは2.0以上)である、付記23~40のいずれか1つに記載の接合性導体ペースト。
〔付記42〕δaとδcの差[δa-δc]は、5.0以下(好ましくは4.0以下、より好ましくは3.0以下)である、付記23~41のいずれか1つに記載の接合性導体ペースト。
〔付記43〕有機溶剤(a)の、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の総量100質量%に対する割合[有機溶剤(a)/{有機溶剤(a)+有機溶剤(b)+有機溶剤(c)}]は、5~70質量%(好ましくは10~60質量%、より好ましくは15~50質量%)である、付記23~42のいずれか1つに記載の接合性導体ペースト。
〔付記44〕有機溶剤(b)の、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の総量100質量%に対する割合[有機溶剤(b)/{有機溶剤(a)+有機溶剤(b)+有機溶剤(c)}]は、5~70質量%(好ましくは10~60質量%、より好ましくは15~50質量%)である、付記23~43のいずれか1つに記載の接合性導体ペースト。
〔付記45〕有機溶剤(c)の、有機溶剤(a)、有機溶剤(b)、および有機溶剤(c)の総量100質量%に対する割合[有機溶剤(c)/{有機溶剤(a)+有機溶剤(b)+有機溶剤(c)}]は、5~70質量%(好ましくは10~60質量%、より好ましくは15~50質量%)である、付記23~44のいずれか1つに記載の接合性導体ペースト。
〔付記46〕有機溶剤(a)100質量部に対する有機溶剤(c)の含有量は、20~400質量部(好ましくは30~300質量部、より好ましくは50~200質量部)である、付記23~45のいずれか1つに記載の接合性導体ペースト。
〔付記47〕有機溶剤(a)および有機溶剤(c)の合計量100質量部に対する有機溶剤(b)の含有量は、10~200質量部(好ましくは20~150質量部、より好ましくは40~100質量部)である、付記23~46のいずれか1つに記載の接合性導体ペースト。
〔付記48〕前記分散媒の全量(100質量%)における、前記水酸基含有エーテル系溶剤の含有量は、10~60質量%(好ましくは15~55質量%、より好ましくは25~45質量%)である、付記1~47のいずれか1つに記載の接合性導体ペースト。
〔付記49〕前記分散媒が、前記水酸基含有エーテル系溶剤のみから構成される、付記1~47のいずれか1つに記載の接合性導体ペースト。
〔付記50〕前記導電性粒子100質量部に対する前記水酸基含有エーテル系溶剤の含有割合は、1~15質量部(好ましくは1.5~12質量部、より好ましくは2~10質量部)である、付記1~49のいずれか1つに記載の接合性導体ペースト。
〔付記51〕前記導電性粒子100質量部に対する前記分散媒の含有割合は、4~20質量部(好ましくは5~15質量部、より好ましくは6~12質量部)である、付記1~50のいずれか1つに記載の接合性導体ペースト。
〔付記52〕前記接合性導体ペーストの総量100質量%に対する導電性粒子の含有割合は、70~99.5質量%(好ましくは80~98質量%、より好ましくは85~95質量%)である、付記1~51のいずれか1つに記載の接合性導体ペースト。
〔付記53〕上記接合性導体ペーストの総量100質量%に対する分散媒(特に有機溶剤)の含有割合は、0.5~30質量%(好ましくは2~20質量%、より好ましくは5~15質量%)である、付記1~52のいずれか1つに記載の接合性導体ペースト。
〔付記54〕前記接合性導体ペーストの総量100質量%に対する水酸基含有エーテル系溶剤の含有割合は、0.5~15質量%(好ましくは1~13質量%、より好ましくは2~12質量%)である、付記1~53のいずれか1つに記載の接合性導体ペースト。
〔付記55〕前記接合性導体ペーストの総量100質量%に対する分散媒の合計の含有割合は、70質量%以上(好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上)である、付記1~54のいずれか1つに記載の接合性導体ペースト。
〔付記56〕前記接合性導体ペーストの焼結体を介して、銀メッキを施した銅基板と銀メッキを施したSiチップとを接合した際の接合強度(JIS Z3198準拠)は、30MPa以上(好ましくは40MPa以上)である、付記1~55のいずれか1つに記載の接合性導体ペースト。
〔付記57〕前記接合性導体ペーストの焼結体中の超音波映像装置を用いて測定されるボイド率は、30%以下(好ましくは8%未満)である、付記1~56のいずれか1つに記載の接合性導体ペースト。
〔付記58〕付記1~57のいずれか1つに記載の接合性導体ペーストを焼結した、焼結体。
〔付記59〕付記1~57のいずれか1つに記載の接合性導体ペーストを焼結した焼結体で接合された接合構造体。
〔付記60〕付記58に記載の焼結体を備えた電子デバイス。
 本開示の接合性導体ペーストは、パワー半導体素子、LED素子などの電子素子を接続するための導体配線や接合構造体を形成する用途に適する。

Claims (14)

  1.  導電性粒子と、水酸基含有エーテル系溶剤を含む分散媒と、ウレア化合物とを含有し、
     前記水酸基含有エーテル系溶剤を含む分散媒全体100質量部に対する前記ウレア化合物の含有割合は、1~20質量部である、接合性導体ペースト。
  2.  導電性粒子と、水酸基含有エーテル系溶剤を含む分散媒と、ウレア化合物とを含有し、
     前記導電性粒子100質量部に対する前記ウレア化合物の含有割合は、0.1~2質量部である、接合性導体ペースト。
  3.  前記水酸基含有エーテル系溶剤が、下記式(A)
       Ra-O-(Rb-O)n-OH   (A)
    (式(A)中、Raはアルキル基、アリール基又はアラルキル基を示し、Rbは炭素数1~6のアルキレン基を示す。nは1以上の整数を示す)で表される化合物を含む、請求項1又は2に記載の接合性導体ペースト。
  4.  前記ウレア化合物が、変性ウレア、ウレア変性ウレタン、高分子ウレア誘導体、及びウレア変性ポリアマイドからなる群から選ばれる少なくとも1種である、請求項1又は2に記載の接合性導体ペースト。
  5.  前記導電性粒子が銀粒子を含む、請求項1又は2に記載の接合性導体ペースト。
  6.  前記導電性粒子が、平均粒子径が1nm以上100nm未満の導電性ナノ粒子(A)を含み、
     前記導電性ナノ粒子(A)は、アミンを含む保護剤で表面が被覆された構成を有する導電性ナノ粒子である、請求項1又は2に記載の接合性導体ペースト。
  7.  前記接合性導体ペーストに含まれる前記導電性粒子全量(100質量%)のうち、前記導電性ナノ粒子(A)の割合が50質量%以下である、請求項6に記載の接合性導体ペースト。
  8.  前記導電性ナノ粒子(A)における保護剤が、アミンとして、
     脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(1)を含み、
     さらに、脂肪族炭化水素基と1つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(2)、及び脂肪族炭化水素基と2つのアミノ基とからなり且つ該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(3)のうちの少なくとも一方を含む、請求項6に記載の接合性導体ペースト。
  9.  前記導電性粒子が、前記導電性ナノ粒子(A)以外に、平均粒子径が0.5μm以上1μm以下の球状導電性粒子(B)、及び平均粒子径が1μm以上10μm以下の扁平状導電性フレーク(C)を含む、請求項6に記載の接合性導体ペースト。
  10.  前記接合性導体ペースト全量(100質量%)における、前記導電性ナノ粒子(A)、球状導電性粒子(B)、及び扁平状導電性フレーク(C)の合計の含有量が80~99.5質量%である、請求項9に記載の接合性導体ペースト。
  11.  前記分散媒が、互いに異なる化合物であり、下記式(1)~(6)を満たす、有機溶剤(a)、有機溶剤(b)、及び有機溶剤(c)を含む、請求項1又は2に記載の接合性導体ペースト。
     150℃≦Ta≦250℃ (1)
     150℃≦Tb≦250℃ (2)
     250℃≦Tc≦350℃ (3)
     δa≧10.0      (4)
     δc≦9.0       (5)
     δc≦δb≦δa     (6)
    [式中、Ta~Tcはそれぞれ有機溶剤(a)~(c)の沸点を示し、δa~δcはそれぞれ有機溶剤(a)~(c)のハンセン溶解度パラメータを示す。]
  12.  請求項1又は2に記載の接合性導体ペーストを焼結した、焼結体。
  13.  請求項1又は2に記載の接合性導体ペーストを焼結した焼結体で接合された接合構造体。
  14.  請求項12に記載の焼結体を備えた電子デバイス。
PCT/JP2023/032896 2022-09-14 2023-09-08 接合性導体ペースト WO2024058074A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-146294 2022-09-14
JP2022146294 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024058074A1 true WO2024058074A1 (ja) 2024-03-21

Family

ID=90274919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032896 WO2024058074A1 (ja) 2022-09-14 2023-09-08 接合性導体ペースト

Country Status (1)

Country Link
WO (1) WO2024058074A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276573A (ja) * 2004-03-24 2005-10-06 Taiyo Ink Mfg Ltd 感光性導電ペースト及びそれを用いて形成した導電体パターン
WO2017038572A1 (ja) * 2015-08-31 2017-03-09 ハリマ化成株式会社 導電性ペースト

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276573A (ja) * 2004-03-24 2005-10-06 Taiyo Ink Mfg Ltd 感光性導電ペースト及びそれを用いて形成した導電体パターン
WO2017038572A1 (ja) * 2015-08-31 2017-03-09 ハリマ化成株式会社 導電性ペースト

Similar Documents

Publication Publication Date Title
KR102237717B1 (ko) 스크린 인쇄용 잉크
TWI705998B (zh) 導電性組成物及使用該導電性組成物的電子組件
KR101387374B1 (ko) 은 입자 분말 및 이의 제조법
JP6303392B2 (ja) 銀ペースト及びそれを用いた半導体装置、並びに銀ペーストの製造方法
KR20190003516A (ko) 접합용 구리 페이스트, 접합체의 제조 방법 및 반도체 장치의 제조 방법
WO2019093427A1 (ja) 接合体の製造方法及び接合材
JP6736782B2 (ja) 接合用組成物
TW201631057A (zh) 銀粒子塗料組成物
JP7139590B2 (ja) 導体形成用組成物、並びに接合体及びその製造方法
KR20210013108A (ko) 도전성 잉크
WO2024058074A1 (ja) 接合性導体ペースト
JP6905328B2 (ja) 金属メッキ層形成用組成物
JP2015004121A (ja) 金属ナノ粒子ペースト、それを含有する接合材料、及びそれを用いた半導体装置
JP6556302B1 (ja) ペースト状銀粒子組成物、金属製部材接合体の製造方法および多孔質の銀粒子焼結物と樹脂硬化物の複合物の製造方法
WO2023100824A1 (ja) 接合性導体ペースト
WO2024004956A1 (ja) インク組成物
JPWO2019098195A1 (ja) 物品及びその製造方法
WO2023017747A1 (ja) 導電性インク
TW202413549A (zh) 墨水組成物
JP2023177614A (ja) 導電性組成物
JP2021059770A (ja) 複合金属粒子及びその製造方法、複合金属粒子含有組成物、並びに物品
WO2021025003A1 (ja) 接合性導体ペースト
EP4180490A1 (en) Conductive ink
TW201936818A (zh) 接合用組成物
JP6823856B1 (ja) 接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865429

Country of ref document: EP

Kind code of ref document: A1