WO2024057873A1 - 情報処理装置、情報処理方法およびプログラム - Google Patents
情報処理装置、情報処理方法およびプログラム Download PDFInfo
- Publication number
- WO2024057873A1 WO2024057873A1 PCT/JP2023/030638 JP2023030638W WO2024057873A1 WO 2024057873 A1 WO2024057873 A1 WO 2024057873A1 JP 2023030638 W JP2023030638 W JP 2023030638W WO 2024057873 A1 WO2024057873 A1 WO 2024057873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information processing
- processing device
- fan
- rotation speed
- control unit
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 104
- 238000003672 processing method Methods 0.000 title claims description 16
- 238000001816 cooling Methods 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 30
- 230000004913 activation Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 description 40
- 238000012545 processing Methods 0.000 description 40
- 238000012544 monitoring process Methods 0.000 description 34
- 238000010586 diagram Methods 0.000 description 32
- 238000004891 communication Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 12
- 238000012986 modification Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/724—User interfaces specially adapted for cordless or mobile telephones
- H04M1/72403—User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
- H04M1/72409—User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/72—Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
- H04M1/724—User interfaces specially adapted for cordless or mobile telephones
- H04M1/72448—User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
- H04M1/72454—User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present disclosure relates to an information processing device, an information processing method, and a program.
- TPS Transmission-person shooter
- MMORPG Massively Multiplayer Online Role-Playing Game
- the present disclosure proposes an information processing device, an information processing method, and a program that can further improve cooling efficiency.
- an information processing device including a fan unit having an air cooling fan, and includes a control unit.
- the control unit controls the rotation speed of the air cooling fan based on at least temperature and power consumption of the information processing device.
- FIG. 1 is a schematic explanatory diagram (part 1) of an information processing method according to an embodiment of the present disclosure
- FIG. FIG. 2 is a schematic explanatory diagram (part 2) of the information processing method according to the embodiment of the present disclosure.
- FIG. 1 is a block diagram illustrating a configuration example of a smartphone according to an embodiment of the present disclosure.
- FIG. 2 is an explanatory diagram (part 1) of high temperature control processing according to the embodiment of the present disclosure.
- FIG. 7 is an explanatory diagram (part 2) of high temperature control processing according to the embodiment of the present disclosure.
- FIG. 2 is a block diagram illustrating a configuration example of a monitoring unit according to an embodiment of the present disclosure.
- FIG. 2 is an explanatory diagram (part 1) of calculation processing according to an embodiment of the present disclosure.
- FIG. 6 is an explanatory diagram (Part 2) of calculation processing according to the embodiment of the present disclosure.
- FIG. 7 is an explanatory diagram (Part 3) of calculation processing according to the embodiment of the present disclosure.
- FIG. 4 is an explanatory diagram (Part 4) of calculation processing according to the embodiment of the present disclosure.
- FIG. 5 is an explanatory diagram (Part 5) of calculation processing according to the embodiment of the present disclosure.
- FIG. 6 is an explanatory diagram (part 6) of calculation processing according to the embodiment of the present disclosure.
- FIG. 2 is a block diagram illustrating a configuration example of a fan accessory according to an embodiment of the present disclosure. It is a flowchart which shows the processing procedure performed by the smart phone concerning an embodiment of this indication.
- FIG. 15 is a flowchart showing the processing procedure of the hysteresis control process shown in FIG. 14.
- FIG. FIG. 6 is an explanatory diagram (part 1) of a modification.
- FIG. 6 is an explanatory diagram (part 2) of a modification.
- FIG. 7 is an explanatory diagram (part 3) of a modification.
- FIG. 4 is an explanatory diagram (part 4) of a modification.
- FIG. 5 is an explanatory diagram (part 5) of a modification.
- FIG. 6 is an explanatory diagram (part 6) of a modification.
- FIG. 2 is a hardware configuration diagram showing an example of a computer that implements the functions of a smartphone.
- this embodiment is a smartphone 10
- this embodiment a case where the information processing device according to an embodiment of the present disclosure (hereinafter referred to as "this embodiment” as appropriate) is a smartphone 10
- this embodiment a case where the information processing device according to an embodiment of the present disclosure (hereinafter referred to as "this embodiment” as appropriate) is a smartphone 10
- this embodiment a case where the information processing device according to an embodiment of the present disclosure (hereinafter referred to as "this embodiment” as appropriate) is a smartphone 10
- FIG. 1 is a schematic explanatory diagram (Part 1) of an information processing method according to an embodiment of the present disclosure.
- FIG. 2 is a schematic explanatory diagram (part 2) of the information processing method according to the embodiment of the present disclosure.
- the information processing method according to this embodiment is executed by the smartphone 10.
- the smartphone 10 according to the present embodiment includes a forced air cooling type cooling structure using a cooling fan. As shown in FIG. 1, the smartphone 10 realizes the cooling structure using a removably provided fan accessory 100.
- the fan accessory 100 corresponds to an example of a "fan section.”
- the fan accessory 100 is provided so as to be attachable to the back side of the smartphone 10 where the out-camera and the like are provided. Further, the fan accessory 100 includes a fan 103 that is an air cooling fan. Fan 103 is provided at the center of fan accessory 100. Note that the fan 103 is not limited to the central portion of the fan accessory 100, and may be provided at another position corresponding to a location that is likely to become a heat source (such as the CPU) of the smartphone 10, for example.
- the fan accessory 100 has grip portions 106 on the left and right sides. When the fan accessory 100 is attached, the user can enjoy various applications activated on the smartphone 10 while holding the grip portion 106 in the hand.
- the fan accessory 100 is attached and the user holds the smartphone 10 not directly but indirectly through the grip part 106, thereby reducing the risk of the user suffering burns or the like. It is being reduced. Additionally, the smartphone 10 performs forced air cooling using the fan 103.
- the smartphone 10 performs fan control based on at least power consumption and temperature, as shown in FIG. 2. Basically, the smartphone 10 controls the rotation speed of the fan 103 so that the higher the power consumption or the higher the temperature, the higher the rotation speed.
- the smartphone 10 calculates a moving average of power consumption, and calculates the required number of rotations (hereinafter referred to as "required number of rotations") based on the moving average.
- the smartphone 10 calculates the required rotation speed according to the measured temperature. Then, the smartphone 10 adopts the higher of the required rotation speed based on power consumption and the required rotation speed based on temperature.
- the smartphone 10 performs hysteresis control when lowering the rotation speed of the fan 103, taking into consideration the large fluctuations in power consumption as described above.
- the smartphone 10 is equipped with a high temperature control process that automatically limits the use of resources such as the CPU when the temperature exceeds a specified value.
- the smartphone 10 changes the activation timing of the high temperature control process by increasing the above-mentioned specified temperature value.
- the information processing method according to the present embodiment is an information processing method executed by the smartphone 10 including the fan accessory 100 having the fan 103, in which the rotation of the fan 103 is controlled based on at least the temperature and the power consumption of the smartphone 10. Control numbers.
- cooling efficiency can be further improved.
- configuration examples of the smartphone 10 and the fan accessory 100 to which the information processing method according to the present embodiment is applied will be described in more detail.
- FIG. 3 is a block diagram illustrating a configuration example of the smartphone 10 according to the embodiment of the present disclosure. Note that FIG. 3 and FIGS. 6, 13, and 16 shown later show only the components necessary for explaining the features of this embodiment, and descriptions of general components are omitted.
- each component illustrated in FIGS. 3, 6, 13, and 16 is functionally conceptual, and does not necessarily need to be physically configured as illustrated.
- the specific form of distributing/integrating each block is not limited to what is shown in the diagram, and all or part of each block can be functionally or physically distributed/integrated in arbitrary units depending on various loads and usage conditions. It is possible to configure them in an integrated manner.
- the smartphone 10 includes an HMI (Human Machine Interface) section 11, a communication section 12, a temperature sensor 13, a voltage/current sensor 14, a battery 15, and an external I/F (interface) 16. , a storage section 17 , and a control section 18 .
- HMI Human Machine Interface
- the HMI unit 11 is a group of HMI parts including means for exchanging information between the user and the smartphone 10, devices for that purpose, software, etc., and is realized by a touch panel display, a speaker, GUI (Graphical User Interface) parts, etc. Ru.
- the communication unit 12 is realized by, for example, a wireless communication module.
- the communication unit 12 is wirelessly connected to a network such as the Internet, and transmits and receives information to and from other communication devices (for example, an application server or another smartphone 10) via the network.
- a network such as the Internet
- the temperature sensor 13 is a sensor that measures temperature.
- the temperature sensor 13 is realized by, for example, a thermistor.
- One or more temperature sensors 13 are provided, and measure the temperature of various parts of the smartphone 10, such as the HMI section 11, the communication section 12, the battery 15, and the control section 18, for example.
- the voltage/current sensor 14 is a sensor that measures voltage and current.
- One or more voltage/current sensors 14 are provided, and measure voltages and currents at various parts of the smartphone 10, such as the HMI section 11, the communication section 12, the battery 15, and the control section 18, for example. Note that in the voltage/current sensor 14, the voltage sensor and the current sensor may be integrated or separate.
- the battery 15 is an internal power source of the smartphone 10.
- the battery 15 is realized by, for example, a lithium ion secondary battery.
- the fan accessory 100 can be connected to an external power source 400 (see FIG. 13) such as an AC power source.
- the battery 15 can be charged by receiving power from the external power source 400 via the fan accessory 100.
- the external I/F 16 is an interface component for connecting to peripheral devices including the fan accessory 100, and is realized by, for example, a USB (Universal Serial Bus). In this embodiment, it is assumed that this is realized by the USB.
- USB Universal Serial Bus
- the storage unit 17 is realized by, for example, a semiconductor memory element such as a RAM (Random Access Memory), a ROM (Read Only Memory), or a flash memory.
- the storage unit 17 stores application information 17a, high temperature control parameter information 17b, monitoring parameter information 17c, calculation model 17d, hysteresis control information 17e, and fan control parameter information 17f. do.
- the application information 17a is information including the program according to the present embodiment, various application programs such as game applications, and various parameters used during execution of each program.
- the high temperature control parameter information 17b is information including various parameters, threshold values, etc. used in high temperature control processing executed by a high temperature control unit 18d, which will be described later.
- the monitoring parameter information 17c is information including various parameters, threshold values, etc. used in monitoring processing executed by the monitoring unit 18e, which will be described later.
- the calculation model 17d is information including various parameters, threshold values, etc. used in the calculation process of the moving average of power consumption, the required rotation speed, etc., executed by the calculation unit 18f, which will be described later.
- the hysteresis control information 17e is information including various parameters, threshold values, etc. used in hysteresis control processing executed by a hysteresis control unit 18h, which will be described later.
- the fan control parameter information 17f is information including various parameters, threshold values, etc. used in fan control service processing executed by the fan control service unit 18i, which will be described later.
- the control unit 18 is a controller, and various programs stored in the storage unit 17 are stored in the RAM by, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), etc. This is achieved by executing it as a work area. Further, the control unit 18 can be realized by, for example, an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the control unit 18 includes an application execution unit 18a, an HMI control unit 18b, a communication control unit 18c, a high temperature control unit 18d, a monitoring unit 18e, a calculation unit 18f, a determination unit 18g, and a hysteresis control unit 18h. , and a fan control service unit 18i, and realizes or executes information processing functions and operations described below.
- the application execution unit 18a reads the application information 17a stored in the storage unit 17 and executes the program according to the present embodiment. Further, the application execution unit 18a reads the application information 17a in response to the user's operation input via the HMI unit 11, and executes an arbitrary program such as a game application specified by the user.
- the HMI control unit 18b controls input/output of various information via the HMI unit 11 that occurs when the application execution unit 18a executes a program.
- the communication control unit 18c controls communication of various information via the communication unit 12.
- the high temperature control unit 18d activates the above-described high temperature control process in order to reduce the load on the smartphone 10 and suppress further temperature rise.
- FIG. 4 is an explanatory diagram (part 1) of the high temperature control process according to the embodiment of the present disclosure.
- FIG. 5 is an explanatory diagram (part 2) of the high temperature control process according to the embodiment of the present disclosure.
- the high temperature control process has three operating modes: a "power save” mode, a "normal” mode, and a "performance” mode.
- the "power save” mode is a mode that gives priority to saving power (power consumption), and is an operation mode in which the resource limit amount is the largest among the three high temperature control modes.
- the "performance” mode is a mode that prioritizes the performance of the smartphone 10, and is an operation mode in which the resource limit amount is the smallest among the three high temperature control modes.
- "Normal” mode is an operating mode in which the resource limit is between "Power Save” mode and "Performance" mode.
- This operation mode is specified by the user via the HMI unit 11, for example, and is set in advance in the high temperature control parameter information 17b.
- the high temperature control unit 18d executes high temperature control processing based on the settings of the high temperature control parameter information 17b.
- the high temperature control unit 18d activates the high temperature control process when the temperature of the smartphone 10 exceeds a specified value.
- the specified value can be made different between when the fan 103 is stopped and when it is rotating.
- the high-temperature control unit 18d executes the high-temperature control process using, for example, 30° C. as the activation temperature when the fan 103 is stopped. “When the fan is stopped” includes a case where the fan accessory 100 is not attached to the smartphone 10. Further, the high temperature control unit 18d executes the high temperature control process with the activation temperature set to, for example, 35° C. during “fan rotation” when the fan 103 is at least rotating.
- the activation temperature shown in FIG. 5 is set in advance in the high temperature control parameter information 17b for each mode shown in FIG. 4, for example.
- the high temperature control unit 18d executes high temperature control processing in accordance with the temperature monitored by the monitoring unit 18e and the rotation of the fan 103 controlled by the fan control service unit 18i, which will be described later, while referring to the high temperature control parameter information 17b. do.
- the temperature to be compared with the activation temperature which is the specified value, may be the highest value among the temperatures measured by the plurality of temperature sensors 13, or may be the average value.
- different activation temperatures may be set for the plurality of temperature sensors 13, and the high temperature control process may be executed when the temperature measured by at least one temperature sensor 13 reaches the activation temperature.
- FIG. 6 is a block diagram illustrating a configuration example of the monitoring unit 18e according to the embodiment of the present disclosure. As shown in FIG. 6, the monitoring section 18e includes a voltage/current monitoring section 18ea and a temperature monitoring section 18eb.
- the voltage/current monitoring unit 18ea acquires the measured values of the voltage/current sensor 14 at any time and outputs them to the calculation unit 18f.
- the temperature monitoring section 18eb acquires the measured value of the temperature sensor 13 at any time and outputs it to the calculation section 18f.
- the monitoring unit 18e may monitor various types of information indicating the status of the smartphone 10 in addition to the measured values of the voltage/current sensor 14 and the temperature sensor 13. For example, the monitoring unit 18e may monitor the status of each application running on the smartphone 10 (hereinafter, appropriately referred to as "application status"), the charging state of the battery 15, etc. Such modified examples will be described later using Figures 16 to 18.
- the calculation unit 18f calculates the power consumption of the smartphone 10 based on the measured value of the voltage/current sensor 14 input from the monitoring unit 18e. Further, the calculation unit 18f calculates a moving average of the calculated power consumption for each predetermined period. Further, the calculation unit 18f calculates the required rotation speed for the fan 103 based on the power consumption from the calculated moving average.
- calculation unit 18f calculates the required rotation speed for the fan 103 based on the temperature at each predetermined cycle from the measurement value of the temperature sensor 13 inputted from the monitoring unit 18e.
- the calculation unit 18f calculates the power consumption using the following equation (1). Equation (1) is included in, for example, the calculation model 17d described above.
- “System Power” on the left side is power consumption.
- “USB_Voltage*USB_Current”, which is the first term on the right side, is the power supplied to the smartphone 10 via the external I/F 16 when the external power supply 400 is connected to the fan accessory 100.
- “Voltage_now*Current_now”, which is the second term on the right side, is the power based on the voltage and current measured by the voltage/current sensor 14.
- the calculation unit 18f calculates the required rotation speed based on the power consumption and temperature based on the rotation speed level.
- the calculation process according to this embodiment will be explained using FIGS. 7 to 12. 7 to 12 are explanatory diagrams (Part 1) to (Part 6) of calculation processing according to the embodiment of the present disclosure.
- the rotation speed of the fan 103 is divided into levels. Note that in FIGS. 7 to 12, the levels are roughly divided into four stages. This is only for convenience of explanation and does not limit the actual content of the level classification.
- the calculation unit 18f calculates the rotation rate based on (the moving average of) the power consumption based on the map information that associates the power consumption and the rotation speed level (see “Fan level” on the vertical axis) as shown in FIG. Calculate the number level.
- the calculation unit 18f calculates the rotation speed level as "4". Further, the calculation unit 18f calculates the rotation speed level as “2” for the section where the moving average is “2.5W”. Further, the calculation unit 18f calculates the rotation speed level as "1" for the section where the moving average is "1.5W”.
- the rotation speed level is calculated based only on the power consumption and the fan 103 is controlled according to the rotation speed level, it is possible to at least estimate the cooling capacity according to the load. Furthermore, when the fan accessory 100 is attached while the smartphone 10 is hot or when the ambient temperature is high, the above-mentioned high-temperature control process is activated, so a certain effect can be obtained even with fan control based only on power consumption. .
- the calculation unit 18f calculates the rotation speed level based on the temperature, as shown in FIG. calculate.
- the rotation speed level is calculated as "1". Further, the calculation unit 18f calculates the rotation speed level to be “2" when the temperature is "33°C”. Further, the calculation unit 18f calculates the rotation speed level as "3" when the temperature is "36°C”.
- the determination unit 18g adopts the higher of the rotation speed level calculated based on power consumption and the rotation speed level calculated based on temperature.
- the higher required rotation speed level of the power consumption and temperature of the smartphone 10 and controlling the rotation speed of the fan 103 based on this, cooling is achieved according to both the load and temperature of the smartphone 10. ability can be estimated.
- a moving average of power consumption is taken every minute, and the determining unit 18g adopts a rotation speed level based on the moving average to control the rotation speed of the fan 103, and at the same time monitors the temperature.
- the fan 103 may be forced to operate at the maximum rotation speed when the temperature reaches the point at which the high temperature control process is activated. In this case, while controlling the fan 103 basically based on power consumption, it is possible to cover cases where the temperature is high.
- the table information and map information shown in FIGS. 7, 8, 10, and 12 are included in, for example, the above-mentioned calculation model 17d. Further, the calculation cycle of the moving average of power consumption, the reference cycle of temperature, etc. are included in the above-mentioned monitoring parameter information 17c, for example.
- the determining unit 18g adopts the higher of the rotation speed level calculated based on power consumption and the rotation speed level calculated based on temperature. Further, the determining unit 18g converts the required rotation speed from the adopted rotation speed level.
- the hysteresis control unit 18h executes hysteresis control processing to prevent the rotation speed of the fan 103 from suddenly changing when the required rotation speed calculated by the determination unit 18g is lower than the current rotation speed of the fan 103.
- the fan control service unit 18i generates a control signal for controlling the rotation of the fan 103 based on the required rotation speed determined by the determination unit 18g and with hysteresis taken into account by the hysteresis control unit 18h, and sends the control signal to the fan 103 via the external I/F 16. Output to fan accessory 100.
- FIG. 13 is a block diagram illustrating a configuration example of the fan accessory 100 according to the embodiment of the present disclosure.
- the fan accessory 100 includes a first external I/F 101, a second external I/F 102, a fan 103, an LED (light-emitting diode) 104, and a control unit 105.
- the first external I/F 101 is a connection interface component to the smartphone 10, and in this embodiment is realized by a USB.
- the fan accessory 100 is attached to the smartphone 10, it is connected to the smartphone 10 via the first external I/F 101 via USB.
- the second external I/F 102 is a group of interface parts for connecting the fan accessory 100 to peripheral devices.
- the fan accessory 100 is connected to an external DSP (display) 200, an external SP (speaker) 300, an external power source 400, etc. via a second external I/F 102.
- the fan accessory 100 is connected to the external DSP 200 using, for example, HDMI (registered trademark).
- the fan 103 is a cooling fan.
- the LED 104 is a lighting component that notifies the status of the fan 103, and is arranged at a location of the fan accessory 100 that is visible to the user, for example.
- the control unit 105 is a controller similar to the control unit 18 described above. Further, the control unit 105 can be realized by, for example, an integrated circuit such as an ASIC or an FPGA.
- the control unit 105 includes a fan control unit 105a, an LED control unit 105b, an external output control unit 105c, and a power supply control unit 105d, and realizes or executes information processing functions and operations described below.
- the fan control unit 105a controls the fan 103 based on a control signal for the fan 103 from the smartphone 10 that is input via the first external I/F 101. Note that the fan control unit 105a can control the fan 103 while appropriately correcting the control signal from the smartphone 10 according to the hardware specifications of the fan 103 and the like.
- the LED control unit 105b controls the lighting state of the LED 104 to notify the user of the state of the fan 103.
- the LED control unit 105b lights the LED 104 in red when the rotation speed of the fan 103 is high, and in a color other than red when the rotation speed of the fan 103 is low.
- the external output control unit 105c controls external output to peripheral devices via the second external I/F 102.
- the external output control unit 105c acquires a video of an application being executed from, for example, the smartphone 10 via the first external I/F 101, and outputs it to the external DSP 200 via the second external I/F 102. Further, the external output control unit 105c acquires the audio of the application being executed from the smartphone 10 via the first external I/F 101, for example, and outputs it to the external SP 300 via the second external I/F 102.
- the power supply control unit 105d supplies power from the external power supply 400 to the fan 103, the LED 104, and the control unit 105 when the external power supply 400 is connected via the second external I/F 102. Furthermore, when the external power supply 400 is connected via the second external I/F 102, the power supply control unit 105d supplies power from the external power supply 400 to the smartphone 10 via the first external I/F 101.
- the power supply control unit 105d receives power from the battery 15 of the smartphone 10 via the first external I/F 101.
- the fan accessory 100 may also be provided with a battery (not shown) as an internal power source. Furthermore, wireless power supply may be possible.
- FIG. 14 is a flowchart showing a processing procedure executed by the smartphone 10 according to the embodiment of the present disclosure.
- FIG. 15 is a flowchart showing the processing procedure of the hysteresis control processing shown in FIG. 14.
- the control unit 18 of the smartphone 10 monitors the voltage and current based on the measured values of the voltage/current sensor 14 (step S101). Then, the control unit 18 calculates power consumption (step S102). Furthermore, the control unit 18 calculates a moving average of the calculated power consumption (step S103). Then, the control unit 18 calculates the rotation speed level from the moving average (step S104).
- control unit 18 monitors the temperature based on the measured value of the temperature sensor 13 (step S105), and calculates the rotation speed level from the temperature (step S106).
- control unit 18 adopts the higher rotation speed level among the rotation speed level based on power consumption and the rotation speed level based on temperature (step S107). Then, the control unit 18 determines whether the required rotation speed calculated from the adopted rotation speed level is lower than the current rotation speed (step S108).
- step S108 If the required rotational speed is lower than the current rotational speed (step S108, Yes), the control unit 18 executes hysteresis control processing (step S109).
- the control unit 18 determines whether the hysteresis interval, which is a static variable for the hysteresis control process, is greater than 0 (step S201).
- Step S201 If the hysteresis interval is greater than 0 (Step S201, Yes), the control unit 18 decrements (that is, minus 1) the hysteresis counter, which is also a static variable for hysteresis control processing (Step S202). Then, the control unit 18 determines whether the hysteresis counter is 0 (step S203).
- step S203 If the hysteresis counter is 0 (step S203, Yes), the control unit 18 sets the hysteresis counter to the hysteresis interval (step S204), and transitions to step S205. Also, if the hysteresis interval is 0 (step S201, No), the process moves to step S205.
- step S205 the control unit 18 determines that control at the required rotation speed is necessary. The control unit 18 then returns from the hysteresis control process.
- step S203 determines that control at the required rotation speed is unnecessary.
- the control unit 18 then returns from the hysteresis control process. Note that the hysteresis interval and hysteresis counter shown in FIG. 15 are secured, for example, in the hysteresis control information 17e.
- control unit 18 determines whether control at the required rotation speed is required (step S110). If control at the required rotation speed is required (step S110, Yes), the control unit 18 controls the fan 103 at the required rotation speed (step S111). Then, the control unit 18 repeats the processing from step S101.
- step S110, No If control at the required rotation speed is not required (step S110, No), the control unit 18 repeats the process from step S101.
- step S108 controls the fan 103 at the required rotation speed (step S111). Then, the control unit 18 repeats the processing from step S101.
- FIGS. 16 to 21 are explanatory diagrams (part 1) to (part 6) of modified examples.
- the monitoring unit 18e monitors the voltage, current, and temperature, but may also monitor the application status and the like.
- the monitoring unit 18eA further includes an application status monitoring unit 18ec.
- the application status monitoring unit 18ec monitors the application status, such as the type of application being executed and the on/off state of the screen of the smartphone 10.
- the fan control parameters may be switched depending on the situation.
- FIG. 17 shows an example in which a set of fan control parameters is preset in the fan control parameter information 17f so that the required cooling capacity becomes lower in the order of parameters #1 to #3, and can be switched depending on the application status. It shows.
- the smartphone 10 can improve cooling efficiency according to the application status.
- the application status monitoring unit 18ec also monitors, for example, the amount of screen change per predetermined unit time as shown in FIG. You may also monitor app status, such as the number of apps in the app.
- the calculation unit 18f may calculate the power consumption based on these application statuses.
- the calculation unit 18f uses an algorithm such as machine learning to optimize each monitoring result monitored by the monitoring units 18e and 18eA and each calculated value based on the monitoring result so that the cooling efficiency is optimized.
- the calculation model 17d may be modeled using AI (Artificial Intelligence).
- the calculation unit 18f may perform AI prediction of the predicted value using the calculation model 17d.
- the monitoring unit 18eA may further monitor the charging state of the battery 15, and the calculating unit 18f may calculate the charging control value based on this charging state. For example, when the battery 15 continues to receive power from the external power supply 400 in a fully charged state and the control unit 18 performs high-load processing, the temperature of the battery 15 is likely to increase. Therefore, in such a case, for example, a charging control value for cutting off the power supply from the external power source 400 may be calculated.
- the fan accessory 100 and the fan 103 may become hot.
- the fan accessory 100 performs external output to the external DSP 200 through HDMI output, or when supplying power to the fully charged battery 15 described above, the fan accessory 100 and the fan 103 themselves may become hot. is assumed.
- a fan accessory 100A may include temperature sensors 13 inside and outside the fan 103, as shown in FIG. 21.
- the control unit 18 of the smartphone 10 may perform fan control based on the temperature of the fan accessory 100A in addition to the power consumption and temperature of the smartphone 10.
- the smartphone 10 can further improve cooling efficiency by performing fan control that also takes into account the case where the fan accessory 100A or the fan 103 itself becomes hot.
- the temperature of the smartphone 10 and the temperature of the fan accessory 100A are not limited to the environmental temperature.
- the fan 103 enables sufficient cooling of the smartphone 10, a problem may arise in which the rotation sound of the fan 103 becomes noise.
- the external power source 400 is not connected, power from the battery 15 of the smartphone 10 is required to operate the fan 103, which may cause a problem in which the battery 15 is consumed more quickly. . Therefore, regarding the operation of the fan 103, for example, when the user specifies "quiet priority" mode or "low power consumption” mode via the HMI unit 11, the fan 103 Control may be performed to lower the rotational speed level by one step, for example.
- the activation temperature shown in FIG. 5 may be set a little higher (+2° C., etc.).
- the "quiet priority” mode and “low power consumption” mode mentioned here are parallel to the three modes mentioned above, “power save” mode, "normal” mode, and “performance” mode, which are related to resource limitations such as the CPU. may be settable.
- the "quiet noise priority” mode and the “low power consumption” mode are set, for example, as higher-level modes of the three modes mentioned above, and while the "quiet noise priority” mode and the “low power consumption” mode are set, Each of the three modes described above may be settable.
- the configuration in which the fans 103 and 103A are separate from the smartphone 10 is exemplified, but the fans 103 and 103A may be built into the smartphone 10.
- the information processing device is the smartphone 10, but the information processing device may be various computers such as a notebook PC other than the smartphone 10.
- the smartphone 10 is an information processing device that includes the fan accessory 100 that has the fan 103, and includes the control unit 18, which is configured to operate based on at least the temperature and the power consumption of the smartphone 10.
- the control unit 105 of the fan accessory 100 may perform this control processing.
- control unit 105 includes a processing unit corresponding to part or all of the above-described high temperature control unit 18d, monitoring unit 18e, calculation unit 18f, determination unit 18g, hysteresis control unit 18h, and fan control service unit 18i. . Then, the control unit 105 executes this control process while appropriately obtaining information such as the temperature, power consumption, and information regarding the application on the smartphone 10 side via the first external I/F 101.
- each component of each device shown in the drawings is functionally conceptual, and does not necessarily need to be physically configured as shown in the drawings.
- the specific form of distributing and integrating each device is not limited to what is shown in the diagram, and all or part of the devices can be functionally or physically distributed or integrated in arbitrary units depending on various loads and usage conditions. Can be integrated and configured.
- FIG. 22 is a hardware configuration diagram showing an example of a computer 1000 that implements the functions of the smartphone 10.
- Computer 1000 has CPU 1100, RAM 1200, ROM 1300, secondary storage 1400, communication interface 1500, and input/output interface 1600. Each part of computer 1000 is connected by bus 1050.
- the CPU 1100 operates based on a program stored in the ROM 1300 or the secondary storage device 1400, and controls each part. For example, the CPU 1100 loads programs stored in the ROM 1300 or the secondary storage device 1400 into the RAM 1200, and executes processes corresponding to various programs.
- the ROM 1300 stores boot programs such as BIOS (Basic Input Output System) that are executed by the CPU 1100 when the computer 1000 is started, programs that depend on the hardware of the computer 1000, and the like.
- BIOS Basic Input Output System
- the secondary storage device 1400 is a computer-readable recording medium that non-temporarily records programs executed by the CPU 1100 and data used by the programs. Specifically, secondary storage device 1400 is a recording medium that records a program according to the present disclosure, which is an example of program data 1450.
- the communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
- CPU 1100 receives data from other devices or transmits data generated by CPU 1100 to other devices via communication interface 1500.
- the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000.
- the CPU 1100 receives data from an input device such as a keyboard or a mouse via the input/output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, speaker, or printer via an input/output interface 1600.
- the input/output interface 1600 may function as a media interface that reads programs and the like recorded on a predetermined recording medium.
- Media includes, for example, optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk), magneto-optical recording media such as MO (Magneto-Optical disk), tape media, magnetic recording media, semiconductor memory, etc. It is.
- the CPU 1100 of the computer 1000 realizes the functions of the control unit 18 by executing a program loaded onto the RAM 1200.
- the secondary storage device 1400 stores programs according to the present disclosure and data in the storage unit 17. Note that although the CPU 1100 reads and executes the program data 1450 from the secondary storage device 1400, as another example, these programs may be obtained from another device via the external network 1550.
- the smartphone 10 includes the fan accessory 100 (corresponding to an example of a "fan unit") having a fan 103 (corresponding to an example of an "air cooling fan”).
- the processing device includes a control section 18.
- the control unit 18 controls the rotation speed of the fan 103 based on at least the temperature and the power consumption of the smartphone 10. Thereby, cooling efficiency can be further improved.
- An information processing device including a fan section having an air cooling fan, a control unit that controls the rotation speed of the air cooling fan based on at least the temperature and the power consumption of the information processing device;
- An information processing device comprising: (2) The fan section is provided removably, The information processing device according to (1) above.
- the control unit includes: controlling the rotation speed of the air cooling fan based on the temperature of the information processing device; The information processing device according to (2) above.
- the control unit includes: calculating a required rotation speed for the fan unit such that the higher the temperature of the information processing device, the higher the rotation speed of the air cooling fan; The information processing device according to (3) above.
- the control unit includes: controlling the rotation speed of the air cooling fan based on a moving average of power consumption of the information processing device; The information processing device according to (4) above.
- the control unit includes: Calculating the required rotation speed such that the larger the moving average, the higher the rotation speed of the air cooling fan.
- the control unit includes: adopting the larger of the required rotation speed based on the temperature of the information processing device and the required rotation speed based on the power consumption of the information processing device; The information processing device according to (6) above.
- the control unit includes: executing a hysteresis control process when the requested rotation speed is lower than the current rotation speed; The information processing device according to any one of (4) to (7) above.
- the control unit further includes: controlling the rotation speed of the air cooling fan based on the temperature of the fan section; The information processing device according to any one of (3) to (8) above.
- the control unit includes: When the temperature of the information processing device exceeds a specified value, a high temperature control process is configured to automatically limit the use of resources including the control unit, and when the air cooling fan is rotating, the air cooling fan is activated. making the specified value larger than when stopped; The information processing device according to any one of (1) to (9) above.
- the control unit includes: The rotation speed of the air cooling fan is controlled based on the power consumption of the information processing device until the temperature of the information processing device reaches the specified value, and at the time the temperature of the information processing device reaches the specified value.
- the control unit further includes: switching the control parameters of the air cooling fan based on the status of the application being executed; The information processing device according to any one of (1) to (11) above. (13)
- the situation of the said application is at least as follows. including the type of the application being executed and the on/off state of the screen of the information processing device; The information processing device according to (12) above.
- the control unit includes: The control parameters are switched so that the required cooling capacity is lower when the type of application is a game than when the type of application is a game, and furthermore, the cooling capacity required for the screen is lower than when the type of the application is a game.
- the control unit includes: When a first mode for suppressing noise of the air cooling fan or a second mode for suppressing power consumption by the air cooling fan is specified by the user, the first mode or the second mode is not specified. Executing one or both of a control that lowers the rotation speed level of the air cooling fan and a control that increases the activation temperature of the air cooling fan than in the case where there is no such fan.
- the information processing device according to any one of (1) to (14) above.
- (16) The information processing device according to any one of (1) to (15) above, which is portable.
- An information processing method executed by an information processing device including a fan section having an air cooling fan comprising: controlling the rotation speed of the air cooling fan based on at least the temperature and the power consumption of the information processing device; information processing methods, including (18)
- a computer which is an information processing device, includes a fan unit having an air cooling fan. controlling the rotation speed of the air cooling fan based on at least the temperature and the power consumption of the information processing device; A program to run.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Thermal Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Environmental & Geological Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
情報処理装置は、空冷ファンを有するファン部を備える情報処理装置であって、制御部を備える。制御部は、少なくとも温度および上記情報処理装置の消費電力に基づいて上記空冷ファンの回転数を制御する。
Description
本開示は、情報処理装置、情報処理方法およびプログラムに関する。
従来、ノート型PC(Personal Computer)等の情報処理装置の冷却構造として、装置本体に空冷ファンを内蔵し、この空冷ファンの回転数をCPU(Central Processing Unit)等の発熱体の温度に基づいて制御する技術が提案されている(例えば、特許文献1参照)。
しかしながら、上述した従来技術には、冷却効率をより向上させるうえで、さらなる改善の余地がある。
近年、情報処理装置の中でも、スマートフォンやタブレット端末といった携帯型のタイプの普及が目覚ましい。また、これら携帯型の情報処理装置は高性能化も急速に進んでおり、例えば高処理能力のチップや高解像度のカメラを備える機種が主流となってきている。
ユーザは、これら情報処理装置を用いて、例えばTPS(Third-person shooter)やMMORPG(Massively Multiplayer Online Role-Playing Game)といった多様なゲームアプリや、カメラアプリによる長時間の動画撮影等を手軽に楽しむことができる。
ただし、こうしたユースケースは、高負荷による発熱で情報処理装置の本体が高温になりやすいという問題がある。特に、携帯型の情報処理装置は、ユーザが装置本体を直接手にした状態で利用されることも多いため、冷却効率をより向上させることが望まれる。
そこで、本開示では、冷却効率をより向上させることができる情報処理装置、情報処理方法およびプログラムを提案する。
上記の課題を解決するために、本開示に係る一形態の情報処理装置は、空冷ファンを有するファン部を備える情報処理装置であって、制御部を備える。前記制御部は、少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御する。
以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
また、以下では、本開示の実施形態(以下、適宜「本実施形態」と言う)に係る情報処理装置がスマートフォン10である場合を例に挙げて説明を行う。
また、以下に示す項目順序に従って本開示を説明する。
1.概要
2.スマートフォンの構成
3.ファンアクセサリの構成
4.変形例
5.ハードウェア構成
6.むすび
1.概要
2.スマートフォンの構成
3.ファンアクセサリの構成
4.変形例
5.ハードウェア構成
6.むすび
<<1.概要>>
図1は、本開示の実施形態に係る情報処理方法の概要説明図(その1)である。また、図2は、本開示の実施形態に係る情報処理方法の概要説明図(その2)である。
図1は、本開示の実施形態に係る情報処理方法の概要説明図(その1)である。また、図2は、本開示の実施形態に係る情報処理方法の概要説明図(その2)である。
本実施形態に係る情報処理方法は、スマートフォン10が実行する。本実施形態に係るスマートフォン10は、冷却ファンによる強制空冷方式の冷却構造を備える。図1に示すように、スマートフォン10は、当該冷却構造を着脱可能に設けられたファンアクセサリ100によって実現する。ファンアクセサリ100は、「ファン部」の一例に相当する。
ファンアクセサリ100は、スマートフォン10のアウトカメラ等が設けられた背面側に装着可能に設けられる。また、ファンアクセサリ100は、空冷ファンであるファン103を有する。ファン103は、ファンアクセサリ100の中央部に設けられる。なお、ファン103は、ファンアクセサリ100の中央部に限らず、例えばスマートフォン10の発熱源(CPUなど)になりやすい箇所に対応した他の位置に設けられてもよい。
また、ファンアクセサリ100は、左右にグリップ部106を有する。ユーザは、ファンアクセサリ100が装着された状態の時は、このグリップ部106を手で持った状態で、スマートフォン10上で起動した各種アプリを楽しむことができる。
ところで、スマートフォン10のような近年の携帯型の情報処理装置は高性能化が進み、例えば高度なグラフィック処理能力や通信能力を要するTPSやMMORPGといったゲームアプリのような高負荷のかかる各種アプリを実行可能である。
ただし、こうしたアプリを実行する場合、既に述べた通り、高負荷による発熱で情報処理装置の本体が高温になりやすいという問題がある。特に、スマートフォン10のような携帯型の情報処理装置は、ユーザが装置本体を直接手にした状態で利用されることも多いため、冷却効率をより向上させることが望まれる。
そこでまず、本実施形態に係るスマートフォン10は、ファンアクセサリ100を装着し、グリップ部106を介してスマートフォン10を直接にではなく間接的にユーザに持たせることで、ユーザがやけど等を負うリスクを軽減している。また、スマートフォン10は、ファン103による強制空冷を行う。
既存技術では、こうした強制空冷において、主に温度に基づいて冷却ファンの回転数を制御している。しかしながら、前述のようなゲームアプリを実行するユースケースでは、例えば画面が目まぐるしく変わるなどプレイ中の消費電力の変動幅が大きいという特徴がある。したがって、冷却効率を既存技術に比べてより向上させるうえでは、温度だけでなく消費電力の変動を加味したフレシキブルな制御を行うことが好ましい。
こうした点を考慮し、本実施形態に係るスマートフォン10は、図2に示すように、少なくとも消費電力および温度に基づくファン制御を行う。スマートフォン10は、基本的には、消費電力が大きいほどまたは温度が高いほど回転数が大きくなるようにファン103の回転数を制御する。
ただし、既に述べた通りゲームアプリのようなユースケースでは消費電力の変動幅が大きい、言い換えれば乱高下が激しい。このため、スマートフォン10は、消費電力については移動平均を算出し、当該移動平均に基づいて要求される回転数(以下、「要求回転数」と言う)を算出する。
一方、スマートフォン10は、温度については測定された温度に応じて要求回転数を算出する。そして、スマートフォン10は、消費電力に基づく要求回転数および温度に基づく要求回転数のうち、高い方を採用する。
また、スマートフォン10は、前述のように消費電力の乱高下が激しいことを考慮して、ファン103の回転数を下げる場合にはヒステリシス制御を行う。
また、スマートフォン10は、強制空冷方式による冷却構造に加えて、温度が規定値を超える高温時には、CPU等のリソースの使用を自動的に制限する高温時制御処理を発動可能に設けられる。ただし、スマートフォン10は、ファン103の回転時は前述の温度の規定値を大きくすることで高温時制御処理の発動タイミングを変更する。
こうした本実施形態の詳細ならびに種々の変形例については、図3以降を用いた説明で後述する。
このように、本実施形態に係る情報処理方法は、ファン103を有するファンアクセサリ100を備えるスマートフォン10が実行する情報処理方法であって、少なくとも温度およびスマートフォン10の消費電力に基づいてファン103の回転数を制御する。
したがって、本実施形態に係る情報処理方法によれば、冷却効率をより向上させることができる。以下、本実施形態に係る情報処理方法を適用したスマートフォン10およびファンアクセサリ100の構成例について、より具体的に説明する。
<<2.スマートフォンの構成>>
図3は、本開示の実施形態に係るスマートフォン10の構成例を示すブロック図である。なお、図3および後に示す図6,13,16では、本実施形態の特徴を説明するために必要な構成要素のみを表しており、一般的な構成要素についての記載を省略している。
図3は、本開示の実施形態に係るスマートフォン10の構成例を示すブロック図である。なお、図3および後に示す図6,13,16では、本実施形態の特徴を説明するために必要な構成要素のみを表しており、一般的な構成要素についての記載を省略している。
換言すれば、図3、図6、図13および図16に図示される各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。例えば、各ブロックの分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することが可能である。
また、図3、図6、図13および図16を用いた説明では、既に説明済みの構成要素については、説明を簡略するか、省略する場合がある。
図3に示すように、スマートフォン10は、HMI(Human Machine Interface)部11と、通信部12と、温度センサ13と、電圧・電流センサ14と、バッテリ15と、外部I/F(インターフェイス)16と、記憶部17と、制御部18とを有する。
HMI部11は、ユーザとスマートフォン10が情報をやり取りするための手段や、そのための装置、ソフトウェアなどを含むHMI部品群であって、タッチパネルディスプレイやスピーカー、GUI(Graphical User Interface)部品等によって実現される。
通信部12は、例えば、無線通信モジュール等によって実現される。通信部12は、インターネット等のネットワークと無線で接続され、当該ネットワークを介して他の通信装置(例えば、アプリサーバや他のスマートフォン10)との間で情報の送受信を行う。
温度センサ13は、温度を測定するセンサである。温度センサ13は、例えばサーミスタ等によって実現される。温度センサ13は、1以上設けられ、例えばHMI部11や、通信部12や、バッテリ15や、制御部18等のスマートフォン10の各所の温度を測定する。
電圧・電流センサ14は、電圧および電流を測定するセンサである。電圧・電流センサ14は、1以上設けられ、例えばHMI部11や、通信部12や、バッテリ15や、制御部18等のスマートフォン10の各所の電圧および電流を測定する。なお、電圧・電流センサ14は、電圧センサおよび電流センサが一体であってもよいし別体であってもよい。
バッテリ15は、スマートフォン10の内部電源である。バッテリ15は、例えばリチウムイオン二次電池等によって実現される。後述するが、ファンアクセサリ100は、AC電源等の外部電源400(図13参照)を接続可能である。
ファンアクセサリ100に外部電源400が接続されている場合、バッテリ15はファンアクセサリ100を介した外部電源400からの給電を受けて充電することが可能である。
外部I/F16は、ファンアクセサリ100を含む周辺機器への接続インターフェイス部品であって、例えばUSB(Universal Serial Bus)等によって実現される。本実施形態では、このUSBによって実現されるものとする。スマートフォン10は、ファンアクセサリ100が装着された際、かかる外部I/F16によってファンアクセサリ100とUSB接続される。
記憶部17は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子などによって実現される。図3に示す例では、記憶部17は、アプリ情報17aと、高温時制御パラメータ情報17bと、監視パラメータ情報17cと、算出モデル17dと、ヒステリシス制御情報17eと、ファン制御パラメータ情報17fとを記憶する。
アプリ情報17aは、本実施形態に係るプログラムや、ゲームアプリ等の各種アプリのプログラムや、各プログラムの実行中に用いられる各種のパラメータ等を含む情報である。
高温時制御パラメータ情報17bは、後述する高温時制御部18dが実行する高温時制御処理に際して用いられる各種のパラメータや閾値等を含む情報である。監視パラメータ情報17cは、後述する監視部18eが実行する監視処理に際して用いられる各種のパラメータや閾値等を含む情報である。
算出モデル17dは、後述する算出部18fが実行する消費電力の移動平均や要求回転数等の算出処理に際して用いられる各種のパラメータや閾値等を含む情報である。ヒステリシス制御情報17eは、後述するヒステリシス制御部18hが実行するヒステリシス制御処理に際して用いられる各種のパラメータや閾値等を含む情報である。
ファン制御パラメータ情報17fは、後述するファン制御サービス部18iが実行するファン制御サービス処理に際して用いられる各種のパラメータや閾値等を含む情報である。
制御部18は、コントローラ(controller)であり、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)、GPU(Graphics Processing Unit)等によって、記憶部17に記憶されている各種プログラムがRAMを作業領域として実行されることにより実現される。また、制御部18は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現することができる。
制御部18は、アプリ実行部18aと、HMI制御部18bと、通信制御部18cと、高温時制御部18dと、監視部18eと、算出部18fと、決定部18gと、ヒステリシス制御部18hと、ファン制御サービス部18iとを有し、以下に説明する情報処理の機能や作用を実現または実行する。
アプリ実行部18aは、記憶部17に記憶されているアプリ情報17aを読み込んで本実施形態に係るプログラムを実行する。また、アプリ実行部18aは、HMI部11を介して入力されるユーザの操作に応じてアプリ情報17aを読み込み、ユーザが指定したゲームアプリ等の任意のプログラムを実行する。
HMI制御部18bは、アプリ実行部18aによるプログラムの実行に際して発生するHMI部11を介した各種情報の入出力を制御する。通信制御部18cは、通信部12を介した各種情報の通信を制御する。
高温時制御部18dは、スマートフォン10の温度が規定値を超えた場合に、スマートフォン10にかかっている負荷を緩和させてさらなる温度上昇を抑制するために、前述の高温時制御処理を発動させる。
ここで、図4は、本開示の実施形態に係る高温時制御処理の説明図(その1)である。また、図5は、本開示の実施形態に係る高温時制御処理の説明図(その2)である。
図4に示すように、高温時制御処理は、「パワーセーブ」モードと、「通常」モードと、「パフォーマンス」モードとの3つの動作モードを有する。
「パワーセーブ」モードは、パワー(消費電力)をセーブすることを優先するモードであり、3つの高温時制御モードのうちリソース制限量が最も大きくなる動作モードである。「パフォーマンス」モードは、スマートフォン10のパフォーマンスを優先するモードであり、3つの高温時制御モードのうちリソース制限量が最も小さくなる動作モードである。「通常」モードは、リソース制限量が「パワーセーブ」モードと「パフォーマンス」モードの間となる動作モードである。
この動作モードは、例えばHMI部11を介してユーザによって指定され、予め高温時制御パラメータ情報17bへ設定される。高温時制御部18dは、この高温時制御パラメータ情報17bの設定内容に基づいて高温時制御処理を実行する。
また、高温時制御部18dは、スマートフォン10の温度が規定値を超えた場合に高温時制御処理を発動させる。当該規定値は、ファン103の停止時と回転時とで異ならせることができる。
図5に示すように、高温時制御部18dは、ファン103が停止している「ファン停止時」には、例えば「30℃」を発動温度として高温時制御処理を実行する。「ファン停止時」は、スマートフォン10にファンアクセサリ100が装着されていない場合を含む。また、高温時制御部18dは、ファン103が少なくとも回転している「ファン回転時」には、例えば「35℃」を発動温度として高温時制御処理を実行する。
図5に示す発動温度は、例えば図4に示したモードごとに予め高温時制御パラメータ情報17bへ設定される。高温時制御部18dは、当該高温時制御パラメータ情報17bを参照しつつ、後述する監視部18eが監視する温度およびファン制御サービス部18iが制御するファン103の回転に応じて高温時制御処理を実行する。
なお、規定値である発動温度と比較する温度は、複数の温度センサ13が測定する温度のうちの最高値であってもよいし、平均値であってもよい。また、複数の温度センサ13に対してそれぞれ異なる発動温度を設定し、少なくとも1つの温度センサ13の測定する温度が発動温度に達した場合に高温時制御処理を実行するようにしてもよい。
図3の説明に戻る。監視部18eは、電圧・電流センサ14の測定値および温度センサ13の測定値を随時監視する。図6は、本開示の実施形態に係る監視部18eの構成例を示すブロック図である。図6に示すように、監視部18eは、電圧・電流監視部18eaと、温度監視部18ebとを含む。
電圧・電流監視部18eaは、電圧・電流センサ14の測定値を随時取得し、算出部18fへ出力する。温度監視部18ebは、温度センサ13の測定値を随時取得し、算出部18fへ出力する。
なお、監視部18eは、電圧・電流センサ14の測定値および温度センサ13の測定値以外にも、スマートフォン10の状況を示す各種の情報を監視してもよい。例えば、監視部18eは、スマートフォン10で実行中の各アプリの状況(以下、適宜「アプリ状況」と言う)や、バッテリ15の充電状態等を監視してもよい。こうした変形例については、図16~図18を用いた説明で後述する。
図3の説明に戻る。算出部18fは、監視部18eから入力される電圧・電流センサ14の測定値に基づいてスマートフォン10の消費電力を算出する。また、算出部18fは、算出した消費電力の所定周期ごとの移動平均を算出する。また、算出部18fは、算出した移動平均から消費電力に基づくファン103に対する要求回転数を算出する。
また、算出部18fは、監視部18eから入力される温度センサ13の測定値から所定周期ごとの温度に基づくファン103に対する要求回転数を算出する。
式(1)において左辺の「System Power」は消費電力である。右辺の第1項である「USB_Voltage*USB_Current」はファンアクセサリ100に外部電源400が接続されている場合の外部I/F16を介したスマートフォン10への供給電力である。右辺の第2項である「Voltage_now*Current_now」は電圧・電流センサ14で測定される電圧および電流に基づく電力である。
なお、「Current_now」の符号でバッテリ15への流入か流出かを判断しているので計算としては符号判別が必要となる。ただし、計算結果としては第1項の供給電力の方が大となるため、トータルの消費電力は正値となる。ファンアクセサリ100に外部電源400が未接続である場合や高負荷処理を実行中である場合等に相当するマイナス充電時は、「Current_now」の符号が逆転するため、この場合もトータルの消費電力は正値となる。
本実施形態では、算出部18fは、かかる消費電力および温度に基づく要求回転数を回転数レベルに基づいて算出する。この本実施形態に係る算出処理について、図7~図12を用いて説明する。図7~図12は、本開示の実施形態に係る算出処理の説明図(その1)~(その6)である。
本実施形態では、図7に示すように、例えばファン103の回転数をレベル分けする。なお、図7~図12では、大まかに4段階のレベル分けを行っている。これは、あくまで説明の便宜上であって、実際のレベル分けの内容を限定するものではない。
そして、算出部18fは、消費電力(の移動平均)に基づいては、図8に示すように消費電力および回転数レベル(縦軸の「Fan level」参照)を関連付けたマップ情報に基づいて回転数レベルを算出する。
図8に示すマップ情報の例および図9に示す消費電力の推移の例によれば、算出部18fは、例えば毎分消費電力の移動平均をとり、移動平均が「4.5W」の区間については回転数レベルを「4」と算出する。また、算出部18fは、移動平均が「2.5W」の区間については回転数レベルを「2」と算出する。また、算出部18fは、移動平均が「1.5W」の区間については回転数レベルを「1」と算出する。
なお、消費電力のみに基づいて回転数レベルを算出し、当該回転数レベルに応じてファン103を制御しても、少なくとも負荷に応じた冷却能力を見込むことができる。また、スマートフォン10が熱い状態からのファンアクセサリ100の装着時や、環境温度が高いケースでは前述の高温時制御処理が発動するので、消費電力のみに基づくファン制御でも一定の効果を得ることができる。
一方、算出部18fは、温度に基づいては、図10に示すように温度(サーミスタ温度)および回転数レベル(縦軸の「Fan level」参照)を関連付けたマップ情報に基づいて回転数レベルを算出する。
図10に示すマップ情報の例および図11に示す温度の推移の例によれば、算出部18fは、例えば数分おきに温度センサ13の測定値を参照し、温度が「29℃」の時点については回転数レベルを「1」と算出する。また、算出部18fは、温度が「33℃」の時点については回転数レベルを「2」と算出する。また、算出部18fは、温度が「36℃」の時点については回転数レベルを「3」と算出する。
なお、既存技術と同様に、温度のみに基づいて回転数レベルを算出し、当該回転数レベルに応じてファン103を制御しても、少なくともスマートフォン10の温度に応じた冷却能力を見込むことができる。
そして、本実施形態では、後述する決定部18gが、消費電力に基づいて算出された回転数レベル、および、温度に基づいて算出された回転数レベルのうち、高い方を採用する。スマートフォン10の消費電力および温度のうち要求される回転数レベルがより高い方を採用し、これに基づいてファン103の回転数を制御することで、スマートフォン10の負荷および温度の双方に応じた冷却能力を見込むことができる。
なお、図12に示すように、例えば毎分消費電力の移動平均をとり、決定部18gがその移動平均に基づく回転数レベルを採用してファン103の回転数を制御させると同時に、温度の監視結果に基づいては高温時制御処理が発動する温度に到達する時点で強制的に最大の回転数でファン103を作動させるようにしてもよい。この場合は、基本的には消費電力に基づいてファン103を制御しつつ、温度が高いケースについてもカバーすることができる。
図7,8,10,12に示したテーブル情報やマップ情報は、例えば前述の算出モデル17dに含まれる。また、消費電力の移動平均の算出周期や温度の参照周期等は、例えば前述の監視パラメータ情報17cに含まれる。
図3の説明に戻る。既に述べたが、決定部18gは、消費電力に基づいて算出された回転数レベルおよび温度に基づいて算出された回転数レベルのうち、高い方を採用する。また、決定部18gは、採用した回転数レベルから要求回転数を換算する。
ヒステリシス制御部18hは、決定部18gが換算した要求回転数が現在のファン103の回転数を下回る場合に、ファン103の回転数を急変させないためのヒステリシス制御処理を実行する。
ファン制御サービス部18iは、決定部18gによって決定され、ヒステリシス制御部18hによってヒステリシスが考慮された要求回転数に基づいてファン103の回転を制御する制御信号を生成し、外部I/F16を介してファンアクセサリ100へ出力する。
<<3.ファンアクセサリの構成>>
次に、本開示の実施形態に係るファンアクセサリ100の構成例について図13を用いて説明する。図13は、本開示の実施形態に係るファンアクセサリ100の構成例を示すブロック図である。
次に、本開示の実施形態に係るファンアクセサリ100の構成例について図13を用いて説明する。図13は、本開示の実施形態に係るファンアクセサリ100の構成例を示すブロック図である。
図13に示すように、ファンアクセサリ100は、第1外部I/F101と、第2外部I/F102と、ファン103と、LED(light-emitting diode)104と、制御部105とを有する。
第1外部I/F101は、スマートフォン10への接続インターフェイス部品であって、本実施形態では、USBによって実現される。ファンアクセサリ100は、スマートフォン10に対し装着された際、かかる第1外部I/F101によってスマートフォン10とUSB接続される。
第2外部I/F102は、ファンアクセサリ100の周辺機器への接続インターフェイス部品群である。ファンアクセサリ100は、第2外部I/F102を介して、外部DSP(ディスプレイ)200や、外部SP(スピーカー)300や、外部電源400等と接続される。なお、ファンアクセサリ100は、外部DSP200に対しては、例えばHDMI(登録商標)で接続される。
ファン103は、冷却ファンである。LED104は、ファン103の状態を通知する点灯部品であって、ファンアクセサリ100の例えばユーザから目につく位置に配置される。
制御部105は、上述した制御部18と同様にコントローラである。また、制御部105は、例えば、ASICやFPGA等の集積回路により実現することができる。
制御部105は、ファン制御部105aと、LED制御部105bと、外部出力制御部105cと、給電制御部105dとを有し、以下に説明する情報処理の機能や作用を実現または実行する。
ファン制御部105aは、第1外部I/F101を介して入力されるスマートフォン10からのファン103の制御信号に基づいてファン103を制御する。なお、ファン制御部105aは、ファン103のハードウェア仕様等に応じて、適宜スマートフォン10からの制御信号を補正しつつファン103を制御することが可能である。
LED制御部105bは、ファン103の状態をユーザに通知するべくLED104の点灯状態を制御する。一例として、LED制御部105bは、ファン103の回転数が大きい場合には赤色で、ファン103の回転数が小さい場合には赤色以外で、LED104を点灯させる。
外部出力制御部105cは、第2外部I/F102を介した周辺機器への外部出力を制御する。外部出力制御部105cは、例えばスマートフォン10から第1外部I/F101を介して実行中のアプリの映像を取得し、第2外部I/F102を介して外部DSP200へ出力させる。また、外部出力制御部105cは、例えばスマートフォン10から第1外部I/F101を介して実行中のアプリの音声を取得し、第2外部I/F102を介して外部SP300へ出力させる。
給電制御部105dは、第2外部I/F102を介して外部電源400が接続されている場合に、外部電源400からの電力をファン103、LED104および制御部105へ給電する。また、給電制御部105dは、第2外部I/F102を介して外部電源400が接続されている場合に、外部電源400からの電力を第1外部I/F101を介してスマートフォン10へ給電する。
また、給電制御部105dは、第2外部I/F102を介して外部電源400が接続されていない場合には、第1外部I/F101を介してスマートフォン10のバッテリ15から電力供給を受ける。なお、ファンアクセサリ100の動作に必要な電力を確保するために、ファンアクセサリ100にも内部電源として不図示のバッテリを設けるようにしてもよい。また、ワイヤレス給電を可能としてもよい。
次に、スマートフォン10が実行する処理手順について、図14および図15を用いて説明する。図14は、本開示の実施形態に係るスマートフォン10が実行する処理手順を示すフローチャートである。また、図15は、図14に示すヒステリシス制御処理の処理手順を示すフローチャートである。
図14に示すように、スマートフォン10の制御部18は、電圧・電流センサ14の測定値に基づいて電圧および電流を監視する(ステップS101)。そして、制御部18は、消費電力を算出する(ステップS102)。また、制御部18は、算出した消費電力の移動平均を算出する(ステップS103)。そして、制御部18は、移動平均から回転数レベルを算出する(ステップS104)。
一方、ステップS101~S104とパラレルに、制御部18は温度センサ13の測定値に基づいて温度を監視し(ステップS105)、温度から回転数レベルを算出する(ステップS106)。
そして、制御部18は、消費電力に基づく回転数レベルおよび温度に基づく回転数レベルのうち、回転数レベルが高い方を採用する(ステップS107)。そして、制御部18は、採用した回転数レベルから換算される要求回転数が現在の回転数を下回るか否かを判定する(ステップS108)。
要求回転数が現在の回転数を下回る場合(ステップS108,Yes)、制御部18は、ヒステリシス制御処理を実行する(ステップS109)。
図15に示すように、ヒステリシス制御処理では、制御部18は、ヒステリシス制御処理用の静的変数であるヒステリシスインターバルが0より大きいか否かを判定する(ステップS201)。
ヒステリシスインターバルが0より大きい場合(ステップS201,Yes)、制御部18は、同じくヒステリシス制御処理用の静的変数であるヒステリシスカウンタをデクリメント(すなわち、1マイナス)する(ステップS202)。そして、制御部18は、ヒステリシスカウンタが0であるか否かを判定する(ステップS203)。
ヒステリシスカウンタが0である場合(ステップS203,Yes)、制御部18は、ヒステリシスカウンタをヒステリシスインターバルへセットし(ステップS204)、ステップS205へ遷移する。また、ヒステリシスインターバルが0である場合も(ステップS201,No)、ステップS205へ遷移する。
ステップS205では、制御部18は、要求回転数での制御が必要と判定する。そして、制御部18は、ヒステリシス制御処理からリターンする。
一方、ヒステリシスカウンタが0でない場合(ステップS203,No)、制御部18は、要求回転数での制御が不要と判定する。そして、制御部18は、ヒステリシス制御処理からリターンする。なお、図15に示したヒステリシスインターバルおよびヒステリシスカウンタは、例えばヒステリシス制御情報17eに確保されている。
図14の説明に戻る。ヒステリシス制御処理の実行後、制御部18は、要求回転数での制御を要するか否かを判定する(ステップS110)。要求回転数での制御を要する場合(ステップS110,Yes)、制御部18は、要求回転数でファン103を制御する(ステップS111)。そして、制御部18は、ステップS101からの処理を繰り返す。
要求回転数での制御が不要である場合(ステップS110,No)、制御部18は、そのままステップS101からの処理を繰り返す。
また、要求回転数が現在の回転数以上である場合(ステップS108,No)、制御部18は、要求回転数でファン103を制御する(ステップS111)。そして、制御部18は、ステップS101からの処理を繰り返す。
<<4.変形例>>
ところで、上述してきた本開示の実施形態には、いくつかの変形例を挙げることができる。
ところで、上述してきた本開示の実施形態には、いくつかの変形例を挙げることができる。
図16~図21は、変形例の説明図(その1)~(その6)である。上述した本実施形態では、監視部18eが、電圧、電流および温度を監視することとしたが、さらにアプリ状況等を監視してもよい。
図16に示すように、変形例に係る監視部18eAは、さらにアプリ状況監視部18ec等を有する。アプリ状況監視部18ecは、アプリ状況、例えば実行中のアプリの種別や、スマートフォン10の画面のオン/オフ状態を監視する。
実行中のアプリの種別や、スマートフォン10の画面のオン/オフ状態に基づいては、図17に示すように、例えばゲームアプリの実行中か、ゲーム以外のアプリの実行中か、画面がオフか等に応じて、ファン制御パラメータを切り替えるようにしてもよい。
図17には、パラメータ#1~#3の順で求められる冷却能力が低くなるようにファン制御パラメータのセットがファン制御パラメータ情報17fに予め設定されており、アプリ状況に応じて切り替えられる例を示している。
これにより、スマートフォン10は、アプリ状況に応じた冷却効率の向上を図ることができる。
また、アプリ状況監視部18ecは、実行中のアプリの種別や、スマートフォン10の画面のオン/オフ状態以外にも、図18に示すように例えば所定の単位時間あたりの画面変化量や、実行中のアプリの数といったアプリ状況を監視してもよい。そして、算出部18fは、これらアプリ状況に基づいて消費電力を算出するようにしてもよい。
また、図19に示すように、算出部18fは、監視部18e,18eAによって監視された各監視結果およびこれに基づく各算出値を冷却効率が最適化されるように機械学習等のアルゴリズムを用いて学習し、算出モデル17dをAI(Artificial Intelligence)モデル化するようにしてもよい。そして、算出部18fは、当該算出モデル17dを用いた予測値をAI予測するようにしてもよい。
これにより、スマートフォン10は、スマートフォン10の各種の状況に応じて冷却効率が最適化されるようにファン103を制御することが可能となる。
また、図20に示すよう、監視部18eAは、さらにバッテリ15の充電状態を監視し、算出部18fはこの充電状態に基づいて充電制御値を算出するようにしてもよい。バッテリ15は、例えば満充電状態で外部電源400からの給電を受け続け、さらに制御部18で高負荷処理が実行されると高温化する可能性が高い。したがって、こうした場合に、例えば外部電源400からの給電をカットする充電制御値を算出するようにしてもよい。
また、スマートフォン10だけでなく、ファンアクセサリ100やファン103が高温化するケースも考えられる。例えば、ファンアクセサリ100がHDMI出力によって外部DSP200への外部出力を行う場合や、前述の満充電状態のバッテリ15に対し給電を行う場合等は、ファンアクセサリ100やファン103そのものが高温化することが想定される。
かかる事態に対処するため、図21に示すように、変形例に係るファンアクセサリ100Aは、ファン103の内部および外部に温度センサ13を備えるようにしてもよい。そして、スマートフォン10の制御部18は、スマートフォン10の消費電力および温度に加えて、さらにファンアクセサリ100Aの温度に基づくファン制御を行うようにしてもよい。これにより、スマートフォン10は、ファンアクセサリ100Aやファン103そのものが高温化する場合をも考慮したファン制御を行うことで、より冷却効率を向上させることができる。また、スマートフォン10の温度およびファンアクセサリ100Aの温度に限らず、環境温度を考慮してもよい。
また、ファン103によりスマートフォン10の十分な冷却が可能になる一方で、ファン103の回転音が騒音となってしまう問題が生じることが考えられる。他にも、外部電源400が接続されていない場合にはファン103の動作にスマートフォン10のバッテリ15の電力が必要となることで、バッテリ15の消費が早くなってしまう問題が生じることが考えられる。そこで、ファン103の動作について、例えば、HMI部11を介してユーザが「静音優先」モードあるいは「低消費電力」モードを指定してきた場合には、ファン103の通常制御時と比べて、ファン103の回転数レベルを例えば1段階低くした制御を実行してもよい。あるいは、図5に示される発動温度を、少し高く設定するようにしてもよい(+2℃など)。なお、ここに言う「静音優先」モードや「低消費電力」モードは、上述したCPU等のリソース制限量に係る「パワーセーブ」モード、「通常」モードおよび「パフォーマンス」モードの3つのモードとパラレルに設定可能に設けられてもよい。また、「静音優先」モードや「低消費電力」モードは、例えば前述の3つのモードの上位レベルのモードとして設定され、「静音優先」モードや「低消費電力」モードが設定された中で、それぞれ前述の3つのモードが設定可能となるようにしてもよい。
また、上述した本実施形態では、ファン103,103Aをスマートフォン10と別体とする構成を例に挙げたが、ファン103,103Aはスマートフォン10に内蔵されてもよい。また、上述した本実施形態では、情報処理装置がスマートフォン10である例を挙げたが、情報処理装置はスマートフォン10以外のノート型PC等の種々のコンピュータであってもよい。
また、上述した本実施形態では、スマートフォン10は、ファン103を有するファンアクセサリ100を備える情報処理装置であって、制御部18を備え、制御部18は、少なくとも温度およびスマートフォン10の消費電力に基づいてファン103の回転数を制御する例を挙げた。しかし、これに限らず、ファンアクセサリ100の制御部105がこの制御処理を行うようにしてもよい。
この場合、制御部105は、上述した高温時制御部18d、監視部18e、算出部18f、決定部18g、ヒステリシス制御部18hおよびファン制御サービス部18iの一部または全部に相当する処理部を有する。そして、制御部105は、スマートフォン10側の温度や消費電力、アプリに関する情報などを第1外部I/F101を介して適宜取得しながら、この制御処理を実行することとなる。
また、上述した本開示の実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部又は一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部又は一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
また、上述した本開示の実施形態は、処理内容を矛盾させない領域で適宜組み合わせることが可能である。
<<5.ハードウェア構成>>
上述してきた本開示の実施形態に係るスマートフォン10は、例えば図22に示すような構成のコンピュータ1000によって実現される。図22は、スマートフォン10の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、二次記憶装置1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
上述してきた本開示の実施形態に係るスマートフォン10は、例えば図22に示すような構成のコンピュータ1000によって実現される。図22は、スマートフォン10の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、二次記憶装置1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
CPU1100は、ROM1300又は二次記憶装置1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又は二次記憶装置1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。
ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
二次記憶装置1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、二次記憶装置1400は、プログラムデータ1450の一例である本開示に係るプログラムを記録する記録媒体である。
通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。
入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
例えば、コンピュータ1000が実施形態に係るスマートフォン10として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、制御部18の機能を実現する。また、二次記憶装置1400には、本開示に係るプログラムや、記憶部17内のデータが格納される。なお、CPU1100は、プログラムデータ1450を二次記憶装置1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。
<<6.むすび>>
以上説明したように、本開示の一実施形態によれば、スマートフォン10は、ファン103(「空冷ファン」の一例に相当)を有するファンアクセサリ100(「ファン部」の一例に相当)を備える情報処理装置であって、制御部18を備える。制御部18は、少なくとも温度およびスマートフォン10の消費電力に基づいてファン103の回転数を制御する。これにより、冷却効率をより向上させることができる。
以上説明したように、本開示の一実施形態によれば、スマートフォン10は、ファン103(「空冷ファン」の一例に相当)を有するファンアクセサリ100(「ファン部」の一例に相当)を備える情報処理装置であって、制御部18を備える。制御部18は、少なくとも温度およびスマートフォン10の消費電力に基づいてファン103の回転数を制御する。これにより、冷却効率をより向上させることができる。
以上、本開示の各実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
なお、本技術は以下のような構成も取ることができる。
(1)
空冷ファンを有するファン部を備える情報処理装置であって、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御する制御部、
を備える、情報処理装置。
(2)
前記ファン部は、着脱可能に設けられる、
前記(1)に記載の情報処理装置。
(3)
前記制御部は、
前記情報処理装置の温度に基づいて前記空冷ファンの回転数を制御する、
前記(2)に記載の情報処理装置。
(4)
前記制御部は、
前記情報処理装置の温度が高いほど前記空冷ファンの回転数が大きくなるように前記ファン部に対する要求回転数を算出する、
前記(3)に記載の情報処理装置。
(5)
前記制御部は、
前記情報処理装置の消費電力の移動平均に基づいて前記空冷ファンの回転数を制御する、
前記(4)に記載の情報処理装置。
(6)
前記制御部は、
前記移動平均が大きいほど前記空冷ファンの回転数が大きくなるように前記要求回転数を算出する、
前記(5)に記載の情報処理装置。
(7)
前記制御部は、
前記情報処理装置の温度に基づく前記要求回転数および前記情報処理装置の消費電力に基づく前記要求回転数のうち、大きい方を採用する、
前記(6)に記載の情報処理装置。
(8)
前記制御部は、
前記要求回転数が現在の回転数を下回る場合に、ヒステリシス制御処理を実行する、
前記(4)~(7)のいずれか一つに記載の情報処理装置。
(9)
前記制御部はさらに、
前記ファン部の温度に基づいて前記空冷ファンの回転数を制御する、
前記(3)~(8)のいずれか一つに記載の情報処理装置。
(10)
前記制御部は、
前記情報処理装置の温度が規定値を超える場合に、当該制御部を含むリソースの使用を自動的に制限する高温時制御処理を発動可能に設けられ、前記空冷ファンの回転時は前記空冷ファンの停止時よりも前記規定値を大きくする、
前記(1)~(9)のいずれか一つに記載の情報処理装置。
(11)
前記制御部は、
前記情報処理装置の温度が前記規定値へ到達するまでは前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御し、前記情報処理装置の温度が前記規定値へ到達する時点で強制的に最大の回転数となるように前記空冷ファンの回転数を制御する、
前記(10)に記載の情報処理装置。
(12)
前記制御部はさらに、
実行中であるアプリの状況に基づいて前記空冷ファンの制御パラメータを切り替える、
前記(1)~(11)のいずれか一つに記載の情報処理装置。
(13)
前記アプリの状況は少なくとも、
実行中である前記アプリの種別および前記情報処理装置の画面のオン/オフ状態を含む、
前記(12)に記載の情報処理装置。
(14)
前記制御部は、
前記アプリの種別がゲームである場合よりもゲーム以外である場合の方が求められる冷却能力が低くなるように前記制御パラメータを切り替え、さらに前記アプリの種別が前記ゲーム以外である場合よりも前記画面がオフ状態である場合の方が求められる前記冷却能力が低くなるように前記制御パラメータを切り替える、
前記(13)に記載の情報処理装置。
(15)
前記制御部は、
前記空冷ファンの騒音を抑制する第1のモードあるいは前記空冷ファンによる消費電力を抑制する第2のモードがユーザによって指定された場合に、前記第1のモードあるいは前記第2のモードが指定されていない場合よりも、前記空冷ファンの回転数レベルを低くする制御および前記空冷ファンの発動温度を高くする制御のうちの一方または双方を実行する、
前記(1)~(14)のいずれか一つに記載の情報処理装置。
(16)
携帯型である、前記(1)~(15)のいずれか一つに記載の情報処理装置。
(17)
空冷ファンを有するファン部を備える情報処理装置が実行する情報処理方法であって、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御すること、
を含む、情報処理方法。
(18)
空冷ファンを有するファン部を備える情報処理装置であるコンピュータに、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御すること、
を実行させる、プログラム。
(1)
空冷ファンを有するファン部を備える情報処理装置であって、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御する制御部、
を備える、情報処理装置。
(2)
前記ファン部は、着脱可能に設けられる、
前記(1)に記載の情報処理装置。
(3)
前記制御部は、
前記情報処理装置の温度に基づいて前記空冷ファンの回転数を制御する、
前記(2)に記載の情報処理装置。
(4)
前記制御部は、
前記情報処理装置の温度が高いほど前記空冷ファンの回転数が大きくなるように前記ファン部に対する要求回転数を算出する、
前記(3)に記載の情報処理装置。
(5)
前記制御部は、
前記情報処理装置の消費電力の移動平均に基づいて前記空冷ファンの回転数を制御する、
前記(4)に記載の情報処理装置。
(6)
前記制御部は、
前記移動平均が大きいほど前記空冷ファンの回転数が大きくなるように前記要求回転数を算出する、
前記(5)に記載の情報処理装置。
(7)
前記制御部は、
前記情報処理装置の温度に基づく前記要求回転数および前記情報処理装置の消費電力に基づく前記要求回転数のうち、大きい方を採用する、
前記(6)に記載の情報処理装置。
(8)
前記制御部は、
前記要求回転数が現在の回転数を下回る場合に、ヒステリシス制御処理を実行する、
前記(4)~(7)のいずれか一つに記載の情報処理装置。
(9)
前記制御部はさらに、
前記ファン部の温度に基づいて前記空冷ファンの回転数を制御する、
前記(3)~(8)のいずれか一つに記載の情報処理装置。
(10)
前記制御部は、
前記情報処理装置の温度が規定値を超える場合に、当該制御部を含むリソースの使用を自動的に制限する高温時制御処理を発動可能に設けられ、前記空冷ファンの回転時は前記空冷ファンの停止時よりも前記規定値を大きくする、
前記(1)~(9)のいずれか一つに記載の情報処理装置。
(11)
前記制御部は、
前記情報処理装置の温度が前記規定値へ到達するまでは前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御し、前記情報処理装置の温度が前記規定値へ到達する時点で強制的に最大の回転数となるように前記空冷ファンの回転数を制御する、
前記(10)に記載の情報処理装置。
(12)
前記制御部はさらに、
実行中であるアプリの状況に基づいて前記空冷ファンの制御パラメータを切り替える、
前記(1)~(11)のいずれか一つに記載の情報処理装置。
(13)
前記アプリの状況は少なくとも、
実行中である前記アプリの種別および前記情報処理装置の画面のオン/オフ状態を含む、
前記(12)に記載の情報処理装置。
(14)
前記制御部は、
前記アプリの種別がゲームである場合よりもゲーム以外である場合の方が求められる冷却能力が低くなるように前記制御パラメータを切り替え、さらに前記アプリの種別が前記ゲーム以外である場合よりも前記画面がオフ状態である場合の方が求められる前記冷却能力が低くなるように前記制御パラメータを切り替える、
前記(13)に記載の情報処理装置。
(15)
前記制御部は、
前記空冷ファンの騒音を抑制する第1のモードあるいは前記空冷ファンによる消費電力を抑制する第2のモードがユーザによって指定された場合に、前記第1のモードあるいは前記第2のモードが指定されていない場合よりも、前記空冷ファンの回転数レベルを低くする制御および前記空冷ファンの発動温度を高くする制御のうちの一方または双方を実行する、
前記(1)~(14)のいずれか一つに記載の情報処理装置。
(16)
携帯型である、前記(1)~(15)のいずれか一つに記載の情報処理装置。
(17)
空冷ファンを有するファン部を備える情報処理装置が実行する情報処理方法であって、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御すること、
を含む、情報処理方法。
(18)
空冷ファンを有するファン部を備える情報処理装置であるコンピュータに、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御すること、
を実行させる、プログラム。
10 スマートフォン
11 HMI部
12 通信部
13 温度センサ
14 電圧・電流センサ
15 バッテリ
16 外部I/F
17 記憶部
17a アプリ情報
17b 高温時制御パラメータ情報
17c 監視パラメータ情報
17d 算出モデル
17e ヒステリシス制御情報
17f ファン制御パラメータ情報
18 制御部
18a アプリ実行部
18b HMI制御部
18c 通信制御部
18d 高温時制御部
18e,18eA 監視部
18ea 電圧・電流監視部
18eb 温度監視部
18ec アプリ状況監視部
18f 算出部
18g 決定部
18h ヒステリシス制御部
18i ファン制御サービス部
100,100A ファンアクセサリ
101 第1外部I/F
102 第2外部I/F
103,103A ファン
104 LED
105 制御部
105a ファン制御部
105b LED制御部
105c 外部出力制御部
105d 給電制御部
106 グリップ部
200 外部DSP
300 外部SP
400 外部電源
11 HMI部
12 通信部
13 温度センサ
14 電圧・電流センサ
15 バッテリ
16 外部I/F
17 記憶部
17a アプリ情報
17b 高温時制御パラメータ情報
17c 監視パラメータ情報
17d 算出モデル
17e ヒステリシス制御情報
17f ファン制御パラメータ情報
18 制御部
18a アプリ実行部
18b HMI制御部
18c 通信制御部
18d 高温時制御部
18e,18eA 監視部
18ea 電圧・電流監視部
18eb 温度監視部
18ec アプリ状況監視部
18f 算出部
18g 決定部
18h ヒステリシス制御部
18i ファン制御サービス部
100,100A ファンアクセサリ
101 第1外部I/F
102 第2外部I/F
103,103A ファン
104 LED
105 制御部
105a ファン制御部
105b LED制御部
105c 外部出力制御部
105d 給電制御部
106 グリップ部
200 外部DSP
300 外部SP
400 外部電源
Claims (18)
- 空冷ファンを有するファン部を備える情報処理装置であって、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御する制御部、
を備える、情報処理装置。 - 前記ファン部は、着脱可能に設けられる、
請求項1に記載の情報処理装置。 - 前記制御部は、
前記情報処理装置の温度に基づいて前記空冷ファンの回転数を制御する、
請求項2に記載の情報処理装置。 - 前記制御部は、
前記情報処理装置の温度が高いほど前記空冷ファンの回転数が大きくなるように前記ファン部に対する要求回転数を算出する、
請求項3に記載の情報処理装置。 - 前記制御部は、
前記情報処理装置の消費電力の移動平均に基づいて前記空冷ファンの回転数を制御する、
請求項4に記載の情報処理装置。 - 前記制御部は、
前記移動平均が大きいほど前記空冷ファンの回転数が大きくなるように前記要求回転数を算出する、
請求項5に記載の情報処理装置。 - 前記制御部は、
前記情報処理装置の温度に基づく前記要求回転数および前記情報処理装置の消費電力に基づく前記要求回転数のうち、大きい方を採用する、
請求項6に記載の情報処理装置。 - 前記制御部は、
前記要求回転数が現在の回転数を下回る場合に、ヒステリシス制御処理を実行する、
請求項4に記載の情報処理装置。 - 前記制御部はさらに、
前記ファン部の温度に基づいて前記空冷ファンの回転数を制御する、
請求項3に記載の情報処理装置。 - 前記制御部は、
前記情報処理装置の温度が規定値を超える場合に、当該制御部を含むリソースの使用を自動的に制限する高温時制御処理を発動可能に設けられ、前記空冷ファンの回転時は前記空冷ファンの停止時よりも前記規定値を大きくする、
請求項1に記載の情報処理装置。 - 前記制御部は、
前記情報処理装置の温度が前記規定値へ到達するまでは前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御し、前記情報処理装置の温度が前記規定値へ到達する時点で強制的に最大の回転数となるように前記空冷ファンの回転数を制御する、
請求項10に記載の情報処理装置。 - 前記制御部はさらに、
実行中であるアプリの状況に基づいて前記空冷ファンの制御パラメータを切り替える、
請求項1に記載の情報処理装置。 - 前記アプリの状況は少なくとも、
実行中である前記アプリの種別および前記情報処理装置の画面のオン/オフ状態を含む、
請求項12に記載の情報処理装置。 - 前記制御部は、
前記アプリの種別がゲームである場合よりもゲーム以外である場合の方が求められる冷却能力が低くなるように前記制御パラメータを切り替え、さらに前記アプリの種別が前記ゲーム以外である場合よりも前記画面がオフ状態である場合の方が求められる前記冷却能力が低くなるように前記制御パラメータを切り替える、
請求項13に記載の情報処理装置。 - 前記制御部は、
前記空冷ファンの騒音を抑制する第1のモードあるいは前記空冷ファンによる消費電力を抑制する第2のモードがユーザによって指定された場合に、前記第1のモードあるいは前記第2のモードが指定されていない場合よりも、前記空冷ファンの回転数レベルを低くする制御および前記空冷ファンの発動温度を高くする制御のうちの一方または双方を実行する、
請求項1に記載の情報処理装置。 - 携帯型である、請求項1に記載の情報処理装置。
- 空冷ファンを有するファン部を備える情報処理装置が実行する情報処理方法であって、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御すること、
を含む、情報処理方法。 - 空冷ファンを有するファン部を備える情報処理装置であるコンピュータに、
少なくとも温度および前記情報処理装置の消費電力に基づいて前記空冷ファンの回転数を制御すること、
を実行させる、プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022144299 | 2022-09-12 | ||
JP2022-144299 | 2022-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024057873A1 true WO2024057873A1 (ja) | 2024-03-21 |
Family
ID=90274978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/030638 WO2024057873A1 (ja) | 2022-09-12 | 2023-08-25 | 情報処理装置、情報処理方法およびプログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024057873A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007088535A (ja) * | 2005-09-20 | 2007-04-05 | Casio Hitachi Mobile Communications Co Ltd | 充電台装置及びプログラム |
JP2013168107A (ja) * | 2012-02-17 | 2013-08-29 | Nec Computertechno Ltd | 情報処理装置、異常検出方法、及び、プログラム |
JP2014131138A (ja) * | 2012-12-28 | 2014-07-10 | Pioneer Electronic Corp | 携帯端末装着装置 |
US20150118017A1 (en) * | 2013-10-25 | 2015-04-30 | Kabushiki Kaisha Toshiba | Electronic device and fan controlling method |
-
2023
- 2023-08-25 WO PCT/JP2023/030638 patent/WO2024057873A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007088535A (ja) * | 2005-09-20 | 2007-04-05 | Casio Hitachi Mobile Communications Co Ltd | 充電台装置及びプログラム |
JP2013168107A (ja) * | 2012-02-17 | 2013-08-29 | Nec Computertechno Ltd | 情報処理装置、異常検出方法、及び、プログラム |
JP2014131138A (ja) * | 2012-12-28 | 2014-07-10 | Pioneer Electronic Corp | 携帯端末装着装置 |
US20150118017A1 (en) * | 2013-10-25 | 2015-04-30 | Kabushiki Kaisha Toshiba | Electronic device and fan controlling method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110637271B (zh) | 用于对便携式计算设备中的沉浸式多媒体工作负载的智能调整的系统和方法 | |
JP6005895B1 (ja) | ワット当たりの最適パフォーマンスのためのインテリジェントマルチコア制御 | |
JP5777827B2 (ja) | ポータブルコンピューティングデバイスにおけるバッテリ負荷管理のためのシステムおよび方法 | |
US9465423B2 (en) | System and method for thermal management in a portable computing device using thermal resistance values to predict optimum power levels | |
EP2929409B1 (en) | System and method for estimating ambient temperature from a portable computing device | |
JP6591971B2 (ja) | チップ上のマルチプロセッサシステムにおけるアイドル状態最適化のためのシステムおよび方法 | |
US8237386B2 (en) | Methods and apparatuses for operating a data processing system | |
US9703336B2 (en) | System and method for thermal management in a multi-functional portable computing device | |
US20140006818A1 (en) | System and Method For Adaptive Thermal Management In A Portable Computing Device | |
US20180157315A1 (en) | System and method for proactive power and performance management of a workload in a portable computing device | |
EP3005342A1 (en) | System and method for intelligent multimedia-based thermal power management in a portable computing device | |
JP2007233782A (ja) | 発熱量の制御方法およびコンピュータ | |
US9746898B2 (en) | Systems and methods for controlling processing device power consumption | |
CN110214298B (zh) | 用于便携式计算设备中的情境感知热管理和工作负荷调度的系统和方法 | |
US20140371944A1 (en) | System and method for estimating ambient temperature of a portable computing device using a voice coil | |
JP2017502383A (ja) | ポータブルコンピューティングデバイスにおけるシステムオンチップのマルチ相関学習型熱管理のためのシステムおよび方法 | |
US11573619B2 (en) | Information processing apparatus and method | |
US20190339764A1 (en) | Controlling power efficiency of an information processing device | |
US12117880B2 (en) | Information processing apparatus and control method | |
US20170192473A1 (en) | System and method for intelligent thermal management based on a thermal power envelope in a portable computing device | |
US20220407334A1 (en) | Information processing device, program, and method | |
WO2024057873A1 (ja) | 情報処理装置、情報処理方法およびプログラム | |
TWI644469B (zh) | 熱管理方法及其移動裝置 | |
CN117130455A (zh) | 一种功耗控制方法、装置及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23865230 Country of ref document: EP Kind code of ref document: A1 |