WO2024056083A1 - 频谱感知方法及装置 - Google Patents

频谱感知方法及装置 Download PDF

Info

Publication number
WO2024056083A1
WO2024056083A1 PCT/CN2023/119173 CN2023119173W WO2024056083A1 WO 2024056083 A1 WO2024056083 A1 WO 2024056083A1 CN 2023119173 W CN2023119173 W CN 2023119173W WO 2024056083 A1 WO2024056083 A1 WO 2024056083A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
mixed signal
spectrum
impulse response
Prior art date
Application number
PCT/CN2023/119173
Other languages
English (en)
French (fr)
Inventor
黄倩怡
罗志成
陈昊
陈贵海
Original Assignee
鹏城实验室
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹏城实验室, 南方科技大学 filed Critical 鹏城实验室
Publication of WO2024056083A1 publication Critical patent/WO2024056083A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • the present application relates to the technical field of spectrum sensing equipment, and in particular to a spectrum sensing method and device.
  • Spectrum sensing refers to obtaining spectrum information within a certain time, a certain place, and a certain frequency range.
  • Ultra-wideband technology refers to a new communication technology with a bandwidth exceeding 500MHz.
  • dynamic spectrum allocation policies have been implemented.
  • the main business in the 3-5GHz frequency band is satellite communications and 5G commercial equipment, but without affecting the main business, some personal communication equipment is allowed to use this frequency band.
  • spectrum management agencies need to monitor the usage of spectrum in different locations at all times.
  • the traditional method is to use large, high-precision, wide-bandwidth spectrum measuring instruments such as vehicle-mounted radar to continuously patrol and detect whether the spectrum is occupied.
  • this method is extremely costly and tends to miss some areas that are inaccessible to large equipment.
  • this application provides a spectrum sensing method and device, which solves the technical problem that traditional low-cost spectrum sensing methods and equipment cannot perform large-bandwidth spectrum sensing.
  • a spectrum sensing method which includes:
  • the occupancy status of the target channel is confirmed.
  • the spectrum sensing method wherein the step of receiving a mixed signal including the preamble signal and separating the mixed signal to obtain a target signal through a fitting separation method includes:
  • the first transmission gain is switched to the second transmission gain.
  • the spectrum sensing method wherein the step of sending a preamble signal on the target channel based on the first transmission gain includes:
  • a mixed signal including the preamble signal is received and the mixed signal is separated to obtain the target signal.
  • the spectrum sensing method wherein the step of receiving a mixed signal including the preamble signal and separating the mixed signal to obtain the target signal based on the radar mode includes:
  • the spectrum sensing method wherein the step of receiving a mixed signal including the preamble signal based on the normal mode and separating the mixed signal to obtain a target signal through a fitting separation method includes:
  • the spectrum sensing method wherein the mixed signal includes a first mixed signal and a second mixed signal, the first mixed signal and the second mixed signal are respectively received by two receiving ends simultaneously, and the first mixed signal Both the mixed signal and the second mixed signal include a channel impulse response and a target signal.
  • the spectrum sensing method wherein the step of separating the mixed signal to obtain the target signal through the fitting separation method, and judging whether the target channel is occupied according to the target signal includes:
  • the spectrum sensing method wherein the spectrum of the target channel is spliced to obtain a high-definition spectrum through channel impulse response splicing, specifically includes:
  • the maximum value position Index_C of the data set C and the maximum value position Index_X of the data set X are combined to form a splicing point, where the value of the splicing point is (Max_C+Max_X)/2;
  • Embodiments of the present application provide a computer-readable storage medium that stores one or more programs, and the one or more programs can be executed by one or more processors to implement any of the above. 1. Steps in the spectrum sensing method.
  • This embodiment of the present application provides a spectrum sensing device, which includes:
  • a transmitting module configured to transmit a preamble signal on the target channel based on the first transmit gain
  • a receiving module configured to receive a mixed signal including the preamble signal based on the normal mode and separate the mixed signal through a fitting separation method to obtain a target signal;
  • a generating module configured to generate the spectrum of the target channel according to the target signal
  • a splicing module used to splice the spectrum of the target channel to obtain a high-definition spectrum through channel impulse response splicing
  • a judgment module configured to confirm the occupancy status of the target channel based on the high-definition spectrum.
  • the fourth aspect of the embodiment of the present application provides a terminal device, which includes: a processor, a memory, and a communication bus; the memory stores a computer-readable program that can be executed by the processor;
  • the communication bus implements connection communication between the processor and the memory
  • this application provides a spectrum sensing method and device.
  • the method includes sending a preamble signal on the target channel based on the first transmission gain; based on the normal mode, receiving the preamble signal including the preamble signal.
  • This application uses ultra-wideband technology to obtain spectrum information within an extremely high bandwidth (bandwidth of 500MHz-1GHz) from the channel impulse response CIR provided by the ultra-wideband transmission module, so as to determine the occupancy status of the target channel and solve the traditional low-frequency problem.
  • the technical problem is that cost-effective spectrum sensing methods and equipment cannot perform large-bandwidth spectrum sensing.
  • Figure 1 is a flow chart of the spectrum sensing method provided by this application.
  • Figure 2 is a graph provided by this application for curve fitting of the channel impulse response of the system itself
  • Figure 3 is a curve diagram of curve fitting of the channel impulse response of a mixed signal provided by this application.
  • Figure 4 is a graph of the new mixed signal F(f) provided by this application and the mixed signal a*H(f) scaled by automatic gain control;
  • Figure 5 is the spectrum diagram of the target signal X(f) provided by this application.
  • Figure 6 is a flow chart of the channel impulse response CIR splicing method provided by this application.
  • FIG. 7 is a flow chart of the reception mode control method provided by this application.
  • FIG. 8 is a schematic diagram of the sampling points in radar mode provided by this application.
  • FIG. 9 is a flow chart of the transmission gain control method provided by this application.
  • FIG. 10 is a structural block diagram of the spectrum sensing device provided by this application.
  • FIG 11 is a schematic structural diagram of the terminal equipment provided by this application.
  • Figure 12 is a schematic structural diagram of the spectrum sensing device provided by this application.
  • FIG. 13 is a working principle diagram of the spectrum sensing device provided by this application.
  • Figure 14 is the target signal spectrum diagram provided by this application.
  • ultra-wideband technology is a communication technology with extremely high bandwidth (bandwidth 500MHz-1GHz), which has the characteristics of low cost, low power consumption, large bandwidth, high precision, and high stability.
  • Ultra-wideband technology has been quite mature so far and is often used in positioning. It is found in many commercial devices, such as smartphones.
  • ultra-wideband technology will also be used in the field of perception, such as sensing human breathing and heartbeat, sensing the materials of objects, etc. This is because ultra-wideband technology can provide developers with channel impulse response CIR, channel The impulse response CIR can represent the status of the current communication target channel, and developers can obtain current environmental information from it to perceive the current environment, just like radar. Since the channel impulse response CIR can represent the status of the current communication target channel, the bandwidth of ultra-wideband equipment is 500MHz-1GHz.
  • spectrum information within the 500MHz-1GHz bandwidth can be obtained from the channel impulse response CIR provided by ultra-wideband equipment. Based on this idea, a low spectrum sensing method, storage medium and terminal equipment are designed.
  • this application uses an ultra-wideband transceiver capable of transmitting and receiving ultra-wide signals (bandwidth 500MHz-1GHz) to form the ultra-wideband transmitting module and ultra-wideband receiving module of the system.
  • the external signal enters the system through the antenna, and is superimposed with the pilot signal emitted by the ultra-wideband transmitting module through the combiner.
  • the superimposed mixed signal flows through the power divider at the same time to the ultra-wideband receiving module composed of two ultra-wideband transceivers.
  • the two receivers correlate and accumulate the received signal with the known preamble signal, and pass the accumulated result to the controller.
  • the controller can transmit data to the receiving end through wired or wireless methods, process the data and display the results.
  • the execution subject of the spectrum sensing method may be a spectrum sensing device on the computer side, or a server device integrating the spectrum sensing device.
  • the spectrum sensing device can be implemented in hardware or software. It can be understood that the execution subject of this embodiment may be an intelligent terminal equipped with a spectrum sensing device, such as a tablet computer or a server host.
  • the server obtains the mixed signal of the target channel, obtains the target signal of the target channel based on the mixed signal, and determines whether the target channel is occupied; it packages the target signal to generate spectrum segments and accesses them to the cache pool in turn, and passes the adjacent spectrum segments in the cache pool through
  • the channel impulse response CIR is spliced to obtain the spectrum; the reception mode in the next measurement is controlled according to the occupancy status of the spectrum (target channel), and the reception mode includes normal mode or radar mode; the transmission gain is set according to the occupancy status of the spectrum (target channel).
  • the spectrum sensing method provided by this embodiment is as shown in Figure 1.
  • the method specifically includes:
  • Step S10 Send the preamble signal on the target channel based on the first transmission gain.
  • the preamble signal is sent on the target channel through an ultra-wideband transmission module, where the bandwidth of the ultra-wideband transmission module is 500MHz-1GHz.
  • ultra-wideband devices communicate by sending data frames, which are mainly composed of three parts, as shown in Figure 13.
  • the preamble signal is provided by the Institute of Electrical and Electronics Engineers (IEEE, Institute of Electrical and Electronics Engineers) A specified known sequence is used to obtain the channel impulse response.
  • the receiving end will continuously correlate the known preamble signal with the currently received signal to obtain the channel impulse response CIR, and accumulate the channel impulse response CIR into the register.
  • this signal When there are other signals in the space, such as 5G signals, this signal will be received by the receiver together with the preamble signal, and will be correlated and accumulated into the register.
  • the value read from the register at this time will be a mixed signal of the channel impulse response CIR and the 5G signal. Its spectrum is shown in Figure 14, and the box depicts the target signal (5G signal).
  • the spectrogram of the target signal can be restored from the mixed signal through certain methods.
  • Step S20 Based on the normal mode, receive the mixed signal including the preamble signal and separate the mixed signal through the fitting separation method to obtain the target signal.
  • the ultra-wideband receiving module receives the mixed signal including the preamble signal and separates the mixed signal through the fitting separation method to obtain the target signal.
  • the bandwidth of the ultra-wideband receiving module is 500MHz-1GHz.
  • the spectrum X(f) of the target signal can be obtained through the fitting separation method in the normal mode.
  • the channel impulse response can be provided.
  • the channel impulse response (CIR) can represent the status of the current communication channel, and the current environment information can be obtained from it, thereby perceiving the current environment, just like radar. Since CIR can represent the status of the current communication channel, the bandwidth of the ultra-wideband transmitting module and ultra-wideband receiving module is 500MHz-1GHz.
  • Step S30 Generate a spectrum of the target channel according to the target signal.
  • Step S40 Splice the spectrum of the target channel to obtain a high-definition spectrum through channel impulse response splicing
  • Step S50 Confirm the occupancy status of the target channel based on the high-definition spectrum.
  • the step of receiving the mixed signal including the preamble signal and separating the mixed signal to obtain the target signal through the fitting separation method includes:
  • the first transmission gain is switched to the second transmission gain.
  • the step of sending the preamble signal on the target channel based on the first transmission gain includes:
  • the mixed signal containing the preamble signal is received and the mixed signal is separated to obtain the target signal.
  • the steps of receiving the mixed signal containing the preamble signal and separating the mixed signal to obtain the target signal include:
  • Step S201 Based on the radar mode, obtain the channel impulse response sampling points with the preamble signal within the first sampling length threshold.
  • a radar mode is designed. In the radar mode, the device only reads 150 channel impulse response CIR sampling points. When the device detects a long-term signal, it switches to the normal mode, that is, reads all 1016 CIR sampling points.
  • CIR Channel Impulse Response
  • the FFT of 30 sampling points including the direct path can be approximately equal to: k*H(f).
  • X(f ) (1/k)*S(f)
  • X(f) If there is a target channel in X(f) that is occupied, determine whether it is similar to the X(f) obtained last time. If it is similar, it means there is a continuous signal and switch to the normal mode; if it is not similar, continue shortwave detection.
  • Step S202 Accumulate the channel impulse response sampling points to obtain a mixed signal.
  • Step S203 Separate the mixed signal to obtain the target signal.
  • Step S204 At the same time, determine whether the target channel is occupied according to the target signal.
  • Step S205 If not, maintain the radar mode and receive the mixed signal.
  • Step S206 If yes, switch to the second transmission gain and determine whether the current measurement result is the same as the previous measurement result. If yes, switch to the normal mode to receive the mixed signal; if not, maintain the radar mode and receive the mixed signal.
  • the receiving end needs to recognize the preamble signal before it can access the register.
  • the signal-to-noise ratio of the preamble signal will be lower than the limit that the receiving end can recognize, resulting in the inability to obtain the CIR.
  • the power of the external signal is too small, the signal-to-noise ratio of the external signal will be relatively low, causing the terminal to be unable to separate the external signal from the mixed signal.
  • low-cost ultra-wideband equipment can only store a small number of channel impulse response (CIR) sampling points.
  • CIR channel impulse response
  • the ultra-wideband equipment used can only store 1016 sampling points.
  • the sampling spectrum of the equipment is 1GHz, which means that the equipment Only 1MHz spectrum resolution is available.
  • the power of the transmit signal is dynamically adjusted through the transmit gain control, and two transmit gains are set: the first transmit gain (transmit gain 1:0dB) and the second transmit gain (transmit gain 2:30dB).
  • the specific gain to be used to transmit the signal is determined through an adaptive power adjustment method.
  • the method includes: turning on the transceiver; setting the transmit power to transmit the first transmit gain (transmit gain 1:0dB) or the second transmit gain (transmit gain 2:30dB), where the default is transmit gain 1 and the preamble signal is transmitted; Whether the receiving end has received a timeout, if so, set the second transmit gain (transmit gain 2:30dB) and retransmit, if not, process the received channel impulse response (CIR) data; determine whether the spectrum is occupied, if so, then Continue to use the current gain setting to send the preamble signal for the next measurement. If not, set the first transmit gain (transmit gain 1:0dB) and perform the next detection.
  • CIR channel impulse response
  • the steps of receiving the mixed signal including the preamble signal and separating the mixed signal to obtain the target signal through the fitting separation method include:
  • Step S207 Based on the normal mode, obtain the channel impulse response sampling points with the preamble signal within the second sampling length threshold.
  • Step S208 Accumulate the channel impulse response sampling points to obtain a mixed signal.
  • Step S209 Separate the mixed signal to obtain the target signal through the fitting separation method, and determine whether the target channel is occupied based on the target signal;
  • Step S210 if not, switch to radar mode and receive mixed signals
  • Step S211 If yes, maintain the current normal mode to receive the mixed signal.
  • the mixed signal includes a first mixed signal and a second mixed signal.
  • the first mixed signal and the second mixed signal are respectively received simultaneously by two receiving ends.
  • the first mixed signal and the second mixed signal both include channel impulse responses. and target signals.
  • the mixed signal is separated to obtain the target signal through the fitting separation method.
  • the steps of determining whether the target channel is occupied based on the target signal include:
  • Step S2091 Obtain the self-channel impulse response, and perform curve fitting on the self-channel impulse response to obtain a new self-channel impulse response.
  • AGC Automatic Gain Control
  • the wired channel impulse response is relatively stable, it can be regarded as H(f), and the target signal is regarded as X(f).
  • AGC Automatic Gain Control
  • Step S2092 Perform curve fitting on the first mixed signal and the second mixed signal respectively, and obtain a new first mixed signal and a new second mixed signal according to the channel impulse response.
  • Step S2094 Average the first mixed signal and the second mixed signal to obtain the final target signal.
  • the spectrum of the target channel is spliced to obtain a high-definition spectrum, which specifically includes:
  • Step S401 as shown in Figure 6, connect adjacent target signals to the buffer pool in sequence, perform inverse Fourier transform on the target signals in the buffer pool, and obtain a periodic function.
  • a cache pool is constructed for this purpose.
  • the new periodic function x(t) will be accessed into the cache pool, and the earliest accessed periodic function x(t) in the cache pool will be deleted.
  • the specific method is as follows. Using a cache pool of 4096 points can store four groups of x(t) that are updated sequentially. At this time, it is assumed that there is already data in the cache pool.
  • Step S403 Set the last ten digits of the data scaling value x_cache’(t) as the data set C, and set the first ten digits of the data scaling value x_cache’(t) as the data set X.
  • Step S404 Obtain the maximum value Max_C of data set C, the maximum value Max_X of data set X, the maximum value position Index_C of data set C, and the maximum value position Index_X of data set X, and delete the maximum value position Index_C of data set C and the maximum value position of data set X Data between Index_X;
  • Step S405 Combine the maximum value position Index_C of data set C and the maximum value position Index_X of data set X to form a splicing point, where the value of the splicing point is (Max_C+Max_X)/2.
  • phase alignment Let the data set C be the last ten numbers of x_cache'(t), and the data set X be the first ten numbers of x(t). Find the data set C, and the maximum values Max_C and Max_X of the data set X, And the positions corresponding to the maximum values: Index_C and Index_X. Delete the data after Index_C and before Index_X, and combine Index_C and Index_X to form a splicing point. The corresponding value of the splicing point is (Max_C+Max_X)/2.
  • Step S406 Perform fast Fourier transform (FFT) on the data scaling value x_cache’(t) of the cache pool to obtain the high-definition spectrum X_cache’(f);
  • FFT fast Fourier transform
  • a 4096-point fast Fourier transform is performed on the data scaling value x_cache’(t) of the cache pool to obtain a high-definition spectrum X_cache’(f) with a resolution of 250KHz.
  • this embodiment provides a spectrum sensing method and device, which includes sending a preamble signal on a target channel based on the first transmission gain; based on the normal mode, receiving a mixed signal including the preamble signal and separating it through fitting The method separates the mixed signal to obtain the target signal; generates the spectrum of the target channel based on the target signal; splices the spectrum to obtain a high-definition spectrum through channel impulse response splicing; and confirms the occupancy status of the target channel based on the high-definition spectrum.
  • This application uses ultra-wideband technology to obtain spectrum information within an extremely high bandwidth (bandwidth of 500MHz-1GHz) from the channel impulse response CIR provided by the ultra-wideband transmission module, so as to determine the occupancy status of the target channel and solve the traditional low-frequency problem.
  • the technical problem is that cost-effective spectrum sensing methods and equipment cannot perform large-bandwidth spectrum sensing. It solves the technical problem that traditional low-cost spectrum sensing equipment can only perform narrow-band spectrum sensing, which easily causes some instantaneous signals outside the detection bandwidth to be missed.
  • an embodiment of the present application also provides a spectrum sensing device 100.
  • This device can be integrated in an electronic device.
  • the electronic device can be a terminal, a server, a personal computer, and other equipment.
  • the device may include: a transmitting module 101, a receiving module 102, a generating module 103, a splicing module 104 and a judging module 105, specifically as follows (as shown in Figure 10):
  • Transmitting module used to transmit the preamble signal on the target channel based on the first transmission gain
  • the receiving module is used to receive the mixed signal containing the preamble signal based on the normal mode and separate the mixed signal through the fitting separation method to obtain the target signal;
  • the splicing module is used to splice the spectrum of the target channel to obtain a high-definition spectrum through channel impulse response splicing;
  • Determination module used to confirm the occupancy status of the target channel based on the high-definition spectrum.
  • a spectrum sensing device 100 includes a transmitting module 101, a receiving module 102, a generating module 103, a splicing module 104 and a judging module 105.
  • the transmitting module sends a preamble signal on the target channel based on the first transmit gain;
  • the receiving module Based on the normal mode, the mixed signal containing the preamble signal is received and the mixed signal is separated to obtain the target signal through the fitting separation method;
  • the generation module generates the spectrum of the target channel according to the target signal;
  • the splicing module is used to splice the channel impulse response to The spectrum of the target channel is spliced to obtain a high-definition spectrum; the judgment module confirms the occupancy status of the target channel based on the high-definition spectrum.
  • the hardware design is shown in Figure 12, including an ultra-wideband transceiver capable of transmitting and receiving ultra-wide signals to form an ultra-wideband transmitting module and an ultra-wideband receiving module of the system.
  • the external signal enters the system through the antenna, and is superimposed with the pilot signal emitted by the ultra-wideband transmitting module through the combiner.
  • the superimposed mixed signal flows through the power divider at the same time to the ultra-wideband receiving module composed of two ultra-wideband transceivers.
  • the two receivers correlate and accumulate the received signal with the known preamble signal, and pass the accumulated result to the controller.
  • the controller can transmit data to the receiving end through wired or wireless methods, process the data and display the results.
  • the terminal performs data processing and other operations to obtain the spectrum of the target signal. There are two parallel working terminals set up here, and the final measurement result is the intersection of the two terminal measurement results to increase the reliability of the results.
  • each of the above units can be implemented as an independent entity, or can be combined in any way, as the same or separate units. It is implemented by three entities.
  • each unit above please refer to the previous method embodiments and will not be described again here.
  • this embodiment provides a computer-readable storage medium.
  • the computer-readable storage medium stores one or more programs.
  • the one or more programs can be executed by one or more processors to implement the following: Steps in the spectrum sensing method of the above embodiment. Specific steps are as follows:
  • the step of receiving a mixed signal including a preamble signal and separating the mixed signal to obtain a target signal through a fitting separation method includes:
  • the first transmission gain is switched to the second transmission gain.
  • the step of transmitting the preamble signal on the target channel based on the first transmit gain includes:
  • the mixed signal containing the preamble signal is received and the mixed signal is separated to obtain the target signal.
  • the steps of receiving a mixed signal including a preamble signal and separating the mixed signal to obtain a target signal include:
  • the step of receiving a mixed signal including a preamble signal and separating the mixed signal to obtain a target signal through a fitting separation method includes:
  • the mixed signal includes a first mixed signal and a second mixed signal.
  • the first mixed signal and the second mixed signal are respectively received simultaneously by two receiving ends.
  • the first mixed signal and the second mixed signal both include channels. Impulse responses and target signals.
  • the mixed signal is separated to obtain the target signal through a fitting separation method, and the step of determining whether the target channel is occupied based on the target signal includes:
  • the constraint equation is:
  • the spectrum of the target channel is spliced to obtain a high-definition spectrum through channel impulse response splicing, which specifically includes:
  • Average the data x_cache(t) in the cache pool to obtain the data average Mean_cache, average the periodic function x(t) to obtain the periodic function average Mean_x, and scale the data x_cache(t) to obtain the data scaling value x_cache'(t) , where the data scaling value x_cache'(t) (Mean_x/Mean_cache)*x_cache(t);
  • FFT fast Fourier transform
  • this application also provides a terminal device, as shown in Figure 11, which includes at least one processor (processor) 20; a display screen 21; and a memory (memory) 22, and may also include a communication interface ( Communications Interface) 23 and bus 24.
  • the processor 20, the display screen 21, the memory 22 and the communication interface 23 can complete communication with each other through the bus 24.
  • the display screen 21 is configured to display a user guidance interface preset in the initial setting mode.
  • Communication interface 23 can transmit information.
  • the processor 20 can call logical instructions in the memory 22 to execute the methods in the above embodiments.
  • the above-mentioned logical instructions in the memory 22 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 22 can be configured to store software programs, computer-executable programs, such as program instructions or modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 20 executes software programs, instructions or modules stored in the memory 22 to execute functional applications and data processing, that is, to implement the methods in the above embodiments.
  • the memory 22 may include a program storage area and a data storage area, where the program storage area may store an operating system and at least one application program required for a function; the storage data area may store data created according to the use of the terminal device, etc.
  • the memory 22 may include high-speed random access memory, and may also include non-volatile memory.
  • program code such as U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, or they can also be temporary state storage media.
  • this application has the following beneficial effects: a spectrum sensing method and device, which includes sending a preamble signal on the target channel based on the first transmission gain; based on the normal mode, receiving the signal including the preamble The mixed signal is separated by the fitting separation method to obtain the target signal; the spectrum of the target channel is generated based on the target signal; the spectrum is spliced to obtain the high-definition spectrum through channel impulse response splicing; based on the high-definition spectrum, the occupancy status of the target channel is confirmed .
  • This application uses ultra-wideband technology to obtain spectrum information within an extremely high bandwidth (bandwidth of 500MHz-1GHz) from the channel impulse response CIR provided by the ultra-wideband transmission module, so as to determine the occupancy status of the target channel and solve the traditional low-frequency problem.
  • the technical problem is that cost-effective spectrum sensing methods and equipment cannot perform large-bandwidth spectrum sensing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请公开了一种频谱感知方法及装置,其中,该方法包括基于第一发射增益在目标信道上发送前导码信号;基于正常模式,接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号;根据所述目标信号生成所述目标信道的频谱;通过信道冲激响应拼接,将所述频谱拼接得到高清频谱;基于所述高清频谱,确认所述目标信道的占用状态。

Description

频谱感知方法及装置
相关申请
本申请要求于2022年9月15日申请的、申请号为202211121400.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及频谱感知设备技术领域,特别涉及一种频谱感知方法及装置。
背景技术
频谱感知,是指获取某一个时间,某一个地点,某一个频率范围内的频谱信息。超宽带技术,是指一种带宽超过500MHz的新型通信技术。随着各种通信业务的不断增长,频谱逐渐出现短缺的现象。为了缓解这一问题,开始实行动态频谱分配政策,比如在3-5GHz频段上的主营业务是卫星通信以及5G商用设备,但在不影响主营业务的情况下,允许一些个人通信设备使用此频段。为了确保主营业务不被影响,频谱管理机构需要时刻监测不同地点频谱的使用情况。为此,传统方法是使用车载雷达等大型的高精度大带宽的频谱测量仪不断巡逻探测,检测频谱是否被占用。但是这个方法成本极高,而且容易遗漏一些大型设备无法抵达的区域。
相关技术中,有一种构建大规模频谱感知网络的方法,即在一片区域内的多个位置放置一些低成本的频谱感知设备,这些频谱感知设备将不断向管理者上传其所在位置的频谱数据,管理者通过对数据汇总处理,即可获取这一区域内的频谱信息。然而这种低成本的频谱感知设备通常只能进行窄带的频谱感知,比如基于USRP(通用软件无线电外设)的频谱感知设备,一次只能感知50MHz带宽的频谱信息,不能进行大带宽频谱感知,容易造成一些处于检测带宽外的瞬时信号被遗漏。
发明内容
针对相关技术的不足,本申请提供一种频谱感知方法及装置,解决了传统低成本频谱感知方法及设备不能进行大带宽频谱感知的技术问题。
为了解决上述技术问题,本申请实施例提供了一种频谱感知方法,该方法包括:
基于第一发射增益在目标信道上发送前导码信号;
基于正常模式,接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号;
根据所述目标信号生成所述目标信道的频谱;
通过信道冲激响应拼接,将所述目标信道的频谱拼接得到高清频谱;
基于所述高清频谱,确认所述目标信道的占用状态。
所述频谱感知方法,其中,所述接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号的步骤之前包括:
若接收到所述前导码信号的时间超过预设的时间阈值,则将所述第一发射增益切换为第二发送增益。
所述频谱感知方法,其中,所述基于第一发射增益在目标信道上发送前导码信号的步骤之后包括:
基于雷达模式,接收包含所述前导码信号的混合信号并将所述混合信号分离得到所述目标信号。
所述频谱感知方法,其中,所述基于雷达模式,接收包含所述前导码信号的混合信号并将所述混合信号分离得到所述目标信号的步骤包括:
基于所述雷达模式,获取第一采样长度阈值内带有所述前导码信号的信道冲激响应采样点;
将所述信道冲激响应采样点累加得到所述混合信号;
将所述混合信号分离得到所述目标信号;
同时,根据所述目标信号判断所述目标信道是否被占用;
若否,则保持所述雷达模式并接收所述混合信号;
若是,则切换到所述第二发射增益并判断当前测量结果和前一次的测量结果是否相同,若是,则切换到所述正常模式接收所述混合信号;若否,则保持所述雷达模式并接收所述混合信号。
所述频谱感知方法,其中,所述基于正常模式,接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号的步骤包括:
基于所述正常模式,获取第二采样长度阈值内带有所述前导码信号的信道冲激响应采样点;
将所述信道冲激响应采样点累加得到所述混合信号;
通过所述拟合分离方法将所述混合信号分离得到所述目标信号,同时根据所述目标信号判断所述目标信道是否被占用;
若否,则切换到所述雷达模式并接收所述混合信号;
若是,则保持当前所述正常模式接收所述混合信号。
所述频谱感知方法,其中,所述混合信号包括第一混合信号和第二混合信号,所述第一混合信号和所述第二混合信号分别由两个接收端同时接收得到,所述第一混合信号和所述第二混合信号均包括信道冲激响应和目标信号。
所述频谱感知方法,其中,所述通过所述拟合分离方法将所述混合信号分离得到所述目标信号,同时根据所述目标信号判断所述目标信道是否被占用的步骤包括:
获取自身信道冲激响应,将所述自身信道冲激响应进行曲线拟合得到新的自身信道冲激响应;
将所述第一混合信号和所述第二混合信号分别进行曲线拟合,并根据所述信道冲激响应,得到新的第一混合信号和新的第二混合信号;
通过约束方程求得自动增益控制缩放系数k,通过所述新的自身信道冲激响应H(f)和所述新的第一混合信号F1(f)计算得到第一目标信号X1(f),其中所述第一目标信号X1(f)=(1/a)*F1(f)-H(f);通过所述新的自身信道冲激响应H(f)和所述新的第二混合信号F2(f)计算得到第二目标信号X2(f),其中所述第二目标信号X2(f)=(1/a)*F2(f)-H(f);
将所述第一混合信号和所述第二混合信号求平均值,得到最终的所述目标信号;
同时,根据所述目标信号Mean、最高值Max和总能量E,求得阈值K,若所述目标信号大于所述信号阈值,则确定所述目标信道被占用;若所述目标信号小于等于所述信号阈值,则确定所述目标信道未被占用,其中所述信号阈值K=2*Mean*(E/MAX)。
所述频谱感知方法,其中,所述约束方程为:
所述频谱感知方法,其中,所述通过信道冲激响应拼接,将所述目标信道的频谱拼接得到高清频谱,具体包括:
将相邻的所述目标信号依次接入缓存池,对所述缓存池内的所述目标信号进行逆傅里叶变换,得到周期函数;
对所述缓存池的数据x_cache(t)求均值得到数据平均值Mean_cache,对所述周期函数x(t)求均值得到周期函数平均值Mean_x,对所述数据x_cache(t)进行缩放得到数据缩放值x_cache’(t),其中所述数据缩放值x_cache’(t)=(Mean_x/Mean_cache)*x_cache(t);
将所述数据缩放值x_cache’(t)的后十个数设为数据集C,将所述数据缩放值x_cache’(t)的前十个数设为数据集X;
获取数据集C最大值Max_C、数据集X最大值Max_X、数据集C最大值位置Index_C和数据集X最大值位置Index_X,并删除所述数据集C最大值位置Index_C与所述数据集X最大值位置Index_X之间的数据;
将所述数据集C最大值位置Index_C和所述数据集X最大值位置Index_X合并构成一个拼接点,其中所述拼接点的值为(Max_C+Max_X)/2;
对所述缓存池的所述数据缩放值x_cache’(t)进行快速傅氏变换(FFT),得到所述高清频谱X_cache’(f)。
本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如上任一所述的频谱感知方法中的步骤。
本申请实施例提供了一频谱感知装置,其包括:
发射模块,用于基于第一发射增益在目标信道上发送前导码信号;
接收模块,用于基于正常模式,接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号;
生成模块,用于根据所述目标信号生成所述目标信道的频谱;
拼接模块,用于通过信道冲激响应拼接,将所述目标信道的频谱拼接得到高清频谱;
判断模块,用于基于所述高清频谱,确认所述目标信道的占用状态。本申请实施例第四方面提供了一种终端设备,其包括:处理器、存储器及通信总线;所述存储器上存储有可被所述处理器执行的计算机可读程序;
所述通信总线实现处理器和存储器之间的连接通信;
所述处理器执行所述计算机可读程序时实现如上任一所述的频谱感知方法中的步骤。
有益效果:与相关技术相比,本申请提供了一种频谱感知方法及装置,该方法包括基于第一发射增益在目标信道上发送前导码信号;基于正常模式,接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号;根据所述目标信号生成所述目标信道的频谱;通过信道冲激响应拼接,将所述频谱拼接得到高清频谱;基于所述高清频谱,确认所述目标信道的占用状态。本申请通过超宽带技术,从超宽带发送模块提供的信道冲激响应CIR中,获取极高带宽(带宽为500MHz-1GHz)内的频谱信息,以此判断目标信道的占用状态,解决了传统低成本频谱感知方法及设备不能进行大带宽频谱感知的技术问题。
附图说明
图1为本申请提供的频谱感知方法的流程图;
图2为本申请提供的对系统自身的信道冲激响应进行曲线拟合的曲线图;
图3为本申请提供的对混合信号的信道冲激响应进行曲线拟合的曲线图;
图4为本申请提供的新的混合信号F(f)和经过自动增益控制缩放的混合信号a*H(f)的曲线图;
图5为本申请提供的目标信号X(f)的频谱图;
图6为本申请提供的信道冲激响应CIR拼接方法的流程图;
图7为本申请提供的接收模式控制的方法的流程图;
图8为本申请提供的雷达模式下采样点的示意图;
图9为本申请提供的发送增益控制方法的流程图;
图10为本申请提供的频谱感知装置的结构框图;
图11为本申请提供的终端设备的结构原理图;
图12为本申请提供的频谱感知装置的结构示意图;
图13为本申请提供的频谱感知装置的工作原理图;
图14为本申请提供的目标信号频谱图。
具体实施方式
本申请提供一种频谱感知方法及装置,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
首先需要知道的是,超宽带技术是一种具有极高带宽(带宽为500MHz-1GHz)的通信技术,具有低成本、低功耗、大带宽、高精度、高稳定的特点。超宽带技术发展至今已经相当成熟,其常被用于定位中,许多商用设备都有它的身影,比如像智能手机等。除了定位之外,超宽带技术还会被用在感知领域,比如像感知人的呼吸和心跳,感知物体的材料等等,这是因为超宽带技术能够给开发者提供信道冲激响应CIR,信道冲激响应CIR可以表示当前通信目标信道的状态,开发者可以从中获取到当前环境信息,从而感知当前的环境,就像雷达一样。由于信道冲激响应CIR可以表示当前通信目标信道的状态,而超宽带设备的带宽为500MHz-1GHz。
因此,可以通过一些设计,从超宽带设备提供的信道冲激响应CIR中,获取500MHz-1GHz带宽内的频谱信息。根据这一想法,设计出一种低的频谱感知方法、存储介质以及终端设备。
下面结合附图,通过对实施例的描述,对发明内容作进一步说明。
如图12所示,本申请使用能够收发超宽信号(带宽为500MHz-1GHz)的超宽带收发机,构成系统的超宽带发送模块和超宽带接收模块。外界的信号通过天线进入系统,并通过合路器与超宽带发送模块发出的前导信号相叠加,叠加后的混合信号通过功分器同时流向由两个超宽带收发机构成超宽带接收模块中,两个收将接收到的信号和已知的前导码信号相关累加,并将累加后的结果传递给控制器。控制器可以通过有线或无线的方式将数据传递给收端,进行数据处理并显示结果。
本实施例提供的一种频谱感知方法,该频谱感知方法的执行主体可以为电脑端的频谱感知装置,或者集成频谱感知装置的服务器设备。其中,频谱感知装置可以采用硬件或者软件的方式实现。可以理解的是,本实施例的执行主体可以是诸如平板电脑或服务器主机等之类的设置有频谱感知装置的智能终端。例如,服务器获取目标信道的混合信号,根据混合信号获得目标信道的目标信号,判断目标信道是否被占用;将目标信号打包生成频谱段并依次接入缓存池,将缓存池内相邻的频谱段通过信道冲激响应CIR拼接得到频谱;根据频谱(目标信道)的占用状态控制下一次测量中的接收模式,接收模式包括正常模式或者雷达模式;根据频谱(目标信道)的占用状态设置发送增益。
需要注意的是,上述应用场景仅是为了便于理解本申请而示出,本申请的实施方式在此方面不受任何限制。相反,本申请的实施方式可以应用于适用的任何场景。
进一步,为了对发明内容作进一步说明,下面结合附图,通过对实施例进行具体描述。
本实施例提供的频谱感知方法,如图1所示,所述方法具体包括:
步骤S10、基于第一发射增益在目标信道上发送前导码信号。
在一些实施例中,基于第一发射增益,通过超宽带发送模块在目标信道上发送前导码信号,其中超宽带发送模块的带宽为500MHz-1GHz。具体地,超宽带设备通过发送数据帧进行通信,数据帧主要由三个部分组成,如图13所示,其中的前导码信号是由电气和电子工程师协会(IEEE,Institute of Electrical and Electronics Engineers)规定的已知序列,用来获取信道冲激响应。在通信过程中,收端会不断用已知的导码信号和当前接收的信号进行相关,以获取信道冲激响应CIR,并将信道冲激响应CIR累加到寄存器中。
当空间中存在其他信号,比如像5G信号时,这个信号将会和前导码信号一起被收端接收,并被相关、累加到寄存器中。此时从寄存器中读取的值,将是信道冲激响应CIR、5G信号的混合信号,其频谱如图14所示,方框描出的是目标信号(5G信号)。
因此,理论上可以通过某些方法从混合信号中还原出目标信号的频谱图。
步骤S20、基于正常模式,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号。
需要说明的是,考虑到低成本的超宽带设备由于电路噪声的原因,可能会在频谱上产生一些频率随机的异常峰值而引起设备误判。通过两个收端同时接收信号,即双端接收。最后的测量结果取两个收端测量结果的交集,以此增加结果的可靠性。在接收到混合信号后,根据模式控制信号的指令选择进入正常模式或者雷达模式。
在一些实施例中,基于正常模式,通过超宽带接收模块接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号。其中超宽带接收模块的带宽为500MHz-1GHz。具体地,在正常模式中通过拟合分离方法可以得到目标信号的频谱X(f)。
基于超宽带技术能够提供信道冲击响应(CIR),信道冲击响应(CIR)可以表示当前通信信道的状态,可以从中获取到当前环境信息,从而感知当前的环境,就像雷达一样。由于CIR可以表示当前通信信道的状态,而超宽带发送模块和超宽带接收模块的带宽均为500MHz-1GHz。
步骤S30、根据目标信号生成目标信道的频谱。
步骤S40、通过信道冲激响应拼接,将目标信道的频谱拼接得到高清频谱;
步骤S50、基于高清频谱,确认目标信道的占用状态。
进一步的,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号的步骤之前包括:
如图9,若接收到前导码信号的时间超过预设的时间阈值,则将第一发射增益切换为第二发送增益。
进一步的,基于第一发射增益在目标信道上发送前导码信号的步骤之后包括:
基于雷达模式,接收包含前导码信号的混合信号并将混合信号分离得到目标信号。
进一步的,基于雷达模式,接收包含前导码信号的混合信号并将混合信号分离得到目标信号的步骤包括:
需要说明的是,在雷达模式中,由于需要更高的频谱更新速度,选择直接从时域信道冲击响应(CIR)进行信号分离,并得到自动增益控制(AGC,Automatic Gain Control)的缩放比例。
步骤S201、基于雷达模式,获取第一采样长度阈值内带有前导码信号的信道冲激响应采样点。
需要说明的是,如图7所示,在收端感知64us内的频谱数据并获取到信道冲击响应(CIR)后,终端需要花费2ms的时间将信道冲击响应(CIR)的数据读取出来,在此过程中收端无法继续感知频谱,这可能会导致错失一些瞬时信号。为此设计了一种雷达模式,在雷达模式下,设备只读取150个信道冲激响应CIR采样点,而当设备探测到长时间存在的信号时,切换到正常模式,即读取所有的1016个CIR采样点。
具体地,在雷达模式下(在短波探测中),读取150个信道冲击响应(CIR)采样点。由于混合信号的直射径(First path)包含了大部分的信道冲激响应H(f)的能量,信道冲击响应(CIR)如图8所示,红色框为直射径,因此选择读取直射径前120个采样点,以及包含直射径在内的后30个采样点,一共150点,其范围如图8的方框所示。
计算X(f):对于150点的信道冲击响应(CIR),在对精度要求不高的情况下,直射径前120个点的FFT可近似等于:S(f)=k*X(f),包含直射径的30个采样点的FFT可近似等于:k*H(f)。求出后30个采样点的功率之和P,以及在雷达模式下(在短波探测中),系统自身的发送功率P’,如此可得:k=P/P’,于是可以得到X(f)=(1/k)*S(f),两个平行收端得到的X(f)取平均,得到最终的目标信号X(f)。
如果X(f)中有目标信道被占用,则判断与上一次感知获得的X(f)是否相似,若相似,则说明存在持续信号,切换正常模式;若不相似则继续短波探测。
低成本的超宽带设备由于电路噪声的原因,可能会在频谱上产生一些频率随机的异常峰值而引起设备误判。
步骤S202、将信道冲激响应采样点累加得到混合信号。
步骤S203、将混合信号分离得到目标信号。
步骤S204、同时,根据目标信号判断目标信道是否被占用。
步骤S205、若否,则保持雷达模式并接收混合信号。
步骤S206、若是,则切换到第二发射增益并判断当前测量结果和前一次的测量结果是否相同,若是,则切换到正常模式接收混合信号;若否,则保持雷达模式并接收混合信号。
需要说明的是,接收端需要识别到前导码信号后才可以访问寄存器,当外界信号功率太大时,前导码信号的信噪比将会低于接收端可以识别的极限,而导致无法获取CIR;当外界信号功率太小时,外界信号的信噪比则会比较低,导致终端无法从混合信号中分离出外界信号。
受限于硬件存储空间,低成本的超宽带设备只能存少量的信道冲击响应(CIR)采样点数,使用的超宽带设备只能存储1016个采样点,设备的采样频谱为1GHz,这意味设备只能提供1MHz的频谱分辨率。
为此,通过发送增益控制动态的调节发射信号的功率,设置两种发射增益第一发射增益(发送增益1:0dB),第二发送增益(发送增益2:30dB)。具体选用哪种增益发射信号,通过一种自适应功率调节的方法来确定。该方法包括:开启收发端;设置发射功率发送第一发射增益(发送增益1:0dB)或者发送第二发送增益(发送增益2:30dB),其中,默认为发送增益1,发送前导码信号;收端是否接收超时,如果是则设置第二发送增益(发送增益2:30dB)并重新发送,如果不是则处理接收到的信道冲击响应(CIR)数据;判断频谱是否被占用,如果是,则继续使用当前的增益设置发送前导信号进行下一次测量,如果不是,则设置第一发射增益(发送增益1:0dB)且进行下一次检测。
进一步的,基于正常模式,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号的步骤包括:
步骤S207、基于正常模式,获取第二采样长度阈值内带有前导码信号的信道冲激响应采样点。
步骤S208、将信道冲激响应采样点累加得到混合信号。
步骤S209、通过拟合分离方法将混合信号分离得到目标信号,同时根据目标信号判断目标信道是否被占用;
步骤S210、若否,则切换到雷达模式并接收混合信号;
步骤S211、若是,则保持当前正常模式接收混合信号。
进一步的,混合信号包括第一混合信号和第二混合信号,第一混合信号和第二混合信号分别由两个接收端同时接收得到,第一混合信号和第二混合信号均包括信道冲激响应和目标信号。
具体地,考虑到低成本的超宽带设备由于电路噪声的原因,可能会在频谱上产生一些频率随机 的异常峰值而引起设备误判。通过两个收端同时接收信号,即双端接收。最后的测量结果取两个收端测量结果的交集,以此增加结果的可靠性。在接收到混合信号后,系统会根据模式控制信号的指令选择进入正常模式或者雷达模式。
进一步的,通过拟合分离方法将混合信号分离得到目标信号,同时根据目标信号判断目标信道是否被占用的步骤包括:
步骤S2091、获取自身信道冲激响应,将自身信道冲激响应进行曲线拟合得到新的自身信道冲激响应。
需要说明的是,商用的超宽带设备内置了一个自动增益控制(自动增益控制(AGC,Automatic Gain Control)),当接收信号的功率较大时,自动增益控制(AGC,Automatic Gain Control)会自动线性调节接收信号的幅值,导致目标信号的幅值失真。需要找到信号自动增益控制(AGC,Automatic Gain Control)的实际缩放系数,还原出真实的信号能量。
由于有线的信道冲激响应比较稳定,可以将其视为H(f),并将目标信号视为X(f),图2表示的混合信号的频域表达式S(f)=H(f)+X(f)。但由于混合信号经过了自动增益控制(AGC,Automatic Gain Control)(自动增益控制)缩放,所以实际上得到的混合信号为S(f)=k*(H(f)+X(f))其中k是未知的自动增益控制(AGC,Automatic Gain Control)缩放系数。因此不能直接用已知的信道冲激响应求解,在求解前需要求出自动增益控制(AGC,Automatic Gain Control)的缩放系数,为此的设计如下:
在无外界信号的情况下测量系统自身的信道冲激响应H(f),对其进行曲线拟合,新的信道冲激响应如图2所示。
步骤S2092、将第一混合信号和第二混合信号分别进行曲线拟合,并根据信道冲激响应,得到新的第一混合信号和新的第二混合信号。
具体地,对混合信号S(f)(第一混合信号或第二混合信号)进行曲线拟合,确定信道冲激响应的大致位置,并根据信道冲激响应得到(新的混合信号)新的混合信号F(f)(新的第一混合信号F1(f)或新的第二混合信号F2(f))=k*H(f)+N(f),N(f)是拟合过后的噪声,如图3所示。
步骤S2093、通过约束方程求得自动增益控制缩放系数k,通过新的自身信道冲激响应H(f)和新的第一混合信号F1(f)计算得到第一目标信号X1(f),其中第一目标信号X1(f)=(1/a)*F1(f)-H(f);通过新的自身信道冲激响应H(f)和新的第二混合信号F2(f)计算得到第二目标信号X2(f),其中第二目标信号X2(f)=(1/a)*F2(f)-H(f)。
即当存在a使得(F(f)-a*H(f))^2对f求和(即F(f)和a*H(f)的距离(Distance))最小时,则认为a为自动增益控制(AGC,Automatic Gain Control)的缩放比例k,如图4所示,细线为F(f),粗线为a*H(f):
还原目标信号X(f)=(1/a)*F(f)-H(f)。最终求得X(f)如图5所示。
步骤S2094、将第一混合信号和第二混合信号求平均值,得到最终的目标信号。
步骤S2095、同时,根据目标信号Mean、最高值Max和总能量E,求得阈值K,若目标信号大于信号阈值,则确定目标信道被占用;若目标信号小于等于信号阈值,则确定目标信道未被占用,其中信号阈值K=2*Mean*(E/MAX)。
进一步的,约束方程为:
进一步的,通过信道冲激响应拼接,将目标信道的频谱拼接得到高清频谱,具体包括:
步骤S401、如图6所示,将相邻的目标信号依次接入缓存池,对缓存池内的目标信号进行逆傅里叶变换,得到周期函数。
具体地,由于此时目标信号X(f)的频谱分辨率只有1MHz,需要采用多个包拼接的方法提高频谱分辨率。为此构建了一个缓存池,新的周期函数x(t)将会接入到缓存池中,而缓存池里最早接入的周期函数x(t)将会被删除。
具体方法如下,使用4096个点的缓存池,能够存放四组依次更新的x(t),此时假设缓存池中已有数据。
对目标信号X(f)进行逆傅里叶变换,得到周期函数x(t)
步骤S402、对缓存池的数据x_cache(t)求均值得到数据平均值Mean_cache,对周期函数x(t)求 均值得到周期函数平均值Mean_x,对数据x_cache(t)进行缩放得到数据缩放值x_cache’(t),其中数据缩放值x_cache’(t)=(Mean_x/Mean_cache)*x_cache(t)。
具体地,数据缩放对齐:对缓存池里的数据求均值Mean_cache,对x(t)求均值Mean_x。假设缓存池里的数据为x_cache(t),对缓存池里的数据,进行缩放x_cache’(t)=(Mean_x/Mean_cache)*x_cache(t)。
步骤S403、将数据缩放值x_cache’(t)的后十个数设为数据集C,将数据缩放值x_cache’(t)的前十个数设为数据集X。
步骤S404、获取数据集C最大值Max_C、数据集X最大值Max_X、数据集C最大值位置Index_C和数据集X最大值位置Index_X,并删除数据集C最大值位置Index_C与数据集X最大值位置Index_X之间的数据;
步骤S405、将数据集C最大值位置Index_C和数据集X最大值位置Index_X合并构成一个拼接点,其中拼接点的值为(Max_C+Max_X)/2。
具体地,相位对齐:设数据集C为x_cache’(t)后十个数,数据集X为x(t)前十个数,找到数据集C,和数据集X的最大值Max_C和Max_X,以及最大值对应的位置:Index_C和Index_X。删除Index_C之后和Index_X之前的数据,将Index_C和Index_X合并起来构成一个拼接点,拼接点对应的值为(Max_C+Max_X)/2。
步骤S406、对缓存池的数据缩放值x_cache’(t)进行快速傅氏变换(FFT),得到高清频谱X_cache’(f);
在一些实施例中,对缓存池的数据缩放值x_cache’(t)进行4096点快速傅氏变换(FFT),得到分辨率为250KHz的高清频谱X_cache’(f)。
综上,本实施例提供了一种频谱感知方法及装置,其中,包括基于第一发射增益在目标信道上发送前导码信号;基于正常模式,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号;根据目标信号生成目标信道的频谱;通过信道冲激响应拼接,将频谱拼接得到高清频谱;基于高清频谱,确认目标信道的占用状态。本申请通过超宽带技术,从超宽带发送模块提供的信道冲激响应CIR中,获取极高带宽(带宽为500MHz-1GHz)内的频谱信息,以此判断目标信道的占用状态,解决了传统低成本频谱感知方法及设备不能进行大带宽频谱感知的技术问题。解决了传统低成本频谱感知设备只能进行窄带的频谱感知,容易造成一些处于检测带宽外的瞬时信号被遗漏的技术问题。
为了更好地实施以上方法,本申请实施例还提供一频谱感知装置100,该装置具体可以集成在电子设备中,该电子设备可以为终端、服务器、个人电脑等设备。比如,在本实施例中,该装置可以包括:发射模块101、接收模块102、生成模块103、拼接模块104和判断模块105,具体如下(如图10):
(1)发射模块,用于基于第一发射增益在目标信道上发送前导码信号;
(2)接收模块,用于基于正常模式,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号;
(3)生成模块,用于根据目标信号生成目标信道的频谱;
(4)拼接模块,用于通过信道冲激响应拼接,将目标信道的频谱拼接得到高清频谱;
(5)判断模块,用于基于高清频谱,确认目标信道的占用状态。
在一些实施例中,一频谱感知装置100包括发射模块101、接收模块102、生成模块103、拼接模块104和判断模块105,发射模块基于第一发射增益在目标信道上发送前导码信号;接收模块基于正常模式,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号;生成模块根据目标信号生成目标信道的频谱;拼接模块,用于通过信道冲激响应拼接,将目标信道的频谱拼接得到高清频谱;判断模块基于高清频谱,确认目标信道的占用状态。
在一些实施例中,硬件设计如图12所示,包括能够收发超宽信号的超宽带收发机构成系统的超宽带发送模块和超宽带接收模块。外界的信号通过天线进入系统,并通过合路器与超宽带发送模块发出的前导信号相叠加,叠加后的混合信号通过功分器同时流向由两个超宽带收发机构成超宽带接收模块中,两个收将接收到的信号和已知的前导码信号相关累加,并将累加后的结果传递给控制器。控制器可以通过有线或无线的方式将数据传递给收端,进行数据处理并显示结果。终端进行数据处理等操作,从而得到目标信号的频谱。在这里设置有两个平行工作收端,最后的测量结果取两个收端测量结果的交集,以此增加结果的可靠性。
具体实施时,以上各个单元可以作为独立的实体来实现,也可以进行任意组合,作为同一或若 干个实体来实现,以上各个单元的具体实施可参见前面的方法实施例,在此不再赘述。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于计算机可读存储介质中,并由处理器进行加载和执行。
基于上述频谱感知方法,本实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如上述实施例的频谱感知方法中的步骤。具体步骤如下:
基于第一发射增益在目标信道上发送前导码信号;
基于正常模式,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号;
根据目标信号生成目标信道的频谱;
通过信道冲激响应拼接,将目标信道的频谱拼接得到高清频谱;
基于高清频谱,确认目标信道的占用状态。
在一些实施例中,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号的步骤之前包括:
若接收到前导码信号的时间超过预设的时间阈值,则将第一发射增益切换为第二发送增益。
在一些实施例中,基于第一发射增益在目标信道上发送前导码信号的步骤之后包括:
基于雷达模式,接收包含前导码信号的混合信号并将混合信号分离得到目标信号。
在一些实施例中,基于雷达模式,接收包含前导码信号的混合信号并将混合信号分离得到目标信号的步骤包括:
基于雷达模式,获取第一采样长度阈值内带有前导码信号的信道冲激响应采样点;
将信道冲激响应采样点累加得到混合信号;
将混合信号分离得到目标信号;
同时,根据目标信号判断目标信道是否被占用;
若否,则保持雷达模式并接收混合信号;
若是,则切换到第二发射增益并判断当前测量结果和前一次的测量结果是否相同,若是,则切换到正常模式接收混合信号;若否,则保持雷达模式并接收混合信号。
在一些实施例中,基于正常模式,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号的步骤包括:
基于正常模式,获取第二采样长度阈值内带有前导码信号的信道冲激响应采样点;
将信道冲激响应采样点累加得到混合信号;
通过拟合分离方法将混合信号分离得到目标信号,同时根据目标信号判断目标信道是否被占用;
若否,则切换到雷达模式并接收混合信号;
若是,则保持当前正常模式接收混合信号。
在一些实施例中,混合信号包括第一混合信号和第二混合信号,第一混合信号和第二混合信号分别由两个接收端同时接收得到,第一混合信号和第二混合信号均包括信道冲激响应和目标信号。
在一些实施例中,通过拟合分离方法将混合信号分离得到目标信号,同时根据目标信号判断目标信道是否被占用的步骤包括:
获取自身信道冲激响应,将自身信道冲激响应进行曲线拟合得到新的自身信道冲激响应;
将第一混合信号和第二混合信号分别进行曲线拟合,并根据信道冲激响应,得到新的第一混合信号和新的第二混合信号;
通过约束方程求得自动增益控制缩放系数k,通过新的自身信道冲激响应H(f)和新的第一混合信号F1(f)计算得到第一目标信号X1(f),其中第一目标信号X1(f)=(1/a)*F1(f)-H(f);通过新的自身信道冲激响应H(f)和新的第二混合信号F2(f)计算得到第二目标信号X2(f),其中第二目标信号X2(f)=(1/a)*F2(f)-H(f);
将第一混合信号和第二混合信号求平均值,得到最终的目标信号;
同时,根据目标信号Mean、最高值Max和总能量E,求得阈值K,若目标信号大于信号阈值,则确定目标信道被占用;若目标信号小于等于信号阈值,则确定目标信道未被占用,其中信号阈值K=2*Mean*(E/MAX)。
在一些实施例中,约束方程为:
在一些实施例中,通过信道冲激响应拼接,将目标信道的频谱拼接得到高清频谱,具体包括:
将相邻的目标信号依次接入缓存池,对缓存池内的目标信号进行逆傅里叶变换,得到周期函数;
对缓存池的数据x_cache(t)求均值得到数据平均值Mean_cache,对周期函数x(t)求均值得到周期函数平均值Mean_x,对数据x_cache(t)进行缩放得到数据缩放值x_cache’(t),其中数据缩放值x_cache’(t)=(Mean_x/Mean_cache)*x_cache(t);
将数据缩放值x_cache’(t)的后十个数设为数据集C,将数据缩放值x_cache’(t)的前十个数设为数据集X;
获取数据集C最大值Max_C、数据集X最大值Max_X、数据集C最大值位置Index_C和数据集X最大值位置Index_X,并删除数据集C最大值位置Index_C与数据集X最大值位置Index_X之间的数据;
将数据集C最大值位置Index_C和数据集X最大值位置Index_X合并构成一个拼接点,其中拼接点的值为(Max_C+Max_X)/2;
对缓存池的数据缩放值x_cache’(t)进行快速傅氏变换(FFT),得到高清频谱X_cache’(f)。
基于上述频谱感知方法,本申请还提供了一种终端设备,如图11所示,其包括至少一个处理器(processor)20;显示屏21;以及存储器(memory)22,还可以包括通信接口(Communications Interface)23和总线24。其中,处理器20、显示屏21、存储器22和通信接口23可以通过总线24完成相互间的通信。显示屏21设置为显示初始设置模式中预设的用户引导界面。通信接口23可以传输信息。处理器20可以调用存储器22中的逻辑指令,以执行上述实施例中的方法。
此外,上述的存储器22中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器22作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令或模块。处理器20通过运行存储在存储器22中的软件程序、指令或模块,从而执行功能应用以及数据处理,即实现上述实施例中的方法。
存储器22可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器。例如,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
此外,上述存储介质以及移动终端中的多条指令处理器加载并执行的具体过程在上述方法中已经详细说明,在这里就不再一一陈述。
综上,与相关技术相比,本申请具有以下有益效果:一种频谱感知方法及装置,其中,包括基于第一发射增益在目标信道上发送前导码信号;基于正常模式,接收包含前导码信号的混合信号并通过拟合分离方法将混合信号分离得到目标信号;根据目标信号生成目标信道的频谱;通过信道冲激响应拼接,将频谱拼接得到高清频谱;基于高清频谱,确认目标信道的占用状态。本申请通过超宽带技术,从超宽带发送模块提供的信道冲激响应CIR中,获取极高带宽(带宽为500MHz-1GHz)内的频谱信息,以此判断目标信道的占用状态,解决了传统低成本频谱感知方法及设备不能进行大带宽频谱感知的技术问题。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (12)

  1. 一种频谱感知方法,其中,所述方法包括:
    基于第一发射增益在目标信道上发送前导码信号;
    基于正常模式,接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号;
    根据所述目标信号生成所述目标信道的频谱;
    通过信道冲激响应拼接,将所述目标信道的频谱拼接得到高清频谱;
    基于所述高清频谱,确认所述目标信道的占用状态。
  2. 根据权利要求1所述的频谱感知方法,其中,所述接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号的步骤之前包括:
    若接收到所述前导码信号的时间超过预设的时间阈值,则将所述第一发射增益切换为第二发送增益。
  3. 根据权利要求2所述的频谱感知方法,其中,所述基于第一发射增益在目标信道上发送前导码信号的步骤之后包括:
    基于雷达模式,接收包含所述前导码信号的混合信号并将所述混合信号分离得到所述目标信号。
  4. 根据权利要求3所述的频谱感知方法,其中,所述基于雷达模式,接收包含所述前导码信号的混合信号并将所述混合信号分离得到所述目标信号的步骤包括:
    基于所述雷达模式,获取第一采样长度阈值内带有所述前导码信号的信道冲激响应采样点;
    将所述信道冲激响应采样点累加得到所述混合信号;
    将所述混合信号分离得到所述目标信号;
    同时,根据所述目标信号判断所述目标信道是否被占用;
    若否,则保持所述雷达模式并接收所述混合信号;
    若是,则切换到所述第二发射增益并判断当前测量结果和前一次的测量结果是否相同,若是,则切换到所述正常模式接收所述混合信号;若否,则保持所述雷达模式并接收所述混合信号。
  5. 根据权利要求1所述的频谱感知方法,其中,所述基于正常模式,接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号的步骤包括:
    基于所述正常模式,获取第二采样长度阈值内带有所述前导码信号的信道冲激响应采样点;
    将所述信道冲激响应采样点累加得到所述混合信号;
    通过所述拟合分离方法将所述混合信号分离得到所述目标信号,同时根据所述目标信号判断所述目标信道是否被占用;
    若否,则切换到所述雷达模式并接收所述混合信号;
    若是,则保持当前所述正常模式接收所述混合信号。
  6. 根据权利要求5所述的频谱感知方法,其中,所述混合信号包括第一混合信号和第二混合信号,所述第一混合信号和所述第二混合信号分别由两个接收端同时接收得到,所述第一混合信号和所述第二混合信号均包括信道冲激响应和目标信号。
  7. 根据权利要求6所述的频谱感知方法,其中,所述通过所述拟合分离方法将所述混合信号分离得到所述目标信号,同时根据所述目标信号判断所述目标信道是否被占用的步骤包括:
    获取自身信道冲激响应,将所述自身信道冲激响应进行曲线拟合得到新的自身信道冲激响应;
    将所述第一混合信号和所述第二混合信号分别进行曲线拟合,并根据所述信道冲激响应,得到新的第一混合信号和新的第二混合信号;
    通过约束方程求得自动增益控制缩放系数k,通过所述新的自身信道冲激响应H(f)和所述新的第一混合信号F1(f)计算得到第一目标信号X1(f),其中所述第一目标信号X1(f)=(1/a)*F1(f)-H(f);通过所述新的自身信道冲激响应H(f)和所述新的第二混合信号F2(f)计算得到第二目标信号X2(f),其中所述第二目标信号X2(f)=(1/a)*F2(f)-H(f);
    将所述第一混合信号和所述第二混合信号求平均值,得到最终的所述目标信号;
    同时,根据所述目标信号Mean、最高值Max和总能量E,求得阈值K,若所述目标信号大于所述信号阈值,则确定所述目标信道被占用;若所述目标信号小于等于所述信号阈值,则确定所述目标信道未被占用,其中所述信号阈值K=2*Mean*(E/MAX)。
  8. 根据权利要求7所述的频谱感知方法,其中,所述约束方程为:
  9. 根据权利要求1所述的频谱感知方法,其中,所述通过信道冲激响应拼接,将所述目标信道的频谱拼接得到高清频谱,具体包括:
    将相邻的所述目标信号依次接入缓存池,对所述缓存池内的所述目标信号进行逆傅里叶变换,得到周期函数;
    对所述缓存池的数据x_cache(t)求均值得到数据平均值Mean_cache,对所述周期函数x(t)求均值得到周期函数平均值Mean_x,对所述数据x_cache(t)进行缩放得到数据缩放值x_cache’(t),其中所述数据缩放值x_cache’(t)=(Mean_x/Mean_cache)*x_cache(t);
    将所述数据缩放值x_cache’(t)的后十个数设为数据集C,将所述数据缩放值x_cache’(t)的前十个数设为数据集X;
    获取数据集C最大值Max_C、数据集X最大值Max_X、数据集C最大值位置Index_C和数据集X最大值位置Index_X,并删除所述数据集C最大值位置Index_C与所述数据集X最大值位置Index_X之间的数据;
    将所述数据集C最大值位置Index_C和所述数据集X最大值位置Index_X合并构成一个拼接点,其中所述拼接点的值为(Max_C+Max_X)/2;
    对所述缓存池的所述数据缩放值x_cache’(t)进行快速傅氏变换(FFT),得到所述高清频谱X_cache’(f)。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1-9任意一项所述的频谱感知方法中的步骤。
  11. 一种频谱感知装置,其中,包括:
    发射模块,用于基于第一发射增益在目标信道上发送前导码信号;
    接收模块,用于基于正常模式,接收包含所述前导码信号的混合信号并通过拟合分离方法将所述混合信号分离得到目标信号;
    生成模块,用于根据所述目标信号生成所述目标信道的频谱;
    拼接模块,用于通过信道冲激响应拼接,将所述目标信道的频谱拼接得到高清频谱;
    判断模块,用于基于所述高清频谱,确认所述目标信道的占用状态。
  12. 一种终端设备,其中,包括:处理器、存储器及通信总线;所述存储器上存储有可被所述处理器执行的计算机可读程序;
    所述通信总线实现处理器和存储器之间的连接通信;
    所述处理器执行所述计算机可读程序时实现如权利要求1-9任意一项所述的频谱感知方法中的步骤。
PCT/CN2023/119173 2022-09-15 2023-09-15 频谱感知方法及装置 WO2024056083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211121400.9A CN115632727B (zh) 2022-09-15 2022-09-15 一种频谱感知方法及装置
CN202211121400.9 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024056083A1 true WO2024056083A1 (zh) 2024-03-21

Family

ID=84902245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119173 WO2024056083A1 (zh) 2022-09-15 2023-09-15 频谱感知方法及装置

Country Status (2)

Country Link
CN (1) CN115632727B (zh)
WO (1) WO2024056083A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115632727B (zh) * 2022-09-15 2024-06-21 鹏城实验室 一种频谱感知方法及装置
CN118612656A (zh) * 2023-03-06 2024-09-06 华为技术有限公司 一种感知方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222226A1 (en) * 2005-10-25 2009-09-03 Baraniuk Richard G Method and Apparatus for On-Line Compressed Sensing
CN103368889A (zh) * 2012-03-29 2013-10-23 上海贝尔股份有限公司 滤波器组多载波信号发射及信道估计的方法和装置
CN109743270A (zh) * 2019-03-25 2019-05-10 重庆邮电大学 一种基于5g的多用户复用的信道估计方法
CN113193895A (zh) * 2021-04-19 2021-07-30 中国人民解放军陆军工程大学 大规模mimo信道状态信息获取方法、系统及计算机存储介质
CN114221706A (zh) * 2021-12-02 2022-03-22 苏州大学 多光源无线光通信频谱感知系统及方法
CN115632727A (zh) * 2022-09-15 2023-01-20 鹏城实验室 一种频谱感知方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008100188A1 (en) * 2007-02-15 2008-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Channel measurements on combined pilot signala in multi- carrier systems
CN109412718B (zh) * 2018-12-24 2021-07-09 电子科技大学 宽带频谱信号检测方法
CN111562581B (zh) * 2020-04-26 2021-09-07 南京慧尔视防务科技有限公司 交通雷达及其目标检测方法、装置、电子设备及存储介质
CN112350790B (zh) * 2020-09-25 2021-12-28 深圳大学 一种基于深度学习的频谱感知检测方法、装置及设备
CN112583658B (zh) * 2020-11-20 2022-12-23 鹏城实验室 一种可用带宽测量方法、存储介质及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222226A1 (en) * 2005-10-25 2009-09-03 Baraniuk Richard G Method and Apparatus for On-Line Compressed Sensing
CN103368889A (zh) * 2012-03-29 2013-10-23 上海贝尔股份有限公司 滤波器组多载波信号发射及信道估计的方法和装置
CN109743270A (zh) * 2019-03-25 2019-05-10 重庆邮电大学 一种基于5g的多用户复用的信道估计方法
CN113193895A (zh) * 2021-04-19 2021-07-30 中国人民解放军陆军工程大学 大规模mimo信道状态信息获取方法、系统及计算机存储介质
CN114221706A (zh) * 2021-12-02 2022-03-22 苏州大学 多光源无线光通信频谱感知系统及方法
CN115632727A (zh) * 2022-09-15 2023-01-20 鹏城实验室 一种频谱感知方法及装置

Also Published As

Publication number Publication date
CN115632727A (zh) 2023-01-20
CN115632727B (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
WO2024056083A1 (zh) 频谱感知方法及装置
WO2022028292A1 (zh) 波束训练方法、装置、终端设备及网络设备
CN108055687B (zh) 无线网络连接方法、装置及终端设备
KR20150139617A (ko) 멀티채널들을 이용하는 rts/cts 시스템을 위한 송신 및 복원 모드들에 대한 장치 및 방법
US9590661B2 (en) Systems and methods for improving WLAN range
KR20200137858A (ko) 데이터의 프레임 길이에 기반하여 uwb 전송 신호의 피크 전압을 조절하는 전자 장치 및 전자 장치의 동작 방법
CN115208469A (zh) 一种基于大气信道互易性的光功率稳定接收方法与装置
CN209787173U (zh) 一种射频电路及终端
US20220141070A1 (en) Parameter processing method and device
US11106318B2 (en) Method and system for transmitting signal, active stylus, touch screen and readable storage medium
CN111490833A (zh) 天线的发射信号的调整方法、装置、系统及介质
CN108337718B (zh) 无线网络扫描方法、装置、终端设备及存储介质
CN111224723B (zh) 射频前端模块的校准方法、系统、电子设备及存储介质
CN116846487A (zh) 非信令模式测试方法及装置、系统、终端和存储介质
WO2019096198A1 (zh) 通信方法及装置
CN108934056B (zh) 电子设备的控制方法及系统
CN207460520U (zh) 一种阻塞性能的检测系统
CN116614155B (zh) 蓝牙通讯的抗干扰方法、装置、设备和可读存储介质
CN118409294B (zh) 基于步进频率雷达的目标检测方法、装置、存储介质及电子设备
CN114337704B (zh) 流星余迹通信装置及通信方法
WO2022067488A1 (zh) 信道选择方法、电子设备及存储介质
WO2022204874A1 (zh) 功耗控制方法及无线局域网通信装置
CN215300623U (zh) 无线传输电路及射频设备
WO2023202546A1 (zh) 基于超带宽的感知测量结果反馈方法及装置
CN111818625B (zh) 功耗控制方法、装置、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864811

Country of ref document: EP

Kind code of ref document: A1