WO2019100776A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2019100776A1
WO2019100776A1 PCT/CN2018/101355 CN2018101355W WO2019100776A1 WO 2019100776 A1 WO2019100776 A1 WO 2019100776A1 CN 2018101355 W CN2018101355 W CN 2018101355W WO 2019100776 A1 WO2019100776 A1 WO 2019100776A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam quality
reference signal
differential
step size
quality information
Prior art date
Application number
PCT/CN2018/101355
Other languages
English (en)
French (fr)
Inventor
蒋鹏
施弘哲
管鹏
刘建琴
秦熠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019100776A1 publication Critical patent/WO2019100776A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • NR new radio
  • the beam quality reported by the terminal device at one time is at most 2 or 4.
  • the beam quality is reported in a differential manner, that is, the beam quality of the best quality is directly reported and used as a reference value, and the difference between the remaining beam quality and the reference beam quality is reported. Is an integer multiple of the step size.
  • the range of the beam quality of the reference beam is fixed.
  • the quantization step size is also a fixed value on the premise that the number of reported bits is determined.
  • the beam quality of the differential beam is relative to the beam quality of the reference beam. In different application scenarios, the actual relative quantization range is different. In the case where the current protocol has already agreed on the number of bits reported by the beam quality of the differential beam. If a fixed step size is used, it is difficult to adapt to various scenes and better quantization accuracy is not obtained.
  • the present application provides a communication method and apparatus to accurately report beam quality.
  • a first aspect of the present application provides a communication method, including: receiving a reference signal sent by a network device; performing measurement on the reference signal to obtain at least two beam qualities; and transmitting reference beam quality information and differential beam quality information Giving the network device; wherein the step size of the differential beam quality corresponds to a frequency range and/or a type of the reference signal.
  • the step size used corresponds to the carrier frequency and/or the type of the reference signal, so that the beam quality to be differentially reported can be reasonably quantized, so that the terminal device can accurately report the beam quality.
  • a second aspect of the present application provides a communication method, including: transmitting a reference signal to a terminal device; and receiving
  • the reference beam quality information and the differential beam quality information sent by the terminal device wherein the step size of the differential beam quality corresponds to a frequency range and/or a type of the reference signal.
  • the step size adopted by the terminal device corresponds to the carrier frequency and/or the type of the reference signal, so that the beam quality to be differentially reported can be reasonably quantized, so that the network device can obtain accurate beam quality.
  • each frequency range corresponds to at least one step size.
  • the type of each reference signal corresponds to at least one step size; wherein, the type of the reference signal includes a synchronization signal block and a channel state information reference. signal.
  • a third aspect of the present application provides a communication method, including: receiving a first step length sent by a network device; and quantifying a beam quality to be differentially reported according to the first step length or a second step pre-stored And transmitting the quantized differential beam quality information to the network device.
  • the terminal device selects one of the step sizes to quantize the beam quality to be differentially reported, so that the beam quality to be differentially reported can be reasonably quantized, so that the terminal device can Achieve accurate reporting of beam quality.
  • the method further includes: when receiving the first step sent by the network device, the second step pair according to the first step length or pre-storage The beam quality to be differentially reported is quantized, and the beam quality of the differentially reported difference is quantized according to the first step length.
  • the terminal device acquires a new step size of the network device configuration, the beam quality that needs to be differentially reported is quantized by default according to the new step size.
  • the method further includes: sending the selection information of the step size to the network device, where the selection information is used to represent that when the beam quality to be differentially reported is quantized, The first step is long or the second step is selected.
  • the terminal device may select a pre-stored step size or a configured new step size to quantize the beam quality to be differentially reported, and step The long selection information informs the network device, adding flexibility to supplement the selection.
  • a fourth aspect of the present application provides a communication method, including: transmitting a first step to a terminal device; transmitting a reference signal to the terminal device; and receiving differential beam quality information sent by the terminal device, where The differential beam quality information is obtained by the terminal device quantizing the beam quality that needs to be differentially reported according to the first step length or the second step pre-stored.
  • the terminal device selects one of the step sizes to quantize the beam quality to be differentially reported, so that the beam quality to be differentially reported can be reasonably quantized, so that the network device can Get accurate beam quality.
  • the method further includes: receiving selection information of a step size sent by the terminal device.
  • the selection information of the step is located in the differential beam quality information or in other uplink control information.
  • the selection information of the step size may be included in the differential beam quality information, or the selection information of the step of the network device may be notified by the additional uplink control information.
  • a fifth aspect of the present application provides a communication method, including: receiving a first reference signal and a second reference signal sent by a network device; and separately measuring the first reference signal and the second reference signal to obtain a first beam quality and a second beam quality; and transmitting the first differential beam quality information and the second differential beam quality information to the network device, wherein the first differential beam quality information is according to the first reference signal
  • the step size is obtained by quantizing the first beam quality that needs to be differentially reported
  • the second differential beam quality information is obtained by quantizing the second beam quality that needs to be differentially reported according to the step size of the first reference signal.
  • the terminal device when receiving the two reference signals sent by the network device, can quantize the two differential beam qualities according to the step size corresponding to one of the reference signals, which simplifies the reporting process of the beam quality.
  • the method further includes: performing, according to the power offset value, the power offset of the second beam quality that needs to be differentially reported according to the first beam quality;
  • the second differential beam quality information is obtained by quantizing the second beam quality after the power offset that needs to be differentially reported according to the step size of the first reference signal.
  • the measured beam quality on different types of reference signals may be different. If the step size of the first reference signal is used to quantize the beam quality of the second reference signal that needs to be differentially reported, the difference may not be guaranteed.
  • the reported beam quality can be differentially quantized.
  • the second beam quality that needs to be differentially reported may be power-shifted by using the power offset value of the transmit power of the second reference signal relative to the transmit power of the first reference signal, and then according to the first reference.
  • the step size of the signal quantifies the second beam quality after the differentially reported power offset.
  • the method further includes: performing differential quantization on the second reference beam quality value according to the first reference beam quality value and the step size of the first reference signal, to obtain a third differential beam. Quality information; transmitting the third differential beam quality information to the network device.
  • the second reference beam quality is differentiated by using the first reference beam quality as a reference to obtain the third differential beam quality information, which can further save the overhead of reporting the beam quality.
  • a sixth aspect of the present application provides a communication method, including: transmitting a first reference signal and a second reference signal to a terminal device; and receiving first differential beam quality information and a second differential beam quality sent by the terminal device Information, wherein the first differential beam quality information is obtained by quantizing a first beam quality that needs to be differentially reported according to a step size of the first reference signal, where the second differential beam quality information is according to the The step size of the first reference signal is obtained by quantizing the second beam quality that needs to be differentially reported.
  • the receiving terminal device quantizes the two differential beam qualities obtained according to the step size corresponding to one of the reference signals, which simplifies the beam quality acquisition process and obtains accurate beam quality.
  • the method further includes: obtaining, according to the step size of the first reference signal and the second differential beam quality information, a third beam quality; and performing, according to the power offset value, the The third beam quality is power compensated to obtain the second beam quality.
  • the method further includes: receiving third differential beam quality information sent by the terminal device, where the third differential beam quality information is a reference value of the second beam quality relative to The differential quantization information of the reference value of the first beam quality; and obtaining the second reference beam quality value according to the third differential beam quality information and the first reference beam quality value.
  • a communication device which can implement the above communication method.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a device (such as a terminal device or the like).
  • the above method can be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the necessary programs (instructions) and/or data for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a receiving unit, a processing unit, and a sending unit.
  • the receiving unit, the processing unit and the transmitting unit are respectively used to implement the receiving, processing and transmitting functions in the above method.
  • the receiving unit is configured to receive a reference signal sent by the network device
  • the processing unit is configured to measure the reference signal to obtain at least two beam qualities
  • the sending unit is configured to send a reference beam Quality information and differential beam quality information are provided to the network device; wherein the step size of the differential beam quality corresponds to a frequency range and/or a type of the reference signal.
  • the receiving unit is configured to receive a first step sent by the network device, where the processing unit is configured to perform, according to the first step length or the second step pre-stored, the beam quality to be differentially reported. Quantizing; and the sending unit, configured to send the quantized differential beam quality information to the network device.
  • the receiving unit is configured to receive a first reference signal and a second reference signal that are sent by the network device, where the processing unit is configured to separately measure the first reference signal and the second reference signal, Obtaining a first beam quality and a second beam quality; and the sending unit is configured to send first differential beam quality information and second differential beam quality information to the network device, where the first differential beam quality information is Obtaining, according to the step size of the first reference signal, the first beam quality that needs to be differentially reported, the second differential beam quality information is a step of reporting the differential difference according to the step size of the first reference signal The two beam qualities are quantized.
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • a communication device which can implement the above communication method.
  • the communication device may be a chip (such as a baseband chip, or a communication chip, etc.) or a device (such as a network device, a baseband single board, etc.).
  • the above method can be implemented by software, hardware, or by executing corresponding software by hardware.
  • the structure of the communication device includes a processor and a memory; the processor is configured to support the device to perform a corresponding function in the foregoing communication method.
  • the memory is for coupling with a processor that holds the programs (instructions) and data necessary for the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements.
  • the communication device may include a sending unit and a receiving unit.
  • the receiving unit and the transmitting unit are respectively configured to implement the receiving and transmitting functions in the above method.
  • the sending unit is configured to send a reference signal to the terminal device
  • the receiving unit is configured to receive reference beam quality information and differential beam quality information sent by the terminal device, where the step size of the differential beam quality is The frequency range and/or the type of the reference signal corresponds.
  • the sending unit is configured to send a first step to the terminal device; the sending unit is further configured to send a reference signal to the terminal device; and the receiving unit is configured to receive the sending by the terminal device
  • the differential beam quality information is obtained by the terminal device quantizing the beam quality to be differentially reported according to the first step length or the second step pre-stored.
  • the sending unit is configured to send the first reference signal and the second reference signal to the terminal device
  • the receiving unit is configured to receive the first differential beam quality information and the second differential beam that are sent by the terminal device Quality information, wherein the first differential beam quality information is obtained by quantizing a first beam quality that needs to be differentially reported according to a step size of the first reference signal, where the second differential beam quality information is The step size of the first reference signal is obtained by quantizing the second beam quality that needs to be differentially reported.
  • the receiving unit may be an input unit such as an input circuit or a communication interface; the transmitting unit may be an output unit such as an output circuit or a communication interface.
  • the receiving unit may be a receiver (which may also be referred to as a receiver); the transmitting unit may be a transmitter (which may also be referred to as a transmitter).
  • a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in the above aspects.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of interaction of a communication method according to an embodiment of the present application.
  • 3a is a schematic diagram of a state of reference beam quality information
  • Figure 3b is a schematic diagram showing the state of differential beam quality information
  • Figure 4a is a schematic diagram showing the relationship between the step size and the frequency range
  • Figure 4b is a schematic diagram showing the relationship between the step size and the type of the reference signal
  • 4c is a schematic diagram showing the relationship between the step size and the carrier frequency according to the SS/PBCH block configuration
  • 4d is a schematic diagram showing the relationship between the step size and the carrier frequency according to the CSI-RS configuration
  • FIG. 5 is a schematic diagram of interaction of another communication method according to an embodiment of the present disclosure.
  • 6a to 6c are schematic diagrams showing the selection of the step size
  • FIG. 7 is a schematic diagram of interaction of still another communication method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware architecture of a simplified terminal device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a hardware architecture of a simplified network device according to an embodiment of the present application.
  • Figure 1 shows a schematic diagram of a communication system.
  • the communication system may include at least one network device 100 (only one shown) and one or more terminal devices 200 connected to the network device 100.
  • Network device 100 can be a device that can communicate with terminal device 200.
  • the network device 100 may be any device having a wireless transceiving function. Including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a base station in a fifth generation (5G) communication system, a base station or network device in a future communication system, an access node in a WiFi system , wireless relay node, wireless backhaul node, etc.
  • the network device 100 may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • CRAN cloud radio access network
  • the network device 100 may also be a network device in a 5G network or a network device in a future evolved network; it may also be a wearable device or an in-vehicle device or the like.
  • the network device 100 may also be a small station, a transmission reference point (TRP) or the like. Of course, no application is not limited to this.
  • the terminal device 200 is a device with wireless transceiving function that can be deployed on land, including indoor or outdoor, handheld, wearable or on-board; it can also be deployed on the water surface (such as a ship, etc.); it can also be deployed in the air (for example, an airplane, Balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and industrial control ( Wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, transportation safety A wireless terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • a terminal device may also be referred to as a user equipment (UE), an access terminal device, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a UE terminal device, a terminal device, Terminal, wireless communication device, UE proxy or UE device, etc.
  • UE user equipment
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • FIG. 2 is a schematic diagram of an interaction process of a communication method according to an embodiment of the present disclosure, where the method may include the following steps:
  • the network device sends a reference signal to the terminal device.
  • the terminal device receives a reference signal sent by the network device.
  • the terminal device measures the reference signal to obtain at least two beam qualities.
  • the terminal device sends reference beam quality information and differential beam quality information to the network device, where a step size of the differential beam quality corresponds to a carrier frequency and/or a type of the reference signal.
  • the network device receives reference beam quality information and differential beam quality information sent by the terminal device.
  • the network device transmits the reference signal to the terminal device through one or more transmit beams.
  • the terminal device receives the reference signal through one or more receive beams.
  • the terminal device measures the received reference signal to obtain multiple beam qualities. Then, the terminal device reports the beam quality to the network device.
  • the terminal device may report all the measured beam qualities to the network device. For example, if the terminal device measures three beam qualities, the terminal device reports the three beam qualities to the network device.
  • the terminal device may report the beam quality of the measured beam quality that is greater than the threshold to the network device. For example, the terminal device measures three beam qualities, where the two beam qualities are greater than the threshold. Then, the terminal device reports the two beam qualities to the network device.
  • the beam quality may be measured by any one of the following parameters: reference signal receiving power (RSRP), reference signal receiving quality (RSRQ), and signal to interference plus noise ratio (signal to interference plus noise ratio, SINR). If not described below, the beam quality is described by taking RSRP as an example.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • the beam quality reported by the terminal device at one time is at most 2 or 4.
  • the beam quality is reported in a differential manner, that is, the beam quality of the best quality is directly reported and used as a reference value, and the difference between the remaining beam quality and the reference beam quality is reported.
  • the RSRP ranges from -140 dBm to -44 dBm, and is reported by using 7-bit reference beam quality information, and the reference beam quality has a step size of 1 dBm.
  • the state diagram of the differential beam quality information shown in FIG. 3b is reported by using 4-bit differential beam quality information.
  • the reference beam The quality value is -85dBm, and assuming that the step size of the differential beam quality is 2dBm, the terminal device needs to send "0001" and "0010" to the network device, and the network device parses the reference beam quality value corresponding to "0001" and "0001".
  • the beam quality corresponding to "0010" is calculated to be -89dBm.
  • the scheme of the present application is used to determine the step size of the differential beam quality information.
  • the network device when the network device is configured to be dominated by a direct path, the number of beams in the low frequency range is small, the angle difference of the beam pointing angle is large, and multiple beams measured by the same terminal device are used.
  • the range of beam quality deviation between the two is large; the number of beams in the high frequency range is large, the angle difference of the beam pointing angle is small, and the range of beam quality deviation between the multiple beams measured by the same terminal device is small.
  • the network device when the network device is configured to be mainly in the reflection path, the situation is reversed.
  • the beam in the low frequency range has a small reflection loss, and the beam quality deviation range between the reflected beams measured by the same terminal device is small.
  • the step size of the differential beam quality corresponds to the frequency range.
  • each frequency range corresponds to at least one step size
  • different frequency ranges correspond to different step sizes.
  • a schematic diagram of the relationship between the step size and the frequency range as shown in FIG. 4a, in this example, is divided into N frequency ranges, each of which corresponds to one step.
  • the reference signal may be a synchronization signal block (SS/PBCH block) or a channel state information-reference signal (CSI-RS), which is measured on different types of reference signals.
  • the beam quality may vary. If the terminal device adopts a fixed step size for different reference signals, there is no guarantee that the beam quality to be differentially reported can be reasonably differentially quantized.
  • the differential beam quality corresponds to the type of the reference signal. Specifically, the type of each reference signal corresponds to at least one step size. A schematic diagram of the relationship between the step size and the type of the reference signal as shown in FIG. 4b. In this example, the CSI-RS and the SS/PBCH block respectively correspond to one step.
  • the terminal device determines the type of the received reference signal, thereby determining a step size corresponding to the type of the reference signal.
  • the step size corresponds to the frequency range and the type of reference signal.
  • the relationship between the step size and the carrier frequency according to the SS/PBCH block configuration is as follows: when the reference signal type is SS/PBCH block, the frequency range is divided into three: less than 3 GHz, 3 GHz to 6 GHz, and More than 6 GHz. Each frequency range corresponds to at least one step size.
  • each frequency range corresponds to one step.
  • the relationship between the step size and the carrier frequency according to the CSI-RS configuration when the type of the reference signal is CSI-RS, the frequency range is divided into two: less than 6 GHz and greater than 6 GHz.
  • Each frequency range corresponds to at least one step size.
  • each frequency range corresponds to one step.
  • the terminal device After determining the step size of the differential beam quality, the terminal device quantizes the beam quality to be differentially reported according to the step size to obtain one or more differential beam quality information. Then, the reference beam quality information and the differential beam quality information are transmitted to the network device.
  • the step size is corresponding to the carrier frequency and/or the type of the reference signal, so that the beam quality that needs to be differentially reported can be reasonably quantized, so that the terminal device can accurately report the beam. quality.
  • FIG. 5 is a schematic diagram of interaction of another communication method according to an embodiment of the present disclosure, where the method may include the following steps:
  • S501 The network device sends the first step to the terminal device.
  • the terminal device receives the first step sent by the network device.
  • the network device sends a reference signal to the terminal device.
  • the terminal device receives the reference signal.
  • the terminal device measures the reference signal to obtain at least two beam qualities.
  • the terminal device quantizes a beam quality that needs to be differentially reported according to the first step length or a second step size that is pre-stored.
  • the terminal device sends the quantized differential beam quality information to the network device.
  • the network device receives the differential beam quality information, where the differential beam quality information is obtained by the terminal device quantizing the beam quality that needs to be differentially reported according to the first step length or the second step pre-stored. .
  • the second step of pre-storage has multiple implementations, such as a protocol-defined step size for differential beam quantization, which can be pre-stored in the terminal device when the terminal device is shipped from the factory, and no network device is received.
  • the terminal device uses the step size to perform differential quantization by default; for example, when the terminal device accesses the network, the network device may initially allocate a step size for differential beam quantization, and the terminal device steps the step. After being stored, if the network device does not receive other indication information of the network device, the terminal device uses the step size to perform differential quantization by default.
  • the network device can configure a new differential according to a specific transmission scenario, such as a change in the communication environment (direct or dominant refraction), and measurement of a change in the reference signal (synchronous signal block or CSI-RS).
  • the step size of the beam quality is sent to the terminal device.
  • the terminal device may select a suitable step size in the pre-stored step size and the step size sent by the network device according to the actually measured beam quality to quantize the beam quality to be differentially reported.
  • S504 when receiving the first step length sent by the network device, S504 is specifically: performing quantization on a beam quality that needs to be differentially reported according to the first step length. Specifically, as shown in FIG. 6a, if the network device does not have an additional transmission step size, the terminal device uses the pre-stored step size as a step of differential quantization; if the network device additionally sends a step size to the terminal device, the terminal device selects the network device. This step size is sent as the step size of the differential quantization. In this way, the terminal device uses the step size that the network device sends according to the actual situation, and can reasonably quantize the beam quality that needs to be differentially reported. The network device default terminal device uses the step size sent by the terminal device as the step size of the differential quantization. Therefore, the network device can accurately obtain the beam quality reported by the terminal device according to the step size, the reference beam quality information, and the differential beam quality information.
  • the method further includes: the terminal device sends the selection information of the step size to the network device, where the selection information is used to perform characterization when the beam quality to be differentially reported is quantized.
  • the first step is long or the second step is selected.
  • the network device receives selection information of a step size sent by the terminal device.
  • the terminal device can independently select the step size of the differential beam quality according to the actual measured beam quality condition, so that the terminal device needs to notify the network device of the selection information of the step size, so that the network The device can obtain the actually reported beam quality according to the step size selected by the terminal device, the reference beam quality information, and the differential beam quality information.
  • the selection information of the step size is located in the differential beam quality information.
  • the terminal device uses the pre-stored step size as the step size of the differential quantization, and all the 4 bits are reported as the differential beam quality information; if the network device additionally sends a step To the terminal device, the terminal device can select the pre-stored step size or the transmitted new step size as the step size of the differential quantization, and include the selection information of the step size in the 4-bit differential beam quality information. For example, 1 bit occupying 4 bits of differential beam quality information is used for selection information including the step size.
  • Step size For example, use “0" to indicate the pre-stored step size, "1" to indicate the new step size to be transmitted, or “0" to indicate the new step size to be transmitted, and “1" to indicate the pre-stored value.
  • Step size 1 bit of the selection information for characterizing the step size may be a high or low bit of the differential beam quality information.
  • the selection information of the step is located in other uplink control information (UCI).
  • the other uplink control information refers to any uplink control information other than the uplink control information for transmitting the differential beam quality information.
  • the terminal device uses the pre-stored step size as the step size of the differential quantization, and all 4 bits are reported as differential beam quality information; if the network device additionally sends a step
  • the terminal device can select the pre-stored step size or the new step size to be transmitted as the step size of the differential quantization, and all the 4 bits are reported as the differential beam quality information, and the extra 1 bit is used to represent the step size. Selection information.
  • the network device After receiving the selection information of the step size, the network device can accurately obtain the beam quality reported by the terminal device according to the step size, the reference beam quality information, and the differential beam quality information.
  • the first step sent by the network device may be valid only for the current measurement, or may be stored as a new pre-storage step by the terminal device, and continued to be used in the subsequent measurement until again. Received a new first step.
  • the terminal device by configuring the step size of the two differential beam qualities, the terminal device selects one of the step sizes to quantize the beam quality that needs to be differentially reported, so that the beam quality to be differentially reported can be reasonable. Geo-quantization, so that the terminal device can accurately report the beam quality.
  • FIG. 7 is a schematic diagram of an interaction process of another communication method according to an embodiment of the present disclosure, where the method may include the following steps:
  • the network device sends the first reference signal and the second reference signal to the terminal device.
  • the terminal device receives a first reference signal and a second reference signal sent by the network device.
  • the first differential beam quality information and the second differential beam quality information are sent to the network device, where the first differential beam quality information is a first reported differential difference according to a step size of the first reference signal.
  • the second differential beam quality information is obtained by quantizing the second beam quality that needs to be differentially reported according to the step size of the first reference signal.
  • the network device separately transmits two reference signals, such as an SS/PBCH block and a CSI-RS, through multiple beams.
  • two reference signals such as an SS/PBCH block and a CSI-RS
  • the terminal device After receiving the two reference signals, the terminal device separately measures the two reference signals to obtain two beam quality sets, where one beam quality set includes one or more first beam qualities, and another beam quality set includes One or more second beam qualities.
  • the terminal device can quantize the beam quality that needs to be differentially reported for each beam quality concentration according to the step size.
  • the steps of the differential beam quality corresponding to the two reference signals may be the same or different.
  • the terminal device may separately transmit reference beam quality information and differential beam quality information of each beam quality set to the network device.
  • the terminal device may also quantize the first beam quality and the second beam quality that need to be differentially reported according to the step size of the differential beam quality corresponding to one of the reference signals, and obtain the first differential beam quality information and the second The differential beam quality information is jointly reported.
  • the network device After receiving the first differential beam quality information and the second differential beam quality information, the network device obtains the beam corresponding to the reported first reference signal according to the step size, the first reference beam quality, and the first differential beam quality information. Quality; and obtaining a beam quality corresponding to the reported second reference signal according to the step size, the second reference beam quality, and the second differential beam quality information. In this way, the network device can obtain the beam quality corresponding to the two reported reference signals according to the step size of a differential beam quality, which is simple to implement.
  • the method further includes: performing, by using the power offset value, the power offset of the second beam quality that needs to be differentially reported according to the power offset value;
  • the second differential beam quality information is obtained by quantizing the second beam quality after the power offset that needs to be differentially reported according to the step size of the first reference signal.
  • the method further includes: obtaining a third beam quality according to the step size of the first reference signal and the second differential beam quality information And performing power compensation on the third beam quality according to the power offset value to obtain the second beam quality.
  • the measured beam quality on different types of reference signals may be different.
  • the step size of the first reference signal is used to quantize the differentially reported beam quality corresponding to the second reference signal, it may not be guaranteed.
  • the beam quality that needs to be differentially reported can be differentially quantized. Therefore, before performing the quantization, the second beam quality that needs to be differentially reported may be power-shifted by using the power offset value of the transmit power of the second reference signal relative to the transmit power of the first reference signal, and then according to the first reference.
  • the step size of the signal quantifies the second beam quality after the differentially reported power offset.
  • the beam quality of the received CSI-RS is measured, wherein the beam quality to be reported includes: -85 dBm, -87 dBm, and -89 dBm; and the beam quality of the received SS/PBCH block is measured, wherein the beam quality to be reported includes: -101dBm, -103dBm and -105dBm.
  • the step size corresponding to CSI-RS is quantized by -87dBm and -89dBm, the step size is -2dBm, and the reference beam quality is -85dBm.
  • the quantizable beam quality range is -85dBm ⁇ -101dBm.
  • the power offset of the SS/PBCH block to be differentially reported is firstly performed according to the offset value of the transmit power.
  • the offset value of the transmit power of the SS/PBCH block and the CSI-RS determined by the network device and the terminal device is -5 dBm
  • the beam quality to be reported after the power offset corresponding to the SS/PBCH block is: -96 dBm. , -98dBm and -100dBm.
  • the terminal device quantizes the beam quality that needs to be differentially reported after the power offset corresponding to the SS/PBCH block according to the step size corresponding to the CSI-RS.
  • the terminal device sends the first differential beam quality information and the second differential beam quality information to the network device, where the network device parses the first beam quality and the second beam quality corresponding to the first differential beam quality information and the second differential beam quality information, respectively.
  • the network device then power compensates the second beam quality. For example, according to the above example, the network device parses the second beam quality to be -96 dBm, -98 dBm, and -100 dBm, and then the network device performs power compensation for each second beam quality, that is, on the basis of each second beam quality.
  • the actual second beam quality is finally obtained to be -101dBm, -103dBm and -105dBm. This ensures that the beam quality that the SSB needs to report differentially can be quantified in the joint report.
  • the method further includes: the terminal device performing differential quantization on the second reference beam quality value according to the first reference beam quality value and the step size of the first reference signal, Obtaining third differential beam quality information; and the terminal device transmitting the third differential beam quality information to the network device.
  • the method further includes: the network device receiving third differential beam quality information sent by the terminal device, where the third differential beam quality information is a reference value of the second beam quality, a differential quantization information of a reference value of the first beam quality; and the network device obtaining the second reference beam quality value according to the third differential beam quality information and the first reference beam quality value.
  • the second reference beam quality is differentiated by using the first reference beam quality as a reference to obtain third differential beam quality information.
  • the step size for performing the difference may be a step size corresponding to the first differential beam quality, or may be a separate step size.
  • the first reference beam quality information may be 7 bits, and the first, second, and third differential beam qualities may all be 4 bits.
  • the terminal device can simultaneously transmit the first, second, and third differential beam quality information, that is, the first, second, and third differential beam qualities are located in one signaling, and the first, second, and third differential beams can also be separately sent. Quality information.
  • the network device may obtain the differentially reported first differential beam according to the step size corresponding to the first differential beam quality and the first, second, and third differential beam qualities. Quality, second differential beam quality, and second reference beam quality.
  • the terminal device when receiving the two reference signals sent by the network device, may quantize the two differential beam qualities according to the step size corresponding to one of the reference signals, thereby simplifying the beam quality.
  • the reporting process when receiving the two reference signals sent by the network device, the terminal device may quantize the two differential beam qualities according to the step size corresponding to one of the reference signals, thereby simplifying the beam quality.
  • FIG. 8 shows a simplified schematic diagram of the structure of a terminal device.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing communication protocols and communication data, and controlling terminal devices, executing software programs, processing data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the RF circuit is mainly used for the conversion of the baseband signal and the RF signal and the processing of the RF signal.
  • the antenna is mainly used to transmit and receive RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When the data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be independent of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • an antenna and a radio frequency circuit having a transceiving function can be regarded as a receiving unit and a transmitting unit (also collectively referred to as a transceiving unit) of the terminal device, and a processor having a processing function is regarded as a processing unit of the terminal device.
  • the terminal device includes a receiving unit 801, a processing unit 802, and a transmitting unit 803.
  • the receiving unit 801 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 803 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • the processing unit may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the receiving unit 801 is configured to perform step S201 of the embodiment shown in FIG. 2; the processing unit 802 is configured to perform step S202 of the embodiment shown in FIG. 2; and the transmitting unit 803 is configured to execute Step S203 of the embodiment shown in FIG.
  • the receiving unit 801 is configured to perform steps S501 and S502 of the embodiment shown in FIG. 5; the processing unit 802 is configured to perform steps S503 and S504 of the embodiment shown in FIG. 5; The unit 803 is configured to perform step S505 of the embodiment shown in FIG. 5.
  • the receiving unit 801 is configured to perform step S701 of the embodiment shown in FIG. 7; the processing unit 802 is configured to perform step S702 of the embodiment shown in FIG. 7; and the sending unit 803 is used by Step S703 of the embodiment shown in Fig. 7 is executed.
  • FIG. 9 shows a schematic diagram of a simplified network device structure.
  • the network device includes a radio frequency signal transceiving and converting portion and a portion 902.
  • the radio frequency signal transceiving and converting portion further includes a receiving unit 901 portion and a transmitting unit 903 portion (also collectively referred to as a transceiving unit).
  • the RF signal transmission and reception and conversion part is mainly used for the transmission and reception of RF signals and the conversion of RF signals and baseband signals; the 902 part is mainly used for baseband processing and control of network equipment.
  • the receiving unit 901 may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit 903 may also be referred to as a transmitter, a transmitter, a transmitter, a transmitting circuit, or the like.
  • Section 902 is typically a control center for a network device, and may generally be referred to as a processing unit for controlling the network device to perform the steps described above with respect to the second communication device in FIG. 5 or 9. For details, please refer to the description of the relevant part above.
  • Section 902 can include one or more boards, each of which can include one or more processors and one or more memories for reading and executing programs in memory to implement baseband processing functions and to network devices control. If multiple boards exist, the boards can be interconnected to increase processing power. As an optional implementation manner, multiple boards share one or more processors, or multiple boards share one or more memories, or multiple boards share one or more processes at the same time. Device.
  • the transmitting unit 903 is configured to perform step S201 of the embodiment shown in FIG. 2; and the receiving unit 901 is configured to perform step S203 of the embodiment shown in FIG. 2.
  • the transmitting unit 903 is configured to perform steps S501 and S502 of the embodiment shown in FIG. 5; and the receiving unit 901 is configured to perform step S505 of the embodiment shown in FIG. 5.
  • the sending unit 903 is configured to execute step S701 of the embodiment shown in FIG. 7; and the receiving unit 901 is configured to perform step S703 of the embodiment shown in FIG. 7.
  • SoC system-on-chip
  • all or part of the functions of the 902 part and the 901 part may be implemented by the SoC technology, for example, by a base station function.
  • the chip realizes that the base station function chip integrates a processor, a memory, an antenna interface and the like, and the program of the base station related function is stored in the memory, and the program is executed by the processor to implement the related functions of the base station.
  • the base station function chip can also read the memory external to the chip to implement related functions of the base station.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in or transmitted by a computer readable storage medium.
  • the computer instructions may be from a website site, computer, server or data center via a wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD)). )Wait.
  • the foregoing storage medium includes: a read-only memory (ROM) or a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置。其中的方法包括:接收网络设备发送的参考信号;对所述参考信号进行测量,得到至少两个波束质量;发送参考波束质量信息和差分波束质量信息给所述网络设备;其中,差分波束质量的步长与载波频率和/或所述参考信号的类型对应。还公开了相应的装置。采用本申请的方案,采用的步长与载波频率和/或参考信号的类型对应,使需差分上报的波束质量能够被合理地量化,从而终端设备可准确地上报波束质量。

Description

通信方法及装置
本申请要求于2017年11月24日提交中国专利局、申请号为201711192794.6、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在新一代无线(new radio,NR)通信系统中使用波束进行传输,即通过在空间上朝向特定的方向发送信号,可以实现更高的天线阵列增益。因此,波束管理(beam management)是NR中的关键技术。在波束管理的过程中,网络设备在多个波束上向终端设备发送参考信号,终端设备在接收和测量后,向网络设备反馈测得的波束质量。
根据网络设备的配置,终端设备一次上报的波束质量最多为2个或4个。当上报的波束质量的数量大于1个时,采用差分方式上报波束质量,即将质量最好的波束质量直接上报并作为参考值,并上报其余波束质量与参考波束质量的差值,该差值表示为步长的整数倍。
参考波束的波束质量的取值范围是固定的,在上报比特数确定的前提下,量化步长也是一个固定的值。而差分波束的波束质量是相对参考波束的波束质量而言的,在不同的应用场景下,实际相对量化范围是不同的,在当前协议已经约定了差分波束的波束质量上报的比特数的情况下,如果采用一个固定的步长,很难适配各种场景,也无法获得更好的量化精度。
因此,网络设备如何配置更为合适的量化步长,终端设备如何选择合适的步长进行差分波束质量信息的上报,保证高精度地上报波束质量,是有待解决的问题。
发明内容
本申请提供一种通信方法及装置,以准确地上报波束质量。
本申请的第一方面,提供了一种通信方法,包括:接收网络设备发送的参考信号;对所述参考信号进行测量,得到至少两个波束质量;以及发送参考波束质量信息和差分波束质量信息给所述网络设备;其中,差分波束质量的步长与频率范围和/或所述参考信号的类型对应。在该方面中,采用的步长与载波频率和/或参考信号的类型对应,使需差分上报的波束质量能够被合理地量化,从而终端设备可准确地上报波束质量。
本申请的第二方面,提供了一种通信方法,包括:发送参考信号给终端设备;以及接收
所述终端设备发送的参考波束质量信息和差分波束质量信息;其中,差分波束质量的步长与频率范围和/或所述参考信号的类型对应。在该方面中,终端设备采用的步长与载波频率和/或参考信号的类型对应,使需差分上报的波束质量能够被合理地量化,从而网络设备能够获得准确的波束质量。
结合本申请第一方面和第二方面,在一种可能的实现方式中,每个频率范围对应至少一个步长。
结合本申请第一方面和第二方面,在另一种可能的实现方式中,每个参考信号的类型对应至少一个步长;其中,所述参考信号的类型包括同步信号块和信道状态信息参考信号。
本申请的第三方面,提供了一种通信方法,包括:接收网络设备发送的第一步长;根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化;以及发送所述量化后的差分波束质量信息给所述网络设备。在该方面中,通过配置两个差分波束质量的步长,终端设备选择其中一个步长对需差分上报的波束质量进行量化,使得需差分上报的波束质量能够被合理地量化,从而终端设备可实现准确地上报波束质量。
在一种可能的实现方式中,所述方法还包括:当接收到所述网络设备发送的所述第一步长时,所述根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化,具体为:根据所述第一步长对需差分上报的波束质量进行量化。在该实现方式中,若终端设备获取了网络设备配置的新的步长,则默认根据该新的步长对需差分上报的波束质量进行量化。
在另一种可能的实现方式中,所述方法还包括:发送步长的选择信息给所述网络设备,所述选择信息用于表征对所述需差分上报的波束质量进行量化时,选择所述第一步长或选择所述第二步长。在该实现方式中,当终端设备获取到网络设备配置的新的步长时,终端设备可选择预存储的步长或配置的新的步长对需差分上报的波束质量进行量化,并将步长的选择信息通知网络设备,增加了补充选择的灵活性。
本申请的第四方面,提供了一种通信方法,包括:发送第一步长给终端设备;发送参考信号给所述终端设备;以及接收所述终端设备发送的差分波束质量信息,其中,所述差分波束质量信息为所述终端设备根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化得到的。在该方面中,通过配置两个差分波束质量的步长,终端设备选择其中一个步长对需差分上报的波束质量进行量化,使得需差分上报的波束质量能够被合理地量化,从而网络设备可获得准确的波束质量。
在一种可能的实现方式中,所述方法还包括:接收所述终端设备发送的步长的选择信息。
结合本申请的第三方面和第四方面,在一种可能的实现方式中,所述步长的选择信息位于所述差分波束质量信息中或位于其它上行控制信息中。在该实现方式中,可以在差分波束质量信息中包括步长的选择信息,也可以通过额外的上行控制信息通知网络设备该步长的选择信息。
本申请的第五方面,提供了一种通信方法,包括:接收网络设备发送的第一参考信号和第二参考信号;分别对所述第一参考信号和所述第二参考信号进行测量,得到第一波束质量和第二波束质量;以及发送第一差分波束质量信息和第二差分波束质量信息给所述网络设备,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。在该方面中,终端设备在接收到网络设备发送的两个参考信号时,可根据其中一个参考信号对应的步长对两个差分波束质 量进行量化,简化了波束质量的上报过程。
在一种可能的实现方式中,所述方法还包括:相对于所述第一波束质量,根据功率偏移值对所述需差分上报的第二波束质量进行功率偏移;其中,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的功率偏移后的第二波束质量进行量化后得到的。在该实现方式中,不同类型的参考信号上测得的波束质量可能不同,如果采用第一参考信号的步长对第二参考信号对应的需差分上报的波束质量进行量化,可能无法保证需差分上报的波束质量都能被差分量化。因此,在进行量化前,可采用第二参考信号的发射功率相对于第一参考信号的发射功率的功率偏移值对需差分上报的第二波束质量进行功率偏移,然后再根据第一参考信号的步长对需差分上报的功率偏移后的第二波束质量进行量化。
在另一种可能的实现方式中,所述方法还包括:根据第一参考波束质量值和所述第一参考信号的步长,对第二参考波束质量值进行差分量化,得到第三差分波束质量信息;发送所述第三差分波束质量信息给所述网络设备。在该实现方式中,以第一参考波束质量作为参考,对第二参考波束质量进行差分,得到第三差分波束质量信息,可进一步节省上报波束质量的开销。
本申请的第六方面,提供了一种通信方法,包括:发送第一参考信号和第二参考信号给终端设备;以及接收所述终端设备发送的第一差分波束质量信息和第二差分波束质量信息,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。在该方面中,网络设备发送两个参考信号时,接收终端设备根据其中一个参考信号对应的步长量化得到的两个差分波束质量,简化了波束质量的获取过程,可获得准确的波束质量。
在一种可能的实现方式中,所述方法还包括:根据所述第一参考信号的步长和所述第二差分波束质量信息,得到第三波束质量;以及根据功率偏移值对所述第三波束质量进行功率补偿,得到所述第二波束质量。
在另一种可能的实现方式中,所述方法还包括:接收所述终端设备发送的第三差分波束质量信息,所述第三差分波束质量信息为所述第二波束质量的参考值相对于所述第一波束质量的参考值的差分量化信息;以及根据所述第三差分波束质量信息和第一参考波束质量值,得到所述第二参考波束质量值。
本申请的第七方面,提供了一种通信装置,可以实现上述通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者设备(如终端设备等)。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置,可以包括接收单元、处理单元和发送单元。所述接收单元、处理单元和发送单元分别用于实现上述方法中的接收、处理和发送功能。例如,所述接收单元,用于接收网络设备发送的参考信号;所述处理单元,用于对所 述参考信号进行测量,得到至少两个波束质量;以及所述发送单元,用于发送参考波束质量信息和差分波束质量信息给所述网络设备;其中,差分波束质量的步长与频率范围和/或所述参考信号的类型对应。又例如,所述接收单元,用于接收网络设备发送的第一步长;所述处理单元,用于根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化;以及所述发送单元,用于发送所述量化后的差分波束质量信息给所述网络设备。又例如,所述接收单元,用于接收网络设备发送的第一参考信号和第二参考信号;所述处理单元,用于分别对所述第一参考信号和所述第二参考信号进行测量,得到第一波束质量和第二波束质量;以及所述发送单元,用于发送第一差分波束质量信息和第二差分波束质量信息给所述网络设备,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
本申请的第八方面,提供了一种通信装置,可以实现上述通信方法。例如所述通信装置可以是芯片(如基带芯片,或通信芯片等)或者设备(如网络设备、基带单板等)。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现方式中,所述通信装置的结构中包括处理器、存储器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的程序(指令)和数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信。
在另一种可能的实现方式中,所述通信装置可以包括发送单元和接收单元。所述接收单元和发送单元分别用于实现上述方法中的接收和发送功能。例如,所述发送单元,用于发送参考信号给终端设备;以及所述接收单元,用于接收所述终端设备发送的参考波束质量信息和差分波束质量信息;其中,差分波束质量的步长与频率范围和/或所述参考信号的类型对应。又例如,所述发送单元,用于发送第一步长给终端设备;所述发送单元还用于发送参考信号给所述终端设备;以及所述接收单元,用于接收所述终端设备发送的差分波束质量信息,其中,所述差分波束质量信息为所述终端设备根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化得到的。又例如,所述发送单元,用于发送第一参考信号和第二参考信号给终端设备;以及所述接收单元,用于接收所述终端设备发送的第一差分波束质量信息和第二差分波束质量信息,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。
当所述通信装置为芯片时,接收单元可以是输入单元,比如输入电路或者通信接口;发送单元可以是输出单元,比如输出电路或者通信接口。当所述通信装置为设备时,接收单元可以是接收器(也可以称为接收机);发送单元可以是发射器(也可以称为发射机)。
本申请的第九方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存 储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
本申请的第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种通信方法的交互示意图;
图3a为参考波束质量信息的状态示意图;
图3b为差分波束质量信息的状态示意图;
图4a为步长与频率范围的关系示意图;
图4b为步长与参考信号的类型的关系示意图;
图4c为根据SS/PBCH block配置的步长与载波频率的关系示意图;
图4d为根据CSI-RS配置的步长与载波频率的关系示意图;
图5为本申请实施例提供的另一种通信方法的交互示意图;
图6a~图6c为步长的选择示意图;
图7为本申请实施例提供的又一种通信方法的交互示意图;
图8为本申请实施例提供的一种简化的终端设备的硬件架构示意图;
图9为本申请实施例提供的一种简化的网络设备的硬件架构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
图1给出了一种通信系统示意图。该通信系统可以包括至少一个网络设备100(仅示出1个)以及与网络设备100连接的一个或多个终端设备200。
网络设备100可以是能和终端设备200通信的设备。网络设备100可以是可以是任意一种具有无线收发功能的设备。包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或网络设备、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。网络设备100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备100还可以是5G网络中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。网络设备100还可以是小站,传输节点(transmission reference point,TRP)等。当然不申请不限于此。
终端设备200是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中 的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、终端(terminal)、无线通信设备、UE代理或UE装置等。
需要说明的是,本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
图2为本申请实施例提供的一种通信方法的交互流程示意图,该方法可包括以下步骤:
S201、网络设备发送参考信号给终端设备。所述终端设备接收所述网络设备发送的参考信号。
S202、所述终端设备对所述参考信号进行测量,得到至少两个波束质量。
S203、所述终端设备发送参考波束质量信息和差分波束质量信息给所述网络设备;其中,差分波束质量的步长与载波频率和/或所述参考信号的类型对应。所述网络设备接收所述终端设备发送的参考波束质量信息和差分波束质量信息。
网络设备通过一个或多个发送波束发送参考信号给终端设备。终端设备通过一个或多个接收波束接收该参考信号。终端设备对接收到的参考信号进行测量,得到多个波束质量。然后,终端设备上报波束质量给网络设备。需要说明的是,在一种实现方式中,终端设备可以上报测量得到的所有波束质量给网络设备,例如,终端设备测量得到3个波束质量,则终端设备上报这3个波束质量给网络设备。在另一种实现方式中,终端设备可以上报测量得到的波束质量中大于门限值的波束质量给网络设备,例如,终端设备测量得到3个波束质量,其中,2个波束质量大于门限值,则终端设备上报这2个波束质量给网络设备。
波束质量可以以下任一种参数度量:参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)和信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。下面如果不作说明,波束质量以RSRP为例进行描述。
根据网络设备的配置,终端设备一次上报的波束质量最多为2个或4个。当上报的波束质量的数量大于1个时,采用差分方式上报波束质量,即将质量最好的波束质量直接上报并作为参考值,并上报其余波束质量与参考波束质量的差值。具体地,如图3a所示的参考波束质量信息的状态示意图,RSRP的范围为-140dBm~-44dBm,采用7比特的参考波束质量信息进行上报,参考波束质量的步长为1dBm。如图3b所示的差分波束质量信息的状态示意图,采用4比特的差分波束质量信息进行上报,例如,假设需上报的波束质量包括3个值:-85dBm,-87dBm和-89dBm,则参考波束质量值为-85dBm,并假设差分波束质量的步长为2dBm,则终端设备需发送“0001”和“0010”给网络设备,网络设备解析“0001”,“0001”对应的与参考波束质量值的差值为-2dBm,则计算得到其波束质量为-85dBm-2 dBm=-87dBm;同样地,计算得到“0010”对应的波束质量为-89dBm。本申请的方案用于确定差分波束质量信息的步长。
在一种场景下,例如,在网络设备配置为以直射径为主的情况下,低频率范围的波束数量较少,波束指向角的角度差较大,同一个终端设备所测量的多个波束之间的波束质量偏差范围较大;而高频率范围的波束数量较多,波束指向角的角度差较小,同一个终端设备所测量的多个波束之间的波束质量偏差范围较小。又例如,在网络设备配置为以反射径为主的情况下,则情况相反,低频范围的波束由于反射损耗较小,同一个终端设备所测量的各反射波束之间的波束质量偏差范围较小;而高频范围的波束由于反射损耗较大,终端设备测量所得的反射波束差异较大,其波束质量偏差范围较大。在上述场景中,如果终端设备采用一个固定的步长,无法保证需差分上报的波束质量都能被合理地差分量化。因而,在本申请的一个实现方式中,差分波束质量的步长与频率范围对应。具体地,每个频率范围对应至少一个步长,不同频率范围对应的步长不同。如图4a所示的步长与频率范围的关系示意图,在该示例中,被划分为N个频率范围,每个频率范围对应一个步长。终端设备在接收到网络设备通过多个波束发送的参考信号时,确定该多个波束所处的频率范围,从而确定与该频率范围对应的步长。
在另一种场景下,参考信号可以是同步信号块(SS/PBCH block),也可以是信道状态信息参考信号(channel state information-reference signal,CSI-RS),不同类型的参考信号上测得的波束质量可能不同。如果终端设备针对不同的参考信号采用一个固定的步长,无法保证需差分上报的波束质量都能被合理地差分量化。在本申请的另一个实现方式中,差分波束质量与参考信号的类型对应。具体地,每个参考信号的类型对应至少一个步长。如图4b所示的步长与参考信号的类型的关系示意图,在该示例中,CSI-RS和SS/PBCH block分别对应一个步长。终端设备在接收到网络设备通过多个波束发送的参考信号时,确定接收到的参考信号的类型,从而确定与该参考信号的类型对应的步长。
另外,发送SS/PBCH block时需要减少盲检的复杂度,因此,频率范围的划分相比CSI-RS对应的频率范围的划分应该更精细,即还需要结合参考信号的类型进行频率范围的划分。在本申请的又一个实现方式中,步长与频率范围和参考信号的类型对应。如图4c所示的根据SS/PBCH block配置的步长与载波频率的关系示意图,当参考信号的类型为SS/PBCH block时,其频率范围被划分为三个:小于3GHz、3GHz~6GHz和大于6GHz。每个频率范围对应至少一个步长。在该示例中,每个频率范围对应一个步长。如图4d所示的根据CSI-RS配置的步长与载波频率的关系示意图,当参考信号的类型为CSI-RS时,其频率范围被划分为两个:小于6GHz和大于6GHz。每个频率范围对应至少一个步长。在该示例中,每个频率范围对应一个步长。终端设备在接收到网络设备通过多个波束发送的参考信号时,确定接收到的参考信号的类型和该多个波束所处的频率范围,从而确定与该参考信号的类型和频率范围对应的步长。
终端设备在确定差分波束质量的步长后,根据该步长对需差分上报的波束质量进行量化,得到一个或多个差分波束质量信息。然后,发送参考波束质量信息和差分波束质量信息给网络设备。
根据本申请实施例提供的一种通信方法,采用的步长与载波频率和/或参考信号的类型 对应,使得需差分上报的波束质量能够被合理地量化,从而终端设备可实现准确地上报波束质量。
图5为本申请实施例提供的另一种通信方法的交互示意图,该方法可包括以下步骤:
S501、网络设备发送第一步长给终端设备。所述终端设备接收所述网络设备发送的第一步长。
S502、所述网络设备发送参考信号给所述终端设备。所述终端设备接收该参考信号。
S503、所述终端设备对所述参考信号进行测量,得到至少两个波束质量。
S504、所述终端设备根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化。
S503、所述终端设备发送所述量化后的差分波束质量信息给所述网络设备。所述网络设备接收该差分波束质量信息,其中,所述差分波束质量信息为所述终端设备根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化得到的。
预存储的第二步长有多种实现方式,例如协议约定的用于差分波束量化的步长,该步长可以在终端设备出厂时,预存储在终端设备中,,在没有接收到网络设备其他指示信息的情况下,终端设备默认采用该步长进行差分量化;再例如,终端设备接入该网络时,网络设备可以初始化分配一个用于差分波束量化的步长,终端设备将该步长存储下来,在没有接收到网络设备其他指示信息的情况下,终端设备默认采用该步长进行差分量化。但是,网络设备可以根据具体的发送场景,例如通信环境的变化(直射为主或反射折射为主),测量参考信号的变化(同步信号块或CSI-RS)的情况下,配置一个新的差分波束质量的步长发送给终端设备。此时,终端设备可以根据实际测得的波束质量,在预存储的步长和网络设备后续发送的步长中选择一个合适的步长对需差分上报的波束质量进行量化。
在一个实现方式中,当接收到所述网络设备发送的所述第一步长时,S504具体为:根据所述第一步长对需差分上报的波束质量进行量化。具体如图6a所示,若网络设备没有额外发送步长,则终端设备采用预存储的步长作为差分量化的步长;若网络设备额外发送一个步长给终端设备,则终端设备选择网络设备发送的该步长作为差分量化的步长。这样,终端设备采用网络设备根据实际情况发送的步长,可对需差分上报的波束质量进行合理的量化。网络设备默认终端设备采用其发送的步长作为差分量化的步长,因而,网络设备可根据该步长、参考波束质量信息和差分波束质量信息,准确地得到终端设备上报的波束质量。
在另一个实现方式中,所述方法还包括:所述终端设备发送步长的选择信息给所述网络设备,所述选择信息用于表征对所述需差分上报的波束质量进行量化时,选择所述第一步长或选择所述第二步长。所述网络设备接收所述终端设备发送的步长的选择信息。虽然网络设备发送了一个新的步长,但是终端设备可以根据实际测量得到的波束质量情况自主选择差分波束质量的步长,从而,终端设备需要将步长的选择信息通知给网络设备,这样网络设备才能根据终端设备选择的步长、参考波束质量信息和差分波束质量信息,得到实际上报的波束质量。
具体地,所述步长的选择信息位于所述差分波束质量信息中。如图6b所示,若网络设备没有额外发送步长,则终端设备采用预存储的步长作为差分量化的步长,且4比特全部 作为差分波束质量信息进行上报;若网络设备额外发送一个步长给终端设备,则终端设备可选择预存储的步长或发送的新的步长作为差分量化的步长,且在4比特的差分波束质量信息中包括该步长的选择信息。例如,占用4比特差分波束质量信息的1比特用于包括该步长的选择信息。例如,用“0”表示采用预存储的步长,用“1”表示采用发送的新的步长;或者用“0”表示采用发送的新的步长,用“1”表示采用预存储的步长。其中,用于表征步长的选择信息的1比特可以是差分波束质量信息的高位或低位。
具体地,所述步长的选择信息位于其它上行控制信息(uplink control information,UCI)中。这里,其它上行控制信息是指除发送上述差分波束质量信息的上行控制信息之外的任一上行控制信息。如图6c所示,若网络设备没有额外发送步长,则终端设备采用预存储的步长作为差分量化的步长,且4比特全部作为差分波束质量信息进行上报;若网络设备额外发送一个步长给终端设备,则终端设备可选择预存储的步长或发送的新的步长作为差分量化的步长,且4比特全部作为差分波束质量信息进行上报,并采用额外的1比特表示步长的选择信息。
网络设备在接收到步长的选择信息后,可根据该选择信息所表征的步长、参考波束质量信息和差分波束质量信息,准确地得到终端设备上报的波束质量。
在以上实现方式中,网络设备发送的第一步长可以仅针对当前这次测量生效,也可以作为新的预存储步长被终端设备存储,并在之后的测量中,持续使用,直至再一次接收到新的第一步长。
根据本申请实施例提供的一种通信方法,通过配置两个差分波束质量的步长,终端设备选择其中一个步长对需差分上报的波束质量进行量化,使得需差分上报的波束质量能够被合理地量化,从而终端设备可实现准确地上报波束质量。
图7为本申请实施例提供的又一种通信方法的交互流程示意图,该方法可包括以下步骤:
S701、网络设备发送第一参考信号和第二参考信号给终端设备。所述终端设备接收所述网络设备发送的第一参考信号和第二参考信号。
S702、分别对所述第一参考信号和所述第二参考信号进行测量,得到第一波束质量和第二波束质量;
S703、发送第一差分波束质量信息和第二差分波束质量信息给所述网络设备,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。
在本实施例中,网络设备通过多个波束分别发送两个参考信号,例如SS/PBCH block和CSI-RS。当然也可以发送其他的参考信号。终端设备在接收到两种参考信号后,分别对这两个参考信号进行测量,得到两个波束质量集,其中,一个波束质量集包括一个或多个第一波束质量,另一个波束质量集包括一个或多个第二波束质量。终端设备可分别根据步长对每个波束质量集中需差分上报的波束质量进行量化。其中,两个参考信号对应的差分波束质量的步长可以相同,也可以不同。终端设备可以分别发送每个波束质量集的参考波束质量信息和差分波束质量信息给网络设备。终端设备也可以以其中一个参考信号对应的 差分波束质量的步长为参考,对需差分上报的第一波束质量和第二波束质量进行量化,并将获得的第一差分波束质量信息和第二差分波束质量信息进行联合上报。网络设备在接收到第一差分波束质量信息和第二差分波束质量信息后,根据作为参考的步长、第一参考波束质量和第一差分波束质量信息,得到上报的第一参考信号对应的波束质量;以及根据作为参考的步长、第二参考波束质量和第二差分波束质量信息,得到上报的第二参考信号对应的波束质量。这样,网络设备可根据一个差分波束质量的步长,得到上报的两个参考信号对应的波束质量,实现简单。
本申请的一个实现方式中,所述方法还包括:相对于所述第一波束质量,所述终端设备根据功率偏移值对所述需差分上报的第二波束质量进行功率偏移;其中,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的功率偏移后的第二波束质量进行量化后得到的。网络设备接收到第一差分波束质量信息和第二差分波束质量信息后,所述方法还包括:根据所述第一参考信号的步长和所述第二差分波束质量信息,得到第三波束质量;根据功率偏移值对所述第三波束质量进行功率补偿,得到所述第二波束质量。在该实现方式中,不同类型的参考信号上测得的波束质量可能不同,例如,如果采用第一参考信号的步长对第二参考信号对应的需差分上报的波束质量进行量化,可能无法保证需差分上报的波束质量都能被差分量化。因此,在进行量化前,可采用第二参考信号的发射功率相对于第一参考信号的发射功率的功率偏移值对需差分上报的第二波束质量进行功率偏移,然后再根据第一参考信号的步长对需差分上报的功率偏移后的第二波束质量进行量化。例如,测量接收到CSI-RS的波束质量,其中,需上报的波束质量包括:-85dBm,-87dBm和-89dBm;测量接收到SS/PBCH block的波束质量,其中,需上报的波束质量包括:-101dBm,-103dBm和-105dBm。采用CSI-RS对应的步长对-87dBm和-89dBm进行量化,步长为-2dBm,参考波束质量为-85dBm,则根据4比特的差分波束质量信息,能够量化的波束质量范围为-85dBm~-101dBm。而SS/PBCH block需差分上报的波束质量为-103dBm和-105dBm,已超出采用CSI-RS对应的步长进行量化的范围。因此,采用本实现方式的方法,先根据发射功率的偏移值对SS/PBCH block需差分上报的波束质量进行功率偏移。例如,网络设备和终端设备预先确定的SS/PBCH block与CSI-RS的发射功率的偏移值为-5dBm,则SS/PBCH block对应的功率偏移后的需上报的波束质量为:-96dBm、-98dBm和-100dBm。然后,终端设备根据CSI-RS对应的步长对SS/PBCH block对应的功率偏移后的需差分上报的波束质量进行量化。终端设备发送第一差分波束质量信息和第二差分波束质量信息给网络设备,网络设备解析获得第一差分波束质量信息和第二差分波束质量信息分别对应的第一波束质量和第二波束质量,然后网络设备对第二波束质量进行功率补偿。例如,根据上面的示例,网络设备解析获得第二波束质量为-96dBm、-98dBm和-100dBm,然后网络设备对每个第二波束质量进行功率补偿,即在每个第二波束质量基础上分别加上-5dBm,最终得到实际的第二波束质量为-101dBm,-103dBm和-105dBm。这样可以保证将SSB需差分上报的波束质量在联合上报中能够被量化。
本申请的另一个实现方式中,终端设备侧,所述方法还包括:终端设备根据第一参考波束质量值和所述第一参考信号的步长,对第二参考波束质量值进行差分量化,得到第三差分波束质量信息;以及所述终端设备发送所述第三差分波束质量信息给所述网络设备。 网络设备侧,所述方法还包括:所述网络设备接收所述终端设备发送的第三差分波束质量信息,所述第三差分波束质量信息为所述第二波束质量的参考值相对于所述第一波束质量的参考值的差分量化信息;以及所述网络设备根据所述第三差分波束质量信息和第一参考波束质量值,得到所述第二参考波束质量值。在该实现方式中,为进一步节省上报波束质量的开销,以第一参考波束质量作为参考,对第二参考波束质量进行差分,得到第三差分波束质量信息。进行差分的步长可以是第一差分波束质量对应的步长,也可以是另设的一个步长。例如,第一参考波束质量信息可以为7比特,第一、第二和第三差分波束质量可以均为4比特。终端设备可以同时发送第一、第二和第三差分波束质量信息,即第一、第二和第三差分波束质量位于一条信令中,也可以分别发送第一、第二和第三差分波束质量信息。网络设备在接收到第一、第二和第三差分波束质量后,根据第一差分波束质量对应的步长和第一、第二和第三差分波束质量,可以得到差分上报的第一差分波束质量、第二差分波束质量和第二参考波束质量。
根据本申请实施例提供的一种通信方法,终端设备在接收到网络设备发送的两个参考信号时,可根据其中一个参考信号对应的步长对两个差分波束质量进行量化,简化了波束质量的上报过程。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
图8示出了一种简化的终端设备结构示意图。便于理解和图示方便,图8中,终端设备以手机作为例子。如图8所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的接收单元和发送单元(也可以统称为收发单元),将具有处理功能的处理器视为终端设备的处理单元。如图8所示,终端设备包括接收单元801、处理单元802和发送单元803。接收单元801也可以称为接收器、接收机、接收电路等,发送单元803也可以称为发送器、发射器、发射机、发射电路等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。
例如,在一个实施例中,接收单元801,用于执行图2所示实施例的步骤S201;处理 单元802,用于执行图2所示实施例的步骤S202;以及发送单元803,用于执行图2所示实施例的步骤S203。
又如,在另一个实施例中,接收单元801,用于执行图5所示实施例的步骤S501和S502;处理单元802,用于执行图5所示实施例的步骤S503和S504;以及发送单元803,用于执行图5所示实施例的步骤S505。
又如,在又一个实施例中,接收单元801,用于执行图7所示实施例的步骤S701;处理单元802,用于执行图7所示实施例的步骤S702;以及发送单元803,用于执行图7所示实施例的步骤S703。
图9示出了一种简化网络设备结构示意图。网络设备包括射频信号收发及转换部分以及902部分,该射频信号收发及转换部分又包括接收单元901部分和发送单元903部分(也可以统称为收发单元)。射频信号收发及转换部分主要用于射频信号的收发以及射频信号与基带信号的转换;902部分主要用于基带处理,对网络设备进行控制等。接收单元901也可以称为接收器、接收机、接收电路等,发送单元903也可以称为发送器、发射器、发射机、发射电路等。902部分通常是网络设备的控制中心,通常可以称为处理单元,用于控制网络设备执行上述图5或图9中关于第二通信装置所执行的步骤。具体可参见上述相关部分的描述。
902部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器,处理器用于读取和执行存储器中的程序以实现基带处理功能以及对网络设备的控制。若存在多个单板,各个单板之间可以互联以增加处理能力。作为一中可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一个实施例中,发送单元903,用于执行图2所示实施例的步骤S201;以及接收单元901,用于执行图2所示实施例的步骤S203。
又如,在另一个实施例中,发送单元903,用于执行图5所示实施例的步骤S501和S502;以及接收单元901,用于执行图5所示实施例的步骤S505。
又如,在另一个实施例中,发送单元903,用于执行图7所示实施例的步骤S701;以及接收单元901,用于执行图7所示实施例的步骤S703。
作为另一种可选的实施方式,随着片上系统(system-on-chip,SoC)技术的发展,可以将902部分和901部分的全部或者部分功能由SoC技术实现,例如由一颗基站功能芯片实现,该基站功能芯片集成了处理器、存储器、天线接口等器件,基站相关功能的程序存储在存储器中,由处理器执行程序以实现基站的相关功能。可选的,该基站功能芯片也能够读取该芯片外部的存储器以实现基站的相关功能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:只读存储器(read-only memory,ROM)或随机存储存储器(random access memory,RAM)、磁碟或者光盘等各种可存储程序代码的介质。

Claims (34)

  1. 一种通信方法,其特征在于,包括:
    接收网络设备发送的参考信号;
    对所述参考信号进行测量,得到至少两个波束质量;
    发送参考波束质量信息和差分波束质量信息给所述网络设备;其中,差分波束质量的步长与频率范围和/或所述参考信号的类型对应。
  2. 一种通信方法,其特征在于,包括:
    发送参考信号给终端设备;
    接收所述终端设备发送的参考波束质量信息和差分波束质量信息;其中,差分波束质量的步长与频率范围和/或所述参考信号的类型对应。
  3. 如权利要求1或2所述的方法,其特征在于,每个频率范围对应至少一个步长。
  4. 如权利要求1~3任一项所述的方法,其特征在于,每个参考信号的类型对应至少一个步长;其中,所述参考信号的类型包括同步信号块和信道状态信息参考信号。
  5. 一种通信方法,其特征在于,包括:
    接收网络设备发送的第一步长;
    根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化;
    发送所述量化后的差分波束质量信息给所述网络设备。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    当接收到所述网络设备发送的所述第一步长时,所述根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化,具体为:
    根据所述第一步长对需差分上报的波束质量进行量化。
  7. 如权利要求5或6所述的方法,其特征在于,所述方法还包括:
    发送步长的选择信息给所述网络设备,所述选择信息用于表征对所述需差分上报的波束质量进行量化时,选择所述第一步长或选择所述第二步长。
  8. 一种通信方法,其特征在于,包括:
    发送第一步长给终端设备;
    发送参考信号给所述终端设备;
    接收所述终端设备发送的差分波束质量信息,其中,所述差分波束质量信息为所述终端设备根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化得到的。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的步长的选择信息。
  10. 如权利要求7或9所述的方法,其特征在于,所述步长的选择信息位于所述差分波束质量信息中或位于其它上行控制信息中。
  11. 一种通信方法,其特征在于,包括:
    接收网络设备发送的第一参考信号和第二参考信号;
    分别对所述第一参考信号和所述第二参考信号进行测量,得到第一波束质量和第二波 束质量;
    发送第一差分波束质量信息和第二差分波束质量信息给所述网络设备,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    相对于所述第一波束质量,根据功率偏移值对所述需差分上报的第二波束质量进行功率偏移;
    其中,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的功率偏移后的第二波束质量进行量化后得到的。
  13. 如权利要求11或12所述的方法,其特征在于,所述方法还包括:
    根据第一参考波束质量值和所述第一参考信号的步长,对第二参考波束质量值进行差分量化,得到第三差分波束质量信息;
    发送所述第三差分波束质量信息给所述网络设备。
  14. 一种通信方法,其特征在于,包括:
    发送第一参考信号和第二参考信号给终端设备;
    接收所述终端设备发送的第一差分波束质量信息和第二差分波束质量信息,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述第一参考信号的步长和所述第二差分波束质量信息,得到第三波束质量;
    根据功率偏移值对所述第三波束质量进行功率补偿,得到所述第二波束质量。
  16. 如权利要求14或15所述的方法,其特征在于,所述方法还包括:
    接收所述终端设备发送的第三差分波束质量信息,所述第三差分波束质量信息为所述第二波束质量的参考值相对于所述第一波束质量的参考值的差分量化信息;
    根据所述第三差分波束质量信息和第一参考波束质量值,得到所述第二参考波束质量值。
  17. 一种通信装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的参考信号;
    处理单元,用于对所述参考信号进行测量,得到至少两个波束质量;
    发送单元,用于发送参考波束质量信息和差分波束质量信息给所述网络设备;其中,差分波束质量的步长与频率范围和/或所述参考信号的类型对应。
  18. 一种通信装置,其特征在于,包括:
    发送单元,用于发送参考信号给终端设备;
    接收单元,用于接收所述终端设备发送的参考波束质量信息和差分波束质量信息;其中,差分波束质量的步长与频率范围和/或所述参考信号的类型对应。
  19. 如权利要求17或18所述的装置,其特征在于,每个频率范围对应至少一个步长。
  20. 如权利要求17~19任一项所述的装置,其特征在于,每个参考信号的类型对应至少一个步长;其中,所述参考信号的类型包括同步信号块和信道状态信息参考信号。
  21. 一种通信装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一步长;
    处理单元,用于根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化;
    发送单元,用于发送所述量化后的差分波束质量信息给所述网络设备。
  22. 如权利要求21所述的装置,其特征在于:
    当所述接收单元接收到所述网络设备发送的所述第一步长时,所述处理单元具体用于根据所述第一步长对需差分上报的波束质量进行量化。
  23. 如权利要求21或22所述的装置,其特征在于,所述发送单元还用于发送步长的选择信息给所述网络设备,所述选择信息用于表征对所述需差分上报的波束质量进行量化时,选择所述第一步长或选择所述第二步长。
  24. 一种通信装置,其特征在于,包括:
    发送单元,用于发送第一步长给终端设备;
    所述发送单元还用于发送参考信号给所述终端设备;
    接收单元,用于接收所述终端设备发送的差分波束质量信息,其中,所述差分波束质量信息为所述终端设备根据所述第一步长或预存储的第二步长对需差分上报的波束质量进行量化得到的。
  25. 如权利要求24所述的装置,其特征在于,所述接收单元还用于接收所述终端设备发送的步长的选择信息。
  26. 如权利要求23或25所述的装置,其特征在于,所述步长的选择信息位于所述差分波束质量信息中或位于其它上行控制信息中。
  27. 一种通信装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一参考信号和第二参考信号;
    处理单元,用于分别对所述第一参考信号和所述第二参考信号进行测量,得到第一波束质量和第二波束质量;
    发送单元,用于发送第一差分波束质量信息和第二差分波束质量信息给所述网络设备,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。
  28. 如权利要求27所述的装置,其特征在于,所述处理单元还用于相对于所述第一波束质量,根据功率偏移值对所述需差分上报的第二波束质量进行功率偏移;
    其中,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的功率偏移后的第二波束质量进行量化后得到的。
  29. 如权利要求27或28所述的装置,其特征在于:
    所述处理单元还用于根据第一参考波束质量值和所述第一参考信号的步长,对第二参考波束质量值进行差分量化,得到第三差分波束质量信息;
    所述发送单元还用于发送所述第三差分波束质量信息给所述网络设备。
  30. 一种通信装置,其特征在于,包括:
    发送单元,用于发送第一参考信号和第二参考信号给终端设备;
    接收单元,用于接收所述终端设备发送的第一差分波束质量信息和第二差分波束质量信息,其中,所述第一差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第一波束质量进行量化后得到的,所述第二差分波束质量信息为根据所述第一参考信号的步长对需差分上报的第二波束质量进行量化后得到的。
  31. 如权利要求30所述的装置,其特征在于,所述装置还包括:
    处理单元,用于根据所述第一参考信号的步长和所述第二差分波束质量信息,得到第三波束质量;以及根据功率偏移值对所述第三波束质量进行功率补偿,得到所述第二波束质量。
  32. 如权利要求31所述的装置,其特征在于:
    所述接收单元还用于接收所述终端设备发送的第三差分波束质量信息,所述第三差分波束质量信息为所述第二波束质量的参考值相对于所述第一波束质量的参考值的差分量化信息;
    所述处理单元还用于根据所述第三差分波束质量信息和第一参考波束质量值,得到所述第二参考波束质量值。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求1、3~7和11~13任一项所述的方法。
  34. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行权利要求2~4、8~10和14~16任一项所述的方法。
PCT/CN2018/101355 2017-11-24 2018-08-20 通信方法及装置 WO2019100776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711192794.6 2017-11-24
CN201711192794.6A CN109842930B (zh) 2017-11-24 2017-11-24 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2019100776A1 true WO2019100776A1 (zh) 2019-05-31

Family

ID=66630424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101355 WO2019100776A1 (zh) 2017-11-24 2018-08-20 通信方法及装置

Country Status (2)

Country Link
CN (1) CN109842930B (zh)
WO (1) WO2019100776A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112203294A (zh) * 2019-07-08 2021-01-08 华为技术有限公司 一种通信方法及装置
US20230247607A1 (en) * 2020-06-19 2023-08-03 Beijing Xiaomi Mobile Software Co., Ltd. Wireless access method and system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507166A (zh) * 2006-08-21 2009-08-12 皇家飞利浦电子股份有限公司 多波束mimo系统中的高效cqi信令
CN104184561A (zh) * 2014-01-13 2014-12-03 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107209679B (zh) * 2014-12-03 2022-01-14 诺基亚通信公司 传输模式选择的控制

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507166A (zh) * 2006-08-21 2009-08-12 皇家飞利浦电子股份有限公司 多波束mimo系统中的高效cqi信令
CN104184561A (zh) * 2014-01-13 2014-12-03 中兴通讯股份有限公司 预编码导频处理方法、装置、基站及终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, BEAM REPORTING FOR BEAM MANAGEMENT, 25 August 2017 (2017-08-25) *
QUALCOMM, BEAM MANAGEMENT OFFLINE SUMMARY, 19 May 2017 (2017-05-19) *
SAMSUNG, ON BEAM MANAGEMENT, MEASUREMENT AND REPORTING, 21 September 2017 (2017-09-21) *

Also Published As

Publication number Publication date
CN109842930A (zh) 2019-06-04
CN109842930B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN110475337B (zh) 通信方法及装置
US11412400B2 (en) Method for positioning reference design
CN110035441B (zh) 确定波束的方法及通信装置
CN110035518B (zh) 一种通信方法及装置
US11431453B2 (en) Reference signal transmission method, and apparatus
CN111885683B (zh) 通信方法及装置
KR102462464B1 (ko) 통신 방법 및 장치
JP7123195B2 (ja) 通信方法及び通信機器
CN116368939A (zh) 一种通信方法及通信装置
WO2019100776A1 (zh) 通信方法及装置
US20190349940A1 (en) Power control method and apparatus
CN111869123B (zh) 用于高效波束管理的通信设备
JP6994105B2 (ja) Hrssi測定方法、ネットワークデバイス及び端末デバイス
WO2019096198A1 (zh) 通信方法及装置
WO2024031675A1 (en) Technologies for supporting spatial-domain multiplex based simultaneous uplink transmissions
CN113039844B (zh) 用于定位参考设计的方法
CN117812709A (zh) 资源的配置方法与通信装置
WO2024049689A1 (en) Technologies for beam management using a hybrid beamforming architecture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18881884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18881884

Country of ref document: EP

Kind code of ref document: A1